CHAPTER 3

Pulse Modulation

Problem 3.1

Let 2W denote the bandwidth of a narrowband signal with carrier frequency f,.. The in-phase and

quadrature components of this signal are both low-pass signals with a common bandwidth of W.
According to the sampling theorem, there is no information loss if the in-phase and quadrature
components are sampled at a rate higher than 2W. For the problem at hand, we have

f, =100 kHz
2W = 10 kHz

Hence, W = 5 kHz, and the minimum rate at which it is permissible to sample the in-phase and
quadrature components is 10 kHz.

From the sampling theorem, we also know that a physical waveform can be represented over the
interval —eo <7 < oo by

(=]

g(t) = Y a,0,(1) (1)

n=-co

where {0,(7)} is a set of orthogonal functions defined as

sin{nf (t-n/f,)}

0,(1) = S TRCETYIN

where #n is an integer and f; is the sampling frequency. If g() is a low-pass signal band-limited to
W Hz, and f; > 2W, then the coefficient a, can be shown to equal g(n/f,). That is, for f; > 2W, the

orthogonal coefficients are simply the values of the waveform that are obtained when the
waveform is sampled every 1/f; second.

As already mentioned, the narrowband signal is two-dimensional, consisting of in-phase and
quadrature components. In light of Eq. (1), we may represent them as follows, respectively:

gi(1) = Y, g,(n/f)9,(1)

n=-o0
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got) = 2 8o(n/ f)0,(t)

n=-o0

Hence, given the in-phase samples g 1(£) and quadrature samples gQ(%) , We may reconstruct
S

fs

the narrowband signal g(¢) as follows:
g(1) = g(t)cos(2nf t) - 8o(t)sin(2nf 1)

=}

= 2 [gl(%) cos(2nf 1) - gQ(}-’%) sin(2nfct)}¢n(l‘)

n=-co

where f. = 100 kHz and f; > 10 kHz, and where the same set of orthonormal basis functions is
used for reconstructing both the in-phase and quadrature components.

144



Problem 3.2

(a) Consider a periodic train c(f) of rectangular pulses, each of duration T. The Fourier series
expansion of c(t) (assuming that a pulse of the train is centered on the origin) is given by

ct) = Y f; sinc(nf, T)exp(j2nnfyt)

Nn=-oc0

where f_ is the repetition frequency, and the amplitude of a rectangular pulse is assumed to be 1/T
(i.e., each pulse has unit area). The assumption that £ T>>1 means that the spectral lines (i.e.,
harmonics) of the periodic pulse train c(t) are well separated from each other.

Multiplying a message signal g(t) by c(t) yields

s(t)

c(t) g(t) |
Y sinc(nf,T)g(t) exp(i2rnnfy(t)

NN=—o0 .

(D

Taking the Fourier transform of both sides of Eq.. (1) and using the frequency-shifting property of
the Fourier transform:

S(f) = f: fy sine(nfyT) G(f-nfy) (2)

Nn=-oo

where G(f) = Flg(t)]. Thus, the spectrum S(f) consists of frequency-shifted replicas of the original
spectrum G(f), with the nthreplica being scaled in amplitude by the factor fsinc(nf,T).
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(b) In accordance with the sampling theorem, let it be assumed that

o The signal g(t) is band-limited with

Gf) =0 for -W<f<W

o The sampling frequency f, is defined by

f, > 2W

Then, the different frequency-shifted replicas of G(f) involved in the construction of S(f) will not
overlap. Under the conditions described herein, the original spectrum G(f), and therefore the signal
g(t), can be recovered exactly (except for a trivial amplitude scaling) by passing s(t) through a low-

pass filter of bandwidth W.

Problem 3.3

(a) g(t) = sinq(ZOOtI

This sinc pulse corresponds to a bandwidth W = 100 Hz. Hence, the Nyquist rate is 200 Hz,
and the Nyquist interval is 1/200 seconds.

(b) g(t) = sincZ(ZOOtf

This signal may be viewed as the product of the sinc pulse sinc(200t)  with itself.
Since multiplication in the time domain corresponds to convolution in the frequency
domain, we find that the signal g(t) has a bandwidth equal to twice that of the sinc
pulse sin(200t), that is, 200 Hz. The Nyquist rate of g(t) is therefore 400 Hz, and the
Nyquist interval is 1/400 seconds.

(¢) g(t) = sinc(200t), + sincz(ZOOt):

The bandwidth of g(t) is determined by the highest lrequency component of sinc(200t) or
sinc2(200t), whichever one is the largest. With the bandwidth (i.e., highest frequency
component of) the sinc pulse sinc(200 t) equal to 100 Hz and that of the squared sinc
pulse sinc2(200t}’ equal to 200 Hz, it follows thar the bandwidth of g(£) is 200 Hz.
Correspondingly, the Nyquist rate of g(t) is 400 lxz, and its Nyquilst interval is 1/400
seconds.
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’ Problem 3.4
(a) The PAM wave is

s(t) = T [1 + um'(nTS)]g(t-nTs),

N==>

where g(t) is the pulse shape, and m'(t) = m(t)/Am = cos(2nfmt). The PAM wave is
equivalent to the convolution of the instantaneously sampled [1 + um'(t)] and the pulse

shape g(t):

