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Chapter 1

Karhunen-Loève Transform

R.D. Dony

University of Guelph

1.1 Introduction

The goal of image compression is to store an image in a more compact form, i.e.,
a representation that requires fewer bits for encoding than the original image. This is
possible for images because, in their “raw” form, they contain a high degree of redun-
dant data. Most images are not haphazard collections of arbitrary intensity transitions.
Every image we see contains some form of structure. As a result, there is some cor-
relation between neighboring pixels. If one can find a reversible transformation that
removes the redundancy by decorrelating the data, then an image can be stored more
efficiently. The Karhunen-Loève Transform (KLT) is the linear transformation that
accomplishes this.

In Section 1.2 we show how pixels are correlated in typical images. With the pixel
values forming the axes of a vector space, a rotation of this space can remove this
correlation. The basis vectors of the new space define the linear transformation of
the data. The basis vectors of the KLT are the eigenvectors of the image covariance
matrix. Its effect is to diagonalize the covariance matrix, removing the correlation of
neighboring pixels.

As presented in Section 1.3, the KLT minimizes the theoretical bound on bit rate
as given by the signal entropy. The entropy for both discrete random variables and
continuous random processes is defined. The KLT also maximizes the coding gain
defined as the ratio of the arithmetic mean of the coefficient variances to their geo-
metric mean. Further, the effects of truncation, block size, and interblock correlation
are also presented. Section 1.4 presents the results of using the KLT for a number of
examples.



1.2 Data Decorrelation

Data from neighboring pixels are highly correlated for most images. Fig. 1.1 shows
a typical gray scale image. The image is 512×512 pixels in size with each gray level
brightness value of pixel being represented by an 8-bit value for a range of [0–255].
This particular image is commonly used in evaluations and is often referred to as
the Lena image. Even with a large degree of detail in many regions, the gray level
value of any given pixel tends to be similar to its neighboring pixels. To illustrate this
relationship, one can plot the gray level values of pairs of adjacent pixels as shown
in Fig. 1.2. Each dot represents a pixel in the image with the x coordinate being its
gray level value and the y coordinate being the gray level value of its neighbor to the
right. The strong diagonal relationship about the x = y line clearly shows the strong
correlation between neighboring pixels.

If we were to block the image into nonoverlapping 1 × 2 pixel blocks as shown in
Fig. 1.3, we can represent an image by a collection of two-dimensional vectors xi .
The scatter plot of this collection is equivalent to Fig. 1.2. Looking at the distributions
of the values for each of the two components as shown in Fig. 1.4, we see that they
are relatively wide and cover most of the 0–255 range. In fact, the distributions of
each component would be quite similar to the overall distribution of individual pixels
in the image.

Now, what would happen if we rotated the distribution shown in Fig. 1.2 by 45◦
about the center? The result is shown in Fig. 1.5. The two components are now
decorrelated, i.e., knowing the value of the first component does not help in estimating
the value of the second. The distributions of the new components are shown in Fig. 1.6.
The first component, save for the shift and a scaling factor of

√
2, is still quite similar

to the previous distributions — quite broad and covering most of the dynamic range
of the original individual pixels. The second component, however, is quite different.
It is much narrower, with a strong peak at 0. Because it has a smaller dynamic range,
we could encode its value with fewer bits. So even with a decorrelation by a simple
rotation of the axis, we can reduce the number of bits required for encoding an image.

In general, a process is decorrelated when, for zero mean random variables xi and
xj , the expectation of their product, the covariance, is zero if i �= j , i.e.,

E
(
xixj

) =
{

0 i �= j ,

σ 2
i i = j ,

(1.1)

where E(·) is the expectation operator. Using vector notations, we may define the
vector of the values of an image block of N pixels as

x = [x1 x2 . . . xN ]T . (1.2)

We can then define the covariance matrix as

[C]x = E
[
(x − m) (x − m)T

]
, (1.3)



FIGURE 1.1
Example “Lena”image. Reproduced by Special Permission of Playboy maga-
zine. Copyright©1972, 2000 by Playboy.

where m = E(x) is the mean. For notational convenience, we will assume zero mean
input for the rest of this chapter. In practice, the mean can simply be removed from
the data before processing.

We wish to find a linear transformation matrix, [W], whose transpose, [W]T , will
rotate x to produce a diagonal covariance matrix for the transformed variable y,

y = [W]T x . (1.4)

Each column vector, wi , of [W] is a basis vector of the new space. So, alternatively,
each element, yi , of y is calculated as

yi = wT
i x . (1.5)



FIGURE 1.2
Scatter plot of adjacent pixel value pairs.

For simple rotations with no scaling, the matrix [W] must be orthonormal, that is

[W]T [W] = [I] = [W][W]T (1.6)

where [I] is the identity matrix. This means that the column vectors of the matrix are
mutually orthogonal and are of unit norm. From Eq. (1.6), it follows that the inverse
of an orthonormal matrix is simply its transpose, [W]T = [W]−1. The inverse
transformation is then calculated as

x = [W]y . (1.7)



FIGURE 1.3
Image blocking with 1 × 2 pixel nonoverlapping blocks.

