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1.1 Introduction to Signals

A knowledge of a broad range of signals is of practical importance in describing human experience. In
engineering systems, signals may carry information or energy. The signals with which we are concerned

may be the cause of an event or the consequence of an action.
The characteristics of a signal may be of a broad range of shapes, amplitudes, time duration, and
perhaps other physical properties. In many cases, the signal will be expressed in analytic form; in other

cases, the signal may be given only in graphical form.

It is the purpose of this chapter to introduce the mathematical representation of signals, their prop-
erties, and some of their applications. These representations are in different formats depending on
whether the signals are periodic or truncated, or whether they are deduced from graphical representations.

Signals may be classified as follows:

1.

Phenomenological classification is based on the evolution type of signal, that is, a perfectly
predictable evolution defines a deterministic signal and a signal with unpredictable behavior is

called a random signal.

Energy classification separates signals into energy signals, those having finite energy, and power
signals, those with a finite average power and infinite energy.

digital signals.

. Morphological classification is based on whether signals are continuous, quantitized, sampled, or

Dimensional classification is based on the number of independent variables.
Spectral classification is based on the shape of the frequency distribution of the signal spectrum.
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1.1.1 Functions (Signals), Variables, and Point Sets

The rule of correspondence from a set S, of real or complex number x to a real or complex number

y = flx) (1.1.1)

is called a function of the argument x. Equation (1.1.1) specifies a value (or values) y of the variable y
(set of values in Y) corresponding to each suitable value of x in X. In (1.1.1) x is the independent variable
and y is the dependent variable

A function of n variables x;, x,, ..., x,, associates values
y = flx, %5 ... X,) (1.1.2)
of a dependent variable y with ordered sets of values of the independent variables x,, x,, ..., x,.

The set S, of the values of x (or sets of values of x,, x,, ..., x,) for which the relationships (1.1.1) and
(1.1.2) are defined constitutes the domain of the function. The corresponding set of S, of values of y is
the S, range of the function.

A single-valued function produces a single value of the dependent variable for each value of the
argument. A multiple-valued function attains two or more values for each value of the argument.

The function y(x) has an inverse function x(y) if y = y(x) implies x = x(y).

A function y = f(x) is algebraic of x if and only if x and y satisfy a relation of the form F(x, y) = 0,
where F(x, y) is a polynomial in x and y. The function y = f(x) is rational if f(x) is a polynomial or is a
quotient of two polynomials.

A real or complex function y = f(x) is bounded on a set S, if and only if the corresponding set S, of
values y is bounded. Furthermore, a real function y = f(x) has an upper bound, least upper bound,
lower bound, greatest lower bound, maximum, or minimum on S, if this is also true for the corre-
sponding set S,

Neighborhood

Given any finite real number g, an open neighborhood of the point a is the set of all points {x} such that
x — a < & for any positive real number .

An open neighborhood of the point (a,, a,, ..., a,), where all g; are finite, is the set of all points (x;,
Xy +..» X,,) such that ‘xl —a/<8,|x,—a) <8, ...and|x, - a,| < & for some positive real number &.

Open and Closed Sets

A point P is a limit point (accumulation point) of the point set S if and only if every neighborhood of
P has a neighborhood contained entirely in S, other than P itself.

A limit point P is an interior point of S if and only if P has a neighborhood contained entirely in S.
Otherwise P is a boundary point.

A point P is an isolated point of S if an only if P has a neighborhood in which P is the only point
belonging to S.

A point set is open if and only if it contains only interior points.

A point set is closed if and only if it contains all its limit points; a finite set is closed.

1.1.2 Limits and Continuous Functions

1. A single-value function f(x) has a limit

limf(x) =, L =finite

X-a

as x > a {f(x) > L as x — a} if and only if for each positive real number ¢ there exists a real
number 6 such that 0 <‘x - a‘ < ¢ implies that f(x) is defined and V(x) - L‘ <&
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2. A single-valued function f(x) has a limit

lim f(x) =, L =finite

X 00

as x — oo if and only if for each positive real number & there exists a real number N such that x
> N implies that f(x) is defined and |f(x) — L| < &.

Operations with Limits

If limits exist, Table 1.2.1 gives the limit operations.

TABLE 1.2.1 Operations with Limits

lim[f(x) + g ()] = lim f(x) + lim g (x)
lim[b f(x)] = blim f(x)
lirll[f(x)g(x)] = 1131 fx) 11_{{1‘ g(x)

. Sx)  limes, f(x)
m = —
x=a g(x)  lim,, g(x)

(tm e 20)

a = may be finite or infinite

Asymptotic Relations Between Two Functions

Given two real or complex functions f(x), g(x) of a real or complex variable x, we write

1. flx) = O[g(x)]; f(x) is of the order g(x) as x — a if and only if there is a neighborhood of x = a
such that ‘f(x)/g(x)‘ is bounded.

2. flx) ~ g(x); f(x) is asymptotically proportional to g(x) as x —> aif and only if lim, _, , [f(x)/g(x)]
exists and it is not zero.

3. f(x) = g(x); f(x) is asymptotically equal to g(x) as x — a if and only if

lim [ f(x)/ g(x)] =1,

X—-a

4. f(x) = o[g(x)]; f(x) becomes negligible compared with g(x) if and only if

im 1) (<] =0

5. flx) = (x) + Olg(x)] if f(x) — ¢(x) = O[g(x)]
f(x) = p(x) + o[g(x)] if f(x) — p(x) = o[g(x)]

Uniform Convergence

1. A single-valued function f(x), x,) converges uniformly on a set S of values of x,, lim,, , , f(x,, x,)
= L(x,) if and only if for each positive real number ¢ there exists a real number & such that 0 <
x, — a| < 8 implies that f{x,, x,) is defined and |f{x,, x,) — L(x,)| < & for all x, in § (& is independent
of x,).

2. A single-valued function f(x), x,) converges uniformly on a set S of values of x,, lim,, _, ., flx, x,)
= L(x,) if and only if for each positive real number ¢ there exists a real number N such that for
x, > N implies that f(x,, x,) is defined and |f(x,, x,) — L(x,)| < & for all x, in S.
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3. A sequence of functions f;(x), f,(x), ... converges uniformly on a set S of values of x to a finite
and unique function

lim ,(x) = f(x)
if and only if for each positive real number ¢ there exists a real integer N such that for n > N
implies that |f, (x) — f(x| < & for all nin S.

Continuous Functions

1. A single-valued function f(x) defined in the neighborhood of x = a is continuous at x = 4 if and
only if for every positive real number ¢ there exists a real number & such that |x — 4| < § implies
flx) - fla) < €.

2. A function is continuous on a series of points (interval or region) if and only if it is continuous
at each point of the set.

3. A real function continuous on a bounded closed interval [a, b] is bounded on [a, b] and assumes
every value between and including its g.l.b. (greatest lower bound) and its lL.u.b. (least upper
bound) at least once on [a, b].

4. A function f({x) is uniformly continuous on a set S and only if for each positive real number &
there exists a real number & such that |x — X| < & implies |f(x) — f(X)| < & for all X in S.

If a function is continuous in a bounded closed interval [a, b], it is uniformly continuous on [a, b].
If f(x) and g(x) are continuous at a point, so are the functions f(x) + g(x) and f(x) f(x).
Limits

1. A function f(x) of a real variable x has the right-hand limit lim,,, f(x) = f(a+) =L, atx=aif
and only if for each positive real number ¢ there exists a real number §such that 0 < x—a < o
implies that f(x) is defined and ‘ flx) — LJ <&

2. A function f(x) of a real variable x has the left-hand limit lim, ,, f(x) = fla—) = L_at x = a if and
only if for each positive real number ¢ there exists a real number § such that 0 < a < 6 implies
that f(x) is defined and |f(x) - L | < .

3. If lim,,, f(x) exists, then lim__,,, f(x) = lim,,, f(x) = lim,,, f(x). Consequently, lim,, f(x) =
lim,,,, f(x) implies the existence of lim,_,, f(x).

4. The function f(x) is right continuous at x = a if fla+) = f(a).

5. The function f(x) is left continuous at x = a if fla—) = f(a).

6. A real function f(x) has a discontinuity of the first kind at point x = a if f{a+) and f(a—) exist.
The greatest difference between two of these numbers f(a), f{a+), fla—) is the saltus of f(x) at the
discontinuity. The discontinuities of the first kind of f(x) constitute a discrete and countable set.

7. A real function f(x) is piecewise continuous in an interval I if and only if f(x) is continuous
throughout I except for a finite number of discontinuities of the first kind.

Monotonicity

1. A real function f(x) of a real variable x is a strongly monotonic in the open interval (g, b) if f(x)
increases as x increases in (a, b) or if f(x) decreases as x decreases in (a, b).

2. A function f(x) is weakly monotonic in (a, b) if f(x) does not decrease, or if f(x) does not increase
in (a, b). Analogous definitions apply to monotonic sequences.

3. A real function of a real variable x is of bounded variation in the interval (a, b) if and only if
there exists a real number of M such that

m

z ‘f(xl) - f(xi_l)‘ <M for all partitions

1=1
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a=x<x<x%<--<x,=b

m

of the interval (a, b). If f(x) and g(x) are of bounded variation in (a4, b), then f(x) + g(x) and
f(x)g(x) are of bounded variation also. The function f(x) is of bounded variation in every finite
open interval where f(x) is bounded and has a finite number of relative maxima and minima and
discontinuities (Dirichlet conditions).

A function of bounded variation in (a, b) is bounded in (a, b) and its discontinuities are only of the
first kind.
Table 1.2.2 presents some useful mathematical functions.

1.1.3 Energy and Power Signals
Energy Signals

If we consider any signal f(#) as denoting a voltage that exists across a 1-ohm resistor, then

P = 1) 70 < ) = pover va
Therefore, the integral
b
E=J‘\f2(t)dt joule (1.3.1)

representing the energy dissipated in the resistor during the time interval (g, b). A signal is called energy
signal if

Ifz(t)dt<oo (1.3.2)
Power Signals
Power signals are defined by the relation
0< lim— sz(t)dt<00 (1.3.3)
< lim ZTIT 3.

For complex-valued signals, we must introduce |f(1)|? instead of f2(t).
We may represent the energy in a finite interval in terms of the coefficients of the basis function ¢;;
that is, we write the energy integral in the form

¢n(t)H2 (1.3.4)

= [ {iar= [ 1() Z%(t)dt: Y e [0, (r= z

n=0

where

Ibf(t) 9,(1)de= Cn,[?’i(f)dt =aoufe)

Because the square of the norm ||, (#)||? is the energy associated with the nth orthogonal function, (1.3.4)
shows that the energy of the signal is the sum of the energies of its individual orthogonal components
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TABLE 1.2.2 Some Useful Mathematical Functions

1. Signum Function

1 t>0
sgn(t) = 0 t=0
—1 t <1

2. Step Function

( 1+1 1 t>0
1)y = — — t)y =
u(r) 3 ZSgn() 0 <0

3. Ramp Function

r() :f u(t)dr =tu(t)

00

4. Pulse Function

1 It < a
Pa(t) =u(t+a) —u(t —a) =
0 It > a
5. Triangular Pulse
- <a
A1) = ¢
0 |t > a
6. Sinc Function .
. sin at
sinc,(2) = Pt —0 <t <0
7. Gaussian Function ,
gu(@) =", -0 <t <00

8. Error Function
2 x (_ 1 )n t2n+1

2 [,
f6) = — | ePdr=—25 "2
erf(r) ﬁfoe v Doy

Properties:
erf(co) = 1, erf(0) = 0, erf(—¢) = — erf(z)

o0
erfc(t) = complementary error function = 1 — erf(¢) = :/t / e dt
s t

9. Exponential Function
fO =eu@), 120

10. Double Exponential

f(t) =e M, —00 <t < 00
1. Lognormal Function
[, 2172
f(t):;e" , O<t <o
12. Rayleigh Function
f@) = te "2, 0<t<oo

weighted by c,. Note that this is the Parseval theorem. This equation shows that the set {¢,(#)} forms an
orthogonal (complete) set, and the signal energy can be calculated from this representation.

Example

o0 0 1 T 1 T 1
a u(t)dt = dt =o0;limy,, — [ 2(9)dt=lim,,, — [ dr=1lim,, 7(t
@ J’o () .[) ’ 2T,[T 2 ! ZTJ; 7 or

This implies that u (t) is a power signal.
(b) The signal e u(t), a > 0 is an energy signal.
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1.2 Distributions, Delta Function

1.2.1 Introduction

The delta function (t) often called the impulse or Dirac delta function, occupies a central place in
signal analysis. Many physical phenomena such as point sources, point charges, concentrated loads on
structures, and voltage or current sources, acting for very short times, can be modeled as delta functions.

Strictly speaking, delta functions are not functions in the accepted mathematical sense, and they cannot
be treated with rigor within the framework of classical analysis. However, if distributions are introduced,
then the concept of a delta function and operations on delta functions can be given a precise meaning.

1.2.2 Testing Functions

A distribution is a generalization of a function. Within the framework of distributions, any function
encountered in applications, such as unit-step functions and pulses, may be differentiated as many times
as we desire, and any convergent series of functions may be differentiated term by term.

A testing function ¢(f) is a real-valued function of the real variable that can be differentiated an
arbitrary number of times, and which is identical to zero outside a finite interval.

Example
Testing function

0.
#(t a):% @ tf<a (2.2.1)
H

‘t‘ 2a
Properties
1. If f(t) can be differentiated arbitrarily often
w(t) = f(t) p(t) = testing function

2. If f(t) is zero outside a finite interval

l,U(t) =Jj:f(r)¢(t—r)dr, — o0 <t < oo =testing function

3. A sequence of testing functions, {@,} 1 < n < o, converges to zero if all ¢, are identically zero
outside some interval independent of n and each ¢,, as well as all of its derivatives, tends uniformly
to zero.

Example:

6.()=0 3+ 709

4. Testing functions belong to a set D, where D is a linear vector space, and if ¢, € D and ¢, € D,
then ¢, + ¢, € D and a@, € D for any number a.

1.2.3 Definition of Distributions

A distribution (or generalized function) g(#) is a process of assigning to an arbitrary test function ¢(¢)
a number N,[¢ (1)]. A distribution is also a functional.

Example
An ordinary function f(t) is a distribution if
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Iif(t)¢(t)dt: Nf[q)(t)] (2.3.1)

exists for every test function ¢(¢) in the set. For example, if f(¢) = u(¢) then

Iiu(t)¢(t)dt:ﬁ>(t) dt (2.3.2)

The function u(t) is a distribution that assigns to ¢(¢) a number equal to its area from zero to infinity.
Properties of Distributions

1. Linearity—Homogeneity

00 00 00

Iwg(t)[al¢l(t)+“2¢2(t)]dt:alf g(t)¢1(t)dt+azj. g(t)¢2(t)dt (2.3.3)

oo —o00

for all test functions and all numbers a,.
2. Summation

IZ[gl(t) + gz(t)]dl(t)dt :J'o:o gl(t)¢(t)dt +I°; gz(t)¢ (t)dt (2.3.4)

3. Shifting

I_wg(t‘to)d’(t)dtzf s(t)p(e+t,)ae (2.3.5)

4. Scaling

[ o;g(at)¢(t)dt =1 J':g(t)qs %@n (2.3.6)

5. Even Distribution

I_ mg(t)qﬁ(t)dt:O, ¢(t) =odd (2.3.7)

6. Odd Distribution

‘[mg(t)qﬁ(t)dt =0, ¢(t) =even (2.3.8)

7. Derivative

= dg(t) oy o ("o 990)
‘[W%(p(t)dt = g(t)o (t)‘ “ —J:wg(t) dt as

)

where the integrated term is equal to zero in view of the properties of testing functions.
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8. The nth Derivative

ﬁ, d;gtgt) o(t)dr =(-1) "Iig(f) dzgt) d (2.3.10)

9. Product with Ordinary Function

[[e) o) = el o) .a11)

provided that f(t) p(t) belongs to the set of test functions.
10. Convolution

_r:, ﬁ_ig (1)g,(t-1)dr @ (1)t

(2.3.12)
(=) 00 D
=[[2 (O s.-rp (e
by formal change of the order of integration.
Definition
A sequence of distributions {g,(#)}7 is said to converge to the distribution g () if
lim [ g, (¢)p(t)dr :J' g(t)o(r)ar (2.3.13)

for all ¢ belonging to the set of test functions.

11. Every distribution is the limit, in the sense of distributions, of a sequence of infinitely differentiable
functions.

12. If g,(t) = g(t) and r,(t) — r(¢) (r is a distribution), and the numbers a, — a, then

%g"(t) - dff)’ g,(0)+7,(t) - &) +r(r) a,g,(r) - ag(t) (2.3.14)

13. Any distribution g(#) may be differentiated as many times as desired. That is, the derivative of any
distribution always exists and it is a distribution.

1.2.4 The Delta Function

Properties

Based on the distribution properties, the properties of the delta function are given below.

