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5.1 Introduction’

The Laplace transform has been introduced into the mathematical literature by a variety of procedures.
Among these are: (a) in its relation to the Heaviside operational calculus, (b) as an extension of the
Fourier integral, (c) by the selection of a particular form for the kernel in the general Integral transform,
(d) by a direct definition of the Laplace transform, and (e) as a mathematical procedure that involves
multiplying the function f(t) by e~** dt and integrating over the limits 0 to 0. We will adopt this latter
procedure.

Not all functions f(¢), where t is any variable, are Laplace transformable. For a function f(t) to be
Laplace transformable, it must satisfy the Dirichlet conditions — a set of sufficient but not necessary
conditions. These are

1. f(t) must be piecewise continuous; that is, it must be single valued but can have a finite number
of finite isolated discontinuities for ¢ > 0.

2. f(t) must be of exponential order; that is, f{f) must remain less than Me~9' as t approaches oo,
where M is a positive constant and a, is a real positive number.

For example, such functions as: tan Bt, cot ft, e are not Laplace transformable. Given a function f(?)
that satisfies the Dirichlet conditions, then

F(s) =J:f(t)e_”dt written EB{f(t} (1.1)

is called the Laplace transformation of f(#). Here s can be either a real variable or a complex quantity.
Observe the shorthand notation £{f(#)} to denote the Laplace transformation of f(t). Observe also that
only ordinary integration is involved in this integral.

“All the contour integrations in the complex plane are counterclockwise.
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To amplify the meaning of condition (2), we consider piecewise continuous functions, defined for all
positive values of the variable ¢, for which

lim f(t)e_” =0, c=real constant.

t— 00

Functions of this type are known as functions of exponential order. Functions occurring in the solution
for the time response of stable linear systems are of exponential order zero. Now we can recall that the

integralI f (t) e** dt converges if
0

dt<oo, s=0+jw

[ o)

If our function is of exponential order, we can write this integral as

This shows that for o in the range o > 0 (o is the abscissa of convergence) the integral converges; that is

I

The restriction in this equation, namely, Re(s) = ¢, indicates that we must choose the path of integration
in the complex plane as shown in Figure 5.1.

00

f(t)e_” dt<oo, Re(s)>c.

. Abscissa of convergence
jw

s—plane

FIGURE 5.1 Path of integration for exponential order function.
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5.2 Laplace Transform of Some Typical Functions

We illustrate the procedure in finding the Laplace transform of a given function f(#). In all cases it is
assumed that the function f(#) satisfies the conditions of Laplace transformability.

Example 5.2.1
Find the Laplace transform of the unit step function f(¢) = u(t), where u(¢) =1, t> 0, u(t) =0, < 0.

Solution
By (1.1) we write

==, (2.1)

The region of convergence is found from the expressionI
0

et dt :I e~°! dt < oo, which is the
0
entire right half-plane, o > 0.

Example 5.2.2

Lt

V'

Find the Laplace transform of the function f(¢) =2

F(s)zzj’0 2oty (2.2)

1 1 1

. . . 3 1 -3 . 3
To carry out the integration, define the quantity x = ¢?, then dx = Et 2 dt, from which dt =212 dx =

2x dx. Then

But the integral

Thus, finally,

F(s)zi. (2.3)
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Example 5.2.3

. k .
Find the Laplace transform of f(#) = erfc ——, where the error function, erf , and the complementary
2Vt

error function, erfc ¢, are defined by

2 £ 2 27
erft=——1 e " du, erfct=——| e " du,

vde \ 11
Solution
Consider the integral
O
2 7 R k
I=—J' e ”gA e “2du%it where A :E' (2.4)
v i 0
. . : A A’
Change the order of integration, noting that u = — , = —
V't u
0 |:| 0 D 0 2
2 _ _ 2 0 A2
I=%J. e’ e Lt du= / I exprru’ ——SEdu
s IS H" »
A TT IO 2 |:| s\ TTJO u
The value of this integral is known
- 27 EI\ ne—z)\\‘/s ,
sy 2
which leads to
O kU1
SE[erch:exp{—k\ 5} . (2.5)
O 2¢O S

Example 5.2.4
Find the Laplace transform of the function f(¢) = sinh at.

Solution
Express the function sinh at in its exponential form

at —at

. —e
sinhat =

The Laplace transform becomes

© 2000 by CRC PressLLC



SE{sinhaf} = ;J: %_(5_”)t _e‘(”“)f Bjt

(2.6)

A moderate listing of functions f(#) and their Laplace transforms F(s) = £{f(¢)} are given in Table
5.1, in the Appendix.

5.3 Properties of the Laplace Transform

We now develop a number of useful properties of the Laplace transform; these follow directly from (1.1).
Important in developing certain properties is the definition of f(¢) at t = 0, a quantity written f(0+) to
denote the limit of f(¢) as t approaches zero, assumed from the positive direction. This designation is
consistent with the choice of function response for t > 0. This means that f(0+) denotes the initial
condition. Correspondingly, f® (0+) denotes the value of the nth derivative at time ¢ = 0+, and f©"
(0+) denotes the nth time integral at time f = 0+. This means that the direct Laplace transform can be
written

H(s) —}ymjf Jeidr, R>0,a>0. (3.1)
a- 0+

We proceed with a number of theorems.

Theorem 5.3.1 Linearity
The Laplace transform of the linear sum of two Laplace transformable functions f(¢) + g(¢) with respective
abscissas of convergence o and o with c,> Op is

LLf(1) + g(1)} = F(s) + G(s) . (3.2)

Proof
From (3.1) we write

58{ t)+ t} =I [ t)+g ] e *dt = I ”dt+J’ e *dt,
fe) vty = [7()+ o (t) s(t)
Re(s) >0
Thus,
LLf(1) + g(6)} = F(s) + G(s) .

As a direct extension of this result, for K, and K, constants,

LK, f(t) + K, g(t)} = K, F(s) + K,G(s) . (3.3)
Theorem 5.3.2 Differentiation
Let the function f(t) be piecewise continuous with sectionally continuous derivatives df(t)/dt in every

interval 0 < < T. Also let f(t) be of exponential order e¢* as t — oo. Then when Re(s) > ¢, the transform
of df(t)/dt exists and
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g dt =5${f(f)} - f(0+)=sF(s) - £(0+). (3.4)

Moo

Proof
Begin with (3.1) and write

SB%I@%:lim Tﬂ(t)e“”dt.
E dt a T-wjy dt

Write the integral as the sum of integrals in each interval in which the integrand is continuous. Thus,
we write

.[)Te”’f(l)(t)dtz.[:l[ ]+J:2[ ]++J:T1[ ]

Each of these integrals is integrated by parts by writing

u=e du=—se"'dt

df
dv=—-dt v=
dt f

with the result

sreple)

coe)eve sl eve o) v sl

But f(¢) is continuous so that f(#, — 0) = f(#, + 0), and so forth, hence

J;Te‘”f(l)(t)dt = —f(o +) +e‘STf(T) +sJ'Te‘”f(t)dt.

0

However, with lim,,, f(#)e=" = 0 (otherwise the transform would not exist), then the theorem is
established.

Theorem 5.3.3 Differentiation

Let the function f(t) be piecewise continuous, have a continuous derivative f"-V(t) of order n — 1 and
a sectionally continuous derivative f(")(¢) in every finite interval 0 < < T. Also, let f(t) and all its derivatives
through f"-1)(¢) be of exponential order e as t — . Then the transform of f("(¢) exists when Re(s) >
c and it has the following form:

LLFO(E)} = "F(s) — s7f(04+) = s"2fD(04) — -« — s#f0D(04) . (3.5)

Proof
The proof follows as a direct extension of the proof of Theorem 5.3.2.

Example 5.3.1

Find &{ "} where m is any positive integer.
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Solution
The function f(#) = t™ satisfies all the conditions of Theorem 5.3.3 for any positive c. Thus,

f(0+) = fOO+) = -+ = fimD(0+) =0
Fo(e) = ml,  for() = 0.
By (3.5) with 1= m + 1 we have
LL{fmD(t)} =0 = s 1L{t™} — m! .

It follows, therefore, that

Theorem 5.3.4 Integration

t

f (E) dé has the Laplace

If f(t) is sectionally continuous and has a Laplace transform, then the function I

transform given by

SR ORI
SEEIO f(E)dEE S 0+4). (3.6)

Proof
Because f(t) is Laplace transformable, its integral is written

O, 0 o0 0.,
| wf(f)dfg— | Q'_mf(f)dfg dr.

This is integrated by parts by writing

uzl;f(f)de du= (&) = f(t)dr

dv=e*'dt V=—le_“.
s
Then
i@{_;f(f)dfé: é_e:t.]—_;f(f)dféo +1J;mf(t)e_5fdt
=l [ ole)ae
from which
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0 D" dED—fF() 1 (0+)

where [f-V(0+)/s] is the initial value of the integral of f(¢) at t= 0+. The negative number in the bracketed
exponent indicates integration.

Example 5.3.2
Deduce the value of £{sin at} from Z{cos at} by employing Theorem 5.3.4.

Solution
By ordinary integration

t sinat
cosaxdx = .
0 a

S

From Theorem 5.3.4 we can write, knowing that ${cos at} =

s +a’
[hlnatD 1
Di
Oa O s+a’
so that
. _a
SB{smat} = EFER

Theorem 5.3.5
Division of the transform of a function by s corresponds to integration of the function between the limits
0 and ¢

()gj'f()f

(3.7)

L] DIIHFITI
(=}

%G 2HII f d)\dé

and so forth, for division by s*, provided that f(¢) is Laplace transformable.

Proof
The proof of this theorem follows from Theorem 5.3.4.