Further, the total energy under the transformation is preserved

‖y‖2 = yT y

=
(
[W]T x

)T ([W]T x
)

= xT [W][W]T x

= xT x

= ‖x‖2 ,

(1.8)

where ‖x‖ is the norm of the vector x defined as

‖x‖ =
√

xT x

=
√√√√ N∑

i=1

x2
i .

(1.9)

For the above example where N = 2, by inspection, the matrix [W] is simply a



FIGURE 1.4
Distributions for each component.

rotation by 45◦

[W] =
[

cos 45◦ − sin 45◦
sin 45◦ cos 45◦

]
. (1.10)

For an arbitrary covariance matrix, the problem of finding the appropriate transfor-
mation is the orthonormal eigenvector problem. Since the covariance matrix is real
and symmetric, we can find its real eigenvalues and corresponding eigenvectors. Let
[C]y be the desired diagonal covariance matrix of the transformed variable y which
will be of the form

[C]y =
 λ1 0

. . .

0 λN

 , (1.11)

where the diagonal elements are the variances of the transformed data. The diagonal
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FIGURE 1.5
Scatter plot of pixel value pairs rotated by 45◦.

matrix can be calculated from the original covariance matrix, [C]x , as

[C]y = E
[
yyT

]
= E

[(
[W]T x

) (
[W]T x

)T ]
= E

[
[W]T

(
xxT

)
[W]

]
= [W]T [C]x[W] ,

(1.12)

or equivalently,

[C]x[W] = [W][C]y . (1.13)
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FIGURE 1.6
Distributions for each component of the rotated pixel value pairs.

Since the desired [C]y is diagonal, Eq. (1.13) can be rewritten for each column vector,
wi , of [W] as

[C]xwi = λiwi . (1.14)

The solutions for λi and wi with i = 1, . . . , N in Eq. (1.14) are the N eigenvalue,
eigenvector pairs of the matrix [C]x of dimension N × N . That is, each column
vector of [W] is an eigenvector of the covariance matrix, [C]x , of the original data.
To ensure that [W] is orthonormal, Gram-Schmidt orthogonalization may be applied
to the eigenvectors as they are obtained.

This transformation defined by the eigenvalues of the covariance matrix is the
Karhunen-Loève transform (KLT), named after Karhunen [17] and Loève [19] who
developed the continuous version of the transformation for decorrelating signals.
Earlier, Hotelling [15] had developed a “method of principal components” for re-
moving the correlation from the discrete elements of a random variable. As a result,
the method is also referred to as the Hotelling transform or principal components
analysis (PCA).



1.2.1 Calculation of the KLT

Estimation of Covariance

The calculation of the KLT is typically performed by finding the eigenvectors of the
covariance matrix, which, of course, requires an estimate of the covariance matrix. If
the entire signal is available, as is the case for coding a single image, the covariance
matrix can be estimated from n data samples as

[Ĉ]x = 1

n

n∑
i=1

xixTi , (1.15)

where xi is a sample data vector. If only portions of the signal are available, care
must be taken to ensure that the estimate is representative of the entire signal. In the
extreme, if only one data vector is used then only one nonzero eigenvalue exists, and
its eigenvector is simply the scaled version of the data vector. For typical images, it
is rarely the case that their covariance matrix has any zero eigenvalues. For a data
vector of dimension N , a good rule of thumb is that at least 10 × N representative
samples from the various regions within an image be used to ensure a good estimate
if it is not feasible to use the entire image.

Calculation of Eigenvectors

While it is beyond the scope of this chapter to provide a detailed discussion of the
algorithms for extracting the eigenvalues and eigenvectors, we will present a brief
overview of the general methods commonly used. The reader is referred to [16, 28]
for more detailed explanations. For actual implementations of the methods, many
numerical packages such as LAPACK [22] (which is based on EISPACK [21] and
LINPACK [23]), MATLAB [20], IDL [31], and Octave [11], and the routines in
“cookbooks,” such as that by Press et al. [28], provide routines for the solution of
eigensystems.

A simple approach is the Jacobi method. It develops a sequence of rotation matrices,
[P]i , that diagonalizes [C] as

[D] = [V]T [C][V] , (1.16)

where [D] is the desired diagonal matrix and [V] = [P]1[P]2[P]3 · · · . Each [P]i
rotates in one plane to remove one of the off-diagonal elements. It is an iterative
technique which is terminated when the off-diagonal values are close to zero within
some tolerance. Upon termination, the matrix [D] contains the eigenvalues on the
diagonals and the columns of [V] are the basis vectors of the KLT.

While this technique is quite simple, for larger matrices it can take a large number
of calculations for convergence. A more efficient approach for larger, symmetric
matrices divides the problem into two stages. The Householder algorithm can be
applied to reduce a symmetric matrix into a tridiagonal form in a finite number of
steps. Once the matrix is in this simpler form, an iterative method such as QL
factorization can be used to generate the eigenvalues and eigenvectors. The advantage



of this approach is that the factorization on the simplified tridiagonal matrix typically
requires fewer iterations than the Jacobi method.

