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Series Foreword

The fields of signal processing, optimization, and control stand as well-
developed disciplines with solid theoretical and methodological founda-
tions. While the development of each of these fields is of great importance,
many future problems will require the combined efforts of researchers in
all of the disciplines. Among these challenges are the analysis, design, and
optimization of large and complex systems, the effective utilization of the
capabilities provided by recent developments in digital technology for the
design of high-performance control and signal-processing systems, and the
application of systems concepts to a variety of applications such as trans-
portation systems, seismic signal processing, and data communication
networks.

This series serves several purposes. It not only includes books at the
leading edge of research in each field but also emphasizes theoretical
research, analytical techniques, and applications that merit the attention
of workers in all disciplines. In this way the series should help acquaint
researches in each field with other perspectives and techniques and provide
cornerstones for the development of new research areas within each
discipline and across the boundaries.

Lennart Ljung and Torsten Séderstrom’s book Theory and Practice of
Recursive Identification stands as a major addition to the literature on
system identification and parameter estimation. This topic is a natural
one for this series, as the problem of parameter estimation is of great
importance in both the fields of signal processing and control. Further-
more, interest in this subject is on the increase, as the availability of
inexpensive but computationally powerful digital processors has made
feasible the use of advanced and complex adaptive algorithms in a wide
variety of applications in which they had not been used or even considered
in the past. Consequently Ljung and Soderstrom’s book is a most timely
one.

As the authors point out in their preface, the field of recursive iden-
tification is filled with a multitude of approaches, perspectives, and
techniques whose interrelationships and relative merits are difficult to
sort out. As a consequence it has become a decidedly nontrivial task for
a newcomer to the field or a nonspecialist to extract the fundamental
concepts of recursive identification or to gain enough intuition about a
particular technique to be able to use it effectively in practice. For this
reason Ljung and S6derstrdm’s book is a welcome contribution, as its
primary aim is to present a coherent picture of recursive identification.
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In doing this the authors have done an outstanding job of constructing
and describing a unified framework which not only exposes the crucial
issues in the choice and design of an on-line identification algorithm but
also provides the reader with a natural and simple frame of reference for
understanding the similarities and differences among the many approaches
to recursive identification. Furthermore, thanks to careful organization,
the authors have produced a book which should have broad appeal. For
graduate students and nonspecialists it provides an excellent introduction
to the subject. For those primarily interested in using identification algo-
rithms in practice it provides a thorough treatment of the critical aspects
of and tradeoffs involved in algorithm design, as well as ‘“‘user’s sum-
maries”” which identify those points in each chapter that are of most
importance to the practitioner. For the more theoretically inclined, there
is a detailed development of convergence analysis for recursive algorithms.
And finally, for all who have an interest in identification, be it peripheral
or principal, this book should prove to be a valuable reference for many
years.

Alan S. Willsky



Preface

The field of recursive identification has been called a ‘““fiddler’s paradise”
(Astrém and Eykhoff, 1971), and it is still often viewed as a long and
confusing list of methods and tricks. Though the description was no doubt
accurate at the time Astrom and Eykhoff’s survey was written, we believe
that the time has now come to challenge this opinion by providing a
comprehensive yet coherent treatment of the field. This has been our
motivation for writing this book.

Coherence and unification in the field of recursive identification is not
immediate. One reason is that methods and algorithms have been devel-
oped in different areas with different applications in mind. The term
“recursive identification™ is taken from the control literature. In statis-
tical literature the field is usually called “‘sequential parameter estimation,”
and in signal processing the methods are known as “‘adaptive algorithms.”

Within these areas, algorithms have been developed and analyzed over
the last 30 years. Recently there has been a noticably increased interest in
the field from practitioners and industrial “‘users.” This is due to the
construction of more complex systems, where adaptive techniques
(adaptive control, adaptive signal processing) may be useful or necessary,
and, of course, to the availability of microprocessors for the easy imple-
mentation of more advanced algorithms. As a consequence, material
on recursive identification should be included in undergraduate and
graduate courses. With this in mind, the series editor, Alan Willsky, has
encouraged us to make this book accessible to a broad audience. This
objective perhaps conflicts with our ambition to give a comprehensive
treatment of recursive identification. We have tried to solve this conflict
by providing bypasses around the more technical portions of the book
(see sections 1.4 and 4.1). We have also included a more “leisurely”
introduction to the field in chapter 2.

The manuscript of this book has been tested as a text for a first-year
graduate course on identification at Stanford University, and for a course
for users at Lawrence Livermore Laboratory. For use as a text, the appen-
dixes should be excluded. Depending on whether the emphasis of the
course is theory or practice, further reductions in chapters 4-6 could be
considered. In a course oriented to practice, chapter 4 could be read
according to the “sufficiency path” described in figure 4.1. In a theory
course, chapter 5 could be used for illustration, and the algorithms in
chapter 6 could be omitted. We have not included exercises in the material.
The natural way of getting familiar with recursive identification is to



xii Preface

implement and simulate different algorithms; such programming prob-
lems are more valuable than formal paper-and-pencil exercises.

As remarked above, the existing literature in the field is extensive. Any
attempt to make the reference list comprehensive would therefore be a
formidable task. Instead, we have mostly confined ourselves to what
appear to be original references and to “further reading”” of more detailed
accounts of various problems.

Lennart Ljung

Division of Automatic Control
Department of Electrical Engineering
Link&ping University, LinkOping, Sweden

Torsten Séderstrom

Department of Automatic Control and Systems Analysis
Institute of Technology

Uppsala University, Uppsala, Sweden
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1 Introduction

1.1 Systems and Models

By systems we mean a wide range of more or less complex objects, whose
behavior we are interested in studying, affecting, or controlling. From a
long list of examples we could mention:

¢ A ship: Wewould like to control its direction of motion by manipulating
the rudder angle.

o A paper machine: We would like to control the quality of the manu-
factured paper by manipulating valves, etc,

e A telephone communication channel: We would like to construct a
filter to be used at the receiver in order to obtain good reproduction of
the transmitted signal.

* A time series of data (e.g., sales, unemployment, or rainfall figures).
We would like to predict future values of the data in order to act properly
now.

This list of examples illustrates tasks typically related to the study and
use of systems: control, signal processing ( filter design), and prediction.
These tasks have been extensively studied in control theory, communica-
tion theory, signal processing, and statistics. A wide variety of techniques
has been developed for solving problems involving these tasks. These
techniques all have in common that some knowledge about the system’s
properties must be used to design the controller/filter/predictor.

The knowledge of the properties of a system will generally be called
a model; the model may be given in any one of several different forms.
We may, for example, distinguish between:

* “Mental” or “‘intuitive” models: Knowledge of the system’s behavior
is summarized in nonanalytical form in a person’s mind. A driver’s model
of an automobile’s dynamics is typically of this character.

* Graphic models: Properties of the system are summarized in a graph
or in a table. An example could be a graph of a valve’s characteristics
or a Bode diagram for the frequency response of a linear system.

* Mathematical models: One finds a mathematical relationship, often a
differential or difference equation, between certain variables. An example
of a mathematical model is Newton’s laws of motion, which, taken
together, relate applied forces and the motion of an object.
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It is necessary to have a model of the system in order to solve problems
such as those listed above. For many purposes, the model need not be
very sophisticated, and most problems are probably solved using only
mental models. Mathematical models are necessary, however, when com-
plex design problems are treated. In this book we shall study certain ways
of building these mathematical models.

1.2 How to Obtain a Model of a System

There are basically two approaches to the problem of building a mathe-
matical model of a given system.

(1) One can sometimes look more or less directly into the mechanisms
that generate signals and variables inside the system. Based on the phys-
ical laws and relationships that (are supposed to) govern the system’s
behavior, a mathematical model can be constructed. This procedure is
usually called modeling.

(2) Often, such direct modeling may not be possible. The reason may
be that the knowledge of the system’s mechanism is incomplete; or, the
properties exhibited by the system may change in an unpredictable man-
ner. Furthermore, modeling can be quite time-consuming and may lead
to models that are unnecessarily complex. In such cases, signals produced
by the system can be measured and be used to construct a model. We
will use the term identification for such a procedure. Clearly, this will
cover many types of methods, from elaborate experiments specifically .
and carefully designed to yield certain information (e.g., wind tunnel ex-
periments for determining aerodynamic properties), to simple transient-
response measurements (e.g., change the rudder angle quickly and observe
how long it takes before the ship responds).

Techniques to infer a model from measured data typically contains two
steps. First a family of candidate models is decided upon. Then we find
the particular member of this family that satisfactorily (in some sense)
describes the observed data. In this book we shall mostly concentrate on
the second step, which in fact is a parameter estimation problem. This is
not to say that the first step is easy or obvious; it is, however, quite
application-dependent, so that it is difficult to give a general discussion
of this step. .

From this general description, we may say that identification is a link
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between the mathematical-model world and the real world. As such it is
of considerable conceptual as well as practical interest. Some form of
identification technique will be a necessary step in any application of
theory to real-world systems. '

1.3 Why Recursive Identification?

To give a better feeling for the role identification plays in applications
we shall consider some problems from different areas. This will also
bring out what recursive identification is and why it is of interest.

ExaMPLE 1.1 (Ship Steering) A ship’s heading angle and position is
controlled using the rudder angle. For a large ship, such as a supertanker,
this position control could be a fairly difficult problem. The main reason
is that the ship’s response to a change in the rudder angle is so slow that
it is affected by random components of wind and wave motion. Most
ships therefore have an autopilot, i.e., a regulator, that measures relevant
variables, and, based on these and on information about the desired
heading angle, determines the rudder angle. The design of such a regulator
must be related to the dynamic properties of the ship. This can be achieved
either by basing its design upon a mathematical model of the ship or
by experimentally “tuning” its parameters until it yields the desired
behavior.

Now the steering dynamics of a ship depends on a number of things.
The ship’s shape and size, its loading and trim, as well as the water depth,
are important factors. Some of these may vary (loading, water depth)
during a journey. Obviously, the wind and wave disturbances that affect
the steering may also rapidly change. Therefore the regulator must be
constantly retuned to match the current dynamics of the system; in fact,
itis desirable that the regulator retune itself. Such a ship-steering regulator
is described by Astrom (1980a) and by van Amerongen (1981). o

Many control problems exhibit features similar to the foregoing exam-
ple. Airplanes, missiles, and automobiles have dynamic properties that
depend on speed, loading, etc. The dynamic properties of electric-motor
drives change with the load. Machinery such as that in paper-making
plants is affected by many factors that change in an unpredictable manner.
The area of adaptive control is concerned with the study and design of con-
trollers and regulators that adjust to varying properties of the controlled
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object. This is currently a very active research area (see, e.g., Astréomet al.,
1977, and Landau, 1979).

EXAMPLE 1.2 (Short-Term Prediction of Power Demand) The demand
for electrical power from a power system varies over time. The demand
changes in a more or less predictable way with time of day and over the
courses of the week, month, or year. There is also, however, a substantial
random component in the demand. The efficient production of electricity
requires good predictions of the power load a few hours ahead, so that
the operation of the different power plants in the system can be effectively
coordinated.

Now, prediction of the power demand of course requires some sort of
a model of its random component. It seems reasonable to suppose that
the mechanism that generates this random contribution to the power load
depends on circumstances, e.g., the weather, that themselves may vary
with time. Therefore it would be desirable to use a predictor that adapts
itself to changing properties of the signal to be predicted. Such power-
demand predictors have been discussed, e.g., by Gupta and Yamada
(1972) and by Holst (1977). 0

The foregoing is an example of adaptive prediction; it has been found
that adaptive prediction can be applied to a wide variety of problems.
The predictions themselves may be of interest for different reasons; an
example of this will now be given.

EXAMPLE 1.3 (Digital Transmission of Speech) Consider the transmis-
sion of speech over a communication channel. This is now more often
done digitally, which means that the analog speech signal is quantized
to a number of bits, which are transmitted. The transmission line has
limited capacity, and it is important to use it as efficiently as possible.
If one predicts the “next sampied value” of the signal both at the trans-
mitter and at the receiver, one need transmit only the difference between
the actual and the predicted value (the “prediction error’). Since the
prediction error is typically much smailer than the signal itself, it requires
fewer bits when transmitted ; hence the line is more efficiently used. This
technique is known as predictive coding in communication theory. Now
the prediction of the next value very much depends on the character of
the transmitted signal. In the case of speech, this character significantly
varies with the different sounds (phonemes) being pronounced. Efficient
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use of the predictive encoding procedure therefore requires that the
predictor be adaptive. Adaptive prediction of speech signals is discussed,
e.g., in Atal and Schroeder (1970). O

EXAMPLE 1.4 (Channel Equalization) In a communication network the
communication channels distort the transmitted signal. Each channel can
be seen as a linear filter with a certain impuise response that in practice
differs from the ideal delta function response. If the distortion is serious,
the signal must be restored at the receiver. This is accomplished by
passing it through a filter whose impulse response resembles the inverse
of that of the channel. Such a filter is known as a channel equalizer. If
the properties of the communication channel are known, this is a fairly
straightforward problem. However, in a network the line between the
transmitter and receiver can be quite arbitrary, and then it is desirable
that the equalizer can adapt itself to the actual properties of the chosen
channel. Such adaptive equalizers are discussed, e.g., by Lucky (1965) and
Godard (1974). o

The adaptive equalizer treated in the foregoing example belongs to the
wide class of algorithms commonly known as adaptive signal processing
or adaptive filtering.

EXAMPLE 1.5 (Monitoring and Failure Detection) Many systems must
be constantly monitored to detect possible failures, or to decide when a
repair or replacement must be made. Such monitoring can sometimes
be done by manual interference. However, in complex highly automated
systems with stringent safety requirements, the monitoring itself must be
mechanized. This means that measured signals from the systems must
be processed to infer the current (dynamic) properties of the system;
based on this data, it is then decided whether the system has undergone
critical or undesired changes. The procedure must of course be applied
on-line so that any decision is not unnecessarily delayed. O

We have now provided examples of typical systems, control, and signal-
processing problems. A feature common to these problems is that a
mathematical model is required at some point. We will now elaborate on
the construction of models from measured signals—i.e., we will look at
identification in more detail. '

Identification could mean that a batch of data is collected from the
system, and that subsequently, as a separate procedure, this batch of
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data is used to construct a model. Such a procedure is usually called
off-line identification or batch identification.

In our examples, however, the model was needed in order to support
decisions that had to be taken “‘on-line,” i.e., during the operation of
the system. It is thus necessary to infer the model at the same time as the
data is collected. The model is then ““‘updated” at each time instant some
new data becomes available. The updating is performed by a recursive
algorithm (a formal definition of such an algorithm will be given in
section 1.4). We shall use the term recursive identification for such a
procedure. Synonymous terms are on-line identification, real-time identi-
fication, adaptive algorithm, and sequential estimation.

Methods of recursive identification is the topic of this book. A major
reason for the interest in such methods is, of course, that they are a key
instrument in adaptive control, adaptive filtering, adaptive prediction,
and adaptive signal-processing problems. We shall return to such appli-
cations in chapter 7.

In addition to on-line decision, we also have the following two reasons
for using recursive identification.

(1) Data compression. With the processing of data being made on-line,
old data can be discarded. The final result is then a model of the system
rather than a big batch of data. Since many recursive identification
algorithms provide an estimate of the accuracy of the current model, a
rational decision of when to stop data acquisition can be made on-line.

(2) Application to off-line identification. Methods for off-line identifi-
cation may process the measured data in different ways. Often, several
passes are made through the data to iteratively improve the estimated
models. Depending on the complexity of the model, the number of
necessary iterations may range from less than ten to a couple of hun-
dred. An alternative to this iterative batch processing is to let the data
be processed by a recursive identification algorithm. Then, one would
normally go through the data a couple of times to improve the accuracy
of the recursive estimates. This has proved to be an efficient alternative
to conventional off-line procedures (Young, 1976). Section 7.2 contains
a discussion of this application.

There are two disadvantages to recursive identification in contrast to
off-line identification. One is that the decision of what model structure
to use has to be made a priori, before starting the recursive identification
procedure. In the off-line situation different types of models can be
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tried out. The second disadvantage is that, with a few exceptions, recur-
sive methods do not give as good accuracy of the models as off-line
methods. For long data records, the difference need not be significant,
though, as we shall see.

1.4 A Recursive Identification Algorithm

In this section we shall define “recursive identification algorithm.” The
raw material for information processing is of course the recorded data.
Let z(#) denote the piece of data received at time ¢. This is in general a
vector, composed of several different measurements. Assuming that the
data acquisition takes place in discrete time, as is normally the case, we
have at time # received a sequence of measurements z(1), z(2), ..., z(¥).
Here, for convenience, we enumerate the sampling instants using integers.
This does not necessarily imply that the sampling has to be uniform. Let
us use a superscript to denote the whole data record:

2= {z(t), z(t — 1), ..., z(1)}. (1.1)

‘The objective of identification is to infer a model of the system from
the record z*. Normally, the model is parametrized in terms of a parameter
vector 0, so the objective really is to determine this vector. We shall discuss
in detail models and model parametrization in section 3.2. Let it suffice
here to give a simple example.

EXAMPLE 1.6 Consider an electric motor. The voltage applied to it at
time ¢ is denoted by u(f) and the angular velocity of its axis at time ¢
is y(¢). We assume the relationship between these two variables to be
of the form

y(&) + ay(t — 1) = bu(t — 1),

where @ and b are unknown constants. The data vector is

=22

and the model parameter vector is

()
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The identification problem can thus be phrased as the determination
of a mapping from the data z* to the model parameters 6:

' 0(1; 2Y). (1.2)

Here the value é(t; z') is the estimate of 0 based on the information con-
tained in z‘. The subject of the identification literature is, in fact, to
suggest functions (1.2) and to investigate their properties.

In off-line or batch identification, data up to some N is first collected ;
then

0y = O(N; z¥)

is computed. In the off-line case, there is, at least conceptually, no
constraint as to the character of this mapping.

In on-line or recursive identification, the estimate 6(f) is required for
each ¢. In principle, 0(f) could still be a general function of previous data
as in (1.2). However, in practice it is important that memory space and
computation time do not increase with f. This introduces restrictions
upon how é(t) may be formed. Basically, we will need to condense the
observed data into an auxiliary “memory” quantity S(¢) of given and
fixed dimensions. This auxiliary vector (or matrix) will then be updated
according to an algorithm of the structure

0(r) = FO(t — 1), S(), z(D)), (1.3a)
S(H) = H(S(t — 1), 0(r — 1), z())). (1.3b)

Here F(-, -, -) and H(-, -, -) are given functions. We sce that the
estimate 0(¢) is formed from current data, the previous estimate, and the
auxiliary variable S(¢). The only thing that needs to be stored at time ¢,
consequently, is the information {é(t), S(#)}. This quantity is updated
with a fixed algorithm, with a number of operations that does not depend
on time ¢. The information contained in the data record z* has been con-
densed into {é(z), S(1)}, which may or may not be done without loss of
relevant information. The data record itself is discarded.

The problem of recursive identification therefore reduces to:

» Choice of a suitable model parametrization.
+ Choice of the functions F and H in (1.3).

This is what this book is about.
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1.5 OQOutline of the Book and a Reader’s Guide

The statement of the problem of recursive identification at the end of the
preceding section may seem simple. However, the literature on recursive
identification is extensive, diverse, and sometimes confusing. Many
people regard the area to be a ““bag of tricks” rather than a theory, and
it was called ““a fiddler’s paradise” in the survey by Astrém and Eykhoff
(1971). There are several reasons for this situation. One is that the same
method is known under different names depending on the model struc-
ture it is applied to. Another reason is that slightly different algorithms
may result, depending on the approach used in the derivation. Also,
different approximations and tricks for performance improvement lead
to a myriad of algorithms that in fact are closely related.

Presenting recursive identification as a catalog of existing methods
would give a long and confusing list. In this book we take another
approach. We try to create a general framework, within which most
known methods can be recognized as special cases or seen as arising
from particular choices of some “‘design variables” (including model
parametrization). Our point of view can be expressed by saying,

There is only one recursive identification method. It contains some design
variables to be chosen by the user.

This statement may seem overly simplified and dogmatic, and we shall
not pursue it ad absurdum. The phrasing is intentionally provoking in
order to stress our point. We are aware of the fact that there may exist
other methods of the general type (1.3) that do not fit into the framework
of this book. We do believe, however, that our point of view provides
a basis for orienting oneself in the area.

The route we take to explain and exploit our approach is:

I. Develop the general framework. Define “the” recursive identification
method. Display its design variables (chapter 3).

II. In order to guide the user’s choice of design variables, analyse the
properties of the estimates produced by the general algorithm (chapter 4).

III. Discuss the choice of design variables (chapter 5).
IV. Discuss the implementation of algorithms (chapter 6).

V. Discuss various applications of recursive identification (chapter 7).
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The dotted line shows the shortcut to the practice of recursive identification.

A little bit beside this main stream, we give in chapter 2 a survey of
typical approaches that have been taken to recursive identification. The
objective of chapter 2 is threefold: (1) To provide a less-formal introduc-
tion to the world of recursive identification for newcomers, (2) to provide
an interface to the literature for those already familiar with the subject,
and (3) to show that the character of the resulting algorithm is quite
independent of the method of derivation, thus providing motivation for
the general framework. This also means that part of the material in
chapter 2 will be repeated in later chapters.

Two different themes can be distinguished in the book. Chapters 3
and 4 deal with what we might call the theory of recursive identification.
Chapters 5-7 address problems associated with the practice of recursive
identification. No doubt, some readers are mainly interested in the use
of the developed methods. They do not care about how things are derived
or about the subtleties of analysis, but would like to know the bottom
line of the theory. For them, we have provided summary sections in
chapters 2-4 as a means of direct access to the practice of recursive
identification. See the road map in figure 1.1.

1.6 The Point of Departure

In order to read the book, certain prerequisites are needed. We assume
the reader to be familiar with general concepts for stochastic dynamical
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systems and the mathematical tools used in their analysis. Many of the
more specific results will be developed or described in the course of the
book. More technical concepts (like stochastic convergence) will be used
only in chapter 4, and are not crucial for the understanding of the book.
We provide in appendixes 1.A—1.C and in section 3.3 some of the general
background and an explanation of the technical concepts that readers of
this book should be acquainted with. These are:

Probability theory: Random variables and random vectors, means,
covariance matrices, some stochastic convergence concepts (appendix
1.A).

Statistics: Parameter estimation, the maximum likelihood method, the
Cramér-Rao bound, the information matrix (appendix 1.B).

Models for stochastic, dynamical systems (including stochastic signals):
Black box models, ARMA models, State-space models, the Kalman
filter (appendix 1.C).

Off-line identification : Prediction error and maximum likelihood methods,
some convergence and consistency results (section 3.3).