Theorem 5.3.6 Multiplication by t
If f(¢) is piecewise continuous and of exponential order, then each of the Laplace transforms: £{ f(¢),
Ltf(t), L{3f(¢),...is uniformly convergent with respect to s when s = ¢, where > ¢, and

Herp(e} =() o) (3.8)
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Further
Eigoﬁgs)zo, M,{t fle )} =0, n=1,23,...

Proof
It follows from (3.1) when this integral is uniformly convergent and the integral converges, that

Further, it follows that

Similar procedures follow for derivatives of higher order.

Theorem 5.3.7 Differentiation of a Transform
Differentiation of the transform of a function f(¢) corresponds to the multiplication of the function by
—t; thus

d”FEs):F<n)(S)=$H_t)" R n=12 (3.9)

Proof
This is a restatement of Theorem 5.3.6. This theorem is often useful for evaluating some types of integrals,
and can be used to extend the table of transforms.

Example 5.3.3
Employ Theorem 5.3.7 to evaluate OF(s)/0s for the function f(¢) = sinh at.

Solution
Initially we establish sinh at

smhat} J. Bi_utédt—s ‘—laz =F(s).

By Theorem 5.3.7

OF S
a(55) :J; (—t)sinhate_”dt ::s%;z ilaz E': _(522_64: )2

from which

[}

I e *'tsinhatdt = EB{tsinhat} = -
0
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We can, of course, differentiate F(s) with respect to a. In this case, Theorem 5.3.7 does not apply.
However, the result is significant and is

OF ®
A T e I v

Theorem 5.3.8 Complex Integration

t 00
If f(¢) is Laplace transformable and provided that lim,_,,, M exists, the integral of the function.[
t

S

F(s) ds corresponds to the Laplace transform of the division of the function f(t) by ¢,

A3

iy Ezﬁ F(s)ds. (3.10)

Proof
Let F(s) be piecewise continuous in each finite interval and of exponential order. Then

is uniformly convergent with respect to s. Consequently, we can write for Re(s) > cand any a > ¢

J; F(s)ds =J; J; e_”f(t)dtds.
Express this in the form

(<)

[ f(t)Jje'”dsdtZ'[if(:)(e_” - ar.

Now if f(#)/t has a limit as t — 0, then the latter function is piecewise continuous and of exponential
order. Therefore, the last integral is uniformly convergent with respect to a. Thus, as a tends to infinity

©® t
I F(s)ds = i%fﬂg
: ER=
Theorem 5.3.9 Time Delay; Real Translation

The substitution of #— A for the variable ¢ in the transform £{ f(¢)} corresponds to the multiplication
of the function F(s) by e~*5; that is,

L{f(t—A)} = e**F(s) . (3.11)

Proof
Refer to Figure 5.2, which shows a function f(#) u(t) and the same function delayed by the time ¢t = 2,
where A is a positive constant.
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f0)

S f=2)

FIGURE 5.2 A function f(¢) at the time ¢ = 0 and delayed time ¢ = A.

We write directly

A f(1-N)u(t-1} =wa(t A)ufe-A)ear.

Now introduce a new variable 7 = ¢ — A. This converts this equation to the form

SZ{ f(r)u(r} = e_S)‘ij(T)u(T )e'“dr = e's"J;wf(r)e‘”dT =e™ F(s)

because u(7) =0 for -A < t<0.
We would similarly find that

LLf(t+ A)u(t+ A)} = es*F(s). (3.12)

Example 5.3.4

Find the Laplace transform of the pulse function shown in Figure 5.3.

U A1)
2
2u(t)
1.5
2 0 t
~2u(t-1.5)
1.5 t -2

FIGURE 5.3 Pulse function and its equivalent representation.

Solution
Because the pulse function can be decomposed into step functions, as shown in Figure 5.3, its Laplace

transform is given by
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O
{2[ t 15]} 2%—151-55[,:3(1—(1-55)
s s a s

where the translation property has been used.

Theorem 5.3.10 Complex Translation
The substitution of s + a for s, where a is a real or complex, in the function F(s + a), corresponds to the
Laplace transform of the product e=**f(¢).

Proof
We write
e f _”dt s+l dt for Re(s)>c—Relal,
[ =[ 1) (§)>¢~Rela)
which is
F(s+ a) = L{e'f(1)}. (3.13)
In a similar way we find
F(s—a) = £{e*f(t)}. (3.14)

Theorem 5.3.11 Convolution
The multiplication of the transforms of two sectionally continuous functions f,(¢) (= F,(s)) and f,(¢t)
(= E,(s)) corresponds to the Laplace transform of the convolution of f,(¢) and f,(t)

Fi(s) Fy(s) = £{f,(1) * f,(1)} (3.15)

where the asterisk * is the shorthand designation for convolution.

Proof
By definition, the convolution of two functions f,(f) and f,(¢) is

£(c) oA (t) J'flt T)f(r I]q )£t )at . (3.16)

Thus,

0
{fl - 90 fltrfz r)dr g
0

:Iwgwﬁ(t—r)fz(r)dr Ee’”dt
o [Jo 0
:Lmﬁ(r)dr.[)mfl(t—r)e_”dt.

Now effect a change of variable, writing ¢t — 7 = £ and therefore dt = d¢, then

J- f2 dTI fl §+T
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But for positive time functions f,(£) = 0 for £ < 0, which permits changing the lower limit of the second
integral to zero, and so

:Lwﬁ(r)e'”drﬁwﬁ(f)e”fdf,

which is
‘Sg{f1<t) *fz(t)} = F1(5)F2(5) .

Example 5.3.5

Given f,(t) = tand f,(t) = e*, deduce the Laplace transform of the convolution t * e?* by the use of
Theorem 5.3.11.

Solution
Begin with the convolution

t at t
te

tDe“’zJ; (t— r)e”’dr =

_S—ear _e” é =%(e”r —at —l).

N
AN

0

Then

101 1 1

SB{tDeat} - a’ Bs-ia_sz_sﬁzsz(sw) .

By Theorem 5.3.11 we have

and

11

Sl

Si{tDe‘“} =

Theorem 5.3.12
The multiplication of the transforms of three sectionally continuous functions f, (), f,(¢), and f;(¢t)
corresponds to the Laplace transform of the convolution of the three functions

ELf1(1) * f,(1) * f5(8)} = Fi(s) Fy(s) F5(s) . (3.17)

Proof
This is an extension of Theorem 5.3.11. The result is obvious if we write

Fi(s)Fy(s) F5(s) = £{f,(t) * L F,(s) F5(s)}.

Example 5.3.6
Deduce the values of the convolution products: 1 * f(#); 1 * 1 * f(¢).
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Solution
By equations (3.14) and (3.16) we write directly

O
= [J’ E dg‘Dby equation (3.7)

O & 0
:zg” £(A)an dg0
0o D
Theorem 5.3.13 Frequency Convolution — s-plane

The Laplace transform of the product of two piecewise and sectionally continuous functions f;(¢) and
f,(#) corresponds to the convolution of their transforms, with

A £ (1) () 2217_[j[131(s)D132(s)]. (3.18)

(a) For f,(t) = 1, (1) = f(1), £{1 * f(1)} =

S

(b) For f,(1) = 1, f,(1) = 1, f3(£) = f(#), {1 = 1 * f(1)} =

Proof
Begin by considering the following line integral in the z-plane:

fz(l‘)_ 21_[] czF( ) dz, 0, =axis of convergence.

This means that the contour intersects the x-axis at x, > o, (see Figure 5.4). Then we have

. ()
Jy

FIGURE 5.4  The contour C, and the allowed range of s.

-[)wfl(t)fz(t)e’stdt = Zlmj;mfl(t)dt Cze(Z)e(Z_S)tdZ.

Assume that the integral of F,(z) is convergent over the path of integration. This equation is now written
in the form
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g,tjeo

J:)wﬁ(t)fz(t)e_”dt=21njj;z_jw £(2)dz :]q(t)e‘(”)’dt

O'2+joo

:zlnjj;z_jm E(2)R(s-2)dz22{ £ (¢) £,(c} -

(3.19)

The Laplace transform of f(#), the integral on the right, converges in the range Re(s — z) > o, where
o, is the abscissa of convergence of f(¢). In addition, Re(z) = o, for the z-plane integration involved in
(3.18). Thus, the abscissa of convergence of f,(t) f,(t) is specified by

Re(s) >0, + 0,. (3.20)

This situation is portrayed graphically in Figure 5.4 for the case when both o, and o, are positive. As
far as the integration in the complex plane is concerned, the semicircle can be closed either to the left
or to the right just so long as F,(s) and F,(s) go to zero as s — .

Based on the foregoing, we observe the following:

+ Poles of F,(s— z) are contained in the region Re(s - z) < o,

+ Poles of F,(z) are contained in the region Re(z) < o,

+ From (a) and (3.20) Re(z) > Re(s— o,) > o,

+ Poles of F,(s— z) lie to the right of the path of integration

+ Poles of F,(z) are to the left of the path of integration

* Poles of F,(s— z) are functions of s whereas poles of F,(z) are fixed in relation to s

Example 5.3.7
Find the Laplace transform of the function f(¢) = f,(¢) f,(¥) = e* e u(t).

Solution
From Theorem 5.3.13 and the absolute convergence region for each function, we have

s+1
Fz(s)zi, o,>-2.

s+2

Further, f(1) = exp[~(2 + 1)¢] u(¢) implies that 6= o, + o, = 3. We now write

1 1 1 1 1 1
FZ(Z)E(S_Z)_z+25—z+1_3+52—(1+s) 3+sz+2°

To carry out the integration dictated by equation (3.19) we use the contour shown in Figure 5.5. If we
select contour C, and use the residue theorem, we obtain

Hs)= . Ble)Bls=2)de=2mRe B (=) (s

z=-2 S+3.