Recently, there has been some interest in iterative methods of principal components
extraction that do not require the calculation of a covariance matrix [7, 14, 26]. These
techniques update the estimate of the eigenvectors for each input training vector. One
such method developed by Oja [25] is of the form

ŵ(t + 1) = ŵ(t) + α
[
y(t)x(t) − y2(t)ŵ(t)

]
, (1.17)

where x is an input vector, ŵ(t) is the current estimate of the basis vector, y = wT x
is the coefficient value, and α is a learning-rate parameter. Eq. (1.17) has been
shown to converge to the largest principal component [14, 27]. This algorithm can be
generalized through deflation to extract any or all of the principal components [7, 33].
Also, adaptive schemes have been based on this method [8]. While these algorithms
have some advantages over covariance-based methods, there are still some concerns
over stability and convergence [3, 4, 35].

Markov-1 Solution

The calculation of the eigenvectors for an arbitrary covariance matrix can still
require a large number of computations. However, there is a special class of matrix
that has an analytical solution for its eigenvectors and eigenvalues [29, 30]. If a
process were to have a covariance function of the form

[C]ij = σ 2ρ|i−j | , (1.18)

where ρ is the correlation coefficient such that 0 < ρ < 1, such a process is referred
to as a first order stationary Markov process or simply Markov-1. The solution for
the ith element of the j th basis vector for N -dimensional data is given by

wij =
[

2(
N + µj

)]1/2

sin

{
rj

[
(i + 1) − (N + 1)

2

]
+ (j + 1)

π

2

}
, (1.19)

where µj is the j th eigenvalue calculated as

µj =
(

1 − ρ2
) [

1 − 2 cos
(
rj
)+ ρ2

]
, (1.20)

and rj is the j th real positive root of the transcendental equation

tan (Nr) = −
(
1 − ρ2

)
sin (r)

cos (r) − 2ρ + ρ2 cos (r)
. (1.21)

To extend this to two-dimensional data, one can assume a separable transform. The
horizontal and vertical correlation coefficients, ρH and ρV , are estimated from the im-
age to calculate a horizontal basis set, w(H)

ij , and vertical basis set, w(V )
ij , respectively.



Then, the i, j element of the kth two-dimensional basis vector, wijk , is calculated as
the product of the two:

wijk = w
(H)
ik w

(V )
jk . (1.22)

As many images exhibit a Markov-1 structure, this solution to the KLT can be quite
useful due to its ease of generation.

1.3 Performance of Transforms

On its own, an orthonormal transformation does not effect data compression. The
blocks of pixels are simply transformed from one set of values to another and, for
reversible transformations, back again on reconstruction. To reduce the number of bits
for representing an image, the coefficients are quantized, incurring some irreversible
loss, and then encoded for more efficient representation. By decorrelating the data
before these steps using the KLT, more data compaction can be achieved.

To examine the effects of this extra efficiency, we can make use of Shannon’s
information measures [34].

1.3.1 Information Theory

The information conveyed by an observation of some random process is related
to its probability of occurrence. If an observation were all but certain to occur,
i.e., its probability were close to 1, it would not be very informative. However, if
it were quite unexpected, the observation would convey much more information.
Shannon formalized this relationship between the probability of an event, P(x), and
its information content, I (x), as

I (x) = − logP(x) . (1.23)

If the logarithm is taken with respect to base 2, the information, I (x), is measured in
units of bits.

A random variable, x, is a collection of all possible events and their associated
probabilities. The average information for a random variable can be calculated as

H(x) =
∑
i

P (xi) I (xi)

= −
∑
i

P (xi) logP (xi) ,
(1.24)

where the sum is taken through all possible events. The average information is called
the entropy of the process.



Entropy is useful in determining theoretical performance measures of compression
methods. Shannon showed that entropy gives a lower bound on the average number
of bits required to encode the events of a random process without introducing error.
In other words, one needs at least as many bits per event, on average, as the entropy
to represent a set of observations.

However, these measures are not directly applicable to the coefficients of an arbi-
trary transformation. They are defined for discrete events whereas the coefficients,
since they are floating-point values, must be considered real-valued samples of con-
tinuous distributions. Since the probability of any such real-valued sample is zero,
the (discrete) entropy is undefined. Instead, we define the differential entropy [13] as

h(x) = −
∫ ∞

−∞
p(s) logp(s)ds . (1.25)

For simple distributions such as the Gaussian, uniform, or Laplacian distributions the
differential entropy is of the form

h(x) = 1

2
log σ 2

x + k , (1.26)

where σ 2
x is the variance of the random variable and k is a distribution-dependent

constant (e.g., for a Gaussian, k = 1
2 log2 2πe) [1].