2 Approaches to Recursive Identification

2.1 Introduction

One reason for the existence of so many recursive identification algo-
rithms is that several different approaches to the subject.can be taken. In
this chapter we shall give an overview of four typical frameworks within
which recursive identification methods can be developed. The purposes of
the present chapter are:

» To give an overview and introduction to some useful concepts and
approaches, and to illustrate different interpretations of existing schemes.
It thus serves as an informal background to the more formal development
of chapter 3.

» To relate this book to the extensive literature on the subject. This is
done basically in the annotated bibliography of section 2.8, where it is
described how the ideas displayed in this chapter have been used to derive
a variety of algorithms.

* To provide some motivation for the general framework used in the
remainder of the book.

The purpose of this chapter is not to give details. All the algorithms
mentioned here will be subsumed in the general framework, and facts and
aspects on their implementation, use, and asymptotic properties will be
given in later chapters. The approaches to recursive identification that
will be reviewed are:

1. Modification of off-line identification methods.
2. Recursive identification as nonlinear filtering (Bayesian approach).
3. Stochastic approximation.

4. Model reference techniques and pseudolinear regressions.

These four approaches cover the derivations of most suggested methods.
They will be discussed in the following four sections, respectively. We
mentioned in the introduction that an important reason for using recursive
identification is that the properties of the system may vary in time. In sec-
tion 2.6 we shall discuss how each of the aforementioned four approaches
can cope with such a situation, and how each can lead to estimation
algorithms that track time-varying properties.

A major decision in identification is how to parametrize the properties
of the system or signal using a model of suitable structure. In fact, specific
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“named” methods in the literature are usually associated with a particular
model parametrization. In this section we shall, by means of examples,
exhibit three different models (see also appendix 1.C).

ExAMPLE 2.1 (A Linear Difference Equation) Consider a dynamical
system with input signal {#(7)} and output signal {y(z)}. Suppose that
these signals are sampled in discrete time ¢t =1, 2, 3, ... and that the
sampled values can be related through the linear difference equation

yO+ayt—D+ - +a,yt—n=buit—1)+ - .
+bmu(t_m) +U(t)a ‘

where v(t) is some disturbance of unspecified character. We shall use
operator notation for conveniently writing difference equations. Thus let
g~ ! be the backward shift (or delay) operator:

g 'y =y@—1). 2.2)
Then (2.1) can be rewritten as
A(g ) y(®) = B(g™Mu() + v(2), 2.3)

where 4(¢~!) and B(g™") are polynomials in the delay operator:
A(q_l) =1+ alq_1 + -+ anq_"a
B(q_l) = blq_l + bz‘]_z + -+ b,g ™

The model (2.1) or (2.3) describes the dynamic relationship between the
input and the output signals. It is expressed in terms of the parameter
vector

6T=(a,...a, by...b,).

We shall frequently express the relation (2.1) or (2.3) in terms of the
parameter vector. Introduce the vector of lagged input-output data,

T =(—yt =1 ... —y@t—n u@—=1 ... u(t —m)). 2.4)
Then (2.1) can be rewritten as
(1) =0Tp() + v(). (2.5)

This model describes the observed variable y(f) as an unknown linear
combination of the components of the observed vector ¢(¢) plus noise.
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Such a model is called a linear regression in statistics and is a very common
type of model. The components of ¢(t) are then called regression variables
OT regressors.

If the character of the disturbance term v(z) is not specified, we can
think of

P(t]60) 2 0 o(r) (2.6)

as a natural guess or “prediction” of what y(f) is going to be, having
observed previous values of y(k), u(k), k=t—1,t—2,.... This guess
depends, of course, also on the model parameters 6. The expression (2.6)
becomes a prediction in the exact statistical sense, if {v(¢)} in (2.5) is a
sequence of independent random variables with zero mean values. We
shall use the term ““white noise” for such a sequence.

If no input is present in (2.1) (m = 0) and {v(¢)} is considered to be
white noise, then (2.1) becomes a model of the signal {y(1)}:

yO+tayt—10+ - +a,y@—n=v(). )

Such signal is commonly known as an autoregressive process of order n,
or an AR(n) process.

An important feature of the set of models discussed in this example, is
that the “prediction” j}(t|6) in (2.6) is linear in the parameter vector 0.
This makes the estimation of 0 simple.

Since the disturbance term »(f) in the model (2.5) corresponds to an
“equation error” in the difference equation (2.1), methods to estimate 6
in (2.5) are often known as equation error methods. 0

EXAMPLE 2.2. (An ARMAX Model) We could add flexibility to the
model (2.3) by also modeling the disturbance term »(f). Suppose that
this can be described as a moving average (MA) of a white noise se-
quence {e(f)}:

v(t) = C(g™")e(n),

ClgH=1+cg7'+ - +cq"

Then the resulting model is

A(g™ () = B(g Hut) + Cg™e(®). (2.8)

This is known as an ARMAX model. The reason for this term is that the
model is a combination of an autoregressive (AR) part A(q !)y(?), a
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moving average (MA) part C(¢g~')e(?), and a control part B(g )u(t). The
control signal is in the econometric literature known as the eXogeneous
variable, hence the X.

The dynamics of the model (2.8) are expressed in terms of the param-
eter vector

0"=@, ... a, by ... b, ¢c; ... c,).

Since the model (2.8) also provides us with a statistical description of the
disturbances, we can compute a properly defined prediction of the output
y(¢). In example 2.6 we shall do that in a special case, and the general
case will be treated in example 3.2 in the next chapter.

When no input is present, the use of (2.8) means that we are describing
the output signal {y(r)} as an ARMA process. This is a very common
type of model for stochastic signals. O

EXAMPLE 2.3. (A State-Space Model) It is common practice in some
applications to give linear stochastic dynamical systems in a state-space
description

x(t + 1) = Fx(t) + Gu(t) + w(t),
y() = Hx(1) + e(0),

2.9)

where {w(f)} and {e(r)} are sequences of independent random vectors
with certain covariance matrices,

Ew(@wT(t) = R,, Ee()e™() =R,, Ew()e™(t) = R,,. (2.10)

When the matrices F, G, H, R,, R,, and R,, are all known, predictions
and state estimates for the system (2.9) can be computed using the Kalman
filter. See appendix 1.C for details. When these matrices are not fully
known, (2.9) describes a model with some parameters 6 to be determined.
This means that the matrices are functions of this parameter vector: F(9),
G(9), etc. Such a model parametrization is especially useful when we have
knowledge about basic mechanisms in the system, but certain coefficients
are unknown. O

These three examples illustrate the three most widely used models.
Other ones will be given in chapter 3. Notice that the models are used to
describe a stochastic dynamical system with an input {u(¢)} and an output
{y()}, as well as to describe the properties of a stochastic signal {y(?)},
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where no input is present. In remainder of this book, rather than repeatedly
saying “‘system or signal”, we shall for convenience use the term “‘system”
to cover both cases. We could think of a “system” generating the signal
in the latter case.

Remark on notation Throughout the book we use 0 to denote the param-
eters of a model. The goal of the identification procedure is to determine
the “best” values of these parameters. Such estimated values will be
denoted by 0. Occasionally, when analyzing the properties of different
methods, we shall use 6, to denote the “true value™ of the model param-
eters, thus assuming that the observed data actually have been generated
according to the mechanism of some particular model. This value 8, is,
of course, available only to the analyst and not to the user. In fact, the
user will treat any candidate model .#(0) as a correct description of the
system when deriving such things as predictions, etc., according to .# ().

2.2 Recursive Algorithms Derived from Off-Line Identification
Algorithms

In Chapter 1, we defined off-line identification as a general mapping
from measured data. Recursive methods, starting from the data record
(1.1), pose further constraints on how the estimates may be computed.
An obvious approach to recursive identification is to take any off-line
method and modify it, so that it meets the constraints of (1.3). In this
section examples of this method of deriving recursive identification
algorithms will be given.

There is an extensive literature on off-line identification methods. See,
e.g., the survey by Astréom and Eykhoff (1971) or the books by Eykhoff
(1974), Kashyap and Rao (1976), or Goodwin and Payne (1977). Some
formal aspects of off-line methods will be reviewed in section 3.3. Con-
sidering the great number of different off-line methods, as well as variants
of the same method, one might expect also a rich variety of derived
recursive algorithms. We shall in this section limit ourselves to three
representative examples; the chapter bibliography will list the sources of
many more. The first two examples lead to methods where the off-line
estimates can be exactly calculated in a recursive fashion. In the third
example approximations have to be introduced.
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2.2.1 The Least Squares Method

In this section we consider the difference equation model (2.5) (the linear
regression) that we introduced in example 2.1:

y() = 0700 + v(»). @2.11)
The parameter vector 6 is to be estimated from measurements of y(?),
o(); t=1,2,... N. A common and natural way is to choose this

estimate by minimizing what is left unexplained by the model, viz., the
‘““‘equation error” »(#). That is, we write down a criterion function

) = 3 X [50) ~ 0790 .12)

then we minimize this with respect to 6. Here {o,} is a sequence of positive
numbers. The inclusion of the coefficients «, in the criterion (2.12) allows
us to give different weights to different observations. In applications,
most often a, is chosen identically equal to 1. As will be explained in the
next section, an optimal choice of «, should be related to the variance of
the noise term v(?).

We remarked in example 2.1 that j(z | 6) = 6T¢(?) can be seen as a
natural “guess’ or ““prediction” of y(¢), based upon the parameter vector
6. Thus the criterion (2.12) can be seen as an attempt to choose a model
that produces the best predictions of the output signal. The criterion Fy(6)
is quadratic in 0. Therefore it can be minimized analytically, which gives

R N ~1 N

O(N) = [Z 0M/)(t)(pT(t)} 2 1e0)y(), (2.13)
=1 t=1

provided the inverse exists. This is the celebrated least squares estimate.

For our current purposes it is important to note that the expression (2.13)

can be rewritten in a recursive fashion. To prove this, we proceed as
follows. Denote

_ t
R() =} nok)o (k).
k=1
Then, from (2.13), we have that

3 o)y k) = R(t— DO~ ).
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From the definition of R(¢) it follows that
R(t — 1) = R(?) — 0,0(D) ™ ().

Hence

. _ 1—1

0y =R~ [ Y wplk)yk) + a,<p(t)y(t)]
k=1

= RT'O[RE — O — 1) + 2,0 y(1)]

= R W{RWOE — 1) + a,0()[— "0 — 1) + y()]}

=00t — 1) + R )e)a,[y(1) — 07(t — De(1)], (2.14a)
and
Rt =Rt —1)+ 0,0)@T (). (2.14b)

Sometimes we may prefer to work with
alg

R(H) & ;R(t).

From (2.14b) we easily find that

RO = IR = 1) + 2,009 =" ZLR0— 1)+ 100(00™0

(2.14)
= R(t— 1)+ [%0()0™(0) - Rt — 1)].
The foregoing expressions can be summarized by
0@ =0¢—1)+ %R_l(tw(t)a,[J’(t) =0Tt — Do), (2.15a)
R() = RG — 1)+ {0097 () = RE — D], (2.15b)

Equations (2.15) have the form of that we demanded of a recursive algo-
rithm in (1.3). At time 7 only (), R(¢), y(¢), and @(¢) have to be kept in
the memory. Comparing with (1.3), S(¢) corresponds to R(?), ¢(#). All
other previous data can be thrown away.
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An Equivalent Form The algorithm (2.15) is not, however, well suited for
computation as it stands, since a matrix has to be inverted in each time
step. It is more natural to introduce

Pty =R\() = %R“(z)
and update P(¢) directly, instead of using (2.14b). This is accomplished by

the so-called matrix inversion lemma, which we now state.

LEMMA 2.1. Let 4, B, C, and D be matrices of compatible dimensions,
so that the product BCD and the sum 4 + BCD exist. Then

[4+BCD] ™ =4 — A'B[DA'B + C'] ' DA™ (2.16)

Proof Multiply the right-hand side of (2.16) by 4 + BCD from the right.
This gives

I+ A'BCD — A"'B[DA'B+ C™']"'D
—A7'B[DA™'B+ C7']"'DAT'BCD
=1+ A'B[DAT'B+ C '] Y{[DA"'B+ C']CD—-D
—DA'BCD} =1+ A'B[DAT'B+ C'] {0} =1,
which proves (2.16). m
Applying (2.16) to (2.14) with
A=Pt—1), B=o@), C=qa, D=0 )
gives

PO =[Pt — D+ o()x0" (O]

= P(t—1) = P(t— Do(0) [qf(z)P(z —~Do(®) + ﬂ"le(z)P(z -1

]

o P =1 P~ 1)
=P D = e o 0P - o) @17)

The advantages of (2.17) over (2.15b) are obvious. The inversion of a
square matrix of size dim 6 is replaced by inversion of a scalar. From (2.17)
we also find that
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_ _ Pt — Do ()Pt — De(2)
P90 = 3,P(1 = Do) = * TR

(2.18)
_ PG— Do
/o, + (O P(1 — De(2)’

Thus the least squares estimate 0(¢) defined by (2.13) can be recursively
calculated by means of

6@) =0t — 1)+ LO[y(©®) — 07 — Do(0)], ‘ (2.192)
_ Pt — Do)

LO= 1% oT0PG - Do (2.190)

P(ty=P(t—1)— Pt — l)‘P(t)(PT(t)P(t -1 (2.19¢)

o, + 9" (OP(t — Do(t)

These formulas are known as the recursive least squares (RLS) algorithm.
This is one of the most widely used recursive identification methods. It is
robust and easily implemented. We shall later on in the book discuss its
properties in detail. Let us here only point out two aspects that must be
considered in any application of the algorithm.

Initial Conditions Any recursive algorithm requires some initial value to
be started up. In (2.19) we need 6(0) and P(0) and in (2.15) #(0) and R(0).
Since we derived (2.19) from (2.13) under the assumption that R(?) is
invertible, an exact relationship between these two expressions can hold
only if (2.19) is initialized at a time ¢, when R(Z,) is invertible. Typically,
R(f) becomes invertible at time ¢, = dim ¢(f) = dim 0. Thus, strictly
speaking, the proper initial values for (2.19) are obtained if we start the
recursion at time ¢, for which

Iy

-1
P(to)=[ 1ozkrp(k)pr(k)] ;

k=

. (2.20)
(t0) = Pt 3. 5o(®k)y(k).

It is more common, though, to start the recursion at t = 0 with some
invertible matrix P(0) and a vector 6(0). The estimates resulting from
(2.19) are then
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0= | PO+ 3 moe’®)| | 000 + 3 motorio|
@.21)

This can be seen by verifying that (2.21) obeys the recursion (2.19) with
these initial conditions.

By comparing (2.21) to (2.13), we see that the relative importance of
the initial values decays with time, as the magnitudes of the sums increase.
Also, as P~1(0) — 0 the recursive estimate approaches the off-line estimate.
Therefore, a common choice of initial values is to take P(0) = C-7 and
6(0) = 0, where C is some large constant.

Asymptotic Properties To investigate how the estimate (2.13) behaves
when N becomes large, we assume that the data actually have been
generated by

¥(@) = 030(1) + v(). (2.22)

Inserting this expression for y(f) into (2.13), and noting that 6 ¢(f) =
@ ()0, gives

O(N) = [; a,<p(t)<pT(t).]_ { Y w[e(eT(1)0, + <p(t)v(t)]}

=1

L . (2.23)
=0, + [N Y axp(t)f(t)} N Y x4 ew().
=1 =1

Desired properties of (N ) would be (1) that it is close to 6, and (2) that
itconverges to 6, as N approaches infinity. We see that if the *‘disturbance™
v(f) in (2.22) is small compared to ¢(¢), then §(N) will be close to 6,. The
sum (1/N) YN o,0(2)v(¢) will, under weak conditions, converge to its
expected value as N approaches infinity, according to the law of large
numbers. This expected value depends on the correlation between the
disturbance term v(#) and the data vector ¢(?). It is zero only if v(¢) and
¢(¢) are uncorrelated. This is true in the following two typical cases:

« {v(?)} is a sequence of independent random variables with zero mean
values (white noise). Then v(#) does not depend on what has happened up
to time ¢ — 1, and hence Ev(f)¢p(t) = 0.

e The input sequence {u(?)} is independent of the zero-mean noise
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sequence {v(?)} and n = 0in (2.1), (2.4). Then ¢(?) contains only u-terms,
and hence Ev(t)p(t) =0

When n > 0 so that ¢(¢) contains y(k), k =1 — 1, —n, and {v(?)}
is not white noise, then (usually) Ev(f)¢(f) # 0. ThlS follows since ¢(1)
contains y(t — 1), while y(z — 1) contains the term v(¢z — 1) that is corre-
lated with v(¢). This means that we may expect 6(N) to tend to 6, as N
approaches infinity, usually only in the two cases listed above.

2.2.2 The Instrumental Variable Method

In the foregoing example it was possible to obtain the same estimates in
a recursive fashion as for the corresponding off-line method, except for
possible effects of initial conditions. This is not the case in general. It is,
however, true for the instrumental variable method, which is a modifica-
tion of the least squares method designed to overcome the convergence
problems indicated at the end of section 2.2.1. Consider again the model
of example 2.1:

(1) = 0T (1) + v(2),

and assume as in (2.22) that the data indeed have been generated by this
model or mechanism for a particular value 6 = 6.

A disadvantage with the least squares estimate is that in general ¢(?)
and v(¢) will be found to be correlated, and then (N ) will not converge
to 6,. In such a case, we might replace ¢(7) in (2.13) by a vector {(¢), such
that

{(t) and v(?) are uncorrelated. . (2.24)

That is, we try the estimate (here we take a, = 1)

. N -1 N

O(N) = [ 2¢ (t)pr(t)} Y. LOy(@). (2.25)
=1 =1

By inserting the expression (2.22) for y(¢) into (2.25) we obtain

. N -1 N
6(N) = [ Z C(t)pr(t)] Z LMe™ (10, + L(n)v(1)]
t=1 =1 (226)

N N
— +[}V > C(t)pr(t)} N 200
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We see that (V) is likely to tend to 6, as N tends to infinity under the
following three conditions:
s (2.24) holds,

o v(¢) has zero mean, (2.27)

N
« the matrix lim 1 Y. L(H)9™(2) is invertible.
Noo N S5

The estimate (2.25) is known as the instrumental variable (1V) estimate.
The vectors {(¢) are referred to as the instrumental variables.

It is obvious that the estimate (2.25) can be rewritten in a recursive
fashion, just as the least squares estimate in (2.19). We then find that

0(0) =00t — 1) + LO[y(1) — 7(t — Do )], (2.28a)
_ Pt —1){(©) _

L(t) = T o (OP( - DLW P()L(2), (2.28b)

Pty = P(t— 1) — PU= Dl 0 PE— 1) (2.280)

1+ ()P — 1))

We have not yet discussed the choice of the instrumental variables {().
Loosely speaking, they should be sufficiently correlated with ¢(¢) to
ensure (2.27), but uncorrelated with the system noise terms. A common
choice is

(O =(—yut=1) ... =yt —n) u(t—=1) ... u(t —m)), (2.29)

where y,,(?) is the output of a deterministic system driven by the actual
input u(t):

() +ayyy(t =1+ - +a,yy(t —n)
3 3 (2.30)
=bju(t = 1)+ -« + b u(t — m).
For the recursive algorithm (2.28) an often-used approach is to let a; and
b; be time-dependent. Then the current estimates d,(¢), Bi(t) obtained from
(2.28) can be used at time ¢ in (2.30). That is, we can write

I () = 0T (L) 2.31)

This approach was suggested by Mayne (1967), Wong and Polak (1967),
and Young (1965, 1968). The recursive instrumental variable method has
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been used in many applications, and there exist several variants of the
method. We shall return to it a number of times in this book (sections
3.6.3, 4.6, and 5.10).

2.2.3 A Recursive Prediction Error Method

We remarked in section 2.2.1 that the least squares criterion (2.12) can be
interpreted as minimization of the error between the “predicted’” and the
measured values of the output. This idea is a guiding principle in off-line
identification, and a similar interpretation can be given to several other
methods. The family of methods can be called prediction error identifica-
tion methods. See, e.g., Ljung (1978¢c) or Astrom (1980b) for a general
discussion of these methods.

For general models, the criterion will not be quadratlc in f asin (2.12).
Then the minimization problem becomes more difficult, and no exact
recursive method can be derived. In the following example we shall
consider a simple model where this is the case. This will bring out several
ideas on how to construct recursive algorithms, that we will utilize later
on.

Consider the ARMAX model of example 2.2. We shall discuss how to
estimate its parameters q;, b; and ¢;. In order to simplify the notation, we
study only a first-order example :

V(&) + ay(t — 1) = bu(t — 1) + e(?) + ce(r — 1). (2.32)

Here {e()} is, as usual, taken to be white noise, i.e., a sequence of indepen-
dent random variables with zero mean. The parameters to be estimated
are collected into the vector

a
0=[0>

C

Let us first discuss how to determine the prediction of y(f) based on
observations of y(s), u(s), 0 <s < t— 1, and based on the assumption
that the data is indeed produced by (2.32). Denote this prediction by
$(t | 0). We shall here make an elementary explicit derivation of j(z | 6)
for this simple special case, while a general case will be treated in example
3.2. From (2.32) we have

()= —ay(t — 1)+ bu(t — 1) + ce(t — 1) + e(2).
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Here y(t — 1) and u(¢ — 1) are known at time ¢. A good approximation
of e(t — 1) can be computed from y(s), u(s), 0 < s <t — 1, using (2.32).
Denote this approximation by é(z — 1). Finally, the value of e(¢) cannot
be predicted from previous data since it is independent of everything that
happened up to time ¢t — 1. Hence, the natural prediction of y(¢) is

PO = —ay(t — 1) + bu(t — 1) + cé(t — 1), (2.33)
where é(t — 1) is computed recursively from

é(s)=y(s)+ay(s — 1) — bu(s — 1) — cé(s — 1), (2.34)

The recursion (2.34) requires initial conditions y(0) and é(0); but the
effect of these decays as |c|'™!, so if |¢| < 1 they can be chosen arbitrarily
without affecting the prediction too much. The equations (2.33) and (2.34)
can be compressed into one by taking

|0 +ept—1|0)= —ay(t — 1) — acy(t — 2)
+ bu(t — 1) 4+ beu(t — 2)
+c[é(t— 1) + cé(t — 2)]

(2.35)
= —ay(t —1)—acy(t — 2)
+ bu(t — 1) + beu(t — 2)
+ oyt — 1) + acy(t — 2) — beu(t - 2).
Hence we have
PO +cep(t—1|0)=(c—a)y(t — 1) + bu(t — 1), (2.36)

where the initial conditions can be taken to be zero. Now, for any given
6, we can compute the prediction y(z | 6) from (2.36) using data up to
time ¢ — 1. We can also evaluate the prediction error :

e(t, 0) £ y(1) — 3(t] 0) (2.37)

according to the model parameters 6. A reasonable criterion of how well
the model 6 performs is the sum of squared prediction errors

Vi(0) = % 3 62(1, 0), (2.38)

t=1
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In fact, this function is the negative log likelihood function if the variables
{e(?)} are Gaussian, as we shall prove in section 3.3. The criterion (2.38)
for the ARMAX model (2.8) was first suggested and used by Astrom and
Bohlin (1965).