The inverse of this transform is exp(-3t). If we had selected contour C,, the residue theorem gives
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| | Imaginary

1 (65}
s-plane

Real

FIGURE 5.5 The contour for Example 5.3.7.

z=1+s

o)=L, Ele){om2)ae= 2 me 5 ) (s 2]

0o
D_s+3E':s+3

The inverse transform of this is also exp(=3t), as to be expected.

Theorem 5.3.14 Initial Value Theorem
Let f(¢) and f(t) be Laplace transformable functions, then for case when lim sF(s) as s — oo exists,

lim sF(s)Z lim f(t) (3.21)

5§ — 00 t- 0+

Proof
Begin with equation (3.6) and consider

limJ.m;l];e_”dt:hm sF(s)—f(O +)] .

5 — 0 5 — 00

Because f(0+) is independent of s, and because the integral vanishes for s — oo, then

lim[sF(s)- £(0 +)] =0.

550

Furthermore, f(0+) = lim,_,,, f(¢) so that

im sF{s) = fim,£(r).
If f(t) has a discontinuity at the origin, this expression specifies the value of the impulse f(0+). If f(¢)

contains an impulse term, then the left-hand side does not exist, and the initial value property does not
exist.
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Theorem 5.3.15 Final Value Theorem
Let f(¢) and fV(#) be Laplace transformable functions, then for t — oo

limf(t):hmsF(s). (3.22)

t— o0 s-0

Proof
Begin with equation (3.6) and Let s — 0. Thus, the expression

lim ooie_“dt=lim sF(s)—f(O +)]

s-0)o dt 550

Consider the quantity on the left. Because s and ¢ are independent and because e~** — 1 as s — 0, then
the integral on the left becomes, in the limit

J;m;l];dt:lim £(r)- (o).

t— 00

Combine the latter two equations to get

limf(t)—f(O +)=lim5F(5)—f(O +).

t— 00 5§

It follows from this that the final value of f(¢) is given by

lim f(r) =lim sF(s).

t— o s-0
This result applies F(s) possesses a simple pole at the origin, but it does not apply if F(s) has imaginary
axis poles, poles in the right half plane, or higher order poles at the origin.
Example 5.3.8

Apply the final value theorem to the following two functions:

b= o B

Solution
For the first function from sF,(s),

For the second function,
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However, this function has singularities on the imaginary axis at s = +jb, and the Final Value Theorem
does not apply.
The important properties of the Laplace transform are contained in Table 5.2 in the Appendix.

5.4 The Inverse Laplace Transform

We employ the symbol ¥{F(s)}, corresponding to the direct Laplace transform defined in (1.1), to
denote a function f(t) whose Laplace transform is F(s). Thus, we have the Laplace pair

E(s) = £{f(0)}, f(r) = LHF(s)}. (4.1)

This correspondence between F(s) and f(¢) is called the inverse Laplace transformation of f(t).

Reference to Table 5.1 shows that F(s) is a rational function in s if f(#) is a polynomial or a sum of
exponentials. Further, it appears that the product of a polynomial and an exponential might also yield
a rational F(s). If the square root of t appears on f(t), we do not get a rational function in s. Note also
that a continuous function f(t) may not have a continuous inverse transform.

Observe that the F(s) functions have been uniquely determined for the given f(¢) function by (1.1).
A logical question is whether a given time function in Table 5.1 is the only #-function that will give the
corresponding F(s). Clearly, Table 5.1 is more useful if there is a unique f(¢) for each F(s). This is an
important consideration because the solution of practical problems usually provides a known F(s) from
which f(t) must be found. This uniqueness condition can be established using the inversion integral.
This means that there is a one-to-one correspondence between the direct and the inverse transform. This
means that if a given problem yields a function F(s), the corresponding f(#) from Table 5.1 is the unique
result. In the event that the available tables do not include a given F(s), we would seek to resolve the
given F(s) into forms that are listed in Table 5.1. This resolution of F(s) is often accomplished in terms
of a partial fraction expansion.

A few examples will show the use of the partial fraction form in deducing the f(¢) for a given F(s).

Example 5.4.1

Find the inverse Laplace transform of the function

F(s) 252;;6' (4.2)

Solution
Observe that the denominator can be factored into the form (s + 2) (s + 3). Thus, F(s) can be written
in partial fraction form as

-3 _ A B
F(S)_(s+;)(s+3)_s+2+s+3' (4.3)

where A and B are constants that must be determined.
To evaluate A, multiply both sides of (4.3) by (s + 2) and then set s = —2. This gives

a=rf )

and B(s+ 2)/(s + 3)|, __, is identically zero. In the same manner, to find the value of B we multiply both
sides of (4.3) by (s + 3) and get

_s—3
s==2  s+3

=-5

s=-2
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s—3
B=Fl|s])|s+3 = =6.
o)
The partial fraction form of (4.3) is
He)=2 e,
s+2 s+3
The inverse transform is given by
_ 01 0 01 0 _
f(t) =% ‘{F(s} =5 —+6 L —[=5e? +6e"
F+20 F+30
where entry 8 in Table 5.1, is used.
Example 5.4.2
Find the inverse Laplace transform of the function
+
F(s) = s+l .
2
@wz) +1gs+3)
Solution
This function is written in the form
( ) A Bs+C s+1
+

ESE §s+2)2+15_ gs+2)2+lgs+3).

The value of A is deduced by multiplying both sides of this equation by (s + 3) and then setting s = 3.
This gives

-3+
=2 o

(—3 +2)2+1

To evaluate B and C, combine the two fractions and equate the coefficients of the powers of s in the
numerators. This yields

§5+2) 1g5+3) §s+2)2+1g5+3)

—155 +2)2+1§+(s +3)(Bs+C) .

from which it follows that

—(s?+4s+5)+Bs?+ (C+3B)s+2C=s5+1.

© 2000 by CRC PressLLC



Combine like-powered terms to write
(<-1+B)s?+(4+C+3B)s+(-5+3C)=s+1.
Therefore,
-1+B=0, -4+C+3B=1, -5+3C=1.

From these equations we obtain

The function F(s) is written in the equivalent form

F( )_ -1 + s+2
s =513 (5+2)2+1-

Now using Table 5.1, the result is

f(t) =—e3'+e?cost, t>0.

In many cases, F(s) is the quotient of two polynomials with real coefficients. If the numerator
polynomials is of the same or higher degree than the denominator polynomial, first divide the numerator
polynomial by the denominator polynomial; the division is carried forward until the numerator poly-
nomial of the remainder is one degree less than the denominator. This results in a polynomial in s plus
a proper fraction. The proper fraction can be expanded into a partial fraction expansion. The result of
such an expansion is an expression of the form

A
2 4Py P2 4 (4.4)

2 r’
§$—S §—S
1 2 p - -
(s-5,) (s-5,)

This expression has been written in a form to show three types of terms; polynomial, simple partial
fraction including all terms with distinct roots, and partial fraction appropriate to multiple roots.
To find the constants A, A,, ... the polynomial terms are removed, leaving the proper fraction

F(s) — (By+ Bys+ ---) = F(s) (4.5)
where
A A A
F(s)= 4 + 4 4ot A R LR et .
s—s,  s—s, STS sTs, (s—sp) (s—sp)

To find the constants A, that are the residues of the function F(s) at the simple poles s,, it is only
necessary to note that as s — s, the term A (s — s;) will become large compared with all other terms. In
the limit

A, =lim (s—sk)F(s). (4.6)

5—>Sk
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Upon taking the inverse transform for each simple pole, the result will be a simple exponential of the
form

oEO=A e . (4.7)

Note also that because F(s) contains only real coefficients, if s, is a complex pole with residue A,, there
will also be a conjugate pole s, with residue A, . For such complex poles

O
gg—lgsAk + Akmgz Akeskt"'AEeSEt-
_Sk S—Sk

These can be combined in the following way:

response = (ak +]'bk)e(0k+jwk)t +(ak _].bk)e(ak-jwk)t

=ea“[(ak +jbk)(cosa)kt +jsin wkt)+(ak —jbk)(cos @t +jsin a;t)]
(4.8)
= Zea“(ak cosw, t —b, sin wkt)

=24’ cos(wkt + Gk)

where 0, = tan™! (b,/a,) and A, = a,/cos 0,.
When the proper fraction contains a multiple pole of order r, the coefficients in the partial-fraction

expansion A, A,,, ..., A,, that are involved in the terms

must be evaluated. A simple application of (4.6) is not adequate. Now the procedure is to multiply both
sides of (4.5) by (s - s,)", which gives

r i O -
R e AR

+Ap(r—1)(5 _SP)+APf

In the limit as s = s, all terms on the right vanish with the exception of A,,. Suppose now that this
equation is differentiated once with respect to s. The constant A,, will vanish in the differentiation but
A1) will be determined by setting s= s ,. This procedure will be continued to find each of the coefficients
A, Specifically, the procedure is specified by

B s
Apk=(r_1k)!%13(s)(s—sp) S:SP, k=1,2,...,r. (4.10)
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Example 5.4.3

Find the inverse transform of the following function:

3 2
)=

Solution
This is not a proper fraction. The numerator polynomial is divided by the denominator polynomial by
simple long division. The result is

Fs)=1+ 020

)

The proper fraction is expanded into partial fraction form

i O U Il S

szis+1i s s2 s+l

F(S)_52+35+1:A11 A A,
The value of A, is deduced using (4.6)

] =

To find A, and A, we proceed as specified in (4.10)

2
I, _ 5" +3s5+1
Alz_[s FP(S)]s:O_ s+1

s=0

10d , O  d0?+3s+10 2 +3s5+1  25+3
b =i =
0

A, =—0O-sF =
! 1!% oo ds% s+1 EFO (5+1)2 s+1

s=0

Therefore,

Hs)=tele o

From Table 5.1 the inverse transform is
f(ty=6()+4+t—et, fort=20.