1. The delta function is a distribution assigning to the function ¢(¢) the number ¢(0); thus

J':a(t)¢(t)dt=¢(o) (2.4.1)

2. Shifted

I_f(t‘to)d’(f)df =4(t,) (2.4.2)
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3. Scaled

J'éat dt J‘é ¢5lq£§dt 1 ()

From (2.4.1) we have the identity

and hence (a = -1)
O(—t) = 6(t) = even (2.4.3)

4. Multiplication by Continuous Function

I:[a ()] o(e dtId[f t)]dt = £(0)#(0)

If f(t) is continuous at 0, then

flnys(t) = f0)8() (2.4.4)
and
t5(t) = 0 (2.4.5)
5. Derivatives
© d6 ~ d¢( )
.[ dt T dr
& d5(t—t0) _dg(r,)
.[w dt ¢(t)__ dt (2.4.6)
= d"8(t) )
o dt" ¢(t)dt_( l) dt" (247)

—w At — dt
=110 -2 29
112 = 0y« o) 20 (2.4.9)
tdzgt) =-5(t) (2.4.10)
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Set f(t) = @(t) = 1 in (2.4.8) to find the relation

= do(t) ) | O
I —1dt=0 [F—* isan odd function[] (2.4.11)
—w At 8 dt 8

0L Z(-l)k K( L) (2.4.12)

dt" n—k) di*  dr
From

du

d(:) o) = o)~ [ ol) (),

f.
- -fd(b(t)dt =-9(1); =9(0)

o dt

and comparing with (2.4.1) we find that

5(t)= At) (2.4.13)

Therefore, the generalized derivatives of discontinuous function contain impulses. A, is the jump
at the discontinuity point t = ¢, of the expression A, @(t — t,). Also

) ) e

Hence

= -5(t) (2.4.14)
ot-t,)= d”(;;to) (2.4.15)

If 7 (¢) has a finite or countably infinite number of zeros at t, on the entire ¢ axis and these points
r(t) have a continuous derivative dr(t,)/dt # 0, then

B 5(t -t,
3rt)] = Z o) (2.4.16)
dt
Hence, we obtain
5(t2—1):%5(t—1)+%dt+1) (2.4.17)
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S(sint) = Z &t —nm) (2.4.18)

In addition, the following relation is also true:

dt
” _z dr(t) dr(tn) (2.4.19)

6. Integrals

fAé(t—to)dt=A (2.4.20)
for all ¢,
5(t - tl) Dé(t— tz) = convolution

:Ijod(r —1,)0(t -1 -t,)dr = 5[t ~(r, +t2)]

(2.4.21)

f(t) [lé(t) =J:f(t—r)6(r)dr =f(t—0) =f(t) (2.4.22)

Distributions as Generalized Limits

We can define a distribution as a generalized limit of a sequence f,(#) of ordinary function. If there exists
a sequence f,(#) such that the limit

00

lim [ £ (t)(t)dt (2.4.23)

n—oo §_

exists for every test function in the set, then the result is a number depending on ¢(¢). Hence, we may
define a distribution g(¢#) as

g(t) = lim f,(¢) (2.4.24)
and, therefore, equivalently
o(t) = lim f,(¢) (2.4.25)

Consider the two sequences shown in Figures 2.4.1a and 2.4.1b. The rectangular pulse sequence is
given by
_u(t)-u(t-¢)
pt)==0

and has area unity whatever the value of €. Because ¢(t) is continuous, it follows that
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lim _wpg()dJ( dt—}glrr(}gJ' ¢(¢)dt =limg (0) J’dt—
and therefore

ot) =limp, (1) (2.4.26)

£-.0

Similarly, from

L 3 NG m i -1*e 3.
11513 \J‘SETTJ:we ¢(t)dtD\/£TTJ:ooe dt ¢(O)

it follows that

L el
5(t) = lgl{r(} e

(2.4.27)

If we use the sequence

_ .. sinowt
5(1‘)—&)11130 -

we find that

6(t):limi % e = lim S = L i g (2.4.28)
“ﬂ°°27T -a a-co TIf 27T

Also

o(c-t,)= %T [ ie‘j“’(f"o)dw (2.4.29)

Further

o Q
J. cosandw=gm coswrtdw
—o0 -8 0

. 2sinQt
=lim

Q-0 t

= Sl)ianSiI;?t = 2715(t)

(2.4.30)

Figure 2.4.1c shows the derivatives of the sequence (2.4.27). The following examples will elucidate some
of the delta properties and the use of the delta function in Table 2.4.1.

Example
Equivalence of expressions involving the delta functions:

(a) (cos t+ sin 1)6(t) = 6(t)
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£.(0)= exp(-t* / €)

N

.fs(t) = pe(t)

LTS

~p—

N
[Tl

(a) (b)

FIGURE 2.4.1

(b) cos 2t + sin to6(t) = cos 2t
(c) 1+2e6(t-1)=1+2e16(t-1)

Example
The values of the following integrals are

Iw(t2+4t+5)5(t)dt=02+4|D+5 =5, f (1+COSt)5(t)dt= 2
- -~ 1+2¢' 1+2

I_thza(t- ) de = Zk =)o

The first derivative of the functions is

L ou+1)+ =) = oae 1)+ o] e =1 =28 +1) - ofe 1)

t
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TABLE 2.4.1 Delta Functional Properties

1. 8= L5(:)
la|

2. a(’;t") — ald(t — 1)

_ 1 to
3. Slat — ty) = m(g (I - ;)
4. S(—t+ 1) =8t —tp)

5. 8(—t) =48(@); 4(t) = even function

6. fS(t)f(t)dt:f(O)

{oe]

7. / 8t —19)f() = f(to)

8. f(O@) = f(0)()

9.  f®)8(t —to) = f(tp)8(t — o)

10. t8(r) =0

11. f Ab(t)dt =/ AS(t —ty)dt = A

12.  f(t) * 6(t) = convolution = / ft—1)é(r)ydr = f@)

13. S(t—tl)*é(t—tz)zf S(t —1)8(t — 1 —)dt =6[t — (i + )]

N N 2N
4. Y 8G—nT)x Y 8(—nT)= Y @N+1=|n)s@—nT)
n=-N n=—N n=—2N
*ds@) _df )
15. j;oo —(E—f(t)dz_—_—_d[
* ds(t — 1) _ _df(lo)
e /,oo a TON=""g
> d"s(1) PR ()
17. [W I f®dt=(-1 o
dé(t df ds
18. f(t)% z—jg(,‘)‘s(’Hf(O) d(tz)
ds(t) _
19. 17 = —5(1‘)
(=1)"nls(1), m=n
ans -
20. 1" dtrfzt) = (—1)"mmT!n!—ddt,,,_5,?), m>n
Ov m-<n
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TABLE 2.4.1 Delta Functional Properties (Continued)

*ds 8(t
21. f d—(ﬁ =0, iQ = odd function

o At dt
ds@t) df(@)
22. —_— =
Fo dt dt
a"s(t) . nl dEF0)drRe(n)
23. = |
S de ;( ) K\(n—k)! dr*  dr*
a8 (yt) 1
24. =——3
By 32 ®)
du(t)
25. 8(t) =
() ar
dré(— d'é "
26. 1) = (D" ——(t), iiO) is even if n is even, and odd if n is odd.
drr dt" dt"
. dsé(r)
27. t = —ad(t
(sinat) ar ()

ds@t)  d*u(r)

28, —l=——
dt dt?
du(—t)
29. —8(t) =
®) o
du(t — ty)
30. §(t—t) = ——2
( 0) 7
d sgn(t)
31, = (¢
R @)
8(t —t,) dr(t,)
3. Sr()] = Z Tam| t, = zeros of r(r), — 1= #0
ds[r )] Blitn) dr(t,) dr(t)
33. T: - W, t,,zzerosofr(t), di ?1—'0,—dt——‘5é0
o0
34.  §(sint) = Z 8(t — nm)
s 1 1
35. (-1 = EB(t -+ 580 +1)

36. 8t —d*) = —1-—[6(1‘ +a)+8(t —a)l
2a

—2/e
37. 8(t) =lim
e~>0 JET
sin wt

38, §(1) = lim

w—00 T

1
39. () =lim ———
() 5£I>1’(1)77,'l‘2+82

1 o0
40. 8(t) = 2—[ cos wt dw
T J_

o0
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TABLE 2.4.1 Delta Functional Properties (Continued)

df@t) d

41. T = Z[tu(t) —(@—Du@t—1)—u@t —-1)]

=t3(@)+u@®)— ¢ —-D5¢ -1 —u@t -1 -=8@¢~-1)

o0

42.  comby(r) = Z 8(t—nT),  f(t)combr(t) = Y f(uT)s(t —nT)

n=—00 n=—00
00

COMB,,, (w) = F{combr(£)} = wy Z S(o—nwy),  wp = ZT”

n=--00

%([2 - u(t)] cost) = %(Zcost - u(t) cost)
= —2sint —5(t)cost + u(t) sint

= (u(t) - 2) sint — 5(1‘)

Example
The values of the following integrals are

J:we”sin4 tdzcsgt)dt = (—l)2 d—z

y e [eztsin4t
t t

L, =2%2x4=16

° Qao(t-1) dqe-1)

.I:w(t3+2t +3)H Ef]t J’ (t +2t +3) o

+2f (t3 +2t +3) dzécgz_ 2 dt

= ()7 #2) () 2fer)

=-5+24=19

Example
The values of the following integrals are

J': e4t5(2t—3)dt =J’: e“5§§t—z%t :;J': e‘”% _?Z)Edt:;e 2 :%e()
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4 4 4 1
I e4’5(3—2t)dt:I e (2t —3)]dt:J' ¢"3(2t —3)dt =~ ¢°
0 0 0 2

J:e ‘”5(sin t)dt = J-:e o ni_wa((:)nnn)dt

= nzw(_l)".[wemé(t - nn)dt
) Z (—1)"em

—00

Example
The values of the following integrals are

27T

Izne“fd(tz - nz)dt :J' e %_[[5(1‘ -m)+6(t + n)] dt

-2m =21

:L[em,re_m]
om

_ cosham

In cosh 95(cos G)de =J.n cosh@ 2 +
’ CpET

T
=2cosh—
2

1.2.5 The Gamma and Beta Functions

The gamma function is defined by the formula

O I:e-ftz-ldt, Re{4 >0 (2.5.1)

We shall mainly concentrate on the positive values of z and we shall take the following relationship as
the basic definition of the gamma function:

00

r(x) :I e't'dt, x>0 (2.5.2)
0

The gamma function converges for all positive values of x are shown in Figure 2.5.1.
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The incomplete gamma function is given by

T

y(x, T) =I tle7tdt, x>0,7>0 (2.5.3)

0

The beta function is a function of two arguments and is given by

1

B(x, y) :I t"_l(l —t)y_tdt, x>0, >0 (2.5.4)

0

The beta function is related to the gamma function as follows:

) (255

s )= M(x+)

Integral Expressions of I'(x)

If we set u = e¢*in (2.5.3), then 1/u = ¢', log,(1/u) = t, —(1/u)du = dt, and [log,(1/u)]*' = ¢, for the
limits t=0 u =1, and t = o u = 0. Hence

0

r(x) :J’wfx_le_tdt = —J:O %ge%%_ uidu :J’: @oge%%_ du (2.5.6)

Starting from the definitions and setting t = m? (dt = 2m dm) we obtain (limits are the same)

r(x) :I et dt :J- e 2 dm :2.[ m> e dm (2.5.7)
0 0 0

Properties and Specific Evaluations of I'(x)

Setting x + 1 in place of x we obtain

0 00

r(x+1):J' 1 et gy :J' t¥e ' dt
0

0

0

® +J' xt* e dt (2.5.8)
0

From the above relation we also obtain

r(x)= r(x+1) (2.5.9)
X
I'x)=(x-1I'(x-1) (2.5.10)
r(—x)=r(x_l), X202 ... (2.5.11)
-X
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From (2.5.2) with x = 1, we find that I'(1) = 1. Using (2.5.8) we obtain

re)=r(1+1)=1r1)=1-1-=1,
r3)=r2+1)=2r2)=2-1,
r4)=r(3+1)=3rr(3) =3-2-1.

Hence we obtain
I'n+1)=nl'(n)=nn-1)=n, n=0,1,2,... (2.5.12)
I'n)=(n-1!, n=1,2,... (2.5.13)

th O
To find I %Ewe first set t = 1?2

Hence its square value is

and thus

r %2\‘71 (2.5.14)

If we proceed to apply (2.5.10), we finally obtain

010 (2n=1)(2n-3)2n-5)--@)1)\n
Mo+ 5 (2.5.15)
Similarly we obtain
02 Crfon=ifon=)- ) e
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(2n-3)(2n-5)--B))\

r[l _lD:
g,l ZE 2n—1

Example

(2.5.17)

To find the ratio I'(x + #)/I'(x — n) where n is a positive integer and x— n# 0, -1, -2, ..., we proceed as

follows (see [2.5.10]):

F(x+n) (x+n—1)r(x+n—1) (x+n—1)(x+n—2)l'(x+n—2)_

r(x—n) r(x—n) r(x—n)

_ (x+n—1)(x+n—2)(x+n—3)---(x+n—2n)r(x+n—Zn)
F(x—n)

:(x+n—1)(x+n—2)---(x—n)

Example
Applying (2.5.10) we find

2T(n+ 1) =2ml(n) =2"n(n—- NI(n-1) =--- =2"n(n-1)(n-2) -

=2m!l=02-1)2-2)(2-3)--(2-n=2-4-6--2n
If n— 1 is substituted in place of n, we obtain
2:4-6--(2n-2)=2""T(n)

Example
Based on the Legendre duplication formula

0. 10
r(zn) "HH
r(n) - e

O O
we can find the ratio I g +§E (\ i (n +1)) as follows:

IEHE _ (2np

_ _ r(2n)2' 2" r(2n)2'™
var(n+1)  T(a)(n+1)  T(n)2'T (n+1)  (n)20206--2n

(see previous example). But

12BRG-(2n-2)2n-1) _ T(2n)

13- (i) = )

and hence

0,10
"H o _1306-(2n-1)

\‘ﬂr(n+1) 204[6---2n
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Remarks on Gamma Function

1. The gamma function is continuous at every x except 0 and the negative integers.

2. The second derivative is positive for every x > 0, and this indicates that the curve y = I'(x) is
concave upward for all x > 0.

3. I'(x) > +o0 as x — 0+ through positive values and as x — +oo.

4. T'(x) becomes, alternatively, negatively infinite and positively infinite at negative integers.

5. I'(x) attains a single minimum for 0 < x < o and is located between x = 1 and x = 2.

N _
VAR /

W, —

X
-4 -2 ¢E 3
-2
/f\ 4
FIGURE 2.5.1 The gamma function.
The beta function is defined by
1 -
B(x, y) :I t"_l(l—t) dt, x>0,y>0 (2.5.24)
0

From the above definition we write

1 0 1

B(y, x) :J- ty_l(l —t)x_ldt = —J; (1 —s)y_ls"_lds :J; s (1 —s)y_1 ds

0 (2.5.25)
= B{x )
where we set 1 — t = s.
If we set ¢t = sin? 6, dt = 2 sin 6 cos 6d6 and the limits of 6 are 0 and 7/2, then
77/2
B(x, y) :I 2sin*"'Bcos” ' 64O (2.5.26)
0
The integral representation of the beta function is given by
: = ux—ldu
B(x, y)—I Ty X>0,y>0 (2.5.27)
0 (ut1)
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Set t = ptin (2.5.1) and find the relation

Ime‘f’ft“dt: r}gf), Re{g >0 (2.5.28)
0

Next set p =1+ uand z= x + y in the above equation to find that

(1+l)x+y - F(x1+y)J:> e (2:3.29)

Substituting (2.5.29) in (2.5.27), we obtain

1 > =t x+y-] % -ut_ x—
B(x: J’)zwj;e 't yldtj;e "W ldu

(2.5.30)
EC IR0 aC
F(x+y) 0 F(x+y)
It can be shown that
B(p1-p)=—"—, 0<p<i (2.5.31)

sin pIT

From the identities I'(x + 1) = x['(x), ['(—x) = T'(1 — x)/(—x), B(x, y) = T(x)['(»)/T'(x + y) together with
(2.5.31), we obtain

r(p)r (1 - p) = sinr;ﬂ’ p is nonintegral (2.5.32)

Example
To show that

- r
J' tn—le_(aﬂ)tdt - (n),, , 11>0, a>-1
0

we set t = (a+ 1)7' y. Hence

1

A ~(a+1)e 5, _ 0y o dy — T e
J’Ot e dt J;ng eya+1 (a+l) J’Oy e’dy

Example

To evaluate the integralI e " dx, we write it in the form
0
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> 2
I x%e™ dx
0

which, if compared with the integral in Table 2.5.1, we have the correspondence a =0, b= 1, ¢ = 2. Hence
we obtain

r +1Dr Il
ECE ZE\/H

J; ¢ dx: Cb(a+1)/£ 2|]1/2 :7

1.3 Convolution and Correlation

1.3.1 Convolution

Convolution of functions, although a mathematical relation, is extremely important to engineers. If the
impulse response of a system is known, that is, the response of the system to a delta function input, the
output of the system is the convolution of the input and its impulse response. The convolution of two
functions is given by

o(t) = (1) on{r) = I f()H(e-1)dr (3.1.1)

Proof
Let f(£) be written as a sum of elementary functions f(). The output g(¢) is also given by the sum of the
outputs g(f) due to each elementary function f(t). Hence

= ) sl0)= &) (3.1.2)

If At is sufficiently small, the area of f(t) equals f{r,) At (see Figure 3.1.1). Hence, the output is
approximately f{(1;) A7 h(t— ;) because f{(t) is concentrated near the point 7, As A7 — 0, we thus conclude
that

