Chapter 10

Error-Control Coding

Problem 10.1

The matrix of transition probabilities of a discrete memoryless channel with 2 inputs and
Q outputs may be written as

. k(o 0 p10) p2) - pQ-10)
ol paly peh) - p@Q-1lD

For a symmetric channel,

pG) = p@Q-1-jly, j=01..,Q-1

Moreover, each row of the matrix P contains the same set of numbers, and each column of

the matrix P contains the same set of numbers. For example, for Q=4, we may write

aabb
P =
bbaa
The sum of the elements of each row of matrix P must add up to one. Hence, for this

example,

2a +2b =1

The probability of receiving symbol j is

pG) = pG) p(0) + pG Ip(1)

For equally likely input symbols:
502

348

_ _1
p(0) = p(1) 5

Hence,

p(j) = % [pG) + p(Q-1 - j I0)]

For the example of Q=4, we have

. 1
)==(a+Db)
pQ 5
-1 j=0123
4
In general, we may write
pG) = =, i=01,..Q-1
Q

Problem 10.2

For a binary PSK channel, the probability density function of the correlator output in the
receiver is

fx(x o) = 1 exp| - _(x + «/ﬁ)z
ENO L .
- .

fxx 1) = ! _ exp —_1_(-\/a)
‘ENQ L 0 =

Let

y= |2 x
N No
dy = 2 gx
N No

I 2E
y pertains to a Gaussian variable of mean = ~ P and unit variance. We may therefore
express the channel transition probability as 0

.
2E
p(y b) = 1 exp| - _:_l_ y + _b
V2r i 2 N No i
(
1 1 2Ey,
p(y) = exp| - = |y - |=—
V21E | 2 \ N NO |
where - o0 < y < oo,
O , | ’ 2 ’ 3

504

We also note that

p(310) =p0 1)
p210) = p(1]1)
p1l0)=p@|1)
p(010) = p(311)

p(0) =

- 2E
1 f_w exp| - .l y + __._tl y
v2r 2 Np

505

Hence, the channel is symmetric.

Problem 10.3

From the solution to Problem 10.2 , we readily note the following:

P(Yb)= 1 exp —l y + E -~ 0 <Yy < woo
V2n 2 \JNO
ply 1) = exp| - Lly - |2.E C <y < oo

Jor 2 N,

where E is the code symbol energy.

Problem 10.4

Message Sequence Single-pavit¥-check code
000 0000
001 0011
010 0101
011 0110
100 1001
101 1010
110 1100
111 1111

506

Problem 10.5

For the (4,1) repetition code, the parity check matrix is

100 : 1
H={010:1
001 : 1

For a (7,4) Hamming code, we have

100:1011
H=010§1110
001:0111

For the Hamming code, the parity check matrix H is more structured than that for the
repetition code. Indeed, the matrix H for the Hamming code includes that for the repetition

code as a submatrix.

Problem 10.6

The generator matrix for the (7.4) Hamming code is

110:1000
011:0100
111:0010

101:000 1

The parity-check matrix is

507

100 : 1011
H={010: 1110
001:0111

A 8

Hence,
101 1]
1110
1001 1/{lo0111
HGT=|010 1 1000
001 1/0100
0010
0 0 0 1]
0000
={0 000 mod-2
0000
Problem 10.7

(a) Viewing the matrix

100: 1011
H=010:1110
001:0111

as a generator matrix, we may define the code vector ¢ in terms of the message vector m
as

m H

wn
"

The message word length is
508

n-k=74=3

Hence, we may construct the following table

Message word Code word Hamming weight
000 0000000 0
001 0010111 4
010 0101110 4
011 0111001 4
100 1001011 4
101 1011100 4
110 1100101 4
111 1110010 5

(b) The minimum value of the Hamming weight defines the Hamming distance of the dual
code as

dmin = 4
Problem 10.8
(a) For a (5,1) repetition code:
G=[t1111: 1
1000 : 1
0100 : 1
H = :
0010 : 1
0001 : 1
1000
0100
HT=[0010
0001
111 1]

509

The syndrome is

s=eHT

where e is the error pattern. For a single error, we thus have

Error pattern Syndrome
00001 1111
00010 0001
00100 0010
01000 0100
10000 1000

(b) For two errors in the received word, we have

Error pattern Syndrome
00011 1110
00101 1101
01001 1011
10001 0111
00110 0011
01010 0101
10010 1001
21100 0110
10100 1010
11000 1100

We note that the syndromes for all single-error and double-error patterns are distinct. This
is intuitively satisfying since a (5,1) repetition code is capable of correcting up to two errors
in the received vector

510

y=e +¢€

Problem 10.9

gX) =1+ X + X3
¢(X) = m(X) gX)

Hence, we may construct the following table:

Message mX) cX) Code word

word

0000 0 0 0000000
0001 X3 X3 + X* + X6 0001101
0010 X2 X2 +x34+X5 0011010
0100 X X +X24+Xx4 0110100
1000 1 1+X+X3 1101000
0011 X2 + X3 X2+ Xt + X%+ X6 0010111
0110 X + X2 X+X3+Xt+ X5 0101110
1100 1+X 1+X2+X34+ x4 1011100
0101 X + X3 X+X24+X3+X6 0111001
1010 1+X2 1+X+X2+X5 1110010
1001 1+X3 1+X+Xt+X8 1100101
0111 X +X2+X8 X+X2 , X6 0100011
1110 1+X+X2 14+ X5+x°8 1000110
1011 1+X24+Xx3 1+X+X24+X34+X44+X54+X% 1111111
1101 1+X+X3 1+X%, x6 1010001
1111 1+X+X2+X8 1+ X3 + X5 + X6 1001011

Comparing the code word to the message word, we see that the cycliceode generated by
multiplying g(X) and ¢(X) is not a systematic code.

