
Ivan W. Selesnick et al. "The Discrete Fourier Transform"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 20001 CRC Press LLC 



Chapter 2

The Discrete Fourier Transform

Ivan W. Selesnick
Polytechnic University

Gerald Schuller
Bell Labs

2.1 Introduction

The discrete Fourier transform (DFT) is a fundamental transform in digital signal
processing, with applications in frequency analysis, fast convolution, image process-
ing, etc. Moreover, fast algorithms exist that make it possible to compute the DFT very
efficiently. The algorithms for the efficient computation of the DFT are collectively
called fast Fourier transforms (FFTs). The historic paper by Cooley and Tukey [15]
made well known an FFT of complexity N log2 N , where N is the length of the data
vector. A sequence of early papers [3, 11, 13, 14, 15] still serves as a good reference
for the DFT and FFT. In addition to texts on digital signal processing, a number of
books devote special attention to the DFT and FFT [4, 7, 10, 20, 28, 33, 36, 39, 48].

The importance of Fourier analysis in general is put forth very well by Leon Co-
hen [12]:

. . . Bunsen and Kirchhoff, observed (around 1865) that light spectra
can be used for recognition, detection, and classification of substances
because they are unique to each substance.

This idea, along with its extension to other waveforms and the invention
of the tools needed to carry out spectral decomposition, certainly ranks
as one of the most important discoveries in the history of mankind.

The kth DFT coefficient of a length N sequence {x(n)} is defined as

X(k) =
N−1∑
n=0

x(n)Wkn
N , k = 0, . . . , N − 1 (2.1)



where

WN = e−j2π/N = cos

(
2π

N

)
− j sin

(
2π

N

)

is the principal N -th root of unity. Because Wnk
N as a function of k has a period of

N , the DFT coefficients {X(k)} are periodic with period N when k is taken outside
the range k = 0, . . . , N − 1. The original sequence {x(n)} can be retrieved by the
inverse discrete Fourier transform (IDFT)

x(n) = 1

N

N−1∑
k=0

X(k)W−kn
N , n = 0, . . . , N − 1 .

The inverse DFT can be verified by using a simple observation regarding the principal
N -th root of unity WN . Namely,

N−1∑
n=0

Wnk
N = N · δ(k), k = 0, . . . , N − 1 ,

where δ(k) is the Kronecker delta function defined as

δ(n) =
{

1 n = 0
0 n �= 0 .

For example, with N = 5 and k = 0, the sum gives

1 + 1 + 1 + 1 + 1 = 5 .

For k = 1, the sum gives

1 + W5 + W 2
5 + W 3

5 + W 4
5 = 0

which can be graphically illustrated as:



The sums can also be visualized by looking at the illustration of the DFT matrix in
Fig. 2.1. Because Wnk

N as a function of k is periodic with period N , we can write

N−1∑
n=0

Wnk
N = N · δ (〈k〉N)

where 〈k〉N denotes the remainder when k is divided by N , i.e., 〈k〉N is k modulo N .
To verify the inversion formula, we can substitute the DFT into the expression for

the IDFT:

x(n) = 1

N

N−1∑
k=0

(
N−1∑
l=0

x(l)Wkl
N

)
W−kn

N , (2.2)

= 1

N

N−1∑
l=0

x(l)

N−1∑
k=0

W
k(n−l)
N , (2.3)

= 1

N

N−1∑
l=0

x(l)N δ (〈n − l〉N) , (2.4)

= x(n) . (2.5)

2.2 The DFT Matrix

The DFT of a length N sequence {x(n)} can be represented as a matrix-vector
product. For example, a length 5 DFT can be represented as


X(0)
X(1)
X(2)
X(3)
X(4)


 =




1 1 1 1 1
1 W W 2 W 3 W 4

1 W 2 W 4 W 6 W 8

1 W 3 W 6 W 9 W 12

1 W 4 W 8 W 12 W 16







x(0)
x(1)
x(2)
x(3)
x(4)




where W = W5, or as

X = FN · x ,

where FN is the N × N DFT matrix whose elements are given by

(FN)l,m = Wlm
N 0 ≤ l, m ≤ N − 1 .

As the IDFT and DFT formulae are very similar, the IDFT represented as a matrix is
closely related to FN ,

F−1
N = 1

N
F∗
N



where F∗
N represents the complex conjugate of FN .

It is very useful to illustrate the entries of the matrix FN as in Fig. 2.1, where each
complex value is shown as a vector. In Fig. 2.1, it can be seen that in the kth row of the
matrix the elements consist of a vector rotating clockwise with a constant increment
of 2πk/N . In the first row k = 0 and the vector rotates in increments of 0. In the
second row k = 1 and the vector rotates in increments of 2π/N .

FIGURE 2.1
The 16-point DFT matrix.

2.3 An Example

The DFT is especially useful for efficiently representing signals that are comprised
of a few frequency components. For example, the length 2048 signal shown in Fig. 2.2
is an electrocardiogram (ECG) recording from a dog1. The DFT of this real signal,
shown in Fig. 2.2, is greatest at specific frequencies corresponding to the fundamental
frequency and its harmonics. Clearly, the signal {x(n)} can be represented well even
when many of the small DFT {X(k)} coefficients are set to zero. By discarding, or
coarsely quantizing, the DFT coefficients that are small in absolute value, one obtains a

1The dog ECG data is available from the Signal Processing Information Base (SPIB) at URL
http://spib.rice.edu/.



more efficient representation of {x(n)}. Fig. 2.3 illustrates the DFT coefficients when
the 409 coefficients that are largest in absolute value are kept, and the remaining
1639 DFT coefficients are set to zero. Fig. 2.3 also shows the signal reconstructed
from this truncated DFT. It can be seen that the reconstructed signal is a fairly accurate
depiction of the original signal {x(n)}. For signals that are made up primarily of a
few strong frequency components, the DFT is even more suitable for compression
purposes.

FIGURE 2.2
2048 samples recorded of a dog heart and its DFT coefficients. The magnitudes
of the DFT coefficients are shown (see property 1 in Section 2.5.1).

2.4 DFT Frequency Analysis

To formalize the type of frequency analysis accomplished by the DFT, it is useful
to view each DFT value {X(k)} as the output of a length N FIR filter hk(n). The



FIGURE 2.3
The truncated DFT coefficients and the time signal reconstructed from the trun-
cated DFT.

output of the filter is given by the convolution sum

yk(l) =
l∑

n=0

x(n) hk(l − n) .

When the output yk(l) is evaluated at time l = N − 1, one has

yk(N − 1) =
N−1∑
n=0

x(n) hk(N − 1 − n) .