Z g(t)o Z T )n(e-1,)aT - I:f(r)h(t ~7)dr

For casual systems, the impulse response is
h(t) =0, t<0 (3.13)

and, therefore, the output of the system becomes

- J:twf(r)h(t—r)dr = J' £t ~0)i(r)dr (3.1.4)

If, also, f(#) = 0 for ¢ < 0, then g(#) = 0 for ¢ < 0; for t > 0 we obtain

:J:: f(r)h(t—r)dr :J: f(t—T)h(T)dT (3.1.5)
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TABLE 2.5.1 Gamma and Beta Function Relations

o0
I'(x) =/ e 'r* dt x>0
0
*© 2
I'(x) =/ 2uF te™ du x>0
0
1 1 x—1
I'(x) :/ l:log (—):I dr x>0
o r
r 1
I‘(x):—(x—-l—2 x#0,—-1,-2,...
x
Frx)=x-DHI'x—1) x#0,—1,-2,...
rqa -
M(ex) = 20 =0) X£0,1,2,...
—X
F(n) =@ - 1! n=12.73,..., 0l=1
(3) -
1 _
(n —): (2n DvT n=1,2,...
2
(n N 3) _ (@4 H@En-1H@2n-3)- NN Y
2 2n+1
1 Q2n—3)2n—5)---BR)()/7
— =)= n=12,...
2 on— 1
2:4.6
'h+1)= n=1,2,
2n
ren)y=1-3-5---@2n—=Hr@2'—" n=12,...
ren T(n+3)
= n=1,2,
T'(n) 212
I —x) = — x #0,£1,£2,...
sin x7
n\" h 1
n':(—) V2nrn+h n=12,..., 0<— < —
e n! 12n
gy )
a —bt¢ _ c _ .
—/0 t%e dt_cb(”“)/c a>—-1,b>0,¢>0
1
B(x,y) = / YA =) dr x>0, y>0
0
/2
B(x,y) = / 2sin”* "' 0 cos? ' 0 db x>0, y>0
0
0 u* 1
B(x,y) = —d >0, y>0
(x,y) fo W X y
re)ry)
B(x,y) = —————
9 F(x+y)

The convolution does not exist for all functions. The sufficient conditions are
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TABLE 2.5.1 Gamma and Beta Function Relations (Continued)

B(x,y) = B(y,x)

B(x,1—x)=— O<x <1
sin x7T
Bx,y)=B(x+1,y)+B(x,y+ 1) x>0 y>0
Bx,n+1) 1-2-n 0
x,n = x>
x(x+1)---(x +n)
TABLE 2.5.2 T'(x), 1< x< 1.99
X 0 1 2 3 4 5 6 7 8 9
1.0 1.0000 .9943 9888 9835 9784 9735 9687 9642 9597 9555
1 9514 9474 .9436 9399 9364 .9330 9298 9267 .9237 .9209
2 9182 9156 9131 9108 9085 9064 .9044 9025 .9007 .8990
3 .8975 .8960 .8946 .8934 .8922 .8912 .8902 .8893 .8885 .8879
4 .8873 .8868 .8864 .8860 .8858 .8857 .8856 .8856 .8857 .8859
5 .8862 .8866 .8870  .8876 .8882 .8889 .8896 .8905 .8914 .8924
.6 .8935 .8947 .8959 .8972 .8986  .9001 9017 .9033 9050 .9068
i .9086 9106 9126 9147 9168 9191 9214 9238 9262 9288
.8 9314 9341 9368 .9397 9426 9456 9487 9518 9551 .9584
9 9618 9652 9688 9724 9761 9799 .9837 9877 9917 9958
f
ST — fi®)
—_— -— A‘[ —] -——— A‘L’
T ; T; 4
FIGURE 3.1.1

1. Both f(#) and h(t) must be absolutely integrable in the interval (—oo, 0].
2. Both f(#) and h(f) must be absolutely integrable in the interval [0, o).
3. Either f(#) or h(#) (or both) must be absolutely integrable in the interval (—oo, o).

For example, the convolution cos @yt * cos @yt does not exist.

Example
If the functions to be convoluted are

fly=1, 0<t<l, h(t)=-e'u(t)

then the output is given by

ot)= f F()(e—)ar
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The ranges are

1. —o0 < £ < 0. No overlap of f(t) and h(t) takes place. Hence, g(f) = 0.
2. 0 < t< 1. Overlap occurs from 0 to t. Hence

t t
s)=] 1@ ar =¢ [ e ==
0 0

3. 1 < ¢t < oo. Overlap occurs from 0 to 1. Hence

1

g(t) :‘[) e Tar = e_t(e —1)

Definition: Convolution Systems

The convolution of any continuous and discrete system is given respectively by
A1) :J' ht, 7)x(t)dr (3.1.6)

y(n) = z h(n, m)x(m) (3.1.7)

Mm=—00

If the systems are time invariant, the kernels /(-) are functions of the difference of their argument. Hence

h(n, m) = h(in—-m), h(t, 1) = h(t - 1)

and therefore

=Y

A1) :J’_mx(r)h(t ~1)dr (3.1.8)

y(n): ix(m)h(n—m) (3.1.9)

m=—00

Definition: Impulse Response

The impulse response h(f) of a system is the result of a delta function input to the system. Its value at ¢
is the response to a delta function at ¢ = 0.

Example
The voltage v (f) across the capacitor of an RC circuit in series with an input voltage source v(¥) is given by

U)o el

=—v
dt RC RC

For a given initial condition v(f,) at time t = #, the solution is

Uc(t):e_(t_t”)/RCUC(tO)+%C ; VY (r)dr, 121

0
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For a finite initial condition and f, — —o, the above equation is written in the form

0.(1)= o _[ie-v-r)/mu(t ~tpole)ie =L ()

Therefore, the impulse response of this system is
Ht) =~ e mu(r)
RC

Example
A discrete system that smooths the input signal x(n) is described by the difference equation

y(n)=ay(n-1) + (1 —a)x(n), n=0,1,2, ...

By repeated substitution and assuming zero initial condition y(—1) = 0, the output of the system is given by

n

y(n)=(1—a)Zan_’”x(m), n=0,1,2,... (3.1.10)

If we define the impulse response of the system by
h(n)=(1-a)a”, n=0,1,2,...
the system has an input—output relation

o

=S o))

m=—00

which indicates that the system is a convolution one.

Example
A pure delay system is defined by

y(t):J:Z5(t—t0 ~7)x(1)dr = x{t -1,) (3.1.11)

which shows that its impulse response is h(t) = S(f — t,).

Definition: Nonanticipative Convolution System

A system, discrete or continuous, is nonanticipative if and only if its impulse response is
h(t) =0, t<0

with ¢ ranging over the range in which the system is defined.
If the delay ¢, of a pure delay system is positive, then the system is nonanticipative; and if it is negative,
the system is anticipative.
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1.3.2 Convolution Properties

Commutative

:I:f(r)h(t —T)dT =Jif(t ‘T)h(T )d[

Set t— 7= 7' in the first integral, and then rename the dummy variable 7’ to 7.
Distributive

8(1) = flt) * [ (1) + h(8)] = f) * hy(1) + f£) * (1)
This property follows directly as a result of the linear property of integration.

Associative
[At) * h(D)] * hy()] = f{t) * [~ (1) * hy(1)]

Shift Invariance
If g(1) = fiH) * h(D), then

g(t=1,) = f(t —,) () =J’:f(r —t,)h(t =7)dr

Write g(#) in its integral form, substitute ¢ — ¢, for ¢, set T + #, = 7, and then rename the dummy variable.

Area Property
A, =J’_wf(t)dt = area
m, =J:mt f (t)dt = first moment

K center of gravity

7f
vy
The convolution g(#) =f(t) * h(t) leads to

Proof

ng‘ dt I a' t T dt@ir
- f(r)g_wm(t T)dtgﬂ
= ’mf(r)g'w(/\ +r) ()\)d?\ %t t-T SA

- if(r)dr I ZA h(}\ )d}\ + ﬁr f(r)dr I Zh()‘ )d’\ = Am, +m A,
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H :A:Kg_ f :Kh+Kf
AA, A, ALA,
Scaline Property
U O U D

If g(f) = i) * h(f), then fggmhggz‘ \g

Proof
[aE =L z

=l WL - s

U O

Complex-Valued Functions

§(1) = flo) = h(1) = [f(1) + jfi(D)] * [h(2) + jfhi(D)]
= [£(0) * h(t) = fi(1) * h(D] + jlf (1) * h(?) + fi(1) * h(1)]

Derivative of Delta Function

[ﬂThﬁymidhﬂwi;ﬂmp@qw:ﬁp

Expand f(t — 7) in Taylor series about the point =0

Moment Expansion

2

2 T " n-1
grﬂqg+m+( )‘ﬂ o)+,

fle=t)= s{e)=r )+

Insert into convolution integral

dﬁzfﬁ“idﬂm—fmﬁ}ﬂﬂd+j€}01j2%jd
wﬂﬁ@gﬂﬁ}wﬂﬁﬂ+gn

‘\H

= mhof(t)‘mmf(l)(t)*nzzf(z)(t)+-..+§

where bracketed numbers in exponents indicate order of differentiation.
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Truncation Error

Because
e :(_;) f(”)(t—rl), 0<T,<T

E, =L (-1) /-, ) )

"o )

Because 7, depends on 7, the function (¢ - ;) cannot be taken outside the integral. However, if f()
is continuous and ¢"h(t) > 0, then

—_ 1 n * n — (_1)nmhn n
En—ﬁf( )(t_TO)LO(_T) Hr)dr = )
where 7, is some constant in the interval of integration.
Fourier Transform
Ff(1) * = Flo)H(w)

Proof

00

J’ Q’ h{t- rdrg; ot gy = J'_wf( )I W=t )e " drar
If J"”dTI r) Ty, t=T =7

Inverse Fourier Transform

;TJ::F(w)H(w)e'jmd w:Jif( Yh(t- 9dt

Band-Limited Function

If f(#) is o-band limited, then the output of a system is

I f(1) f(nT)hg(t —nT)

n= —oo

where

hg(t) = ;T‘[ZH(w)ej“”dw
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Proof
Hy(®) = p(0)H(w),

hence

=9

<)== 2 T ()= 5 o))

00 n=—0o0

The convolution properties are given in Table 3.2.1.

Stability of Convolution Systems

Definition: Bounded Input Bounded Output (BIBO) Stability
A discrete or continuous convolution system with impulse response h is BIBO stable if and only if the
impulse satisfies the inequality, 2,/l| < oo or [/(#)|dt < co. If the system is BIBO stable, then

bl 3 s s« [ <)

for every finite amplitude input x(f) (y is the input of the system).

, tOR

Example
If the impulse response of a discrete system is h(n) = ab", n =0, 1, 2, ..., then

- o b
L DLLE
7 & 0. e

The above indicates that for b < 1 the system is BIBO and for |b| > 1 the system is unstable.

Example "
If h(t) = u(t) then \h( t)‘ =] ‘u(t)‘dtz oo, which indicates the system is not BIBO stable.
0

Harmonic Inputs

If the input function is of complex exponential order ¢, then its output is
y(t) =I h(T)ejw(t_T)dT = e’mJ’ h(T)e_]de = H(a))ej“"

The above equation indicates that the output is the same as the input ¢* with its amplitude modified
by ‘H(a))‘ and its phase by tan™! (H{w)/H/(w)) where H(®) = Re{H(w)} and H(w) = Im{H(®)}.
For the discrete case we have the relation

y(n) = el®" H(el®)
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TABLE 3.2.1 Convolution Properties

L

10.

11.

12.

Commutative o 00
g(t) = f f(Oht —1)dr = f f@t—Dh(r)dr

—00 —00

Distributive
g = f@®) *[h1(t) + ha()] = f () x hi (1) + f () % h2(2)
Associative
[f @) * R ()] % ha(t) = f(2) * [h1(2) * ha(2)]

Shift Invariance

g@) = f@) xh(t)
git—10) = f(t—t)*h(t) = / f@@ —1t)h(t —v)dr

Area Property
Ay = areaof f(t),
o0
my = f tf(t) dt = first moment
-0
my .
Ky = —— = center of gravity
Ag
Ag = AfAp, Ke=Kr+ Ky
Scaling
g() = f@®) xh(»)
t t t
/(2)+() ()
a a a
Complex Valued Functions
g8W)=fO*h(t)=[£fr(t) *h (2) — fi(®) x hi ()] + j[fr @) * hi(t) + fi () * h,(2)]
Derivative 0= fs 45 _ af ()
gi= dt ~  dt
Moment Expansion
0 Mh2 (1) ! (n—1)
gt) =mpof(t) —mp f1(8) + Tf O+-+ — mpu-1 " () + En
[o.¢]
Mpi = f t*h(r)dr
—00
—1)"
E, = L—:”ﬂ'i f ™ — 1), 7o = constant in the interval of integration
Fourier Transform
F(f@®) *xh(t)} = F(w)H(w)
Inverse Fourier Transform

l o0 o0
5;/ F(w)H(w)ej"" dw=/ f@h(E —1)dt

(e 9}

Band-limited Function

o0 o0
g = f FOht =D dT =Y Tf(uT)ho(t = nT)

o0 n=-00

1 [° ‘
ho(t) = 7 f H(w)e’ dw, f(t) = o — band limited = 0, |t| > o
-0
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TABLE 3.2.1 Convolution Properties (Continued)

13. Cyclical Convolution
N—-1

X(n) ® y(n) = Y _ x(n = m) mod N)y(m)
m=0
14. Discrete-Time o
)k y(m) = Y x(n—m)y(m)

15. Sampled

x(nT)xy(T) =T Z x(nT — mT)y(mT)

m=-—00

where

H(ef“’) = z H{n)e "

n=—00

1.4 Correlation

The cross-correlation of two different functions is defined by the relation

th(t)if(t)Oh(t):Jif(T)h(T ~t)dr :Jif(r +1)hr ) (4.1)

When f(f) = h(t) the correlation operation is called autocorrelation.

R, (t)= (1) £(¢) :-[Zf(r)f(r ~t)dr :J’:f(r +1)flr ) (4.2)

For complex functions the correlation operations are given by

th(t) = f(t)() hD(t) :J'_Zf(r)hm(r - t)dT (4.3)
Rff(t):f(t)OfD(t)=I:f(r)fm(r—t)dr (4.4)

The two basic properties of correlation are
(1) O h(r) # h(x) O f(1) (4.5)

) 0o ()= LA} )
< Q’_w f(r)zdrgz @'_m fle-ofa " (4.6)

0
00 00 [l

00

=J'_wf(r)2dr SRff(O)
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Example
The cross-correlation of the following two functions, f(¢) = p(¢) and h(t) = e u(t - 3), is given by

Rl = [ A o=

The ranges of ¢ are

1. t>-2: R;,(1) = 0 (no overlap of function)

1
2. -4 < t< =2 Ry(d) =J’ e dr=1— et
3+t

1
3. —00 < t <~4: Ry (1) :I e dr = ¢ (¢ - 1)
-1

The discrete form of correlation is given by

x(n)Oy(n) = i x(m - n)ym(m) = crosscorrelation (4.7)
x(n)()x(n) = i x(m - n)xu(m) = autocorrelation (4.8)

x(nT)Oy(nT) =T i x(mT - nT)yD(mT) = sampled cross —correlation (4.9)

m=—00

1.5 Orthogonality of Signals

1.5.1 Introduction

Modern analysis regards some classes of functions as multidimensional vectors introducing the definition
of inner products and expansion in term of orthogonal functions (base functions). In this section,
functions @ (1), f(t), F(x), ... symbolize either functions of one independent variable ¢, or, for brevity, a
function of a set n independent variables #, , ..., #". Hence, dt = dt! ... dt".

A real or complex function f(f) defined on the measurable set E of elements {r} is quadratically
integrable on E if and only if

[, \rGw) e

exists in the sense of Lebesque. The class L, of all real or complex functions is quadratically integrable
on a given interval if one regards the functions f(¢), h(?), ... as vectors and defines

Vector sum of f(t) and h(t) as f(t) + h(1)
Product of f(t) by a scalar o as af(t)

The inner product of f(¢) and h(#) is defined as

<f’ h>iﬁy(r)fD(T)h(T)dT (5.1.1)
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where y(7) is a real nonnative function (weighting function) quadratically integrable on L

Norm

The norm in L, is the quantity

/2
=l 0] =G rtstey s (5.1.2)
If H f H exists and is different from zero, the function is normalizable.
Normalization
ffrt) = unit norm
Inequalities
If f(£), h(?), and the nonnegative weighting function y(#) are quadratically integrable on I, then
Cauchy-Schwarz Inequality
2
(A(e) He)) = “'Iy(r)f*hdr sﬁy\f\zdrﬁwh\zdr:g, £)(hh) (5.1.3)
Minkowski Inequality
=0 ., d°
|f+H|= DJ:y‘f +h| dig
0 0° .o ’
smﬁy\f\zdrm +DIIszdrgv (5.1.4)
=+
Convergence in Mean
The space L, admits the distance function (matric)
o
dif,h)=|f =h|= a'y ) A(2)-(r) arg (5.1.5)

The root-mean-square difference of the above equation between the two functions f{(#) and h(#) is equal
to zero if and only if f{(#) = h(#) for almost all #in I
Every sequence in I of functions r,(f), r;(#), r,(#), ... converges in the mean to the limit (¢) if and only if

Iy

dT—>O asn — o (5.1.6)

Therefore we define limit in the mean

llmr(t) r(t) (5.1.7)

n— 00
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Convergence in the mean does not necessarily imply convergence of the sequence at every point, nor
does convergence of all points on I imply convergence in the mean.