511

Problem 10.10

Consider the generator polynomial

gX)=1+X2% X3

The encoder corresponding to this g(X) is as follows:

The generator matrix G associated with this encoder is

1011000
0101010
0010110
000101 1]

To reduce this matrix to a systematic form, we add row 1 to 2, add rows 1 and 2 to row 3,
and add rows 2 and 3 to row 4:

512

101:1000
111:0100
110:0010

€

011:0001
N ———r

_.—wr—_l
P I,
For the syndrome calculator, we have
B
Rec erved
bt - — O ot —
0. Mod-2
'FFé'rP ad A
Given that
G = [P : 14]
H=[:P7

we find that the parity-check matrix is

100 : 1110
H=010: 0111
001: 1101

In Example 3 of the text, the message sequence (1001) was applied to the encoder and the
output code word was 0111001. For the above encoder, the parity bits are 110 and the code
word is then 1101001. In particular, we have

513

Shift Input Register contents

000
1 1 101
2 0 111
3 0 110
4 1 110

If we were to make an error in the middle bit and receive 1100001, then circulating it

through the syndrome calculator, we have

Shift Input Register contents
000

1 1 100

2 0 010

3 0 001

4 0 101

5 0 111

6 1 010

7 1 101

From the parity check matrix we see that the syndrome calculator output 101 corresponds
to the error pattern 0001000. The corrected code word is therefore 1101001.

Problem 10.11

The error polynomial is

eX) = r(X) + e(X)

We are given

514

eX) =X + X2+ X3 +Xx6

r(X) =X + X3 + X8

The error polynomial is therefore

eX) = X2
Consider next the syndrome polynomial s(X). The syndrome calculator for the generator
polynomial
gX)=1+X +X3

is shown in Fig. 18.11; this calculator is reproduced here for convenience of presentation:

Feceitod b.ts |
—
010100\ Flip-
flop

Circulating the received bits through the syndrome calculator, we may construct the
following table:

Initial state 000
100
010
001
010
001
010
001 515

Here, the syndrome polynomial is

s(X) = X2

which, for the problem at hand, is the same as the error polynomial. This result
demonstrates the property of the syndrome polynomial, stating that it is the same as the
error polynomial when the transmission errors are confined to the parity-check bits. In

Problem 11.11 the third parity-check bit is received in error.

Problem 10.12

The encoder structure is

Gt
. —— ———
FQ'lP- Hop Meod -2 L_ .
ad due
s
i
Me s sage /
brix

The syndrome calculator is

‘ Gl
Recai vedl
bitx . ‘ o -
-y

Flir- Foup

516

Problem 10.13

(a) A maximal-length code is the dual of the corresponding Hamming code. The generator

polynomial of a-(15,11) Hamming code is given as 1 + X + x* We may therefore define the
feedback connections of the corresponding (15,4) maximal-length code by choosing the
primitive polynomial

MX) = 1+X+x*

The feedback connections are therefore [4,1], which agrees with entry 3 of Table 7.1.
Specifically, the encoder of the (15,4) maximal-length encoder is as follows:

A 4
A 4

L/
Mod -2
addeA

F[alp_ f-?op
(b) The generator polynomial of the (15,4) maximal-length code is

1+x° 1+xP

$() = h(X) 1+X+X4

Performing this division modulo-2, we obtain

g(X) = 1+X+X2+X3+X5+X7+X8+X11

(This computation is left as ?K exercise for the reader.) Assuming that the initial state of the
encoder is 0001, we find that the output sequence is (111101011001000). Here we recognize

that the length of the coded sequence is 2% - 1 = 15. The output sequence repeats itself
periodically every 15 bits.

517

Problem 10.14

(a) n= 27') -1 = 31 symbols

Hence, the number of bits per symbol in the code is
m = 5 bits

(b) Block length = 31 x 5 = 155 bits

(¢) Minimum distance of the code is

dmin =2t+1
=n-k+1

=31-15+1
= 17 symbols

(d) Number of correctable symbols is

t=%(n—k)

8 symbols

518

Problem 10.15

The encoder is realized by inspection:
gV =(1,0,1)
g? =(1,1,0)

g® =111

For the Hamming code, the parity check matrix H is more structured than that for the
repetition code. Indeed, the matrix H for the Hamming code includes that for the repetition

code as a submatrix.