{2 Dem (a7 8Ce-nT)} g% g(t)

nz=—-®

s(t)

{Meum' (031 T 8(e-nT} sk g(t)

N =~

The spectrum of the PAM wave is,

S(O = {180 + W (0] Y8 = & 6(r - By} o)
S M==® s
1 -]
= T G(f)m_zw [8¢F = 30 + wur (s - By
- S S

For a rectangular pulse g(t) of duration T=O.ﬁ53, and Qith AT = 1, we have:

G(f) = AT sinc(fT)
= sinc(0,.45f)
For m'(t) = cos(2nfmt), and with fh,: 0.25 Hz, we have:
M'(£) = 2 [8(£-0.25) + 8(£+0.25)]

x©

For T, = 1s, the ideally sampled spectrum is Sd(f) = I [8(fem) + uM'(f-m)].

S @) mz=-*
| §
] !
/ 4
Jf% /f‘/z - { /T“" 2 /}4/2 b
R R N Fr *‘TFDSL £k

The actual sampled spectrum is

147



S(f) = I sinc(0.45F)[(6(f-m) + uM'(f-m)]

m==e Ss)
I
0157 - 0.1§7
o.5S8M ©.98¥ 0.9844 o. 858K
oL T 085 2T I T Q.31
-t -lOo -071¢ -0 0 0.25 015 .0 KTy

(b) The ideal reconstruction filter would retain the centre 3 delta functions of S(f) or:

’ o. C}gu,u, '

2 0.384%
T P
-625 0 0.5 f
With no aperture effect, the two outer delta functions would have amplitude 3 Aperture

. 2.
effect distorts the reconstructed signal by attenuating the high frequency portion of the
message signal.

Problem 3.5

The spectrum of the flat-top pulses is given by
H(f) = Tsinc (fT)exp(-jnfT)

= 10 *sinc (107 f)exp(—jnf 107"
Let s(z) denote the sequence of flat-top pulses:

oo

s(ty = Y, m(nT)h(z—nT )

n=-o00

The spectrum&(f) = F[s(r)] is as follows:

S(f) = f5 Y, M(f-kfIH(f)

k=-oco
= fH) S M(f-kf)
k=-oc0

The magnitude spectrum [S(f)| is thus as shown in Fig. lc.
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Figure 1
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Problem 3.6

At f=1/2T, which corresponds to the highest frequency component of the meSngeds;grzzl fo;si
sampling the equal to the Nyquist rate, we find from Eq. (5-19) that the amplitu po

1.2+

.
sinc (0.5T/T,)

ideal cond_iti_c_m_~ _
10erire— - —— — =

Duty cycle T/T

Figure |

of the equalizer normalized to that at zero frequency is equal to

L W)
sinc(0.5T/T,) sin[(n/2(T/T))]

where the ratio T/T is equal to the duty cycle of the sampling pulses. In Fig. 1, this result is
plotted as a function of T/T,. Ideally, it should be equal to one for all values of T/T,. For a duty
cycle of 10 percent, it is equal to 1.0041. It follows therefore that for duty cycles of less than 10

percent, the aperture effect becomes negligible, and the need for equalization may be omitted
altogether.
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Problem 3.7

Consider the full-load test tone A cos(2ﬂfmt). Denoting the kth sample amplitude of

this signal by Ak' we find that the transmitted pulse is Ak g(t), where g(t) is defined by

the spectrum:
—-— If}] < B

G(f) =

o, otherwise

The mean value of the transmitted signal power is

LT L

P = Euimﬁ f3 0 r A g(nifat)
L 2 Lot ke L

1 LT L L

Ellin -/ ° I & AA g2(t)dt]
Ly s —LTS k==L n=-L

1 L L LTS 5
= lim SLT z z E[AkAn] J g (t)dt
L “*'s k==L n=-L -LT
where Ts is the sampling period. However,
A2
2— ’ k =n
E{A A ] =
k
n o, otherwsie
Therefore,
2 o
P/ gt
S -

Using Rayleigh's energy theorem, we may write

5og2(tydt = £ 16(e) |2t
B 2
=J T (2—;- df
—BT T
S 151
- 2B
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Therefore,

The average signal power at the receiver output is A2/2 Hen i
. ce, th -
to-noise ratio is given by P ’ ® output signal

(SNR)0

H
w
4

By -choosing BT=1/2TS, we get

P
(SNR) . = =——
o) BTN0

This shows. that PAM and baseband signal transmission have the same signal-to-noise ratio

for the same avgrage transmitted power, with ‘additive white Gaussian noise, and assuming
the use of the minimum transmission bandwidth possible,

Problem 3.8

(a) The sampling interval is Ts = 125 Ws, There are 24 channels and 1 sync pulse, so the
time alloted to each channel is 'I’c = Ts/25 = 5 Us, The pulse duration is 1 H¥s, so the
time between pulses is 4§ us,

(b) If sampled at the nyquist rate, 6.8 kHz, then T = 147 us, T, = 6.68 H¥s, and the time
between pulses is 5.68 us.

Problem 3.9

(a) The bandwidth required for each single sideband channel is 10 kHz. The total
bandwidth for 12 channels is 120 kHz.

