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Figure 3.8. Wavelet-based analysis of the heartbeat interarrival times for a
healthy patient. The time-series is analyzed using a Sth-order Daubechies
wavelet basis. (a) Scale-to-scale wavelet coefficient sample-variance progres-
sion. (b) Average magnitude of the normalized along-scale sample-correlation
between wavelet coefficients. :
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Detection and Estimation
with Fractal Processes

4.1 INTRODUCTION

Given the ubiquity of physical signals exhibiting 1/ f-type behavior, there are
many applications in which the need arises for efficient algorithms for pro-
cessing such signals. For instance, one is frequently interested in problems
of detection and classification; characterization and parametrization; predic-
tion and interpolation; and separation of 1/ f signals both from one another
as well as from other types of known or partially known signals.

In some cases, the 1/ f signal itself is of primary interest. An example
would be the problem of modeling stock market data such as the Dow Jones
Industrial Average as a 1/ f process. In other cases, the 1/ f signal represents
a noise process obscuring some other signal of interest. This is more likely to
be the case in optical and electronic systems, for example, where 1/ f noise is
a predominant form of background noise.

Even when the 1/ f signal is of primary interest, one rarely has perfect
access to such signals. Typically, our observations are incomplete. Indeed,
they will generally be time-limited and resolution-limited. More generally,
the observations may contain gaps, or there may be multiple observations.
Additionally, any observations of 1/f signals will invariably be corrupted
by some degree of broadband measurement noise.! It is important to both
recognize and accommodate such measurement noise in any algorithms for

! Actually, the coexistence of 1/ f and white noises in electronic and optical systems is
well documented. In electronic systems, for instance, the predominant noise is 1/ f noise at
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processing such data. Indeed, because 1/ f signals have a spectral density
that vanishes for sufficiently high frequencies, there necessarily exists some
frequency threshold beyond which the broadband noise is predominant. As
a consequence, such noise can strongly affect the performance of signal pro-
cessing algorithms.

In this chapter, we develop some optimal algorithms for addressing a
number of basic signal processing problems involving detection and estima-
tion with 1/ f-type signals. Our basic approach is to exploit the properties
of wavelet-based representations of 1/ -type processes. In particular, based
upon the synthesis result of Theorem 3.4 and supported by the subsequent
analysis results, our model for 1/ f signals is signals that, when expanded
into an orthonormal wavelet basis, yield coefficients that are effectively un-
correlated and obey the appropriate variance progression. That is, we exploit
the role of the wavelet expansion as a Karhunen-Loeve-like expansion for
1/ f-type processes. Because extremely efficient algorithms exist for comput-
ing orthonormal wavelet transformations as discussed in Section 2.3.3, this
approach is not only analytically convenient for solving these signal pro-
cessing problems, but leads to computationally highly efficient structures for
implementing the resulting algorithms.

We routinely incorporate additive stationary white measurement noise
to ensure the robustness of the algorithms we develop. Furthermore, most of
these algorithms are designed specifically for the case of Gaussian 1/ pro-
cesses and Gaussian measurement noises. While this requirement is princi-
pally motivated by tractability requirements, there are, in fact, many settings
in which this assumption is physically quite reasonable. Furthermore, sev-
eral of the algorithms we develop retain many of their important properties
in the more general non-Gaussian case.

An important component of the algorithm development process is per-
formance analysis, and this can take many forms. Accompanying each of
the algorithms we develop is a set of basic though necessarily limited evalu-
ations of its performance in various settings. These analyses both establish
the essential viability of the algorithms and reveal some of their salient prop-
erties. Many of these performance studies involve Monte Carlo simulations
with synthetic data. For these simulations, we generate 1/ processes us-
ing the Corsini-Saletti implementation of Keshner’s synthesis [69]. Because
this synthesis is fundamentally different from a wavelet-based synthesis,
such simulations play an important role in verifying the robustness of the
wavelet-based algorithms with respect to our particular model for 1/ f-type
behavior. However, as a consequence, these simulations generally do not
enable us to isolate the effects of modeling error alone.

frequencies below about 1 kHz, while at higher frequencies, it is white noise in the form of
thermal (i.e., Johnson) and shot noise [75].
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The wavelet-based implementation of each of the algorithms we de-
velop requires that we select a suitable wavelet basis from am(')r}g.the large
collection of candidates. However, given the apparent insensitivity of the
wavelet-based model for 1/ f-type behavior to the choice of basis, for .the
simulations we choose somewhat arbitrarily to use the basis correspondmg
to Daubechies’” 5th-order finite-extent maximaily regular wavelet fOI'-V\.’hJCh
the corresponding conjugate quadrature filters have 10 non-zero coefﬁcxentg
We remark that in addition to being realizable, this basis satisfies the cond.1—
tions of the theorems of Section 3.3.2 concerning the synthesis and analysis
of 1/ f-type behavior using wavelets. Specifically, the basis has.more th.an
enough vanishing moments to accommodate spectral parameters in our prin-
cipal range of interest, 0 < v < 2.

Before beginning, we note that a basic understanding of the fundg-
mentals of estimation and detection theory is assumed of the reader in this
chapter. A sufficiently comprehensive treatment for our purposes can be
found in, e.g., Van Trees [76].

4.2 1/f SYNTHESIS AND WHITENING FILTERS

Many of the results on detection and estimation we derive in this chapter
are conveniently interpreted in a canonical form through the concept Qf a
reversible (or invertible) whitening filter for 1/f processes. Fn this section,
we derive such whitening filters and their inverses for the partlcula'r wavelet-
based model for 1/ f-type behavior which we intend to exploit in this chapter.
To begin, if z(t) is a 1/ f signal corresponding to some spectral exponent
7, we model the corresponding wavelet coefficients 2] as zero-mean randgm
variables having negligible correlation and obeying a variance progression
of the form
varzl = g?3 ™
where, for notational convenience, we define
3=2". 4.1)

In turn, we may express the z7* as

= 013_"‘/21!:‘

m=

where the ©"* are then zero-mean, unit-variance, uncorrelated random vari-
n N .

ables. Hence, the process v(t) defined according to

o(t) = S Y erur(t)

is a wide-sense stationary white noise process since the ¥*(¢) constitute a
complete orthonormal set. This suggests that we may model z(t) as the
output of a linear system driven by stationary white noise »(t). In particular,
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the system performs an orthonormal wavelet transform on the input v(t),
scales each of the resulting coefficients v2* by a factor

kD = ofmm?,

then inverse wavelet transforms the resulting 7" to generate the output pro-
cess z(t). This 1/ f synthesis filter, defined via

z(t) = Wit o872 Wy {u(1)}} , (42)
is a linear filter whose kernel? is
Kot 7) =3 Y Wm(E)o B2 (7). (4.3a)

We emphasize that viewing z(t) as the output of a linear system with
kernel (4.3a) driven by stationary white noise v(t) is especially useful in the
Gaussian scenario, in which case v(t) is a stationary white Gaussian pro-
cess. Nevertheless, for non-Gaussian processes this characterization remains
useful at least insofar as modeling the second-order properties of z(t) is con-
cerned.