Problem 10.16

Taput

Fllep- 40 j’

toble

Using this encoder, we may construct the following’by inspection:

Message 1 0 1 1 1 1
Output 11 10 11 01 01 01 ..
_
N

Original message

The code is in fact systematic. 519

Problem 10.17

The generator polynomials are

gMX) =1+X+Xx2+Xx3

g(2)(X) =1+X+ X3

The message polynomial is

mX)=1+X2+X3+X%+..

Hence,
cDX) = gMX) mX)
=1+X+X3+X4+X5+ ..
c@X) = g@AX) mX)
=1+X +X2+X3+4 X6 + X7+ ..
Hence,

520

{c (1)}

1,1,0,1,1,1,...

€@ = 1,1,1,1,0,0,...

The encoder output is therefore 11, 11, 01, 11, 10, 10.

Problem 10.18

The encoder of Fig. /843 (b) has three generator sequences for each of the two input paths;
they are as follows (from top to bottom)

gV =an g?-10, g2-a

sP-0n g?-an g?-00

Hence,

gl(l)(X) =1 + X’ gl(z)(X) =1, gl(?’)(X) =1 +X

eVX) = X, g2X) =1+X, g2X =0
The incoming message sequence 10111... enters the encoder two bits at a time; hence
mP=11..
m®=01..
The message polynomials are therefore
mX)=1+X+..
myX) =X+ ...

Hence, the output polynomials are
521

cOX) = gPX) myX) + gPX) myX)

A+XA +X +.)+XX +..))
1+ ...

c@X) = g2 myX) + gPX) myX)

WA+X+.)+@Q@+X)X +.)

1+X +.. + X + X2+

1+X2+..,

¢@X) = gPX) m;X) + gX) my®X)

A+X)A+X+.)+ON+.)
1+ X2+ ..

The output sequences are correspondingly as follows:
D = 10, ..
¢? = 1,0,..
¢® = 10,..

The encoder output is therefore (1,1,1), (0,0,0), ...

Problem 10.19

1. If the input sequence is 00, the encoder output is 00, 00, 00, 00.
2. If the input sequence is 11, the message polynomial is
mX)=1+X

The two generator polynomials are
522

gPX)=1+X +X2
g?PX) =1 + X2

Hence,

VX =1+X)0+X +X2

1 +X3

X)) =1 +X 1 +X%

1+X+X2+X3

The encoder output is 11, 01, 01, 11
3. If the input sequence is 01, the message polynomial is
mX) =X
Hence,
cBX) = X1 + X +X?
=X +X2 4+ X3

c@X) = X(1 + X2

=X + X3

The encoder output is 00, 11, 10, 11

4. Finally, if the input sequence is 10, the message polynomial is
mX) =1

Correspondingly,

523

c(l)(X) = g(l)(X)
1+X+X2

c2X) = gAx)

1+ X2

Hence, the encoder output is 11, 10, 11, 00.

The encoder outputs calculated above are in perfect accord with the entries of the code tree g

o0
————-

00 OO0
R o)
> -—9
10 :
R
Ol —

—

=

OO0

3.
O

H

~— —> 0

)
|
©1 , 1

524

Problem 10.20

525

The output sequence is 11, 10, 11, 01, 01

Problem 10.21

526

Problem 10.22

The encoder of Fig. P/0-1Thas eight states:

State Register contents
000

a

b 100
c 010
d 110
e 001
f 101
g 011
h 111

The state diagram of the encoder is as follows:

In this diagram, a solid line corresponds to an input of 0 and a dashed line corresponds to

an input of 1.
527

Problem 10.23

(a) The encoder of Fig. /0-/13) has four states:

State Register contents
a 0,0
b 1,0
c 0,1
d 1,1

In the state diagram shown below, each branch is labeled with the input dibit followed by
the output triplet. W/ o

00/000

(b) Starting from the all-zero state a, the incoming sequence 10111... produces the path a
bd ... Equivalently, we have the decoded (output) sequence (111), (000), ..., which is exactly

the same result calculated in Problem 10.18. 508

Problem 10.24

An MSK system has two distinct phase states

State Phase,radians
a 0
b n

The transmission of a 1 increases the phase by w2, whereas the transmission of a 0
decreases the phase by w/2. Correspondingly, the transmission of dibit 10 or 01 leaves the
state of MSK unchanged, whereas the transmission of dibit 00 or 11 movesthe system from
one state to the other. For the output, we have

Input dibit Output frequencies
11 f, f
01 f £
10 f, £y
00 £ £,

We may thus construct the following state diagram for MSK:
. 0t

‘1‘14&?,

The trellis diagram for MSK is as follows:

529

Since d_;, = 5 and the number of errors in the received sequence is 2, it should be possible

to decode the correct sequence. This is readily demonstrated by applying the Viterbi
algorithm.