If the filter coefficients hk(n) are defined as

hk(n) =
{

W
k(N−1−n)
N 0 ≤ n ≤ N − 1

0 otherwise
(2.6)



then one has

yk(N − 1) =
N−1∑
n=0

x(n)Wkn
N , (2.7)

= X(k) . (2.8)

Note that hk(n) = W
k(N−1−n)
N represents a reversal of the values Wkn

N for n =
0, . . . , N − 1, which in turn is the k-th row of the DFT matrix. Therefore, the DFT
of a length N sequence {x(n)} can be interpreted as the output of a bank of N FIR
filters each of length N sampled at time l = N − 1.

Moreover, the impulse responses hk(n) are directly related to each other through
DFT-modulation:

hk(n) = W
k(N−1−n)
N · p(n)

where the filter h0(n) = p(n) is given by

p(n) =
{

1 0 ≤ n ≤ N − 1
0 otherwise .

(2.9)

This filter is called a rectangular window as it is not tapered at its ends. It follows
that the Z-transforms of the filters are also simply related:

Hk(z) =
N−1∑
n=0

hk(n) z
−n (2.10)

=
N−1∑
n=0

W
k(N−1−n)
N p(n) z−n (2.11)

= W−k
N

N−1∑
n=0

W−kn
N p(n) z−n (2.12)

= W−k
N

N−1∑
n=0

p(n)
(
Wk

Nz
)−n

(2.13)

= W−k
N P

(
Wk

Nz
)

(2.14)

where P(z) = ∑N−1
n=0 p(n) z−n. That is, if each filter hk(n) in an N -channel fil-

ter bank is taken to be the time-flip of the k-th row of the DFT matrix, then their
Z-transforms are given by Hk(z) = W−k

N P (Wk
Nz). H0(z) = P(z), H1(z) =

W−1
N P (WNz), etc. It is instructive to view the frequency responses of the N fil-

ters hk(n), as the frequency responses of the filters Hk(z) indicate the effect of the
DFT on a sequence. The magnitude of the frequency response of Hk(z) and the zero
plot in the z-plane are given in Fig. 2.4. Note that the zeros of Hk(z) in the z-plane
are simply rotated by 2π/N , and that the frequency responses are shifted by the same



FIGURE 2.4
The magnitude of the frequency response of the filters hk(n) for k = 0, . . . , 5,
corresponding to a 6-point DFT. Shown on the right are the zeros of Hk(z).



amount. The figure makes clear the way in which the DFT performs a frequency
decomposition of a signal.

The frequency response of the filter hk is given by Hk(e
jω), the discrete-time

Fourier transform (DTFT) of the impulse response:

Hk(e
jω) =

N−1∑
n=0

hk(n) e
−jωn . (2.15)

The frequency response of the rectangular window p(n) is given by

P
(
ejω

)
=

N−1∑
n=0

1 · e−jωn (2.16)

= 1 − e−jNω

1 − e−jω
(2.17)

= e−jωN/2
(
ejωN/2 − e−jωN/2

)
e−jω/2

(
ejω/2 − e−jω/2

) (2.18)

= e−jω(N−1)/2 · sin N
2 ω

sin 1
2ω

. (2.19)

The function sin (N2 ω)/ sin ( 1
2ω) is called the digital sinc function, for its resemblance

to the usual sinc function.

2.5 Selected Properties of the DFT

Of the many properties the DFT possesses, the symmetry properties are some of
the most useful when using the DFT for compression.

Because the DFT operates on finite-length data sequences, it is useful to define two
types of symmetries as follows. When {x(n)} is periodically extended outside the
range n = 0, . . . , N − 1, the following definitions for symmetric and anti-symmetric
sequences are consistent with their usual definitions for sequences that are not finite
in length.

Symmetry: Let {x(n)} be a real-valued length N data sequence, for n = 0, . . . ,
N − 1, then {x(n)} is symmetric if

x(N − n) = x(n), n = 1, . . . , N − 1 .

Note that an even-length N symmetric sequence {x(n)} is fully described by its first
N/2 + 1 values. For example, a length 6 symmetric sequence is fully determined
by its first 4 values as illustrated in Fig. 2.5. On the other hand, an odd-length N
symmetric sequence {x(n)} is fully described by its first (N + 1)/2 values. For



-

FIGURE 2.5
Illustration of even-length symmetric sequence.

-

FIGURE 2.6
Illustration of odd-length symmetric sequence.

example, a length 7 symmetric sequence is fully determined by its first 4 values as
illustrated in Fig. 2.6. For both even- and odd-length sequences, the number of values
that determine a length N symmetric sequence is 
N/2 + 1� where 
k� denotes the
greatest integer smaller than or equal to k.

Anti-symmetry: A real-valued length N data sequence is anti-symmetric if

x(0) = 0 and x(N − n) = −x(n), n = 1, . . . , N − 1 .

Note that an even-length N anti-symmetric sequence {x(n)} is fully described by
N/2 −1 values. For example, a length 6 anti-symmetric sequence is fully determined
by 2 values (see Fig. 2.7). On the other hand, an odd-length N anti-symmetric
sequence {x(n)} is fully described by (N − 1)/2 values. For example, a length 7
anti-symmetric sequence is fully determined by 3 values (see Fig. 2.8). For both
even- and odd-length sequences, the number of values that determine a length N

anti-symmetric sequence is �N/2−1� where �k� denotes the smallest integer greater
than or equal to k.



-

FIGURE 2.7
Illustration of even-length anti-symmetric sequence.

-

FIGURE 2.8
Illustration of odd-length anti-symmetric sequence.

2.5.1 Symmetry Properties

To state the symmetry properties of the DFT, it is useful to introduce the notation
{Xr(k)} and {Xi(k)} for the real and imaginary parts of {X(k)}. Similarly, {xr(n)}
and {xi(n)} are used to denote the real and imaginary parts of {x(n)}.

If {x(n)} is a length N data vector and . . .

1. if {x(n)} is real-valued, then

X(k) = X∗(N − k), k = 1, . . . , N − 1 ,

i.e., the real part of {X(k)} is symmetric, and the imaginary part of {X(k)} is
anti-symmetric.

2. if {x(n)} is real-valued and symmetric, then

X(k) = Xr(k) = Xr(N − k), k = 1, . . . , N − 1 ,

i.e., {X(k)} is purely real and symmetric.

3. if {x(n)} is real-valued and anti-symmetric, then

X(k) = j Xi(k) = −j Xi(N − k), k = 1, . . . , N − 1 ,



i.e., {X(k)} is purely imaginary and anti-symmetric.

4. if {x(n)} is purely imaginary, then

X(k) = −X∗(N − k), k = 1, . . . , N − 1 ,

i.e., the real part of {X(k)} is anti-symmetric, and the imaginary part of {X(k)}
is symmetric.