From the wavelet-based characterization of the synthesis filter (4.2) we
readily deduce that this filter is invertible, and that its inverse has kernel

Kol = S TR0 ) (4.3b)

This is, therefore, the corresponding whitening filter for our model of 1/ f-type
behavior. Indeed, when this filter is driven by a process obtained as the output
of our 1/ f synthesis filter, the output is, evidently, a wide-sense stationary
white process. When driven by an exactly-1/ f process, the properties of the
output are readily described in terms of the analysis results of Section 3.3.2.

As discussed at the outset of the chapter, any 1/ f-type process we con-
sider are invariably accompanied by an additive stationary white observation
noise component. Consequently, we frequently find the notion of synthesis
and whitening filters for the combined 1/ f-plus-white processes convenient
in interpreting our algorithms. These filters are, of course, closely related to
the filters derived above. In fact, it is straightforward to establish that syn-
thesis and whitening filters for 1/ f-plus-white processes are characterized by
the respective kernels

Ks(t,T) = Z Z Y ()omuy (1) (4.4a)

2In our notation, the kernel k{t, 7) of a linear system defines the response of the system
at time ¢ to a unit impulse at time 7. Consequently the response of the system to a suitable
input z(t) is expressed as

y(t) = /_oc> z(7) k(t, T) dr.
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wt) —= W, W' = x(t)+w(1)

xr+wy vy :
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Figure 4.1. Canonical form realizations of synthesis and whitening filters for
processes that are the superposition of 1/ f-type and white components, i.e.,
1/ f-plus-white processes. (a) Synthesis filter, kernel «,(¢,7). (b) Whitening
filter, kernel k. (¢, 7).

koltyT) = zzw:r(t%w:r(r) (4.4b)

where o,, > 0 is defined by
o =0+ 02 (4.5)

and 0?2 is the spectral density of the white noise component. The canonical
wavelet-based realization of these filters is depicted in Fig. 4.1.

4.3 PARAMETER ESTIMATION FOR 1/ f SIGNALS

In this section, we consider the problem of estimating the parameters of a
Gaussian 1/ f signal from observations corrupted by stationary white Gaus-
sian noise [77]. Since we typically lack a priori knowledge of the spectral
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density of the noise, we consider more specifically the problem of jointly
estimating signal and noise parameters for this scenario.

Such parameter estimates, in addition to providing a solution to the as-
sociated 1/ f spectrum estimation problem, are frequently of interest in their
ownright. Indeed, from the parameter estimates we can directly compute the
fractal dimension of the underlying signal using the relationships developed
in Chapter 3. Robust estimation of the fractal dimension of 1 /[ processes is
important in a number of applications requiring signal detection and clas-
sification. For example, in image processing, where 2-D extensions of 1/f
processes are used to model natural terrain and other patterns and textures
[47] [58], fractal dimension can be useful in distinguishing among various
man-made and natural objects.

While several approaches to the fractal dimension estimation problem
can be found in the literature (see [58], [78], [79], and the references therein),
a traditional problem with these approaches has been their inability to ad-
equately handle the presence of broadband noise in the observation data.
In fact, the quality of the estimates generally deteriorates dramatically in
the presence of such noise even at high SNR [58]. Since noise is inherently
present in any real data, this lack of robustness has limited the usefulness
of these algorithms. In this section we describe fractal dimension estimators
for Gaussian 1/ f processes that explicitly take into account the presence of
additive white Gaussian observation noise. The resulting iterative estimation
algorithms are computationally efficient, robust, and statistically consistent.

Our basic approach is to apply the method of Maximum Likelihood
(ML) estimation, exploiting the wavelet-based characterization of our 1/f
model. While we specifically consider the case of Gaussian 1 /[ processes
corrupted by additive stationary white Gaussian measurement noise in our
formulation of the problem, we stress that the resulting estimators are, in fact,
applicable to a broader class of non-Gaussian 1/ f processes and measurement
noise models, and retain many desirable properties.

We formulate our problem as follows. Suppose we have observations

r(t) of a zero-mean Gaussian 1/ f process z(t) embedded in zero-mean addi-

tive stationary white Gaussian noise w(¢) that is statistically independent of
z(t), so

r(t) = z(t) + w(t), —00 < t < 00. (4.6)

From this continuous-time data, we assume we have extracted a number
of wavelet coefficients r". In theory, we may assume these coefficients are
obtained by projecting the wavelet basis functions onto the observed data,
ie., via

= /°° W) F(E) dt.

However, in practice, these coefficients are more typically obtained by apply-
ing the computationally efficient DWT to the samples of a segment of data
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that is both time-limited and resolution-limited, as described in Sec.tion 2.;‘5.3.
Let us assume that the finite set of available distinct scales, M, is, in increasing

order,

M={my,ma,....mul, (4.7a)
and that at each scale m the set of available coefficients A'(m) is®
N(m) = {ni(m), na(m), ..., nymy(m)}. (4.7b)

Hence, the data available to the estimation algorithm are
r={r"eR}={r,me M,ne N(m)}. (4.8)

We remark before proceeding that, based on the discussion in Sec-
tion 2.3.4, for an implementation via the DWT with N = Ny2" samples of
observed data, we have, typically,

M = {1.2..... M} (4.9a)

N(m) = {1,2....,No2™ '}, (4.9b)

where Ny is a constant that depends on the length of the filter h[n)]. While

many of the results we derive are applicable to the more general scenario, we
frequently specialize our results to this case.

Exploiting the Karhunen-Loéve-like properties of the wavel.et decompo-
sition for 1/ f-type processes, and using the fact that the w} are mdependgnt
of the " and are decorrelated for any wavelet basis, the resulting observation
coefficients

o =Ty wn
can be modeled as mutually independent zero-mean, Gaussian random vari-
ables with variance ,

varrt = o = 023" + 7,

where 3 is defined in terms of the spectral exponent v of the 1/f process
according to (4.1). Hence, it is the parameter set

© = (8.0%02)
we wish to estimate. As discussed at the outset, it is often the case that
only 4 or some function of 5 such as the spectral exponent 7, the fractal
dimension D, or the self-similarity parameter H, is of interest. Nevertheless,
o? and o2 still need to be estimated simultaneously as they are rarely knowna
priori. Furthermore, ML estimates of v, D, H arereadily derived from the ML
estimate Jy. Indeed, since each of these parameters is related to J through
an invertible transformation, we have

. = log, Bwe (4.10a)
Dt = (5-4mL)/2 (4.10b)
Hw = (G —1)/2 (4.10¢)

*Note that without loss of generality we may assume A (m) # 0 for any m, or else the
corresponding scale m could be deleted from M.
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Proceeding, we express the likelihood as a function of the parameters
by

1 (r’")ZJ
£(©) = p(r;©) = ex [— "
m.lan V2mo2, P 207,

for which the log-likelihood function is

L) = Inpy(r0) = -1 ¥ {iw;")mn(zm;)}.

mneR 07271
Equivalently,
1 2
L(®) = -5 3 N(m) {”—2 + ln(27r0,2n)} (4.11)
mem Om
where the M sample-variances
1
-2 my2
O = —— Z (rit) (4.12)
N m) neEN(m)

summarize the aspects of the data required in the estimation. It is straight-
forward to show that the likelihood function in this case is well behaved and
bounded from above on

J >0, 0220, 05,20
so that, indeed, maximizing the likelihood function is reasonable.