The off-line estimate f is obtained by the minimization of Vy(6). In
the present case (f | 60) is a nonlinear function of 0 [see (2.36)], and
therefore the function ¥,(6) cannot be minimized analytically. Instead,
some numerical minimization routine is used to determine 0,. The
numerical minimization of (2.38) typically requires several iterative passes
through the data record from ¢ = 1 to t = N. Thus it cannot be used in a
recursive algorithm, which requires a memory vector of fixed size. This
means that we cannot expect to be able to determine the sequence of
off-line estimates § by recursive methods. Instead we have to be content
with methods that determine approximations to the §y in a recursive
fashion.

We shall here derive a recursive algorithm for the estimation of 6. The
derivation follows Astrém (1972) and S6derstrém (1973b). They called it
Recursive Maximum Likelihood (RML). (The relation between the predic-
tion error concept and the maximum likelihood method is explained in
example 3.7.) This method has been applied to both real and simulated
data with success. Variants of the algorithm and its derivation will be
surveyed in section 2.8.

Let 6(¢ — 1) be our estimate at time ¢ — 1. We wish to obtain a 6(¢)
that (approximately) minimizes V,(6). By means of a Taylor expansion of
V,(0) around (¢ — 1) we obtain

V,(0) = V(0 — 1)) + V, (0@ — ))[6 — 6 — 1]
+3[0— 60— )]™ V(0 — 1)[0 — 6t — 1)]
+0(|0 — 6¢ — DY),

where the prime denotes differentiation with respect to 6, and o(x)
denotes a function such that o(x)/|x| - 0 as |x| - 0. Minimization of this

expression with respect to 6 gives
() = 0t = 1) — [V (6 — )] v;[6¢ — D]"
. . (2.39)
+ o(|6() — 0(z — 1))).

If we denote the negative derivative of ¢(z, ) with respect to 6 by
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Wt 0) & [—%8(1, 0)]T (a column vector),

we have

(VO] = —’; Yk, O)ek, 0) = [V_(O)]" — ¥z, O)e(t, 6), (2.40)

and, by differentiating once more,
VIO) = V2 0) + y(t, OYT(, 0) + €7 (1, 0)e(t, ), (2.41)

where ¢£”(¢, 0) is the second-derivative matrix of &(z, ) with respect to 6.
In order to evaluate (2.39) a number of approximations have to be
introduced.
« First we assume that the next estimate 0(¢) is to be found in a small
neighborhood of 6(¢ — 1). This should be a reasonable approximation if
t is large. That assumption leads to the following two approximations:

Neglect o(|0(#) — 6(t — 1)]) in (2.39), (2.42)
and take
v (00) = v/ (0@ — D). (2.43)

« Then we assume that 6( — 1) is indeed the optimal estimate at time
t — 1, so that

V., (0@ — 1)) =0. (2.44)
 Finally we set
(1, 0(t — )e(t, 6(t — 1)) = 0. (2.45)

The rationale for the approximation (2.45) is as follows. Close to the true
value 0, {&(t, 0)} will be almost white noise, so that we may approximately
consider &(¢, 0) to be of zero mean and independent of what happened up
to time ¢ — . In particular, it would then be independent of

2
¢ (t, 0) (: —%j}(t | 9)).

The expected value of the left-hand side of (2.45) then is indeed close to
zero, so that the last term of (2.41) makes an order of magnitude less
contribution to ¥ than the second term.
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With the assumptions (2.45) and (2.43) inserted into (2.41) we can
approximately evaluate the second-derivative matrix. Let this approxima-
tion be denoted by R(¢). Then we have
R =R — 1)+, 0@ — DWT(, 0 — D). (2.46)
With the assumption (2.44) inserted into (2.40) we have
[V — 1)]T = [V 160G — )] = ¢(t, 0t — 1)e(e, 6z = 1))

= — (1, 0 — et O(t — 1))

Usir}g this expression for V,’(é(t — 1)) and the approximation R(7) for
V/(0(t — 1)) in (2.39) together with the assumption (2.42), we have

6() = 0(t — 1) + R1(0)(, 6(r — D)z, 6(z — 1)). (2.47)

Notice that for the least squares problems of section 2.2.1 all approxi-
mations (2.42)—(2.45) are in fact exact (¢ = 0 since ¢ is linear in 0) and
the resulting algorithm (2.46), (2.47) coincides with the recursive least
squares algorithm (2.14), (2.15).

Now, even if it appears that we can give (2.46), (2.47) in a recursive
form, we have not yet discussed how to determine &(¢, 6( — 1)) and
Y, é(t — 1)). To do this we have to deal with the particular model (2.32).

From (2.37) we have that

YT(t, 0) = —%s(r, 0) = %)‘z(t | 6). (2.48)

From (2.36) we find that

d . d

Ey(t | 6) + cd—ay(t —1]|6)=—y@—1), (2.49a)
L | 6) + ciy(t —1|®=u-1 (2.49b)
b’ db : '
i”(r|0)+”(t—ll@)-i—ci”(t—l\ﬂ)— (t—1) (2.49¢)
dcy y dcy _y - .

Notice that (2.49c) also can be written

i)‘/(t | 0) + cij}(t -1 | H=e(t—1,0). (2.49¢")
dc dc
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We can summarize (2.49) by writing

-yt —=1)
Y, 0O +cy—1,0= uc-1 |. (2.50)
e(r—1,0)

Thus we can compute &(z, (r — 1)) and ¥(z, 6(r — 1)) by solving (2.36),
(2.37), and (2.50), respectively. These equations are recursive filters with
u and y as inputs and ¢ and y as outputs. The filter coefficients are deter-
mined by é(t — 1). Except when ¢ = 0, the filters have infinite impulse
responses. This means that the solution must be initialized at time ¢t = 0
and that the whole data record y(s), u(s), 0 <s <t — 1, is used to deter-
mine &(¢, é(t — 1)) and ¥(z, é(z — 1)). Hence these variables cannot be
computed “recursively”” in the sense of (1.3) using only 6(t — 1) and a
fixed-size memory vector. We must therefore look for approximations
that can be computed recursively.

A natural approximation of (2.37) and (2.50) is to make only one time
iteration with the current estimates and use previous values of ¢ and ¥ as
initial values. This means that &(z, é(t — 1)) is approximated by &(¢),
calculated according to

e(t) = (1) — 3(),
We)y=—é(t— Dy —1)
+[é(t — 1) —d(t — Dyt — 1) + bt — Du(t — 1).

Here
ait—1)
-1 =|br—1
ét—1)

If we introduce the vector

—y(—1
() = u(t— 1)},
e(t—1)

we can rewrite the foregoing expression for &(¢) as

e(t) = p(2) — 07 (t — Do(2). ‘ (2.51)
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Similarly, we see from (2.50) that a natural approximation of y(z, 8(t — 1))
is Y¥(7), computed by means of

W)= =t — DYt = D + (D). (2.52)

Notice that &(¢) and y/(#) are computed recursively in (2.51)-(2.52). At
time ¢ we need only know (s — 1), Y (t — 1), and ¢(?). The equation (2.52)
is a typical approximation of the gradient, which will be used extensively
in our algorithms.

Using &(¢) and (1) in (2.46), (2.47) now gives the recursive algorithm

6(y=00—1)+ %R“(t)z//(t)s(t), (2.53a)
R()=RG—1) + %[t//(t)t//T(t) — Rt - D], (2.53b)
¢(t) and ¥ (¢) calculated by means of (2.51)—(2.52). (2.53¢)

Here we used R(7) = R(?)/t rather than R(?) in the algorithm in order to
stress the formal relationship with (2.15).
Just as in section 2.2.1 we can of course introduce

P()=[RMN], (2.54a)
and update P(¢) using lemma 2.1:

— pr— 1y P =Dy P —1)
POy=Pt-1) TP = DY) (2.54b)

It should be clear from the formulas defining &(f) and y(), how the
algorithm for an ARMAX model (2.8) of arbitrary order is constructed.

Let us pause here to bring up a minor issue, that however proves to be
of some importance later on (see section 5.11). In the calculation of the
prediction error &(f) in (2.51) we used the estimate 6(r — 1), based on
measurements up to and including time ¢ — 1. This is necessary, since we
use &(?) to update 0 in (2.53a). However, we also use &(7) in ot + 1) to
compute Y(¢ + 1) in (2.52). This variable is needed only after we have
updated 0(7). At that time we can improve on the estimate &(7), by taking
the new information in y(7) into account. This means that we compute

(1) = y(1) — 0T ()P, (2.55a)
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where now
—y@ -1
@) = ui@—1|. (2.55b)
Bt—1)
We shall call (¢) the residual at time ¢, and &(¢), defined by
&(t) = y(1) — 07t — V@), (2.55¢)

the prediction error at time ¢. (Notice that the definition of &(¢) in (2.55¢)
actually differs from (2.51) in that @ is used instead of ¢). Other terms
that are sometimes used are a posteriori and a priori prediction errors,
respectively.

Remark on Notation In order not to get too-complicated notation we
have actually used the symbol ¢ for two different quantities. The variable
&(?) in (2.51) is computed using the previous g(¢ — 1). 1t thus differs from
£(2) in (2.55¢) which uses &(r — 1).

With the residual €(#) it is natural to compute y(¢) as

W) = —ét — Dyt — 1) + 3. (2.55d)

With these improved estimates of y(¢), we have the modified algorithm of
(2.53) and (2.55). It turns out that the slight difference in going from (2.51)
and (2.52) to (2.55) actually makes a noticeable improvement in the
algorithm’s behavior (see section 5.11).

To summarize this section, we have derived the algorithm (2.53) for
recursive estimation of the parameters of the ARMAX model (2.32). Let
us stress three aspects.

First, the resulting algorithm has a striking formal similarity with the
recursive least squares algorithm.

Second, most of the derivation, from (2.38) to (2.47) has been carried
out in terms of general properties and relationships between ¢(, ) and
Y (t, 0). The properties of the actual ARMAX model (2.32) affected only
the way these quantities (and their approximations) were computed in
(2.49)—(2.52). We may thus expect that the basic ideas of the derivation
can be applied to a variety of other models.

Third, the approach was based on local expansion of the criterion
function. If one gets close to the true minimizing element 6,, the approxi-
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mations involved are all very reasonable. We may thus expect good
asymptotic properties once we get in the vicinity of the true value. From
the given derivation, however, it is impossible to tell anything about the
transient behavior of the algorithm.

2.2.4 Summary

In this section we have considered three common off-line identification
methods, viz., the least squares method, the instrumental variable method,
and the maximum likelihood or prediction error method applied to an
ARMAX model. We have seen that the first two can be written exactly in
a recursive fashion, while the third can be put into recursive form only at
the price of certain approximations. The third example also indicates that
the same or similar ideas should be applicable to other off-line methods
based on criterion minimization.

2.3 Recursive Identification as Nonlinear Filtering (A Bayesian
Approach)

In the Bayesian approach to the parameter estimation problem, the pa-
rameter itself is thought of as a random variable. Based on observations
of other random variables that are correlated with the parameter, we may
infer information about its value. The Kalman filter, for example, is
developed in such a Bayesian framework. The unobserved state vector is
assumed to be correlated with the output of the system, so that, based on
observations of the output, the value of the state vector can be estimated.
The Bayesian approach to parameter estimation is therefore related to
linear and nonlinear state estimation (“filtering’’) problems.

Suppose that the true system dynamics can be described in terms of a
parameter vector . With a Bayesian view of the problem, we thus con-
sider 0 to be a random vector with a certain prior distribution. The
observations y‘ and u' will obviously be correlated with this 0. [The
superscript ¢ refers to the data record up to time ¢, as in (1.1).] At time ¢
we then ask for the posterior probability density function for 0, i.e., we
wish to determine p(6 | y', u')

An estimate 0(7) can be determmed from the posterlor distribution in
several ways. A common choice is the mean of the posterior distribution,
i.e., the conditional expectation:
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0(t) =E@ |y, u). (2.56)

Another choice is to take 6(7) as the value for which the posterior distribu-
tion attains its maximum: “‘the most likely value.” This is known as the
maximum a posteriori (MAP) estimate and coincides with (2.56) for
many symmetric distributions, such as the Gaussian one. The estimate 6(f)
defined in (2.56) is also the value that minimizes the parameter error
variance E|0 — 6(t)|? under very general conditions.

Our problem is consequently to determine how (2.56) or the density
function itself evolves with ¢. This is usually a very difficult problem, and
only approximate solutions can be found. If, however, 6 is linearly related
to the data, such as in example 2.1, and if the noise is Gaussian, an exact
solution can be found.

2.3.1 Linear Regression
LEMMA 2.2 Suppose that the data is generated according to

y(@) = T ()0 + () (2.57)

where the vector ¢(?) is a function of y'~', u'~' and where {e(?)} is a

sequence of independent Gaussian variables with Ee(f) = 0 and Ee?(¢) =
r,(?). Suppose also that the prior distribution of 8 is Gaussian with mean
6, and covariance matrix P,. Then the posterior distribution p(6 | y*, u")
is also Gaussian with mean 0(¢) and covariance matrix P(f), where é(t)
and P(¢) are determined according to

0() = 0t — 1) + L) [»(1) — 67 — Do(®)],

-1 - Pt = Do(1)
L= 0 = o 0T 0P( — Dol (2-38)

P = Do ()P — 1)
PO = Pe =D = o 0Pt - Dot)

6(0)=6,, P(0)=P,.

Proof Assume that »' is a given deterministic sequence. We may then
neglect it in the calculations to come (it will be included in the way ¢(¢)
is formed from y'~!). The proof will be based on Bayes’s rule in the form

P(B| 4, C)P(4]| C)
P(B]C)

P(4|B,C) = (2.59)
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Here P(A | B, C) is the probability of the event A4, conditioned on B and
C. Applying this formula to the posterior density gives

Py ) 260
I (2.60)

We shall prove the desired result by induction.

POy = p(O] y(), y) =PV

Step 1.
o (2n)—dim6/2 _l 4 S 5 }
0130 = G e {510 — 00T O [0~ 60)]

by the assumptions of the lemma.
Step 2: Assume that
p@|y!

__@m {—1[0—90—1)]TP‘1<z—1>[0—9<t—1>]}
T JdetPG =1 P72 '

We shall now calculate p(0 | y*) using (2.60). From (2.57) we have

e() = y(t) — 07 ().

Under the assumption that {e(?)} is a sequence of independent random
variables with zero means and variances r,(z), we have

p(y(@®) |0,y ") =

T { T }

Hence, from (2.60),

p(0]y") = Norm - exp { —[y(®) — 0T () ]?

2ry(0)
1 - .
— 5[0 -0t —1D]"P (- 1[0 -6 — 1)]},
where we have not explicitly written out the 6-independent normalization
factor.

We shall now try to write the exponent as a quadratic form:

—2logp(6 | y") = const + Tt)y 2(1)
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y) e (D0 — 0 () y(1)

1
z(t) r2(?)

—+

L 0To)e™(1)0 + 0TP (1 — 1)0
ra(2)

— TPt - DO —1) =0T — HP 1t - 1)b
+ 0T — DP It — DO - 1).
Define

Pl=pi(— 1)+m(p(t)q)T(t) (2.61)

then we can rewrite the preceding expression as

const + —— (1) + 0t — DTPI(t — DOGE — 1)

1
r2(2)

+OTP 10— eT[ 1

rz(t)q)(t)y(t) + P71t — DOt — 1)]

[ 2(I)w(t)y(t) + Pt — 0@ — 1)}T

— 1
ry(2)

= const’+ [ - e(0)y(t) — PP~ (t — l)é(t - 1)} '

[9 PT)W)y(t) PP (1 — 1)f(1 — 1)},

where const’ is a new, f-independent normalization constant. Since

1_)'P_1 —DH=7I-— F‘P(I)(PT(I)’
=D ra(0)

we may write the expression within parentheses as 6§ — 0, where

0=00—-1)+ TPq)(t) [y(t) - 07(t — Do®)]. (2.62)
r2
This means that the posterior density at time ¢ p(0 | ), is Gaussian with
mean 0, given by (2.62), and covariance matrix P, given by (2.61).
Applying lemma 2.1 to (2.61) gives
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o P— DeeT )P — 1)
P=Pu=0 = 5+ o) PU— Do) (2.63)

Moreover, by (2.18) we also have

s Pu= D)
R0 D= L0+ 0T OPU - Do)

With this we have completed the induction and shown that the posterior
density at time ¢ is the one stated in the lemma. »

Notice that the algorithm (2.58) that gives us the conditional expecta-
tion of the parameter vector under the normality assumption, coincides
with the recursive least squares algorithm (2.19) with r,(¢) = 1/a,. This
shows that the initial values 6(0) and P(0) in (2.19) can be interpreted as
prior knowledge about the parameter vector 6. It also shows that the
optimal weighting factor «, in the least squares criterion (2.12) is the
inverse of the variance of the noise term (at least when the noise is white
and Gaussian).

2.3.2 Kalman Filter Interpretation

1t is interesting to note that the model (2.57) can be seen as a linear state-
space model

o0t + 1) = 0(n), (2.64a)
y(0) = T (H)0(1) + e(2). (2.64b)
Compare this to the conventional state-space form (2.9):

x(t+ 1) = F(O)x(©) + w(), (2.65a)
() = HOx(0) + e(d), | (2.65b)

where {w(?)} and {e(r)} are mutually independent sequences of indepen-
dent random vectors with zero mean values and covariance matrices
R, (?) and r,(¢), respectively. With F(t) = I, R,(t) = 0, and H(t) = ¢"(?)
in (2.65), we clearly obtain (2.64). The determination of

X+ 1D =Ex(¢+ D]y

for (2.65) is solved by using the well-known Kalman filter (see appendix
1.0)
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£t + 1) = FO)£(1) + KO [y(1) — HO£@)], (2.66a)

_ F@OPOH()
KO =1 0+ HoPOHTG)

(2.66b)

P+ 1)=FOPOFY() + R, (D)

—F)POHT(O)[r,(t) + HO)POH™ ()] ' H@)P(HF(1).
(2.66¢)

With F(t) =1, R (1) =0, and H(t) = ¢T(¢) in (2.66), we obtain the
algorithm (2.58).

The discussion so far has taught us two things. First, that the Kalman
filter is still valid, even though the H-matrix is realization-dependent.
Second, we have obtained an interpretation of the initial conditions 9(0)
and P(0) of the recursive least squares algorithm, for the case in which
we choose to initialize the algorithm at ¢ = 0. The conditions correspond
to prior knowledge of the value of the parameter vector. It is reasonable
to similarly interpret the more general RML method of section 2.2.3.

2.3.3 A General State-Space Model

Up to this point we have considered only the special case where 8 and the
data are linearly related. Let us now study a more general situation. Let
the model be as in example 2.3:

x(t + 1) = F(O)x(1) + GOu(?) + w(),
y() = HO)x(1) + e(),

where {w(?)} and {e(z)} are sequences of independent random vectors
with zero mean values and covariance matrices R, () and R, (0), respec-
tively. Suppose that x(0) has mean value x,(#) and covariance matrix
ITy(B). The parameter vector £ is unknown ; suppose that its prior distribu-
tion has mean value 6, and covariance matrix P,. To determine a recursive
estimator for 0, we define an extended state vector

X(0) = ("g)) ,

and consider the state estimation problem for this extended state. The
state obeys the equations

(2.67)
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X(t+ V) = F(X(1), u(t)) + w(e),

_ (2.68)
y(&) = HX()) + e(0),
where
F(X(t), u(r)) = (Fw)x(’) J(; G0 u(t))’ (2.69a)
w(t) = (w(()t)) (2.69b)
HX(t)) = HO)x(1). (2.69¢)

The problem in (2.68) is to determine E(X(f + 1) | y*). This in turn, will
give the estimate E(6 | y) in addition to £(s + 1) = E(x(s + 1) | y"). The
problem of recursively identifying 6 has thus been formulated as a state
estimation problem (“‘a filtering problem™). The state equations (2.68)
are however, nonlinear in the state, since X enters nonlinearly in F and H
as seen in (2.69a, ¢). We are thus faced with a nonlinear filtering problem.

Nonlinear filtering is a subject that has been studied over a long period
and many approaches have been suggested and tested (see e.g., Jazwinski,
1970). For a nonlinear system it is not possible, except in a few isolated
cases, to get an exact solution with recursive methods ; various approxima-
tions have to be introduced. With the connection we made here to identifi-
cation, any nonlinear filtering method applied to (2.68), directly gives
rise to a corresponding recursive identification algorithm for estimating
6. Among these, the extended Kalman filter is no doubt the best-known
and most widely used example.

EXAMPLE 2.4. (Extended Kalman Filter) The idea behind the extended
Kalman filter (EKF) is to extend linear Kalman filter theory to nonlinear
systems. This is achieved by linearization of the system around the current
state estimate and application of the Kalman filter to the resulting (time-
varying) linear system. The details of the approach are given, e.g., in
Theorem 8.1 of Jazwinski (1970). When applied to (2.68)—(2.69), the
resulting algorithm is fairly complex. It is given in appendix 2.A. Here,
to illustrate the idea and the character of the resulting algorithm, we shall
apply the EKF to the simple model, given by

x(t + 1) = ax(t) + w(p),

y(1) = x(0) + e(1).

(2.70)
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Here x(?) is a one-dimensional state and a is an unknown constant. The
sequences {w(?)} and {e(s) } consist of independent random variables with
zero means and variances r; and r,, respectively, which we assume to be
known in this example. The problem is to estimate the parameter a from
measurements of the output {y(7)}.

By including q in the state vector we obtain

X(0) = ("i”) :

X(t+1)= (“’;(’)> + (w(()’)>

y(0) = x(2) + e(r)
Let

NN
0= (d(z - 1)>

be the state estimate based on y'~'. (We use the argument z — 1 for 4 in
order to be consistent with the convention that 8(¢) is based on z'.) In the
EKF the estimate is updated as

Xe+1)= (d(; (: _l)f)(t)

.71

) + K[y — 2], (2.72)

where the Kalman gain K(¢) is determined from the linear time-varying
system that is obtained by linearization of (2.71) around the current
estimate. This linear system has the state transition matrix

F8®) = i(“") - (‘i(’ - ﬁi’)>,
x=X()

X\ a
and the state-to-output matrix

=(1 0).