If the function F(s) exists in proper fractional form as the quotient of two polynomials, we can employ
the Heaviside expansion theorem in the determination of f(¢) from F(s). This theorem is an efficient
method for finding the residues of F(s). Let
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where P(s) and Q(s) are polynomials with no common factors and with the degree of P(s) less than the
degree of Q(s).
Suppose that the factors of Q(s) are distinct constants. Then, as in (4.6) we find

S*»Sk

A=

Also, the limit P(s) is P(s,;). Now, because

lim _Sk:hm 0 = (1)1 ,
srals) el ol
then
s,
A = :
N
Thus,

) ool
Fs)= Qfs)” ZQ(I(S)D(s—sn)‘ 1

This is the Heaviside expansion theorem. It can be written in formal form.

Theorem 5.4.1 Heaviside Expansion Theorem
If F(s) is the quotient P(s)/Q(s) of two polynomials in s such that Q(s) has the higher degree and
contains simple poles the factor s — s, which are not repeated, then the term in f(#) corresponding to

p sk)
Q(l)(sk)

Sit

this factor can be written

Example 5.4.4

Repeat Example 4.1 employing the Heaviside expansion theorem.

Solution
We write (4.2) in the form

FS:P(S): s=3 _ -3
) Qs) #5546 (s+2)(s+3)’
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The derivative of the denominator is
QW(s) =2s+5
from which, for the roots of this equation,

QU(-2) =1, QU(-3)=-1.
Hence,
P(-2) =-5, P(-3)=-6.
The final value for f(¢) is
f(t) = =52+ 6e73".
Example 5.4.5

Find the inverse Laplace transform of the following function using the Heaviside expansion theorem:

0 2s+3 O
¢! . -
[ +4s+7[]

Solution
The roots of the denominator are

s*+4s+7 =(s +2 +j\s“3)(5+2 —j\/3).
That is, the roots of the denominator are complex. The derivative of the denominator is
QW(s) =2s+ 4.
We deduce the values P(s)/QW(s) for each root
Fors =-2 —]v3 Q(l)(51)=—j2\3 P(sl)=—1 —j2v“3
Fors, =2 +j/3 Q(l)(sz) =+j2:3  Ps,)=-1+j213.

Then

f(t) = me(—z—ﬂ\/s)t + ﬂe(—zﬂzx 3)t

-j2+3 273
=2 D_EI 1-52 V3 e I 4 -1 +]/2 \“/3 e 3:8
H -j2.\3 j2V3 =
ae—j2\3t _ ej2\3t) O
=% + e‘jz\‘/3t +ej2\/3t)g
E 7273 E

= e_“EZcos 2\/5 ———sin2+/3t
\/3 E
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5.5 Solution of Ordinary Linear Equations with
Constant Coefficients

The Laplace transform is used to solve homogeneous and nonhomogeneous ordinary different equations
or systems of such equations. To understand the procedure, we consider a number of examples.

Example 5.5.1

Find the solution to the following differential equation subject to prescribed initial conditions: y(0+);
(dyldt) + ay = x(1).

Solution
Laplace transform this differential equation. This is accomplished by multiplying each term by e-s'dt and
integrating form 0 to co. The result of this operation is

sY(s) — y(0+) + aY(s) = X(s),

from which

v(s)= X(S)J(O*)_

sta sta

If the input x(¢) is the unit step function u(t), then X(s) = 1/s and the final expression for Y(s) is

e

Upon taking the inverse transform of this expression

with the result

y(t) = %(1 —e"‘”) +y(0 +)e‘”” .

Example 5.5.2

Find the general solution to the differential equation

&y
dt?

+5@+4y=10
dt

subject to zero initial conditions.

Solution
Laplace transform this differential equation. The result is

52Y(5)+55Y(s)+5Y(s) =%.
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Solving for Y(s), we get

10 10

Y(S) ) 5(52 +5s +4) - s(s+l)(s+4) '

Expand this into partial-fraction form, thus

A B C
)= et
Then
A=y(s)(s+1) = 5(512 ) -5
B= Y(s)(5+4) e (51:)_1) B —%
_ 10 _10
C—sY(S) s=0 (5+1)(5+4) 5:0 T4
and
0y 1 1 O
Y(S)_IOE_3(5+1)+12(5+4) 45%l
The inverse transform is
x(t) =10§-;6_t +112 R %

Example 5.5.3

Find the velocity of the system shown in Figure 5.6a when the applied force is f(#) = e~'u(t). Assume
zero initial conditions. Solve the same problem using convolution techniques. The input is the force and
the output is the velocity.

Solution
The controlling equation is, from Figure 5.6b,

Z‘: +5y +4J: vdt = e_tu(t) )

Laplace transform this equation and then solve for F(s). We obtain
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D=5 +

r
|

= - AW fT() Vel §K= | v
Q Q-

(@) (b)

FIGURE 5.6  The mechanical system and its network equivalent.

S S

V(S) - (5+1)(52 +5s +4) (5+1)2(5+4) |

Write this expression in the form

where

A= s :—é
9

2
(s+1)
s=—4

p=tdos _4
dsts+at_ o

C= s =——
s+4 - 3
The inverse transform of V(s) is given by
4 4, 4 ., 1 _
V(t)= ——e M+ =t +20.
9 9 3

To find v(t) by the use of the convolution integral, we first find h(t), the impulse response of the
system. The quantity h(t) is specified by

dh+5h+4fhdt:5(t)
dt

where the system is assumed to be initially relaxed. The Laplace transform of this equation yields
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_ s B s 41 11
H(S)_52+55+4_(s+4)(5+1)_3s+4 35+l

The inverse transform of this expression is easily found to be

4 _ 1 _

h(t)=—e et 120.
3 3

The output of the system to the input e*u(t) is written

u{e)= [ h{e) s(e-r)er= Ite%ﬂ%e—u Lo

0

This result is identical with that found using the Laplace transform technique.

Example 5.5.4

Find an expression for the voltage v ,(¢) for ¢> 0 in the circuit of Figure 5.7. The source v,(t), the current
i,(0-) through L = 2H, and the voltage v (0-) across the capacitor C = 1 F at the switching instant are
all assumed to be known.

S 20 1{
-
WA I +
Qv

e O

FIGURE 5.7 The circuit for Example 5.5.4.

Solution
After the switch is closed, the circuit is described by the loop equations

D,+ diID_D_ 2di, U ()
R R R
1 O

—Eul + +E312 +L +J’z th—
vi(t)=2i(r).
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All terms in these equations are Laplace transformed. The result is the set of equations

(3+25)1,(s)-(1+25)1,(s)= Vl(s)+2[i1(0 +)-i,(0 +)]
3,(0+)

(1+25) ()+E3+25+ E[ 2[ o+ +1(0+)] .
)=

The current through the inductor is
i,(t)=1,(t) —i,(¢).
At the instant = 0+
i (0+) =1,(0+) — i,(0+) .

Also, because
%qz(t) = éj:;iz(t)dt
t

then

qZ(OJr)évc(O +) = VC(O —) =) (0) = q2(0 +) .

C 2

The equation set is solved for I,(s), which is written by Cramer’s rule

342 vi(s)+2i,(0+)
~(1+25)  -2i,(0 +)—VC(S+)

25—

L) 3425 ~(1+2s)

1
—(1 +25) 34254

(3+2s)§ziL(o )L *)En(l ea[v6) o207
(s +3s+10

(3+25) T q (1+25)
)l o)

85 +10s+3
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Further
V,(s) =2L(s).
Then, upon taking the inverse transform
v, (t) =22 1L(s)}.
If the circuit contains no stored energy at ¢ = 0, then 7,(0+) = v (0+) = 0 and now

)= BV

2410s+3 O
585 10s 35

For the particular case when v, = u(t) so that V,(s) = 1/s

O O
[l O
LU 2s+1 0O 40 2s5+1 O
vz(t)zz T+ 10 +3D=2§£ DD ; 0
[Bs st §H+§(s+3/4)D
2 H
O O
) R BTN
2 3 2
o+ 0
540

The validity of this result is readily confirmed because at the instant t = 0+ the inductor behaves as
an open circuit and the capacitor behaves as a short circuit. Thus, at this instant, the circuit appears as
two equal resistors in a simple series circuit and the voltage is shared equally.

Example 5.5.5
The input to the RL circuit shown in Figure 5.8a is the recurrent series of impulse functions shown in

Figure 5.8b. Find the output current.

R=1Q
AW v(1)

v(t)+<5 @ g L=11 j ‘ ' I

(a) (b)

FIGURE 5.8 (a) The circuit, (b) the input pulse train.

Solution
The differential equation that characterizes the system is
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W) )=o),

dt

For zero initial current through the inductor, the Laplace transform of the equation is
(s+ 1)I(s) = V(s).

Now, from the fact that £{5(¢)} = 1 and the shifting property of Laplace transforms, we can write the
explicit form for V(s), which is

V(s):2+e_S +2e7 +e7 427+
:(2 +e_5)(1+e_25 +e™ +)

_2+e”
- =25 "

1-e

Thus, we must evaluate i(t) from

C24et 1 2 e
I(S)_l—e_zs5+1_(1—e_25)(s+1) (1_6_25)(5+1).

Expand these expressions into

I(S)= 2 (1+e—25 +e—4s +e—65 +”.)+ 1 (e—s +e—35 +e%s +e—75 +)
s+1 s+1
The inverse transform of these expressions yields
i(t) =2etu(t) + 2e Dy (t=2) + 2e Yy (t—4) + ---

+ e u(t—1) + e u(t—3) + e u(t—5) + -

The result has been sketched in Figure 5.9.