While we assume that 3, 02, 02 are all unknown, it will be appropriate
during the development to also specialize results to the case in which ol
is known. Still more specific results will be described when ai, = 0, corre-
sponding to the case of noise-free observations. We may also assume, where
necessary, that all m € M are positive without loss of generality. Indeed,
if, for example, m; < 0, then we could define new parameters through the
invertible transformation

=2 __ 2

Oy = Oy

~2 — O_Zﬁml—l
3 = g

for which the observations correspond to positive scales
M={1.m2—m1+1 ..... mM-m1+l}
and which lead to the same ML estimates for 8,04 02,

43.1 Casel: 8, o o2 Unknown
Differentiating L(©) with respect to 02, ¢, and 3, respectively, it follows that
the stationary points of L(©) are given as the solutions to the equations

YT, =0

meEM
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S 3. = 0
memM

> md"T, = 0
meM

where

T, & Nm) [1 - 5’2] .
T Ih
However, these equations are difficult to solve, except in specia.l cases. Con-
sequently, we utilize an iterative estimate-maximize (EM) algorithm .[80]_.

A detailed development of the EM algorithm for our problgm is given
in Appendix C. The essential steps of the algorithm are sumr211arlzed below,
where we denote the estimates of the parameters 3, 02, and o2, generated on

the [th iteration by g, 62¥, and 52, respectively.

E step: As shown in Appendix C, this step reduces to estimating the noise

and signal portions of the wavelet coefficient variances at eac?2 [s”cale
m € M using current estimates of the parameters 3, 52!, and 52 :

S¥ey = A,©W + BY(6M)s2 (4.13a)
szl = A, @W + Bz(6ls? (4.13b)
where
5200, 520 (407
am = v 3 A}_m (4.14a)
" 631 + 621 3]
2
221
Br(@W) = T — (4.14b)
" 520 4 21 [5[11]
s [pm
Bz (Ol) = G } . (4.14¢)
" G2 + 521 [Gu]

M step: This step reduces to using these signal and noise varie};lcte Sstimates
to obtain the new parameter estimates l‘+1, 62+1, and 52 [+11:

S 3 CaN(m)SE (O™ =0 (4.15a)
meEM
Y N(m)sz(eM) [5)”
GRl+l . meM S N (4.15b)
m
memM
> N(m)su©f)
Gl mem {4.15¢)
v N{(m)
i
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where
o2 m 1
> mN(m) > Nimy (1.16)
meM meM

432 Casell: 8, o* Unknown; o? Known

If 02 is known, the above algorithm simplifies somewhat. In particular,
we may omit the estimation (4.15¢) and replace occurrences of 62 in the
algorithm with the true value 02, This eliminates the need to com ute
S (©W) and, hence, B2(©U). The resulting algorithm is as follows. F

E step: Estimate the s‘ignal portion of the wavelet coefficient variances at each
scale m € M using current estimates of the parameters 3l and ¢!

Sn(©) = A, (01 + Bz Q52 (417)
where
, o2 g2 [pm] ™™
An(OH) = -# (4.18)
of + 20 [gu] ™" '
] g2 [pu™
B@l) = [ } — | - (4.18b)
0% + 62 [31]

M step: Use these signal variance esti i
> stimates to obtain the n
estimates gl+1 and g2li+1. ° parameter

JH 3 0N (m)SE (@l m — (4.19)
memM
Z 1\.(m)53n((;)[1]) [B[H-l]]m
(}Z[H—l] —. meMm
S N (4.19b)
meM

where (', is as in (4.16).
43.3 Caselll: 3, o2 Unknown; o2 =0

Ifo? is knovyn (gr assumed) to be zero, the EM algorithm becomes unneces-
sary as the likelihood may be maximized directly. Specifically, with #2 = 0

the signal variance estimates are avail i
he sig able directly as ¢2,. Hence the estima-
tion simplifies to the following: ) " otma

EYERSED Y CrnN(m)62 g™ = 0 (4.20a)

mem
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> Nm)eZ, [w]”
-2 mem
ogL = 4.20b
ML N(m) ( )
meM

with (7, still as in (4.16).

It is worth discussing this special case in more detail not only for its own
sake, but also because it characterizes one of the components of each iteration
of the EM algorithm. The derivation of the parameter estimates in this case is
essentially the same as the derivation of the M step in Appendix C. We begin
by differentiating the likelihood function to find equations for its stationary
points. This leads to a pair of equations in terms of 62 and /. Eliminating
o* from these equations is straightforward and gives (4.20a) directly. Having
determined 3y as the solution to this polynomial equation, 62 is obtained
by back substitution.

From Lemma C.1 in Appendix C, it is apparent that (4.20a) has exactly
one positive real solution, which is the ML estimate BML. Hence, L has a
unique local and hence global maximum. Moreover, we may use bisection
as a method to find the solution to this equation, provided we start with an
initial interval containing OwmL. For instance, when we expect 0 < v < 2,
an appropriate initial interval is 1 < 3 < 4. Naturally, with some caution,
Newton iterations [81] may be used to accelerate convergence.

Again, since solving equations of the form of (4.20) constitutes the M
step of the iterative algorithm for the more general problem, the above re-
marks are equally applicable in those contexts.

4.3.4 Properties of the Estimators

In this section, we consider two principal issues: how the parameter estimates
of the EM algorithm converge to the ML parameter estimates; and how the
ML parameter estimates converge to the true parameter values.

Regarding the first of these issues, we are assured that the EM algorithm
always adjusts the parameter estimates at each iteration so as to increase the
likelihood function until a stationary point is reached. It can be shown
that in our problem, the likelihood function has multiple stationary points,
one of which corresponds to the desired ML parameter estimates. Others
correspond to rather pathological saddle points of the likelihood function at
the boundaries of the parameter space:

/'A — 3
8 ML 2,
~2 -2
o~ = 0O
ML a2=0
~2 -
6, = 0
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and

3 arbitrary

g =90
Y. N(m)é?
6 = memM_
w Z N(m)
meM

That they are saddle points is rather fortunate, for the only way they are
reached is if the starting value for any one of 3, 42, &7, is chosen to be exactly
zero. Given arbitrarily small positive choices for these initial parameters, the

algorithm iterates towards the ML parameters.