X=X

Hence K(¢) is determined from [see (2.66b, c)]

P(t + 1) = FRQ)P)FT(X(2)) + ('01 g)
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— FXW)YPOH (X)) [r, + HX @) POH (X ()]
x H(X(D)P()F(X(1)),
K1) = FXO)P()H (X)) [r, + HX()POH X(0)]™".

Introducing the block structure

— (P pa() = _(kl(t)>
Pm_(pz(r) pa(z)>’ KO=\k,0)

and sorting the foregoing equations now gives

k(== 1;”11(5;):3(’)1’2(’), (2.732)
ka (1) = pl‘(”t;—(jr)rz, 2.73b)
p2(t+ 1) = [d() — k1 (0]p2(1) + 2(Dp3 (1), (2.730)
Pt + 1) =ps(0) —;[11(’[2)(—2];, (2.73d)
Pt + 1) = a*()p, (1) + 2d(t) p,(NX(1) + 2 (1)p3()

(2.73¢)

—kiO[p1 () + ] + 1y

The updating equation (2.72) can now be written
@+ 1) =d@ — Dx@) + k(D[ y(0) — 2(1)], (2.74a)
a(y =a(t — 1) + k, () [y — x(0]. (2.74b)

Equations (2.73)-(2.74) define the recursive identification algorithm
arising from the EKF. They look more complex than those we have
encountered previously, but let us point out the following similarities:

» The variable x(f) computed from (2.74a) is a prediction of the output
y(#), based on previous observations and the sequence of previous
estimates. The calculation is of the same character as in (2.51).

¢ The updating of the parameter estimate (2.74b) is based on the current
prediction error y(¢) — x(¢), just as in (2.53a).

e The gain k,(¢) of the updating equation is formed by filtering y(¢)
through a time-varying, estimate-dependent filter. The output y(¢) is
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filtered to give x(¢) in (2.74a); X(¢) is in turn filtered in (2.73¢c) to give
p.(t), which defines k,(¢). These calculations are much the same as those
determining the gain [ R(¢)]"'¥(¢) in (2.53a) [egs. (2.51)—(2.52)].

¢ The variables p;(¢) and p,(t) and hence the gain & ,(r) will tend to zero
as 1/t when t approaches infinity. This is seen by examination of (2.73c, d).
Hence (2.74b) updates a with a gain that decays as 1/¢ just as the gain does
in (2.53).

The intriguing resemblance between the EKF algorithm and other recur-
sive algorithms is further clarified in a general context in appendix 3.C.

Remark The estimate x(¢) used above is the predicted state estimate
based on y(s), s <t— 1. To stress this, we could use the notation
x(t| £ — 1). From (2.73c) we see that p,(z) then will be constructed from
3(5), using measurements only for s < ¢+ — 2. The variable p,(¢) is then
used in (2.73b) at a time when y(t — 1) clearly is available; we have thus
unnecessarily delayed this piece of information. It seems more reasonable
to update the state estimate:

| =%0 ]t =D+ k(O[y@) — 2|t — D], (2.74a")
and to use this filtered estimate in

P2t + 1) = [d(?) — k()] po(0) + Xt | H)p;3(2). (2.73¢)
In (2.74a"), the gain lgl(t) is given by

k() = —21 0 (2.73a’)

[see also (1.C.17)~(1.C.18)]. D
2.3.4 Summary

We have seen that a Bayesian formulation of the parameter estimation
problem leads in a natural way to a nonlinear filtering problem. Various
approximative solutions to the filtering problem therefore give corre-
sponding recursive identification algorithms. The extended Kalman
filter is a well-known special case.

For a particular structure, where the parameters are linear in data and
the noiseis white and Gaussian, an exact solution to the Bayesian approach
can be given. It coincides with the least squares algorithm of section 2.2.1.
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2.4 The Stochastic Approximation Approach

The concept of “‘stochastic approximation” has been developed in
statistics for certain sequential parameter estimation problems. Before
giving a formal account of the idea let us consider a simple case.

2.4.1 A Simple Identification Problem

To illustrate how the idea of stochastic approximation relates to recursive
identification, let us study the simple difference equation model (2.5):

y(®) = 0To(t) + v(1), (2.75)

where y(f) and ¢(¢) are measured quantities and 6 is to be determined.
The variable v(z) is the equation error (see example 2.1) and it is natural
to select 6 so that the variance of v(¢) is minimized, i.e., to seek

mgin V(0), (2.76)
where
V() = 3E[y() — 0" (0] (2.77)

The function ¥V(0) is quadratic in 6, so therefore (2.76) can be found by
solving

" ®] =Ee0 - o0 -0 @)

Now the problem (2.76)—(2.78) cannot be solved exactly by the user, since
the probability distribution of (y(¢), () is not known and therefore the
expectations in (2.77) and (2.78) cannot be evaluated One _way around
this would be to replace expectations with sample 1 means [1 e., Ef(¢) could
be approximated by (1/N)YY f(¢)], bringing us to the least squares
method of section 2.2.1. The problem (2.76)—(2.78) is, however, of a form
to which general stochastic approximation procedures apply. Let us
therefore turn to an account of stochastic approximation itself.

2.4.2 Stochastic Approximation

The typical problem for stochastic approximation can be posed as follows.
Let {e(?)} be a sequence of random variables each of the same distribution,
indexed by a discrete time variable ¢. A function Q(x, e(?)) of e(?) and x
is given, and a solution to the equation



2 < The Stochastic Approximation Approach 43

EQix.e(r))=f(x)=0 2.79)

:s sought, where E denotes expectation over e(#). The distribution of -

N
/

etr}, is not known to the user. The exact form of the function Q(x, e)

may also be unknown. The values of Q(x, e) are, however, observed or
can be constructed for any chosen x. That is to say that at time ¢, the user
chooses a value x and obtains a value of Q(x, e(f)). Comparing (2.79) to
(2.78), we see that (2.79) corresponds to

x=40,

_(y®
e() = ((p (l)>, (2.80)

O(x, e(0) = o(Y[¥(®) — @™ (H0].

In this case e(?) is observed and Q(x, e) is a known function of x and e,
but the distribution of () is unknown.

Returning to the general equation (2.79), the problem is to determine
a sequence of values x(¢),r = 1, 2, ..., observe the corresponding Q(x(?),
e(r)), and subsequently infer the solution of (2.79). Conceptually, it is
clear that such a thing can be done. A trivial way would be to fix x, make
a large number of observations Q(x, e(¢)) for this x, thereby getting a good
estimate of f(x), and repeat the procedure for a number of new x-values
until a solution of (2.79) is found. It is, however, more efficient to change
the value of x for each observation, in order not to spend a lot of effort
to determine f(x) accurately for an x-value far away from a solution to
(2.79). Robbins and Monro (1951) suggested the following scheme to
solve (2.79) recursively as time evolves:

(@) =X — D+ yOQE(1 — 1), e(2)), (2.81)

where {y(1)} is a sequence of positive scalars tending to zero.

The convergence properties of (2.81) have been studied by Robbins
and Monro (1951), Blum (1954), and Dvoretzky (1956). They showed
that x(7) indeed will converge to the solution of (2.79) under certain
assumptions. (A typical assumption in these early studies is that {e(¢)} is
a sequence of independent random vectors, which is not the case in our
application (2.80))

EXAMPLE 2.5 (Estimation of Mean Value) As a trivial example of the
Robbins-Monro scheme we attempt to solve
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E[e() — x] = 0.

If Ee(t) = m, the solution clearly is x* = m. The Robbins-Monro scheme
gives

(M) =x0 -1 +yO[er) — 2t — D).
With y(¢) = 1/t, we find that

£ = 3 (o),

i.e., () is simply the sample mean. O
2.4.3 Stochastic Approximation Applied to Linear Regressions
Let us now return to the case (2.75).

EXAMPLE 2.6. (A Stochastic Approximation Algorithm for a Linear
Regression Model) If we apply the Robbins-Monro scheme (2.81) to
(2.78) we obtain the algorithm

0(t) =00 — 1) + () [y(t) — 0" ()t — 1)]. ' (2.82)

This recursive algorithm for estimating the parameter ¢ in the model
(2.75) has been suggested and tested by Saridis and Stein (1968), Sakrison
(1967), and Tsypkin (1973). The latter reference gives a very comprehen-
sive treatment of the role of stochastic approximation algorithms in
estimation and control. In the control literature algorithms of the type
(2.82) are usually known as “‘stochastic approximation methods.” We
here prefer to call them ““stochastic gradient methods,” for reasons that
will be explained later, since they represent only one way of applying the
idea of stochastic approximation. The algorithm (2.82) has also been
widely used in adaptive signal processing. There it is well known as the
“LMS algorithm,” and was derived and first applied in that context by
Widrow and Hoff (1960).

The sequence {y(1)} in (2.82) is the “gain sequence.” We shall discuss
aspects of how to choose this in example 2.11 and, in more detail, in
section 5.6. Let us here only remark that some common choices in
applications are

7(t) = o (constant), (2.83a)
() = vol|@(D)|? (normalized), (2.83b)
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or
t -1
y(t) = { Y |(p(k)|2] (normalized and decreasing). (2.83¢)
k=1

The normalized choices have the advantage of giving an algorithm that
" is invariant under scaling of the signals y(r) and ¢(7). Notice that with
the choice (2.83c), the algorithm (2.82) can be written

0() = 6t — 1) + [r()] e [¥() — @™ (O0(t — 1)], (2.84a)
r@)=r@t—1) + ||’ O (2.84b)
2.4.4 The Robbins-Monro Scheme as a Stochastic Gradient Method

Now, recall that the original problem (2.76)—(2.77) in fact was a minimiza-
tion problem, and that we approached it by solving for stationary points
in (2.78). In terms of the general formulation (2.79) we could think of a
minimization problem

min V{(x), (2.85a)
V(x) = EH(x, e(t)). ; (2.85b)
Let

d
— 5V =170,
Ix
and suppose that the gradient
0 T
_a_H(xa e(t)) = Q (x7 e(t))
X

can be obtained for any chosen x. Then (2.85) can be solved by solving
the equation

0= [_d;‘i V(x)] ~ f(x) = EQ(x, e(t), (2.86)

where we have allowed interchange of expectation and differentiation.
We are now back to the formulation (2.79), and the Robbins-Monro
scheme (2.81) can thus be regarded as an algorithm to minimize ¥(x) in
(2.85). In this algorithm an adjustment of x is made in a direction that
is the negative gradient of the observed criterion function H(x, e(¢)). “‘On
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the average” the adjustments are consequently made in the negative
gradient direction of the function ¥(x). A suitable name for the corre-
sponding algorithm therefore is “stochastic gradient method.”

2.4.5 Gradient and Newton Directions

The stochastic gradient method can be seen as a stochastic analog of the
method of steepest descent for the numerical minimization of a determin-
istic function. Let us for future reference quote some fundamentals of
the theory of numerical minimization (see, e.g., Luenberger, 1973, for
a general treatment). The method of steepest descent is given by

T
XD = x O _ 50 [% V(x)] , (2.87)

x=x¥

where y is a positive scalar chosen in a suitable way and x denotes
the tth iterate. It is well known that this method is fairly inefficient, in
particular when the iterates are getting close to the minimum. So-called
Newton methods or quasi-Newton methods give a distinctly better result.
In these variants the search direction is modified from the negative
gradient direction

are]

to

d2 -1 d T
—| ==V —V . .88
FCIREC] (.89)
Here d?V(x)/dx* is the Hessian, i.e., the second derivative matrix of V.
We may call (2.88) the ““Newton direction” for convenience. The iteration

d2 -1 d T
e+ 0 _ | % Phady
x x [ e V(x)] [ pe V(x)]

will give convergence in one step to the minimum of ¥(x), if this function
is quadratic in x. Therefore, close to the minimum, where a second-order
approximation of ¥(x) well describes the function, the scheme (2.89) will
be very efficient. Far away from the minimum, (2.89) may be inefficient
or even diverge. Therefore, the Hessian is usually replaced by a guaranteed
positive-definite approximation in order to secure a search direction
that points “downhill.”

(2.89)

x=x®
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2.4.6 A Stochastic Newton Method

Since the search direction (2.88) in general gives a clear improvement
over the negative gradient for deterministic problems, it is reasonable
to believe that a similar improvement would be obtained in the stochastic
approximation case. Stochastic approximation minimization algorithms
have been discussed in a general framework by Kushner and Clark (1978).
Here we shall make only the following remarks. Suppose, for the mini-
mization problem (2.85), that for each x an approximation of the Hessian
of V(x) can be constructed from previous observations. Denote this
approximate Hessian by V”(x, '), where e indicates that the approxi-
mation may depend on all previous noise values e’ = e(t), e(t — 1), ...,
e(1). Then a natural variant of the stochastic gradient scheme (2.81) is

() =%t = D+ y [V (@ = 1), )] QR — 1), e(®)). (2.90)

This scheme could be called a “‘stochastic Newton algorithm.”

Certain theorems regarding the convergence properties of (2.90) can
be posed. We shall, however, postpone the formal discussion of asympto-
tic properties of the schemes until chapter 4.

Let us now apply this algorithm to the problem (2.76)—(2.77).

EXAMPLE 2.6 (CONTINUED) To derive a Newton algorithm for (2.76)—
(2.77) we first find that for the quadratic criterion (2.77) we have

d2

52 VO = Ep(Do™(1). 2.91)
The Hessian consequently is independent of 6. It can, according to (2.91),
be determined as the solution R of the equation

E[¢(1)¢™ (1) — R] = 0. (2.92)
Applying the Robbins-Monro procedure to solve (2.92) gives
R(®) =Rt — 1) +y0O)[e®e™() — Rt — D]. (2.93a)

Our estimate of d?V(0)/d0? at time ¢ is consequently R(z). With this
estimate we obtain the stochastic Newton algorithm

0(t) = 0 — 1) + y(ORT Do) [ y(1) — 9" ()0 — 1)]. (2.93b)

The algorithm (2.93) is closely related to the recursive least squares
algorithm of section 2.2.1. In fact, with y(¢) = 1/¢ in (2.93), it coincides
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with (2.15) for o, = 1. We have consequently obtained yet another inter-
pretation of the RLS scheme: It can be seen as a stochastic Newton
method to minimize the criterion (2.77). O

With the same philosophy as in the example above, a more general
problem can be approached. Consider the prediction error criterion of
section 2.2.3, eq. (2.38). It is reasonable to minimize the criterion

V(0) = 1Ee2(1, 0). (2.94)

If, as before, ¥(t, 0) denotes the negative gradient of &(¢, ) with respect
to 6, we obtain

d T
_ [E V(e)} — Ev (1, 0)e(s, 0).

We can now minimize (2.94) recursively in the same manner as in example
2.6. Stochastic gradient and stochastic Newton methods can be derived,
and it turns out that the algorithm (2.53) can be interpreted as a stochastic
Newton algorithm for recursive minimization of (2.94). We shall, how-
ever, address the problem of minimizing (2.94) using stochastic approxi-
mation ideas in a much more general framework in section 3.4, and the
details of the arguments will be deferred until then.

2.4.7 Summary

In this section, we have applied ideas from stochastic approximation
to recursive minimization of certain criterion functions. We have rederived
the recursive least squares method in this framework as a ‘““‘stochastic
Newton method,” by which we mean that the parameter adjustments
are made in the Newton direction for the criterion. We have also indicated
that the approach has a potential for application to more general prob-
lems, a fact that we will make use of in section 3.4.

2.5 Pseudolinear Regressions and Model Reference Techniques

In this section we shall describe two additional approaches to the recursive
identification problem. They are motivated by different ideas, but the
resulting algorithms show some common features, which makes it suit-
able to discuss them in the same section.
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2.5.1 Pseudolinear Regression

Consider the linear regression model
y(0)y = 0"0() + v() (2.95)

that we used in example 2.1. Such models have been widely studied in
statistics, and the least squares method of section 2.2.1 is a natural and
efficient way of estimating the parameter vector 6. Considering the
usefulness of this method, it is tempting to try to cast other models, that
are not true linear regressions, in the form of (2.95). This can often be
achieved by including in the regression vector ¢(¢) unobservable vari-
ables, whose values, however, can be estimated from data. The combined
procedure of estimating # and reconstructing the unobserved ¢-com-
ponents, we shall call a Pseudolinear Regression (PLR) method. This
term was introduced by Solo (1978). The following example will clarify
the details of this approach.

ExaMPLE 2.7. (Extended Least Squares (ELS) Method) Consider the
ARMAX model described in example 2.2:

y@O +ayt—H+ - +a,y(t—n)

=bu(t—1)+ - +but —my+e®)+ce(t—1)+--- (2.96)

+ c,e(t —r).
Let us introduce the vectors
e =(—yt—1 ... —yt—n)u@t—=1) ... u(t—m)
e(t—1) ... et—r)t

and
0=(, ...a, b, ... b,c, ... c,)".
With this notation, (2.96) can be rewritten as
¥(1) = 0"@o(0) + e(). (2.97)

This model looks just like the linear regression (2.95), and we can try to
apply the recursive least squares algorithm (2.15) to it for estimating 6:



50 Chapter 2 Approaches to Recursive Identification

6 = 6 = 1) + TR 00o [y0) — 67 = D],
(2.98)
R = R = 1) + 1 [00)93 () — RG ~ )]

The problem is, of course, that the variables e(i) entering the ¢,-vector
are not measurable, and hence (2.98) cannot be implemented as it stands.
We have to replace the components e(i) with some estimate of them.
From (2.96) we have

e =yO+a,yt—-1)+ - - +a,y¢—n-—bu—-1)— ...
— buu(t —m) —cre(t — 1) — --- —c,e(t —r).

If we have a sequence of estimates

6(t) = (a,(t) ... a,(1) by(t) ... b (t) é,(6) ... é.()T

available, it seems natural to estimate e(f) by &(¢), computed according
to

&) =y() +d, @yt — D+ - + 4,y —n)

— by (Ou(t — 1) — - — b ()u(t — m) (2.99)
—éME—1)— - = (et — 1)

With

oW =(—yt—1) ... =yt —n) ut—1) ... u(t —m) 100

Bt—1)...8¢—r)",
the equation (2.99) can be written
§0) = y() — 0T e(0). (2.101)

An obvious algorithm for estimating 6 is now obtained from (2.98)
by replacing ¢q(¢) by ¢(2), computed according to (2.100), (2.101). This
gives the extended least squares (ELS) algorithm:

e(t) = y(t) — 67(t — Do (1), (2.102a)

d(6) = 6t — 1) + %[R(t)]“qo(t)s(t), (2.102b)
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RO=R:—-1)+ %[qo(t)goT(t) —R(—1)]. (2.102¢)

An advantage of this algorithm is that it is computationally equivalent
to the usual recursive least squares algorithm. The same program can
be used, as soon as it is complemented with the recursion (2.101). With
1
P =-
0 =7
written as
0(t) = 0¢ = 1) + POe[y(1) = 07 = D],

o PU= Do PG~ 1)
PO =PC= D = TP = Do®

It is instructive to compare the algorithm (2.102) with the recursive
maximum likelihood method (2.53) that we derived for an ARMAX
model in section 2.2.3. We notice that the only difference is that the
vector ¢(f) in (2.102b, c) is replaced by y(¢) in (2.53a, b). This vector
¥(?) is obtained from ¢(¢) by filtering it through the current estimate of
the C-polynomial in (2.52). In chapter 4 we shall investigate what this
difference between (2.53) and (2.102) means for the convergence proper-
ties of the respective algorithms. O

R71(f) we know from section 2.2.1 that (2.102) can also be

(2.103)

The extended least squares method is perhaps the best known example
of a pseudolinear regression method in system identification. The same
idea, however, can be applied to models for many other stochastic
dynamical systems. We shall give a more general treatment of this
approach in section 3.7.3.

2.5.2 Model Reference Techniques

“Model reference” is a concept that has been extensively used in adaptive
control. The idea is to compare the actual output of the plant with that
of a reference model (the latter defining the “‘ideal” output), and make
adjustments in the regulator until the plant output coincides with the
maodel output. A similar approach can be taken to the recursive identifi-
catuon problem. For identification, however, the recorded output from
the svstem is compared to that of an adjustable model, and the model
ocarameters are updated until the difference cannot be further improved.
The procedure is schematically described in figure 2.1; the details of
=2 approach are illustrated by the following example.
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Figure 2.1
The model reference idea.

EXAMPLE 2.8 (A Model Reference Output Error Method) This method
was described by Landau (1976). It uses the model

ﬁg;]:; u(t) + v(0), (2.104)

() =

where
BlgY)=big '+ - +bg ™™,
FghY=1+fig7"+ - +fq™"

and ¢! is, as before, the delay operator. The term v(f) represents some
measurement disturbance of unspecified character. The coefficients &;
and f; are to be determined.

Denote the undisturbed output by y,, ; this is given by

B -1
ul) = put)
or
)= —fiyu(t—1) — - — fiyy(t —n)

(2.105)
+bu(t—1)+ -+ + b u(t —m).

Based on this expression, and on current estimates of the parameters
b,(1), f,(¢), we may calculate the ‘“model output”* at time ¢ (corresponding
to y in figure 2.1) as follows:

*In model reference adaptive control, the “model output” j(r) corresponds to the actual
output of the system, controlled by a regulator that tunes its parameters 0. The output
y(#) in figure 2.1 then corresponds to the output of the “ideal” reference model of the
closed-loop behavior.



2.5 PLRs and Model Reference Techniques 53

I + 1Oyt — 1) + -+ £(OIp(t — 1)
B . (2.106)
=b,(Ou(t— 1+ -+ +b,(Hu(t —m).

Notice that p,,(¢) is based only upon the input and estimate sequences.
It does not explicitly use { y(r)}, just as figure 2.1 suggests.
With

()=, ... fi(©) by(t) ... b,(tNT

and

PO = (=Pt =1 ... —Pyt—n) u@t—1) ... u(t —m))",

eg. (2.106) can be written

Iu(0) = 07(1)(2). (2.107)

The sequence of estimates {é(t)} will now be defined recursively. At
time ¢, before the estimate 6(¢) is available, the model output will be

() =07t = Do), (2.108)
and a natural updating formula is
0@ty = 6¢ — 1) + PO [ y(1) — $(0)], (2.109a)

where, in analogy with the RLS algorithm, the gain matrix P(r) can be
taken as

PO =R"0=| £ oo )| (2.1090)
so that
RO =Rl — 1D+ oo™ (0). (2.109¢)

The resulting algorithm (2.109), with y(z), 6(z), and ¢(r) defined according
to (2.107)—(2.108), is the one suggested by Landau (1976).