5.6 The Inversion Integral

The discussion in Section 5.3 related the inverse Laplace transform to the direct Laplace transform by
the expressions

F(s) = £{f(1)} (6.1a)
f(t) = LHF(s)}. (6.1b)

The subsequent discussion indicated that the use of equation (6.1b) suggested that the f(#) so deduced
was unique; that there was no other f(¢) that yielded the specified F(s). We found that although f(¢)
represents a real function of the positive real variable ¢, the transform F(s) can assume a complex variable
form. What this means, of course, is that a mathematical form for the inverse Laplace transform was not
essential for linear functions that satisfied the Dirichlet conditions. In some cases, Table 5.1 is not adequate
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i(1)

0 : : : :
1 2 3 4 5 6

FIGURE 5.9 The response of the RL circuit to the pulse train.

for many functions when s is a complex variable and an analytic form for the inversion process of (6.1b)
is required.

To deduce the complex inversion integral, we begin with the Cauchy second integral theorem, which
is written

A2), -
fidz =]27TF(5)
s—z

where the contour encloses the singularity at s. The function F(s) is analytic in the half-plane Re(s) > c.
If we apply the inverse Laplace transformation to the function s on both sides of this equation, we can write

g+ jw D |:|
j271££_1{F(s} =lim F(z)if_lgl—ﬂdz.
W= Jg— jw [F—z0

But F(s) is the Laplace transform of f(¢); also, the inverse transform of 1/(s— z) is e*. Then it follows that

Y M O M O
- % Jo-jw o= joo

This equation applies equally well to both the one-sided and the two-sided transforms.

It was pointed out in Section 5.1 that the path of integration (6.2) is restricted to value of o for which
the direct transform formula converges. In fact, for the two-sided Laplace transform, the region of
convergence must be specified in order to determine uniquely the inverse transform. That is, for the two-
sided transform, the regions of convergence for functions of time that are zero for ¢ > 0, zero for ¢ < 0,
or in neither category, must be distinguished. For the one-sided transform, the region of convergence is
given by o, where o is the abscissa of absolute convergence.

The path of integration in (6.2) is usually taken as shown in Figure 5.10 and consists of the straight
line ABC displayed to the right of the origin by ¢ and extending in the limit from —joo to +jco with
connecting semicircles. The evaluation of the integral usually proceeds by using the Cauchy integral
theorem, which specifies that
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t>0 Jjo C t<0
F——
I ¥ b
R 1B
g
B
g
1
A
FIGURE 5.10 The path of integration in the s-plane.
_ L st
f(t)——,hm F(s)e ds
21 ==Jr, (6.3)

= Z residues of F(s)e” at the singularities to the left of ABC; t>0.

But the contribution to the integral around the circular path with R — o is zero, leaving the desired
integral along the path ABC, and

f(t)=i_lim F(s)e”ds
21 = =Jr (6.4)
= —Z residues of F(s)e” at the singularities to the right of ABC; t<0.

We will present a number of examples involving these equations.

Example 5.6.1

Use the inversion integral to find f(¢) for the function

Note that by entry 15 of Table 5.1, this is sin wt/w.

Solution
The inversion integral is written in a form that shows the poles of the integrand.

st

e

A [ i

The path chosen is I'; in Figure 5.10. Evaluate the residues
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Res[{s —jw = =
@ J )5 +w2%:, s+ijw i 2wj
) st |:| est —jwt
Res§s+]w)sz+w2 :5_' :_2 -
Q— jw w s=—j Wi

Therefore,

Example 5.6.2
Evaluate £-'{1/ V; }.
Solution

The function F(s) = 1/ «'s is a double-valued function because of the square root operation. That is, if
s is represented in polar form by re/? then rei(®+27) is a second acceptable representation,

(o+2n) = —V re” , thus showing two different values for \C . But a double-valued function

is not analytic and requires a special procedure in its solution.

The procedure is to make the function analytic by restricting the angle of s to the range -7 < 6 < 7
and by excluding the point s = 0. This is done by constructing a branch cut along the negative real axis,
as shown in Figure 5.11. The end of the branch cut, which is the origin in this case, is called a branch
point. Because a branch cut can never be crossed, this essentially ensures that F(s) is single valued. Now,
however, the inversion integral (6.3) becomes for ¢ > 0

and \C =1\ re

jo
C B
I
2 R L
- B
AD l H‘\A o
[/
E l+ Y
A
I3
F| G

FIGURE 5.11 The integration contour for c&/’"{l/v“ss} .
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g+ joo

f(t)zllzi?lzlm' GABF(s)e”ds=217_g_ e F(s)e”ds

g I A A A O O

which does not include any singularity.
First we will show that for ¢ > 0 the integrals over the contours BC and CD vanish as R — o, from

(6.5)

whichI =I =T, =I = 0. Note from Figure 5.11 that 8 = cos™'(o/R) so that the integral over the

arc BC is, because /%] = 1,

ot _jwt ] D
‘I‘SJ‘ ele jRe”® dO = ¢° \RI d9—e \Rg—cos_ EE
BCREeJP/2
=¢?*Rsin" <
R

But for small arguments sin"!(c/R) = o /R, and in the limit as R — oo, I — 0. By a similar approach, we
find that the integral over CD is zero. Thus, the integrals over the contours I', and Ty are also zero as
R— o,

For evaluating the integral over ¥, let s = re/? = r(cos 6 + jsin 6) and

T r(cos9+ jsin 6) t

t € .0
Flsle'ds=| —————jre’”d0= -0.
J;/ (s)e s J:n Jrejg/z jre 0 asr -0

The remaining integrals in (6.5) are written

£(t)= _2171]' a:_F(s)e”ds+J:+F(s)e”d5§ (6.6)

Along path I, let s = ue/™= —u; \ s = j \/u , and ds = —du, where u and  u are real positive quantities.
Then

I L

Along path [+, s = —ue”™ = —y, s = —j\u (not+j\u),and ds = —du. Then

00 - oo —ut

J;+ () e .L —]\udu_]J- ]\u

Combine these results to find
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o _1
I u 2e ’”duD= u 2e "“'du,
27‘[]@; g ™

which is a standard form integral with the value

Example 5.6.3

Find the inverse Laplace transform of the function

Solution
. . . L e . .
The integrand in the inversion integral ﬁ possesses simple poles at: s = 0 and s = jnr, n = £1,
s{1+e””

13, +--- (odd values). These are illustrated in Figure 5.12. We see that the function e/s(1 + e~*) is analytic
in the s-plane except at the simple poles at s = 0 and s = jnz. Hence, the integral is specified in terms
of the residues in the various poles. We have, specifically

(6.7)

ResEKDiS —jn)e . = 0
=R l+e™* 0

jow
BY) (k+1)th pole
() kth pole

Y
Y

s-plane

—kth pole
A %) (—k+1)th pole

FIGURE 5.12 The pole distribution of the given function.
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The problem we now face in this evaluation is that

where the roots of d(s) are such that s = a cannot be factored. However, we know from complex function
theory that

because d(a) = 0. Combine this result with the above equation to obtain

g i) A o

a

By combining (6.8) with (6.7), we obtain

Restei = nodd.

1 0 e—j3rrt e—jrrt ejnt ej3 n N
f(t)=f+g--+ - +——+—+— +---[]
2. 3 -pBm —jn jn 310 g

This assumes the form

f(t):;+72_[sz_1. (6.9)
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As a second approach to a solution to this problem, we will show the details in carrying out the contour
integration for this problem. We choose the path shown in Figure 5.12 that includes semicircular hooks
around each pole, the vertical connecting line from hook to hook, and the semicircular path at R — oo.
Thus, we examine

1 st
=— _f ¢ ds
21 s‘ l+e™* '
2 T[_] &CA J:/ertlcal connectmg lines ZJ-Hooka Z Res D

We consider the several integrals in this equation.

Integral I,. By setting s = re/? and taking into consideration that cos 8 = —cos 8 for 6 > 7/2, the
integral I, — 0 as r — oo,

Integral I,. Along the Y-axis, s = jy and

(6.10)

J)’t

L=j
Ho]y‘1+e ”i

Note that the integrand is an odd function, whence I, = 0.
Integral I,. Consider a typical hook at s = juz. The result is

This expression is evaluated (as for (6.7)) and yields e/***/ jnzm. Thus, for all poles

o, o 0O
_jm e 10 10 smnm‘D
3 2 J- O . +7|:|: A - Z
T s‘1+e ’ 27‘[] L jnTt 20 2 T
[hodd ] [ nodd
Finally, the residues enclosed within the contour are
Res e’ 1 1, — oIt Z smnnt
s‘ I+e™* ’ 2 £ J”" m
nodd nodd

which is seen to be twice the value around the hooks. Then when all terms are included in (6.10), the
final result is

1 2 sinnmmt _1 2 o Sin(Zk-I)ﬂt
R R SR T
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We now shall show that the direct and inverse transforms specified by (4.1) and listed in Table 5.1
constitute unique pairs. In this connection, we see that (6.2) can be considered as proof of the following
theorem:

Theorem 5.6.1

Let F(s) be a function of a complex variable s that is analytic and of order O(s*) in the half-plane Re(s)
> ¢, where ¢ and k are real constants, with k > 1. The inversion integral (6.2) written &, {F(s)} along
any line x = o, with o > ¢ converges to the function f(¢) that is independent of &,

(e)={#(:}

whose Laplace transform is F(s),
F(s) = Z{f(t)}, Re(s)=c.

In addition, the function f(¢) is continuous for > 0 and f(0) = 0, and f(¢) is of the order O(e’) for all t> 0.
Suppose that there are two transformable functions f,(¢) and f,(¢) that have the same transforms

L0} = (D)) = F(s) .

The difference between the two functions is written ¢ (¢)
¢ (1) = f1(1) = f,(1)
where ¢ (1) is a transformable function. Thus,
L{¢ (1)} = F(s) - F(s) = 0.

Additionally,

qo(t):&E;l{O} =0, t>0.