The preceding discussion suggests that the EM algorithm is fundamen-
tally rather robust in this application. However, the selection of the initial
parameter values naturally affects the rate of convergence of the algorithm.
Moreover, it should be noted that the EM algorithm converges substantially
faster for the case in which o2 is known. In essence, for the general algorithm
much of the iteration is spent locating the noise threshold in the data.

Turning now to a discussion of the properties of the ML estimates
themselves, it is well known that ML estimates are generally asymptotically
efficient and consistent. This, specifically, turns out to be the case here [82].
It is also the case that at least in some higher signal-to-noise ratio (SNR)
scenarios, the Cramér-Rao bounds closely approximate the true estimation
€Iror variances.

To compute the Cramér-Rao bounds for the estimates of v, o7, and 2,
we construct the corresponding Fisher matrix

Ngny [ [I0270°3°7  —In2mo2[g-mp2 _jnomg2gom

= m 2[3—-m)2 2—m12 3—m
R ek S
(4.21)
from which we get
vary > 4
varg? > 2
varg? > ¥

w

for any unbiased estimates 7, 62, 2, and where /** is the kth element on the
diagonal of I"!. However, local bounds such as these are of limited value
in general both because our estimates are biased and because the bounds
involve the true parameter values, which are unknown,

When g7, is known, the Fisher information matrix simplifies to the upper
submatrix

I= > —rmr | - In2mg2 ] (422)

N[BT [ [In2me?? —In2ms?
mem  2(0%)?
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from which we get

vary > [V
varg® > %2
As one would expect, both the actual error variances and the Cramér-Ra}o
bounds are smaller for this case. Note that because the bomds a.re.stlll
a function of the parameters in this case, their usefulness remains limited.
Nevertheless, except in very low SNR settings, the estimate biases are small
inarelative sense and the estimation error variance is reasonably well approx-
imated by these bounds. Hence, the bounds are at least useful in reflecting
the qualifv of estimation that can be expected in various scenarios.

When 02 = 0, we get still further simplification, and we can write

(In2)?/2 3" m*N(m) —(In2)/(26%) 5" mN(m)

m meM (4'23)
I=1 _n2)/2ed) S mN(m)  1/@20%) S° Nim)
meM meM

from which we get

v

vary

2/ [(n2)2]] 3 N(m)
meM
2/J S m*N(m)

memM

\

var(6?/0?)

where

[ e 0] e

memM mem meM

In this case, the bounds no longer depend on the parameters. Morfeover,
in practice, these expressions give an excellent approximation to the variances
of the ML estimates. Evaluating the Cramér-Rao bounds asymptotically for
the usual implementation scenario described by (4.9), we get

varjme ~ 2/ [(In2)’N] (4.24a)
var(ogy /o?) ~ 2(log, N)?/N (4.24b)

where N is the number of observation samples.

4.3.5 Simulations

For the Monte Carlo simulations of this section, we synthesize gliscretfe sam-
ples of resolution-limited Gaussian 1/f processes embedded in stationary
white Gaussian noise. In general, we vary the length N and SNR of Fhe
observations sequence as well as the spectral exponent 'y'of the ur}derlymg
1/ f processes. We then perform parameter estimation using algorithms for
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the most general scenario, corresponding to the case in which all signal and
noise parameters 3, 0%, o2 are unknown.

O
In Fig. 4.2, the RMS error in the estimates of 7 and 2 is plotted for
various values of 4 as a function of SNR where the observation sequence
length is fixed to N = 2048. The results from 64 trials were averaged to
obtain the error estimates shown. As the results suggest, the quality of the
estimates of both parameters is bounded as a consequence of the finite length
of the observations. Moreover, the bounds are virtually independent of the
value of v and are achieved asymptotically. For increasing values of v, the
results suggest that the bounds are attained at increasing SNR thresholds.

In Fig. 4.3, the RMS error in the estimates of v and o2 is plotted for
various values of v as a function of observation sequence length N where the
SNR is fixed to 20 dB. Again, results from 64 trials were averaged to obtain
the error estimates shown. While the results show that the estimation error
decreases with data length as expected, they also suggest, particularly for
the case of o2, that the convergence toward the true parameters can be rather
slow. Note, too, that a rather large amount of data is required before the
relative estimation error in o can be made reasonably small.

We conclude this section with a demonstration of the tracking capabil-
ities of the parameter estimation algorithm. Specifically, Fig. 4.4 illustrates
the performance of the parameter estimation in tracking a step-change in the
spectral exponent +y of a noise-free 1/ f signal. The signal was constructed
such that the left and right halves of the signal correspond to v = 0.90 and
7 = 1.10, respectively, but identical variances. Local estimates of ~ are com-
puted by applying the Case IIl parameter estimation algorithm to the signal
under a sliding window of length 16, 384 centered about the point of interest.
Note that the algorithm not only accurately resolves the appropriate spectral
exponents, but accurately locates the point of transition as well. [t is useful
to point out that, as is the case with most tracking algorithms, using a wider
estimation window would reduce the variance in the parameter estimates
within each half of the waveform, but at the expense of an increase in the
width of the transition zone.

4.4 SMOOTHING OF 1/ f SIGNALS

In this section, we consider the problem of extracting a 1/f signal from a
background of additive stationary white noise [77]. There are many poten-
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tial problems involving signal enhancement and restoration to which the
resulting smoothing algorithms can be applied. For this signal estimation
problem, we use a Bayesian framework to derive algorithms that are optimal
with respect to a mean-square error criterion. We specifically consider the
Gaussian case, for which the resulting algorithms not only yield estimates

Figure 4.2. RMS Errors in the estimates of the signal parameters as a function
of the SNR of the observations. The symbols associated with each v mark the
actual empirical measurements; dashed lines are provided as visual aides only.
(a) Absolute RMS error in 4mt. (b) Percentage RMS error in 6% .
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eachy mark the actual empirical measurements; dashed lines are provided as
lesual aides only. (a) Absolute RMS error in M. (b) Percentage RMS error in
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Figure 44. Tracking the time-varying spectral exponent v of a noise-free 1/ f-
type signal. For the left half of the signal, v = 0.90, while for right half,
v = 1.10. (a) 1/f signal with step change in 7. (b) Estimate of v under a
time-limited window.

having the minimum possible mean-square error, but correspond to linear
data processors as well. However, more generally, for non-Gaussian scenar-
ios the estimators we derive are optimal in a linear least-squares sense, i.e.,
no other linear data processor is capable of yielding signal estimates with a
smaller mean-square error [76].

Our basic formulation is to consider the estimation of a 1/ f signal z(¢)
from noisy observations (t) of the form (4.6), viz.,

r(t) = z(t) + w(t)
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where w(t) is stationary white noise, and where we still consider zero-mean
processes. We assume in our derivation that the signal and noise parame-
ters 3, 0%, o2, are all known, though, in practice they are typically estimated
using the parameter estimation algorithms of the last section. In fact, the
parameter and signal estimation problems are quite closely coupled. Indeed
it will become apparent in our subsequent development that smoothing was
inherently involved in the parameter estimation process as well.