5. if {x(n)} is purely imaginary and {xi(n)} is symmetric, then

X(k) = j Xi(k) = j Xi(N − k), k = 1, . . . , N − 1 ,

i.e., {X(k)} is purely imaginary and symmetric.

6. if {x(n)} is purely imaginary and {xi(n)} is anti-symmetric, then

X(k) = Xr(k) = −Xr(N − k), k = 1, . . . , N − 1 ,

i.e., {X(k)} is purely real and anti-symmetric.

These properties are summarized in Table 2.1.
These properties explain why the total number of parameters needed to describe the

original data sequence {x(n)} is the same after the DFT is performed. For example,
consider a real-valued length 6 sequence {x(n)} and its DFT:

x =




1
3
5
6
7
2




X =




24.0000
−8.5000
−1.5000

2.0000
−1.5000
−8.5000




+ j




0
0.8660

−2.5981
0

2.5981
−0.8660




.

It is clear that there are a total of 6 distinct values in the DFT coefficients {X(k)} for
this example.

In general, for a length N real-valued sequence {x(n)}, the symmetric {Xr(k)} is
determined by 
N/2 + 1� values, and the anti-symmetric {Xi(k)} is determined by
�N/2 − 1� values. Therefore, even though the DFT {X(k)} of a length N real-valued
sequence {x(n)} is complex-valued, it is fully determined by exactly N values. The
number of parameters is the same in both {x(n)} and {X(k)}.

Recall that an even-length real-valued symmetric sequence {x(n)} is determined
by its first N/2 + 1 values. By the symmetry property above, the same is true for the
DFT {X(k)}. An odd-length real-valued symmetric sequence {x(n)} is determined
by its first (N + 1)/2 values. By the symmetry property above, the same is true for
the DFT {X(k)}. The symmetry properties for real-valued symmetric sequences are
especially useful because they can be used to develop useful DFT-based transforms
that yield real-valued coefficients.



Table 2.1 DFT Symmetry Properties
x is purely real Xr is symmetric, Xi is anti-symmetric

x is purely real, xr is symmetric Xr is symmetric, X is purely real

x is purely real, xr is anti-symmetric X is purely imaginary, Xi is anti-symmetric

x is purely imaginary Xr is anti-symmetric, Xi is symmetric

x is purely imaginary, xi is symmetric X is purely imaginary, Xi is symmetric

x is purely imaginary, xi is anti-symmetric Xr is anti-symmetric, X is purely real

-

FIGURE 2.9
Illustration of DFT symmetry property for an even-length sequence.

-

FIGURE 2.10
Illustration of DFT symmetry property for an odd-length sequence.

2.6 Real-Valued DFT-Based Transforms

In most applications the data are real-valued. For this reason, it can be beneficial to
use the DFT in a specialized way so that it gives real values. This can be accomplished
by suitably extending the given data sequence {x(n)} so that it exhibits the necessary
symmetry that makes the DFT {X(k)} real-valued.

For example, given a length N real-valued sequence {x(n)}, which does not nec-
essarily possess any symmetries, one can construct a symmetric sequence by sym-
metrically extending {x(n)}. There is more than one way to symmetrically extend a
given sequence, depending on how the end points are treated. Different symmetric



extensions give rise to the different types of DFT-based signal transforms that map
real-valued sequences to real-valued sequences. One class of DFT-based real trans-
forms is the discrete cosine and sine transforms. In fact, 16 different cosine and sine
transforms are described in [32].

One way to symmetrically extend a finite length N sequence is illustrated in
Fig. 2.11. The result is a symmetric sequence {x1(n)} of even length 2N−2. {X1(k)},

FIGURE 2.11
Illustration of symmetric extension.

the DFT of {x1(n)}, is therefore real-valued symmetric and is determined by its first
N values (see Fig. 2.12). Because {X1(k)} is determined by its first N values, this
procedure gives an N -point real transform. The inverse of this transform is obtained
by performing the same steps in reverse sequence. Given the firstN values of {X1(k)},
construct a symmetric extension as above to obtain a length 2N−2 sequence {X1(k)},
take the inverse DFT of the resulting sequence to obtain the length 2N − 2 sequence
{x1(n)}, from which {x(n)} can be extracted.

FIGURE 2.12
Illustration of symmetric extension.



The transform formulae can be found explicitly using the DFT formulae together
with the symmetric extension.

X1(k) = DFT {x1(n)} (2.20)

=
2N−3∑
n=0

x1(n)W
kn
2N−2 (2.21)

= x(0) +
N−2∑
n=1

x(n)
[
Wnk

2N−2 + W 2N−2−n
2N−2

]
+ x(N − 1)W(N−1)k

2N−2 (2.22)

= x(0) + 2
N−2∑
n=1

x(n) cos

(
nkπ

N − 1

)
+ (−1)kx(N − 1) (2.23)

where we have used the simplification W
k(2N−2−n)
2N−2 = W−nk

2N−2. Often the first and

last values, x(0) and x(N − 1), are scaled by
√

2 so that the transform is orthogonal.
The inverse can also be derived in a similar way.

It is very interesting to look at the type of frequency analysis this type of discrete
cosine transform (DCT) [1, 42, 61] performs, as was done for the DFT in Fig. 2.4. In
Fig. 2.13, the frequency responses corresponding to this DCT are shown. Note that
the plots of zeros in the z-plane are especially simple.

Another way to symmetrically extend a finite length N sequence is illustrated in
Fig. 2.14. The result is a symmetric sequence {x2(n)} of odd length 2N −1. {X2(k)},
the DFT of {x2(n)}, is therefore real-valued symmetric and is determined by its first
N values (see Fig. 2.15). Because {X2(k)} is determined by its first N values, this
procedure gives an N -point real transform. The inverse of this transform is obtained
by performing the same steps in reverse sequence. Given the firstN values of {X2(k)},
construct a symmetric extension as above to obtain a length 2N−1 sequence {X2(k)},
and take the inverse DFT of the resulting sequence to obtain the length 2N−1 sequence
{x2(n)}, from which {x(n)} can be extracted.

Now consider a symmetric extension by simply mirroring the entire length N

sequence,

{x1(n)} = [x(0), . . . , x(N − 1), x(N − 1), . . . , x(0)]



FIGURE 2.13
The discrete cosine transform (I) basis vectors illustrated in the frequency do-
main and in the z-plane. N = 6.



FIGURE 2.14
Illustration of DFT symmetry property.