(b) The Nyquist rate for each signal is 20 kHz. For 12 TDM signals, the total data rate
is 240 KkHz. By using a sinc pulse whose amplitude varies in accordance with the
modulation, and with zero crossings at multiples of (1/240) ms, we need a minimum
bandwidth of 120 kHz.
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Problem 3.10

(a) The Nyquist rate for 31('0) and S,(t) is 160 Hz. Therefore, 2“%0 must be greater than
160, and the maximum R is 3. 2

(b) With R = 3, we may use the following signal format to multiplex -the signals 31(t) and

Sz(t) into a new signal, and then multiplex s3(t) and su(t) and ss(t) including markers
for synchronization: |

MQ{kQ‘T Marke.r
‘ .
=i S
300
] (Yo
L1y 11 o4l gt 1 gl oI | o1 llgslll Time
—J 53545‘53354515354 535‘ S35, S35 K S %S 55% 5
}q.__l' |
i : /7?OO>S o zero sampls
Based o‘: this signal format, we may develop the following multiplexing system:
2400 Hz ‘
clock . L s
-8 &1 2400 1 2400
Defay f Deloy
s
Markes samef. XG -
Aeneraty pret 1 So.mple)- sz( B)
Lﬁ- gJt)
M 5( SCLn)Pfe/L-—-
> X j‘
! S ! s + 1+ M Muléiypﬁx.cd
-] 7200 »| 7200 S (k) —af Sampler. U nad
3‘9&3 DC?‘} 3 ——p x 3
S (k) :
4 Sampler. |
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Problem 3.11
In general, a line code can be represented as
N
s(t) = Y a,g(t-nT})
n=-N

Let g(¢) & G(f). We may then define the Fourier transform of s(z) as

N —jonT
S() =Y a,G(fre "’

n=-N

N —jonT,
= G(f) 2 a,e

n=-N

where w = 2nf. The power spectral density of s(¢) is
2:|
1 N N j(m=-n)oT,
|G(f)| hm | 7 2 2 Ela,a ]e
m:

n=-N

—jonT,

S,(f) = Tlgnw{%IG(f)I2E

N
2 ane
n=-N

where T is the duration of the binary data sequence, and E denotes the statistical expectation
operator. Define the autocorrelation of the binary data sequence as

R(k) = Ela,a, , ]

By lettingm =n + k and T = (2N + 1)T},, we may write

n=N  k=N-n k0T,
SN =GN lim LZN DT, 2 k% R(E }

Replacing the outer sum over the index n by 2N+1, we get

k=N-n

|G(f)| 2N+ koT,
S,(f) = T, Ninm{ZN 1 k_% nR(k) }
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= GO 5 gy (1)

where

1
R(k) = E[anan+k] = z(anan+k)pi (2)
i=1

where p; is the probability of getting the product (a, a,,;); and there are I possible values for the
a, a,. product. G(f) is the spectrum of the pulse-shaping signal for representing a digital symbol.
Eqgs. (1) and (2) provide the basis for evaluating the spectra of the specified line codes.

(a) Unipolar NRZ signaling

For rectangular NRZ pulse shapes, the Fourier-transform pair is
g(t) = Arect(Ti) SG(f) = AT sinc(fT),)

For unipolar NRZ signaling, the possible levels for a’s are +A and 0. For equiprobable
symbols, we have the following autocorrelation values:

2(0) = %A2+%x0 = A*/2

4
R(k) = Z(anan+k)ipi

i=1

2 2
A2 0.0 0_4
Thus
2
R(k)= A7/2 fork=0 (3)

A%/4  for k#0
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Therefore, the power spectral density for unipolar NRZ signals, using formulas (1) and (3), is

| AT sine(fT[1 1
Ss(f) - Tb Z+Z 2 ¢

k=-00

j21tkab:|

2 oo
AT, ,
= sinc (fTb)':1+ E e

k=-c0

j2nkab:|

But,

o 2T, 1 < n
S =g 21

k=-00 n=-oc0

where 8(f) is a delta function in the frequency domain. Hence,

2

AT, o 1 < n
\) = T 1+ — E o f—=—
() 7 sinc (f b){ T, < (f T)]

We also note that sinc(f7,) = 0 at f = Ti’ n# 0; we thus get
b

2

AT
S, =~ bsincz(fTb)[l +5—;?}

(b) Polar Non-return-to-zero Signaling

For polar NRZ signaling, the possible values for a’s are +A and -A. Assuming equiprobable
symbols, we have

R(0)

2
Z (anan)ipi
i=1

e

2 2
(=4) 2
+-——= = A
2
For k #0, we have
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4

R(k) = Y (a,a,,1)p;

i=1

_ -4)A) , ,=4)A) + &4
'T” s vy 4

=0
Thus,

2
R(k) =1 A for k =0 4)
0 for k0

The power spectral density for this case, using formulas (1) and (4), is
200 .2
S(f) = A"T,sinc”(fT,)
(c) Return-to-zero Signaling

The pulse shape used for return-to-zero signaling is given by g( We therefore have

r,7)
T,/2)

G(f) = T—smc(fTb/Z)

The autocorrelation for this case is the same as that for unipolar NRZ signaling. Therefore, the
power spectral density of RZ signals is

2

AT,
S,(f) = —Lsinc (fTb){l + L 2 8( T)]