We, again, exploit the wavelet decomposition to obtain our results.
Specifically, we begin with the set of wavelet coefficients (4.8). Then, since

m o _ .M m
T, =T, tuw,

where the 77" and w]' are all mutuaily independent with variances ¢23~™ and
o, respectively, it follows immediately using classical estimation theory that
the estimate of z7' that minimizes the mean-square estimation error is given
by
. Elzr?] mneR
m __ m — n n
= Eleyln] { 0 otherwise.

Furthermore, when z* and r™ are jointly Gaussian, it is straightforward to
establish that the least-squares estimates are linear and given by

oZ3~m

o2 0m + o2

El™r] = { P (4.25)

From these estimates, we can express our optimal estimate of the 1/ signal
as

™ M, m 0213_"1 m m
)= 2Rt = Y | | PPt (4.26)

2.3—-m 2
mneER 0?3 +Uu'

Note that, consistent with our earlier discussion of Wiener filtering for
this problem, the smoothing factor

g?3=m
o23~™ + gl

in (4.26) has a thresholding role: at coarser scales where the signal predomi-
nates the coefficients are retained, while at finer scales where noise predom-
inates, the coefficients are discarded. Note, too, that this factor appears in
(4.14c), which allows us to interpret (4.13b) in terms of sample-variance es-
timates of the smoothed data. Evidently smoothing is inherently involved in
the parameter estimation problem.

Interpreting the optimal estimator (4.26) in terms of the whitening fil-
ters of Section 4.2 leads to a conceptually convenient and familiar realization.
In particular, as depicted in Fig. 4.5, the optimal linear processor consists of
two stages. In the first stage, the noisy observations r(t) are processed by a
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Figure4.5. A canonic formimplemen-

tation of the optimal linear filter for esti-

mating a 1/ f signal z(t) from noisy ob-

servations r(t). The linear least-squares

filter is the cascade of a whitening filter
v(t) ~ followed by an innovations filter. The
r(t) Ky K; x(t)  intermediate innovations process v(t) is
stationary and white.

whitening filter with kernel x,.(¢, 7) given by (4.4b) to generate an intermedi-
ate white innovations process v(t) whose wavelet coefficients are

m
m_n

v, = —.

Om

In the second stage, v(t) is processed by an innovations filter with kernel

23-m
kit T) = Zzw;"(t) {a g

Um
to generate the optimal estimate z(t) with wavelet coefficients given by (4.25).
This innovations-based implementation is a classical estimation structure
[40].

In practice, good performance is achieved by these estimators even in
very poor SNR scenarios. This is not surprising given the preponderance
of energy at low frequencies (coarse scales) in 1/ f-type processes. Let us
then turn to a quantitative analysis of the estimation error. First, we note
that because our set of observations is finite the total mean-square estimation
error

] ) 427)

/°° E [(@(t) - 2(t)7] dt

-0

is infinite. Nevertheless, when we define

)= Y o)

mmneR

as the best possible approximation to z(t) from the finite data set, we can
express the total mean-square error in our estimate with respect to rz(¢) as

/°° E [(a(t) — za(0))] dt

£

= ¥ E[(in’”-rzl)z]
m.neR

= Y Elvarayiry)]
m.nerR

which, through routine manipulation, reduces to

29-m , -2
= Y N(m) [___U g "} (4.28)

213—-m 2
et o*3—m 4 g
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As a final comment, note that while we do not develop the signal esti-
mation in terms of Wiener filtering in the frequency domain, interpretations
in this domain provide useful insight. In particular, it is clear that at high
frequencies the white noise spectrum dominates, while at low frequencies
the 1/f signal spectrum dominates. In fact, at sufficiently low frequencies,
there is always arbitrarily high SNR regardless of the noise threshold. Conse-
quently, Wiener filtering for this problem involves a form of low-pass filtering,
where the exact filter shape and “cut-off” are governed by the particular pa-
rameters of the noise and signal spectra. Moreover, this low-pass filtering is
effectively implemented on a logarthmic frequency scale—the scale which is
most natural for these processes.

4.4.1 Simulations

For the simulations of this section, discrete samples of resolution-limited
Gaussian 1/ f processes embedded in Gaussian white noise are synthesized.
In general, the SNR of the observations sequence is varied as well as the
spectral exponent v of the underlying 1/f processes. Parameter estimation
is then performed, followed by signal estimation, using algorithms for the
most general scenario, corresponding to the case in which all signal and
noise parameters (3, 02, 02 are unknown. Note that by using the estimated
parameters in the signal estimation algorithm, these experiments do not allow
us to distinguish between those components of signal estimation error due
to errors in the estimated parameter values and those due to the smoothing
process itself. This limitation is not serious, however, since the quality of
the signal estimation is generally rather insensitive to errors in the parameter
estimates used.

In Fig. 4.6, the SNR gain of the smoothed signal estimates is plotted
for various values of v as a function of the SNR of the observations where
the sequence length is fixed to N = 2048. Again, results from 64 trials were
averaged to obtain the error estimates shown. The SNR gains predicted by
the total mean-square error formula (4.28) are also superimposed on each
plot. As the results indicate, the actual SNR gain is typically no more than 1
dB below the predicted gain, as would be expected. However, under some
circumstances the deviation can be more than 3 dB. Worse, the SNR gain can
be negative, i.e., the net effect of smoothing can be to increase the overall
distortion in the signal. Such degradations in performance are due primarily
to limitations on the accuracy to which the wavelet coefficients at coarser
scales can be extracted via the DWT. In particular, they arise as a result of
undesired effects introduced by modeling the data outside the observation
interval as periodic to accommodate the inherent data-windowing problem.
By contrast, error in the parameter estimates is a much less significant factor
in these degradations at reasonably high SNR. The plots also indicate that
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better gains are achieved for larger values of « for a given SNR. This is to be
expected since for larger values of ~ there is more signal energy at coarser
scales and correspondingly less at finer scales where the noise predominates
and the most attenuation takes place. .

We conclude this section with a signal estimation exgmple. Fig. 4.7
shows a segment of a 65, 536-sample 1/ f signal, the same signal embeddefi
in noise, and the signal estimate. In this example, the spect.ral exponent 151,
v = 1.67, and the SNR in the observations is 0 dB. The espmatgd spectra
exponent is . = 1.66, and the SNR gain of the signal estur'tate is 13.9 dB.
As anticipated, the signal estimate effectively preserves defcall at the coarse
scales where the SNR was high, while detail at fine scales is lost where the

SNR was low.