Riess-Fischer Theorem

The L, space with a given interval I is complete; every sequence of quadratically integrable functions
1(8), (1), 1,(1), ... such that Lim., . . r,,— 1,/ = 0 (Cauchy sequence), converges in the mean to
a quadratically integrable function r(f) and defines r(f) uniquely for almost all ¢in L

Orthogonality

Two quadratically integrable functions f(¢), h(¢) are orthogonal on I if and only if

(fih) J'y 7)dr =0 (5.1.8)

Orthonormal

A set of function r,(f), i=1, 2, ... is an orthonormal set if and only if

ifizj
Iy dT d; L 7=12,... 5.1.9
; J’Vn %ﬁ_.(w 2..) (5.1.9)
Every set of normalizable mutually orthogonal functions is linearly independent.

Bessel’s Inequalities

Given a finite or infinite orthonormal set ¢,(f), @,(f), @s(f), ... and any function f(f) quadratically
integrable over I

> 9. £ <lhf) (5.1.10)

The equal sign applies if and only if f{#) belongs to the space spanned by all ¢(1).

Complete Orthonormal Set of Functions (Orthonormal Bases)

A set of functions {@(#)}, i=1, 2, ..., in L, is a complete orthonormal set if and only if the set satisfies
the following conditions:

1. Every quadratically integrable function f(f) can be expanded in the form

) =< oo+ oo + - + L oo+ -+, i=1,2, ...

2. If (1) above is true, then

>‘2 + Kf) ¢2>‘2 +

S h=

which is the completeness relation (Parseval’s identity).
3. For any pair of functions f(f) and h(#) in L,, the relation holds

) =G eh, @) + (fs )Xhs @,) + -

4. The orthonormal set @,(%), @,(£), @5(¢), ... is not contained in any other orthonormal set in L,.
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The above conditions imply the following: given a complete orthonormal set {¢(#)},i=1,2, ... in L,

and a set of complex numbers (f, @), (f, @,) + --- such that Z :1 {f, 9,)|> < 0, there exists a quadratically
integrable function f{#) such that {f, ¢,)¢, + (f; 9,)9, + --- converges in the mean of f(¢).

Gram-Schmidt Orthonormalization Process

Given any countable (finite or infinite) set of linear independent functions r,(f), ,(#), ... normalizable
in I, there exists an orthogonal set ¢,(#), @,(%), ... spanning the same space of functions. Hence

P I¢1rdt’ 3_r_ll I
I«pfdt I«p dt I¢ dt

¢, etc (5.1.11)

v (e)=1(t) valt)=ra(t)- Z<¢k, ra)®(t) =12, (5.1.12)

Series Approximation

If f(¢) is a quadratically integrable function, then

J

yields the least mean square error. The set {¢(f)}, i = 1, 2, ... is orthonormal and the approximation
to fl) is

£.()- f(t)‘zdt

f.(0) = a,0,(1) + a,0,(t) + - + a,0,(1), n=1,2,.. (5.1.13)

1.5.2 Legendre Polynomials
1.5.2.1 Relations of Legendre Polynomials

Legendre polynomials are closely associated with physical phenomena for which spherical geometry is
important. The polynomials P,(f) are called Legendre polynomials in honor of their discoverer, and they
are given by

A (-1) @n-2k)e

P0= 2 ok (n-24) 621

O n/2 neven

[n/Z] an 1/2 nodd
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1 NG
- n= (5.2.1a)
\V1=2st +52 B P (t)s_”_' ‘s‘ >1 generating function

n=0 "

Table 5.2.1 gives the first eight Legendre polynomials. Figure 5.2.1 shows the first six Legendre poly-
nomials.

TABLE 5.2.1 Legendre Polynomials

Py=1
P =t
3 1
Py= =t — —
T2 T2
5 3
Py==t3— 2t
T2 T2
35 30 3
Po==t-—1242
‘T8 8 8
63 70 15
P = 5 ___t3
T8 s T3
231 1
P6=—t6—§t4 _1_.0_512_ 5
16 16 16 16
429 693 1
Pp=—1 ——¢ Wy B,
16 16 16 16

FIGURE 5.2.1
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Rodrigues Formula

_ 1 d"(, 4\ _

p ()= o (t 1) , n=0,1,2,... (5.2.2)
Recursive Formulas

(n+ )P, () = 2n+ DtP() + nP, () =0, n=1,2, .. (5.2.3)
Péﬂ(t)—tPrZ(t):(n+l)Pn(t), (P'(t)i derivative ofP(t)) n=012... (5.2.4)
tP(t)- P (1) =nP(t) n=12... (5.2.5)
P, (t)- P (t)=(2n+1)P(t) n=12... (5.2.6)
(2 -1)P/(t) = ntP,(t) — nP,_ (1) (5.2.7)
P(t) =1, Pi(p) =t (5.2.8)

Example
From (5.2.1), when # is even, implies P (-t) = P (t) and when n is odd, P, (—t) = —P,(t). Therefore

P,(—1) = (~1)" P(1) (5.2.9)
Example
From (5.2.7) t = 1 implies 0 = nP, ,(1) — nP, (1) or P,(1) = P, ,(1). For n =1 it implies P,(1) = Py(1)
=1.For n=2 P,(1) = P/(1) = 1, and so forth. Hence, P,(1) = 1. From (5.2.9) P,(—1)". Hence
P(1)=1, P (-1) = (-1)" (5.2.10)

P (1) <1 for-1<t<1 (5.2.11)

Example
From (5.2.7) we get

jt[(l - tz)Pn'(t)

=nP,_ (1) =nP,(t) - ntE} 1)

Use (5.2.5) to find

%[(l-tz)p,;(t)

) =0

(1-2)P)(t) = 2tP,(t) + n(n+ 1)P,(t) =0 (5.2.12)

We have deduced the Legendre polynomials y = P,(f) (n=0, 1, 2, ...) as the solution of the linear second-
order ordinary differential equation
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(1 —-82)y"(t) =2ty () + n(n+ 1)y(r) =0

called the Legendre differential equation.

If we let x = cos ¢ then the above equation transforms to the trigonometric form

y" + (cot @)y’ + n(n+1)y=0

It can be shown that (5.2.12a) has solutions of a first kind

r=6ldm Ty 4

co Qo= )(mnr2) s (n=1)(n2)(n=3)(n+a)

O n(n+l)t2+n(n+1)(n-2)(n+3) .

'H 3! 5!

valid for |¢| < 1, C, and C, being arbitrary constants.

Schlifli’s Integral Formula

p(t) 1 ﬂd

“2me 27(z-4)"

where C is any regular, simple, closed curve surrounding ¢.
El{z

1.5.2.2 Complete Orthonormal System, gﬁ(zﬂ +1)H

The Legendre polynomials are orthogonal in [-1, 1]

Lg@&@mzo

(LR

and therefore the set

is orthonormal.

Series Expansion
If f(¢) is integrable in [-1, 1], then

© 2000 by CRC PressLLC
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oo

O

' =...0

g
n=20,1, 2,
n=20,1,2,
-1<t<1

(5.2.12a)

(5.2.12b)

(5.2.12¢)

(5.2.13)

(5.2.14)

(5.2.15)

(5.2.16)

(5.2.16a)



_2n+l
L If n=0,1,2,-- (52.16b)

n

For even f(1), the series will contain term P,(#) of even index; if f(#) is odd, the term of odd index only.
If the real function f(f) is piecewise smooth in (-1, 1) and if it is square integrable in (-1, 1), then the

series (5.2.16a) converges to f(f) at every continuity point of f(¢).

Change of Range

If a function f(¢) is defined in [a, b], it is sometimes necessary in the application to expand the function
in a series of orthogonal polynomials in this interval. Clearly the substitution

2 0O b+al b—a b+al
t+

t:b—ag 5 % a<b g— 5 E (5.2.17)

transform the interval [a, b] of the x-axis into the interval [-1, 1] of the t-axis. It is, therefore, sufficient
to consider the expansion in series of Legendre polynomials of

fgi b+a§_w 10 (5.2.18a)
Z”HJ’ fEb a b+a§3n(t)dt (5.2.18b)

The above equation can also be accomplished as follows:

=S 5,00 (5.2.199)

X, (f)=—! a'(t=a) (=8 (5.2.19b)
! n'(b—a)n dt” -
2n+l1 ¢
0 = b”_*g I A0)x, ()t (5.2.19¢)

Example
Suppose f(1) is given by

0 -1<t<a

f(t):% a<t<l

Then from (5.2.16b)

W= 2n2+1J': Pﬂ(t)dt
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Using (5.2.6), and noting that P,(1) = 1, we obtain

a = %Pnﬂ() Pn_l(a)], a0=%(1—a)

which leads to the expansion

LSl l-r ). -rere

Example
Suppose f(1) is given by

-1 -1<1<0
f(t):E 1 0<t<l

The function is an odd function and, therefore, f(£)P,(#) is an odd function of P,(#) with even index.
Hence, a,, are zero for n =0, 2, 4, ... For odd index #, the product f(£)P,(¢) is even and hence

O 1D1 (

n—Hq dt 2H1 Hr t, n=1,3,5,...

Using (5.2.6) and setting n =2k + 1, k=0, 1, 2, ... we obtain

Ay, = 4k +3I 2k+1 dt J. [ zk+2 zlk(t)]dt

[ 2k+2 Py ] ‘ 2k+2

where we have used the property P,(1) = 1 for all n. But

(=1) (2n): (5.2.20)

and, thus, we have

Cp () ) (g sk

aZkH Zk(k|) 22k+2[(k+1)!]2 22k(k!)2 2k+25

_ (-1) (2R 4k +3)

- 2R (k+),

The expansion is

f(t)=Z (_I)k(Zk)!(4k+3)sz+1(t), -1<r<1 (5.2.21)

2% (ke +1)!
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1.5.2.3 Associated Legendre Polynomials

If m is a positive integer and —1 < t < 1, then

P"’(t) = (1 —tz)m/z d”:iP"(t), m=L2..,n

n m

where P"(?) is known as the associated Legendre function or Ferrer’s functions.

Rodrigues Formula

Properties

(n —-m +1)Pn’f_1(t) - (Zn +1)tan(t) + (n + m)Pn’fl(t) =0
(1) " Br(e) = () - 2

(=) Er(e) = (e s 1))

—(n -m +l)(n m +2)Pn’f: ( )]
B () =2mi(1=2) " B (1) = [ +1) = mm{om =1)| 2271 (1)

J’l PR ()de =0, k#n
-1

Example

1
To evaluate the integralI tmP (t)dt, we use the Rodrigues formula and proceed as follows:
-1

’”P "‘D t—l t =4
‘[1 g 81’ g)_dt"H
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%mDn— %,—_l_m‘[ m anl t _1) Bjtm
O

(5.2.22)

(5.2.23)

(5.2.24)

(5.2.25)

(5.2.26)

(5.2.27)

(5.2.28)

(5.2.29)

(5.2.30)

(5.2.31)



where integration by parts was used. The left expression is zero because of the presence of the expression
(£2=1)~

(a) For m < n and after m integrations by parts we obtain

om0 LoV
M G ) B2 =0 e
n.

(b) m > n. Integrate n times by parts to find the following expression:

1 1 n
I thn(t)dt:Can' t’“‘”(z2 —1) dr
-1 -1

where

c = (—1)mm(m—l)(m—Z)---(m—[n—l])

mn zfln!

Multiplying numerator and denominator by (m — n)! and incorporating the (-1)" in the integrand, we
obtain

1

L _ m! wenfy _L2)"
J'_It P"(t)dt_iﬂn!(m—n)'_[]t (1 t ) dy, m=n

If m — nis odd the integrand is an odd function and hence is equal to zero. If m — n is even then the
integrand is even and hence

1

. _ ml2 enfy L2\
J'_lt P"(t)dt_ifn!(m—n)!,[) t (1 t ) dr
Um—n+10]

m!
2 .
= m=nm—nis even

2”_1(m—n)!(m+n+1)ré.7L2n+1D’

Ifm=n

. nlr%g
J’—lt P”(t)dt: ElZn—lD:Qn—SD“EBDEIla_DID
alli=)

2"“(2n+1)g2—%—2

- 2™ (2n+1)(2n f1) (2n-3)--(3)(1)
- 2 (2n+1)(2n) (20 —nl) (2n 1—12) (2n-3)--(3)(2)(1)
_ 2"“(11!)2

(2n+1)r
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Hence,

0 m<n
0 m=n, m—nisodd
m'r n+1§
1 B

m>n, m—niseven

Un+n+10

J:Ithn(t)dt - 1(m n) (m+n+1)rg75

I
DDDDDQDHDDDDD

Example
To find P,,(0) we use the summation

()= (-1)" Z ; (1) (2n+2k-1): o

2! k)(n+k=1)1(n—k):

with k = 0. Hence

Example
1
To evaluateI P, (t)dt for m # 0, we must consider the two cases: m being odd and m being even.

(a) misevenand m#0

IP dt—IP dt—IP ﬂdt—IP t)dt =0

The result is due to the orthogonality principle.
(b) mis odd and m # 0. From the relation (see Table 5.2.2)

f B )ie=— (5B ()

with ¢ = 0 we obtain
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TABLE 5.2.2 Properties of Legendre and Associate Legendre Functions

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

It =<1,

P.(1)x",
V1 -=2tx +x2 HZ(;

/21 . ke _ n—2k
P.(1) = Z (=D*2n — 2k)!t
k:

oy 27k (n — k)'(n — 2k)! [n/2] =

Py(t) =1

~1
n

Py, 41(0) = 0,

(=D"C2n)!
2 (nh)?

Py (—1) = P (1), Ponyi(—1) = =Py (8),
Po(=1) = (=1)"P(0),

P =1,

Pp(=1) = (=1)%

dn

P,(t) =
@ 2n! dtn

(n+ D Pppi (1) = @n + Dt Py(t) + 1P (1) = 0,

PLo(t) = 2tPL(t) + Po_y(t) — Pult) =

P,_(t) = P,(t) + 2t P,(t) — P, ., (t)
P () =P,(t)+2tP,(t) — P,_i(2)
P @) —tP (1) = (n+ D P(r)
tP,(t)~ P,_,(t) =nP,(t)
Poy@ — P () =Cn+1DP()
(1 = t)P/(t) = nP,_i(t) — ntPy(t)

[P.()] < 1,

(—D*@n +2k— 1!

D
Pan(t) = 2211 ; Q) (n+k — Din - k)!
(1 =)P.() = (n+ DI P(t) = Pusi (1)),

1
f P,(t)dt =0,
-1

[P.(B)] < 1,

1
f P, (1) Pn(t)dt =0,

1
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(t* — 1)" = Rodrigues formula,

lx] <1

i)

~,niseven; {n/2] =

n=1,2,
n=0,1,2
n=0,1,2
n=012,...
n=012,...
n=012,...
n=20,1,2
n=1,2,
n=1,2,
n=1,2,
n=1,2,
n=2012
n=1,2,
n=1,2
n=1,2,
-l<t<1
n=0,1,2
n=0,1,2,
n=1,2,
<1
n#m

(n—1)/2,nis odd



TABLE 5.2.2 Properties of Legendre and Associate Legendre Functions (Continued)

24. / [P.()) dt =

mim—2)---(m—s+2)
2. Ef_lt Rt = m+s+Dm+s—1---(m+1)
I _ (m—D(m=3)---(m—5+2)
26. E/:lt P’(t)d'—(m+s+1)(m+s—1).--(m+2)’
27 1 PP, (t)dt = -ﬂ—
: BOPLOd = g,
1
28. f P.(t)P, (t)dt =
29 PPt = 2
) PR T 22n+ 1’
1
30. / (1 —t})P.(t)P/(t)dt =0,
-1
1 2\/—2-
— -l - N
31. /:1(1 )"/ P,(t)dt il
1
2 _ 2n(n+1)
32. / PRaOFa®d = GG
2n(n+ 1)

1
2 _ ' - v
33. ./-1(t P, 1 ()P, (2) dt It i3

1
2n+l ! 2
34. / t"P,(t)dt = —(n)—

. Q@n+ 1Y
! 2 n+1)? n
2 2 —
> /_,t[P"(t)] dt_(2n+l)2l:2n+3 +2;1—1]
dm
meeN 1 2ym2 &
36. Plt)=00-1% e P,(1),
37. PI®) = 5= (1 e L e "L -1y,
pm ( ) m
39. PX(r) = P, (1)
40. (n—m+ P ()~ Qn+ DtPrE) +(n+m)Pr (1) =0
m 1 m m
41. (1—tH2pm(r) = i [Pri'e) - P ()]
1
_ 12 pm — _ m—1
42. (A=) = g [ +m)n+m—DP D)
—(n—m+1)(n—m+2)Pr'(1)]
43. P (1) = 2me(1 — ¢2)7V2P"(t) — [n(n + 1) — m(m — DIP"' (1)
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n=0,12,...

m, s are even

m, s are odd

n=1,2,
n=0,12
n=012,...
k#n
n=0,1,2,...
n=1,2,
n=1,2,
n=0,1,2
n=0,1,2
m>0
m+n>0



TABLE 5.2.2 Properties of Legendre and Associate Legendre Functions (Continued)

44, IP dto

45. L [an(t)]zdt ) 2n2+1 En - m)'
a6 p(=1)=(=1)""p"(s)

47. an(il) =0,
s fo)-o. p (o)) G

49. P (0) =0,

50. IP lt =0,
1,2
1 -1/2
— _D—D
51. L(l tz) sz(t)dt_m m O
0 [l
0 O

1 -1/2
52. J’_lt(l—tz) sz+1(t)dt - m!(m +1)!
53. Ip 2n+1 P t)"Pnﬂ(t)]

54, J’O thn(t)dt = I'(q“)Z o k!r((_i)_ Z(jl):k(;)k +2) ’

nis even

55. J’O1 ¢2p (1) de = @Q(Z_l (i-l)/2

s J’l tl/zpﬂ(t)dt: DZn—l)((Zn +3)
0

k#n

n+ mis odd

n+ mis even

k#m

q>-1
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Using the results of the previous example, we obtain

Example
One hemisphere of a homogeneous spherical solid is maintained at 300°C while the other half is kept at
75°C. To find the temperature distribution we must use the equation for heat conduction

0t pc ot

where T is temperature, ¢ is time, k is the thermal conductivity, p is the density, c is specific heat, and
0Q/0t is the rate of heat generation. Because of the steady-state condition of the problem, 6T/0t = 0Q/0t
= 0. Hence, the equation becomes

0°T  0°T 0°T_0f[],0TH, 1 o0  or0

2 - - — M=
T e o o2 Tort ort sing op B 9pH°

where T is independent of 6.
Assuming a solution of the form

T = FG = f(r)g(¢)

we obtain

0T _ _dF 0°T _ . d°F
by el
or dr’ 0r? dr?