(d) Bipolar Signals

The permitted values of level a for bipolar signals are +4, -A, and 0, where binary symbol 1 is
represented alternately by +A and -A, and binary 0 is represented by level zero. We thus have
the following autocorrelation function values:
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A2

R(0) = 5
4 A2
R(l) = Z(anan-f-])ipj:_z
i=1
Fork>1,
5 2 2
A7 A
R(k) = Z(anan+k)ipi = ?_—8— =0
i=1
Thus,
2
A? for k = 0
R(k) = 2
_‘-“4_ for [k = I
0 for |kl > 1

The pulse duration for this case is equal to 7;/2. Hence,

G(f) = %sinc(jizT—l—))

Using Equations (1), (5) and (6), the power spectral density of bipolar signals is

2

Esinc(JE)
[Az A% joT,  A? _ijb:I

2 2

2 4 4

S, T

2
AT, o fT, 1, JjoT, -—joT,
smc( 2)[1——e +e )}

8 2
2
AT, fT
= —3 bsmcz(—z—b)[l—cos(%thb)]
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A’T,

T
g sincz(lef) sinz(nfTb)

(e) Manchester Code

The permitted values of a’s in the Manchester code are +A and -A. Hence,

R(0) = thA2+i(—A)2+%(—A)2+;lt(A2)
= A°
For k#0,
! AP (“A)(A) | A(=A) | (-A)?
R(k) = Z(anan+k)ipi= _Z+ 4 + 4 + 4

i=1
=0

Thus,

R(k) = | A® for k = 0
0 for k0

The pulse shape of Manchester signaling is given by

t+T,/4 t—-T,/4
g(t) = rect( T,/2 )—rect( T,/2 )

The pulse spectrum is therefore

2

2

1l

T TN jor,/4 T TN -joT,/4
G(f) ?bsinc(f b) b —Tbsinc(f b)e b

. (JTy\ . (27fT,
= ]Tbsmc( > )sm( 7] )
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Therefore, the power spectral density of Manchester NRZ has the form

S,(f) = AT sinc 2(f 2Tb) sinz(nszb)

Problem 3.12

Power spectral density of a binary data stream will not be affected by the use of differential
encoding. The reason for this statement is that differential encoding uses the same pulse shaping
functions as ordinary encoding methods. If the number of bits is high, then the probability of a
symbol one and symbol zero are the same for both cases.

Problem 3.13

(a)
s(t)
A

- Tu/2 Tb/l— 3G/ ST /e 77;//\ ;

-T T
cos(-n—D, 0 <t< _b
(b) g(1) = r 2 2

0, otherwise

Equivalently, we may write

g(t) = cos(;—DArect(TL)

where rect(r) is a rectangular function of unit amplitude and unit duration. The Fourier
transform of g(¢) is given by

G(f) = &[S(f-i +5(f+3 | * sincs,)
2 T T b
where A denotes the pulse amplitude and > denotes convolution in the frequency domain.
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Using the replication property of the delta function d(f), we get

G = é;@[sinc(Tb(f - T%D + Si“C(Tb(f ¥ T%m

Using Eq. (1.52) of the textbook, the power spectral density of the binary data stream is

sep) = 16U

- D ane(15-2) wsme{rf s+ 2)
: +2sinc(Tb(f—-T2—)) sinc(Tb(f+ %m )

Note that the two spectral components sinc(Tb( f- Tg)) and sinc (Tb( f+ ng) overlap in

the frequency interval -(1/T},) < f < (1/T), hence the presence of cross-product terms in Eq.

(D).

Figure 1 plots the normalized power spectral density S(f)/(Asz/4) versus the normalized
frequency fT). The interesting point to note in this figure is the significant reduction in the
power spectrum of the pulse-shaped data stream x(#) in the interval -1/}, < f< 1/Tj,

(c) The power spectral density of the standard form of polar NRZ signaling is

S(f) = AT, sinc’(fT,) 2)

Comparing this expression with that of Eq. (1), we observe the following differences:

Polar NRZ signals using Polar NRZ signals using
cosine pulses rectangular pulses
f=0 0 AT,
f=22T, AT, /4 0
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Problem 3.14
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Problem 3.15(a)
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Problem 3.15(b) °

~dn 1 L Lo et 66

| Ca) A L.
. 0 3 ; Py $ ‘}

R LTI T



Problem 3.16

The minimum number of bits per sample is 7 for a signal-to-quantization noise ratio of 40 dB.
Hence,

(The number of samples) = 8000 x 10

in a duration of 10s _ 8><104 samples

The minimum storage is therefore

=7x8x10*

=56x10°
= 560 kbits

166



Problem 3.17

Suppose that baseband signal m(t) is modeled as the sample function of a Gaussian random
process of zero mean, and that the amplitude range of m(t) at the quantizer input extends from
~4A,  .to4A . We find that samples of the signal m(t) will fall outside the amplitude range 8A
with a probability of overload that is less than 1 in 10% If we further assume the use of a binary
code with each code word having a length n, so that the number of quantizing levels is 2", we find

that the resulting quantizer step size is

8 = 8Arms (1)
2R
Substituting Eq. (1) to the formula for the output signal-to-quantization noise ratio, we get
3 02R
(SNR), = —(2°%) (2)
° 16
Expressing the signal-to-noise ratio in decibels:
10log,(SNR), = 6R - 7.2 3)

This formula states that each bit in the code word of a PCM system contributes 6dB to the signal-
to-noise ratio. It gives a good description of the noise performance of a PCM system, provided that
the following conditions are satisfied:

1. The system operates with an average signal power above the error threshold, so that the
effect of transmission noise is made negligible, and performance is thereby limited
essentially by quantizing noise alone.