FIGURE 2.15
Illustration of DFT symmetry property.

for 0 ≤ n ≤ 2N − 1 (a length 2N sequence). The DFT of this sequence becomes

X1(k) = DFT {x1(n)} (2.24)

=
2N−1∑
n=0

x1(n)W
kn
2N (2.25)

=
N−1∑
n=0

x(n)
[
Wkn

2N + W
k(2N−1−n)
2N

]
(2.26)

=
N−1∑
n=0

x(n)W−0.5k
2N

[
W

k(n+0.5)
2N + W

k(2N−0.5−n)
2N

]
(2.27)

= W−0.5k
2N

N−1∑
n=0

x(n) cos
( π
N

· k · (n + 0.5)
)

(2.28)

The phase factor W−0.5k
2N can be neglected in applications since it carries no informa-

tion about the signal. Since the transform length is N , the frequency index has the
range k = 0, . . . , N −1, so that a quadratic cosine transform matrix is obtained. The



DCT thus obtained is a so-called DCT type II. Its transform matrix is

DII (k, n) := √
2/N cos

( π
N
k(n − 0.5)

)

for n, k = 0, . . . , N − 1. To make this transform matrix orthogonal, its first row is
usually scaled to

DII (0, n) := √
1/N

for k = 0. This transform divides the frequency axis as illustrated in Fig. 2.16. It can
be seen that the width of the resulting frequency bins or bands is π/N , except for the
lowest band for k = 0, as it is centered around DC. This results in a lowpass filter
bandwidth of 1/(2N). The highest band for k = N − 1 is centered at π(1 − 1/N),
which means the required bandwidth to cover the entire frequency axis up to π is
2/N . This means that for the design of filter banks with uniform frequency width for
all bands, a shift of the frequency grid by 1/2 would be suitable, so that the lowest
band covers more bandwidth, and the highest band needs to cover less, as illustrated
in Fig. 2.17. This results in a DCT type IV; its orthogonal transform matrix is

DIV (k, n) := √
2/N cos

( π
N
(k + 0.5)(n + 0.5)

)
. (2.29)

Similarly a discrete sine transform of types II and IV are obtained by applying a
DFT to the sequence

{x1} = [x(0), . . . , x(N − 1),−x(N − 1), . . . ,−x(0)]

for 0 ≤ n ≤ 2N − 1. The resulting transform matrix for a DST type IV is

SIV (k, n) := √
2/N sin

( π
N
(k + 0.5)(n + 0.5)

)
. (2.30)

Efficient ways to obtain DCTs with the help of FFTs can be found, for example, in
Malvar [31].

FIGURE 2.16
The distribution of bands with a DCT II. Horizontally is the normalized fre-
quency �/π . The band edges are marked with long vertical lines, and the band
centers with short lines.



FIGURE 2.17
The distribution of bands with a DCT IV. The band edges are again marked with
long vertical lines, and the band centers with short lines.

2.7 The Fast Fourier Transform

A fast Fourier transform (FFT) is any fast algorithm for computing the DFT. As
stated earlier, FFT algorithms have a tremendous impact on computational aspects of
signal processing. To introduce the FFT, recall the definition of the DFT in Eq. (2.1)
and suppose the data vector {x(n)} is of even length N . The basic derivation of the
FFT begins by splitting the sum into two parts — one part for the even-indexed values
{x(2n)} and one part for the odd-indexed values {x(2n + 1)}

X(k) =
N−1∑
n=0
n even

x(n)Wnk
N +

N−1∑
n=0
n odd

x(n)Wnk
N

which can be written as

X(k) =
N/2−1∑
n=0

x(2n)W 2nk
N +

N/2−1∑
n=0

x(2n + 1)W(2n+1)k
N

or as

X(k) =
N/2−1∑
n=0

x(2n)W 2nk
N + Wk

N

N/2−1∑
n=0

x(2n + 1)W 2nk
N .

Note that W 2nk
N can be rewritten as follows:

W 2nk
N = e−j2π(2nk)/N (2.31)

= e−j2π(nk)/(N/2) (2.32)

= Wnk
N/2 . (2.33)

Hence the DFT values {X(k)} can be written as

X(k) =
N/2−1∑
n=0

x(2n)Wnk
N/2 + Wk

N

N/2−1∑
n=0

x(2n + 1)Wnk
N/2 .



Note that the first sum is the length N/2 DFT of the sequence {x(2n)} and the second
sum is the length N/2 DFT of the sequence {x(2n + 1)}. Defining these sequences
as {x0(n)} = {x(2n)} and {x1(n)} = {x(2n + 1)} for n = 0, . . . , N − 1 makes them
both sequences of length N/2. Then one has

X(k) = X0(k) + Wk
NX1(k), k = 0, . . . , N − 1 ,

where {X0(k)} and {X1(k)} are the DFTs of {x0(n)} and {x1(n)}, respectively. It
should be noted that in the definition of the length N DFT, {X(k)} was defined for
k = 0, . . . N − 1. As {x0(n)} is a sequence of length N/2, its DFT is also of length
N/2, and therefore {X0(k)} would be defined for k = 0, . . . , N/2 − 1. However,
as noted in Section 2.1, when k is taken outside this range, the DFT coefficients are
periodic — so X0(k) = X0(k − N/2) for values of k from N/2 to N − 1. Likewise
for X1(k).

This expression shows how a length N DFT can be computed using two length
N/2 DFTs. After taking the two length N/2 DFTs it remains only to multiply the
result of the second DFT with the terms Wk

N and to add the results. The multipliers
Wk

N are known as twiddle factors.
IfN/2 can be further divided by 2, then the same procedure can be used to calculate

the length N/2 DFTs. To determine the arithmetic complexity of this algorithm for
computing the DFT, let A(N) denote the number of complex additions for computing
the DFT of a length N complex sequence {x(n)}. Let N be a power of 2, N = 2K .
Then, according to the above procedure, one has

A(N) = 2A(N/2) + N

as N complex additions are required to put the two length N/2 DFTs back together.
Note that a length 2 DFT is simply a sum and difference:

X(0) = x(0) + x(1)

X(1) = x(0) − x(1) .

Hence, the starting condition is A(2) = 2. [Or one can use A(1) = 0.] Then solving
the recursive equation yields

A(N) = N log2 N complex additions.

Similarly, one has a recursive formula for complex multiplications:

M(N) = 2M(N/2) + N/2

which gives

M(N) = N

2
log2 N complex multiplications.

In fact, this number can be reduced by a more careful examination of the multipliers
Wk

N (the twiddle factors). In particular, the numbers 1, −1, j , and −j will be among



the twiddle factors Wk
N , when k is a multiple of N/4 — and so these multiplications

need not be performed. Taking this into account, one has the following formulae for
the number of real additions and real multiplications of the DFT of a sequence whose
length is a power of 2:

Ar(N) = 7
N

2
log2 N − 5N + 8 (2.34)

Mr(N) = 3
N

2
log2 N − 5N + 8 (2.35)

where a complex addition counts as two real additions, and a complex multiplication
counts as three real additions and three real multiplications.

