Chapter 9

Fundamental limits in Information Theory

Problem 9.1

Amount of information gained by the occurrence of an event of probability p is

I = logy|L | bits
P

I varies with p as shown below:
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Problem 9.2

Let the event S=s;, denote the emission of symbol s, by the source, Hence,

I(s) = logy (l] bits
p

Sx 80 8 89 83
Py 04 0.3 0.2 0.1
I(sk) bits 1.322 1.737 2.322 3.322

Problem 9.3

Entropy of the source is

H(S) = pologz[-l—J + pllogz[-l—] + pzlogz[i] + palogz[—l-]
Po P1 Po P3

1 1 1 1
= _1 3 =1 6 il | 4 =1 4
308'2()"'6032()"'4 0g2()+4 ogy(4)

= 0.528 + 0.431 + 0.5 + 0.5
= 1.959 bits

Problem 9.4

Let X denote the number showing on a single roll of a die. With a die having six faces, we note that
px is 1/6. Hence, the entropy of X is

H(X) = px log; [_.1_]
Px

- % logy(6) = 0.431 bits
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Problem 9.5

The entropy of the quantizer output is

4
H=- E P(Xk) 10g2P(Xk)
k=1

where X, denotes a representation level of the quantizer. Since the quantizer input is Gaussian with

zero mean, and a Gaussian density is symmetric about its mean, we find that

P(X;) = P(X,)
P(X,) = P(X3)

The representation level X; = 1.5 corresponds to a quantizer input +1 < Y < . Hence,

1
b =
]

b
/i
Do |"‘
~

0.1611

2
P(X,) = Ll \/21_ exp{—l.z_]dy
T

0.3389

Accordingly, the entropy of the quantizer output is

asi
"

1
- 2lo.1611 1 + 0.3389 log, (0.3389
[ ng[o 1611 } s )]

1.91 bits
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Problem 9.6
(a) For a discrete memoryless source:

P(Gi) = P(Sil) P(Sil) P(Sin)

Noting that M = K®, we may therefore write

M-1
E P(Ci)
=0

i

M-1
2()) P(s; ) P(s;,) ... P(s; )

K-1 K-1 K-l
¥y - ) P(s;)) P(s;)) - P(s; )

i1=0 i2=0 in=0

™

K-1 K-1 K-1

=y P(s;)) Yy P(s;,) Yy P(s; )
i,=0 i3=0 in=0

=1

(b) For k = 1,2,...,n, we have

M-1 1 M-1 1
E P(Gl) logy — | = E P(Sil) P(Siz) P(Sin) logy —
i=0 Piy i=0 Piy

For k=1, say, we may thus write

M-1 L) K )kl K-1
Y PGy log2[_f] Y PGsy) logz[p_.] Eo P(s;)) - z‘; P(s; )
i | i= i=

i=0 i i=0 i
K-1 1
= Y pj, logg|—
i=0 Pi,
= H(S)

Clearly, this result holds not only for k=1 but also k=2,...,n.
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(c)

M-1

‘ 1
HS™ = P& 1
2, FeD o 5oy
M-1 1
= P(o)) 1
i=EO (0;) logg Pls) Pls;) ~ Plep)

- ijl P(o;) logy —L _ + hi\:jl P(oy) logy
i=0 P(si) i P(s;)
M-1 1
+ o+ lgo P(Gi) log2 P(Sin)

Using the result of part (b), we thus get

H(S ") = H(S) + H(8) + - + H(S)
= n H(S)

Problem 9.7

(a) The entropy of the source is

1 1
H(S) = 0.7 logy L+ 0.15 Io
) 857 " 82 915

.

+0.15 log, 0_115

0.258 + 0.4105 + 0.4105
1.079 bits

(b) The entropy of second-order extension of the source is

H(S2) = 2 x 1.079 = 2.158 bits
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Problem 9.8

The entropy of text is defined by the smallest number of bits that are required, on the average, to
represent each letter.

According to Luckyt, English text may be represented by less than 3 bits per character, because
of the redundancy built into the English language. However, the spoken equivalent of English text
has much less redundancy; its entropy is correspondingly much higher than 3 bits. It follows
therefore from the source coding theorem that the number of bits required to represent (store) text
is much smaller than the number of bits required to represent (store) its spoken equivalent.

Problem 9.9

(a) With K equiprobable symbols, the probability of symbol s, is

1
P(sy) = —
px = P(sy) T

The average code-word length is

=

[
™
=)
L3
i

The choice of a fixed code-word length 1, =, for all k yields the value i:lo. With K symbols in the
code, any other choice for I, yields a value for L no less than 1y

(b) Entropy of the source is
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=
M

H(S) =

lng

Pk logy [—1- ]
Px

K-1 1
= — log2K = log2K
k0 K
The coding efficiency is therefore
n=-HS _ loga K
T lo
For n=1, we have
10 = 10g2K
To satisfy this requirement, we choose
K = 2

where 1, is an integer.