A good transformation, then, should minimize the sum of the differential entropies
for the resulting coefficients. Due to the logarithmic term, this is equivalent to mini-
mizing the product of the variances of the coefficients. However, recall that for any
orthonormal transformation, the total energy is preserved, so the sum of the coeffi-
cient variances is fixed. One measure of the efficiency of the transform is the coding
gain [10] defined as the ratio between the algebraic mean of the variances, which
is independent of the transform, and the geometric mean of the variances, which is
transform dependent:

GW =

1

N

N∑
i=1

σ 2
yi(

N∏
i=1

σ 2
yi

)1/N
. (1.27)

For the raw signal, before any transformation, all the variances are approximately
equal giving a unity coding gain. Any increase in one of the coefficient variances
must be matched by an equal decrease in one or more of the other variances for an
orthonormal transform. The arithmetic mean is therefore the same, but the geometric
mean decreases resulting in a coding gain of greater than one.

For a given energy of the signal, minimizing the product of the variances maximizes
the coding gain. Conversely, maximizing the coding gain minimizes the lower bound
on the number of bits required to encode the image. So, to minimize the product
of the variances given a fixed sum, one should maximize the variance of the first



coefficient. Next, subject to the orthonormality constraint, maximize the variance of
the second coefficient, and so on. This procedure is nothing more than extracting the
principal components or, equivalently, generating the KLT. Therefore, the KLT, by
decorrelating the data, produces a set of coefficients that minimizes the differential
entropy of the data.

1.3.2 Quantization

In transform coding, the transform coefficients are quantized to effect the data
reduction. While the transformation is reversible, quantization is not, and therefore
introduces error. Let ŷ be the set of quantized coefficient values for a block. On
reconstruction, the block is calculated as

x̂ = [W]ŷ . (1.28)

The squared error for the block is calculated as

ε2 = ∥∥x̂ − x
∥∥2

= (
x̂ − x

)T (x̂ − x
)

= ([W]ŷ − [W]y)T ([W]ŷ − [W]y)
= (

ŷ − y
)T [W]T [W] (ŷ − y

)
= (

ŷ − y
)T (ŷ − y

)
= ∥∥ŷ − y

∥∥2
.

(1.29)

So, the squared error on reconstruction is the same as the squared error of the coeffi-
cients for orthonormal transformations.

The quantized coefficients are typically encoded using a lossless method, such as
arithmetic coding or Huffman coding. These methods can, at best, reduce the average
number of bits to the entropy of the quantized coefficients.

To illustrate the advantage of performing the KLT before quantization, we calculate
the total entropy for a number of quantization intervals on both the original data and
the transformed data. For this example, a midstep, uniform quantizer is used where
the quantized value is calculated as

ŷ = q round (y/q) , (1.30)

based on the width of the quantization interval, q, where the function round(x)
returns the nearest integer to the real value x. The results are shown in Fig. 1.7. For
a given squared error due to quantization, the entropy in bits per pixel is less for the
transformed data than for the original data.

1.3.3 Truncation Error

Another approach to reducing the data and hence introducing error is the complete
removal of a number of the coefficients before quantization. Say only M of the N

coefficients were to be retained. The resulting expected squared error is calculated as



FIGURE 1.7
Plot of mean squared error (MSE) versus entropy in bits per pixel for a number
of quantization widths.

E
[
ε2
]

= E

[
1

N

N∑
i=1

(
yi − ŷi

)2]

= 1

N
E

 M∑
i=1

(yi − yi)
2 +

N∑
i=M+1

(yi − 0)2

 (1.31)

= 1

N
E

 N∑
i=M+1

y2
i


= 1

N

N∑
i=M+1

σ 2
i .

Recall that for the KLT the variances of the coefficients, σ 2
i , are the eigenvalues, λi ,

of the covariance matrix. To minimize the expected squared error, the M coefficients
corresponding to the M largest eigenvalues should be kept.



Notice that the above minimization is valid for any transformation whose M basis
vectors span the M-dimensional subspace defined by the M largest principal compo-
nents (eigenvectors for the M largest eigenvalues). However, only the KLT ensures
that the remaining coefficients can be coded with the minimum number of bits since
it minimizes the differential entropy of the coefficients. To illustrate this point, let
us generate the 64 KLT basis vectors for an 8 × 8 blocking of the test image and
keep only the first four. The variances of the resulting coefficients are shown in the
first column of Table 1.1. The MSE due to the removal of the 60 lowest variance
coefficients is 96.1. Now, let us generate another set of 4 basis vectors by taking
random linear combinations of the first 4 KLT basis vectors. The new set still spans
the space defined by the original 4 KLT basis vectors. As a result, the MSE due to
truncation and the sum of the remaining variances are identical to those of the KLT
bases. However, the product of the variances is much higher, and, as a result, the
coding gain is much smaller than for the KLT bases. This means that the representa-
tion is less efficient and will require more bits to encode the coefficients for the same
degree of distortion.