We may note that the model as well as the method very much resemble
the recursive least squares method of section 2.2.1. The basic difference
is that when going from (2.105) to the prediction (2.106) the previous
predictions { $,,(t — i)} are used rather than the observed outputs. This
is, as we remarked above, in accordance with figure 2.1, and motivates
the name “‘output error method” or “model reference method” for the
algorithm (2.109). As a consequence, the ¢-vector does not directly
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depend on observed y-variables and hence not on any output noise v(?)
added to the measurements. (It does however, indirectly depend on y
via 6, but this dependence decreases with time.) This also means, as we
shall see in chapter 4, that the convergence properties of (2.109) will
be less sensitive to the properties of {v(f)} than the usual recursive least
squares algorithm (2.19). A conceptual relationship with the instrumental
variable method is pointed out in example 3.11.0

The model reference algorithm (2.109) in this example can also be
interpreted as a pseudolinear regression. If, in (2.105), the sequence
{yu(D} had been a known sequence, the right-hand side would be a
linear regression model. Then (2.109) is a pseudolinear regression for
this model, with the estimate §,,(7) replacing y,(?) in @(?), in exactly
the same way as the extended least squares method (2.102) results when
(1) replaces e(r) in @(z) [see (2.96) and (2.100) ]. Therefore, in the general
treatment of pseudolinear regression in section 3.7.3, the algorithm of
example 2.8 will appear as a special case.

2.5.3 Summary

In this section we have seen some additional ways of deriving recursive
identification methods. The algorithms that are obtained, are similar
to the recursive least squares method. The pseudolinear regressions
represent a direct extension of the least squares technique, while the
model reference approach uses certain analogies with recursive least
squares when choosing the updating mechanism. The methods will be
treated in a more general framework in section 3.7.3.

2.6 Tracking Time-Varying Systems

In all of the discussion so far, we have assumed that the parameter vector
to be estimated is constant, i.e., that the system is time-invariant. As we
pointed out in chapter 1, an important reason for using recursive identifi-
cation in practice is, however, that the dynamics méy in fact be changing
with time, and tracking will be required. In this section we shall discuss
how tracking can be incorporated into recursive identification. Descrip-
tions of time-varying dynamics can be achieved, with different mixes
of formality and intuition, in the four approaches that we have discussed.
We shall illustrate the ideas by means of examples.
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2.6.1 The Bayesian Approach

No doubt, the Bayesian approach of section 2.3 is best capable of giving
a formal treatment of a time-varying true parameter vector 6. The reason
is that in this approach, the true parameter vector 6 is considered to be
a random variable. By allowing this vector to be time-varying and by
describing how it changes with time, a formal approach to the tracking
problem can be taken. We illustrate the idea by an example.

EXaMPLE 2.9 (Linear Regression Model with Stochastically Varying
Dynamics) Consider the model of lemma 2.2 and assume that the true
value of the parameter vector 0 varies according to

0+ 1)=0@)+w(), (2.110)

where {w(f)} is a sequence of independent Gaussian random vectors
such that w(¢) has zero mean, and covariance matrix R,(¢). We assume
R,(¢) to be known. We then have the following overall description of
the system:

0t + 1) =0@) + w(p),
y(6) = 0T ()0() + e(1),
(2.111)
Ew()w'(s) = R (D0, Ee(t)e(s) = Ry ()3,
Ew(t)e(s) = 0.

Compare with (2.64)! Applying the Kalman filter (2.66) to (2.111) gives
the estimates

0@) =0(t — 1) + LOO[y(0) — o™ ()0t — 1)], (2.112a)

. P— 1ol
LO= 2,00 + 0" 0P - Do)’

(2.112b)

— p(r_ _ P —Dee Pt —1)
PO=P= 1+ RO = o (2.112¢)

It is interesting to note that 6(r) given by (2.112) is still in fact the con-
ditional mean of 0(¢) given the observations; i.e., we have

0() = E(O() | ). (2.113)

Moreover, the posterior distribution of 6(¢+ + 1) given y' is Gaussian
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with mean é(t) and covariance matrix P(¢). This follows by going through
the original derivation of the Kalman filter (Kalman and Bucy, 1961),
as pointed out by Bohlin (1970) and Astrém and Wittenmark (1971).
Notice, however, that most derivations in textbooks require {¢(?)} in
(2.111) to be a given deterministic sequence. This is not the case in our
application, since this vector contains previous values of the output.

Remark A straightforward application of the Kalman filter to (2.111)
in fact gives the estimate

Ot +1|0=E@¢+ 1|y
However, in view of (2.110), we have
E@( + 1) | y) = E@@) | y) = 6(p).

In the updating formula (2.112) for 6(z), the time indices in P and y
have thus been shifted compared to (2.66) in order to give an expression
consistent with (2.19). 0

In the foregoing example an exact solution of the problem could be
obtained. The effect of the varying dynamics on the algorithm is only
the additional R,-term in (2.112¢). This term prevents P(¢) from tending
to zero, and consequently it keeps up the gain vector L(¢) in (2.112).
This is very natural from an intuitive point of view: When the system
is time-varying, the algorithm must be more “‘alert.”” The price for being
persistently alert (L () not tending to zero) is, of course, that the estimates
are always sensitive to the random disturbances in the measurements.
The estimates will not converge to their true values; the covariance
matrix does not tend to zero. There is, as always, a compromise between
alertness and noise sensitivity. The optimal compromise in (2.112) is
reached via the covariances R, and R,, which can therefore be viewed
as design parameters controlling this tradeoff.

2.6.2 The Off-Line Identification Approach

It is not easy to describe formally time-varying dynamics for the off-
line-inspired algorithms of section 2.2. The reason is that the off-line
philosophy in itself assumes constant systems. However, one may attack
the problem in a heuristic way by discounting old measurements. We.
illustrate the idea with an example.
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EXAMPLE 2.10 (Recursive Least Squares Method with Discounted Mea-
surements) In the least squares criterion (2.12), the sum

Val0) = Lol = 00T @114)

is minimized. If we believe that the system is time-varying, the criterion
(2.114) gives an estimate of the average behavior during the period
1 <t < N. To obtain an estimate that is representative for the current
(i.e., at time N) properties of the system, it is natural to consider another
criterion in which older values are discounted :

Vn(0) = iB(N, Dy — 017, (2.115)

where B(N, ?) typically is increasing in ¢ for given N. Since Vy(0) still
is quadratic in 8, the minimizing value can easily be computed:

o0 =| 3B 000070 | | 8. 00050 | 2.116)

This expression is the off-line estimate.
The sequence of off-line estimates can be computed recursively only
if a certain structure for f(t, k) is introduced. We thus assume that

B, ky=A0Bt—1,k), 1<k<t—1. (2.117a)

This can also be written as

¢

B, k) = [ I i(j)} %, where B(k, k) = a. Q.117b)

j=k+1

Typically A(k) < 1. If A(k) = A all k, we obviously get

B(t, k) =A%, (2.118)

which gives an exponential forgetting profile in the criterion (2.115).
In such a case we refer to 4 as the forgetting factor.

Introduce
RO = Y B, Do®e"®). 2.119)

Then
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R(t) = AR — 1) + a,0(t) 0™ (2). (2.120)

We now have, as in (2.14a),

00 = R0 | 3 5. 00 @38 + ap(000

— R [,1(,) :; Bt — 1, k) k)y(k) + ot,q’(t)y(t)}

= R O[AOR(E - DO — 1) + a,0()y(1)]

= RO (R0 — D) + 0,00 [ y(1) — 9" (1) — 1)]}

=0(t— 1)+ RO [ y(t) — @T(1)0(z — 1)]. (2.121)
This is exactly the same updating formula as (2.14a). Introduce
P(1) = R7'(»),

and apply lemma 2.1 to (2.120). This gives

P(t) = P(t— 1)

A(?)
L e el ot L Pt — Do+ L]
A1) A RS TP Py
T L _ v P=De@e ()P —1)
<o WP D30 = 0 [P N O AR R l)q)(z)}'
2.122)
We thus have the algorithm
0y =0(t — 1) + LO[y(0) — o™ ()0t — 1], (2.123a)
_ P(t— Do) _ 2123
LO= L] + o7 0pu — Do~ =FO2O: (2.1230)
1 [y P=De@e™OP(— 1) > 123
PO=0 [P D Dl + 0T OPG - 1)¢(t)] (21239)

Consequently, a discounted least squares criterion can be recursively
minimized by (2.123) if the forgetting profile is subject to (2.117). Obvi-
ously, the usual RLS algorithm (2.19) is a special case of (2.123) with
A =1.0
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The effect of the forgetting factor A(s) in (2.123c) clearly is that P(z),
and hence the gain L(¢), is kept larger. If A(¢) <1 — 9, 6 > 0, then P(2)
will not tend to zero and the algorithm will always be alert to track chang-
ing dynamics. The effect of A(¢) in (2.123c) is therefore similar to that of
R, (#) in (2.112c). The algorithm (2.112) differs from (2.123), though,
since the effects of R,(¢) and A(¢2) are not identical in each. Nonetheless,
no major differences in the behavior of the corresponding estimates
usually occur. We shall discuss this issue in more detail in section 5.6.

2.6.3 The Stochastic Approximation Approach

Let us now turn to the question of how time-varying dynamics can be
handled in the stochastic approximation approach of section 2.4, Again,
we do that by studying how the simple regression model is treated.

EXAMPLE 2.11 (Choice of Gain Sequence in Stochastic Approximation
Algorithms) Consider the stochastic Newton algorithm (2.93) that we
derived for linear regression models:

0() =0 — 1) + YOR (e [ y(t) — 0T ()6 — 1)], (2.124a)
R =Rt — 1+ ([0 () — R¢ - 1)]. (2.124b)

The theory of stochastic approximation usually leaves the choice of the
gain sequence {y(?)} open, as long as it satisfies

W20, S0 =w, S7W<w. (2.125)
1 1

The second of these conditions implies that we can reach any target, and
the third one assumes the gain to go to zero so that the effect of the noisy
measurements is eliminated asymptotically.

On the other hand, if the system dynamics is time-varying, and we
want to track its variations, we must relax the last condition of (2.125).
Most often, one chooses to let y(7) tend to a small positive number 7,
in such a case, [cf. (2.83a, b)]. The value of y, will be chosen as a tradeoff
between tracking capability (y, large) and noise insensitivity (y, small).
This is in accordance with the real-time aspects that we have obtained
for the other approaches. In fact, the algorithm (2.124) can be exactly
converted into the forgetting factor algorithm (2.123). To see this,
introduce
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R(n) = ()R(t)
Then
R(1) —~{R(z— 1) + 90 [0)e™() — R(t — D]}
_ye=1 1 B v Rt
(0 y(t—l)R(t D+ e0e™() — R(t—1)

= [WT(:)Q — (- 1)] R(t = 1)+ ()" ().

Now (2.124) can be written
0(t) = 6(t — 1) + R @) [ y(t) — @™ (00t — 1)], (2.126a)

y(t =
(9

This algorithm coincides with (2.120), (2.121) and hence with (2.123)
if we take

R0 =" —50] R - 1) + 909" (2.126b)

_ye—1Dr _
/1(1)_«?(1) [1—9(@)] and o, =1. (2.127)

Consequently, a general sequence {y(?)} in (2.124) corresponds to mini-
mizing the discounted criterion (2.115) with the forgetting profile [see
2.117)]

B, o= 11 "= D0 -]

k=ce1 7(K)
(2.128a)
_ 0
—y(k
o 11,01 =201
We shall often have occasion to work with normalized weights given by
BN, 1) = y(N)B(N, ). (2.128b)

It is easy to verify, e.g., by mathematical induction, that these weights
satisfy

i BN, H) + 6(N) =1, (2.129a)
t=1
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where
O(N) = ]:1[ [1-7y®]. (2.129b)

Obviously it does not make any difference to the minimization problem
(2.115) whether B or B is used. From (2.127) we see in particular that a
constant gain y, corresponds to an exponential forgetting factor A4 =

(I = 7o)
2.6.4 The Model Reference Approach

We have now in three examples treated three of the approaches to re-
cursive identification. The literature on model reference systems has
basically been addressing the problem of noise-free measurements (and
often in continuous time). For this case it is natural to choose the gain
to be constant, since that will give tracking abilities in a real-time situa-
tion. When measurement noise is brought into the picture in these
approaches (see, e.g., Dugard, Landau, and Silviera, 1980), the choice of
gain matrix is usually made in analogy with any of the approaches in
examples 2.9-2.11.

2.6.5 Summary

In this section, we have discussed how to track time-varying dynamics
with real-time recursive identification. The bottom line of any approach
to this case is to prevent the gain vector from tending to zero. The size
of the gain at which the algorithm settles will be a compromize between
tracking ability and noise sensitivity. While these aspects can be handled
in an ad hoc way by any approach, only the Bayesian (nonlinear filtering)
approach offers a formal solution of the problem. The optimal com-
promise is then reached, as in the Kalman filter, by solving for the smallest
error variance for the estimates.

2.7 User’s Summary

The problem of recursive identification can be approached in a number
of different ways. The resulting algorithms, however, exhibit very similar
features. Another way of expressing this is to say that a given recursive
identification algorithm can be interpreted in different ways. We shall
here illustrate this in terms of perhaps the best known and most widely
used algorithm: the recursive least squares (RLS) method.
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The problem is to estimate the parameter vector 0 in a linear relation
y(1) = 0" 9(1) + v(),

where { y(7)} and {@(¢)} are measurable. This structure contains, among
several others, the following common difference equation model of a
dynamical system:

yO+ayt—bH+ - +a,yit—n
=bu(t— 1)+ -+ 4+ bu(t —m)+ v(1).

Take 0"=(a, ... a, by ... bpyyand ") =(—p(t—1) ... —y(t—n)
u(t — 1) ... u(t — m)). The following RLS algorithm is typical for the
recursive estimation of 0:

0(0) = 06¢ — 1) + PO [ y()) — 67 (r — Do®)],

P = P(— 1) — PU= Do OPa— 1
1+ o"()P(1— Do()

We shall give three independent interpretations of this algorithm:
1. Solving for §(¢) gives

0= P70+ £ otwomw|” | p0d0 + 3 o000

With P71(0) = 0, this is exactly the H-value that minimizes the least
squares criterion

Vi) =

~ | —

3050~ 00T
2. The estimate 6(r) is the Kalman filter state estimate for the state-
space model
0+ 1)=0(p),
y(@) = @ (D0() + v(»).
3. The RLS algorithm is a recursive minimization of the criterion
V(0) = EX[y(0) - 0"p(n]*.

The factor (1) [ y(1) — 0% — 1)@(7)] is then an estimate of the gradient
of the criterion, while
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t -1
PO =| P70 + Lot |

is the inverse of an estimate of the second derivative (the Hessian) of the
criterion. The updating of (z) is thus taken in the estimated “Newton”
direction with a step size that decays as 1/r.

Based on each of these three interpretations recursive identification
methods can also be derived for other model structures. In the next
chapter we shall pursue the third approach in order to develop a general
framework for recursive identification.

2.8 Bibliography

General Surveys The survey paper by Astréom and Eykhoff (1971) con-
tains an overview of approaches to recursive identification and also
contains many references. In Saridis (1974), Isermann et al. (1974),
Soderstrom et al. (1974a, 1978), and Dugard and Landau (1980a) com-
parative studies of different methods are made.

The Least Squares Method The origins of the least squares method can
be traced back to Gauss (1809). It has of course been widely applied to
many problems. The recursive algorithm (2.19) to calculate the least
squares estimate has apparently been found independently by several
authors. The original reference seems to be Plackett (1950). An early
and thourough treatment of the least squares method applied to dynamic
system identification is Astrém (1968). Some basic results from this
report are also given in Astrom and Eykhoff (1971). There exists many
papers dealing with different aspects of the least squares method. Let
- us mention Ljung (1976b) and Moore (1978) for consistency properties,
and Peterka (1975) for implementation aspects. The books by Hsia
(1977), Mendel (1973), Unbehauen et al. (1974), and Isermann (1974)
also contain comprehensive treatments of the recursive least squares
method.

The Instrumental Variable (IV) Method Instrumental variables represent
a general tool in statistics for “correlating out” interesting features. See,
e.g., Kendall and Stuart (1961) for a discussion. The idea has been applied
to system-identification problems in several ways, depending on how the
variables are chosen. The instrumental variables defined by (2.29)—(2.31)
were suggested by Mayne (1967), Wong and Polak (1967), and Young
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(1968) (see also Young, 1965). An alternative with a constant filter in
(2.30) has been discussed by Finigan and Rowe (1974).

Another viewpoint is to take all the instrumental variables to be delayed
inputs. This was used by Wouters (1972). Also, the correlation method
developed by Isermann and Baur (1974) is an IV method with this
interpretation of instrumental variables. Other instrumental variables
have been used by Banon and Aguilar-Martin (1972), Gentil, Sandraz and
Foulard (1973) (inputs and delayed outputs), Stoica and Soderstrém
(1979) (delayed inputs and delayed outputs), and Bauer and Unbehauen
(1978) (closed-loop applications). A comparative survey with convergence
analysis of these different choices is given by Soderstrém and Stoica
(1981). Recursive instrumental variable methods have been extensively
used by P. C. Young (1970). Young has also developed “‘refined”” variants,
in which the variables are prefiltered through filters that also are estimated
(Young, 1976).

The Recursive Maximum Likelihood Method The method described in
section 2.2.3 was derived by Soderstrom (1973b) based on an idea by
Astrom. A similar method was independently derived by Fuhrt (1973).
Similar algorithms for another model structure have been derived by
Hastings-James and Sage (1969) and by Gertler and Banyasz (1974).
Both these papers consider a model where the noise term is an autoregres-
sion rather than a moving average. The resulting algorithm is also called
a ‘“‘recursive generalized least squares algorithm.” |

The Bayesian Approach and Nonlinear Filtering (Section 2.3) The Baye-
sian interpretation of the recursive least squares algorithm in lemma 2.2
has been pointed out and used by many authors. In an early paper,
Ho (1963) showed the close relationships between RLS, the Kalman
filter, and the stochastic approximation approach. Bohlin (1970) has
given a further treatment of the Bayesian aspects of RLS.

Astrém and Wittenmark (1971) stressed that the Kalman filter formula
indeed gives the conditional mean also in the least squares identification
case in connection with adaptive control applications. Peterka (1979,
1981) has pursued the Bayesian framework in identification applications.
A Bayesian convergence analysis of the recursive least squares method
was given by Sternby (1977).

The use of the extended Kalman filter for recursive identification
seems to have been first suggested by Kopp and Orford (1963) and Cox
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(1964). It has subsequently been widely used in many different appli-
cations. See, e.g., Sage and Wakefield (1972), Nelson and Stear (1976),
and Ljung (1979a) for aspects of this method.

Adaptive Filtering (Section 2.3) A topic that is related to the nonlinear
filtering approach to recursive identification is adaptive filtering. The
problem addressed is to find the state estimate for a system like (2.67)
with known dynamics (matrices F, G, and H) but unknown noise char-
acteristics (matrices R, and R,). The latter information is then extracted
from the data in a recursive fashion. See, e.g., Jazwinski (1969), Mehra
(1970), Belanger (1974), and Ohap and Stubberud (1976) for a treatment
of this problem.

The Stochastic Approximation Approach (Section 2.4) The statistical
background for stochastic approximation was developed, e.g., in Robbins
and Monro (1951), Blum (1954), Albert and Gardner (1967), Dvoretzky
(1956), and Fabian (1960, 1968). Tsypkin has in a number of papers and
books (e.g., Tsypkin, 1971, 1973) suggested the application of these
techniques to a variety of estimation, learning, and control problems.
The potential function approach described in Aizerman et al. (1970) and
used for various learning problems in system theory is also basically a
stochastic approximation scheme.

Stochastic approximation methods have also been derived by Sakrison
(1967) and Saridis and Stein (1968). All these algorithms are basically
stochastic gradient methods for linear regression models like (2.75). The
algorithm is thus essentially given by (2.84). The widely used “LMS”
algorithm developed by Widrow and Hoff (1960), and applied to a number
of problems in adaptive signal processing is also of the same character.
It has been recognized, e.g., in Sakrison (1967) and Polyak and Tsypkin
(1979), that using the Newton search direction will improve the properties
of the algorithm in this application. In Ljung (1981) the stochastic
approximation approach is used to derive recursive identification algo-
rithms for problems other than linear regression models. Methods that
are based on random search techniques rather than on the gradient have
been developed, e.g., by Kiefer and Wolfowitz (1952). See Saridis (1977)
for applications of such techniques to recursive identification.

Pseudolinear Regression (PLR) (Section 2.5) The extended least squares
algorithm was independently derived by Panuska (1968) and Young
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(1968). Being a natural extension of the least squares procedure, it has
been widely used and rediscovered by many people, e.g., Kashyap (1974),
Talmon and van den Boom (1973). The idea of a pseudolinear regression
can be applied to structures other than ARMAX models. Talmon and
van den Boom (1973) have derived a PLR method for a model where the
noise term is described as an ARMA process, rather than as an MA
process.

Model Reference Approach (Section 2.5) Most of the literature on model
reference systems concerns adaptive control. Landau (1974, 1979) has
pointed out its use for the identification problem and also (Landau,
1976) suggested the procedure quoted in example 2.8.



3 Models and Methods: A General Framework

3.1 Introduction

Chapter 2 contained some excerpts from the long list of existing recursive
identification methods. We saw two reasons for this variety of methods:
The different approaches that can be taken and the different model sets
that can be used.

On the other hand, we also noted that the structures of the resulting
algorithms are very similar. This basic structure is

0(1) = 0t — D) + y() PO [y — 5] 3.1

Here 0(r) is the parameter estimate at time 7, {y(s)} is a sequence of
scalars tending to zero or to some small value, and P(¢) is a matrix com-
puted from observations up to time ¢. The variable y(r) is the system
output at time ¢, and (¢) is a prediction of this output based on measure-
ments up to time ¢ — 1. Finally, 5(7) is a vector (or, if dim y > 1, a matrix)
constructed from previous observations, and typically related to the
gradient of j(¢) with respect to 6.

Based on this conclusion from chapter 2, it seems natural to seek a
unifying framework within which most of the existing methods can be
derived. This is our objective in the present chapter. A general framework
will allow the user to see the relationships between different methods,
and will guide him in his choice of algorithm.

The development of a unified approach to recursive identification
consists of three phases:

1. Define the Framework The diversity of model descriptions for stochas-
tic systems is a major reason for the length of the list of methods. It is
therefore necessary to work with a general model description that includes
all the common models. In section 3.2 we define this general model
description and illustrate how it contains the particular models we used
in chapter 2.

It is useful to utilize knowledge and experience from off-line identifica-
tion when deriving recursive methods. Therefore, in section 3.3, we give
a brief account of some major aspects of off-line identification.