Similarly, we obtain

oT _ dG O’T _ . d'G
0p  dp’ 09>  dp’

Introducing these relations in the Laplacian, we obtain

2 2
LGEE+ﬁGdF+Fégan¢+FdG

dr dar? dg dg*®

or
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2 2
Y PPN

dr dr® __4d¢ dr’
F G

Setting the above ratios equal to positive constant &, k # 0, we obtain

’F F
r? d > +2rd——k2F =0
r dr

d’G
dg’

+ (cot¢)j§ +k*G=0

For k2 = n(n + 1), we recognize that the above equation is the Legendre equation with G playing the role
of y. Thus, a particular solution is

G= C,P, (cos 9)

where C, is an arbitrary constant. With k% = n(n + 1) the general solution for F is given by

F=S§r"+

n
n+l

where S, and B, are arbitrary constants. Because for r = 0 the second term becomes infinity, we set B, =
0. Hence, the product solution is

T=FG=S,C,rP,(cos ¢) = D,r"P,(cos ¢)

Because Legendre polynomials are continuous we must create a procedure to alleviate this problem. We
denote the excess of the temperature T on the upper half of the surface over that of T on the lower half.
On the bounding great circle between these halves, we arbitrarily set it equal to (300 — 75)/2. We then have

0225 0<¢<m/2
TE(¢)=E 0 m2<¢sm

H25/2 ¢ =m2

If we let x = cost @, then T(¢) becomes f(x)

0225 0<x<1
flx)=H 0 -1=x<0

H25/2 x=0

Next we expand flx) in the form

9= () o220 [ 16 e

n=0
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Setting D, = a,/R", where a,, is the coefficient of P,(x) and R is the radius of the solid, the solution is
given by

Table 5.2.2 gives relationships of Legendre and associated Legendre functions.

1.5.3 Hermite Polynomials

1.5.3.1 Generating Function

If we define the Hermite polynomial by the Rodrigues formula

H,(1)=(-1)"¢" d;‘;, n=012,..., -0 <t <o (5.3.1)

The first few Hermite polynomials are

Hy(1) =1,

H,(t) = 2t

H,(t) = 41 - 2,

H,(t) = 8 — 124,

H,(t) = 167* — 48¢ + 12,
Hi(t) = 3265 — 1608 + 120t

and therefore

()

H(f)= Z k!(n_zk)!(Zt)n_Zk (5.3.2)

[n/2] = largest integer < n/2

The Hermite polynomials are orthogonal with weight y(£) = e=** on the interval (-0, o).

The relation between Hermite polynomial and the generating function is

w(t, x):ez”‘_"2 ZZH”(t)x”, ‘x‘<oo (5.3.3)

n!

Because w(t, x) is the entire function in x it can be expanded in Taylor’s series at x = 0 with |x < co.
Hence the derivatives of the expansion are
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L0"w _ pHo" ~(t=x)* o _ n 42 ne_uz O =
- =e —e 0 =\-1)e —0 =H(t
E = e T e T s

Figure 5.3.1 shows several Hermite polynomials.

200

150}

100}

50 |

-50}
-100 ¢

-150} H5(t)

-200 L

FIGURE 5.3.1

Example
Let t=0in (5.3.3) and expand ¢ in power series. Comparing equal powers of both sides we find that

i, (0) = () 2

n!
Hermite polynomials are even for even n and odd for # odd. Hence,
Ho(~1) = (=1)"H,(#) (5.3.4)

1.5.3.2 Recurrence Relation
If we substitute w(t, x) of (5.3.3) into identity

ow

a - Z(t - x)w =0
we obtain
ey ) e g
- n! - n! - n!
or

2 [H w(t) = 2H (1) +2nH,, (t)] % +H,(t)-2tH,(t) =0

But H,(f) — 2tH,(t) = 0 and hence
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H,..(t) = 2tH,(t) + 2nH,_ () =0, n=1,2,... (5.3.5)

If we use
a—W—wa =0
O0x
we obtain
H/(t) =2nH, (1), n=1,2,... (5.3.6)

Eliminating H, ,(#) from (5.3.6) and (5.3.5), we obtain
H,,(t)-2tH(t) + H/(t) =0, n=0,1,2,... (5.3.7)

Differentiate (5.3.6), combine with (5.3.5), and use the relation H,

n

o =2(n+ 1)H,, _,, we obtain
H,) -2tH,(t) + 2nH,(t) =0, n=0,1,2,... (5.3.8)

From the above equation, with y = H,(f) (n=0, 1,2, ...), we observe that the Hermite polynomials are
the solution to the second-order ordinary differential equation known as the Hermite equation

y' =2ty + 2ny =0 (5.3.9)

1.5.3.3 Integral Representation and Integral Equation

The integral representation of Hermite polynomials is given by

Hn(t)=(_j)wj-we_”2+j2’xx”d3c, n=0,12... (5.3.10)
\TT o0

The integral equation satisfied by the Hermite polynomials is

e_tz/an(t)=,n12J.mej’ye_)’z/an(y)dy, n=01L2... (5.3.10a)
JN2TT )

Also, because H,, (1) is an even function and H,,,,,(?) is an odd function, then the above equation implies
the following two integrals:

) 2 e
‘ 0

e"z/zHZmﬂ(t):(—l)m\/]z_[ :e_yz 2HMH()/)sintydy, m=0,1,2,... (5.3.11)

1.5.3.4 Orthogonality Relation: Hermite Series
The orthogonality property of the Hermite polynomials is given by

00

J‘_ e H, () (t)dr=0 ifm#n (5.3.12)
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and

I e HAt)dr=2"n\m, n=012,...

Therefore, the orthonormal Hermite polynomials are

p,(0)=(2mm) e PH (1) n=01a,

Theorem 5.3.1
If f(t) is piecewise smooth in every finite interval [—a, a] and

O s
J’ e f2(t)dt <o
then the Hermite series

)

M)=F Cnf) —wsr<

—r
2 I’l'\ 7T_I

Yl

dt n=0,12..

(5.3.13)

(5.3.14)

(5.3.15)

(5.3.16)

converges pointwise to f(f) at every continuity point and converges at [f{t++) — f(+~)]/2 at points of

discontinuity.

Example

The function f(f) = #, p = 1, 2, ... satisfies Theorem 5.3.1 and it is even. Hence,

where

z“(zn)wlf"*“’HZn(t)dt

2n

1 2n o (2p):
< (e )dt_zz”(zn)!\ n(2p—pZn)!

22”(271 I dtz"

) 22”(2;) W (21(721211) r@; ”i%

to find G,,, integration by parts was performed 7 times.

Example

The function e, where a is an arbitrary number, satisfies Theorem 5.3.1. Hence

© 2000 by CRC PressLLC

00 _2 B
I e ATy



n=0
where
1 00 _ _1 n 00 d'l _
C, =7JI e"e tan(t)dt=u e“t—n(e ’Z)dt
2"l 1T - 2"l M) dt
— a” attdt_ aﬂ e—u24

T n WA 7T Yo 2"nl

Example

The sgn(#) function is odd and hence its expansion takes the form

©

sgn(t) = Z CMHHMH(t)

n=0

where

Cn = 22n+1(2nl+ 1)'\ nJ.w e H2n+l(t)sgn(t) dt

- J_°° e’ H2n+l(t) dt

22”(2n+1)!\7'[ 0

Use the identity

e, (1) == [ 1)

which results from (5.3.5) and (5.3.6), to find that

_om0 ()

T2 ) 22" (2n 1) T

Table 5.3.1 gives the Hermite relationships.

1.5.4 Laguerre Polynomials

Generating Function and Rodrigues Formula

The generating function for the Laguerre polynomials is given by

( ) (1 x) eXPH txxg—zL , x‘<1 0<t <o

By expressing the exponential function in a series, realizing that

© 2000 by CRC PressLLC
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TABLE 5.3.1 Properties of the Hermite Polynomials

n ,—12
. Hy (@) = (=1)e”
1. H,(t) =(=1)"e a
/2] k
(—=1yn! .
. H,(t)= —_— (2"
2 EO=2 0e 01

[n/2] = largest integer < n/2

3 eth—x Hn (t)iT
n=0
2n)!
4. Hy(0) = (—1)"(”—,)

2n +2)!

5. Hyt1(0) =0, H,,(0) =0, H;,,,(0) = (-1)" Y

6. H,(—t) = (=1)"H,(t)
7. H,,(t) are even functions, H,,1(t) are odd functions

8. H,.(@)—2tH,(t)+2nH,_(t) =0, n=12,...

9. H,(t) =2nH,_,(t), n=12,...
10. H, (t) —2tH,(t)+ H,(t) =0 n=0,12,...
11. H,:’(t)—ZtH,/l(t)+2nH,,(t)=0 n=0,1,2,...
—_f)non 2 0 )
12. Hn(t) _ (J)—e e—x2+,2txxn dx n= 0, 1, 2’ .
NI
13. e '’H ) ! /oo Pl ?] (y) dy = integral equation
. e n = e e n =
J'V2m J oo

2 o0
14. e*’2/2H2,,,(t) = (—1)’"1/ - / e"yz/sz,,,(y) costydy
0

2 o0
15. e_t2/2H2m+1(f) = (-l)m\/ ;f ekyz/szmﬂ()’) sintydy
0

16. f e H,()H,(t)dt =0, ifm#n

o0
17. / e"anz(t)dt =2"nlJ/m n=012,...
—0o0
00
18 f() =7 CHu(® ~00 <1 <00

=0
1 ©
C,= W/:me f@H,(t)dt

19. f te=" H,(t)dt = 0, k=0,1,2,...,n—1

0

© 2000 by CRC PressLLC



TABLE 5.3.1 Properties of the Hermite Polynomials (Continued)

[o.¢]
1
20. f e H2(t) dt = /72! (n + 5)

00 1
21. / x"e""zH,,(tx) dx = @Pn(t)

o0
22. f e ¥ HX(t)dt = 21T (n + 1)
o 2

d"H,(t) _ 2"n!
drm T (n—m)!

00 1 —a2\"
2. / e Hy (6 dt = @t v (1 a ) . a>0
_ a

n! a?

23.

H, (), m<n

o0

O-k=10_, \ulk+m0
()

Hm B/ Hm H

and finally making the change of index m = n — k, (5.4.1) leads to

n

k
Ln(t)zz((_l)mtk n=0,1,2,..., 0<t <o (5.4.2)
=0

k) (n—k):

The Rodrigues formula for creating Laguerre polynomials is given by

_ed Ly
Ln(t)—ﬁdtn(t ¢ ) n=012... (5.4.3)
which can be verified by application of the Leibniz formula

PPV
dtn(fg)— Qe gt > "Th 2 (5.4.4)

=0

For a real a > —1 the general Laguerre polynomials are defined by the formula

a — t_a dﬂ —t nta —
Ln(t)—ef o (e 't ) n=0,1,2,... (5.4.5a)
Using Leibniz’s formula
n L\
1(f) = (prea+t) (=) (5.4.5b)
£ T (k+a+1) k(n=k):

Table 5.4.1 gives a few Laguerre polynomials. Figure 5.4.1 shows several Laguerre polynomials.

Recurrence Relations
The generating function w(t, x), (5.4.1) satisfies the identity
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FIGURE 5.4.1

TABLE 5.4.1 Laguerre Polynomials

Lo(t) = 1

Lit)y=—t+1
1 2
Ly(t) = a—(t — 4t +2)

1
Li(t) = 3—'(—t3 +9¢2 — 18t + 6)

1
L4(t) = Z(t“ — 161° + 721> — 96t + 24)

(l—xz)a—:+(t—l +)w:

0

Substituting (5.4.1) in (5.4.6) and equating the coefficients of x" to zero, we obtain

(n+ 1)L, () + (t=1-2n)L(¢) +nL, (1) =0, n=1,2,...

Similarly substituting (5.4.1) into

we obtain the relation

From this we obtain

© 2000 by CRC PressLLC

L'(t)-L,, (1) + L, (1) =0,

n=1,2, ...

(5.4.6)

(5.4.7)

(5.4.8)

(5.4.9)



L!

()= L)~ L,(¢)
()= ()1 0)

From (5.4.7) by differentiation we find

(4 1)L (1) + (e =1 =203 (1) + L, (1) + L (1) =0

Eliminating L/, ,(f) and L, ,(#) by using (5.4.10), (5.4.11), and (5.4.12), we obtain

tL,'(t) = nL,(t) — nL, (1)
By differentiating (5.4.13) and using (5.4.9), we obtain
tL,"(t) + L,/(t) = — nL, ()

Next, eliminating L, ,(f) using (5.4.13) we obtain

n-1

tL"(t) + (1 =)L,/ (1) + nL () =0

(5.4.10)

(5.4.11)

(5.4.12)

(5.4.13)

(5.4.14)

Setting y = L () (n=0, 1, 2, ...), we conclude that all L,(¢) are the solution to the Laguerre equation

'+ (1=10y +ny=0

Orthogonality, Laguerre Series

The orthogonality relations for Laguerre polynomials are

0

J’ eL ()L, (t)dt =0, nzm
0

_M(n+y)

J;we‘t[Ln(t)]zdt— =1, n=012...

n!

For the generalized Laguerre polynomials, the orthogonality relations

=Y

I et Lt (1)L (t)dt =0, n#Ema>-1
0

_ r(n+a+l)

Ime‘ft“[L‘;(t)]zdt =) a>-Ln=012 ...
0

n!

The orthogonal system for the generalized polynomials on the interval 0 < ¢ < oo is

u n

2
p:(r)= o, " 0 e L), n=0,1,2,...

g (n+a+1)g

The Laguerre series is given by
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(5.4.16)

(5.4.17)

(5.4.18)

(5.4.19)



ft)= iCnLn(t), 0<t<oo

n=0

where

C,= fe—f )L (), n=0,1,2,...
0

Theorem 5.4.1
If f(#) is piecewise smooth in every finite interval f;, < t< 1,0 < f, < t, <o and

J’we_tfz(t)dt <o

(5.4.20)

(5.4.21)

then the Laguerre series converges pointwise to f(f) at every continuity point of f(#), and at the points

of discontinuity the series converges to [f(t+) — f(#)]/2.
If we set a = m = integer (m =0, 1, 2, ...), then (5.4.5b) becomes

‘ (—1)k(n + m)!tk

r(r)= Z(n—k)'(m-l-k)'k' m=0,12...

The Rodrigues formula is
m — 1 t,—m d‘ﬂ —t, ntm
L (t)—ﬁet —dtn(e t )

Example
The function #* can be expanded in series

=y () b>=(a+)

n=0
0

— nl +a _—t
C”_I'(n+a+1),[> te Ln(t)dt

! © e gqr _
=" J' e rpreft —(t"*“e f)dt
I'(n+a+1) o nl 4"

— 1 " v n+a_~t
_I'(n+a+1).[) tl’ﬁ(t e )dt

_ (1) eo-1)-(6-n+) Lwe'frb”dt

r(n+a +1)

r(v+1)

_({_\" 2 (pravi)
R ey vy |

() r(p+1)r(b+a+1)
=(-) r(n+b+1)r(b-n+1)
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The steps to find C, were: a) substitution of (5.4.5), b) integration by parts # times, and ¢) multiplication

of numerator and denominator by I['(b — n + 1). In particular if b = m = positive integer

- ()5

"= r(’“*“”)’“!; F(n+a+1)(m—n)

0<t<ow,a>-1l,and m=0,1,2, ...