Problem 10.25

' 00
'?Ececw
=0 00 0 0 00
Notations

® POLTQ metaic
Cn3 brasrdh mebuc
—— mQSso.je bik O

—-——- MQSSOjQ b.t (

L VA At parﬁ

o s

AK T, 2) :)(;0/\..
56:(1\/\9/\(9. (s 00006000 QQQ00-, tlﬂe/ubj corpse)3
the -+uwec €EANoAS o tRe peceived Sec}\).l,\\l '
530

Problem 10.26

(a) Coding gain for binary symmetric channel is

G, = 10 log, (#2_]

10 logw 25

4 dB

(b) Coding gain for additive white Gaussian noise channel is

G,

10 logy, (10 X %J

10 lOglo 5

7 dB

Problem 10.27

The trellis of Fig. P27 corresponds to binary data transmitted through a dispersive
channel, viewed as a finite-state (i.e., two-state) machine. There are two states representing
the two possible values of the previous channel bit. Each possible path through the trellis
diagram of Fig. P/o-27 corresponds to a particular data sequence transmitted through the

channel.

To proceed with the application of the Viterbi algorithm to the problem at hand, we first
note that there are two paths of length 1 through the trellis; their squared Euclidean
distances are as follows:

d2 =0 -112=001

2 _ _(2 -
djg = (L0 - (-.9)% = 361 531

Each of these two paths is extended in two ways to form four paths of length 2; their

squared Euclidean distances from the received sequence are as follows:

(a)
dz, =0.01 + (0.0 - 1.1)? = 1.22

dyy = 3.61 + (0.0 - 0.9)? = 4.42

(b)
dzg = 0.01 + (0.0 - (-0.9)? = 0.82

ds, = 3.61 + (0.0 - (-1.1)? = 4.82

Of these four possible paths, the first and third ones (i.e., those corresponding to squared
Euclidean distances d22,1 and d22 g) are selected as the "survivors”, which are found to be
in agreement. Accordingly, a decision is made that the demodulated symbol a,=1.

Next, each of the two surviving paths of length 2 is extended in two ways to form four new
paths of length 3. The squared Euclidean distances of these four paths from the received

sequence are as follows:

(a)
dsy = 1.22 + (0.2 - 1.1)% = 2.03
dsy = 0.82 + (0.2 - 0.9) = 1.31
(b)

dag = 1.22 + (0.2 - (-0.9)? = 2.43

= 0.82 + (0.2 - (-1.1))% = 2,51

[« 8
»
S
I

532

This time, the second and third paths (i.e., those corresponding to the squared Euclidean
distances dza,q_ and d23,3) are selected as the "survivors". However, no decision can be
made on the demodulated symbol a 88 the two paths do not agree.

To proceed further, the two surviving paths are extended to form two paths of length 4. The

squared Euclidean distances of these surviving paths are as follows:

(a)
d2 =131+ (-11 - 117 = 6.15
d2, = 243 + (-1.1 - 0.9 = 6.43
(b)
d’g = 1.31 « (-11 - (-0.9)? = 1.35
d7, =243 + (-1.1 - (-1.D)? = 2.43

The first and third paths are therefore selected as the "survivors", which are now found to
agree in their first three branches. Accordingly, it is decided that the demodulated symbols
are a5 = +1, a; = -1, and a, = +1. It is of interest to note that although we could not form
a decision on a, after the third iteration of the Viterbi algorithm, we are able to do so after
the fourth iteration.

Figure 1 shows, for the problem at hand, how the trellis diagram is pruned as the
application of the Viterbi algorithm progresses through the trellis of Fig. P11.5

533

Thepantion () 1£c/kalr«'m(Tteakm 2 Térchins

Theration 4
0.0l 1.3 G.iy
’DiMocle-tJ ?
datz (+) @) S, @)
Seauiala

¥

Flﬂ~ |

(This problem is taken from R.E. Blahut, "Digital Transmission of Information", Addison-
Wesley, 1990, pp. 144-149.The interested reader may consult this book for a more detailed
treatment of the subject.)

534

ges

801 We[qold

Problem 10.29

(a) Without coding, the required E,/Ny is 12.5 dB. Given a coding gain of 5.1 dB, the required
Ey /N 1s reduced to

E
(—-’30) = 12.5-5.1
N req

=74 dB

For the downlink, the equation for C/Nj is

(EO) = EIRP +_.G_’_L Tk
N downlink T free-space

(b) By definition, the formula for receive antenna gain is

where A, is the receive antenna aperture and A is the wavelength. Let (A,)¢qging denote the
receive antenna aperture that results from the use of coding. Hence

4TA 4n(A,) .
10log | —5— | - 10log — Tcoding) - 51 dB
LY ‘ A°

or, equivalently,

A
101og10(A—)5——) = 5.1 dB

(r’/coding
Hence,
A, ilog 0.51 = 3.24
——— = antilog 0.51 = 3.
(A’)coding

The antenna aperture is therefore reduced by a factor of 3.24 through the use of coding.
Expressing this result in terms of the antenna dish diameter, d,we may write

336

2 2
7rd/42 z(ld) = 394
n(a’codmg) /4 eoding
which yields
Diameter of antenna without coding _ d _ 374 = 18
Diameter of antenna with coding ooding T

That is, the antenna diameter is reduced by a factor of 1.8 through the use of coding.
Problem 10.30