2. Derive the Algorithm The approach we choose is to minimize the
prediction error variance recursively, using ideas from stochastic approx-
imation (section 2.4). In section 3.4 we derive an algorithm for a quadratic
criterion. In section 3.5 a general criterion is treated.
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The choice of approach is somewhat arbitrary. Modifying an off-line
criterion, as in section 2.2.3, would lead to the same general algorithm,
and the nonlinear filtering approach of section 2.3 gives virtually the
same result (the differences are explained in appendixes 3.B and 3.C).

3. Apply the Algorithm The general algorithm will then be applied to
particular model sets:

e A linear regression model (section 3.6)
¢ A general single-input/single-output model (section 3.7)

e A state-space model (section 3.8).

For each of these models we first apply the algorithm directly, and
then consider those alternatives and variants that are possible and/or
natural. In this way, we will be able to cover all the methods reviewed
in chapter 2 or mentioned in its bibliography.

The general algorithm can consequently be viewed as one method,
containing options and choices to be made by the user. This viewpoint
is stressed in the User’s Summary (section 3.9). The rest of the book is
then devoted to discussions, analyses, and suggestions regarding these
options and choices.

3.2 Systems and Models

In chapter 2 we worked with the data generated by the system and with
models of the system in a somewhat informal way. We will now approach
the problem of recursive identification in a slightly more formal fashion.
We shall begin by giving more specific meanings to the terms system,
data, and model.

3.2.1 The System and the Data

The system is the physical object that generates the observed output
signal. The output at time ¢ is, as before, denoted by y(¢), and is in general
a p-dimensional column vector. The data acquisition is assumed to be
carried out by sampling, so ¢ is a discrete time index.

Remark There is nothing really that prevents the dimension p from
depending on ¢. That would be the case, e.g., when different measurement
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(t) (¢
i@* System A 5y5fem _y_)»

Figure 3.1
Left: A system driven by a known input. Right: A system generating the signal y.

signals are sampled with different frequencies, which is not uncommon
in practice. To keep the notation simple, however, we will not carry a
time index on p.

Many systems also have a measurable input signal. We denote the input
signal at time 7 by u(¢); this is in general an r-dimensional column vector.
Where there is an input signal, it can be chosen by the user, in general
with the objective of achieving a certain desired behavior of the output
signal. This is often accomplished by letting the input be (partly) a feed-
back from the output. In some identification applications the user may
choose the input primarily to obtain a good identification result. We may
call such a fortunate situation an ‘“‘identification experiment” for the
system. In most applications of recursive identification, however, the
system operates in a “production mode,” in which case the identification
aspects of the input are fortuitous.

Some systems are not driven by any measurable input. In such a case
the output is sometimes called a time series or just a signal. The identifica-
tion problem then is to describe the properties of this signal. As we
remarked in section 2.1, we prefer, however, to phrase this as describing
the “system” that generates the signal. Figure 3.1 illustrates this point
of view. In figure 3.1a the system is driven by a measurable input. In
figure 3.1b we consider the system to be driven by a signal that is not
measurable, but may have known stochastic properties.

In practical applications it may be a substantial part of the identifica-
tion problem to decide which measurements are worthwhile to collect
and regard as outputs, and which signals are to be considered as inputs.
It should also be pointed out that the signals {«(¢)} and {y(s)} may very
well be obtained from nonlinear transformations of primary measure-
ments. These issues are, however, very problem-dependent, and in the
present context we simply regard the sequences
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{(y@®} = p(0), y(1), ..., p, ...
{u@®} = u(0), u), ..., u@), ...

as given data that are to be fed into the appropriate recursive algorithms.
For simplicity, we assume in (3.2) that the sampling interval is one time
unit. We shall, as before, use the following symbols:

t
o-(2)
y' =0 ... ),
u' = W) ... u®),
z'=(z(0) ... z(?)).

At present, we do not introduce any restrictions on the data sequences
(3.2). We shall in section 4.3 use a fairly weak condition on the proba-
bilistic properties of (3.2) in order to make the analysis possible.

Let us here, however, define an important concept for input sequences
u'. It is fairly obvious that some condition on the input sequence must
be introduced in order to secure a reasonable identification result. As a
trivial illustration, we may think of an input that is identically zero.
Clearly, such an input will not be able to yield full information about
the input-output properties of the system. The properties of the input
that are required, are, in loose terms, related to the fact that the input
should excite all modes of the system. Such an input will be called persis-
tently exciting. Other terms that are used are “‘general enough” or “rich
enough.” The formal definition is as follows:

(3.2)

Let {u(7)} be such that the limits
im L 3w — j) £ ()
N—ow Ntzl = J

exist for all 0 < j < n. Form the n x n block matrix R,, whose i, k block
entry is r(i — k). The sequence {u(1)} is then said to be persistently exciting
of order n, if R, is nonsingular. ’

It is perhaps easiest to get an intuitive understanding of this concept in
the frequency domain. A signal that is persistently exciting of order n
has a spectral density that is nonzero at at least n points (Ljung, 1971).
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The requirement of persistent excitation therefore means that the input
must have sufficiently rich frequency content.

3.2.2 Models

What is a model of a dynamic and possibly stochastic system? Several
different ways of describing input-output relationships have been treated
in the literature, and in chapter 2 we used a few of the most common ones
(see examples 2.1-2.3). Our objective here is to catch enough of their
basic features to allow for the general treatment we are about to develop.

In essence, a model of a dynamical system is a rule which allows us
to make some sort of inference based on observations of previous data,
about future outputs of the system. A model can thus be said to be a
link between the observed past and the unknown future. This idea can
be formalized as follows. At time ¢ — 1, when the input-output data
z'~! has been observed, we may form a “prediction” of the output at
time :

gu(0;1,271). (3.3)

Here g, (0; -, -) is, for fixed 0, a deterministic function from R x R'"*P
to RP. It is parametrized by a finite-dimensional parameter vector 0,
belonging to a subset of R%. We put the word “‘prediction” within quotes
to stress that the function (3.3) need not be derived from formal proba-
bilistic arguments. It merely reflects the user’s way of ‘‘guessing” the next
output, whether it may be a good way or not.

To emphasize the prediction interpretation we shall often use the
simpler notation

F(]0)=ga(@;1,27"). G4

The function g, (0; ¢, z'') consequently defines a particular model of
the system. This model will be denoted by .#(6). The set of models
considered will be obtained as 6 ranges over a subset D, of R?:

M={M©O)|0eD,}. (3.5)
We call .# the model set.

Remark In some cases it is meaningful to include in the model assump-
tions about the error of the prediction (3.4): y(£) — (¢ | 0). This could
be its variance or its distribution. In example 3.7 we shall exhibit a model
that includes such assumptions.
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The model (3.3) is a predictor given as an explicit function of past
data. Most model descriptions are not explicitly given in such a form;
see, e.g., those treated in appendix 1.C. Conventional models typically
include unmeasurable stochastic disturbance signals, affecting the output.
This may often be convenient and may correspond to a certain intuition
of how the output signals is generated. When the model is used for
control or prediction, though, the unmeasurable signals must be elimi-
nated, and thus a predictor function such as (3.3) must be employed at
some point. To illustrate this, let us consider the three model sets we
used in chapter 2. k

EXAMPLE 3.1 (A Linear Difference Equation) Consider the model (2.1),
(2.3), or (2.5) described in example 2.1:

A(g~ My = B(g~Hu(r) + v(1), (3.6)
or, in other notation,
y(0) = 0Tp(1) + v(2).

We noted in that example that, lacking information about the character
of the disturbance sequence {v(f)}, a natural prediction of the output is

(| 0)=0"0()
=—ay(t—1)—ay(t-2)— --- —a,y(t —n)
3.7
+bhu(t— 1)+ -+ + bu(t —m)
=g..(0;1 27"

In this case the predictor function g ,(0; ¢, -) is a simple linear function
of a finite and fixed number of old data z(k). The parameter vector
"=@, ... a, b, ... b)

belongs to R"*™, and the model set that is commonly used for the model
(3.6) corresponds to D, = R"*™. Notice that if we assume {v(7)} to be a
sequence of independent random variables with zero means, then the
function (3.7) is the conditional mean:

g..(0: 1,27 =E(y(0|z'7*, 0). 0

EXAMPLE 3.2 (An ARMAX Model) Consider now the model (2.8)
discussed in example 2.2:
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A(g™)y(1) = B(g™Hu(r) + Clg e (), (3.8

where, as before {e(r)} is a sequence of independent random variables and
A(g™"), B(g™"), and C(g™") are polynomials in the delay operator g ~*:

A@gHY=14+ag '+ - +aq™",
Blg)=byg '+ - +bq ",
Cl@hH=l+cg '+ - +cqg™

In section 2.2.3 we derived the prediction of the output based on a first-
order model (3.8) [see (2.35)]. Here we shall derive the prediction in the
general case (Astrom, 1970). We introduce the parameter vector

9T=((11 o . a,, bl P bm Cl PR Cr).
From (3.8) we find

A@™) B(g™")

C(q“)y(t) = C(q‘l)u(t) + e(?)
or
»(0) = [1 - ”C‘EZ:I;] 20 + gg:l;u(z) + e(t). (.9)

Since the polynomials 4(¢g~!) and C(g™!) both start with a 1 we have

LAGY_ 2, g
cig = &0

and ;
B(q_l)z C 9 —k
C(q_l) k; g.(0)q

for some 0-dependent sequences {/,(0)} and {g,(0)}. (Recall that the Os
are the coefficients of the 4-, B-, and C-polynomials.) These sequences
will tend to zero exponentially if all the zeros of the polynomial

CYz)=z"+c;z7 '+ - +o, (3.10)

are inside the unit circle. (The rate of exponential decay of g, (6) and A, (0)
is given by the largest absolute value of the zeros of (3.10)). Therefore it is
important to restrict 6 to the set
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D, = {6 | All zeros of C*(z) are inside the unit circle} 3.11)

to make the above expressions meaningful. We shall therefore in the
following assume that D, = D,.

Returning to (3.9), we see that the right-hand side is known at time
t — 1, except for the term e(¢) that is independent of everything that has
happened up to time ¢ — 1. Therefore, the natural predictor is

Ga(0: 1,27 = [1 _ A("'l)]ym + 8@

Cg! C(g™?
() () 3.12)
= 2 h@y@ =k + ) g0)u(t — k).
k=1 k=1
Notice that the predictor (3.12) assumes that all data from 1 = — o0 is

known. We generally assume that the data collection is initialized at
time 0. This problem is usually resolved in practice by summing only
up to k = ¢in (3.12). Since A, and g, decay exponentially, this approxima-
tion is reasonable, except possibly for small 1.

In practice the explicit expression given by the right-hand side of (3.12)
is a bit awkward to work with. Instead, the calculations are organized
in the following way. We have

sl < |1-4G@D] o, B@™
5] 0) = [1 C(q_l)] Y0 + glgu,

which gives

Clg™ (| 0) =[Clg™") — Alg™")]y(®) + Blg™Hu(®). (3.13)

This is a convenient finite difference equation for calculating p(z | 6).
Often the initial conditions p(z | 0),t=—r+1,...,0 are taken as zero,
corresponding to an assumption that y(¢) = u(¢) = 0 for t < 0.

Notice that the recursion (3.13) is exponentially stable when 8¢ D,.
Constraining 0 to this set is no restriction in practice, since, according to
the spectral factorization theorem, we can always mirror the zeros of
C(¢™") inside the unit circle without affecting the second-order properties
of the disturbance term (see appendix 1.C). O

EXAMPLE 3.3 (A State-Space Model) The prediction of the output for
the state-space model (2.9)
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x(t + 1) = F(0)x (1) + G(Ou() + w(2),

(3.19)
y(©) = H(O)x(1) + e(t),
is obtained by use of the Kalman filter:
Xo(t + 1) = F(0)Xp(1) + GO)u(r) + K (O)[ y(1) — H(0)%,()] (3.15)

Pt | 0) = H(O)%(2),

where the matrix K,(6) is computed via a Riccati equation as in (2.66).
Notice that in (3.15) y(z| 6) is formed by passing {y(s)} and {u(z)}
through a (time-varying) linear filter. Solving this gives

J(]0)=ga0;127")

-1 (3.16)

= Y [A(t, O)p(z — i) + gi(t, O)u(z — i)] + r(z, 6)%5(0),
i=1

where A;, g;, and r are determined from the matrices F, G, H, and Kin a
straightforward manner. This shows how the state-space model (3.14) is
contained in the general model description (3.3).

Notice that what matters in the end is the representation (3.15) or (3.16).
The assumptions connected with the model (3.14) regarding independent
noise sequences, covariance, possible nQrmality, initial estimate informa-
tion, etc., serve only as a vehicle to arrive at (3.16). These assumptions
play a role only to the extent they influence this expression. O

Very general model sets can be described by (3.3). We shall, however,
throughout this book confine our explicit treatment to linear predictor
models. By this is meant that the prediction (3.4) can be obtained by
filtering the input-output data through a finite-dimensional linear filter:

o(t+1,0) = F(0)o(, 0) + (0)z(),
J(t] 0) = #(0)e(, 0),

where &, ¢4, and S are matrix functions of 6.
Linear models are of course the most common ones in practice.
Extensions to nonlinear models are, however, also possible:

3.17)

» Perhaps the most common nonlinearity in practice consists of non-
linear transformations of the primary signals before they enter the linear
system (as in the Hammerstein model). Obviously, such nonlinearities
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are contained in the framework (3.17), simply by interpreting {z(¢)} as
the transformed and possibly constructed data sequence.

» The algorithms we are about to develop can with obvious interpretation
also be applied to nonlinear predictor dynamics

pt+1,0) = f0; 1, 01, 0), z(1)),
Pt | 0) = h(0; 1, @(t, 0)).
However, in this book we will not address this situation explicitly.

The predictor filter (3.17) has been given in a state-space form. The
underlying user model, however, need not be thought of as or parame-
trized in terms of a state-space model. We have used the notation ¢
rather than x for the state vector to stress this fact. The representation
(3.17) will, however, prove useful for a formal description of the algorithm
as well as for the analysis.

Remark on Time-Varying Predictors The predictor (3.17) is a time-
invariant filter. This no doubt corresponds to the most common case in
practice. However, sometimes predictors are used that are time-varying
filters. The Kalman filter (3.15) for the state-space model (3.14) is the by
far most important example of this. However, in order not to make the
notation and discussion too complex, we defer the treatment of time-
varying (Kalman) predictors to section 3.8.3.

Remark on More General Predictors We have discussed the model of
the system in terms of the one-step ahead predictor, i.e., a prediction of
y(t), based on y'~! and u'~'. This shows up in the general model (3.17)
as a delay between z(¢) and p(¢ | 0). We could, however, have considered
a more general delay structure. Let

}'«'(tif);t—kl,t—kz) ) (3.18a)
denote a prediction of y(¢) based on
y' 7% and u'*2, where k, > | and &, is an arbitrary integer. (3.18b)

When k; =k, = k > 0, this is a k-step-ahead prediction. When k; =1
and k, = 0 it is a one-step-ahead prediction, where a direct feedthrough
of u(¢) is allowed. (This would, e.g., result from the ARMAX model (3.8)
if a term byu(t) was present in the right-hand side.) When the prediction
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is based only on u'*: and k, < 0, then j(¢) is actually a ‘“‘smoothed

estimate,” which depends on future inputs. This means that the decision
about the ““prediction” y(¢) has to be delayed until time ¢ + k,. For
several signal processing applications, such a delay is quite acceptable,
as we shall see in section 7.5.

Now, the general delay structure (3.18) can easily be incorporated into
the model (3.17). The only difference is that z(¢) has to be interpreted as

(Y =k + 1)
2(1) = (u(t ket 1)). (3.19)

The derivation and analysis of our general algorithms will still be valid
under (3.19). For a given model, such as the ARMAX one, the actual
values of the matrices in the model (3.17) with (3.19) will of course depend
on k, and k,. In section 7.4 we give some such expressions for the k-step-
ahead predictor for ARMA models.

Obviously, a crucial aspect of the model (3.17) in an identification
context is how the prediction p(¢ | 6) depends on 6. To formalize this,
we shall assume that the model is differentiable with respect to 8, and as
in chapter 2 we shall denote the derivative by

I:Edé A 0):| =y, 0 (adx p-matrix). (3.20)

For the linear model (3.17), Y (¢, 6) can be formed from z* by a finite-
dimensional filter by introducing

L, 0= (e, 8) ... 9, 6) (an n x d-matrix).

where the superscript (i) denotes differentiation with respect to 6;, the
ith component of 0. Since & (6) is a matrix and 6 is a vector, the derivative
of % (0) with respect to 6 will be a quantity with three indices (a tensor).
To avoid such complex notation, we introduce the following matrices:

%[ﬁ(@)(p +90):z] =M@, o, 2) (an n x d-matrix), (3.21a)

%[f(@)(p] = D(6, ¢) (a p x d-matrix). (3.21b)

In other words, (3.21a) means that M (0, ¢, z) is a matrix whose ith column
is
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o d
[60,. F (9)] ¢+ [BE?(B)] z,

and analogously for D(6, ¢). Then
L+ 1,0)=FO), 0 + MO, o, ), 2(1)), (3.22a)
i@, 0) = #O0)L (@, 0) + DO, o1, 0)). (3.22b)

For the theoretical considerations to come, it is more convenient to collect
(3.17) and (3.22) into one filter with z(¢) as input and p(z | 0) and ¥ (¢, 0)
as output. In order to cast the equations into the conventional form,
with a state vector and an output vector, we introduce the state vector

_{ 9@ 0)
. 0) = <col{(t, 9))‘

The notation col 4 here means a column vector constructed from the
matrix 4 by stacking its columns under each other. The construction is
made for purely formal reasons. Similarily, we introduce the output
vector

( y(t| ) )

coly(t, 0)/)

We can now rewrite (3.17) and (3.22) for some matrices 4(6), B(6), and
C(0) as

S+ 1,0) = A(0)¢(, 0) + BO)z(n),

( $(t|0)
coly (¢, 6)

Comparing (3.23) with (3.22) and (3.17), we see that the (d + 1)n x
(d + 1)n-matrix A(0) will contain the matrix % () in each of its d + 1
block-diagonal entries, and has all zeros above the block diagonal. Hence
A(0) has the same eigenvalues as # (6) (but with higher multiplicities).
The stability properties of 4(6) therefore coincide with those of & ().
Since stability of the predictor will be important in our subsequent
discussion, let us introduce the set

3.23
) = COE, 0). G-23)

D, = {0 | # (0) has all eigenvalues strictly inside the unit circle}.  (3.24)
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The matrices 4(0), B(8), and C(6), and often also # (0), %(0), and #(6),
are quite sparse and (3.23) is in most cases inefficient for actual computa-
tion of p(z | 6) and y (2, 6). The representation (3.23) will nonetheless play
an important role when developing the algorithms. It will be used to give
a formal description of how to propagate predictions and their gradients
in the recursive algorithms to be derived later in this chapter. Therefore
it may be useful to illustrate how the models that were discussed previously
fit into this framework.

EXAMPLE 3.4 (A Difference Equation Model) For the difference equation
(3.6) we may take

T, D =(—y =1 ... —y@t—n) ut—=1 ... u(t —m)
(in fact independent of ). The matrices in (3.17) are then
00 --- 00
1 0 --.. 0
01 0 0
0 1 0
6—0 —
z© 00 - 0] crown+1,
0 10 0
0 1 0
-1 0
0 0
so=| 7
- l J«<rown+1,
0 0
0 0

o0-(2)

H(0) =07,
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and (3.17) will give the prediction. For the gradient, we find that
%1, 0) =0, Y(1,0)=0(0).

The matrix % (0) is lower triangular with zeros along its diagonal. Its
eigenvalues are therefore all zero, and the set D,, defined by (3.24),
is equal to R. O

EXAMPLE 3.5 (An ARMAX Model) Consider the ARMAX model of
example 3.2. Let for simplicity » = m = r = 2. We introduce the prediction
error

e(t, 0) = y(t) — (¢ | 0).
Then from (3.13) we have
Clg™he(t, 0) = A(g™")y(1) — Blg™Hu(o),
which als'o can be written
e, 0) = y() — 0%p(1, 0) (3.25)
with 67 defined as in example 3.2 and with
@'t ) =(—y—1) =yt —=2) u(t = 1) u(t - 2)
e(t—1,0) et — 2, 0)).

(3.26)

This vector ¢(¢, 8) can be chosen as the state vector. It obeys (3.17) with

0 0 0 0 0 0 -1 0
1 0 0 0 0 0 00
0 0 0 0 0 0 01
F(0) = ‘ %(0) =
© 0 0 1 0 0 01|’ © 0 0F
—a, —a, —b, —b, —¢;, —c, I 0
0 0 0 0 1 0 00

H(6)=0".

Examination of the matrix % (#) shows that its eigenvalues are 0 (multi-
plicity n + m = 4) and the zeros of the polynomial C*(z), given by (3.10).
The set (3.24) therefore coincides with (3.11) in this case. O
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3.2.3 Summary

In this section we have discussed the input-output sequence {z(?)}
(1) = (¥7(¢) u"(r)) produced by a system. We have also defined a model
A (0) in general terms as a predictor of the next system output, and
illustrated some consequences of this point of view. The model set .# is
obtained as the parameter 8 ranges over a set D,. We have confined
ourselves to predictors that can be expressed in the form (3.17). Notice,
however, that no corresponding assumption has been introduced for the
system. The discussion on model sets has here been limited to formal
aspects. In sections 5.2 and 5.3 user aspects on the choice of model set
will be treated.

3.3 Some Aspects of Off-Line Identification

We defined off-line identification in chapter 1 as the determination of a
model of a system using a batch of measured data, where the whole
batch is available at all stages of the procedure. Off-line identification is
a subject that cannot be covered completely in a section of a book. See
the survey paper by Astrom and Eykhoff (1971), the books by Eykhoff
(1974), Goodwin and Payne (1977), or Kashyap and Rao (1976) for
comprehensive treatments. The objective of this section is merely to point
out some aspects that have useful implications for recursive identification.

3.3.1 Identification as Criterion Minimization

Given a prediction model as in the previous section,

J(t]0)=ga0; 1,27, (3.27)
a natural measure of its validity is the prediction error,
e(t, 0) = y(1) — (¢ | 0). (3.28)

This error can be evaluated using the data up to time ¢. Since ¢(z, 6) is a
p-dimensional vector, it is useful to introduce a scalar measure

Iz, 0, ez, 0)) (3.29)

of “how large” the prediction error is. Here I( -, -, ) is a function from
R x R x R?to R.
After having recorded data up to time N a natural criterion of the
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validity of the model .# (0) is
N

WWJ5=%ZKL&Wﬂ» (3.30)
=1

It should be stressed that in all the expressions (3.27)—(3.30), the vector 0
is a constant parameter. The function (3.30) is thus a well-defined scalar-
valued function of 0, once z¥ has been recorded and is known.

The off-line estimate, denoted by éN, is then obtained by minimization
of Vy(6, z¥) over 8e D ,.