If a = 0, we obtain the expansion

n!

erlueus L0

n=0

Example
The function f(f) = e, with b > —1/2 and ¢ > 0, is expanded as follows

_ nl " _(b1)aqa _ 1 Y o d
<, r(n+a+l)J; L e)ae F(n+a+1)J; © A

_ bib we—(bﬂ)ttmadt — ! , n=0,12...
F(n+a+1)_[) (b+1)n+a+1
and thus
e =(b+1)" 4 ﬁb%% Lt) 0st<e
Fora=10
o SR s

Table 5.4.2 gives relationships of Laguerre polynomials.

1.5.5 Chebyshev Polynomials

The Chebyshev polynomials can be derived from the Gegenbauer polynomials, and are given

[

T(t):nz(_l)k(n_k_l)!(%)"_M, et

ki(n—2k)!

The Chebyshev polynomials of the second kind are simply

n

u(t)=cit) n=012...
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TABLE 5.4.2 Properties of the Laguerre Polynomials

()= " (—l)kn!tk < Ly,
=2 - 2 B3

3. (m+1)L,,,(O)+(#-1-2n)L,() +nL, ,(£)=0

4, L’n(t) - L;_l(t) + Ln—l(t) =0,

5 (m+ DL, (O + (t—1-2mL/() + L(t) + nL., (1) =0,

o =)L)

7. tL'n(t) = nLn(t) - nLn_l(t),

8. tL, (t) + (1 - t)L; (t) + nLn(t) =0, Laguerre differential equation

tx [

9. w(t, x) = (1 —x)_l exp ﬁ—l—xﬁz Z Ln(t)x", generating function
n=0
10. Lm e_th(t)Lk(t)dt =0,
_ 2
1. IO e f[Ln(t)] dr =1

12. f(f) = Z CnLn(f))

13, Ln(o):l,L;(o):—n,L;;(o):%n(n—l)
o ) el

15. L’:(t):Z (_l)k(”*'m)!tk

(
6. (n+1)er, (6) +(t =1 —2n =m)L2(r) H{n +m)L2 (1) =0
)

17. " (t) - an(t

1, d' (-
18. Lr:(t) :f'ett min(e tt’””’) = Rodrigues formula

19. L’Z_l(t) + L':_l(t) - L;”(t) =0

2. £y (t)=-r()

© 2000 by CRC PressLLC

0<t<oo,n=0,1,2,...

n=0,1,2,...
n=1,2,3,...
n=1,2,3,...
n=12,3,...
n=1,2,3,...
k#n
0<t<w
m=20,1,2,...
m=20,1,2,...



TABLE 5.4.2 Properties of the Laguerre Polynomials (Continued)

k<n

*© 0
22. f C et L, (1) dt ={ .
0 (-D"n! k=n
! !
23. / Liy(x)L,(t — x)dx = / Lywx(x)dx = Lyyy (t) = Lypyrs1(2)
0 0
o]
24, / e LM (x)dx = e~ [L7 () — L™, (1)], m=01,2,...
?
! m!n!
. _ an d - _gmtlrpmtl —
25 /0 (t—x) (x)dx E— 1)!1‘ L7 @), m=0,1,2,
1
- LT (n+a+1)
. arl — x)? lLa dx = a+b _
26 /Ox( Xx) L(tx)dx F(n+a+b+l)L" @), a>-1,6>0
0]
27. f e "t°Li(t)Li(t)dt =0, k#n,a> -1
0
* r 1
28. / eeLe@dr = Lt at D a>—1
0 n!
® r 1
29, / e UL dt = ~—(’—1—:—?+—)(2n +a+1), a>—1
0 !
30 2w =S h o
' Y
31 Ll/z(t) - (‘1)" H2n+1(\/z)
n g f
[
2. f@O=) GLT®)
n=0
oL " et pyLn () d
"ZTntm+n ), © n
(P
33. t? = p! —1*L, (¢
P ;( i )( V" La(t)
ad a n 1
34, o — (g 4+ 1) (——-—) L), _1
e a+1 2 pan) @) a > >
* e N La(t)
35. dx =
/0 x+1 * ; n+1
where C L(t) is the Gegenbauer polynomial with A = 1
[v2]
n D_/\ D:h_k n—2k
Crt)=(-1 aﬂ 5.5.2b
=02 B« B (5.5.2)
Hence, the second kind Chebyshev polynomials are
[v2]
(5.5.3)

ul)= 3 i de)
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The recurrence are
T,..(t) = 2tT () + T, ,(t) =0
U,.(t) =2tU(t) + U,_,(t) =0

The orthogonality properties are

L (1 —t2)‘V2 T()L()de =0, k#n

1

I (1 —tz)l/z U, (U, (t)dt =0, k#n
-1

The governing differential equations for T,(f) and U,(¢) are, respectively,
1-82)y" -ty + nly=0
(1-2)y" =3ty + n(n+2)y=20
The following are relationships between the two Chebyshev types:
T,(t) = Uy() - tU,,(1)
(1= 2)U,() = tT,(1) — T, (1)
Table 5.5.1 gives relationships for the Chebyshev polynomials.

TABLE 5.5.1 Properties of the Chebyshev Polynomials

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

(5.5.8)

(5.5.9)

(5.5.10)

(5.5.11)

d’y dy
) — )= = 4+ nty=0y0) = T,(t
1. @ t)dt2 - Ty y(1) ®)

[n/2] k
— 1)k —k — 1)!
2. T,(0)= %Z D@ ) 1), n=1,2,..., [n/2] = largest integer < n/2
k=0

k!(n — 2k)!
— n ‘ dn
3. T, = ( (22)):’ 1—z2d—t-(1 — 13"~ 1, Rodrigues formula
n)! n

4. T,(t) =cos(ncos™'t)

1 —st d
5 —= T, (t)s", generating function
1—2st +s2 ; (®)s". 8 &

6. Toni(t) = 2T, (t) — Thi (1)

0 n#m
1
Tn(t)Tm(t) dt_ 71'/2 n=m#0

aJa-n
14 n=m=20

8. T =LT.(1D=(D"Tn0 = (D" T0nn0) =0
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If we set t = cos 0 in (5.5.8), we find that it reduces to

2

d’y
do?

+n’y=0

with solution cos n8 and sin #n6. Therefore, if we set T,(cos 8) = C, cos n6, we find that C, = 1 for all n
because T,(1) = 1 for all n. Hence

T, (t) = cos nf = cos(n cos™ t) (5.5.12)

Similarly

_ sin[(n + l)cos_l t]

U,(t)= (5.5.13
2
V1=t
The generating function for the Chebyshev polynomial is
A iT(t)s” (5.5.14)
1-2st+s* L "
The generalized Rodrigues formula is
() s dr e
T(t)= -1 —(1-¢%) 2 5.5.15
=Gy 1 1) (551

Figure 5.5.1 shows several Chebyshev polynomials.

Ts(t) T«t)  Ts(t)
T,(t)
0.75
0.5
0.X5
R . t
.5 0.5 1

M

¢

Tat)

FIGURE 5.5.1
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1.5.6 Bessel Functions

Bessel Functions of the First Kind

General relations  The solution of Bessel’s equation

2

SIS B W, 0,1,2 (5.6.1)
- - =0, n=0L4L4... .0.
7Y El tzEy

is the function y = J,(t), known as the Bessel function of the first kind and order n. The Bessel function
is defined by the series

]”(t):Z(_Ilg)!((er)!’ —00<t <00 (5.6.2)

We can find (5.6.2) by expanding the function w(t, x) in series of the two exponentials exp(#x/2) and
exp(—#/2x) in the form

10 o

0
w(r, x):e;tax_"az Z]n(t)x", X0 (5.6.3)

n=—o

By setting n = —n in (5.6.2) we obtain

Lip=3 AT S e

ki(k—n)! ki(k—n)!

because 1/[(k—n)!] =0for k=0, 1,2, ...,n—1 (I'(n) = oo for negative n). Setting k = m + n, we obtain

1.(t)= z(_l?:v(n(i 211))2'"1 (5.6.4)

from which it follows that
I, =ED"] (), n=0,1,2,... (5.6.5)
Equating like terms in the expanded form of (5.6.3), we obtain
J)(0) =1, J,0)=0, n#0 (5.6.6)

Figure 5.6.1 shows several Bessel functions of the first kind and zero order.

Bessel Functions of Nonintegral Order

The Bessel functions of a noninteger number are given by (v = noninteger number)

7,(1)= i(_l) ()™ v=0 (5.6.7a)

£ KIT (k+0+1)

© 2000 by CRC PressLLC



ot

FIGURE 5.6.1
0 (_l)k(t/z)zk—u
]_U(t):Z V20 (5.6.7b)

L KT (k—v+1)

The two functions J_,(#) and J,(#) are linear independent for noninteger values of v and they do not
satisfy any generating-function relation. The functions J,(0) = c and J,(0) remain finite. Both share
most of the properties of J,(#) and J_,(¢).

Recurrence Relation

oyt CVO™ s
E[t ]U(t)] _dt; 22k+uk!r(k+u +1) =t ;k'r(k'i'u) (568)

=17, (¢)

Similarly

%[f“]u(t)] =—7J,.(t) (5.6.9)

Differentiate (5.6.8) and (5.6.9) and dividing by # and ¢, respectively, we find

];(t)+%],,(t) =7,.(t) (5.6.10)
1 U -
()= Tt = =7, (1) (5.6.11)
Set v = 0in (5.6.11) to obtain
Jo' () = =J,(1) (5.6.12)

Add and subtract (5.6.10) and (5.6.11) to find, respectively, the relations
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2]1)'(t) = ]u—l(t) _]u+1(t)

SAGEIMOES A0

(5.6.13)

(5.6.14)

The last relation is known as the three-term recurrence formula. Repeated operations result in

0d Uw[ o, ] 10

1

Od

Bﬁﬁ[tw]v(t)]:('l)mt'u'mfum(t) m=12,...

Example
We proceed to find the following derivative

d[tfat %H &d%#u]()é%

—[u T (f]la=a w14 ()
=g gat)u ]U_l(at)% at’ ]U_l(at)

where (5.6.8) was used.

Example
Differentiate (5.6.13) to find

1,(t) _100,,(¢) _d1,..()0
> 28 dr dt

Then apply the same equation to each derivative on the right side to find

L R B OO

;[]U_Z(t) -2], (t) + ]u+2(t)]

Similarly we find

) s+l

dar’

Integral Representation

(5.6.15)

(5.6.16)

Set x = exp(—j¢) in (5.6.3), multiply both sides by exp(jn¢), and integrate the results from 0 to 7. Hence
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[ ao= 5 a0 < (5:617)
0 e 0

Expand on both sides the exponentials in Eauler’s formula; equate the real and imaginary parts and use
the relation

4 D k%0
J:) cos(n—k)¢d¢ =EYT b=n

to find that all terms of the infinite sum vanish except for k = n. Hence, we obtain

T

]n(t)=71_[J; cos(n¢ —tsin¢)d¢, n=012 ... (5.6.18)
When n = 0, we find

7T

fo(t) =7lT.[) cos(tsin¢)d¢ (5.6.19)

For a Bessel function with nonintegral order, the Poisson formula is

1,(t) = (t/Z)ﬁ'rl (1" xz)u_éeﬁxdx» v> —%, t>0 (5.6.20)

e

Set x = cos6 to obtain

v
2 T
]U(t) = (t/D)ll]J:) cos(tcos@)sinz" 0doe, uv> —%, t>0 (5.6.21)
il EU+ EE
Integrals Involving Bessel Functions
Start with the identities
d [ v
E[t ]U(t)] =17, (t) (5.6.22)
d -v — ;U
E[t ], (t)] =—7J,.(t) (5.6.23)
and directly integrate to find
J.tU]u—l(t) dt=t“]u(t)+C (5.6.24)
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It_U]U+] (t)dr =7, (t)+C (5.6.25)

where C is the constant of integration.

Example
We apply the integration procedure to find

J.tzlz(t)dt =J't3[t‘1]2(t)] dr = —J't3jt[t‘1]1(t)] dr
=t ] +3J’t] dt——t ] SI[ ]

= ] Itﬁ] Eal :—tz]l(t)—3t]o(t)+3I]0(t)dt

The last integral has no closed solution.

Example
If a > and b > 0, then (see [5.6.19])

o0 co 7T/ 2

J'O e-atjo(bt)dt :J; e‘atdtij;/ cos(btsin(b)dtl)
HI d¢I " cos bts1n¢)

_2 adg 1
7‘[,[) a’+b*sin’ ¢ \“a2+b2

Example
For a> 0, b> 0,and v > -1 (v is real), then

T (bt)t““dtz Ty S —(_l)k(bt/z)u+2k
fo v J’O Z Kr(k+u+1)

_1)" 0 7% o

—aztz 2042k g
k+v +1) BEE I '

k + ..
_1) wd e (5.6.26)

-r U+k
k+U +1) HEE 2a2u+2k+2J; er d?‘

0 p? Ef
bU — Hélazg hu —b2/4a2
= = e
U+l | v+l
(2a2) Z S (2a2)
where the last integral is the gamma function and the summation is the exponential expression.

The usual method to find definite integrals involving Bessel functions is to replace the Bessel function
by its series representation. To illustrate the technique, let us find the value of the integral

1 1
E‘ >E.‘
1 —
N N
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I:I e “t?] (bt)dt, p> —%, a>0,b>0

2k+p w
b/z —at 2k+2pdt
Z kT k+p+1

:bpi(_l) r(2k+2P+1)(a2) +%§—k( )

£ 2257 (k+ p+1)

where the last integral is in the form of a gamma function. But we know that

-0 (l)kD”+k 10

HeH V) H &

h+10 O n O

a Lh
o1l BeniH B

0 O xn O
B HH Bi-«H
J 0<k<n
E <k<
and thus we obtain

(_1)kr(2k+2p+1) (_1)’<2Pr§o+k +%§

2P (k + p+1) Jrtk!

Therefore, (5.6.27) becomes

II "] bt)d

()Pr@wg D810
)
=(2b)pr§p+;§

>—l a>0,b>0
e L

Setting p = 0 in this equation we find

© 2000 by CRC PressLLC
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(5.6.28)

(5.6.29)



0

—a _ 1
-[) e tlo(bt)_[az_i_bz]l/z, (1>0,b>0

Set a = 0+ in this equation to obtain

J'm]()(bt)dt =1 >0
0 b

By assuming the real approaches zero and writing a as pure imaginary, (5.6.30) becomes

o

J' —]at bt r=0 '

0 D_il/z b<a
-0

The above integral, by equating real and imaginary parts, becomes

I cos(at)]0 (bt)dt = ;1/2, b>a

0 (b2 _a2)

00 . 1
= b<

J:) s1n(at)]0(bt)dt (a2 : bz)l/z , b<a

Example

b
To evaluate the integralI t],(at)dt, we proceed as follows:
0

J’:tjo(at)dt :I: é%[t]l(at)] dt

= %[t]l(at)]

where (5.6.8) with v = 1 was used.

Example

b
- :;Il(ab), az0

(5.6.30)

(5.6.31)

(5.6.32)

(5.6.33)

(5.6.34)

(5.6.35)

b
To evaluate the integral I ZI £J,(at)dt, where a is a constant and nonequal to zero, we proceed as
0

follows (set at = r):

ab

= ;thrzfo(f’)dr = ;J; rr]o(r)dr

1 abri J, ] _lglzbz]l(ab)—.[)abrjl(r)dr%

a’n
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But (see [5.6.23])

ab
ab
=0

S O
+ J;abjo(r) dr=-abj, (ab) +I:bf o(”) dr

and therefore

1
I=—
a3

2p],(ab) + abJ, (ab) - J‘ ab]()(r)drg (5.6.36)
0 0

OO

The integral can be approximately evaluated with any desired accuracy by termwise integration of the
series of J (). Hence, we write

ab B _ a3b3 aSbS ~ [17b7
J’O ]O(t)dt—ab E +5D4 [@2!)2 o EQS!)Z +

Fourier Bessel Series

A Bessel series is a member of the class of generalized Fourier series. It is defined by

f(t)Zicn]U(tnt), 0<t<a, u>—% (5.6.37)

n=1

where (s are the expansion coefficient constants and ¢,s (n = 1, 2, 3, ...) are the zeros (positive roots)
of the function

J (60, n=1,2,3, .. (5.6.38)

The orthogonality property is defined as follows (v > —1):

Lt]u(tmt)]u(tnt)dtzo, m#n (5.6.39)

with weight #. It can also be shown that

2

L at[fu(tnt)]zdt = %[}Uﬂ(t"a)]z (5.6.40)

Theorem 5.6.1
If a real function f{¥) is piecewise continuous on (0, a) and is of bounded variation in every subinterval
[t, t,] where 0 < t; < t, < g, then if the integral

J’: | () de

is finite, the Fourier—Bessel series converges to f{#) at every continuity point of f{#) and to [f{#+) — f{&=)]/2
at every discontinuity point.
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To begin, multiply (5.6.37) by #],(¢,t) and integrate from 0 to a. Assuming that termwise integration
is permitted, we obtain

[ o= 3 e e e

(5.6.41)
a 2
=c I\t t)| dt
iy
because the integral is zero if n # m (see [5.6.39]). Hence, from this equation we obtain
c, :ZJ' (1)1, (¢ .1)dt, n=1,23,... (5.6.42)
0

az[]uﬂ(tna)] ’

Example
Find the Fourier—Bessel series for the function

O o0<t<l

=5 1<re

corresponding to the set of functions {J,(¢,t)} where t, satisfies J;(2t,) =0 (n=1,2, 3, ...).