Problem 9.10

A prefix code is defined as a code in which no code work is the prefix of any other code word. By
inspection, we see therefore that codes I and IV are prefix codes, whereas codes II and III are not.

To draw the decision tree for a prefix code, we simply begin from some starting node, and extend
branches forward until each symbol of the code is represented. We thus have:
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Problem 9.11

We may construct two different Huffman codes by choosing to place a combined symbol as low or
as high as possible when its probability is equal to that of another symbol.

We begin with the Huffman code generated by placing a combined symbol as low as possible:

% 055 — 035 ——=035 —=055
s, Qs —— 015 030 2 0.45 —
S 015 e O::%%;7£%“5 :;}J/,

S, 0.10 0 015 _'

s Q.os -

The source code is therefore

So 0
8, 11
s, 100
sg 1010
s, 1011
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The average code-word length is therefore

4
L=Y pxlk
=0 |
= 0.55(1) + 0.15(2) + 0.15(3)‘ + 0.1(4) + 0.05(4)

=19

The variance of L is

4
o> = ¥ pily - T
k=0

= 0.55(-0.9)2 + 0.15(0.1)2 + 0.15(1.1)2 + 0.1(2.1)2 + 0.05(2.1)?
= 1.29

Next placing a combined symbol as high as possible, we obtain the second Huffman code:

0
— ().56 )
— 0,45 0.
058 04 0 0,45 =

O -
s, (MS\\\\»CU5 03 ' _J/’
015 —— 0 —

s, 0.15
N

0
e
s, 0 oS \

Correspondingly, the Huffman code is

So 0

8; 100

Sg 101 465
Sg 110

sq, 111



The average code~word length is

L = 0.55(1) + (0.15 + 0.15 + 0.1 + 0.05) (3)
=19
The variance of i 8

o2 = 0.55(-0.9)%2 + (0.15 + 0.15 + 0.1 + 0.05) (1.1)2
= 0.99

The two Huffman codes described herein have the same average code-word length but different

variances.

Problem 9.12 -

0
S 035 — (as (.25 0.25 S 0.5]
0 !
s, 035 — 035 015 Q25 Oas Qs
0 0,25~
2 0435 0.125 0.25 0.25 :
|
S3 0.125 0.125 0.125 025 —
s, 0.125 025 2 | N0 '

S 0.0bd5 0 0.125 2

s, 0.0bas
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The Huffman code is therefore

8o 10

S, 11

89 001
83 010
8, 011
S 0000
Sg 0001

The average code-word length is

8
L=Y pi
k=0

= 0.25(2)(2) + 0.125(3)(3) + 0.0625(4)(2)
= 2.625

The entropy of the source is

6
H(S) = ¥ px logz[_l_J
k=0 Pk

0.125

= 0.25(2) logz[o 125] + 0.125(3) logz( 1 ]

1
0.0625(2) log,| 1
* ) 0g2(0.0625]

= 2.625

The efficiency of the code is therefore

_HE) _ 2625 _

n T 2.625

We could have shown that the efficiency of the code is 100% by inspection since
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6
Y pi loga(1/py)
k=0

‘n:

6
Y bk
k=0
where I, = logy(1/py).
Problem 9.13
(a)
O

s, Qs © 0.3 —'_-!
s, 0.15 J\/

The Huffman code is therefore

So 0
81 10
8o 11

The average code-word length is

T = 0.7(1) + 0.15(2) + 0.12(2)
= 1.3
(b) For the extended source we have
Symbol SoSo 18051 | %082 |81 |85 |81%1 8159 $o81 8989

Probability |0.49 |0.105 |0.105 | 0.105 |0.105 |0.0225 |0.0225 | 0.0225 | 0.0225
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Applying the Huffman algorithm to the extended source, we obtain the following source code:

808
8081
8089
8180
98¢
818,
8182
8981
8989

1

001
010
011
0000
000100
000101
000110
000111

The corresponding value of the average code-word length is

Ly = 0.49(1) + 0.105(3)(3) + 0.105(4) + 0.0225(4)(4)

iy

= 2.395 bits/extended symbol

1.1975 bits/symbol

(c) The original source has entropy

According to Eq. (/10-28),

0.7 logz(J_) + 0.15(2) logz(_(.)ll_5]

H(S
® 0.7

.

1.18

H(S) < E‘. < H(S) +
n

B~

This is a condition which the extended code satisfies.