Table 1.1 Performance Differences
Between First Four Basis Vectors of KLT and
a Random Combination of Them

KLT bases Random span

σ 2
1 113995 20876

σ 2
2 6880 18236

σ 2
3 2727 79310

σ 2
4 1691 6873

4∑
i=1

σ 2
i 125294 125294

64∑
i=5

σ 2
i 6147 6147

Truncation MSE 96.1 96.1
4∏

i=1

σ 2
i 3.6 × 1015 207.5 × 1015

Coding gain 4.04 1.47

1.3.4 Block Size

The question remains of what size to use for the image blocks. The larger the block,
the greater the decorrelation, hence the greater the coding gain. However, the number



of arithmetic operations for the forward and inverse transformations increases linearly
with the number of pixels in the block. Furthermore, the size of the covariance matrix
is the square of the number of pixels. Not only does the calculation of the eigenvectors
require more resources, but the number of samples to get a reasonable estimate of the
covariance matrix increases significantly. As well, if the set of KLT basis vectors is to
be kept with the image for reconstruction, the size of the basis set is also of concern.
Therefore, there is a trade-off between computational requirements and the degree of
decorrelation in determining the block size.

Fig. 1.8 shows the coding gain as a function of block size for the test image. It
clearly shows that the use of larger block sizes results in larger coding gains. For
example, increasing the block size from 4 × 4 to 8 × 8 increases the gain from 27
to 39. However, the number of floating point operations per pixel increases by a factor
of four from 32 to 128.

FIGURE 1.8
Coding gain as a function of block size for test image.



Of course, using a block the same size as the image results in a perfect coding
gain since the entire image can be represented by a single component. Unfortunately,
this representation is so image specific that the transform basis itself must also be
included with the compressed image to enable reconstruction. Since the basis vector
is the image, one is no further ahead. However, such full-frame transform coding
may be appropriate for sequences or collections of similar images.

Interblock Correlation

The KLT produces decorrelated coefficients within the image blocks. There is no
assurance, however, that the coefficients from block-to-block are also decorrelated.
In fact, for most images there is a significant correlation between the first coefficients
for adjacent blocks. For example, Fig. 1.9 shows the scatter plot of adjacent pairs of
the first coefficient for the 8 × 8 KLT of the test image. Note the strong correlation
between the adjacent values. In contrast, Fig. 1.10 shows little if any correlation
between adjacent second coefficients.

A simple method of reducing such correlation is to encode only the difference
between adjacent coefficients after initially encoding the first. This method is known
as differential pulse code modulation (DPCM). The use of DPCM on the first coeffi-
cients significantly increases the overall coding efficiency by reducing the variance of
the coefficient. For example, performing DPCM on the first coefficient of the above
8 × 8 KLT coefficients reduces the variance from 113995 to 51676. The resulting
scatter plot of the adjacent pairs of differences is shown in Fig. 1.11. The use of
DPCM has removed the correlation between adjacent values of the first coefficient.

1.4 Examples

1.4.1 Calculation of KLT

To calculate the KLT of an image, the covariance matrix is first estimated. The
estimate is calculated from the set of sequential nonoverlapping blocks for the image.
For the following examples, blocks of 8 × 8 pixels are used. For the “Lena” image,
this results in 4096 blocks. The eigenvalues and the corresponding eigenvectors
are extracted from the covariance matrix. Because the matrix is symmetric, the
eigenvalues and eigenvectors can be calculated using the tridiagonalization and QL
factorization approach.

The resulting 64 basis vectors are shown in Fig. 1.12 as two-dimensional basis
images or blocks. The bases are in order from the largest variance at the top left to
the lowest at the bottom right. Dark pixels represent negative values and light pixels
represent positive values. The first basis is almost flat due to the similarity of pixel
values within most blocks. As was the case for the two-dimensional scatter plot of
Fig. 1.2, the 64-dimensional scatter plot would show a strong concentration of points
along the diagonal line x1 = x2 = · · · = x64. As this is true for most images, the
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FIGURE 1.9
Scatter plot of adjacent pairs of the first coefficient.

first component of the KLT tends to be constant or d.c. As the variance increases, the
degree of variation, or frequency, increases. This relationship generally agrees with
the form of the KLT solution for a Markov-1 process as shown in Eq. (1.19) where
the frequency increases as the basis index increases. Again, as most images have an
approximate Markov-1 structure, the form of the KLT bases are similar.

1.4.2 Quantization and Encoding

Once the coefficients are calculated, they are quantized and then losslessly encoded.
There are numerous such methods, but a discussion and comparison of them would be
beyond the scope of this chapter. For illustrative purposes, we will use an encoding
scheme similar to that adopted by the JPEG standard [36]. The coefficients are
quantized by a midstep uniform quantizer as defined in Eq. (1.30). For simplicity, the
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FIGURE 1.10
Scatter plot of adjacent pairs of the second coefficient.

same quantization step size, q, is used for all coefficients, unlike the JPEG standard
that varies the degree of quantization for each coefficient according to the visibility of
error as judged by human observers. Each quantized coefficient is encoded first by a
Huffman encoded value for the number of bits required by the coefficient followed by
the minimum number of bits for the coefficient value itself. Zero-valued coefficients
from adjacent blocks are run-length encoded for further compaction.