Nonlinearity of the encoder in Fig. P10.30 is determined by adding (modulo-2) in a bit-by-bit
manner a pair of sets of values of the five input bits {1, ,, I, 1, I| p.2, 1o 121} and the
associated pair of sets of values of the three output bits ¥y ,,, ¥ ,, and Y5 ,,,. If the result of adding

these two sets of values of input bits, when it is treated as a new set of values of output-bits, does
not always give a set of values of input bits identical to the result of adding the two sets of values
of the aforementioned output bits, then the convolutional encoder is said to be nonlinear, For
example, consider two sets of values for the sequence {1} ,,, Iy ,,.1. I} .2, 12 s 12 5.1} that are given

by {0,0,1,1,1} and {0,1,0,0,0}. The associated sets of values of the three output bits ¥y ,, ¥} ,,
Y, are {0,1,1} and {1,0,0}, respectively. If the 5-bit sets are passed through the Exclusive OR
(i.e., mod-2 adder) bit-by-bit, the result is {0,1,1,1,1}. If the resulting set {0,1,1,1,1} is input into
the encoder, then the associated output bits are {1,1,0}. However, when the sets of output bits
{0,1,1} and {1,0,0} are passed through the Exclusive OR, bit-by-bit, the result is {1,1,1}. Since
the two results {1,1,0} and {1,1,1} are different, it follows that the convolutional encoder of Fig.
P10.30 is nonlinear.

Problem 10.31

Let the code rate of turbo code be R. We can write

|) 1 1
I [N)) .
0 o

537

_4y+4-p

Hence

R = p/(q,+q,-p)

Problem 10.32

Figure 1 is a reproduction of the 8-state RSC encoder of Figure 10.26 used as encoder 1 and
encoder 2 in the turbo encoder of Fig. 10.25 of the textbook. For an input sequence consisting of
symbol 1 followed by an infinite number of symbols 0, the outputs of the RSC encoders will
contain an infinite number of ones as shown in Table 1.

Fig. 1

b=a®PcPe

f=bDcDdDe

Initial conditions: ¢ =d = e =0 {empty}

(Input) Intermediate 1nputs (output)

a b c d e f
1 1 0 0 0 1
0 1 1 0 0 0
0 1 1 1 0 1
0 0 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0
0 1 1 0 0 0

The output is 1011101001110100111...

538

Therefore, an all zero sequence with a single bit error (1) will cause an infinite number of channel
errors.

[Note: The all zero input sequence produces an all zero output sequence.]

Problem 10.33

(a) 4-state encoder
X

» X (systematic bits)

, Parity check bits

z
8-state encoder
X o X (systematic bits)
@ (D =+ D}t D}—
, Parity check bits

z
16-state encoder

X > X (systematic bits)

, Parity check bits

z

539

(b) 4-state encoder

2

1+D+D

g(D) = [1, —2—}
1+D

By definition, we have

(B(D)) _1+D+D’
M(D) 1+ D?

where B(D) denotes the transform of the parity sequence {b;} and M(D) denotes the transform
of the message sequence {m;}. Hence,

(1+D*)B(D) = (1+D +D*)M(D)

The parity-check equation is given by

(m;+m; | + m;,)+(b;+b;,) =0

where the addition is modulo-2.

Similarly for the 8-state encoder, we find that the parity-check equation is
mi+my+m3+b+b, +b,,+b; ;=0

For the 16-state encoder, the parity-check equation is

mi+m; 4 +b;+b, +b,,+b 3+b, 4 =0

540

Problem 10.34

(a) Encoder
» ZO

ENC 11 —> 14
A
[C2}- e —> =

v

u
%

0y, Oy, -+, Oy, are M interleavers

ENC,, ENC,, ---, ENC,, are M recursive systematic convolutional (RSC) encoders
Z, 1s the message sequence
21, 295 *++» 2y are the resulting M parity sequences

(b) Decoder

L Lin},i#l

o {Li(n},i D
' 1 L+
2 > Oy DEC,

\ 4
8
+%

{L;(n)},i#2

D
i - . % Ly(n+1)
e » DEC >
2 2 2) ;
{L,-(nj},i;tM D
- Ly(n+1)

3 > oy DECy, Mo, —:é——»
-1 -1 -1 .
oy, Ay, -, o, are de-interleavers.

541

The generalized encoder and decoder presented here are described in Valenti (1998); see the
Bibliography.

Problem 10.35

The decoding scheme used for turbo codes relies on the assumption that the bit probabilities
remain independent from one iteration to the next. To maintain as much independence as possible
from one iteration to the next, only extrinsic information is fed from one stage to the next, since
the input and the output of the same stage will be highly correlated. However, this correlation
decreases as |ty - 1| increases, where 1, 7, are any two time instants. The interleaving is utilized to

spread correlation information outside of the memory of subsequent decoder stages.

Problem 10.36

The basic idea behind the turbo principle is to use soft information from one stage as input to the
next stage in an iterative fashion. For a joint demodulator/decoder, this could be arranged as

shown in Fig. 1.