Solution We write the solution

f(t)= icnfl(tﬂt), 0<t<2

n=1

c,= 2[1(1”)] [ (e
= ([)]-[j e (r,0)dr (letr=11)
:([)]t% J’O #7,(r)dr (apply [5.6.22])
(b e
S STy :Iz(t"), n=1,2,3,...
2[]2(2tn)]2tj e 2tn[]2(2tn)]2

To express the function f(#) = 1 on the open interval 0 < ¢ < g as an infinite series of Bessel functions of
zero order, we proceed as follows (see [5.6.42]):
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] J'a —1,(t.1) dt (see [5.6.22])

AT U )

t=0

Hence the expression is

Example
Let us expand the function f(#) = 2,0 < t< 1, in a series of the form

o (tt) + ¢, Jo(t,1) + ¢ Jo(t51) + ...

where ¢, denotes the nth positive zero of J,(#). From (5.6.42) we obtain (a = 1)

Table 5.6.1 gives Bessel function relationships. Tables 5.6.2 and 5.6.3 give numerical values for Bessel
functions and Table 5.6.4 gives the zeros of several Bessel functions.

1.5.7 Zernike Polynomials

Zernike polynomials are a set of complex exponentials that form a complete orthogonal set over the
interior of the unit circle. Polynomial representation of optical wave fronts is essential in the analysis of
interferometric test data, for example, to assess optical system performance. One such set, which is
attractive for its simple rotational properties, is the circle polynomials or Zernike polynomials. The set
of these polynomials is denoted by

V.(x, y) =V, (rcos 0, rsin 6) =V, (r, 0) = R, (r)e" (5.7.1)
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TABLE 5.6.1

Properties of Bessel Functions of the First Kind

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

@)=

() =

N (—1)F /2
Jn(t) = ; —m—,

x __1\m+n 2m+n
AP et UL i
m=0

m!(m + n)!

. J_.n(t) = (—l)an(t)’

- Jo(0) =1, Jn(0) =0,

x (_l)k(t/2)2k+v
e~ k'T(k +v+1)
N (DR /2%
ct kT (k —v + 1’

d
. E;[tv-,v(t)] =1t"J,-1(1)
d [t'J,(at)l =at"J
. d—t vat)] =at’J,_i(at)

d
. d—;[t_"Ju(t)] = —t""Jy1 ()

dJ, 1
dtz(t) — ?[J\)—Z(t) — 2Jv(t) + Ju+2(t)]

el 1
dr

T + ;Ju(t) =J, ()

Tt — §Jv<t) = —Jyn(®)
B = —Ji(@)

2J5(t) = Joo1 () — Sy ()

2
T" @) = Jori (@ + Joia ()

d " v v—m
(t_(}?) [t -’v(t)]—t Jv-—m(t)

d\" —v _ mo—v—m
(E) [ o] = (= 1" Ty 1)

1
J{(0) = 7 J,(0) =0,

B+ =Y B

k=-00

Jo2t) = [Jo®)]* +2 Z(—l)"[lk(t)]2
k=1

© 2000 by CRC PressLLC

= 55 Jo-3(®) = 3oy (1) + 3401 (1) = o3 ()]

—o<t<oo,n=0,1,2,3,...

—0o<t<oo, n=01223,...

n=0123,...

n#0
v > 0, v is noninteger

v > 0, v is noninteger

m=1,2,3,...
m=1,2,3,...
n>1



TABLE 5.6.1 Properties of Bessel Functions of the First Kind (Continued)

22. |l =1, (0] < n=1,2,73,...

1

ﬁv
o0

23. ejtsinO - Z Jn(t)ejn9

n=—oo

24.  cos(tsing) = Jo(t) + 2 Z Jon (1) cOS(28)

n=1

25. cos(tcos@) = Jo(t) +2 Z(—l)" Jon (t) cos(2n8)

n=1

26. sin(tsin8) =2 Z Jon—1(t) sin[(2n — 1)0]

n=1

27.  sin(tcosf) = 2 Z(—D" Jons1 (1) cos[(2n + 1)6]

n=0

28. cost = Jo(t) +2 Z(—l)".lz,l(t)
n=1

o0
29. sint = 22("1)”-]271—1([)
n=1

2sinvw
Lommel’s formula

30. L)) + I (i) =
d
3L SO ®] = L @®F = [Jor1 (O

0 SO ®] = 224050

/2 [ 2
33. Jl/z(t) = ;Sil’lt, J_l/z(t) = ;COSI

sin 2¢ 2
34.  Nip@®)Jip@) = ) (1 2OF + [J-1p@))? = —
Tt Tt

35, [Jo@]F = i &nren)! (1)2"

= (n N4 2

1 n
36. J,(t) = - / cos(ng — t sing) dy
0

1 [" ;
37.  J@) = —] cos(tsing) do
T Jo

@/2)" f‘ iy
38. J,(t) = ———— | (1 -=x%""1edx, v>—-11t>0
ﬁl‘ (U + %) -1 2
t/2)" i
39. J,(0) = ———(/)—1/ cos(t cos 0) sin® 6 d@, v>—1,1>0
Vil (v+1) Jo
40. ft”]v_l(t) dt =t"J,(t)+C, C = constant
41. ft“’ 1 (@)dt = —t7"J,(t) + C, C = constant
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TABLE 5.6.1 Properties of Bessel Functions of the First Kind (Continued)

2 b 4
2. [14+(=D"1J.@¢) = ;/ cosng cos(t sinp) de, n=0,12,...
0
1 b4
43, Ju(@) = - / cos 2kg cos(t sing) do, k=0,1,2,...
0
1 oo
4. Ty @)= - f sin[(2k + 1)g]sin(t sing) do, k=0,1,2,...
0
45. / cos[(2k + 1)gp]cos(tsing)dy =0, k=0,1,2,...
0
46. f sin 2k sin(t sin ) dg = 0, k=0,1,2,...
0
2 ' costx
47. J(@) = — dx
o (2) - /0 e

2sint [2m
48. p = T.’]/g(l‘)

49. /t]o(t)dt =thi(t)+C

50. /tzlo(t)dt =120y (t) + tJo(t) — / Jo(t)dt + C

51. /t3lo(t) dt = (> — 40 J,(t) + 212 (1) + C

52. / L) dt = —J@)+C

53. /t.ll(t) dt = —tJy(t) + / Jo(t)dt + C

54. / At dt =2ty (t) — t2Jo(t) + C

55. / I dt =3t2J,(t) — (2 =30 Jo(t) = 3 / Jo(t)dt +C
56. / Bi(t)dt = —Jp(t) =2t () + C

57. /t"lll(t) dt = —J(t) +f Jo(t)dt +C

2 1
-2
58. /t Lt)dt = —3—t2]1(t) — g-ll(t)

1 1
+ 3;.]0([) + '3' ] Jo(@)dt +C
59. fJO(t)costdt=zJo(t)cost+t11(t) sint +C

60. / Jo(@®)sintdt = tJy(t)sint —tJ,(t)cost + C

@b)’T (p + 1) 1

o0
61. f e P J,(bt)dt = , p>—3,a>0,b>0
0 P V(a2 +b2)”+% 2
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TABLE 5.6.1 Properties of Bessel Functions of the First Kind (Continued)

o0
62. -/; e Jo(bt)dt = (aT_'_lbz—)l/z a>0b6>0
*© 1
63. / Jo(bt)dt = 5’ b>0
0
o0 oo
64. / Jur1(t) =/ Ja_1(t) dt, n=12,...
000 01
65. f J.(at)dr = P a>0,
0oo |
66. f = () dt = - n=12,...
0

2p+lr(l’+ %) ab?
VT (@4 p)prE

o0
67. / e tPH J (bt)dt = p>-1,a>0 b>0
0

=, 2a% — b?
68. tre ¥ Jybt)dt = ————
'/0 e o(bt) @+ a>0,b>0
0 2 ey pe—b2/4a
—at —
69. /(; e t? Jp(bt)df——ml—, p>—1, a>0, b>0
70 me“”zt”“J bdi=—2 (p+1- L ey >-1,a>0,b>0
. A P = Dprigr2 \ P 4a ’ P ’ '
*© 1
71. f t~ sint Jy(bt) dt = arcsin (z) , b>1
0
/2 .
t
72. f Jo(tcosp)cospdy = il;—
0
/2
11— t
73. [ Ji(tcosp)dy = L8t
OOO
74. / e '°%% Jo(t sinp)t"dt = n!P,(cos @), O<op<m
0
P, (t) = nth Legendre polynomial
o) e—ab
75. / t(t2 +a>) V2 I(bt)dt = - a>0,b>0
0
I, r 1-— 2
76. / p® 4 Tp+1=m/2) m> 3z, p—m>-—l
o tm 2"T{(p+1+m)/2)
1 =\ Jolkat)
7. -(1-1) = ., 0<t<l, Jotky) =0,
g(1=1) ;kmkn) <t =<1, Jolky)
n=12,...
2\ Tkt
78. =2 pkat) 0<t<l, Jylky) =0,

nel kn-]p—H(kn)’
n=12,...

‘]p+1 (knt)

_—, 0 <l < 1, > '_1 2’
20, k) p>=1/

o0
79. P =22(p+ 1) Z
n=1
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TABLE 5.6.2

Jo(x)
x 0 1 2 3 4 5 .6 T 8 9

0 10000 9975 9900 9776 9604 9385 9120 .8812 .8463  .8075
1 7652 7196 6711 .6201 5669 5118 4554 3980 3400 2818
2 2239 1666  .1104  .0555  .0025 —.0484 —.0968 —.1424 —.1850 —.2243
3 — .2601 —-.2921 —.3202 —.3443 -—.3643 -—.3801 -—.3918 —.3992 —.4026 -—.4018
4 — 3971 -—.3887 -.3766 —.3610 -—.3423 —.3205 -.2961 —.2693 —.2404 -—.2097
5 - 1776 -.1443 -.1103 -.0758 —.0412 —-.0068 .0270 .0599  .0917 .1220
6 1506 1773 2017 2238 2433 2601 2740 2851 2931 2981
7 .3001 2991 2951 2882 2786 2663 2516 2346 2154  .1944
8 A717 1475 1222 0960 0692  .0419 .0146 -.0125 -.0392 -.0653
9 — .0903 —.1142 —-.1367 -—-.1577 —.1768 —.1939 -—-.2090 -.2218 -—.2323 —-.2403
10 — 2459 —.2490 —-.2496 —.2477 -—.2434 —-2366 —.2276 —.2164 —.2032 -—.1881
11 - 1712 -.1528 -.1330 -.1121 -.0902 -.0677 —.0446 -.0213 .0020 .0250
12 0477  .0697  .0908  .1108 .1296  .1469  .1626  .1766  .1887  .1988
13 2069 2129 2167 2183 2177 2150 2101 2032  .1943  .1836
14 1711 1570 1414 1245 1065 .0875  .0679  .0476  .0271 .0064
15 — 0142 —-.0346 —-.0544 -.0736 —.0919 -.1092 —.1253 —-.1401 —-.1533 —-.1650

When x > 15.9,
7 N 2 . 1 1 . 1
b (x) =~ (nx) {sm x + 411 -+ ™ sin (x 471)
71979 { , N . }
o~ sin(57.296x 4 45°) + — sin(57.296x — 45°)
Jx 8x
Ji(x)
x 0 .1 2 3 4 5 .6 i .8 9
0 .0000 0499 0995  .1483  .1960  .2423 2867 3290 3688  .4059
1 4401 4709 4983 5220 5419 5579 5699 5778 5815 5812
2 5767 .5683 5560 5399 5202 4971 4708 4416 4097 3754
3 3391 3009 2613 2207 1792 1374 .0955 .0538  .0128 —.0272
4 —-.0660 —.1033 —.1386 -—.1719 —.2028 —-.2311 —.2566 —.2791 -—.2985 -—-.3147
5 =.3276 —.3371 —.3432 —.3460 -—.3453 —.3414 -—-.3343 -.3241 -.3110 -.2951
6 —.2767 -—.2559 -—.2329 -.2081 -.1816 —.1538 —.1250 -.0953 —.0652 —.0349
7 —.0047 0252 0543 .0826 .1096  .1352  .1592  .1813 2014 2192
8 .2346 2476 2580  .2657 2708 2731 2728 2697 2641 2559
9 .2453 2324 2174 2004 1816  .1613 .1395 1166 .0928 .0684

10 .0435 .0184 —-.0066 -.0313 —.0555 —-.0789 -.1012 —.1224 —.1422 —.1603
11 —.1768 —.1913 —-.2039 -—.2143 —-.2225 -.2284 —.2320 -.2333 -.2323 —.2290
12 —-.2234 —-2157 -.2060 -—.1943 -—.1807 -—.1655 —.1487 —.1307 -—-.1114 —.0912
13 —-.0703 —-.0489 —-.0271 -.0052 .0166 .0380 .0590 .0791 0984 1165
14 1334 1488 1626  .1747 1850  .1934  .1999 2043 .2066 2069
15 2051 2013 .1955 1879 1784 1672 1544 1402 1247 .1080
When x > 15.9,

J N 2 . 1 3 . 1
1(x) ~ p sin x—Zn +§;sm x+ZJT

1979
x

3
{sin(57.296x —45°%) + . sin(57.296x + 450)}
X
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TABLE 5.6.3

Ja(x)
X 0 1 2 3 4 5 .6 Vi .8 9
0 .0000 0012 .0050 0112 .0197 .0306 .0437 .0588 0758 0946
1 .1149 1366 .1593 .1830 2074 2321 2570 2817 3061 3299
2 3528 3746 3951 4139 4310 4461 4590 4696 AT777 4832
3 4861 4862 4835 4780 4697 4586 4448 4283 4093 3879
4 3641 .3383 3105 2811 .2501 2178 .1846 .1506 .1161 0813
When0<x < 1 h(0 = 5 (1- ).
J3(x)
X 0 2 3 4 5 .6 T 8 9
0 .0000 .0000 .0002 .0006 .0013 .0026 .0044 .0069 .0102 0144
1 0196 0257 .0329 0411 .0505 .0610 0725 0851 .0988 1134
2 .1289 .1453 .1623 .1800 .1981 2166 2353 2540 2727 2911
3 3091 3264 3431 .3588 3734 3868 .3988 .4092 4180 4250
4 4302 4333 4344 4333 4301 4247 4171 4072 3952 3811
When 0 < x < 1, Jy(x) ~ & (1 - l—z)
Ja(x)
x 0 2 3 4 5 .6 T .8 9
0 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0006 .0010 0016
1 .0025 .0036 .0050 .0068 .0091 0118 .0150 0188 0232 .0283
2 .0340 .0405 0476 .0556 .0643 .0738 .0840 .0950 1067 1190
3 1320 .1456 1597 1743 .1891 2044 2198 2353 2507 .2661
4 2811 2958 3100 3236 3365 3484 3594 .3693 3780 3853
When0 < x < 1, Ju(0) = 35 (1- 5 )-
TABLE 5.6.4  Zeros of Jy(x), J,(x), (%), J;(x), J,(x), J5(x)
m Jom Jim Jam Jam Jam Js.m
1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 149309 164706 17.9598 19.4094 20.8269 22.2178
6 18.0711 19.6159 21.1170 22.5827 24.0190 25.4303
7 21.2116 22.7601 242701 25.7482 27.1991 28.6266
8 24.3525 259037 27.4206 289084 30.3710 31.8117
9 274935 29.0468 30.5692 32.0649 33.5371 34.9888
10 30.6346 32.1897 33.7165 35.2187 36.6990 38.1599
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where

n is a nonnegative integer, n > 0

Iis an integer subject to constraints: n— |1 is even and || < n

r is the length of vector from origin to (x, y) point

0 is the angle between - and x-axis in the counterclockwise direction

The orthogonality property is expressed by the formula

* T
J Vo (1 6)V,.(n B)rdrde—mémnékl (5.7.2)

X +y251

where &;; is the Kronecker symbol. The real-valued radial polynomials satisfy the orthogonality relation

IR r)rdr = L) (5.7.3)

2(n+1) ™
The radial polynomials are given by

all

0,4 0¥g ol D
R et gr)z(r - s

g2 8"

' (5.7.4)
n—|l
= N (—1)2 (I’l S)' rn—zs
Z +\z\ OOe-| O
-5
H2 B2 B
For all permissible values of 7 and |
Ron(1) =1, Ry(r) = R, (r) (5.7.5)

Table 5.7.1 gives the explicit form of the function R, (7).
A relation between radial Zernike polynomials and Bessel functions of the first kind is given by

T () (5.7.6)
U

J’RnM Urrdr—( )

From (5.7.1) we obtain the following real Zernike polynomials:

nl

1
U, = E’V"l + Vn(_l)] = Rnl(r)coslﬁ 120

Uy = Z—JV” -~V )] R,(r)sini6, 1#0 (5.7.7)
Vn(J:RHO(r)

Figure 5.7.1 shows the function U, for a few radial modes.
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TABLE 5.7.1 The Radial Polynomials R,;(r) for 1 <8,n<8

0

1

2 3 4 5 6

8

2r2 —1 6rt —6r2 +1 20r% — 30r* + 12¢2 — 1
3r3 —2r 10r° — 1273 4+ 3r
r? 4r* — 3r2 15r% — 20r* + 6r2

r 5r5 —4r3

rt 6ro — 5rt

35r7 — 60r° + 30r3 — 4r

2177 — 303 + 1073

7r’ —6r°

70r% — 140r° + 90r* — 20r2 + 1

56r8 — 105r® + 60r* — 10r2

2878 — 42r% + 15r*

8r® — 7r®




n=04¢=0 n=11¢=1

”:2’620 n:2,622

I’l=3,f:] n=34¢=3

FIGURE 5.7.1
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Expansion in Zernike Polynomials

If flx, y) is a piecewise continuous function, we can expand this function in Zernike polynomials in the
form

[ <)

f(x, y) = Z z AnIan(x, y), n—‘l‘ is even,
n=0 [=—o0

!