4.5 COHERENT DETECTION IN 1/ f NOISE

In this section the problem of detecting a knon'n signgl of finite energy in a
background of Gaussian 1/ f and white noise is con51c.lere.d. The detectu;n
algorithms we develop may be used in a variety of apphcatlon.s{' they may be
exploited, for example, in communication and pattern recognition systems.
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Figure 4.7. Optimal smoothing of a noisy 1/f signal.

In our approach, we explicitly include stationary white Gaussian mea-
surement noise in our model. In general, this refinement improves the ro-
bustness properties of the resulting algorithms and, in particular, it precludes
certain singular detection scenarios. As will become apparent, the wavelet-
based approach we develop is not only analytically and conceptually conve-
nient, but leads to practical implementation structures as well. s

Let us pose our detection problem in terms of a binary hypothesis test
with a Neyman-Pearson optimality criterion [76]. Specifically, given noisy
observations r(t), we wish to determine a rule for deciding whether or not a
known signal is present in the observations. For our test formulation, under
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hypothesis //; we observe a signal of energy £y > 0 against a background of
Gaussian 1/ and white noise, while under hypothesis H, we observe only
the background noise, i.e.,

Hr VEos(8) + 2(t) + w(t)

Hy:r(t) = z(t)+ w(t)
where w(t) is stationary white Gaussian noise and z(t) is Gaussian 1/ f-type
noise, and s(t) is a unit energy signal:

/_O:o S(ydt =1.

We assume that w(t) and z(t) are statistically independent processes under
either hypothesis, and also that our observations generally extend over the
infinite interval —oo < t < oo. We then seek to design a decision rule that
maximizes the probability of detecting s(t)

Pp = Pr(decide H; | H; true)
subject to a constraint on the maximum allowable false alarm probability
Pr = Pr(decide H, | Hy true).
As is well known, the solution to this problem takes the form of a likelihood
ratio test [76].

An equivalent hypothesis test can be constructed in terms of observa-
tions of the respective wavelet coefficients

—
~

r={r;'}
as
Hy:rm? \/Eos,’?+mnm+w;”
Ho:r? = zp 4wl

for —oc < m < oo and —oo < n < 0. According to our model, under each
hypothesis, the coefficients w7 and z are all statistically independent, and
have variances o2, and 023~ ™, respectively.

In this case, since joint distributions of the observations under the re-
spective hypotheses are

(r) L exp [ s’ = Eos:{‘)z}
Pr|H, = \/—— - a2
m,n 271'0%” 2O'm
1 (rm)?
PeH,(r) = - exp [— *2‘02—} )
the likelihood ratio
pr|H1(r)
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(1)

r(t) —= K,

A
device H

E(l)rz s(t) Ky

5,(t)

Figure 4.8. Canonical prewhitening implementation of the optimal receiver
for detection of a known s(¢) in the presence of both Gaussian 1/ f and stationary
white Gaussian noise, where £, (¢, 7} is the kernel of the whitening filter for 1/ f-
plus-white noise.

can be simplified substantially to yield a test of the form

, rmgm
=y y-rn a (4.29)

2 <
o H,
where a is the threshold of the test.

This optimal detector may be realized using a whitening-filter-based
implementation as shown in Fig. 4.8. The statistic ¢ is constructed by pro-
cessing both r(t) and /Eps(t) with a prewhitening filter whose kernel is given
by (4.4b), and then correlating the respective outputs r.(t) and s.(¢). It is
straightforward to verify this implementation: since the prewhitened signals
r.(t) and s.(t) have wavelet coefficients T /om and VEys™ /o, respectively,
it suffices to recognize the expression for ¢ in (4.29) as the inner product
between s, (t)/+/Ej and r.(t), which allows us to rewrite (4.29) as

00 H
e:/ () () Bodt 2 a.
- 5

This is, of course, a canonical form receiver for optimal detection in the
presence of colored noise as described in [76].

Let us turn now to a discussion of the performance of this optimal
receiver. Via the implementation of this receiver in terms of the whitened
observations r.(t), we note that the performance is necessarily equivalent
to that of an optimal detector for s,(t) in the presence of stationary white
Gaussian noise of unit variance. Indeed, if we define the performance index
d according to

o0 (,TT)Z
22 /_oo $2(t) dt = E, ; ; ‘”772’1_ (4.30)
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i i i isti i known
Figure 4.9. The receiver operating characteristic for the detection of a
sig:al in a background of 1/f plus white noise for various thresholds deter-
mined via the performance index d.

then
E[€|H0] =

0
ElH] = &/E
var{¢|Hy} = var{¢|H,} d*/ Ey.

Hence, expressing our arbitrary threshold in the form

-4 finn é]

VB[ d 2
for some 0 < 7 < oo, the performance of the test can be described in terms of
the detection and false alarm probabilities, respectively

Py = Q (1% _ g) (431a)
Pe = 0 (E‘J’l N ;) (431b)
where 1 oo
__ L e 432
Q) = \/2_7r/x e dv. (4.32)

The familiar receiver operating characteristic (ROC) asso.ciated with such
Gaussian detection problems is as shown in Fig. 4.9 for various values of d.
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In concluding this section, we make some brief remarks on the problem
of optimum signal design for use in 1/ f-plus-white backgrounds. Based on
our analysis, it is apparent that we can optimize performance if we choose s(t)
or equivalently s}, to maximize d” in (4.30) subject to the energy constraint

[ sma = =1

However, this signal optimization problem is not well posed. Indeed, because
of the spectral distribution of the background noise, the optimization attempts
to construct a signal whose energy is at frequencies sufficiently high that the
1/f noise is negligible compared to the white component. Consequently,
to preclude the generation of an arbitrarily high frequency signal, generally
some form of bandwidth constraint is necessary. An example of how this can
be accommodated in a communications scenario is described in Wornell [83].

I4

4.6 DISCRIMINATING BETWEEN 1/ f SIGNALS

In this section, we consider the ability of an optimal Bayesian detector to
discriminate between Gaussian 1/f processes of distinct parameters in a
background of stationary white Gaussian noise. The signal classification al-
gorithms we derive are useful in a variety of potential applications. The
problem of distinguishing 1/ f processes is, of course, very closely related to
the parameter estimation problem treated in Section 4.3. Indeed, parameter
estimation can be viewed as distinguishing among an arbitrarily large num-
ber of 1/ f processes with incrementally different parameters. Nevertheless,
as we will see, approaching the problem from a detection perspective affords
a number of new and useful insights.

It is, again, convenient to formulate our problem in terms of a binary
hypothesis test in which under each hypothesis we have noisy observations
r(t) of distinct 1/ f signals. Specifically, we have as our two hypotheses

Hy:r(t) = 2(t) +w(t) (4.33a)
Hy:r(t) = E(t)+w(t) (4.33b)

where i(¢) and #(t) are Gaussian 1/ f processes* with distinct parameters and
w(t) is a white measurement noise, statistically independent of .i(/) or #(t),
whose variance is the same under both hypotheses. For this test we develop
a minimum probability of error [Pr(¢)] decision rule under the assumption
of equally likely hypotheses.