Problem 9.14

Symbol Huffman Code Code-word length
A 1 1
B 011 3
C 010 3
D 001 3
E 0011 4
F 00001 5
G 00000 5
Problem 9.15
) 0
00 z
0
t
V1 % ‘
0 2 !
o3 |
4 [
10 s \
Computer code Probability Huffman Code
00 1 0
2
11 1 10
4
01 1 110
8
10 1 111
8

The number of bits used for the instructions based on the computer code, in a probabilistic sense,
is equal to 470



ofl . 1.1, 11 9pits
z 1 8

On the other hand, the number of bits used for instructions based on the Huffman code, is equal to

1

1xls2xliggl
2 1

X =
8

1 _
X e =
8

+ 3

NN

The percentage reduction in the number of bits used for instruction, realized by adopting the
Huffman code, is therefore

100 x _1;4_ - 12.5%

Problem 9.16

Initial step
Subsequences stored: 0

Data to be parsed: 11101001100010110100..
Step 1

Subsequences stored: 0, 1, 11

Data to be parsed: 101001100010110100..
Step 2

Subsequences stored: 0,1,11,10 )
Data to be parsed: 1001100010110100....
Step 3

Subsequences stored: 0, 1, 11, 10, 100

Data to be parsed: 1100010110100....

Step 4

Subsequences stored: 0, 1, 11, 10, 100, 110

Data to be parsed: 0010110100...
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Step 5
Subhsequences stored: 0, 1, 11, 10, 100, 110, 00

Data to be parsed: 10110100....

Step 6

Subsequences stored: 0, 1, 11, 10, 100, 110, 00, 101

Data to be parsed: 10100...

Step 7

Subsequences stored: 0,1, 11, 10, 100, 110, 00, 101, 1010
Data to be parsed: 0..

Now that we have gone as far as we can go with data parsing for the given sequence, we write

Numerical 1 2 3 4 5 6 7 8 9

positions

Subsequences 0, 1, 11, 10, 100, 110, 00, 101, 1010

Numerical 22, 21, 41, 31, 11, 42, 81
representations

Binary encoded 0101, 0100, 0100, 0110, 0010, 1001, 10000
blocks
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Problem 9.17

P(I): P(D:‘):;
0 2

p(yo) = (1 - p)p(xg) + p p(xy)

1 p)(E) p(z)

1
2

P(y1) = p p(xg) + (1 - p) p(xy)

VS TIPS |
P(E) a p)(-2-)

1
2
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Problem 9.18

p(xg) = %
- 3
p(xy) vy
. _ 1 . 3
pyo) =1 -p) (74—) p(z)
= 1 + p
4 2
= 1 + - 3
p(yy) p(z) 1-p (Z)
=3_0>
4 2

Problem 9.19

From Eq.(quz)we may express the mutual information as

1 1
P(x"Yk)
IX)Y) = 5y 1 — P
jg(:) k% P(x;,¥k ogz[ o) P(Yk)]

The joint probability P(’S"yk) has the following four possible values:
j=k=0: p(xo ,yk) = po(l-p) =(1- p1) (1-p)

i=0,k=1: p(xpy,) =pop =(1-pp

i=1Lk=0: p(x4,59) =pyp

where p, = p(x,) and p; = p(x;)

The mutual information is therefore
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(1-pp (1-p)
IX;Y) = (1-p) (1-p) ]
X;Y) = (1-pp) (1-p) 032[(1_p1) (A-pp (1—p)+p1p)]

1-ppPp ]

+ (1- 1
dpop °g2[(1-p1) -pD P + pA-P)

P1P
+ 1
P °g2[p1«1-p1> ap - plp)J

p1(1-p)
p1((1-pyp + pi(1-p)

+ pi(1-p) logz{

Rearranging terms and expanding algorithms:

IX;Y) = p logg p + (1-p) logs(1-p)
- [P1(1-p) + (1-py)p] logg[p1(1-p) + (1-py)p]

- [p1p + (1-py) (1-p)] logg[pyp + (1-pyp) (1-p)]

Treating the transition probability p of the channel as a running parameter, we may carry out the

following numerical evaluations:
p=0:

IX;Y) = - p; logg py - (1 - py) logy, (1 - py)
p; =05, IX;Y)=1.0

p=01:

IX;Y) = - 0.469 - (0.1 + 0.8 p,) log, (011 + 0.8 p;)
- (0.9 - 0.8 p,) log, (0.9 - 0.9 py)
p, =05, IX;Y)=0.531

p=0.2:

IX;Y) = - 0.7219 - (0.2 + 0.6 p, }log, (0.2 + 0.6 p;)
- (0.8 - 0.6 pl) 10g2 (0.8 - 0.6 pl)

p; = 0.5, KX;Y)=0.278
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p=0.3:
IX;Y) = - 0.88129 - (0.3 + 0.4 p,) log, (0.3 + 0.4 p,)

-(0.7 - 0.4 p,) log, (0.7 - 0.4 py)
p; =05, IXY)=0.1187

p=0.5:
IXY)=0

Thus, treating the a priori probability p, as a variable and the transition probability p as a running

parameter, we get the following plots:

1.0 P=0

O%}

0.6}

I(X,' M)

0.4t

Problem 9.20

From the plots of I(X;Y) versus p, for p as a running parameter, that were presented in the solution
to Problem 10-19 we observe that I(X;Y) attains its maximum value at p;=0.5 for any p. Hence,
evaluating the mutual information I(X;Y) at p,=0.5, we get the channel capacity:

Q
1

1+ploggp+ (1 -p)logg (1 -p)

1 - H(p)

where H(p) is the entropy function of p.
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Problem 9.21 .

(a) Let
z=p)(1 -p)+1 -p1))p=(1-pg)(1-p)+ pep

Hence,

ppp+1-p)=1-pp A1 -p-A-p)p

1-2z

Correspondingly, we may rewrite the expression for the mutual information I(X;Y) as

IX;Y) = H(z) - H(p)

where
H(z) = - z logy z - (1 - z) logg (1 - 2)

H(D =-plogag p-(1 -p)logg (1 -p)

(b) Differentiating I(X;Y) with respect to p, (or p;) and setting the result equal to zero, we find that
I(X;Y) attains its maximum value at p, = p; = 1/2.

(c) Setting py = p; - 1/2 in the expression for the variable z, we get:
z=1-2z=1/2

Correspondingly, we have

Hiz) =1

We thus get the following value for the channel capacity:

Q
"

6.6 ) N p, = 172

1 - H(p)

where H(p) is the entropy function of the channel transition probability p.
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Problem 9.22

From this diagram, we obtain (by inspection)

P(yo Ixp) =(1 -p?2 +p2=1-2pQ1 - p)

P(yo |x%1) = p(1 - p) + (1 - p)p = 2p(1 - p)

Hence, the cascade of two binary symmetric channels with a transition probability p is equivalent

to a single binary symmetric channel with a transition probability equal to 2p(1 - p), as shown below:

|- 2p(1-P)

Correspondingly, the channel capacity of the cascade is

C =1 - H2p1 - p)

=1 -2p(1 - p) logg[2p(1 - p)] - (1 - 2p + 2p?) logy(1 - 2p + 2p?)
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Problem 9.23

1-a
0 | 00
a
e
a
0 e - © 1
l1-o

The mutual information for the erasure channel is

(X yp) )

1 2
I(X;Y) = » p(x)p(V,)
(X3Y) = 3 3 p(x; yk)logz(p(xj)p(yk)

j=0k=0

(D

The joint probabilities for the channel are
p(xg ¥o) = (1 -a)py p(xp,y9) =0 P(Xg, ¥2) = PoQ

p(xg,y1) =0 p(x, Y1) = (1-a)p, p(xy,¥,) = pQ

where pg + p; = 1. Substituting these values in (1), we get

(X;Y) = (1- 00[”010%2(50) ri-r °)l°gz(1_—1170)]

Since the transition probability p = (1 - &) is fixed, the mutual information I(X;Y) is maximized
by choosing the a priori probability p, to maximize H(pg). This maximization occurs at py = 1/2,.

for which H(pg) = 1. Hence, the channel capacity C of the erasure channel is 1 - o
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Problem 9.24

(a) When each symbol is repeated three times, we have

Messages Unused signals

000 001
010
011
100
101
110
111

We note the following:

L e

Channel outputs

000
001
010
100
101
110
111

The probability of just one error occurring is 3p(1 - p)2.
The probability of two errors oceurringis 3p2(1 - p).
The probability of receiving all three bits in error is p°.

332

The probability that no errors occur in the transmission of three 0s or three 1s is (1 - p)3.

With the decision-making based on a majority vote, it is clear that contributions 3 and 4 lead to the

probability of error

(b) When each symbol is transmitted five times, we have

Messages Unused signals
00000

00001
00010
00011

©
®

L

11110
11111

P3 = 3p%1-p) + p?

Channel outputs

00000
00001
00010
00011

®
[ d

11110
11111
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The probability of zero, one, two, three, four, or five bit errors in transmission is as follows,

respectively:

(1-py°

5p (1-p)
10p%(1-p)
10p%(1-p)?
5p*(i- p)

p5

The last three contributions constitute the probability of error
P, = p5 + 5pX1-p) + 10p3(1-p)?