A number of common off-line identification methods correspond to
minimization of (3.30) for different choices of criterion functions and
model sets. Such methods are called prediction error identification
methods in Ljung (1976a, 1978¢). Here we shall only briefly discuss two
aspects of (3.30), namely, the choice of criterion functions (3.29) and the
asymptotic statistical properties of the estimate by.

3.3.2 Choice of Criterion Function

Two ways of selecting the criterion function will be considered in the
following two examples. Further user aspects of this choice will be
discussed in section 5.5.

EXAMPLE 3.6 (A Quadratic Criterion) A natural way of measuring the
*“size”” of the prediction error ¢ is to use a quadratic norm:

11,0, ¢) = 3eTA e, (3.31)

where A is a positive definite matrix. A possible disadvantage of this
criterion function is that it gives a substantial penalty for large errors.
This means that the criterion might be sensitive to occasional large
measurement errors in p(f). (See section 5.5 for some possible remedies
for this problem.) O

EXAMPLE 3.7 (The Maximum Likelihood Criterion) The likelihood func-
tion for an estimation problem is defined in appendix 1.B.4. To derive
the likelihood function for our problem we make the additional model
assumption

{e(1, 0)} is a sequence of independent random vectors, such
that the probability density function of (¢, §) is f(t, 6 x), (3.32)

i.e., such that P(e(t, 6)e B) = J f(t, 0, x) dx.
B
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Remark The assumption (3.32) implies that the model .# (8) would give
a correct description of the system. Notice, however, that this is a model
assumption made by the user in order to compute certain quantities. It
does not imply that the actual data really is generated according to (3.32).
(See also the comment on the notation 0, 6, at the end of section 2.1.)

To find the likelihood function we proceed by writing the output at time
t as

y(O) =ga0;1, 271 + &2, 0).

Hence, under the assumption (3.32), the conditional probability density

function of y(?), given z'7%, is

JO:x, |27 = P(y() = x| 271, 0) = f(1, 0, x, — gu(85 1, 2'71)).

Using Bayes’s rule, the joint probability density function of y(z) and
y(t — 1) given z'~2 can be expressed as

JO;x, x| 27 =P(y() =x, y(t — 1) =x,_; | 272, 0)
= P(y() =x,|y(t = 1) =x,-, 272, 0)- P(y(t — 1) = x,_, | 22, 0)
=P(y()=x,| 2% 0)- P(y(t — 1) = x,_, | 272, 0)
= f(1,0,x, — g (0: 1,27 St — 1,0, x,_y — gu(0;t — 1,2"7%)).

Here the variable y(t — 1) that is implicit in z*~! in the first factor should
be replaced by x,_,, since the expression in the second step is conditioned
with respect to the event that y(¢ — 1) = x,_,. In these calculations we
assume ' to be a given deterministic sequence. (Compare these to similar
calculations in the proof of lemma 2.2.) Iterating the foregoing expression
from t = N to ¢ = | gives the joint probability density function of y(N),
y(N=1), ..., y(1): f(O; xn, Xy_15 - .., X1)- By replacing the dummy
variables x; with the corresponding observations y(i), we obtain the
likelihood function [see (1.B.18)]. The logarithm of the likelihood
function is thus

log (6; y(N), y(N —.1), ..., y(1))

10gf(t 0, y(t) — 94051, 2'71)) (3.33)

IIMz

logf(t 0, e(1, 6)).

IIMz

~
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We have consequently shown that the negative log likelihood function for
our estimation problem, given the assumption (3.32), is given by (3.30)
(multiplied by N), with

I(t, 0, e) = —log f(1, 0, ¢). (3.34)
For this choice of /, éN equals the maximum likelihood estimate (MLE).

Remark on the Relationship of the MLE and MAP The MLE is closely
related to the Bayesian maximum a posteriori estimate (MAP) (section
2.3). Using Bayes’s rule (2.59) we find that the posterior probability
density function for 8 is given by

P(yN|0)- P(0)

PNy 7
where P(y" | 0) is the likelihood function and P(0) is the prior distribution
of , while P(y")is independent of 6. The f-value that maximizes P(d | y™),
i.e., the MAP estimate, thus differs from the value that maximizes
p(yV| ), ie., the MLE, only via the prior distribution P(). This has

an insignificant influence in the case when little prior knowledge of 0 is
available or when N is large.

PO |y") =

Let us now specialize to Gaussian prediction errors. If we assume that
&(z, 0) has a Gaussian distribution with zero mean and covariance matrix
A(0), then

I(t, 0,e) = —logf(t, 0, &) (3.35)

=Llog2n + %log det A(6) + %sTA,_l(H)e.

If the covariance matrix A, is supposed to be known (independent of 0)
then the first two terms of (3.35) do not affect the minimization, and we
have obtained a quadratic criterion as in example 3.6. O

3.3.3 Asymptotic Properties of the Off-Line Estimate

We now turn to the asymptotic statistical properties of the estimate Oy
We shall without proofs quote some results from Ljung (1978¢) and Ljung
and Caines (1979). Suppose that the limit

V(6) = lim EVy(0, z¥) (3.36)
N—-w



3.3 Some Aspects of Off-Line Identification _ 85

exists, where E is the expectation operator with respect to z¥. The function
V(0) thus is the expected value of the criterion function corresponding
to certain fixed values of the model parameters 6. Then, under weak
regularity conditions,

6, converges w.p. 1* to a minimum of ¥(6)

3.37
as N tends to infinity. (3.37)

This means that the estimate éN converges to the model that gives the
best description of the data, where “best” is measured in terms of the
criterion (3.36). Notice that (3.37) is true, whether or not the model set
A is capable of a true description of the data. Moreover, if éN converges
to 0*, such that the matrix d2 V(0*)/d0? is invertible, then

JN (O — 6%) e AsN(0, P), (3.38)

which means that the random variable ./N(y — 6*) converges in distribu-
tion to the normal distribution with zero mean and covariance matrix P
[see (1.A.7)]. Here

P= [W@*)]“{ lim N-E[V4(0% 2]V (0, z”)} [77"]™, (3.39)

where * and ” denotes differentiation once and twice, respectively, with
respect to 0. Here V’ is a row vector.

3.3.4 Relation to the Cramér-Rao Bound

Suppose there is a value 6, in the model set such that (3.32) with 6 = 0,
indeed gives a correct description of the true data. Then it can be shown
that 0* = 6, and that the matrix P in (3.39) equals the Cramér-Rao lower
bound (see section 1.B.3) provided that / is chosen as in (3.34). This
means that the estimate 6y has asymptotically the smallest possible
covariance matrix for an unbiased estimate and we say that the estimate
is asymptotically efficient.

Let us demonstrate this result in a simple special case. Suppose that
there exists a value 6, such that the prediction errors &(¢, 6,) are independ-
ent and Gaussian with zero mean values and known covariance matrices
A,. The logarithm of the likelihood function is then given by [see (3.35) ]

*For a definition of w.p.1 (with probability one) see (1.A.6).
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N
W(0, ) = —%mg o — glog detAo— 3 %ST(I, 0)AZ e, 0).

t=1
The Fisher information matrix [see (1.B.15)] is thus

My = E[W;(0o, %) ]'[Wa(0o, 2]

By (1, 0o)Age(t, Oo)e™ (s, O) Ag ' (s, bo) (3.40)

1

b=

z|=

s

Ew(t’ HO)A(_)IIPT(t’ HO)a

|-
102

where
d T
Y, 0) = —[@S(I, O)J (a d x p-matrix),

as in (3.20). In (3.40) the third equality follows from the facts that &(z, 6,)
and &(s, 0,) are independent if s # ¢ and that &(z, 8,) and (1, 0,) are
independent. The Cramér-Rao inequality then tells us that

cov {/N(@y — 00)} = (%M) (3.41)

for any unbiased estimator fy.
Suppose now that we choose 6y as the estimate given by minimization
of (3.30) with

I(1, 0, ) = 1eTA e

We can then evaluate P in (3.39) under the foregoing assumption about
&(t, 0,). The expression within curly brackets in (3.39) is M,/N according
to (3.40). Moreover,

77(0,) = lim = M, ; (3.42)
N—w N
hence
1 -1
P—|limL 3.43
[Ngg NM~] ; (3.43)

which shows that P equals the limit of the Cramér-Rao bound (3.41) as
N tends to infinity. The estimate 8y is therefore asymptotically efficient.
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3.3.5 Optimal Choice of Weights in Quadratic Criteria
Suppose now that we have chosen a quadratic criterion (3.31):
Iz, 0,8) =3eTA e, (3.44a)

We shall study what the optimal choice of the weighting matrix A~ is.
To do that we make the assumption

* = 0, where {e(z, 0,)} is a sequence of independent random

. . i 3.44b
vectors with zero means and covariance matrices A,. ( )

Notice that we do not assume anything about the distribution of &(z, ;).
With (3.44) the asymptotic covariance matrix (3.39) can be evaluated.
With calculations similar to those in the preceding subsection, we find
that

P = [Ey(z, 0)A™ (1, 65) 1" Evr(t, O)A Ao A~ (2, 6,)
X [Elp(t5 QO)A_le(ta 00)]-15

where (¢, 0) is the gradient of the predictor as in (3.20).

If we view (3.45) as a function of A, it can be established that the
minimal value of P is obtained for A = A, (see, e.g., Caines and Ljung,
1976). Then we also have the “best” estimates 0y, in the sense that they
are closest to 8, according to (3.45). The best choice of quadratic norm
in (3.44a) is therefore A = A, = the true prediction error covariance
matrix. This result is in accordance with what we found in chapter 2:
The natural choice of weighting factors «, in the least squares criterion
(2.12) is the inverse of the measurement error variance, as in lemma 2.2.

(3.45)

3.3.6 Summary

In this section, we have shown how a class of off-line identification
algorithms can be defined in terms of the prediction errors of the models
in the model set. We have seen how, e.g., the maximum likelihood method
is contained in this class by (3.33) and (3.34). We have also stated some
results about the asymptotic properties of the off-line estimates. One
objective of subsequent sections in this chapter will be to develop recursive
algorithms that produce estimates with the same asymptotic properties.
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3.4 A Recursive Gauss-Newton Algorithm for Quadratic Criteria

In this section we shall derive a recursive algorithm for the estimation
of those model parameters that minimize a prediction error criterion
such as the one discussed in the previous section, for general model sets.
The development will lead to the basic general algorithm (3.67) that is
the main object of study in this book.

In the spirit of the off-line criterion (3.30), we would like to select 8
so that the criterion

Ei(s, 6, e(z, 0)) (3.46)

(with expectation over z* for fixed values of the model parameter 6) is
minimized. Criteria such as (3.46) can be minimized recursively from
observations, using the stochastic approximation approach, as explained
in section 2.4. We recall from that section that a criterion (2.85)

V(x) = EH(x, e(t))
can be recursively minimized by the stochastic Newton method (2.90):
() =20~ D) +y() [V = 1), e)]QGE(E — 1), (1)), (3.47)

where — Q(x, e) (a column vector) is the gradient of H(x, ¢) with respect
to x, and F”(x, ¢') is some approximation of the second derivative of
V(x), based on observations up to time ¢.

In order to be in formal agreement with the development of section 2.4,
we shall perform the derivation under the assumption that the expectation
(3.46) does not depend on ¢. This need not be the case in general, and it is
in fact sufficient to assume that the limit

Ei(t, 0, &(1, 0)) £ lim % i El(t, 0, ez, 0)) & 7(6) o (3.48)

exists (see chapter 4).
3.4.1 A General Minimization Algorithm for Quadratic Criteria

In this section we shall apply the foregoing idea to the minimization of
(3.46) in the special case when / is quadratic in &:

V(0) = EI(t, 6, £(t, 6)) = ELeT(z, B)A (s, 6). (3.49)
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Here we have

[d%l(z’ 0, &(t, 0)):|T = —y(t, O)A e(t, 0) (ad x 1 column vector),
(3.50)

since, according to (3.20),
Det,0) = Lyt — 5t | 0] = —7(, 0)
0" = e » V)

If we denote the second-derivative approximation V”(x, ') by R(), the
algorithm (3.47) becomes
0(1) = 0(¢ — 1) + YOO R OW (2, 0 — 1)A%e(t, 6(t — 1)). (3.51)

The quantities ¥(z, 0(r — 1)) and &(z, 6(z — 1)) can be computed using
(3.23):

Ek+1,00—1)

) ) i (3.52a)
= A(0(t — 1))¢(k, 0t — 1)) + B(O(t — 1))z(k),
k=0,1,....t—1, &0, 0(—1)=4¢:
paelbe—1) N _ . o "
(COW/ . 6 — 1))) = C(0@t — D)E@, 6z — 1)), (3.52b)

e(t, 0(t — 1)) = y(2) — (¢ | 6@ — 1)). (3.52¢)

Here the actual model set will determine the matrices 4, B, and C, as
explained in section 3.2.

The algorithm (3.51)—(3.52) makes perfect sense. The only problem is
that it is not recursive in general. The reason is that in order to compute
(1, 6(t — 1)) we need the whole data record z' in (3.52a), unless the
matrix 4(6(¢ — 1)) happens to be nilpotent (i.e., [4(6(t — 1))]" = 0 for
some n). We encountered the same problem in section 2.2.3 with the
algorithm (2.47), and we can solve it in the same way.

From (3.52a) we have

&t, 0(t — 1)) = [A(0@ — 1)]%%,
+ ;20 [4(0¢ — )T B — 1))z(k).
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If 6(1 — 1)e D, (defined by (3.24)), then the factor [A(f(z — 1))T* tends
to zero exponentially. Consequently, the sum is dominated by its last
terms, k=t— K, t— K+ 1, ..., t — 1 for some value K. Also, since
y(¢) in (3.51) is a small number for large ¢, the difference between )
and 4(t — K) will be quite small for large ¢. These two facts together
suggest the following approximation of &(z, (¢ — 1)):

" t—1 —1 n n
£t 0 — 1) =& £ kzo[ 11 A(G(s))} B(0(k))z(k).

The advantage with this expression is of course that £(f) can be computed
recursively, without having to store the data vector z':

E(t + 1) = AB())EW) + BE©))z(). (3.53a)
Based on this approximation, we also get the approximations of (3.52b):
T S AN P
and also of (3.52¢):

e(t, 00t — 1) & &(1) 2 y(1) — H(0). (3.53¢)
Using e(?) and y(¢) in (3.51) gives

0() = 0(t = 1) + y(O)R (Y (A L&), (3.54)

This algorithm (3.53)—(3.54) is now truly recursive, in that we only need
to store £(¢), 6(¢), and z(¢) at time .

3.4.2 The Gauss-Newton Search Direction

In a stochastic Newton algorithm, the matrix R(z) in (3.51) should be an
approximation of the second derivative (the Hessian) of the criterion.
Let us now discuss how to choose R(?).

We find that the Hessian of V(6) [defined in (3.49)] is given by

;ez V(0) = Ey(t, AW, 0)+E{[‘19228T(t 0)} “le(t, e)}. (3.55)

Here the second derivative of ¢ is in fact a tensor; and the correct inter-
pretation of the last term of (3.55) is that it is a matrix whose i, j~component
is given by
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P
E t,0)|(A! 0
kgle F ﬂ( a4, 0).
Suppose that there exists a value 6,€ D, that gives a correct description
of the system, so that {&(z, 6,)} is a sequence of independent random
vectors each of zero mean. This implies that &(z, 6,) is independent of

z'! and hence of

d d . t—1
@b, a6, e(t, 0) = de a8, [y(l) gu(0; 1, 2'7)]
__4d4d P
dgi dgjg.l(a’t,z )'

At the “true” minimum 6,, the last term of (3.55) consequently is equal
to zero [see also (2.45)]. A suitable guaranteed positive semidefinite
approximation of the Hessian is therefore

d92 V(H) Ey(t, DA Y1, 6). (3.56)
This approximation is good close to the minimum, where a true Hessian
is more important than elsewhere (see the discussion in section 2.4.). The
search direction that is obtained when using (3.56) as an approximation
of the Hessian is often referred to as the Gauss-Newton direction.

A natural approximation of the Hessian at § = 6(t — 1), based on the
observation z°, is then obtained by replacing expectation in (3.56) by the
sample mean:

R(t) = %k; Yk, 0t — DA YTk, Bz — 1)). (3.57)

This matrix cannot, though, be used in a recursive algorithm, since,
as we have seen, Y(k, 8(t — 1)) cannot be computed recursively. It has
to be replaced by

RO =1 3 p Ay, (3.58)
k=1

where the (k) are determined as in (3.53a, b). However, since the first
terms of the sum (3.58) are computed for parameter estimates far from
(1 — 1), (3.58) is usually not a good approximation of (3.57). It is better
to use a weighted mean where more weight is put on the last values:
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R() = ,Z B, WA W (k) + (R, (3.59)
k=1

Here we have also added the possibility that we have some prior informa-
tion about R(?), viz., R,.
The weighting coefficients (¢, k) and 4(¢) should be such that

o) + tz B, k)y=1 forall:, (3.60)
k=1

and such that R(z) can be computed recursively. From (2.128)-(2.129)
we know one such choice of weighting coefficients. If p(z, k) is chosen
as in (2.128) it is easy to verify that the expression (3.59) can be written
recursively as

R(H =Rt — 1)+ y([Yy(AYT(t) — R(t — 1)],
R(0) = R,.

From (2.128) we see that the choice y(¢) = 1/r makes B(z, k) = 1/t and
o(z) = 0. When 7y(?) is chosen larger than 1/¢, then more weight is put to
recent measurements in (3.59), i.e., {f(t, k)} is increasing in k. In the
notation we have assumed that the sequence {y(¢)} in (3.61) is equal to
the one in (3.54). This is no doubt the most common situation in practice.
The possibility of using different step sizes in (3.54) and (3.61) should
however be pointed out.

We have now complemented the recursive algorithm (3.53)—(3.54) with
a proper updating of the matrix R(¢). Before we summarize the algorithm
we shall bring up two further points; namely, the choice of A and the
assumption that 6(r)e D,.

(3.61)

3.4.3 Choice of Weighting Matrix

So far, we have considered A to be a given constant matrix. When the
system has scalar output and hence A is a scalar, then a constant A acts
only as scaling factor and can be taken to be 1. (A then corresponds to the
number « we used in section 2.2.1). For a multioutput system the choice
of A will affect the accuracy of the obtained estimates. We have pointed
out in the previous section that the optimal choice of A in the criterion is
the covariance matrix of the true prediction errors

Ao = E[e(t, 05)e™ (1, 6,)], (3.62)
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where 8, is such that (3.44b) holds. This choice gives the smallest covari-
ance matrix of the parameter estimates in the off-line case. Since Aq
typically is unknown, a reasonable choice of A in the algorithms (3.54)
and (3.61) should be to replace it by an estimate A(r), where

AW =A@ = 1)+ y®[e(e"() — A - D] (3.63)

Remark It can be argued that the recursion (3.63) slightly over-estimates
A,. The reason is that &(r) = &(¢, 6,) + &(z), where the quantity &(¢) is
independent of &(z, 6,). The matrix £(f)£*(¢) therefore gives an undesired
positive semidefinite contribution to A. It can be shown that

E&()&"(t) = EYT(@)p()R ()Y (t) asymptotically.
3.4.4 Projection into the Stability Region

The model set .# is, as we defined it in (3.5), obtained as 6 ranges over
the set D,. The generation of the prediction is stable only for fe D;,
where D, is given by (3.24). It is natural to restrict the model set to those
models that give stable predictors, i.e., to require that

D,c D, (3.64)

In fact, in the derivation of the algorithm we used an assumption that
6(r)e D, to justify the approximate calculation of &(¢) and y(¢) in (3.53).
It may therefore be essential to prevent () from getting outside D, or,
more specifically, to keep 6(7) in D,. This may be accomplished by a
projection facility of the type

6) = [0 — 1) + yOR OY1)e®)]p,, (3:65)
where
if xe D
[xb, = {x PSR . (3.66)
a value strictly interior to D, if x¢ D .

We shall generally assume that such a projection facility is included in
the algorithm, even when this is not explicitly stated. The exact way of
implementing the projection will be discussed in section 6.6.

3.4.5 Summary of the Algorithm

We can now summarize the general algorithm derived in this section.
It consists of equations (3.53), (3.65), (3.61), and (3.63). At time ¢ — |
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we havestored 6(s — 1), R(r — 1), A(z — 1), and £(¢). With this information
we can compute p(¢) and y(¢). At time ¢ we receive the input output data
z(t) and make the following calculations:

e(t) = y(1) — 3(0), (3.67a)
AW = A — D)+ 90 [0 () — At — D], (3.67b)
R(t)=R(t — D)+ y() [y OA @Y (1) — R(t — 1)], (3.67¢c)
00 = [6¢ — 1) + yOR QY A ()e(®) ], » (3.67d)
&+ 1) = AB@)E@) + BE()z(0), (3.67¢)
<co}l)f,lt/ (:)1)> = COM)EE + 1). (3.67f)

This is the basic algorithm we are going to study in this book. Notice
that (3.67a, c, d) has a structure similar to the recursive least squares
algorithm (2.15).

3.4.6 An Algebraically Equivalent Rearrangement of the Algorithm

In practice, the algorithm is not implemented in a straightforward way
from (3.67) with matrix inversions R™' and A~!. We shall discuss such
aspects in more detail in chapter 6. Here we shall just point out how the
matrix inversion lemma (lemma 2.1) is used to derive an equivalent form
of (3.67), corresponding to the version (2.19) of the recursive least squares
method. Introduce

P(t) = y(OR'(0). (3.68)
Then from (3.67c) we obtain, as in section 2.6 [see (2.123¢) and (2.127)],

P(t) = ﬁ{m — 1) — Pt — DY@OYIOPE — DY)

+ AOAD] WO PE — D},
where
A =y — D1 =]/ (3.69)

Moreover, using this expression for P(f) we can write [see (2.18)]



3.4 Recursive Gauss-Newton Algorithm 95

L(t) 2 y(OR ' (O (DA™ (1)
= POV (OA'()
= P(t — DY) [Y (1) P(t — Dy (1) + AOA@®] .

Hence (3.67) can also be written

&) = y(1) — 3(0), (3.70a)
Ay =Alt— 1)+ (0 [e()e™(0) — A — 1)], (3.70b)
S0 = ¥TOP@ — DY) + MDA, (3.70c)
L(ty = P(t — DY()S™'(0), (3.70d)
0ty = [0t — 1) + L()e(1)]n,, (3.70e)
P(t) = [P(t — 1) — LS L) /A, (3.70f)
£t + 1) = AGW)EW) + BO(©)z(1), (3.70g)
<c0}1’ f; (eri) 1)) = CEM)E(t + 1). (3.70h)

This algorithm is equivalent to the stochastic Gauss-Newton algorithm
(3.67). In appendix 3.A we discuss another way of computing the Gauss-
Newton direction that is asymptotically equivalent to (3.70) and has some
importance for comparisons with the extended Kalman filter.