*In this section, the notations " and " are used to distinguish the 1/ f processes and their
respective parameters under the two hypotheses. These symbols should not be confused
with differentiation operators, for which we have generally reserved the notation’ and "'
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Once again, the optimum receiver is best developed and analyzed in the
wavelet domain. Rewriting the hypothesis test in terms of the corresponding
wavelet coefficients as

L sm m
Hy:r) = 04wy

L mm m
Hyorlt = I 4wy,

we model the r* under each hypothesis as a collection of zero-mean statisti-
cally independent Gaussian random variables with variances

var{r"|Hy} = 6% =¢*0""+ 02 (4.34a)
var{r"|H} = 2 =6+ 02 (4.34b)
where '
3= 2
3 = 2n

In our derivation we assume that, in general, only a finite collection of
observation coefficients of the form

r={rr eR}={rl,m e M.n € N(m)},

where M and N (m) are as defined in (4.7), are available. In fact, as we will
see, the problem turns out to be singular (i.e., perfect detection is achiev-
able) if complete observations over the infinite interval are available. In our
simulations, we assume the observation set R to be of the particular form
(4.9), which corresponds to the collection of coefficients generally available
from time- and resolution-limited observations of r(t) via a DWT algorithm
as discussed in Section 2.3.4.

The likelihood ratio test for this problem can, through straightforward
manipulation, be simplified to a test of the form

1 11 2 D

. r m m >

(== Z N(m){[.———t—] (rn)z—ln—,T} z 0. (4.35)
2 meM Uzm 03" Tim Hy

Itis straightforward to show that this test can be implemented in the canonical

form shown in Fig. 4.10. Here the observations r(t) are processed by 1/f-

plus-white whitening filters corresponding to each hypothesis, for which the

respective kernels are

1
Folt.T) = Y3 /,T(t)d—w,’f‘(r)

1
Relt.T) = Z Z w;"(t);f,——w,’l"(r).

m n

Consequently, only one of the residual processes o(t) and i(t) is white, de-
pending on which hypothesis is true. To decide between the two hypotheses,
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v(t)

K ()2 - [ar N
r threshotd o
(t) ( dewee = H
. 't
ko 2 02 L [ =

F@gul'-e 4.10. A canonical form implementation of the optimal receiver for
dlscnnuqatmg between 1/ f models with distinct parameters based on noisy
observations r(¢).

the rec.eiver computes the difference in energy in the two residuals and com-
pares it to the appropriate threshold.

Although the detection problem is Gaussian, it is apparent that the
the log-likelihood ¢ is not conditionally Gaussian under either hypothesis.
Consequently, evaluating the performance of such receivers is rather difficult
in general. Nevertheless, it is possible to obtain approximate performance
results by exploiting a procedure described in Van Trees [76] based upon the
use of the Chernoff bound. Specifically, defining

uis) 2 In B [e*|Hy|

for an arbitrary real parameter s, we can bound the performance of our
optimal detector according to

1
Pr(e) < Ee““-), (4.36)

where s, is the parameter value yielding the best possible bound, i.e.,

S« = arg min p(s).

When. there are sufficiently many observations to justify modeling ¢ as
GauSS{an via a central limit theorem (CLT) argument, we can aiso obtain the
following asymptotic expression for the error probability

Pr(e) ~ !
25.(1 — 8.)\/2mp’(s,)

eHlse) (4.37)

which is a more optimistic and accurate estimate of the achievable perfor-
mance [76].

In our case, p(s) and its first two derivatives are given by

mem m m

1 > 22
we) = 5 3 N(m){slng—g’—ln[sg—gw(l—s)” (4.38a)
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=2
) . Im 1
! Um a.
ni(s) = = Z Nm){In3* — | —5—— (4.38b)
2 mem Tm ,Um 1
bb_,_rzr‘“ + ( - 5)
2 2
o
" 1 , o
Wis)y = 5 Z N{m) e I (4.38¢)
meM 86_7271 + (1 _ S)

It is generally not possible to derive a closed form expression for the mini-
mum value of ;(s) via either (4.38a) or (4.38b) for this asymmetric detection
problem. Fortunately though, a numerical optimization is reasonable: it suf-
fices to consider a numerical search over values of s within a limited range.
Indeed, since

p(0) = p(1) =0,

and since from (4.38¢) we have that u(s) is convex
u'(s) >0,

it follows that the minimum of x(s) can be found in therange 0 < s < 1.

4.6.1 Simulations

In this section, we obtain, via (4.36) and (4.37), numerical estimates of the
probability of error performance. As our scenario, we assume that coef-
ficients 7™ are available in the range (4.9) consistent with what could be
extracted from N = 2* samples of time- and resolution-limited observations
via a DWT algorithm. In the simulations, we consider the ability of the
optimal receiver to distinguish between 1/f processes of different spectral
exponents ~ (or, equivalently, fractal dimensions D, or self-similarity param-
eters H). In particular, we do not consider the capabilities of the algorithms
to discriminate on the basis of variance differences. Consequently, in all our
tests, we choose the variance parameters ¢2 and 52 such that the variance of
the observations is identical under either hypothesis.

In the first set of simulations, the bound (4.36) is used as an estimate of
the probability of error performance of an optimal detector in discriminating
between two equal-variance 1/ f processes whose spectral exponents differ
by A+ based on noisy observations of length N corresponding to a prescribed
SNR. In the tests, three different spectral exponent regimes are considered,
corresponding to 7 = 0.33, v = 1.00, and v = 1.67.

In Fig. 4.11, performance is measured as a function of SNR for noisy
observations of length N = 128 and a parameter separation Ay = 0.1. Note
that there is a threshold phenomenon: above a certain 7-dependent SNR,



88 Detection and Estimation with Fractal Processes Chap. 4

1Y
;

10!

Pr(e)

N=128

102 Av= 0.1

— ¥=033
-—- =100
< Y= 167
1073 L
-80  -60  —40 20 0 20 40
SNR (dB)

Figure 4.11. Optimal discriminator performance as a function of SNR, as esti-
mated via the Chernoff bound.

Pr(¢) drops dramatically. Moreover, the threshold is lower for larger values
of 7. This is to be expected since larger values of v correspond to an effective
1/ power spectrum that is increasingly peaked at the w = 0, so that a
correspondingly greater proportion of the total signal power is not masked
by the white observation noise. Beyond this threshold performance saturates
as the data is essentially noise-free. However, note that there is crossover
behavior: at SNR values above the thresholds, better performance is obtained
for smaller values of v. In subsequent tests, we restrict our attention to
performance in this high SNR regime.

In Fig. 412, performance is plotted as a function of the number of
samples V of observed data corresponding to an SNR of 20 dB and hypotheses
whose parameter separation is Ay = 0.1. In this case, there is thrésholding
behavior as well. For data lengths beyond a critical order-of-magnitude we
get strongly increasing performance as a function of data length. Again,

because we are in the high SNR regime, observe that the best performance is
achieved for the smallest values of ~.