Therefore, this requires that f,(¢) = f,(#). The result shows that it is not possible to find two different
functions by using two different values of o in the inversion integral. This conclusion can be expressed
as follows:

Theorem 5.6.2
Only a single function f(#) that is sectionally continuous, of exponential order, and with a mean value
at each point of discontinuity, corresponds to a given transform F(s).

5.7 Applications to Partial Differential Equations

The Laplace transformations can be very useful in the solution of partial differential equations. A basic
class of partial differential equations is applicable to a wide range of problems. However, the form of the
solution in a given case is critically dependent on the boundary conditions that apply in any particular
case. In consequence, the steps in the solution often will call on many different mathematical techniques.
Generally, in such problems the resulting inverse transforms of more complicated functions of s occur
than those for most linear systems problems. Often the inversion integral is useful in the solution of such
problems. The following examples will demonstrate the approach to typical problems.
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Example 5.7.1

Solve the typical heat conduction equation

a%¢ :%
ox* Ot

, 0<x<oo, t20

subject to the conditions
C-1. o(x0)=f(lx), t=0

0
C-2. —¢:O,(p(x, H=0 x=0.
O0x

Solution
Multiply both sides of (7.1) by e—** dx and integrate from 0 to co.

00

GJ(s,t):J; e‘“‘gb(x,t)dx.

Also

2

[ 79 =l 1)-p(04)- 22 o+).

Ox

Equation (7.1) thus transforms, subject to C-2 and zero boundary conditions, to

@ -s’® =0.
dt
The solution to this equation is
O = Aes’t.

By an application of condition C-1, in transformed form, we have

d=A =J:of()\)e_5)‘a7\.

The solution, subject to C-1, is then

CD(s, t) = e“Z'J:)mf()\)e—s}‘a?\ )

Now apply the inversion integral to write the function in terms of x from s,
1 0 L2 3} —a |:|
dlx, t :—,J‘e” Ne *Md\e**ds
()= g e, ) s

:Jm‘[if()\)d)\fe*“““ds.
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Note that we can write

szt—s(x—)\) = BVt -

(N ()
g

a 2\/} 4t
Also write
(x-2)
s\t — ; =u.
2\t
Then

But the integral

—2 /
Ie “du=A~m.
o

Thus, the final solution is

Example 5.7.2

A semi-infinite medium, initially at temperature ¢ = 0 throughout the medium, has the face x = 0
maintained at temperature ¢,. Determine the temperature at any point of the medium at any subsequent
time.

Solution
The controlling equation for this problem is

’¢ _ 199 (7.2)

with the boundary conditions:

a o=@ atx=0,t>0
b. p=0att=0,x>0.

To proceed, multiply both sides of equation (7.2) by e** dt and integrate from 0 to o. The transformed
form of equation (7.2) is

d2¢ Us

BI?(DE_ , K>0.
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The solution of this differential equation is

D= Ae K +BeVIK

But @ must be finite or zero for infinite x; therefore, B = 0 and

CD(s, x) = Ae_\%x .

Apply boundary condition (a) in transformed form, namely

CD(O, s) =J' e ' dt :& for x =0.
0 s
Therefore,
sote

s

and the solution in Laplace transformed form is
qD(s,x):be_VE . (7.3)
s

To find ¢ (x, t) requires that we find the inverse transform of this expression. This requires evaluating
the inversion integral

+ ] _X\:‘% st
" X
_ 0, (77e e

b(x1)= € . (7.4)

2"] o’—joo S

This integral has a branch point at the origin (see Figure 5.13). To carry out the integration, we select
a path such as that shown (see also Figure 5.11). The integral in (7.4) is written

0

8(x, t)=2¢7?[j§BC +Ir2 +J:_ +Iy +_L +J’r3 +J’FGE

As in Example 5.6.2

oS

For the segments

J. , let s = pe’™ andforI , let s = pe’™.
(- /+
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jo
C| B
|}
I
D ! \)/ A
E - ’
l+
9,
I3
F| G

FIGURE 5.13 The path of integration.

Then for €— and €+, writing this sum I,

*© e i lJx 1 £° et .
I, :1‘[ e_”gms/K —e M /KDdSZ—I e *'sinx ié
- 21 Jo B TJo 'K s

Write

u= g‘i s=ku*, ds=2kudu.
VK

Then we have

T, u
This is a known integral that can be written
2 X
[r — 2
I, = —J-Z‘Kte “du.
\TT o
Finally, consider the integral over the hook,
x\s/ s/K

1
I =— et £ ds.
4 27'[] y N

Let us write

s=re’®, ds=jre’de, é=j9,
s
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then
Voo2mj

27T _ 275 . .
Forr— 0,1, = ;— = 2—] , then I, = 1. Hence, the sum of the integrals in (7.3) becomes
U

X

0 _x

= 2 D D

¢(t)=¢OG—2I2V’“e—“ du=¢,0-erf 0 (7.5)
H vl O 2KtQ

Example 5.7.3

A finite medium of length [ is at initial temperature ¢,. There is no heat flow across the boundary at x
= 0, and the face at x = [ is then kept at ¢, (see Figure 5.14). Determine the temperature ¢ ().

Insulator

7 /7 o /4

7

Insulator 0) 2]

WA Z4 )

Insulator
FIGURE 5.14 Details for Example 5.7.3.
Solution
Here we have to solve
o’ _10¢
x> k ot

subject to the boundary conditions:

a o=@, t=0 0<x<]

b. p=¢, t>0 x=1
9
0x

=0 t>0 x=0.

Upon Laplace transforming the controlling differential equation, we obtain

© 2000 by CRC PressLLC



The solution is

_xE E Fo Fo
D=Ac 'kF+Be 'k Acoshxfi+Bsinhx,fi.
\ k \ k
By condition ¢
@20 x=0 t>0.
dx

This imposes the requirement that B = 0, so that

® = Acoshx,
Vk
Now condition b is imposed. This requires that

ﬂ = Acosh lv‘i
s k

Thus, by b and ¢

coshx\j“i
® =9, ‘ /ﬁ .
scoshl si
\ k
Now, to satisfy ¢ we have
coshx, —
(0] :ﬂ _& \
s s
coshl /i

\ k

Thus, the final form of the Laplace transformed equation that satisfies all conditions of the problem is

‘;s
¢0 +¢1 ~p, coshx\/

S

coshlv—

To find the expression for ¢ (x, t), we must invert this expression. That is,

¢1 ¢0 (H]we coshx\/ ds

27-[ o— joo S
/ ! coshl\/—
k

b(x1)=9,+ (7.6)
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(on-100
The integrand is a single valued function of s with poles at s=0 and s = —kBLE s sh=1,2,....

We select the path of integration that is shown in Figure 5.15. But the inversion integral over the path
BCA(=I") = 0. Thus, the inversion integral becomes

jw

—

FIGURE 5.15 The path of integration for Example 5.7.3.

s
! U+j°oest coshx\‘s%é
27‘[ — joo “‘ S '
7307 coshl,v‘i
k

By an application of the Cauchy integral theorem, we require the residues of the integrand at its poles.
There results

Res\szo =1
7
e_kErl IH coshJHI IEE
Res 0 o = .
Hﬂ ZH 2 g g
04H /5 H g
B [coshl =] O
ds § \ kB_,0 1de0
B > Hn 25 2 E

Combine these with (7.5) to write finally

¢(x, t) =¢,+ 4(¢1 _¢O) i (_1) l_kgn E HZ/IZ cos%—i%ﬂx/lg (7.7)

m _2n—1 §
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Example 5.7.4

A circular cylinder of radius a is initially at temperature zero. The surface is then maintained at temper-
ature @,. Determine the temperature of the cylinder at any subsequent time .

Solution
The heat conduction equation in radial form is

9,106 109
drr ror kot

, 0<r<a, t>0. (7.8)

And for this problem the system is subject to the boundary conditions

C-l.o=0 t=0 0<r<a
C2.0p=¢, t>0 r=a.

To proceed, we multiply each term in the partial differential equation by e~'df and integrate. We write

J‘wgb e ldt= (D(r, s)

Then (7.7) transforms to

Ui’ 1 doU

kBﬁ*—;Z%_SCD =0,

which we write in the form

So 1dd s
+- =0, u=>.
dr*  r dr H H \/k

This is the Bessel equation of order 0 and has the solution
O = Al,(ur) + BN, (ur) .

However, the Laplace transformed form of C-1 when z = 0 imposes the condition B = 0 because N,(0)
is not zero. Thus,

@ = Al,(pr) .

The boundary condition C-2 requires ®(r, a) = L2 when r = a, hence,

so that
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To find the function @(r, t) requires that we invert this function. By an application of the inversion
integral, we write

o, o b(E) e
o) e xS

(7.9)
Note that I,(&7)/I,(€ a) is a single-valued function of A. To evaluate this integral, we choose as the path
for this integration that shown in Figure 5.16. The poles of this function are at A = 0 and at the roots of
the Bessel function J,(£ a) (= I,(j& a)); these occur when (& a) = 0, with the roots for J,(& a) = 0, namely
A =-k&,-k&:, ... . The approximations for I,(§ r) and I,(£ a) show that when n — oo the integral over
the path BCA tends to zero. The resultant value of the integral is written in terms of the residues at zero
and when A = k&’ . These are

Res‘ =1

_ )\dIO(Ea)

Res e oy

k&2

n

Therefore,

- Aﬂ\lo(fﬂ))\:kgﬁ
jow
B
¢ o
0
A

FIGURE 5.16 The path of integration for Example 5.7.4.

© 2000 by CRC PressLLC



1
Further, )\d—ilo (Ena) = EEaI(()l)( a) . Hence, finally,

O oo O

_ 2 ke ]0(5nr) 0

o(t)=9, 4+~ nt O] (7.10)
(t) §+a ;e En](()l)(fna)g

Example 5.7.5

A semi-infinite stretched string is fixed at each end. It is given an initial transverse displacement and
then released. Determine the subsequent motion of the string.