(a) For the general case of n=2m + 1, we note that the decision-making process (based on a majority
vote) makes an error when m+1 bits or more out of the n bits of a message are received in error. The
probability of i message bits being received in erroris |2 |p {1 -p)* L

Hence, the probability of error is (in general) '

n

Pe= ) [?]Pi(l‘P)n'i

i=m+1
The results derived in parts (a) and (b) for m=1 and m=2 are special cases of this general formula.

Problem 9.25

The differential entropy of a random variable is independent of its mean. To evaluate the differential
entropy of a Gaussian vector X, consisting of the components X,;,X,,...,.X , we may simplify our task
by setting the mean of X equal to zero. Under this condition, we may express the joint probability
density function of the Gaussian vector X as
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X2 X2 X2
f(x) = 1 exp -_13 - _22 - - _Lz
(V2r )" 6103...6, 20] 20, 20,
The logarithm of fy(x) is
<2 <2 <2
logy fy(x) = - logg((.‘ln)“/2 6102...0,,) - 12 + 'iz +o.. 4 “2 logge
20] 20, 20,

Hence, the differential entropy of X is

h(X) = - f f f fx(x) logy (fx(x)) dx

= logy(20)™%0,0...0,) f f f fy(x)dx

2 2 2
X X9 Xn
+ logge fff - + _2? + .4 o~ fx(x) dx
1 2

n

We next note that

[ [ [ txoodx = 1

o [ x2 fx(x)dx = o2 i=1,2,..,n
JI- :

Hence, we may simplify (1) as
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hX) = logz[(2n)"/20102...cn] + %logze ,

n/2
log [21t(cfc§ ...gi)”“] + % logge

%[21:(0?03 ci)yn} + .1.21_ logqe

_g_ logz[zne(cfcg ci)l/n]

When the individual variances are equal:

2 _g2 _ 2 _ 2
o] =65, =.0,=0
2 2 2\1/n _ 2
(6705 ...0) " =0

Correspondingly, the differential entropy of X is

h(X) = % logy(2rea?)

Probiem 9.26

(a) The differential entropy of a random variable X is

h(X) = - f " fx(x) log, fx(x)dx

The constraint on the value x of the random variable X is

|x ISM
of

Using the method'Lagrange multipliers, we find that h(X), subject to this constraint, is maximized
when
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a5 [-fx0) logy fx®) + A fx(x)]dx

is stationary. Differentiating -fy(x)log,fy(x) + Afy(x) with respect to fy(x), and then setting the result
equal to zero, we get

-logae + A = logy fi(x)

This shows that fy(x) is independent of x. Hence, for the differential entropy h(X) under the

constraints |x |< M and J:: fx(x)dx =\ to be maximum, the random variable X
must be uniformly distributed:

1/2M, -M < M
(%) - X <

0, otherwise

(b) The maximum differential entropy of the uniformly distributed random variable X is

h(X) = [~ loga(@M)dx

1 M
a7 oga(2M) f o dx

= logy(2M)
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Problem 9.27

(a)

IX;Y) = Lo f_ N fX,Y(x,y)logz[ );ng ]dXdy

fo(y k) } ixdy

(Yx = [7 [ fx,Y(X,y)logz{ e

From Bayes’ rule, we have

fx(x ) ) fy(y k)
fx(x) ()

Hence, IX;Y) = I(Y;X).

(b) We note that

fry(xy) = fx(x Wfy(y)

Therefore, we may rewrite (1) as
oo ) f Y(X,y )
IX;Y) = fy v(x,3)logo| 2" lxdy
J2 JZ oy g2|:fx(x)fY(Y)'

From the continuous version of the fundamental inequality, we have

- fx y(x,y)
I et XD Ly o
x\X/ly

which is satisfied with equality if and only if 485

(1)

(2)



fx y(x,y) = fx(x)fy(y)

Hence,

IX;Y) 20

(c) By definition, we have

By definition, we also have

h = [ fx(x)logz{fxtx) }dx

Since

[ ey body = 1,

we may rewrite the expression for h(X) as

hX) = f - fxlogz[fxtx)]dx f " fyly bodx

= ﬁ: f_: fyly k) fX(X)logz[fxtx) ]dxdy

But
fy(y k) fx(x) = fxy(x,y)
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Hence,

o (oo 1
TN 28

Next, we subtract (3) from (4), obtaining

— °° i 1 - 1
hX) - hX V) = f_w L” fx’Y(x,y)[logz ™) logy Fean) ):ldxdy

o0 oo f
= J: J: fX,Y(X,y)logz[ );(X b’) }xdy
w0 J-oo <X

= IX;Y)