The results for various degrees of quantization are shown in Table 1.2. As the
coarseness of quantization increases, the size of the file decreases resulting in greater
compression. The equivalent average number of bits per pixel is also shown. For
comparison to show the efficiency of the coefficient encoding, the entropy of the
quantized coefficient values is also shown. The actual bit rate and the entropy are
very similar. At high compression the actual bit rate is slightly lower than the entropy
because of the run-length encoding of zero values.
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FIGURE 1.11
Scatter plot of adjacent pairs of differences of the first coefficient.

As the bit-rate decreases, distortion increases. Table 1.2 shows the distortion in
two equivalent common measures [6]. The mean squared error (MSE) is defined as

MSE = E
[(
x − x̂

)2]
, (1.32)

where x is the original pixel value and x̂ is the reconstructed value. The peak signal-
to-noise ratio (PSNR) is a logarithmic measure of distortion given in decibels (dB)
and is defined as

PSNR = 10 log10
(255)2

E
[(
x − x̂

)2] , (1.33)

where 255 is the peak value of an 8-bit image. The larger the PSNR value, the better
the accuracy of reconstruction. The plot of the distortion as PSNR versus the bit



FIGURE 1.12
KLT basis images for “Lena” image.

rate is shown in Fig. 1.13. From rate-distortion theory, for a stationary memoryless
Gaussian source, the bit rate, R, as a function of the squared error distortion, ε2, is
given by [1]

R(ε) =
{

1
2 log2

(
σ 2/ε2

)
0 ≤ ε2 < σ 2 ,

0 σ 2 ≤ ε2 .
(1.34)

For high bit rates, the rate-distortion curve follows the logarithmic relationship be-
tween the squared error and the bit rate. As the quantization interval increases, the
distortion overtakes the variance for more coefficients. As a result, the curve begins
to drop sharply as the distortion increases without a corresponding further reduction
in bit rate. In the limit as the quantization interval increases, the bit rate becomes zero



Table 1.2 Compression of “Lena” Image Using KLT
Quantizer File Size Bits/pixel Entropy MSE PSNR

Width (bytes) (bits) (dB)

2 139948 4.27 4.08 0.42 51.95
4 109141 3.33 3.11 1.42 46.62
8 78820 2.41 2.18 5.19 40.98

16 42245 1.29 1.28 15.01 36.37
24 27196 0.83 0.90 23.78 34.37
36 18375 0.56 0.64 36.27 32.54
48 13893 0.42 0.50 48.45 31.28
64 10548 0.32 0.39 64.70 30.02
92 7547 0.23 0.28 93.68 28.41

128 5492 0.17 0.21 130.19 26.98
192 3797 0.12 0.15 199.21 25.14
256 2831 0.09 0.11 273.42 23.76
512 1457 0.04 0.06 638.18 20.08

and the squared error is then simply the variance.

Fig. 1.14 shows the reconstructed image after a compression of 10:1 (0.8 bits per
pixel). Overall, very little distortion is visible. Areas of constant brightness, edges,
lines, and textured regions are all reproduced quite faithfully. Even on closer examina-
tion, little distortion is evident, as shown by comparing Figs. 1.15(a) and (b). At 10:1
compression, some minor distortion is seen as spurious texture in the background.
As well, the lone feather piece in the center-left region is somewhat distorted. As the
compression ratio increases, though, the distortion becomes more apparent, as shown
by Figs. 1.15(c) and (d) for ratios of 20:1 and 40:1, respectively. The texture of the hat
is lost in areas at 20:1, while artifacts in the background region are more pronounced.
The edges of the hat, however, are still rather crisp and the textured region of the
feathers on the brim does not seem as distorted as the hat texture. Because the set of
bases is image specific, certain features, such as these, may be well represented and
be somewhat resistant to distortion at moderate compression ratios. By 40:1, though,
the image is quite distorted. This type of distortion is sometimes referred to as “block
effect distortion” because the block boundaries used in block transform coding are
visible.

1.4.3 Generalization

In theory, the transform basis set for the KLT is specific to a particular image.
However, in practice the statistics of images at the block-size level of detail tend to be
similar. As a result, the KLT computed from one set of image data performs quite well
on another set. For example, the above results were based on the KLT computed from
the covariance matrix of the set of sequential, nonoverlapping blocks from the image.
These blocks are the exact data that are used to encode the image. If the covariance



FIGURE 1.13
Plot of distortion (PSNR) versus bit rate showing both the entropy and actual
coding rates.

matrix were to be calculated from randomly chosen blocks from arbitrary locations
on the image, the data for generating the KLT would be different from the data used
in encoding the image. Fig. 1.16 shows the results for both the KLT generated from
the sequential set of blocks and a set of 4096 randomly chosen blocks. While the
transform generated from the same data to be coded performs better, the improvement
is not significant.