Solution
This requires solving the wave equation

(7.11)

subject to the conditions

C-l1. o(x0)=flx) t=0,90(0,)=0 >0
C-2. lim,,, o(x1t)=0.

To proceed, multiply both sides of (7.11) by e~**dt and integrate. The result is the Laplace-transformed
equation

2
2d¢-¥¢—w@ﬂ,x>u (7.12)

B =

a
dx

C-1. @(0,s5)=0
C-2. lim,,, ®(xs) =0.

To solve (7.12) we will carry out a second Laplace transform, but this with respect to x, that is £{®
(x,5)} = N(z, s). Thus,

N(z, s) :J,w CD(x, s)e_”dx .
0

Apply this transformation to both members of (7.12) subject to ®(0, s) = 0. The result is

szN(z, 5) —SCD(Z) =q° %ZN(Z, s) —%?:(O, S)E}

oP
We denote . (0, s) by C. Then the solution of this equation is
x
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The inverse transformation with respect to z is, employing convolution.

CD(x,s) —smh— —I ¢ smh )df

To satisfy the condition lim
forms. Thus, the factors

®(x, s) = 0 requires that the sinh terms be replaced by their exponential

X—»00

. 1. ~séfa
smh& o=, smhi(x—f) L , X - 00,
a 2 a

Then we have the expression

Dl x, s _Sf/“d
( ) 2s ZaI ¢ ¢
But for this function to be zero for x — o requires that

aC =1J’ ¢(E)e_sé/“df, X o 00,

s alo
Combine this result with ®(x, s) to get
2a¢(x,s)=J’ p(e)e I - Iq; i d5+J’ p(¢)e 1 az.
0

Each integral in this expression is integrated by parts. Here we write

)

u=¢(f), d”:(b(l)(f)df; dv=e ° d§, VZ%e_S(E_k)/“_
The resulting integrations lead to
_ 5_ ) _ (x+{)
q)(x’s J. ¢ ¢ dé- 25_[ ¢ a dE

2J¢ ﬂds

We note by entry 61, Table 5.1 that

$_1§€ a §=1 when at >& —x
B
=0 when at <& —x.

This function of £ vanishes except when & < x + at. Thus,
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x+at

J'¢ o(&+)/ “dEn ——J' ¢ ;¢(x+at)—%¢(x).

Proceed in the same way for the term

(x+ O
I¢ o) ‘dé0=1 whenat >x+&
0
=0 whenat<x+é.

Thus, the second term becomes

x+at

-5 x+E _ 1 _
J‘ ¢ dE J’ o) = ~¢(x-ar).
The final term becomes

¢(x) when at > x

SR R

¢(x)+%¢(x—at) when at < x.
The final result is
t)=%[f(at+x)—f(at—x)] when ¢ > x/a

(7.13)
=%[f(x +at)+f(x—at)] when t<x/a.

Example 5.7.6

A stretched string of length [ is fixed at each end as shown in Figure 5.17. It is plucked at the midpoint
and then released at ¢ = 0. The displacement is b. Find the subsequent motion.

I

0 2 l

FIGURE 5.17 A stretched string plucked at its midpoint.

Solution
This problem requires the solution of

2 2
a)’zcza—y, 0<y<l, t>0 (7.14)
ay’ at’

subject to
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O
1. y=2—bx O<x<l/2§
_2b 1 -
2. )/—T(Z_X) E<X<l E

3. Q=0
ot
4. y=0 x =0; x=1 t>0.

0<x<l t=0

To proceed, multiply (7.13) by e~*'dt and integrate in t. This yields

szY—sy(O) =c’ Z;[
or
c’ dz{—szY =sy(0)=—5f(x) (7.15)

dx

subject to Y(0, s) = Y(I, s) = 0. To solve this equation, we proceed as in Example 5.7.5; that is, we apply
a transformation on x, namely £{Y(x, s)} = N(z, s). Thus,

szN(z, s) - sY(O) =c* E&zN(z, s) - y(O, S) El

This equation yields, writing sY(0) as ®(x, s),

N(z, s) _ CD(Z,SSZ)
z —C—z

The inverse transform is

where

(D(x, s) =sinh (Z_CX)SJ;X y(f )sinhis dé +sinh JZSJ;I y(f )sinh(l _j)s dé.

Combine these integrals with the known form of f(x) in C-1 and C-2. Upon carrying out the integrations,

. . s
the resulting forms become, with k= —,
c
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ly «x Lsinhkx

= - , OSxSl/Z
2b s §? kl
cosh—
I- inh k|-
w_(1=d) =) 4
2b s szcoshkl 2

To find y(t), we must invert these expressions. Note that symmetry exists and so we need consider only

. . 1 sinh kx
the first term. We use the inversion integral on the term — r
* cosh—

2

. Thus, we consider the integral

[P R VR
2 . i 2
T o= coshﬂ

2c

We choose the path in the A-plane as shown in Figure 5.18. The value of the integral over path I" is
zero. Thus, the value of the integral is given in terms of the residues. These occur at A = 0 and at the

A
values for which cosh — = 0, which exist where

2¢
jo
B
r
A-plane
C
(o2
o
A
FIGURE 5.18 The path of integration for Example 5.7.6.
A _2n-1m n—1
= or A=t%j .

Thus, we have, by the theory of residues
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A=0 Cc
. Tix
R
o ! 4 2coshMD
d\ [ 2c q(zn ).

These poles lead to

Thus, the poles at +j(2n — 1) % lead to

. 4] sin(2n —1)%@5(271 - I)Tmt

=) e (2n-1)°

Then we have

so that finally

y= il:i sm 2n l)rgxcos(Zn—l)nTt, 0

IN

x

IN
N‘N

n=1

. . . .
For the string for which 5 < x < I, the corresponding expression is the same except that (I - x) replaces x.

. . . . T
Note that this equation can be written, with n = (2n— 1) T

sin N cos et = sinn(x - ct) ;—sinn(x + ct) ,

which shows the traveling wave nature of the solution.
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5.8 The Bilateral or Two-Sided Laplace Transform

In Section 5.1 we discussed the fact that the region of absolute convergence of the unilateral or one-sided

Laplace transform is the region to the left of the abscissa of convergence. The situation for the two-sided

Laplace transform is rather different; the region of convergence must be specified if we wish to invert a

function F(s) that was obtained using the bilateral Laplace transform. This requirement is necessary because

different time signals might have the same Laplace transform but different regions of absolute convergence.
To establish the region of convergence, write the bilateral Laplace transform in the form

) 00 0
— —st — —st + —st

E(s) L}e £(r)ae L e f(r)dr J:we £(e)a. (8.1)
If the function f(¢) is of exponential order (e°!'?), then the region of convergence for ¢ > 0 is Re(s) > o,.
If the function f(¢) for t < 0 is of exponential order exp(o,t), then the region of convergence is Re(s) <
0,. Hence, the function F,(s) exists and its analytic in the vertical strip defined by o, < Re(s) < o,,
provided, of course, that o, < 0,. If 6, > 0, no region of convergence would exist and the inversion
process could not be performed. This region of convergence is shown in Figure 5.19.

FIGURE 5.19 Region of convergence for the bilateral transform.

Example 5.8.1

Find the bilateral Laplace transform of the signals f(#) = e~*u(¢t) and f(¢) = —e-*'u(t) and specify their
regions of convergence.

Solution
Using the basic definition of the transform (8.1), we obtain

Fz(s) =J'_:e_“’u(t)e_”dt =J;°°e_(5+“)tdt = ﬁ

and its region of convergence is Re(s) > —a.
For the second signal,
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and its region of convergence is Re(s) < —a.
Clearly, the knowledge of the region of convergence is necessary to find the time functions unambiguously.

Example 5.8.2
Find the function f(¢), if its Laplace transform is given by

3

ey

Solution
The region of convergence and the paths of integration are shown in Figure 5.20. For t > 0 we close the
contour to the left and we obtain

_ _1
f(t)_(s—4)(5+1)5:_2_26 , t>0.

A
jo
s-plane
> O
FIGURE 5.20 Ilustrating Example 5.8.2.
For t < 0, the contour closes to the right and now
st st 4t
e R e P A
2 ST

o bl

s=4

Appendix

© 2000 by CRC PressLLC



TABLE 5.1 Laplace Transform Pairs

F(s) f@®
1 & 8™(t) n™ derivative of the delta function
2 s dd()
dt
301 &0
4 l 1
s
1
5 = t
1 tn—l
6 —n=12,
e ) (n-1!
7 L
s N
g g 2\/2
s
2ntn——(1/2)
9 D) — 1. @
s (=12) 1.3-5-Qn-Jn
Tk - '
10 % (k>0) #l
11 L e
s—a
12 "——L—Z te®
(s—a)
13 1 n=12,-) #t"‘le"’
(s—-a) (n-n!
T® > k-1 at
14 (s—a) (k= 0) e
1
15 at _ bt
(s—a)s—h) (a—b) =)
S 1 at bt
16 ————————— ae” —be
(s—a)s-b) (a—b)( )
17 1 N (b-c)e” +(c—a)e” +(a—b)e”
(s—a)(s—b)(s—c) (a=-b)(b-c)(c—a)
18 1 e valid for complex a
(s+a)
1 1
19 LTt
s(s+a) a (A=e™)
1 1
20 e —(e " +ar—1
sz(s+a) a? (e ar=1)
2
21 3—1- _12_ l_t.‘_i_le‘ﬂ.’
s’(s+a) a“la 2 a
n — L L (e e
(s+a)s+b) b-a)
1 1 1
23 PSS, t -at _ ,—bt
s(s+a)(s+b) ab [l * (a-b) (be ae )]
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F(s)

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

1
s*(s+a)(s+b)

1
S (s+a)s+b)
B S
(s+a)s+b)s+c)

1
s(s+a)s+b)(s+c)

1

sS2(s+a)s+b)s+o)

1

S (s+a)s+b)s+c)

s(s? +a?)