(d) Using the symmetric property derived in part (a), we may also write

KY:X) = h(Y) - h(Y [X)

Problem 9,28

By definition, we have

h(Y [X) = J:: f)QY(x»Y)Ing[?Y(—;'F):ldxdy

Since

fx v(x,y) = fyly k) fx(x)

we may also write
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(Y [X) = 7 fxdx [~ fyy k)logz[m_;m]dy (1

The variable Y is related to X as

Y=X+N

Hence, the conditional probability density function fY‘y | x) is identical to that of N except
for a translation of x, the given value of X. Let fy(n) denote the probability density function
of N. Then

fy(y k) = fn(y-%)

Correspondingly, we may write

oo 1 = [ - !
f_w fy(y k)logz{m}dy L» I X)logz[fN(y-x) }dy

(2)
- (= fN(n)logz[f %n) }dn
N

= h(N)

where, in the second line, we have used n = y-x and dn = dy for a given x. Substituting Eq. ()
in (1):

h(Y [X) = hN) [ fx()dx

= h(N)
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Problem 9.29

(a) Channel bandwidth B = 3.4 kl{=
Received signal-to-noise ratio SNR = 103 = 30 dB

Hence, the channel capacity is
C = B logy(1 + SNR)
= 3.4 x 103 log,(1 + 103)
= 33.9 x 103 bits/second
(b) 4800 = 3.4 x 103 log, (1 + SNR)

Solving for the unknown SNR, we get

SNR = 1.66 = 2.2 dB

Problem 9.30

With 10 distinct brightness levels with equal probability, the information in each level is
log, 10 bits. With each picture frame containing 3 x 10° elements, the information content
of each picture frame is 3 x 10° log, 10 bits. Thus, a rate of information transmission of 30
frames per second corresponds to

30 x 3 x 10° log, 10 = 9 x 10° log; 10 bits/second

That is, the channel capacity is

C = 9 x 10% log;10 bits/second

From the information capacity theorem: 489



C = B log; (1 + SNR)

With a signal-to-noise ratio SNR = 10% = 30 dB, the channel bandwidth is therefore

C
loga(1 + SNR)

B =

9 x 10° log, 10
log,, 1001

3 x 103 Hz

Problem 9.31

The information in each element is log, 10 bits.
The information in each picture is [3 log, (10)] x 10° bits.
The transmitted information rate is [9 log, (10)] x 108 bits/second.

The channel must have this capacity. From the information capacity theorem,

¢ = B logy(1 + SNR).

Therefore,

[9 logy(10)] x 108 bits/second = Blogy(1 + 1000).

Solving for B, we get

log,(10)

6
B =9x%x10 HZ.(W

) = 3% 10%Hz
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Problem 9.32

Figure 1 shows the 64-QAM constellation. Under the condition that the transmitted signal energy
per symbol is maintained the same as that in Fig. 1, we get the tightly packed constellation of Fig.
2. We now find that the Euclidean distance between adjacent signal points in the tightly packed
constellation of Fig. 2 is larger than that of the 64-QAM constellation in Fig. 1. From Eq. (5.95)
of the textbook, we recall that an increase in the minimum Euclidean distance d,;, results in a
corresponding reduction in the average probability of symbol error. It follows therefore that, with
the signal energy per symbol being maintained the same in the two constellations of Figs. 1 and 2,
a digital communication systems using the tightly packed constellation of Fig. 2 produces a
smaller probability of error than the corresponding 64-QAM system represented by Fig. 1.

10

-10
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Problem 9.33

In the textbook, the capacity of the NEXT-dominated channel is derived as

1 | NEXT(f)l ]
C ==|log (1 +—————df
zp{ ? H(f)|

where F, is the set of positive and negative frequencies for which S,(f) > 0, where S.(f) is the
power spectral density of the transmitted signal.

For the NEXT-dominated channel described in the question, the capacity is

f3/2
pj ( exp(~ aﬁ)j

a
1l
B

372

1
2
: klfl/z
exp| —
lO

where B, k, | and f, are all constants pertaining to the transmission medium. This formula for
capacity can only be evaluated numerically for prescribed values of these constants.