The advantage of the efficient algorithm for computing the DFT is a reduction from
an arithmetic complexity of N2 for direct calculation to a complexity of N log2 N .
This is a fundamental improvement in the complexity, and historically it led to many
new developments in signal processing that would not otherwise have been possible
or practical. Due to its fundamental quickening in calculating the DFT, the efficient
algorithm for its computation is called the fast Fourier transform or FFT.

Many variations and enhancements of this basic algorithm have been developed in
the literature and used in practice, and they are collectively called FFTs. Of particular
note is the split radix FFT [16, 50, 56], which is a refinement of the algorithm that
attains the lowest computational complexity of practical FFT variants for lengths that
are powers of 2. FFT algorithms can be developed for lengths that are not powers
of 2. Some types of FFTs, called prime factor FFTs, do not require the use of
twiddle factors [9, 52, 53] and therefore have a reduced computational complexity
(this is possible when the length N is factored into relatively prime integers. It is
not applicable for lengths that are powers of 2). Implementations of the FFT for
real-valued data are described in Sorenson et al. [51]. Most FFT algorithms depend
on the ability to factor N , the length of the data vector {x(n)}; for prime-length DFTs
a separate approach is needed to combine shorter FFTs. The algorithms for prime-
length FFTs are based on work by Rader and Winograd [40, 60, 59]. FFT programs for
prime lengths are discussed in several publications [25, 29, 46]. Descriptions of the
different types of FFTs are available in several books [4, 7, 20, 10, 33, 35, 36, 54, 28]
and book chapters [8, 18, 19, 49]. The complexity theory associated with the FFT
is described in Winograd [60] and Heideman [22]. A comparison of different FFT
implementations on DSP chips is described in Meyer and Schwarz [34].

A relevant issue in practice is the trade-off between computational complexity and
implementation complexity. The right balance must be obtained for the best results
and some FFT algorithms with improved computational complexity are more complex
to implement than others. Moreover, for the fastest results, the variant of the FFT
chosen should be matched to the hardware on which it will run. Methods for choosing
the best variant of the FFT from among a family of FFTs have been the subject of
recent research [23, 24, 21].



2.8 The DFT in Coding Applications

In coding applications the DFT is used in two broad classes — in power spec-
trum estimation and in subband coding, where it is used in the implementation of
complex-, cosine- or sine-modulated filter banks. As an illustration, audio coding
will be considered in the following.

In audio coding, the real-valued audio signal is decomposed into a number of
subbands with a filter bank. The subband signals are then adaptively quantized and
encoded [47, 6]. The subband decomposition has the purpose of obtaining a more effi-
cient description of the signal (redundancy reduction) and applying a psycho-acoustic
model to control the quantization noise such that it will be inaudible (irrelevance re-
duction); see Fig. 2.18.

FIGURE 2.18
Audio coding based on filter banks, AFB: analysis filter bank, SFB: synthesis
filter bank.

In audio coding, the subband decomposition is usually obtained with a filter bank
called modified discrete cosine transform MDCT. It can often be switched between
differing numbers of bands, for example, between 128 and 1024 bands. The MDCT
is used, for example, in ASPEC, MPEG, MUSICAM, and PAC audio coders [30].
ASPEC and MUSICAM were later combined into MPEG-1 layer III, also known as
MP3.

One way in which the DFT is used in subband coding is for the implementation of
filter banks. Since the filters hk(n) = ej2πkn/N , n = 0, . . . , N−1, k = 0, . . . , N−1,
can be seen as a rectangular window of length N multiplied with the exponential, the



frequency localization is not very good, as can be seen in Fig. 2.4. Since this frequency
localization is very important in coding applications, the DFT is used only indirectly
in coding applications, e.g., for implementing the MDCT. The output of the MDCT
is real valued for real-valued inputs, and its subband filter impulse responses hk(n)
are longer and have a nonrectangular shape, such that the frequency localization is
better than for the DFT. The MDCT filter bank can be implemented using a DCT of
length N , which in turn can be implemented using FFTs of length N/2 [31].

In audio coding the DFT is also used as a complex filter bank. The psycho-acoustic
model, used to control the quantization step size, needs to detect and estimate signals
(sinusoids) in the subbands, i.e., it needs a reliable estimate of the time-varying power
spectrum, with a time and frequency resolution as similar to the MDCT as possible.
This is most reliably done with a complex valued spectral decomposition because it
provides the phase and magnitude of signals in the subbands at every time step. To
estimate the spectrum, only the magnitude of the subband signal is needed.

This would not be possible with a real-valued filter bank because in such a filter
bank a sinusoid in a subband is still a sinusoid after filtering, which will pass through
zero at certain times — so it may not be detected. That is, the estimated power
of the signal at that frequency and time would be lower than it should be. That is
why some audio coders [e.g., MPEG-AAC (Advanced Audio Coder) [30]] possess
an FFT parallel to the MDCT as input to the psycho-acoustic model. But a problem
is the insufficient frequency localization of the FFT, which reduces the accuracy of
the psycho-acoustic model.

The so called Balian-Low theorem states that the rectangular window of the DFT
gives rise to the only orthogonal FIR filter bank with complex Fourier modulation and
critical sampling [57] (every N input samples produce N output samples). However,
for the time-varying spectral estimation required for the psycho-acoustic model, crit-
ical sampling is not a constraint. That is why, for example, in the perceptual audio
coder (PAC) [30] the input of the psycho-acoustic model is a complex signal, which is
taken from two filter banks. The real part of the signal is the output of the real-valued
MDCT filter bank with a cosine modulation function. Hence, only an appropriate
imaginary part corresponding to this signal is needed to obtain a complete complex
subband signal — which will have improved frequency localization and therefore
a more accurate psycho-acoustic model. This imaginary part of the subband signal
can be obtained by using a second filter bank which is based on the same window
function as the MDCT, but with a sine modulation function instead of a cosine modu-
lation function. Interestingly, this sine-modulated filter bank alone is again a perfect
reconstruction (PR) filter bank, as is the cosine-modulated MDCT filter bank. These
two filter banks, in parallel, can be seen as one complex filter bank which is twice
oversampled. Hence the limitation the Balian-Low theorem no longer applies, as the
filter bank system is not critically sampled.