Finally, in Fig. 4.13, performance is plotted as a function of the separation
between the two hypotheses—specifically, the difference between the spectral
parameters for noisy observations of length N = 128 corresponding to an
SNR of 20 dB. As one would expect, the results illustrate that the larger the
distinction between the hypotheses, the better the performance achievable
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Figure 4.12. Optimal discriminator performance as a function of the number
of samples N of noisy observations, as estimated by the Chernoff bound. The
symbols U, A, and < correspond to actual estimates; the lines are provided as
visual aides only in this case.

by the receiver. Again, as we are in the high SNR regime, better performance
is achieved for smaller values of ~.

Whenever the probability of error is low—i.e., either when the SNR is
high, large data lengths are involved, or the hypotheses are well separated—
it turns out that the CLT-based approximation (4.37) represents a more op-
timistic estimate of performance than does (4.36). However, in high Pr(c)
scenarios, (4.36) constitutes a more useful measure of system performance
than does (4.37). This behavior is illustrated in Figs. 4.14, 4.15, and 4.16 for
hypotheses in the ¥ = 1 regime. Note that only at sufficiently high SNR,
data lengths, and parameter separations does the CLT-based approximation
actually yield a Pr(c) estimate that is below the bound. From these plots
we cannot, of course, assess whether the CLT-based approximation is overly
optimistic in the high SNR regime. In general, we can only expect the esti-
mate to be asymptotically accurate as N — oc. Nevertheless, the fact that the
rate of change of Pr(c) with respect to SNR, data length N, and parameter
separation \y has a similar form for both the bound and the approxima-
tion suggests that the Chernoff bound provides a meaningful estimate of
achievable performance.

Before concluding this section, we consider a potentially useful and
practical refinement of the optimal discrimination problem. There are a
number of application contexts in which we would be more interested in
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Figure4.13. Optimaldiscriminator performance as a function of the parameter

;epargtion Ay between the two hypotheses, as estimated via the Chernoff
ound.
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Eigureed 4.14.  Optimal discriminator performance as a function of SNR, as es-
(Zn;:;; via both the Chernoff-bound (4.36) and the CLT-based approximation Figure4.16. Optimal discriminator performance asa function of the parameter
o separation Av, as estimated via both the Chernoff-bound (4.36) and the CLT-
based approximation (4.37).
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distinguishing 1/ f processes strictly on the basis of their spectral exponents,
fractal dimensions, or self-similarity parameters. This would correspond to
a hypothesis test (4.33) in which ¢2, 52 and o2, would be unwanted parameters
of the problem. In this case, a solution could be obtained using a generalized
likelihood ratio test [76] of the form

1 ( ;”)2}
max ex T
plpery mER \/rﬁ% p [ 252, | M
e . z l (439)
1 [ <"il”)‘J H
r_nax — exp - ) 0
a0 her \/2710;" 262,

In general, expressions for the maxima involved in the construction of the
likelihood function of (4.39) cannot be obtained in closed form. However,
a practical implementation of this receiver could potentially exploit an EM
algorithm of the general type developed in Section 4.3. In terms of perfor-
mance, we would anticipate that, in general, it would only be possible to
adequately evaluate such a receiver through Monte Carlo simulations.

4.7 ALTERNATIVE APPROACHES AND RELATED DEVELOPMENTS

Until relatively recently, problems of detection and estimation involving 1/ f-
type processes received relatively little attention in the literature. However,
there has been strongly increasing interest in the topic and a number of
interesting and useful related results have been developed. This section
contains a summary of at least some of these results, though the list here is
certainly not comprehensive.

One example is the work described in Barton and Poor [57], which
considers problems of detection in the presence of fractional Gaussian noise
using reproducing kernel Hilbert space theory. Using this framework, both
infinite- and finite-interval whitening filters are developed for this class of
1/ f noises, which, in turn, yields some important results on the detection of
deterministic and Gaussian signals in the presence of such noise.

There is also a substantial and growing body of recent literature on
the general topic of multiresolution stochastic processes, systems, and signal
processing. A broad overview of work in this area is contained in Basseville
et al. [84] and the references therein. In that work, the authors develop a
tree/lattice-based framework for modeling multiscale processes and prob-
lems, and introduce some novel notions of “stationarity in scale” for such
processes. Treating multiscale processes as “dynamical systems in scale,”
leads to several highly efficient algorithms for addressing a variety of prob-
lems involving parameter estimation, signal smoothing and interpolation,
and data fusion. The 1/ f-type models we exploit in this chapter constitute a
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special class of the multiresolution stochastic processes develope(i by these
authors. In particular, they are examples of processes characterized l_)y a
“Markov scale-to-scale” property. As a consequence, many of the multires-
olution signal processing algorithms developed using this framework are
directly applicable to 1/ f processes as shown in, e.g., Chou [85].

There has also been progress in exploiting a discrete-time an.alog' of
fractional Brownian motion to obtain useful parameter and signal estimation
algorithms. Results in this area are described in, e.g., Derichg and Tewfik [86]
[87]. Inaddition, possible refinements to the estimatiori algorithms develqped
in this chapter are described in Kaplan and Kuo {88]. Finally, some extensions
and generalizations of the algorithms in this chapter are developed in Lam

89].

4.8 SUMMARY

In this chapter, we exploited the efficiency of wavelet basis e>.<pansions for
the 1/f family of fractal random processes to devc:‘:lop .sol\itions to some
fundamental problems of optimal detection and estimation mvolvmg 1/f-
type signals. As a foundation, we first derived waveiet—based syrithe31s and
whitening filters for 1/ f processes that formed the basis for essentially all the
algorithms derived in the chapter.

We then proceeded to develop maximum likelihood algorithms foi' es-
timating the parameters of 1/ f processes from noisefcorrupted obsgrvations
given various degrees of 4 priori knowledge. These includeci algorithms for
robust fractal dimension estimation, which are useful in a wide range of ap-
plications. Next, we developed complementary minimurri mean-square er-
ror signal smoothing algorithms for separating and extracting 1/ f processes
from noisy observations. By exploiting our wavelet-base(i irameworl?, we
obtained élgorithms that are extremely computationally efficient and highly
practicable.

In many applications, it is the noise that has the 1/f Cheiracteris.tics
rather than the signal of interest. Such is the case, for eXfimple, in a variety
of communications applications where information-bearing waveiorms are
transmitted in a combination of 1/ f and white backgrounds. Motlvatgd by
these kinds of scenarios, we developed efficient wavelet-based algorithms
for optimally detecting known signals in such backgrounds.

Finally, we addressed a common signal classification probleiii in\(olving
1/f processés—specifically, discriminating betweenl/f §i'gnals with diffgrgnt
parameters. In this case, too, efficient mimmurii probabihlfy of error decision
strategies were developed via a wavelet domain formulation.