<n (5.7.8)

Multiplying by VnDl (x, y), integrating over the unit circle, and taking into consideration the orthogonality
property we obtain

n+1 I rcos 0, rsin G)rdrde

- D D (5.7.9)
= Ivn,(x,y)f(x,y)dxdy:An<—z>

x +y2s1

with restrictions of the values of n and [ as shown above. A /s are also known as Zernike moments.

Example

Expand the function f{x, y) = x in Zernike polynomials.

Solution We write f(r cos 6, rsin 8) = r cos 8 and observe that r has exponent (degree) one. Therefore,
the values of n will be 0, 1 and because n — ‘l‘ must be even, [ will take 0, 1 and —1 values. We then write

Xyzzz ]ZB

n=0

1

PR+ AR () F AR ()] 5.710)

n=0

= ooRoo(r) + A1(—1)R1(—1)(r)e * AllRH( )

where three terms were dropped because they did not obey the condition that 7 — |I| is even. From (5.7.5)
R, _1y(r) = R,,(r) and hence we obtain

2mr 1
Ay = II I Roo(r)rCOSGrdr dg=0
T Jo Jo
2 2m 1 " 1
A, \=— R (r)rcos@e “rdrd=—
1(-1) 77.[ IO 11( ) 2
2 2mr 1 . 1
A= *J‘ I R”(r)rcoseeferdrdez =
7T 0 2
Therefore, the expansion becomes
I N T _ _
f(x, y)—Ere +Ere =rcosf —R“(r)COSG—x

as was expected.
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The radial polynomials R,(r) are real valued and if f(x, y) is real, that is, image intensity, it is often
convenient to expand in real-values series. The real expansion corresponding to (5.7.8)

o o

f(x, y) = Z Z(Cnl coslf+S sian)Rnl(r) (5.7.11)

where #n — s even and I < n. Observe that [ takes only positive value. The unknown constants are found
from

Bj’ 0 U
= 2n+2I I rdrd@f(rcos@ rsmB) ( )EE(')SZBD 1£0 (5.7.12)
DSnID [$1le|3
1 1 27
cC =A =— drd@ 6, rsin@| R , 1=0 5.7.13
o0 =4, ]_[J;J; rdr f(rcos rsin ) nl(r) ( a)
S,=0, 1=0 (5.7.13b)

If the function is axially symmetric only the cosine terms are needed. The connection between real and
complex Zernike coefficients are

C, = 2Re{A,} (5.7.14a)
S, = —2Im{A,} (5.7.14b)
A, =(Cy—-jS02 =(A,)* (5.7.14c¢)

Figure 5.7.2 shows the reconstruction of the letter Z using different orders of Zernike moments.

1.6 Sampling of Signals

Two critical questions in signal sampling are: First, do the sampled values of a function adequately
represent the system? Second, what must the sampling interval be in order that an optimum recovery of
the signal can be accomplished from the sampled values?

The value of the function at the sampling points is the sampled value, the time that separates the
sampling points is the sampling interval, and the reciprocal of the sampling interval is the sampling
frequency or sampling rate.

If the sampling interval T, is chosen to be constant, and n =0+ 1, £ 2, ..., the sampled signal is

A=) 3 ol )= 5 ster) o) (6.1

Its Fourier transform is

Fs(a))i@{fs(t} = if(nTs)@{é(t—nTs)} =nimf(nTs)e—janS (6.2)

n=-oo

We can also represent the Fourier transform of a sampled function as follows:
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(6.3)

S e

F(o) is periodic with period w, in the frequency domain.

Example

B N = AP SR 2
Jpée Zé(t nTS)E—JPS(w)—TZ

n=-co

1.6.1 The Sampling Theorem

It can be shown that it is possible for a band-limited signal () to be exactly specified by its sampled
valued provided that the time distance between sample values does not exceed a critical sampling interval.

Theorem 6.1.1
A finite energy function f(f) having a band-limited Fourier transform, F(w) = 0 for |®| > @, can be
completely reconstructed from its sampled values f(nT,) (see Figure 6.1.1), with

éﬁina 5 :
21
t|= T T % W =— 6.1.1
)= 3 o) i) B 7T (6.1.1
O OJ
= B
provided that
2£:T Sl:i:&
w, ° owy 2fy, 2

The function within the braces, which is the sinc function, is often called the interpolation function
to indicate that it allows an interpolation between the sampled values to find f(¢) for all .

Proof Employ (6.3) and Figure 6.1.1c to write

F®) = py,n(0) TF(o) (6.1.2)
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=27, - T; T, 2T 3T, —WN wN
(a) (b)
S5
4
AT
/ o S(4T)
4
SNqg- J3Ty)
- ¥ f '
-2 -T; T 2T, 3T, 4T,
/
F
¥
FIGURE 6.1.1
By (6.1.2), the above equation becomes
—ap-1 —a -1 E - — jnaT; E
() =F {F(a))} =F %Pwsp(w)Tst(”ﬂ)e %

=T, Z A1) o, (@) 7}

n=—00

By application of the frequency-shift property of the Fourier transform, this equation proves the theorem.
The sampling time

T,
TsziN:L (6.1.3)
2 ZfN
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is related to the Nyquist interval. It is the largest time interval that can be used for sampling of a band-
limited signal and still allows recovering of the signal without distortion. If, however, the sampling time
is larger than the Nyquist interval, overlap of spectra takes place, known as aliasing, and no perfect
reconstruction of the band-limited signal is possible. Figure 6.1.2 shows the delta sampling representation
and recovery of a band-limited signal. The following definitions have been used in the figure:

() comby (1) £()=/(t) comby. (1)
/\ | , o
X = {
— 1] 111 aniil e
Tl —{Te
F F 1 5
Flw) z COMB. ) Fol) =+ Fw) + COMB. (o)
. 2x i = F(0)
F(0) T T
w | | w 2] 1 L 21
wN wN — ZT' fo— _7:=w’ wN wN T;L:“’s

Fy(w) = rl, F(w) » COMB, (o) Fy(w) = ‘r]; F(w) + COMB,, (w)

F(©) o
T 7,
VTV N1V \-
/ A A \
i TAN A \ w L ] w
TWN wy —2oy —Ws —WN oy f 2oy
we=2wN=2%/T;
(b) (d)
Fy() = 3 F(w) » COMB,, (@) Ts P, 2(©) F%w)
s
F(O) T
A x - /_.F_“’)\
/—:u, —wN wp w:=2wN © _% % ¢ YN YN ¢
g-1 g-! tff“
(e)
£® T sin (22 S0
t
”~ l "
/s
/ . =
1t
r 1 1 ! - ot !
—| T, —znV‘\T T/\/zn
—is s

FIGURE 6.1.2
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combTS(t)= id(t—nTs) (6.1.4)

n=—o00

00

COMB,, (w) = Z 6(0)—0)5) (6.1.5)

Frequency Sampling

Analogous to the time-sampling theorem, a frequency-sampling equivalent also exits.
Theorem 6.1.2

A time function f(#) that is time limited so that

f(H) =0, |t > Ty (6.1.6)

possesses a Fourier transform that can be uniquely determined from its samples at distances n7/ Ty, and
is given by

Fw) = 0 e Coin{aT, ~nr (6.1.7)

) nZ_mFErTNH Wl —niT

where the sampling is at the Nyquist rate.

Sampling With a Train of Rectangular Pulses

The Fourier transform of a band-limited function sampled with periodic pulses is given by (see Figure
6.1.3)

S sinljnwsrD E
- )0 202 Cfermnao )
T £ Tl&)ST 0
. 2 :
i oo, 70 (6.1.8)
-5 2 B i (o
L T )
2
. Unow 0
I smg?g
= ziF(w—nws)
L noT
2

where 7 is the width of the pulse. The above expression indicates that as long as ®, > 2@y, the spectrum
of the sampled signal contains no overlapping spectra of f{f) and can be recovered using a low-pass filter.
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T T

FIGURE 6.1.3

1.6.2 Extensions of the Sampling Theorem

The sampling theorem of a band-limited function of # variables is given by the following theorem:

Theorem 6.2.1

Let f(t;, t,, ..., t,) be a function of n real variables, whose n-dimensional Fourier integral exists and is
identically zero outside an #n-dimensional rectangle and is symmetrical about the origin, that is,

gy Vo es ¥ 0, \yk\ > \a)k\, k=1,2,...,n (6.2.1)

Then

f(tl,tz,.., z ifﬂnm ..,nm”ﬁ

) ) (6.2.2)
SIH(OJ t—m ra sm(w t —m ra
w,t, —mTT Wt —m Tl

An additional theorem on the sampling of band-limited signals follows.

Theorem 6.2.2
Let f(t) be a continuous function with finite Fourier transform F(w)[F(®) = 0 for ‘a)| > 27 fy]. Then

= O AL 0
=" E(kn)+(- (t = kh)eW (kn) + L) £ (kh)O
& H H
“ (6.2.3)
|js1n (t kh)ﬁ
)
5 h(t kh) i
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where:
R is the highest derivative order
h=(R+1)ICf)
EWR) (kh) is the Rth derivative of the function &(.)

&0 (k) = Z@EE’% i)
) D”D
dtﬁ B

4 +
F0 =0 =9 0 2000+ L a(3sa’ +4x 16))”‘[0(;3) _
3 15 63
Papoulis Extensions
The band-limited signal
I e’“”da)
“on),
can be represented by
> sinw (t -nT
t)= nT
10 n:_wf( ) (t=n7)
where
T
w, ?Zwl, w, Sw, 2w, —w,
Theorem 6.2.3
Given an arbitrary sequence of numbers {a,}, if we form the sum
sinw, t nT)
n_z w it nTi
then x(#) is band limited by w,.
The sampling expansion of f2(f) is given by
= sinw, (t— nT)
’(t)= Z *(nT 70(
0= 70
where
w, =7—;, w, 22w, 2w, Sw, <2w, —2w, T S%

1
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(6.2.4)

(6.2.5)

(6.2.6)

(6.2.7)



The band-limited signal given in (6.2.4) can be expressed in terms of the sample values g(nT) of the
output

g(?) =217J_: Hw)H(w)ed w (6.2.8)

of a system with transfer function H(®) driven by f(#). The sampling expansion of f(¢) is

)= slrrfe-n1) (629

where

Wt)= ﬁj'_m ) dw (6.2.10)

1.7 Asymptotic Series

Functions such as f(z) and ¢(z) are defined on a set R in the complex plane. By a neighborhood of z,
we mean an open disc | z— z,| < §if z, is at a finite distance, and a region |z| > §if z is the point at infinity.

f = O(¢) and f = o(@) Notation

We write f= O(¢) if there exists a constant A such that | f| < A/g| for all zin R.

We also write f= O(¢) as z— z, if there exists a constant A and a neighborhood U of z, such that | f]
< Alp| for all points in the intersection of U and R.

We write f = o(¢) as z > z, if, for any positive number &, there exists a neighborhood U of z, such
that | f| < &|o| for all points z of the intersection of U and R.

More simply, if ¢ does not vanish on R, f= O(¢) means that f/¢ is bounded, f = o(¢) means that f/¢
tends to zero as z — z,
Asymptotic Sequence

A sequence of functions {¢,(2)} is called an asymptotic sequence as z — z, if there is a neighborhood
of z, in which none of the functions vanish (except the point z,) and if for all n

P = 0(@,)  asz—>z

For example, if z, is finite {(z — z,)"} is an asymptotic sequence as z — z, and {z ™} is as z — oo.

Poincaré Sense Asymptotic Sequence

The formal series

f(2) DZund)n(z) (7.1)

which is not necessarily convergent, is an asymptotic expansion of f(z) in the Poincaré sense with respect
to the asymptotic sequence {¢,(2)}, if for every value of m,
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(-3 0. (=cle. () 72)

as z—> z,
Because

f(2)- Zan(pn(z)=am¢m(z)+o(¢m(z)) (7.3)

in partial sum

(7.4)

M
L

_

=

-

2
—_
X

n=0

is an approximation to f(z) with an error O(¢,,) as z — z;; this error is of the same order of magnitude
as the first term omitted. If such an asymptotic expansion exists, it is unique, and the coefficients are
given successively by

(7.5)

Hence, for a function f(z) we write

10y a0.(9 7.6

Asymptotic Approximation

A partial sum of (7.6) is called an asymptotic approximation to f{z). The first term is called the dominant
term.
The above definition applies equally well for a real variable z.

Asymptotic Power Series

We shall assume that the transformation z' = 1/(z — z,) has been done for limit points z, located at a
finite distance. Hence we can always consider expansions as z approaches infinity in a sector a < ph z <
B; or, for real value x, as x approaches infinity or as x approaches negative infinity.

The divergence series

2 4 a a a
f(Z)=ZJ:a0 4+ 1 +7§ IR/ S T (77)
Z n

in which the sum of the first (n + 1) terms is S,(2), is said to be an asymptotic expansion of a function
flz) for a given range of values of arg z, if the expansion R,(z) = z"{f(z) — S,(2)} satisfies the condition

lim Rn(z) =0 (n is ﬁxed) (7.8)

ERE
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even though
I{mm‘Rn(z)‘ =0 (zis ﬁxed)
When this is true, we can make

2{fl2) - S,(2)} < & (7.9)

where ¢ is arbitrarily small, by making |2 sufficiently large. This definition is due to Poincaré.

Example
For real x, integration on the real axis and repeated integration by parts, we obtain

n—-1 ~
f(x) =J’x t7ledt =i —% +j—i —.. +(_l)x£n_l)!+(_l)nnl-[c etnijlt

If we consider the expansion

we can write

m

1 !
u =—————+——...
X

m=0

But |u,/u,, | = mx~' — o as m — 0. The Series Zu,, is divergent for all values of x. However, the series
can be used to calculate flx).
For a fixed n, we can calculate S, from the relation

=S = () (o) [

t

Because exp(x— 1) < 1,

=S () =(rrip [ <o =

X X

For large values of x the right-hand member of the above relation is very small. This shows that the value
of f{x) can be calculated with great accuracy for large values of x, by taking the sum of a suitable number
of terms of the series Xu,,. From the last relation we obtain

\x"{f(x) - S0} <nx1 >0 asx—> oo

which satisfies the asymptotic expansion condition.

Operation of Asymptotic Power Series

Let the following two functions possess asymptotic expansions:
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f(x)ziai, g(x)zzbf:l s X — 00

X x
n=0 n=0
on the real axis.
(a) If A is constant
= A
Af(x)= % (7.10)
x
n=0

(b)

f(x)+g(x) = Z % ’:bn (7.11)

(c)

(7.12)

=

c,=a,b +ab_ +--+a b +ab,

n=1"1

(d) If a,# 0, then

1 1 «d,
f(x)~ao+;x"’ X - 00 (7.13)

The function 1/f(x) tends to a finite limit 1/a, as x approaches infinity. Hence,

0 0 0 O
1 1 1 ID

S i e P e e s

Similarly we obtain

and so on.
In general, any rational function of f{x) has an asymptotic power series expansion provided that
the denominator does not tend to zero as x approaches infinity.
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(e) If flx) is continuous for x > a > 0 and if x > g, then

°° 1l
:L Ef(t)—ao —%Ejt:ixz+%+...+% +... (7_14)

(f) If flx) has a continuous derivative f'(x), and if f'(x) possess an analytic power series expansion as
x approaches infinity, the expression is

fi(x)= _Z(”_l)"“"-l (7.15)

(g) It is permissible to integrate an asymptotic expansion term-by-term. The resulting series is the
expansion of the integral of the function represented by the original series.
Let

_ -m —_ -m
= Z ax™ and S = Z a, x
m=2 m=2
Then, given any positive number e, we can find x, such that

flx) = S,(x)| < el for x > x,

Hence

However,

and therefore

Example
The Fresnel integrals

Im cos(QZ)dH, Im sin(@z)de (7.16)

can be written in the form

> cost smt
[ e [
u
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These are particular cases of the real and imaginary parts of the integral

f(x a)=I t—dt (7.17)

Integrating by parts we obtain

(7.18)

Hence

ie” = a+r
flxa)=" Z() (7.19)
as x approaches infinity. The absolute value of the remainder after n + 1 terms is

r(a+n+1)“°° et dt<r(a+n+1) ®dr r(a+n)
x T

I—(a) atntl Y| T I—(a) L parnl - r(a)xa+n

Hence, the remainder after n terms does not exceed in absolute value the absolute value of the (n + 1)th
term, which proves the result.
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