2.9 The DFT and Filter Banks

Because the frequency content of many signals changes with time, it is often more
desirable to first partition a signal into blocks and then apply the DFT to each block
individually. This block-wise DFT leads to a point of view based on filter banks. If
the independent variable of the input signal is time (e.g., an audio signal), then this
results in a time-frequency representation. If the input data is arranged in a matrix

x =




x(0) x(N) x(2N) · · ·
x(1) x(N + 1) x(2N + 1) · · ·
...

x(N − 1) x(2N − 1) x(3N − 1) · · ·




and FN is the DFT matrix, then the block-wise DFT can be written as

X = FN · x (2.36)

where each column of the matrix X is a DFT spectrum. Clearly this operation is
easily inverted with

x = (FN)
−1 · X . (2.37)

Depending on the amount of data, the matrices for X and x can be quite large. To
simplify the mathematical description and to obtain a more general formulation, the
Z-transform can be used. Then each block, or time frame, of X and x is associated
with a power of z−1, and the data becomes a vector of polynomials in z−1,

x(z) =




x(0) + x(N) z−1 + x(2N) z−2 + · · ·
x(1) + x(N + 1) z−1 + x(2N + 1) z−2 + · · ·
...

x(N − 1) + x(N + N − 1) z−1 + x(2N + N − 1) z−2 + · · ·


 .

This leads to

X(z) = FN · x(z) (2.38)

and

x(z) = (FN)
−1 · X(z) . (2.39)

These equations are quite similar to Eqs. (2.36) and (2.37), but now the data x and X
are in the form of a simple vector instead of a possibly infinite matrix. The operation
of applying the DFT to blocks of the signal can now also be viewed as a filter bank, as
seen in Fig. 2.19. The symbol ↓N means a downsampling operation, i.e., only every
N -th sample is let through. This figure shows an analysis filter bank on the left which



corresponds to Eq. (2.36), and a synthesis filter bank on the right which corresponds
to Eq. (2.37). Since the DFT is invertible, the signal {x(n)} can be directly obtained
from the block-wise DFT coefficients using the inverse DFT on each block. This
inverse can also be interpreted in terms of filter banks as illustrated by the synthesis
filter bank in Fig. 2.19.

FIGURE 2.19
An N -channel filter bank with critical downsampling, perfect reconstruction,
and a system delay of nd samples.

Because the analysis filter bank is invertible, it is said to have the perfect recon-
struction (PR) property. Because the total number of samples in the input signal
{x(n)} equals the total number of samples in the subbands (the N channels), it is said
to be critically sampled. In coding applications, critical downsampling is important
because it leads to an accurate and complete description of a signal with the least pos-
sible number of samples, and it leads to computationally efficient implementations.
The analysis filter bank is used in the encoder, and the synthesis filter bank in the
decoder.

To see that the matrix formulation can also be represented by a filter bank structure
(see also Vaidyanathan [55]), consider the following. For simplicity, we assume a
time-shifted sequence {x(n+N −1)}. The filtering (convolution) and downsampling
operation can be written as

yk(m) =
∑
n

hk(n) · x(mN + N − 1 − n), 0 ≤ k ≤ N − 1 . (2.40)

On the other hand, Eq. (2.36) can also be written as

Xk,m =
N−1∑
n=0

Wkn
N · x(mN + n), 0 ≤ k ≤ N − 1 . (2.41)

If this equation is compared to Eq. (2.40), it can be seen by a substitution of the index
variable that they are identical if the filters {hk(n)} are defined as

hk(n) = W
k(N−1−n)
N = W−k

N W−kn
N for n = 0, . . . N − 1

and

hk(n) = 0 otherwise



[see also Eq. (2.6)]. It was noted in Section 2.4 that these filters are complex-
modulated versions of the rectangular window function. The resulting frequency
responses of {hk(n)} are frequency-shifted versions of the frequency response of the
rectangular window function p(n), as can also be seen in Fig. 2.4. The block-wise
interpretation of this DFT-modulated filter bank leads to an efficient algorithm for its
implementation using an FFT.

The rectangular window does not have a good frequency localization because of
its limited length and its rectangular shape. Fig. 2.4 shows that the main lobe of the
frequency response (its passband) is quite wide, and the side lobes are not very low —
the stopband attenuation is not very high. A solution is to increase the window length
and to give it a different shape, such that the passband becomes more narrow and the
stopband attenuation is improved (see Bellanger [2]). To this end, first consider a
general window function {p(n)} of length N , the shape of which is not necessarily
rectangular. ({p(n)} denotes the analysis prototype filter or window function; the
synthesis prototype filter will be denoted by {q(n)}.) The filters {hk(n)} in this case
are given by

hk(n) = W−k
N · W−kn

N · p(n) (2.42)

or in terms of Z-transforms, as

Hk(z) = W−k
N Ha

(
Wk

Nz
)
.

The analysis equation can then be written using a diagonal matrix as

X(z) = FN ·




p(N − 1) 0 · · · 0

0 p(N − 2)
...

...
. . .

0 · · · p(0)


 · x(z) . (2.43)

The diagonal matrix is also called a filter matrix, denoted by Fa for the analysis. The
inverse gives the equation for the synthesis stage

x(z) =




1/p(N − 1) 0 · · · 0

0 1/p(N − 2)
...

...
. . .

0 · · · 1/p(0)


 · F−1

N · X(z) . (2.44)

The analysis window function p(n) leads to a synthesis window function of 1/p(n),
e.g., the synthesis window is the point-wise inverse of the analysis window. Con-
sequently, a window with improved frequency localization properties in the analysis
stage can lead to worse frequency localization in the synthesis stage, which is often
not desired. Also, the limited length of N of the window still is an important limiting
factor in the design of better window functions.



When the filter p(n) is longer than N , say LN , then Eq. (2.41) becomes

Xk,m =
LN−1∑
n=0

Wkn
N · p(LN − 1 − n) x(mN + n) .

Since W
k(n+N)
N = Wkn

N , we can replace n by lN + n to obtain

Xk,m =
N−1∑
n=0

Wkn
N ·

L∑
l=0

p(LN − 1 − n − lN) x(mN + n + lN) .

The inner sum can be interpreted as a convolution, which is written as a product in
the z-domain, with

Pn(z) =
L−1∑
l=0

p(n + lN) · z−l

Xn(z) =
∞∑
l=0

x(n + lN) · z−l .

This leads to

Xk(z) =
N−1∑
n=0

Wkn
N · PN−1−n(z) · Xn(z)

so that Eq. (2.43) becomes

X(z) = FN ·




PN−1(z) 0 0 · · ·
0 PN−2(z) 0 · · ·
...

0 · · · 0 P0(z)


 · x(z) . (2.45)

At this point it becomes clear that the synthesis requires the inverse functions
1/Pn(z), which represent IIR filters, whose stability is difficult to control. Conse-
quently, a critically sampled filter bank based on filters {hk(n)} that are related through
DFT modulation, as in Eq. (2.42), can have the perfect reconstruction property with
FIR filters in both the analysis stage and the synthesis stage only if the filters are not
longer than the downsampling rate N and have no overlap in time with neighboring
blocks. To obtain FIR synthesis for longer filters, the filter bank must have a different
structure.