The quantizing error is uniformly distributed.

3. The quantization is fine enough (say R > 6) to prevent signal-correlated patterns in the
quantizing error waveform.

4, The quantizer is aligned with the amplitude range from -4A, _to 4A ..

In general, conditions (1) through (3) are true of toll quality voice signals. However, when demands
on voice quality are not severe, we may use a coarse quantizer corresponding to R < 6. In such a
case, degradation in system performance is reflected not only by a lower signal-to-noise ratio, but
also by an undesirable presence of signal-dependent patterns in the waveform of quantizing error.
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Problem 3.18

(a) Let the message bandwidth be W. Then, sampling the message signal at its Nyquist

rate, and using an R-bit code to represent each sample of the message signal, we find that
the bit duration is :

Ts

S
Ts =R R

b

The bit rate is

,}—:NR
b

The maximum value of message bandwidth is therefore

_ 50 x106

max 2x7

E
|

3.57 x 10° Hz

(b) The output signal-to-quantizing noise ratio is given by (see Example 2):
10 log,y(SNR), = 1.8 + 6R

1.8 + 6 x 7

43.8 dB

Problem 3.19
Let a signal amplitude lying in the range

1 1
Xj —3 8 x<x +35 8,

be represented by the quantized amplitude Xy The instantaneous square value of the error
is (x-xi)z. Let the probability density function of the input signal be fx(x). If the
step size Gi is small in relation to the input signal excursion, then fy(x) varies little
within the quantum step and may be approximated by fx(xi). Then, the mean-square value of

the error due to signals falling within this quantum is

(x-x)% £ (x)dx
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~ 2
= f 1 (x-xi) fx(xi)dx
X3 =38
1
Xy + 3 Gi )
= f (xi) s (x=-x,)"dx
1 i
Xi =38
1
’2‘51 >
= £ (x.) J X~ dx
1
-39
. 143 | |
= 13 87 fx(x;) (1)

The probability that the input signal amplitude lies within the ith interval is

fx(x)dx = fx(xi) J dx = f‘x(xi)Gi (2)

Therefore, eliminating f,(x,) between Eqs. (1) and (2), we get
: Xt

2, _ 1 2
E[Qi] =T3P Gi
.The total mean-square value of the quantizing error is the sum of that contributed by each
of the several quanta. Hence,

ech - 1, o

z Py é
i ' i
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Problem 3.20

(a)
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Problem 3.21

The quantizer has the following input-output curve:

Oubpur
VOEf'S 8‘_’ o

g

At the sampling instants we have:

t m(t) code -
-3/8 =372 0011
-1/8 -372 0011
+1/8 32 1100
+3/8 3V2 1100

And the cod>ed waveform is (assuming on-off signaling):

Tnpulb
Velis

'
oajtd [~
1
ool-
O
ool~ |~
ooV

Problem 3.22

The transmitted code words are:

1:/Tb code
1 001
2 010
3 011
y 100
5 101
6 110
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The sampled analog signal is

Problem 3.23

(a) The probability Pq of any binary symbol being inverted by transmission through the
system is usually quite small, so that the probability of error after n regenerations in
the system is very nearly equal to n p,. For very large n, the probability of more than
one inversion must be taken into account. Let p_ denote the probability that a binary
symbol is in error after transmission through the complete system. Then, Py is also the
probability of an odd number of errors, since an even number of errors restores the

original value. Counting zero as an even number, the probability of an even number of
errors is 1-pn. Hence

Pny1 = Pp(1-pp)+(1-p,)py
= (1-2)p,+p,
This is a linear difference equation of the first order. 1Its solution is

1 n
5 [1-(1-2p1) ]

P, |
(b) 1If Py is very small and n is not too large, then
(1-2p)" = 1-2pn

and

el
R

201-(1-2p 0]

pqn
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Problem 3.24 - Regenerative repeater for PCM

Three basic functions are performed by regenerative repeaters: equalization, timing and decision-
making.

Equalization: The equalizer shapes the incoming pulses so as to compensate for the effects of
amplitude and phase distortion produced by the imperfect transmission characteristics of the
channel.

Timing: The timing circuitry provides a periodic pulse train, derived from the received pulses, for
sampling the equalized pulses at the instants of time where the signal-to-noise ratio is maximum.

Decision-making: The extracted samples are compared to a predetermined threshold to make
decisions. In each bit interval, a decision is made whether the received symbol is 1 or O on the
basis of whether the threshold is exceeded or not.