What happens if the KLT is generated based on an image completely different from
the one being encoded? A second test image, “Goldhill,” is shown in Fig. 1.17. This
image was encoded using the KLT generated from the image and the KLT originally
generated from the “Lena” image. The rate-distortion curves are shown for both
cases in Fig. 1.18. As expected, using the same data for generating the transform as
for encoding results in better performance than using different data to generate the
transform. However, as the figure shows, this increase is only minor. In this case, the
transformation based on the “Lena” image generalizes well to the other image.



FIGURE 1.14
Image after compression of 10:1, MSE = 24.8, PSNR = 34.2 dB. Reproduced by
Special Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

1.4.4 Markov-1 Solution

To compare the usefulness of the Markov-1 solution to the KLT, we first look at
the autocorrelation of the image. As shown in Table 1.3, the autocorrelation does
appear to follow the Markov-1 model of E[xixj ] = E[x2]ρ|i−j | with ρH = 0.9543
for horizontally neighboring pixels. A similar relationship also holds for vertically
neighboring pixels with ρV = 0.9768. For simplicity we will assume a separable,
isotropic distribution and choose ρ = 0.9543 for both directions. The resulting KLT
bases are shown in Fig. 1.19. Note the strong sinusoidal nature of the basis images.
The rate-distortion results for using this set of KLT bases are shown in Fig. 1.20 along
with the original results for the KLT generated from the image itself. Since the two



FIGURE 1.15
Details of image before and after 10:1, 20:1, and 40:1 compression. (a) Original,
(b) Compressed 10:1, (c) Compressed 20:1, (d) Compressed 40:1. Reproduced
by Special Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

curves are almost identical, the savings in computational resources from having a
closed form solution for the Markov-1 case incurs little if any cost in performance.

1.4.5 Medical Imaging
One of the most demanding application areas for the use of image compression

is the compression of medical images. The implications of introducing any sort of
distortion in this class of images are grave. There are numerous legal and regulatory
issues which consequently are of concern [37]. As a result, there is an argument for



FIGURE 1.16
Plot of distortion versus bit rate for KLT calculated from both randomly chosen
blocks and sequential blocks.

the use of lossless compression in this field; however, such an approach is of limited
usefulness due to the theoretical limits on the maximum allowable compression.

The question, of course, is how much compression can be achieved? For lossy
image compression methods, this is the same as asking how much distortion can be
introduced in the reconstructed image. To answer this question, the end-use of the
images must properly be defined. For the following example, as originally presented
in Dony et al. [9], the application is for educational use. Currently, radiology residents
acquire their diagnostic skills through examining actual clinical images of normal
patients as well as those with various pathologies. With the growth in digital imaging,
it is now possible to store such a library of images digitally in a computer database.
The residents would be free to call up any of the images and examine them at their
convenience. The evaluation criteria for this environment are quite different from, say,
a diagnostic environment. In the educational environment, the diagnosis or pathology
is given beforehand. It is sufficient that an image show clearly the pathology in
question or the characteristics of a normal image. So, it is the overall quality of the
image and the visibility of the pathology as judged by an experienced radiologist
which must be measured.



FIGURE 1.17
Second test image, “Goldhill.”

Nine digital chest radiographs (X-rays) obtained for clinical reasons were selected
for evaluation as being representative of both normal anatomy and pathology. A
sample image is shown in Fig. 1.21. Each of the nine images was compressed using
an adaptive variation of the KLT at 10:1, 20:1, 30:1, and 40:1, and the five versions of
each image were presented simultaneously to each of seven radiologists, in random
order and without the evaluator knowing the degree of compression. The radiologists
were asked to rank image quality and visibility of pathology in the context of their
suitability for educational use. Possible ratings varied from excellent, good, and fair
— acceptable — and poor or bad — unacceptable. A mean opinion score (MOS) was
calculated by assigning a numeric value to each rating, e.g., excellent scored 5 points
and bad 1 point [24].



FIGURE 1.18
Distortion versus bit rate for “Goldhill” image using KLT from both “Goldhill”
image and “Lena” image.

The results of evaluation are summarized in Fig. 1.22 which shows the plot of the
mean opinion score for both scoring criteria. The figure shows that the MOS at the
various degrees of compression remains quite close to that of the original. For image
quality, the MOS for the original is 4.28 and drops only to 4.01 at 40:1. The MOS
for the pathology visibility is 4.33 for the original and 4.10 for the 40:1 compression
ratio. Therefore the use of a compression method based on the KLT results in usable
images at even relatively high compression.