2.9.1 Cosine-Modulated Filter Banks

We saw that a discrete cosine transform is obtained by applying a DFT to a symmet-
rically extended real valued signal. This suggests that a DCT would lead to a different



filter matrix Fa , with elements off the diagonal. In many applications, as in video,
audio, or speech coding, the signal is indeed represented as real values. Now it would
be interesting to see the shape of the resulting filter matrix for a filter bank based on
a DCT IV modulation [compare to Eq. (2.29)]. In this case, the filters {hk(n)} are
modulated with cosine functions (the factor

√
2/N is neglected for simplicity),

hk(n) = cos
( π
N
(k + 0.5)(n + 0.5)

)
· p(LN − 1 − n) , (2.46)

and the transform (the subband signals) can be written as

Xk,m =
LN−1∑
n=0

cos
( π
N
(k + 0.5)(n + 0.5)

)
· p(LN − 1 − n) x(mN + n) . (2.47)

We will exploit the symmetries embodied in the identities

cos
( π
N
(k + 0.5)((n + N) + 0.5)

)
= − cos

( π
N
(k + 0.5)((N − 1 − n) + 0.5)

)
(2.48)

and

cos
( π
N
(k + 0.5)((n + 2N) + 0.5)

)
= − cos

( π
N
(k + 0.5)(n + 0.5)

)
(2.49)

This means that every second block of N input samples “reverses the direction” of
the cosine transform. A close examination of these symmetries and replacing n by
n + 2lN and n + N + 2lN shows that the analysis equation (2.47) can be written
as a type of folding operation followed by a cosine transform, as can be seen in the
following.

Again the filtering can be written more easily in the z-domain, with

Pn(z) =
L−1∑
l=0

p(n + 2lN) · z−l

with n = 0, . . . , N − 1,

Xn(z) =
∞∑
l=0

x(n + lN) · z−l .

with n = 0, . . . , 2N − 1. Using DIV as the DCT IV matrix leads to

X(z) = DIV · Fa(z) · x(z)



where

Fa(z) =


z−1P2N−1

(
−z2

)
0 P0

(
−z2

)
. . . . .

.

z−1PN+N/2

(
−z2

)
PN/2−1

(
−z2

)
0 PN/2

(
−z2

)
z−1PN+N/2−1

(
−z2

)
0

. .
. . . .

PN−1

(
−z2

)
0 z−1PN

(
−z2

)




.

(2.50)

This form of Fa(z) assumes that the window length factor L is even, which can
always be obtained by appending zeros. The filter matrix Fa(z) has a bi-diagonal
structure, i.e., it has nonzero elements not only on the diagonal but also on the antidi-
agonal. This means a window function can be designed such that the inverse of the
filter matrix leads to FIR filters. An example is the classical MDCT or TDAC filter
bank [37]. It results from inserting an additional phase shift of N/2 in the modulating
cosine function:

Xk,m =
2N−1∑
n=0

cos
( π
N
(k + 0.5)(n + 0.5 + N/2)

)
· p(LN − 1 − n) x(mN + n) .

This phase shift leads to a shift of the structure of the filter matrix downwards by
N/2. For example, for a window function p(n) for n = 0, . . . , 2N − 1, the filter
matrix has the following form,

Fa(z) =




0 z−1p(1.5N) z−1p(1.5N − 1) 0

. .
. . . .

z−1p(2N − 1) 0 z−1p(N)

p(N − 1) −p(0)
. . . . .

.

0 p(N/2) − p(N/2 − 1) 0




The inverse for the synthesis matrix is

z−1F−1
a (z) =




0 q(0) z−1q(N) 0

. .
. . . .

q(N/2 − 1) 0 z−1q(1.5N − 1)
q(N/2) −z−1q(1.5N)

. . . . .
.

0 q(N − 1) − z−1q(2N − 1) 0






with

q(n) = p(n)

p(2N − 1 − n)p(n) + p(N − 1 − n)p(N + n)

q(N + n) = p(N + n)

p(2N − 1 − n)p(n) + p(N − 1 − n)p(N + n)

wheren = 0, . . . , N−1. This inverse is used in the synthesis filter bank to reconstruct
the signal, e.g., in a decoder. The synthesis side has a filter matrix with the same shape
as the analysis side, so the synthesis filter bank is again a cosine-modulated filter bank,
with q(n) as its window function. Observe that q(n) = p(n) if the denominator for
the computation of the inverse becomes one.

The DCT leads to a filter matrix which has a form enabling us to design filter
banks with critical sampling and FIR filters for analysis as well as for the synthesis.
Therefore filter banks based on DCTs are the predominant tools for time-frequency
decomposition in audio coding.

To design filter banks with longer filters and more freedom in the design process, the
filter matrix Eq. (2.50) can be written as a product of simpler matrices. These simpler
matrices can be unitary, such that the product is a unitary matrix, whose inverse is
then obtained by simply transposing it and replacing z by z−1 [31]. Or these simpler
matrices can be bi-orthogonal, so that the resulting filter bank is bi-orthogonal [45].
The latter is a more general solution, which enables us to design, for example, filter
banks with a lower end-to-end delay than unitary or orthogonal filter banks [43, 44].

2.9.2 Complex DFT-Based Filter Banks

A disadvantage of the DCT is that it delivers no phase or magnitude information, as
the DFT does. For example, in audio coding the magnitudes of the subband signals are
needed as inputs to psycho-acoustic models which control the quantization process,
as seen in Fig. 2.18. Such is the basic structure of, for example, the PAC audio coder.
The DCT can be seen as the real part of a DFT of a real valued signal, so what is needed
is the imaginary part to obtain complex subband signals and hence their magnitudes.
The imaginary part can be obtained by using a filter bank based on a DST. For a
cosine-modulated filter bank with a DCT IV, the corresponding sine-modulated filter
bank uses a DST IV (2.30). The equality

sin
( π
N
(k + 0.5)(n + 0.5)

)
= cos

( π
N
(k + 0.5)(n − N + 0.5)

)
shows, that the sine modulation function has the same symmetries in time n as the
cosine modulation function [Eqs. (2.48) and (2.49)] but is shifted by N samples. This
leads to the same conditions on the window function for perfect reconstruction, so
the same window function can be used for the cosine- and the sine-modulated filter
banks, hence for the real and imaginary parts of the resulting complex valued filter
bank. This is important for obtaining the precise magnitude and phase information
of a signal.