Problem 3.25
m(t) = Atanh(fr)

To avoid slope overload, we require

TAS > max dﬂdgﬁ (1)
% = ABsechz(Bt) (2)

Hence, using Eq. (2) in (1):

AZmax(ABsechz(Bt)) xXT, (3)
. o
Since sech(fz) = WST)
_ 2
Py P

it follows that the maximum value of sech(P3?) is 1, which occurs at time ¢ = 0. Hence, from Eq. (3)
we find that A > ABT,.
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Problem 3.26

The modulating wave is
m(t) = Am cos(?rrf'mt)

The slope of m(t) is

dm(t) _ .
9t = -21rfmAm sm(21rfmt)

The maximum slope of m(t) is equal to 21rf‘mAm.
The maximum average slope of the approximating signal ma(t) produced by the delta

modulator is 6/TS, where ¢ is the step size and Ts is the sampling period. The limiting

value of Am is therefore given by

$
21rfmAm > T
S
or

5

— L *

A2 5F T
m S

Assuming a load of 1 ohm, the transmitted power 1is Afl/Z. Therefore, the maximum
2.2..2

. 2
power that may be transmitted without slope-overload distortion is equal to & /8« fst.
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Problem 3.27

fs= 1OfNyquis.t

fNyquist = 6.8 kHz

f;=10x6.8x10°=6.8 x 10* Hz

dm(t)
dt

A
_- >
Ts_max

For the sinusoidal signal m(z) = A, sin(2nf,, 1), we have

dm(t) _

7 2nf, A, cos(2nf, 1)
Hence,
‘dm(t) = |2nf, Al
dt  |max

or, equivalently,

A

—T—s 2 lznfmAmlmax
Therefore,

A -

m|max - T x2nXx f,

_ A
C2nf,

0.1 x6.8 x 10*

27 X 103

I

1.08V
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Problem 3.28

(a) From the solution to Problem 3.27, we have

A 2nf, A
_ Af or A= fm "
27tfm f
A2
The average signal power = >
- )
~2\2nf,

With slope overload avoided, the only source of quantization of noise is granular noise.
Replacing A/2 for PCM with A for delta modulation, we find that the average quantization

noise power is A2/3; for more details, see the solution to part (b) of Problem 3.30. The
waveform of the reconstruction error (i.e., granular quantization noise) is a pattern of bipolar
binary pulses characterized by (1) duration = T, = 1/f,, and (2) average power = A/3. Hence,
the autocorrelation function of the quantization noise is triangular in shape with a peak value

of A%/3 and base 2T, as shown in Fig. 1:

Rp(T) ,
A°/3
2

—_ S
Area = 3

Fig. 1 T T T
From random process theory, we recall that

S0l o0 = waQ(’c)dr
which, for the problem at hand, yields

2

AT A2
S (0) = S =
00 = =7 = 5+

Typically, in delta modulation the sampling rate f; is very large compared to the highest frequency

component of the original message signal. We may therefore approximate the power spectral
density of the granular quantization noise as
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2
So(f) = A /3f, -WSf<W

0, otherwise

where W is the bandwidth of the reconstruction filter at the demodulator output. Hence, the
average quantization noise power is

20 W

3f

w
N = [So(fdf =

-W

(2)

Substituting Eq. (2) into (1), we get

V-5

8’ f2 A*W

3

3f

(b) Correspondingly, output signal-to-noise ratio is

SNR =

2,2 .2

8’ f2A°W)/3f

3

_ 3
167° f2 W

Problem 3.29

Af,

(a) A< onf,

2 A
>7tf

m

fs
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3
Azzxnxlo X 1

50 x 10°
= 0.126V
3
3 f
(b) (SNR)yy = — —°
gn” f W

3.3

3 (50x10%)
= 2% "% 3
16m 107" x5%x10

= 475

In decibels,
(SNR),; = 10log 4475

= 26.8 dB

Problem 3.30

(a) For linear delta modulation, the maximum amplitude of a sinusoidal test signal that can be
used without slope-overload distortion is

A = Afs
2nf,,
0.1 x 60 x 10° 3
=" -~ - fy=2x3x10
3 S
2t X 1 x 10
= 0.95V
(®) @)

Under the pre-filtered condition, it is reasonable to assume that the granular quantization

noise is uniformly distributed between -A and +A. Hence, the variance of the quantization
noise is
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The signal-to-noise ratio under the pre-filtered condition is therefore

A%/

(SNR) S
A*/3

prefiltered ~

= 135

= 21.3 dB
(i1)The signal-to-noise ratio under the post-filtered condition is

3

B 22
N postfiltered 167‘52 fiW

3 (60)°
2X 2
16m” (1)"x3

= 1367
= 31.3 dB

The filtering gain in signal-to-noise ratio due to the use of a reconstruction filter at the
demodulator output is therefore 31.3 - 21.3 = 10 dB.
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Problem 3.31
Let the sinusoidal signal m(z) = Asinwgt, where wg = 27tf;

The autocorrelation of the signal is

2

R, (1) = %cos(wo‘c)

R,(0) = —

2
Rm(l) %‘COS((DOXTOITJ

2

= %COS(O.l)

For this problem, we thus have
R, =[R,(0)], r, = [R,(1)]

(a) The optimum solution is given by

-1

Wo = Rm Lo
2
A?cos(O.l)
= —— = cos(0.1)
A
2
= 0.995
T -1
2 2 2
- %—%COS(O.I) X%—cos(O.l)/(Az/2)
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il

2
’52—(1 — c0s(0.1))

0.0054>

Problem 3.32

R. =

X

1

0.8 0.6

08 1 0.8

0608 1

r, = [08, 0.6, 04]

(a) Wy

(b) J

min

1 0806 |08
08 1 08 |06
0608 1] |04

[0.875
0
-0.125

T, -1
R, (0) - r, Rx r,
T
R (0)~r w,

0.875
1-los, 06,04 o
-0.125

1-(0.8x0.875— 0.4x 0.125)
1-0.7 +0.05

0.35
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Problem 3.33

R, = 1 038
0.8 1
(@ wyg =R, r

®) Jpin = R (0)—r 'R 'r,

1-0.6444

0.3556

which is slightly worse than the result obtained with a linear predictor using three unit delays
(i.e., three coefficients). This result is intuitively satisfying.