1.4.6 Color Images

Another application of the decorrelation abilities of the KLT is the compression
of color images. Color images can be represented by three color components per
pixel. Typically these are the three primary colors, red, green, and blue (RGB),
corresponding to the responses of the three color receptors in the retina of the human
eye. Similarly, in most color vision systems, three color filters of red, green, and blue
are used to produce, respectively, the three color components per pixel. From the
original RGB data, there are numerous transformations that can represent color values



Table 1.3 Correlation Between First 8
Neighboring Pixels on the Rows

E[xixj ] E[xixj ]/E[xi−1xj ]
|i − j | = 0 2657 -
|i − j | = 1 2589 0.9744
|i − j | = 2 2472 0.9546
|i − j | = 3 2338 0.9460
|i − j | = 4 2223 0.9510
|i − j | = 5 2111 0.9492
|i − j | = 6 2010 0.9524
|i − j | = 7 1914 0.9523

in different coordinate spaces [18]. Some, for example HSI, express the components
in a form that follows more closely the human perceptions of color qualities such as
hue, saturation, and intensity. Others, for example YIQ, attempt to decorrelate the
chromatic and intensity information. For the following example, we will explore the
use of the decorrelation property of the KLT on the raw RGB data.

A simple approach to compression would be to treat each of the three RGB com-
ponents as separate images. However, this method does not exploit the correlation
between the three color values at each pixel. An alternative is to include all three
component pixel values within a block. For example, an 8 × 8 block will contain 192
individual values. The KLT can then decorrelate the component values allowing
improved coding.

To show the difference in coding performance between combining and not com-
bining the three component values, the image shown in Fig. 1.23 is used as a test
image. The image is 512 × 768 pixels in size and each pixel has 3 RGB values of
8 bits each for a total of 24 bits per pixel. For the separate encoding, three transforms
were calculated and applied, one for each component. The resulting rate-distortion
relationship is shown as the dashed curve in Fig. 1.24. The bit rate combines the file
sizes of all three components and the distortion is the mean across the components.
For the combined method, the image was divided into blocks of 8×8 pixels×3 com-
ponents for a total input dimension of 192. The performance of the KLT generated
from this data is shown by the solid curve of Fig. 1.24. The figure shows that the
difference in performance is substantial. For example, at a compression of 12:1 (2
bits per pixel), allowing the transform to decorrelate the RGB components results in a
4 dB increase in fidelity. Again, this example shows that the greater the decorrelation,
the better the performance of the transform.



FIGURE 1.19
KLT basis images for Markov-1 model, ρ = 0.9543.

1.5 Summary

The Karhunen-Loève transform (KLT) is defined as the linear transformation whose
basis vectors are the eigenvectors of the covariance matrix of the data. As it diagonal-
izes the covariance matrix, it decorrelates the data. The resulting set of coefficients
can be encoded with fewer bits for a given distortion than the raw data.

The KLT is the optimal transformation in terms of minimizing the bit rate. The
use of eigenvectors as the basis vectors ensures that the variance of the first coeffi-
cient is maximized, and, subject to the orthogonality of basis vectors, all subsequent
coefficient variances are maximized in order. Maximizing each variance means that



FIGURE 1.20
Plot of distortion (PSNR) versus bit rate for the KLT from the image covariance
matrix and the KLT generated from the Markov-1 model.

the product of all the variances is minimized due to the energy preserving nature of
any orthonormal transformation. Since the total differential entropy for the blocks
increases with the product of the variances, the KLT minimizes the entropy thereby
minimizing the bound on the bit rate.

The transform has a number of important performance characteristics for image
compression. At moderate compression ratios, very little distortion is visible. As the
compression ratio increases, more distortion becomes evident. However, because the
transform is based on data from the image, some areas remain faithfully reproduced
at even relatively low bit rates. The most prominent feature of the distortion as the
compression ratio increases is the blocking effects of using finite sized blocks. While
the KLT is calculated from the covariance matrix of an image and the covariances
of different images are rarely identical, the transform based on one image can still
perform well on a different image since the second order statistics of many images are
rather similar. Even the use of the quite general Markov-1 model for the covariance
results in performance almost as effective as the strictly image-specific transformation.
As well, the decorrelating property of the transform can be used successfully on pixel



FIGURE 1.21
Sample chest radiograph for medical image compression evaluation.

data with more than one component, such as the three RGB components in color
images.

While the KLT has the theoretically optimal decorrelation property, it has seldom
been used in practice. While the transform can generalize well, the basis vectors must
accompany an image or set of images for reconstruction if the Markov-1 model is
not used. There are also the additional computational requirements of estimating the
covariance and solving the eigensystem to extract the principal components. Further,
the computation of the forward and inverse transform is considered “slow,” requiring
an order of O(N2) operations per block of N pixels or O(N × p) for an image of
p pixels. Finally, while the transform may be optimal from an information-theoretic
basis, the distortion criterion may not correspond well with our visual perception of
distortion. For example, the block effect distortion is quite visible at high compression



FIGURE 1.22
Mean opinion score across all images and evaluators.

FIGURE 1.23
Color test image, “Monarch.”



FIGURE 1.24
Distortion versus bit rate for “Monarch” image for encoding the RGB compo-
nents separately and together.

ratios, yet it is not accounted for in the distortion criteria. A full frame KLT is
theoretically possible, but it is only practical for sets of quite small images.
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