Decoder extrinsic

r—— " —"—"—— — — — A r—-—"——"— — — — y
I I | I
| I I I
I I I I
N [BCIR - | Lt~ 1 [BCR -
¥ + >+
o F 1 S B 2 1
b — | — — 4 Lo o -
raw channel soft-output raw channel soft-output
information demodulator information decoder
Demodulator
extrinsic
Figure 1

In this figure, BCJR 1 is a MAP decoder corresponding to the Markov model of the modulator and
channel; and BCJR 2 is a MAP decoder corresponding to the Markov model of the forward error
correction code. The raw channel information is fed into the soft demodulator on the first
iteration; this is combined with the extrinsic information from the previous decoding stage on
subsequent iterations. The extrinsic information from the soft-output demodulation stage plus the
raw channel information is the input to the decoding stage. Feeding back the extrinsic information
from the latter stage closes the loop. At any stage the output from the decoder can be used to
estimate the data. (Figure 1 shows a symmetric implementation. Other arrangements are
possible.)

542

Problem 10.37
Matlab codes

% Probelm 10.37 , CS: Haykin
% Turbo coding
%M. Sellathurai

clear all

% Block size
block_size = 400; % 200 and 400

% Convolutional code polynomial
code_polynomial = [11 1; 101];
[n,K]=size(code_polynomial);

m=K-1;

% Code rate for punctured code
code_rate = 1/2;

% Number of iterations
no_of_iterations = §5;

% Number of blocks in error for termination
block_error_limit = 15;

% signal-to-noise-ratio in db
SNRdb = [1];
snr = 10~ (SNRdb/10);

% channel reliability value and variance of AWGN channel
channel_reliability_value = 4*snr*code_rate;
noise_var = 1/(2%code_rate*snr);

%initializing the error counters

block_number = 0;

block_errors(1,1:no_of_iterations) = zeros(1, no_of_iterations);
bit_errors(1,1:no_of_iterations) = zeros(1, no_of_iterations);
total_errors=0;

while block_errors(1, mno_of_iterations)< block_error_limit
block_number=block_number+i;

% Transmitter end
% generating random data

543

Data = round(rand(1, block_size-m));
% random scrambler
[dummy, Alphal = sort(rand(1,block_size));
% turbo-encorder output
turbo_encoded = turbo_encorder(Data, code_polynomial, Alpha) ;
% Receiver end
% AWGN+turbo-encorder out put
received_signal = turbo_encoded+sqrt(noise_var)*randn(1, (block_size)*2);
% demultiplexing the signals
demul_output = demultiplexer(received_signal, Alpha);
“scaled received signal
Datar= demul_output *channel_reliability_value/2;

% Turbo decoder
extrinsic = zeros(1, block_size);
apriori = zeros(1l, block_size);

for iteration = 1: no_of_iterations

% First decoder
apriori(Alpha) = extrinsic;
LLR = BCJLi(Datar(i,:), code_polynomial, apriori);
extrinsic = LLR - 2#Datar(1,1:2:2+(block_size)) - apriori;

% Second decoder
apriori = extrinsic(Alpha);
LLR = BCJL2(Datar(2,:), code_polynomial, apriori);
extrinsic = LLR - 2#Datar(2,1:2:2+(block_size)) - apriori;

% Hard decision of information bits
Datahat(Alpha) = (sign(LLR)+1)/2;

% Number of bit errors
bit_errors(iteration) = length(find(Datahat(1:block_size-m)~=Data));

% Number of block errors
if bit_errors(iteration)>0
block_errors(iteration) = block_errors(iteration) +1;
end
end

%Total bit errors
total_errors=total_errors+ bit_errors;

% bit error rate

544

if block_errors(no_of_iterations)==block_error_limit
BER(1:no_of_iterations)= total_errors(l:no_of_iterations)/...
block_number/(block_size-m);
end
end

545

function output = turbo_encorder(Data, code_g, Alpha)
% Turbo code encorder

% Used in Problem 10.36, CS: Haykin

%M. Sellathurai

[n,K] = size(code_g);
m=K-1;
block_s = length(Data);

state = zeros(m,1);
y=zeros(3,block_s+m);

% encorder 1
for i = 1: block_s+m
if i <= block_s
d_k = Data(t,i);
elseif 1 > block_s
d_k = rem(code_g(1,2:K)*state, 2);

end
a_k = rem(code_g(1,:)*[d_k ;state], 2);
v_k = code_g(2,1)*a_k;
for j = 2:K
v_k = xor(v_k, code_g(2,j)*state(j-1));
end;
state = [a_k;state(1:m-1)];
y(1,i)=d_k;
y(2,i)=v_k;
end

Yiencorder 2

% interleaving the data

for i = 1: block_s+m
ytilde(1,i) = y(1,Alpha(i));

end

state = zeros(m,1);
% encorder 2

for i 1: block_s+m
d_k = ytilde(1,i);
a_k = rem(code_g(1,:)*[d_k ;statel, 2);
v_k = code_g(2,1)*a_k;
for j = 2:K
v_k = xor(v_k, code_g(2,j)*state(j-1));
end;

546

state = [a_k; state(1:m-1)];
y(3,1)=v_k;
end
 inserting odd and even parities
for i=1: block_s+m
output(i,n*i-1) = 2*y(1,i)-1;
if rem(i,2)

output(1,n*i) = 2%y(2,i)~1;
else

output(1,n*i) = 2%y(3,i)-1;
end

end

547

function [nxt_o, nxt_s, lst_o, lst_s] = cnc_trellis(code_g);
%used in Problem10.36.