1l
B =
Te—0,
=}
OS]
+
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Problem 9.34

For k=1, Eq. (9. /38) reduces to

10 logo(SNR) = 6 loggN + C; dB (1)

Expressing Eq. (2.33) in decibels, we have

10 logs(SNR) = 6R + 10 logy 3;) @)
M ax

The number of bits per sample R, is defined by

R = logyN

We thus see that Eqs. (1) and (2) are equivalent, with

mmax

C; =10 loglo( 32P ]
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Problem 9.35

The rate distortion function and channel capacity theorem may be summed up
diagrammatically as follows:

min Z(XY) .(’,// ., max T(%:Y)

: Data "L)wcxnsm;ss;o’\
Dah complIim Limi€
Lt

According to the rate distortion theory, the data compression limit set by minimizing the
mutual information I(X;Y) lies at the extreme left of this representation; here, the symbol
Y represents ' the data compressed form of the source symbol X. On the other hand,
according to the channel capacity theorem the data transmission limit is defined by
maximizing the mutual information I(X;Y) between the channel input X and channel output

Y. This latter limit lies on the extreme right of the representation shown above.
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1 Problem 9. 26
Matlab codes

% Computer Problem in Chapter 9

% Figure: The minimum achievable BER as a function of

% Eb/NO for several different code rates using binary signaling.
% This program calculates the Minimum required Eb/NO

% for BPSK signalling at unit power over AWGN channel

% given a rate and an allowed BER.

% Code is based on Brandon’s C code.

% Ref: Brendan J. Frey, Graphical models for machine

% learning and digital communications, The MIT Press.

% Mathini Sellathurai

EbNo=double( [7.85168, 7.42122, 6.99319, 6.56785, 6.14714, 5.7329, 5.32711,

4.92926, 4.54106, 4.16568, 3.80312, 3.45317, 3.11902, 2.7981, 2.49337, 2.20617,
1.932561, 1.67587, 1.43313, 1.20671, 0.994633, 0.794801, 0.608808, 0.434862,
0.273476, 0.123322, -0.0148204, -0.144486, -0.266247, -0.374365, -0.474747, -0.5708,
-0.659038, -0.736526, -0.812523, -0.878333, -0.944802, -0.996262, -1.04468,
-1.10054, -1.14925, -1.18636, -1.22298, -1.24746, -1.27394, -1.31061, -1.34588,
-1.37178, -1.37904, -1.40388, -1.42553, -1.45221, -1.43447, -1.44392, -1.46129,
-1.45001, -1.50485, -1.50654, -1.50192, -1.45507, -1.60577, -1.52716, —-1.54448,
-1.51713, -1.54378, -1.5684]);

rate= double([9.989372e-01, 9.980567e-01, 9.966180e-01, 9.945634e-01, ...

9.914587e-01, 9.868898e-01, 9.804353e~-01, 9.722413e-01, 9.619767e-01, 9.490156e-01,
9.334680e-01, 9.155144e-01, 8.946454e-01, 8.715918e-01, 8.459731e-01, 8.178003e-01,
7.881055e-01, 7.5656174e-01, 7.238745e-01, 6.900430e-01, 6.556226e-01, ...

6.211661e-01, 5.866480e-01, 5.525132e~01, 5.188620e-01, 4.860017e-01, 4.539652e-01,
4.232136e-01, 3.938277e¢-01, 3.653328e-01, 3.382965e-01, 3.129488e-01, 2.889799e-01,
2.661871e-01, 2.451079e-01, 2.251691e-01, 2.068837e-01, 1.894274e-01, ...

1.733225e-01, 1.588591e-01, 1.453627e-01, 1.326278e-01, 1.210507e-01, 1.101504e-01,
1.002778e-01, 9.150450e-02, 8.347174e-02, 7.598009e-02, 6.886473e-02, 6.266875e-02, ...
5.698847e-02, 5.188306e-02, 4.675437e-02, 4.239723e-02, 3.851637e-02, 3.476062e¢-02,...

3.185243e-02, 2.883246e-02, 2.606097e-02, 2.332790e-02, 2.185325e-02,
1.941896e-02, 1.764122e-02, 1.586221e-02, 1.444108e-02, 1.314112e-02]);
N=66;

b=double([1e-51); ¥% Allowed BER
% Rate R (bits per channel usage)
r=double([1/32, 1/16,0.1,0.2,0.3,0.4,0.5, 0.6, 0.7, 0.8,0.85,0.95]);
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le=zeros(1,length(r)); % initialize buffer for Eb/NO
for p=1:length(r)
¢ = double(r(p)*(1.0+b*log(b)+(1.0-b)*log(1.0-b)/log(2.0)));
i=N-1;
% Minimum Eb/NO calculations
while ( (i>=0) & (c>wate(i)) )
i=i-1;
end
i=i+1;

if ( (>0) | (icN ) )
e =double( EbNo(i)+(EbNo(i-1)-EbNo(i))*(c-rate(i))/(rate(i-1)-rate(i))
le(p)=10%10g10( (10~ (e/10))*c/r(p));
display(le)
else
display(’values out of range’)
end
end
plot(10*log10(r),le,’~?)
xlabel(’Rate (dB)’)
ylabel (’Minimum E_b/N_0 (dB)’)
axis([10*10g10(1/32), 0, -2 4])
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% Computer Experiment in Chapter 9

% Program to create the figure for the minimum

% Eb/NO needed for error-free communication

% with a rate R code, over an AWGN channel

% using binary signaling

Y Thie program ealenlatoe the Minimum required Eb/NO

% for BPSK signalling at unit power over AWGN channel
% given a rate and an allowed BER.