Problem 3.34
Input signal variance = R (0)

The normalized autocorrelation of the input signal for a lag of one sample interval is

R.(1)

R_(0) = 0.75

p (1) =

Error variance = R (0) - R (1)R]'(0)R,(1)

R (0)(1-p>(1))
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R (0)

Processing gain = 3
R, (0)(1 -p(1))

1
2
1-p.(1)

1
1-(0.75)°

= 2.2857
Expressing the processing gain in dB, we have

10log ,(2.2857) = 3.59 dB

Problem 3.35

R,(0)

r.R'r,
R (0) 1- R (09

X

Processing gain =

(a) Three-tap predictor:
Processing gain = 2.8571
=4.56 dB

(b) Two-tap predictor:
Processing gain = 2.8715
=449 dB

Therefore, the use of a three-tap predictor in the DPCM system results an improvement of
4.56 - 4.49 = 0.07 dB over the corresponding system using a two-tap predictor.

Problem 3.36
(a) For DPCM, we have 10log;((SNR), = o + 61 dB
For PCM, we have 10log;q(SNR) =4.77 + 6n - 20log;o(log(1 + u))

where n is the number of quantization levels
SNR of DPCM
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SNR = a + 6n, where -3 < o < 15
For n=8, the SNR is in the range of 45 to 63 dBs.
SNR of PCM

SNR =4.77 + 6n - 20log(log(2.56))

=477 + 48 - 14.8783
=38 dB

Therefore, the SNR improvement resulting from the use of DPCM is in the range of 7 to 25
dB.

(b) Let us assume that n bits/sample are used for DPCM and 7 bits/sample for PCM
If oo = 15 dB, then we have

15 +6n;=6n-10.0

10 + 15

Rearranging: (n—-n,) = ¢

= 4.18
which, in effect, represents a saving of about 4 bits/sample due to the use of DPCM.

If, on the other hand, we choose o = -3 dB, we have

-3+6n;=6n-10

Rearranging: (n—n;) = 10—6_3:
=7
T 6
= 1.01

which represents a saving of about 1 bit/sample due to the use of DPCM.
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Problem 3.37

The transmitting prediction filter operates on exact samples of the signal, whereas the receiving
prediction filter operates on quantized samples.

Problem 3.38

Matlab codes

% Problem 3.38, CS: Haykin
%flat-topped PAM signal
and magnitude spectrum

% Mathini Sellathurai

%data

£s=8000; % sample frequency
ts=1.25e-4; %1/fs
pulse_duration=5e-5; %pulse duration

 sinusoidal sgnal;

td=1.2be-5; Ysampling frequency of signal
£d=80000;

t=(0:td:100*td);

fm=10000;

s=sin(fm*t);

% PAM signal generation

pam_s=PAM(s,td,ts,pulse_duration);
figure(1);hold on
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plot(t,s,’--7);
plot(t(i:length(pam_s)),pam_s);
xlabel(’time’)
ylabel(’magnitude’)
legend(’signal’, ’PAM-signal’);

% Computing magnitude spectrum S(f) of the signal
a=((abs(fft(pam_s))."2));

a=a/max(a);
f=fs*(fs/fd:fs*(fs/fd):(length(a))*fs*(fs/fd);
figure(2)

plot(f,a);

xlabel(’frequency’);

ylabel(’magnitude’)

% finding the zeros
index=find(a<ie-5);

% finding the first zero

fprintf (’Envelopes goes through zero for the first time
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function pam_s=PAM(s,td,ts,pulse_duration)

% Problem 3.38, CS: Haykin
flat-topped PAM signal

%used in  Problem 3.38, CS: Haykin
% Mathini Sellathurai

potd=pulse_duration/td;
tsotd=ts/td;

y=zeros(1,length(s));
tt=1:(tsotd):length(s);

for kk=1:length(tt);
y(tt(kk) : tt(kk)+potd-1)=s(tt(kk)) .*ones(1,potd);

end

pam_s=y(1:length(s)-potd);
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Answers: 3.38

magnitude

0.6

0.2 !