_

s2 (st +a?)

S S

(sz +a2)2

-5

(s2 +a2)2

s

(sZ +a2)2
s*—a?

(3‘2 +a2)2

- s

(s* +a®)(s* +b%)

S S

(s—a) +b*

s—a
(s—a) +b*

1
[(s+a)t +b7]"
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(a® #b%)

f®
_1_2[ 1 (@%e™ —p e ™)+ abt—a— b]
(ab)* | (a—D)
1 a’-p’ 1, (a+h) 1 (b T S
(ab)[(ab)’(a-—b) 2w Tand T )
1 —-at 1 e—bl 1 e—ct
b-a)c-a) (a~b)c~b) (a—c)b-c)
__L_ 1 e-al - 1 ~br __ 1 e
abc a(b-a)c-a) b(a-b)c—-b) cla=-c)Yb-c)
ab(ct-Y—ac-bc 1 ot
(abc)? a*(b-a)c-a)
1 bt 1 -t
+
b a-bYe-b)°  Ha-oNb-o)
1 ab+ac+bc 1
Za—bc—)3—[(ab +ac+bc)’ - abe(a+b+c)]- Ay ?
1 ~at 1 ~bt 1
-3 € —13 e~ €
a’(b-a)c-a) b’(a-b)c—-b) cla-c)b-c)
1.
—sinat
a
cosat
—1-sinh at
a
coshat

1
pel (I—cosat)
1 .
— (at —sinat)
a
1.
~2—§-(sm at—atcosat)
a
t .
—2—sm at
a
|
22 (sinat + atcosat)
a

tcosat

cosat —cosbt
b -a?

1 .
—e® sin bt
b
e% cos bt
—at n

—-e 2n-r-1 o d
2o Z( n-1 )(*20 ;i—t,—[cos(bt)]

r=1

-t



F(s)

f©

—a [N~ (2n-r-1 d )
Z"%‘%T"'{Z( i )(—2:)”dt, [acos(bt) + bsin(b))

r=1

265 (277 iy 4 oo
—_ — 1
&'\ n-1 a "

e —ela'? (cos ____at;/é_ —~3sin __at;/g )

sinat cosh at — cos at sinhat
1 (sinat sinhat)
2a®
1 . .
—i—;(smh at —sinat)
a
1
Eyel (coshat — cosat)
a
(1 + a®#)sinat - cosat.

e d"

n! di"

[L,(1) is the Laguerre polynomial of degree n]

L= e

l("_l) e—at

W where n is a positive integer

e gt
a

1 ~at -at
—lat—=2+ate™ +2e™"]
a

_!_ - l 2,2 ~at
pE [l (zat +at+l)e

{e™ +[(a-b)t—1]e™"}

1
(a-b)?

R ot _ L, a-2b ot
ab?  a(a-b)? bla-b) b (a-b)?

L e""+-1—(t——l—-l]+ 1L, 2@-b-b)
a*(a-b)* ab? a b b*(a-b) b (a-b)?

44 S
[(s+a)* +b*]
3q?
45
s +a’
44°
46
s* +4a*
VA -
st +4a*
1
48 K
s
49 e
50 8a’s?
*+a??
51 l( s - 1)
s\ s
52 !
s+a)"
55 1
s(s+a)
1
4 (O —
5 $2(s +a)*
55—
s(s+a)
56 .....___1__.__3.
(s+a)(s+b)
s7 1
s(s+a)(s+b)
1
58 e
s (s+a)(s +b)?
59 L 3
(s+a)s+b)s+c)
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costSi(t)—sint Ci(t)
—sintSi(t) - cost Ci(¢t)

5[

_}_(ebl __eat)

)

2 loga—2Ci(at)

2 [at loga +sinat — atCi(at)]
a

2 (1 —rcos at)

t

% (1-coshat)

l sin kt

t
Si(kr)

B S

PR T
erf (J-)

2k

Ak
nJtt+ k)

- {0 when O<t<k
(m)™?  when 1>k
I S
Jr(e+k)

1
- sin (2k~1)

1 e-zk»ﬁ
e

1
m, ((l>0)

1
Grar @0

1
+1

t2



F(s) f@
0 when O<t<k [K (?) is Bessel function of the
218 K(ks) s e " ] o
(t° ~k%) when 1>k second kind of imaginary argument]
1 £’
219 K, (k+s) Eexp(—z;)
220 1 e K, (ks) —11; N +2k)
s
1 1 k2
21— K, (k\s) Zexpl =%
NP kP ( 4:]
1 k 2
222 . *SK (_) —= K, (2+2kt)
s Jnt
T2
223 e (ks) [t2k-1)] when 0<t<2k
0 when t>2k
— K2l Ghen 0<r<2k
224 5[ (ks) kAt 2k —1)
0 when > 2k

1
225 ssinh(as)
1
226 scoshs

27 L tamn (ﬁ“‘-)

28 L (1 +coth f’i)
2s 2
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22 ult—Qk+1)a]

k=0

[+ [ 3 3a Sa Ta t

22 (~D¥u(t -2k -1)
k=0

> B &

O N

1(v)
2

cb 2 3 e 6 T t

u(t)+22 (~D*u(t - ak)
k=

square wave

. ()

i u(t—ak)

k=0
stepped function
L

LR X%



F(s) bt}

=)

mt —ma 2 u(t—ka)

k=1

saw — tooth function
29 224 (cothﬂ-l)
s 2s tHn SLOPE e m
%5 a 2a 3a t
1 t+22 (=1)*(t — ka)-u(t — ka)
a k=1
triangular wave
230 L tanh(-“i)
s (1)
]
° e 2 4a s
Y hue-k
k=0
1 #(t)
231 ————
s(l+e™) ,
%z 3 4 s & T
3 [sinale-4 )] o{-4%)
par a a
a half — wave rectification of sine wave
232 T TR,
s* +a®)(1-e 2 ) LG
| VAN A
% = & =
o Y 3 a s ¢
[sin@n]-un+2)" [sina(t—kf)]-u(r-kﬁ)
= a a
full - wave rectiﬁcationkof sine wave
233 % coth] *E
I:(s2 +a2)}0 2a o
L
o § & ¥ % .
u(t—a)
1 KN
234 —s— e-m t O
oé [ t
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F(s) 30

u(t—a)-u(t->b)

! Ho
235 (e —e7) 1

o
o

o L] ] t

m-(t—a)-u(t—a)

236 M '” /
) SLOPE=sm
oo 4 .
mt-u(t—a)
or
237 [%+sﬂ2]e [ma+m(t-a)]-u(t-a)

Ke)
€ SLOPEsm
o
(-] a

(t-a)? u(t—a)

"
238 L /
S
a

C

‘u(t—a)

\ )
230 |2,20,4 ) o
s3 st s o
a

o5

mt-u(t)—m(t—a) - u(t—a)

20 D2 s
N S

t

mt=2m(t—a)-u(t—a)+m(t—2a) -u(t-2a)

(2}
241 m 2m -as m  _ags
2o ¢ tae
t
mt—[ma+m(t—a)]~u(t—a)
L0
L (ma m) as ma !
— |+ e SLOPEem
s s §
:6 e t
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F(s) S0

0.5¢% for 0<t<1

1-05(t-2)% for 0<t<?2

o3 (1-e~*)? 1 for 2<1¢t
52 LU
°6 ' 2 3 t
0.5¢* for 0<r<l1
0.75-(t=1.5)* for 1<t<2
0.5(t-3)* for 2<t<3
244 [Q‘_e_l]a 0 for 3<t
s ' o
% [ 2 3 3
E-D-u®-E* -D-u@t-a)+Ke? .u@t-a)
s(s=b) +E = where K = (e -1)
245 b o
1 s+:ﬁ—3 . % :
s+b  s(s=-b) :
% i — t
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TABLE 5.2  Properties of Laplace Transforms

F(s) f@)
1 j e F () dt v
0
2 AF(s) + BG(s) Af(D) + Bg(®)
3 sF(s) - f(+0) @
4 SnF(S) _sn—lf(+0)_sn~2f(|)(+0)_H'__f(n—-[)(_"o) f(n)(t)
5 Lrg '
pat [ revar
1 t ot
6 FO L L FOYdhd
!
7 F6F®) j F-Df,@dt=f+f,
0
8 -F'(s) /iG]
9 (-1)"F"(s) rf(r)
10 .[ F(x)dx % 10}
11 F(s-a) e“f1)
12 ebF(s) f(t - b), where f(f) = 0; t < 0
13 Fcs) 1 f(i)
4 c
14 F(cs - b) 1 o f( t )
c c
15 J'o e [t £t + a) = f(1) periodic signal
|
16 _[, et fG + a) = =f()
1+e™®
17 1_159% (0, the half-wave rectification of f(#) in No. 16.
—-e
18 F(s) cothgzi 20, the full-wave rectification of f(#) in No. 16.
19 29 g)=(s-a)-a,)-a,) LG
q(s) ~ q'(a,)
20 PO __0O P A G
q(s) (s—a) ¢ 2 (r—n)! (n=1)! +

n=1

Several additional transforms, especially those involving other Bessel functions, can be found in the
following sources:

“Fourier Integrals for Practical Applications,” G. A. Campbell and R. M. Foster, Van Nostrand, 1948. In
these tables, only those entries containing the condition 0 < gor k< g, where gis our ¢, are Laplace transforms.
“Formulaire pour le calcul symbolique,” N. W. McLachlan and P. Humbert, Gauthier—Villars, Paris, 1947.
“Tables of Integral Transforms,” Bateman Manuscript Project, California Institute of Technology, A.
Erdélyi and W. Magnus, Eds., McGraw-Hill, 1954; based on notes left by Harry Bateman.
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