% Code is based on Brandon’s C code.

% Ref: Brendan J. Frey, Graphical models for machine
% learning and digital communications, The MIT Press.
% Mathini Sellathurai

EbNo= double([7.85168, 7.42122, 6.99319, 6.56785, 6.14714, 5.7329, 5.32711,

4.92926, 4.54106, 4.16568, 3.80312, 3.45317, 3.11902, 2.7981, 2.49337, 2.20617,
1.93261, 1.67687, 1.43313, 1.20671, 0.994633, 0.794801, 0.608808, 0.434862,
0.273476, 0.123322, -0.0148204, -0.144486, -0.266247, -0.374365, -0.474747, -0.5708,
-0.6569038, -0.7365626, -0.812523, -0.878333, -0.944802, -0.996262, —-1.04468,
-1.10054, -1.14926, -1.18536, -1.22298, -1.24746, -1.27394, -1.31061, -1.34588,
-1.37178, -1.37904, -1.40388, -1.425563, -1.45221, -1.43447, -1.44392, -1.46129,
-1.45001, -1.50485, -1.50654, -1.50192, -1.45507, -1.60577, -1.52716, -1.54448,
-1.51713, -1.564378, -1.5684]);

rate=double( [9.989372e-01, 9.9805667e-01, 9.966180e-01, 9.9465634e-01, ...

9.914587e-01, 9.868898e-01, 9.804353e-01, 9.722413e-01, 9.619767e-01, 9.490156e-01,
9.334680e-01, 9.1556144e-01, 8.946454e-01, 8.715918e-01, 8.459731e-01, 8.178003e-01,
7.8810656e-01, 7.565174e-01, 7.238745e-01, 6.900430e-01, 6.556226e-01, ...

6.211661e-01, 5.866480e-01, 5.526132e-01, 5.188620e-01, 4.860017e-01, 4.539652e-01,
4.232136e-01, 3.938277¢-01, 3.653328e-01, 3.382966e-01, 3.129488e-01, 2.889799%e-01,
2.661871e-01, 2.451079e-01, 2.251691e~01, 2.068837e-01, 1.894274e-01, ...

1.733226e-01, 1.588591e-01, 1.453627e-01, 1.326278e-01, 1.210507e-01, 1.101604e-01,
1.002778e-01, 9.150450e-02, 8.347174e-02, 7.598009e-02, 6.886473e-02, 6.2668756-02, ...
5.698847e-02, 5.188306e-02, 4.675437e-02, 4.239723e-02, 3.851637e-02, 3.476062e-02,...

3.185243e-02, 2.883246e-02, 2.606097e-02, 2.332790e-02, 2.185325e-02,
1.941896e-02, 1.764122e-02, 1.586221e-02, 1.444108e-02, 1.314112e-02]);
N=66;

b=double(0.5:-1e-5:1e-5); % Allowed BER
rrr=double([0.99,1/2,1/3,1/4,1/5,1/8]); Y% Rate R(bits/channel usage)
le=zeros(1,length(b));

for rr=1:length(rrr)
r=rrr(rr);
for p=1:length(b)
¢ = double(r*(1.0+b(p)*log(b(p))+(1.0-b(p))*log(1.0-b(p))/1log(2.0)));
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i=N-1;

while ( (i>=0) & (c>rate(i)) )
i=i-1;
end
1=141:

it ( (i>0) | (i<N ) )
e = double(EbNo(i)+(EbNo(i-1)-EbNo(i))*(c-rate(i))/(rate(i-1)-rate(i))
le(p)=10*1og10((10~(e/10) ) *c/r);

else
display(’values out of range’)
end
end
plot(le,10%1log10(b),’~’)

end

xlabel(’E_b/N_0 (dB)’)
ylabel(’Minimum BER’)
axis([-2 1 -50 -10])
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Answer to Problem 9.36

—- N

Minimum E_ /N, (dB)

o

7y 1 !
-15 -10 -5 0
Rate (dB)

Figure 1: The minimum Eb/N0 needed for error-free communication with a rate
R code, over an AWGN channel using binary signaling
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A
o

~35

-2 -15 -1 -0.5 0 0.5
E,/N, (dB)

Figure 2: The minimum achievable BER as a function of Eb/NO for several
different code rates using binary signaling
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