% code trellis for RSC;

% Mathini Sellathurai

% code properties
[n,K] = size(code_g);
m=K-1;
no_of_states = 2°m;

for s=1: no_of_states
dec_cnt_s=s-1; i=1;

% decimal to binary state
while dec_cnt_s >=0 & i<=m
bin_cnt_s(i) = rem(dec_cnt_s,2) ;
dec_cnt_s = (dec_cnt_s— bin_cnt_s(i))/2;
i=i+1;
end
bin_cnt_s=bin_cnt_s(m:-1:1);

% next state when input is 0
d_k = 0;
a_k = rem(code_g(1,:)*[0 bin_cnt_s 1, 2);
v_k = code_g(2,1)*a_k;
for j = 1:K-1
v_k = xor(v_k, code_g(2,j+1)*bin_cnt_s(j));
end;
nstate0 = [a_k bin_cnt_s(1:m-1)];
y_0 = [0 v_k];

% next state when input is 1
d_k = 1;
a_k = rem(code_g(1,:)*[1 bin_cnt_s]’, 2);
v_k = code_g(2,1)*a_k;
for j = 1:K-1
v_k = xor(v_k, code_g(2,j+1)*bin_cnt_s(j));

end;
nstatel = [a_k bin_cnt_s(1:m-1)];
y_1=[1 v_k];

% next output when input 0 1
nxt_o(s,:) = [y_0 y_11;

548

% binary to decimal state

d=2."(m-1:-1:0);

dstate0=nstateO*d’+1; dstatel=nstatel*d’+1;
% next state when input 0 1

nxt_s(s,:) = [dstate0 dstatel];

% finding the possible previous state frm the trellis
1st_s(nxt_s(s, 1), 1)=s;

1st_s(nxt_s(s, 2), 2)=s;

lst_o(nxt_s(s, 1), 1:4) = nxt_o(s, 1:4) ;
lst_o(nxt_s(s, 2), 1:4) nxt_o(s, 1:4) ;

end

549

function output = demultiplex(Data, Alpha);
% demultiplexing the received signal

% used in problem 10.36, CS: Haykin

% Mathini Sellathurai

block_s = fix(length(Data)/2);
output=zeros(2,block_s);

for i = 1: block_s
Dataf(i) = Data(2+%i-1);
if rem(i,2)>0
output(1,2%i) = Data(2+*i);

else
output(2,2*i) = Data(2%i);
end
end
for i = 1:block_s
output(1,2*i-1) = Dataf(i);
output(2,2+*i-1) = Dataf(Alpha(i));

end

550

function L = BCJLi(Datar, code_g ,apriori)
% log-BCJL (LOG-MAP algorithm) for decoder 1
% Used in Problem 10.36, CS: Haykin

% states, memory, constraint length and block size
block_s = fix(length(Datar)/2);
[n,K] = size(code_g);

m=K-1;
no_of_states = 2°m;
infty = 1el0;

zero=1e-300;

% forward recursion
alpha(i,1) = 0;
alpha(1,2:no_of_states) = -infty*ones(1,no_of_states—1);

% code-trellis

[nxt_o, nxt_s, 1lst_o, lst_s] = cnc_trellis(code_g);
nxt_o = 2*nxt_o-1;

1st_o = 2*1st_o-1;

for i = 1:block_s
for cnt_s = 1:no_of_states
branch = -infty*ones(1i,no_of_states);
branch(lst_s(ent_s,1)) = -Datar(2+i-1)+Datar(2*i)*. ..
1st_o(cnt_s,2)~log(1+exp(apriori(i)));
branch(lst_s(cnt_s,2)) = Datar(2*i-1)+Datar(2%i)*. ..
1st_o(cnt_s,4)+apriori(i)-log(i+exp(apriori(i)));
if (sum(exp(branch+alpha(i,:)))>zero)
alpha(i+i,cnt_s) = log(sum(exp(branch+alpha(i,:))));
else
alpha(i+1,cnt_s) =-1*infty;
end
end
alpha_max(i+1) = max(alpha(i+i,:));
alpha(i+1,:) = alpha(i+1l,:) - alpha_max(i+1);
end

% backward recursion

beta(block_s,1)=0;
beta(block_s,2:no_of_states) = —infty*ones(1,no_of_states—1);

for i = block_s-1:-1:1
for cnt_s = 1:no_of_states

551

branch = -infty*ones(1,no_of_states);

branch(nxt_s(cnt_s,1)) = ~Datar(2*i+1)+Datar(2*i+2)*. ..

nxt_o(cnt_s,2)—log(1+exp(apriori(i+1)));

branch(nxt_s(cnt_s,2)) = Datar(2*i+1)+Datar(2+i+2)*. ..