- = - signal

PAM-signal

time

0.8

Figure 1: Flat-topped PAM signal
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Figure 2: Magnitude spectrum of flat-topped PAM signal

magnitude
o
[¢]
T

°
IS
T

0.2

o ! L 1 {

[¢] 0.5 1 1.5 2 2.5
frequency

Figure '3: Zoomed magnitude spectrum of flat-topped PAM signal

190



Problem 3.39
Matlab codes

iproblem 3.39, CS: Haykin

“mue-law pCM and uniform quantizing
“Mathini Sellathurai

clear all

%sinusoidal signal
t=[0:2%pi/100:2*pi];
a=sin(t);

% input signal to noise ratio in db
SNRdb=[-20 -156 -10 -5 0 6 10 15 20 25 1;

for nEN=1:10
sqnrfm=0; sqnrfu=0;
for k=1:100
snr = 10~ (SNRdb(nEN)/10);
wn= randn(1,length(a))/sqrt(snr); % noise
al=a+wn; %signal plus noise

[a_quanu, codeu, sqnr_ul=u_pcm(a1,256); %call u-PCM
[a_quanm, codem, sqnr_m]=mue_pcm(a1,256,255); %call mue-PCM

sqnrim=sqnrfm+sqnr_m;
sqnrfu=sqnrfu+sqnr_u;
end
SNROm(nEN)=sqnrfm/k; %bin-SNR-MUE-PCM
SNROu(nEN)=sqnrfu/k; %bin-SNR-U-PCM
end

%plots

figure;hold on;

plot (SNRdb,SNROu, ’—+’)

plot (SNRdb,SNROm, '-0°)

xlabel(’input signal-to-noise-ration in db’)
ylabel(’output signal-to-noise-ration in db’)
legend(’uniform PCM, 256 levels’,’mue-law PCM, mue=255')
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function [a_q,snr]l=u_pcm(a,n)

% function to generate uniform PCM for sinwave
iused in problem 3.39, CS: Haykin

“Mathini Sellathurai

n=length(a);

amax=max(abs(a));

a_q=a;

b_q=a_q;

d=2/n;

q=d.*[0:n-1];

q=q-((n-1)/2)*d;

for i=1:n

a_q(find((q(i)-d/2<= a_q) & (a_q <=q(i)+d/2)))=...
q(i).*ones(1,length(find((q(i)-d/2 <=a_q) & (a_q<=q(i)+d/2))));
b_q(find(a_q==q(i)))=(i-1).*ones(1,length(find(a_q==q(i))));
end

a_q =a_g¥amax;

snr=20*log10(norm(a)/norm(a-a_q));
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function [a_qg,snr]l=mue_pcm(s,n,mue)

% function to generate mue-law PCM for sinwave
/used in problem 3.39, CS: Haykin

%Mathini Sellathurai

a=max(abs(s));

% mue-law
y=(log(1+mue*abs(s/a))./log(1+mue)).*sign(s);
[y_q,code,sqn]=u_pcm(y,n);

%inverse mue-law
a_q=(((1+mue).‘(abs(y_q))—l)./mue).*sign(y_q);

a_gq=a_g*a;

%SNR
snr=20*log10(norm(s)/norm(s—a_quan));
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Answer to Problem 3.39

50
—t uniform PCM, 256 levels
40 — mue—law PCM, mue=255
30¢5- —-©

20

output signal-to-noise-ration in db
o

L 1 1 1
—20 -15 -10 -5 o} 5 10 15 20 25
input signal—-to—noise—ration in db

_30- 1 1

Figure 1. . input signal-to-noise ratio Vs. output signal-to-noise ratio for pu-law
PAM and uniform PCM
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Problem 3.40
Matlab codes

% Problem 3.40, CS: Haykin
“Normalized LMS- prediction
of AR process/ speech signal
% Mathini Sellathurai

clear all

mue=0.05; Y% step size parameter, a value between 0 ans 2
p=2; % filter order

N=10; % size of data

M=1;% number of realizations

% initializing counters
erri=zeros(1,N-p);
xhati=zeros(1,N-p);
x=zeros(1,N);

for m=1:M % 100 realizations

x(1:2)= [0.1 0.2];

%AR process

for k=3:N
x(k)=(0.8*x(k-1)—0.1*x(k—2))+0.1*rand(1);
end

% LMS prediction

lerr, xhat]=LMS(x,mue,p);
erri=erri+err.”2;
xhati=xhati+xhat;

end

plot(erri/m,’-’);
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function [err, xhat]l=LMS(xx,mue,p)
% function Normalized LMS
%p-order of the filter

%mue—step size parameter

iused in problem 3.40, CS: Haykin
“Mathini Sellathurai

% length of the data
N=length(xx);

% initializing weights and erros
w=zeros(p,N-p);

err=ones(1,N-p);
xhat=zeros(1,N-p);

%prediction
1=1;
for k=1:N-p
h=xx(k:p+k-1);
err(1)=(xx(k+p)-h*w(:,1));
xhat(1)=h*w(:,1);
xxx=xx(1+p-1)+xx(1+p-2);
w(:,1+1)=u(:,1)+(mue/xxx)*h’*err(1);
1=1+1;
end
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Answer to Problem 3.40

Amplitude

Mean-squared error

AR process (a1 = -0.80, a2=0.10)+random noise

0.3 T T T T T T T T T
Q.25 =

0.2 r

U |

0.15 u

0.1 _
0.05 L L 1 L L 1 1 Il 1

0 100 200 300 400 500 600 700 800 800 1000

Sample number

Figure | : Noisy-AR-process, ag = —0.80, a; = 0.10

107 : : : B B A i HUBSELE AL RS

10 1 i

1 L L L 1
(8] 100 200 300 400 500 600 700 800
Number of iterations

Figure 2 ¢ Learning curves for g = 0.0075, 0.05, 0.5
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