In audio coding, the signal consists of real values. If the input signal to the complex
filter bank consists of complex values, as in applications such as synthetic aperture
radar (SAR) [30], the filter bank needs to cover positive as well as negative frequencies
to obtain perfect reconstruction. If AFBC is the output of the cosine-modulated
analysis filter bank, and AFBS is the output of the sine-modulated filter bank, then
the positive frequencies are obtained by taking AFBC − jAFBS and the negative
frequencies by AFBC + jAFBS , similar to the DFT. This means the analysis filter
bank consists of 2N bands

[AFBC − jAFBS,AFBC + jAFBS] .

The synthesis filter bank for perfect reconstruction has an analogous structure,

[SFBC + jSFBS, SFBC − jSFBS] ,

where SFBC, SFBS are the outputs of the synthesis filter banks.
It is easy to see that this synthesis filter bank leads to perfect reconstruction if the

cosine and sine filter banks have the perfect reconstruction property of their own.
Observe that this is not the only solution for perfect reconstruction since the filter
bank is, in effect, oversampled at twice the rate. But this solution for the synthesis
has an advantage because it has an analogous structure, hence similar properties, as
the analysis part, which is often desirable in coding applications.

Figs. 2.21–2.23 show a comparison of the frequency responses of the window
functions of a direct FFT approach, as used in the MPEG-AAC audio coder as input
for the psycho-acoustic model, and the complex filter bank. Fig. 2.22 shows the
frequency response of a 1024 band FFT filter bank, and Fig. 2.21 shows the frequency
response of a complex low-delay filter bank with 1024 bands, an analysis/synthesis
delay of 2047 samples, and filter length of 4096 taps. Figs. 2.23 and 2.24 show an
enlargement with the passband on the left. The passband of the complex filter bank
is narrower, and the stopband attenuation is much higher than with the direct FFT
application.

Figs. 2.25–2.27 show an application example for a stereo audio signal that is en-
coded and decoded at two different bit rates. Fig. 2.25 shows a piece of the original
audio signal (jazz music), the left channel, sampled at 32000 samples/s. In this un-
compressed representation, each sample is represented with a 16 bit integer number,
which leads to a bit rate of 16 · 2 · 32000 = 1024 kb/s. Fig. 2.26 shows that signal,
but coded and decoded with a bit rate of 67 kb/s for the stereo signal (i.e., 35 kb/s per
channel, or a compression ratio of over 14). The resulting audio quality is comparable
to FM radio. It can be seen that there are slight differences to the original, but most
of the differences are still inaudible because of the application of the psycho-acoustic
model. Fig. 2.27 shows the signal at 30 kb/s stereo (a compression ratio of over 34).
The resulting quality is comparable to AM radio. There are now more pronounced
differences to the original; it is much smoother, which means it contains fewer high
frequencies. Here the difference to the original is easy to hear, but the psycho-acoustic
model is used such that the audible distortions are minimized.



FIGURE 2.20
Audio coding based on filter banks, AFB: analysis filter bank, SFB: synthesis
filter bank.

2.10 Conclusion

This chapter introduced the DFT and some of its basic properties. Even though
it is a complex-valued transform, because of its symmetry properties, the DFT of
a real-valued N -point signal can be represented again by N real values. A set of
real-valued discrete cosine transforms can be derived using the DFT. The derivation
of a fast algorithm for computing the DFT (the FFT) was also described here.

The DFT has many applications in coding. For example, the FFT is used for
the efficient implementation of DCTs, the MDCT, and low delay filter banks. Fur-
thermore, the complex output is used for power spectrum estimation, in particular,
to drive psycho-acoustic models in audio coding, and it can be used to implement
complex-valued filter banks for improved power spectrum estimation.
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FIGURE 2.21
Magnitude of the frequency response of the rectangular window of a DFT of
length 1024.

 

FIGURE 2.22
Magnitude of the frequency response of the window of a low delay filter bank
with 1024 bands and filter length 4096.
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FIGURE 2.23
Enlargement of the first part of the magnitude of the frequency response of the
rectangular window of the DFT.
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FIGURE 2.24
Enlargement of the first part of the magnitude of the frequency response of the
window of the low delay filter bank.
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FIGURE 2.25
A piece of an example audio signal, sampled at 32 khz. Shown is the left channel
of the stereo signal.

FIGURE 2.26
The stereo audio signal, coded and decoded with 67 kb/s. The left channel is
shown.
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FIGURE 2.27
The left channel of the stereo audio signal, coded and decoded, but with 30 kb/s.

2.11 FFT Web sites

The following list reflects some of the available software and information on Web
sites devoted to the FFT (September 1999).

• FFTW
http://www.fftw.org/index.html
http://www.fftw.org/benchfft/doc/ffts.html

• FFTPACK
http://www.netlib.org/fftpack/

• FFT for Pentium (Bernstein)
ftp://koobera.math.uic.edu/www/djbfft.html

• FFT software (comp.speech FAQ Q2.4)
http://svr-www.eng.cam.ac.uk/comp.speech/
Section2/Q2.4.html

• One-dimensional real fast Fourier transforms
http://www.hr/josip/DSP/fft.html



• FXT package FFT code (Arndt)
http://www.jjj.de/fxt/

• FFT (Don Cross)
http://www.intersrv.com/˜dcross/fft.html

• Public domain FFT code
http://risc1.numis.nwu.edu/ftp/pub/transforms/
http://risc1.numis.nwu.edu/fft/

• DFT (Paul Bourke)
http://www.swin.edu.au/astronomy/pbourke/
sigproc/dft/

• FFT code for TMS320 processors
ftp://ftp.ti.com/mirrors/tms320bbs/

• Fast Fourier Transforms (Kifowit)
http://ourworld.compuserve.com/homepages/
steve_kifowit/fft.htm

• Nielsen’s MIXFFT page
http://home.get2net.dk/jjn/fft.htm

• Parallel FFT homepage
http://www.arc.unm.edu/Workshop/FFT/fft/fft.html

• FFT public domain algorithms
http://www.arc.unm.edu/Workshop/FFT/fft/fft.html

• Numerical recipes
http://www.nr.com/

• General purpose FFT package
http://momonga.t.u-tokyo.ac.jp/õoura/fft.html

• FFT links
http://momonga.t.u-tokyo.ac.jp/õoura/fftlinks.html

• FFT, performance, accuracy, and code (Mayer)
http://www.geocities.com/ResearchTriangle/8869/
fft_summary.html

• Prime-length FFT
http://www.dsp.rice.edu/software/RU-FFT/
pfft/pfft.html

• Notes on the FFT (Burrus)
http://www.dsp.rice.edu/research/fft/fftnote.asc



• Yahoo FFT Web site list
http://dir.yahoo.com/Science/Mathematics/Software/
Fast_Fourier_Transform__FFT_/
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