nxt_o(cnt_s,4)+apriori(i+1)-log(1+exp(apriori(i+1)));

if (sum(exp(branch+beta(i+1,:)))<zero)
beta(i,cnt_s)=-infty;

else
beta(i,cnt_s) = log(sum(exp(branch+beta(i+1,:))));
end
end
beta(i,:) = beta(i,:) - alpha_max(i+1);
end

for k = 1:block_s
for cnt_s = 1:no_of_states
branch0 = —Datar(2*k—1)+Datar(2*k)*lst_o(cnt_s,2)—log(1+exp(apriori(k)));
branchi = Datar(2*k—1)+Datar(2*k)*lst_o(cnt_s,4)+apriori(k)—log(1+exp(apriori(k)));
den(cnt_s) = exp(alpha(k,lst_s(cnt_s,1))+brancho+ beta(k,cnt_s));
num(cnt_s) = exp(alpha(k,lst_s(cnt_s,2))+branchi+ beta(k,cnt_s));
end
L(k) = log(sum(num)) - log(sum(den));
end

552

function L = BCJLi(Datar, code_g ,apriori)
% log-BCJL (LOG-MAP algorithm) for decoder 1
% Used in Problem 10.36, CS: Haykin

% states, memory, constraint length and block size
block_s = fix(length(Datar)/2);
[n,K] = size(code_g);

m=K-1;
no_of_states = 2°m;
infty = lel0;

Zero=1e-300;

% forward recursion
alpha(1,1) = 0;
alpha(1,2:no_of_states) = —infty*ones(1l,no_of_states-1);

% code-trellis

[nxt_o, nxt_s, lst_o, 1st_s] = cnc_trellis(code_g);
nxt_o = 2*nxt_o-1;

1st_o = 2*1st_o-1;

for i = 1:block_s
for cnt_s = 1:no_of_states
branch = -infty*ones(1,no_of_states);

branch(lst_s(cnt_s,1)) = -Datar(2*i-1)+Datar(2#*i)*. ..
1st_o(cnt_s,2)-log(1+exp(apriori(i)));
branch(1lst_s(cnt_s,2)) = Datar(2+i-1)+Datar(2*i)*. ..
lst_o(cnt_s,4)+apriori(i)-log(1+exp(apriori(i)));
if (sum(exp(branch+alpha(i,:)))>zero)
alpha(i+1,cnt_s) = log(sum(exp(branch+alpha(i,:))));
else
alpha(i+1,cnt_s) =-1*infty;
end
end
alpha_max(i+1) = max(alpha(i+1,:));
alpha(i+1,:) = alpha(i+1,:) - alpha_max(i+1);
end

% backward recursion

beta(block_s,1)=0;
beta(block_s,2:no_of_states) = —infty*ones(1,no_of_states-1);

for i = block_s-1:-1:1
for cnt_s = 1:no_of_states

553

branch = -infty*ones(1,no_of_states);

branch(nxt_s(cnt_s,1)) = -Datar(2*i+1)+Datar(2#i+2)x. ..

nxt_o(cnt_s,2)-log(1+exp(apriori(i+1)));

branch(nxt_s(cnt_s,2)) = Datar(2*i+1)+Datar(2%i+2)*. ..

nxt_o(cnt_s,4)+apriori(i+1)-log(i+exp(apriori(i+1)));

if (sum(exp(branch+beta(i+1,:)))<zero)
beta(i,cnt_s)=-infty;

else
beta(i,cnt_s) = log(sum(exp(branch+beta(i+1,:))));
end
end
beta(i,:) = beta(i,:) - alpha_max(i+1);

end

for k = 1:block_s
for cnt_s = 1:no_of_states
branchO = -Datar(2¥k-1)+Datar(2+k)*lst_o(cnt_s,2)-log(1+exp(apriori(k)));
branchl = Datar(2*k-1)+Datar(2*k)*lst_o(cnt_s,4)+apriori(k)—log(1+exp(apriori(k)));
den(cnt_s) = exp(alpha(k,lst_s(cnt_s,1))+brancho+ beta(k,cnt_s));
num{cnt_s) = exp(alpha(k,lst_s(cnt_s,2))+branchi+ beta(k,cnt_s));
end
L(k) = log(sum(num)) - log(sum(den));
end

554

Answer to Problem 10.37

T T T T T T

Block size = 400 1]
Block size = 200 .|

: >
o :
L .
L ‘
1072 1 I ! i L 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5

number of iterations

Figure [: bit error rate Vs. the number of iterations for Block sizes: 200, and
400

555

	Title Page
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	10.1 - 10.10
	10.1
	10.2
	10.3
	10.4
	10.5
	10.6
	10.7
	10.8
	10.9
	10.10

	10.11 - 10.20
	10.11
	10.12
	10.13
	10.14
	10.15
	10.16
	10.17
	10.18
	10.19
	10.20

	10.21 - 10.30
	10.21
	10.22
	10.23
	10.24
	10.25
	10.26
	10.27
	10.28
	10.29
	10.30

	10.31 - 10.37
	10.31
	10.32
	10.33
	10.34
	10.35
	10.36
	10.37