Remark Notice that if y(¢) is a scalar in (3.70), then A(¥) is a scalar.
If it were constant, it would just scale P(¢) and S(¢) and thus would not
affect the gain L(r). Hence, in the single-output case, the equation (3.70b)
is often dispensed with and A(¢) replaced by unity. However, the time-
varying A(#) does have an effect on the algorithm, even in the scalar
output case. Then it corresponds to the scalar 1/, that we used in the
least squares criterion (2.12). We may thus say that more weight is being
put on the measurement of time ¢ if A(¢) is small, than if it is large.

3.4.7 Summary

In this section we have derived the recursive identification algorithm
(3.67) and an equivalent version (3.70). The rationale behind this is that
the algorithm is a recursive way of minimizing the quadratic criterion
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(3.49), using a stochastic Gauss-Newton search method. The structure
of the resulting algorithm strongly resembles the recursive least squares
algorithm of section 2.2.1.

3.5 A Recursive Prediction Error Identification Algorithm for
General Criteria

3.5.1 General Criteria
Consider now the general criterion function (3.46):
V(0) = El(1, 0, ¢(¢, 0)). (3.71a)

The recursive minimization of this criterion is entirely analogous to the
development in section 3.4. We have

l:%l(t, 0, e(t, 0)):|T =171, 0, e(t, 0)) — ¥ (1, OLT(t, 0, e(t, 0)), (3.71b)

where /, and /, denote the partial derivatives (d- and p-dimensional row
vectors) with respect to 6 and &. The approach of section 3.4 now leads
to the algorithm

0(1) = 0¢t — 1) + (ORI [~ IF (1, 6(t — 1), e(2))

. 3.72)
+ lp(t)lsT(t, 0(t - 1)3 8(0)]7
where &(¥) and ¥ (¢) are given by (3.67a, e, f).
A common special case of (3.71) is when / depends only on &:
V(0) = El(e(z, 6)). 3.71)

The first term of (3.71b) is then zero and the corresponding algorithm
is then simply

0(2) = 0t — 1) + y() R™1 (DY () IF (e(D)), (3.72)

the only difference from (3.67d) being that A~!(r)e(r) is replaced by
IF (e(2))-

3.5.2 General Search Directions

In (3.72) R(?) is a matrix that modifies the gradient search direction to
perhaps a more suitable one. As in the previous section, we may choose
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R(?) as an approximation of the Hessian of ¥(6), which would lead to
an expression

R(2) = R(t — 1) + y(t) [po(t, Ot — 1), £(2))
+ (0 (8, 00 — 1), ()W) — R(t — )]

‘where /p, and [, are the second derivatives w.r.t. 6 and &. Even though
this gives a Newton-type updating direction, which is known to be efficient
in nonlinear programming problems, we are of course not confined to
the choice (3.73). Any updating direction that forms a sharp angle with
the gradient will, on the average, move § “downhill” in terms of the
criterion. This means that we may take the matrix R(¢) in (3.72) to be
any positive definite matrix, and still ensure that the criterion is minimized.
Hence the equation (3.73) could be replaced by a general variant

R(1)= Rt — 1) + y()H(R(t — 1), 0(t — 1), &(0), Y (1)), (3.73)

(3.73)

where H is a function such that the positive definiteness of R(¢) is
guaranteed.

3.5.3 Stochastic Gradient Algorithms

An often-made choice of R(r) is to let it be a multiple of the identity
matrix. This makes the updating direction coincide with the negative
gradient of the criterion. The scaling of the identity matrix is often chosen
as

R =r(O1,

r(t) = r(t — 1) + y(0) {tr [lge(t, 6(t — 1), &(2)) (3.737)
YO L1, 00 = 1), eWT(0)] — r(e — D}.

In the quadratic case, (3.49), this gives the algorithm

6(r) = 6t — 1) + y(z);}—t)w(z)ﬂ'l(z)s(t),

r(0) =r@t = 1)+ y0){r[YOA YT ()] - r( - 1},
We shall call such algorithms with the choice (3.73") stochastic gradient
algorithms. In the control literature, they are commonly known as

“stochastic approximation algorithms,” but this name does not indicate
the updating direction.

(3.74)
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In section 5.7 we shall discuss some user aspects of the choice of
H(-,-,-,)in (3.73') and in particular some common alternatives to
the Gauss-Newton updating direction.

3.54 Summary

In this section we have concluded the derivation of a general recursive
prediction error algorithm. The algorithm (3.67), (3.70), or (3.72), (3.73)
is well-defined. It can be applied to general model sets. The underlying
model set shows up only in the matrices A( - ), B( - ), and C( - ), and hence
the only part of the algorithm that depends on the model set is (3.67¢, f).
We shall in the following three sections study some specific algorithms
that arise when (3.67) is applied to particular, common model sets.

3.6 Application to Linear Regression Models

So far we have not discussed the structure of the model set (3.4),
.j}(t ‘ 0) = g/(o’ t, Zr*l)9

other than in terms of the general representation (3.23). Clearly, the
complexity of the algorithm (3.67) will greatly depend on the choice of
the model set. Also the expressions for the gradient y/(¢, 0) = dp(z | 0)/d0
and the stability set D, (defined by (3.24)) are direct consequences of
the structure of (3.4). In this and the following two sections we shall
consider particular and commonly used model sets. We shall give explicit
expressions for the calculations corresponding to (3.67¢, f) in the general
algorithm and point out certain approximate versions of (3.67) that have
been suggested. In this section we shall study perhaps the simplest special
case of (3.4): when the prediction is linear in 6. Such models are known
as linear regression models in statistics and have been thoroughly studied
in that field. The linear difference equation model we discussed in exam-
ple 2.1 is a special case of this type. When the general algorithm (3.67)
is applied to linear regression models, essentially the recursive least
squares (RLS) algorithm (see section 2.2.1) will be obtained. The model
set will be discussed in somewhat more detail in section 3.6.1, while the
application of (3.67) will be illustrated in section 3.6.2. Some useful
approximations of the gradient will be treated in section 3.6.3 and the
instrumental variable (IV) method of section 2.2.2 will be interpreted as
an approximate recursive prediction error method.
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3.6.1 The Model Set

A predictor that is linear (or affine) in the unknown parameter vector
can be expressed as

(]| 0) =gu(051,2'7") = ()0 + p (o). : (3.75)

Here ¢(f) is a d x p-dimensional matrix function of ¢ and z'~!. [Recall
that d = dim0, p = dimy(?) and z"(¢) = (»"(¢) u"(¢))]. Moreover, 6 is
ad x 1 column vector and u(¢) is a known p x 1 column vector function
of tand z'~*. To satisfy the linear filter expression (3.17) for the predictor,
the quantities ¢(f) and u(r) should strictly speaking be linear in z'~!.
This restriction is, however, immaterial, since, as we remarked before,
we may think of z(¢) as an arbitrary (nonlinear) transformation of primary
measurement data up to time .
We sometimes have occasion to study linear regressions of the form

(|0 =0To@) + u(@. (3.76)

We shall illustrate an important application of (3.76) in example 3.8. The
difference compared to (3.75) is that € is an n° x p-matrix and ¢(¢) is an
n’ x 1 column vector function of ¢ and z'~! in (3.76). The kth row of
(3.76) reads

5] 0) = 07 o)) + () = @T(D0, + p(2), (3.77)

where J, is the kth component of j and 6, is the kth column of 6. This
is a linear regression model with a parameter vector 6, that is independent
of the models corresponding to other rows of (3.76). Notice, though,
that all the models (3.77), k = 1, ..., p, have the same regression vector
@ (7). We can thus regard (3.76) as a collection of p independent linear
regressions with the same regression vector. Each of these regressions
are of the form (3.75). This is an interpretation that will be useful when
deriving the estimation algorithm for (3.76) in section 3.6.2. The interest
in (3.76) lies in the fact that the »’ - p parameters of the matrix 0 can be
estimated quite efficiently. The algorithm complexity is determined by
n’, rather than by the total number of parameters.
We shall now give some specific examples of (3.75) and (3.76).

ExaMPLE 3.8 (Linear Difference Equations) (see also Examples 2.1 and
3.1) Consider a model with p-dimensional output y(#) and r-dimensional
input u(¢) described by ‘
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y@O+Ayet—-D+ -+ A4yt—-n=Bu@—-—1)+ ---

(3.78)

+ B, u(t — m) + v(?).

Here A, are p x p-matrices and B, are p x r-matrices. Suppose that all
elements of these matrices are unknown and to be estimated. The variable
v(?) is a p-dimensional disturbance term (“‘equation error”) that is either
of unspecified character or supposed to be a sequence of independent
random vectors each of zero mean. In either case, as we found in example
3.1, a reasonable predictor is given by

#(t]0) =0T, (3.79)
with

0'=(4, ... 4, B, ... B) (a p x (np — mr)-matrix),

T =(—yTt—=1D ... =Tt —n) "¢ —=1) ... ¥t —m)).

The multivariable difference equation consequently is an example when
a description like (3.76) is possible.

The form (3.75) can of course also be chosen. We illustrate it for
p=2,n=2r=1,m=1:

y,“w):[—y,g—n —yzg—n 0 0 =D ~pe-2 0 L ] a:,’,' . (3.80)

=) —y =1y 0 0 =2 —yG-2) 0 w1

. L 647 ]

where 4, = (a}’), B, = (b{%).

Models of the type (3.78) are frequently used in many different areas.
If no input sequence {u(f)} is present, we have the familiar autoregressive
(AR) representation of a (multivariate) time series {y(¢)}. When n =0,
the output is modeled by a finite memory impulse response {B,, k =
1, ...,mj.

Sometimes in practice, an unknown constant D is added to the right-
hand side of (3.78) to match the constants (levels) of the measured signals.
(In other words, v(f) may have an unknown mean value.) This is easily
incorporated in the predictor (3.79) by including D in the #-matrix and
extending the @-vector with p entries, each of the value 1. O
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EXAMPLE 3.9 (Linear difference Equation with Partly Known Coeffi-
cients) Sometimes, when models like (3.78) are used, certain of the
matrix elements may be known or fixed to given values. The reason may
be that the values of the parameters are known a priori as physical con-
stants; or, we would like to impose a certain structure on the model. A
very common case is when it is known that there exists a certain time
delay in the system from some of the inputs. Then some of the leading
b® elements are set equal to zero. Such cases can be handled by means
of (3.75), if the known or fixed elements in 0 are deleted from 6 together
with the corresponding elements of ¢(7). These known or fixed elements
are then collected into the vector u(r), as we now illustrate.
Suppose it is known in (3.80) that

2 1 2 1
=0, afl=0 af=1, bY=p

The other matrix elements are to be estimated. Then we may write

—yi=1) —ys— 0 —yy(t-2 0 @l [-ne-2 -1
MG):[ P=1) == nG-2 o )] oty { ol =2+ futs )]éq,r(,),,ﬂ(,)_ o (3.81)

0 0 ~¥yait=1) 0 —y,(0=2) u (t—1 —ay,(1—1)

The Gradient of the Prediction It is easy to determine the gradient for
the model (3.75). It is given by

L%ﬂHOJ =y, 0) = o). (3.82)

The stability region of the predictor y(z | 6) is easy to determine for
the linear difference equations. Since only finitely many past y(#)- and
u(?)-data enter the predictor, it is stable for all 6:

D, =R-. (3.83)

The foregoing examples indicate that linear regression models are
capable of describing several model structures that are common in sys-
tems, control, and communications applications. We may repeat once
more that the “regressor” variables in ¢(¢) may in practice be nonlinear
functions of recorded data. Hence, the models are useful also in handling
nonlinearities.

The main disadvantage with models such as (3.78) is that they do not
allow for modeling of the noise characteristics {v(¢) }. The predictor (3.79)
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is reasonable only if the noise level is small (good signal-to-noise ratio)
or if {v(¢)} is unpredictable from past data. The latter case essentially
corresponds to an assumption of white equation error noise. Often, how-
ever, there is no specific, physical reason to assume that the equation
error is white, which is much less realistic than assuming, e.g., that the
measurement error, when recording y(¢), is white.

3.6.2 The Recursive Prediction Error Algorithm

Structure (3.75) Application of the recursive Gauss-Newton algorithm
(3.67) or (3.70) to the model (3.75) is immediate. Equations (3.67 c¢—f)
are in this case trivial; the prediction and its gradient ¢ are directly
formed from the data. We obtain

8(t) = y(0) — @T(O( — 1) — u(0), (3.84a)
AW =A@ - 1)+ y(0)[e®e™(0) — A — 1)], (3.84b)
R(®) = R(t — D) + 7O [e(OA (D™ () — Rt — D], (3.84c)
0()) = 0t — 1) + y(O R (DA~ (1)e(0), (3.84d)

which of course also can be written in forms corresponding to (3.70). We
may also choose to work with a fixed matrix A and skip (3.84b).

Structure (3.76) Consider now the structure (3.76),
(] 8y = 0To(r) + (o).

Its kth row is given by (3.77), and hence the structure is a linear regression
of the type we have just discussed. The kth column 8, of 0 is thus estimated
by

&(8) = y(8) — T (D0 — 1) — w (1), (3.85a)
R(t)=R(t— 1) + (0 [e()e"(t) — R(t — )], (3.85b)
0.0 = 0,(t — 1) + y() R (D ()&, (0). (3.85¢)

Here we dispensed with the scaling A, since &, is a scalar. Equation (3.85)
gives us p recursions, one for each column of 8. Since the recursions have
the R-matrix and the ¢-vector in common, they can be collected into

e(t) = y(©) — 07 (t — D(r) — (o), (3.86a)
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R(t)=R(t— 1)+ y()[e®e"() — R(t — ], (3.86b)
6() = 6t — 1) + y(OR (e (D)™ (@). (3.86¢)

The dimension of the matrix Ris#n’ x n’. The complexity of the algorithm
is thus essentially determined by »’ rather than by the total number of
parameters p-n’.

With this we have concluded the application of the Gauss-Newton,
recursive prediction error method to linear regression models. We have
seen that for a quadratic criterion we obtain the well-known recursive
least squares method. This is of course what we expected, in accordance
with section 2.2.1. If we choose a general criterion /(g), as in (3.71"),
rather than the quadratic criterion, the only difference in the algorithm
is that A™*(#)e() in (3.84d), and () in (3.86c) are replaced by IT(¢()),
where /, is the 1 x p derivative vector of the scalar function / with
respect to ¢ (see 3.72"). Moreover, stochastic gradient variants (3.74) of
(3.84) and (3.86) are obtained by replacing the matrix R(¢) by I-tr R(?).
These variants are generalizations of the “‘stochastic gradient” algorithm
(2.84), discussed in section 2.4.

3.6.3 An Approximate Gradient: The Instrumental Variable Method

(The discussion of this subsection is an extension of section 2.2.2.) The
recursive prediction error method of section 3.6.2 aims at minimizing
the criterion

E%BT(L 0)8(17 0)’ (3873)
where, in the case of a linear regression,
e(t, 0) = y(t) — 9" (0.

(See (3.75); we take, for simplicity, u(f) = 0 in this subsection.) The
f-value that minimizes (3.87a) is the solution of

Ep()[y(1) — T(1)6] = 0. (3.87b)
Suppose now that the actual output is given by
y(®) =T (D0p + v(®) (3.8%)

for some 6, and stochastic disturbance sequence {v(7)}. We will refer to
A e i AR KUY
0, as the true value of 0.
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Now, we see that 6, minimizes the prediction error criterion, i.e., t, is
a solution to (3.87b), only if

Ep(n)v(r) =0,

which means that v(#) must be (zero mean and) uncorrelated with ¢(?).
As we noted in section 2.2.1, this will normally be the case only if

{v(#)} is white noise
or
n=0in (3.78) and {v(¢)} and {u(r)} are independent.

Therefore, in order to obtain a sequence of estimates that converges to
0, as t approaches infinity, we should instead solve

EL()[y(1) — 9" (6] =0 (3.89)

rather than (3.87b). The vector or matrix {(¢) should be uncorrelated with
v(?), but correlated with the gradient:

El{(Hv(t) =0 (3.90a)
EL ()¢ (?) positive definite or at least nonsingular (3.90b)

in order for (3.89) to have the solution 6 = 6, when (3.88) holds.
This gives the recursive estimation algorithm

0() =00t — 1)+ y( R OLO[y() — 9" — D]. (3.91)

The vector {(¢) is called the instrumental variable (IV) and the algorithm
(3.91) is a recursive instrumental variable (R1V) algorithm. We shall
discuss various choices of {(¢) below, but let us first comment on the
matrix R(?) in (3.91).

Choice of R(f) A couple of different choices of the matrix R(¢) are
possible. One choice is to make 6(¢) equal to the off-line IV estimate:

() = [i B(, k)C(k)pr(k)]_1 i B(t, k)L (k)y(k),
k=1 k=1

where (¢, k) are the weighting coefficient corresponding to the sequence
{y(#)}, as in (2.128). This is achieved, as we saw in section 2.2.2, by taking

R(t) = R~ 1)+ y(O[L(H™(t) — R(t — D] (3.92a)
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Another choice is to go all the way and replace the gradient ¢(?) by {(?)
in both positions above:

R(®) = Rt — 1)+ y(&)[L(OT(@®) — R(t — 1)]. (3.92b)

This variant will be referred to as the symmetric RIV algorithm. Other
possibilities are “‘stochastic approximation” variants where R(¢) is given
by a properly scaled identity matrix, analogously to (3.74).

Choice of Instrumental Variables Many ways of choosing the instru-
mental variables {(f) have been proposed in the literature. Some typical
choices for single-input/single-output systems will be reviewed here. Some
more alternatives can be found in the survey paper by Séderstrém and
Stoica (1981). Generally speaking, the elements of {(¢) are usually chosen
as delayed and possibly filtered values of the input and output.

Instrumental Variables Computed from Inputs by Constant Filters One
quite common choice of instrumental variables is to take

() =(—x(t—1) ... ~x(t—n) ut—1) ... ut —m)T (3.932)

[See, e.g., Finigan and Rowe (1974)], where x(¢) is obtained from the
input by filtering according to

A(g™")x(t) = B(g "u(t), (3.93b)
with

A@HY=1+aq'+... +aq™",

_ _ _ (3.93¢)
Blg)y=bg '+ ... +b.qg™

It has been argued that if the true system is subject to

Ao(g™")p(1) = By(g™Hu() + v(),

with {v(2)} being a disturbance that is uncorrelated with the input, then
a desirable choice would be given by

A(@™) = Aolg™"), B(g™")=By(g™").
The rationale for such a choice will be explained in section 4.6.3.

Instrumental Variables Computed from Inputs by Adaptive Filters When
the true system parameters are not known, the foregoing choice cannot
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be realized. Instead, an adaptive way of forming the instrumental vari-
ables can be used; e.g., the last available estimates are used to compute
the instrumental variables. This means that {(f) and x(¢) are recursively
defined by (3.93a), together with

x(t) = (T(6(r). (3.94)

This choice has been proposed by Wong and Polak (1967) and Young
(1970).

Instrumental Variables Consisting of Delayed Inputs Another way of
choosing the polynomials A(g~*)and B(g ') in (3.93b) s to take A(¢g™!) =
1, B(g~') = g™ After reordering the elements in {(¢), this means that

(H=@t—1) ... ult—n—m)T, (3.95a)

i.e., the vector {(¢) consists only of delayed inputs. This choice is closely
related to correlation analysis, which can be seen as follows. With the
weighting coefficients f(¢, k) = 1, and with (3.95a), the off-line IV esti-
mate can be written as

—R.(0) ... —R,(1-n RO ... RA-m)\ [d,)
(1)
bi(n)
—R.(m+m—1) ... —R, m Rm+m—1) ... Rn) i),,,‘(r)
R (1)
= : , (3.95b)
R (n+ m)
with
. 1< N 1<
R (1) = . Y ykutk — 1), R(t)= " > u(kyutk — 1) (3.95¢)
k=1 . k=1

being estimated covariance functions. A variant of this correlation method
has been proposed by Isermann and Baur (1974). In their treatment the
vector {(#) is extended and may contain more than n + m elements. The
system (3.95b) will then be overdetermined, and can be solved in a least
squares sense.
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It is easy to update the covariance estimates recursively. We have, e.g.,
R @) = R + — <[y + Dt + 1= 1) — Ry@)] (3.95d)

In the recursive method of Isermann and Bauer the covariance elements
are updated at every sampling interval, while the linear system (3.95b) is
solved more infrequently.

Refined Instrumental Variables A refined IV method has been proposed
by Young (1976); in his method, prefiltering of the data is included. Then
the algorithm will be [see (3.91), (3.92)]

0(t) =00t — 1) + y(ORT' L [y(r) — oF(1)0( — D], (3.96a)
R() = Rt — 1) + yOLLO@F @) — R(t — 1], (3.96b)
ye® =T@@ Oy, ¢p() = T(@ He(), (3.96¢)

where T'(g™!) is the prefilter.

We have here not discussed if the above choices of {(¢), equations
(3.93)—(3.95), actually satisfy (3.90). That will be done in some detail in
section 4.6.

The multioutput case can be arranged according to (3.76), (3.86) also
for the RIV algorithm. Moreover, variants where the prediction error
() = y(t) — qu(t)é(t — 1) is replaced by a general nonlinear function
[T(¢(9)) can be useful in some contexts.

So we may say that we have found it suitable to interpret the RIV
algorithm (3.91) as a recursive prediction error algorithm where the
gradient ¢(f) has been replaced by an approximation {(¢). It must be
stressed, however, that the word ““approximation” does not at all have
a pejorative meaning in this context. The replacement is done deliberately
to make the estimate converge to the true value 0, rather than to the
minimum of the prediction error criterion (3.87). The actual convergence
properties of the algorithm (3.91)—(3.92) will be discussed in section 4.6.

3.6.4 Summary

We have in this section studied predictors y(¢ | 6) that are linear in 6.
Such models are known in statistics as linear regression models. For
dynamical systems, linear difference equations with an unstructured
equation error are described by linear regressions. The recursive predic-
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tion error method applied to these models is the recursive least squares
(RLS) method (3.84) and variants thereof. If the gradient ¢(¢) is replaced
by an instrumental variable vector or matrix {(¢) that is uncorrelated with
the equation error, we obtain the recursive instrumental variable (RIV)
method.

3.7 Application to a General SISO Model

In many contexts it is suitable to model the system as a “‘black box,”
i.e., to describe its input-output behavior without going into the mecha-
nisms of how it operates. In this section we shall study several common
black box models and how to estimate their parameters. Examples are
discussed in section 3.7.1, where we also give a unified description of
such models. The general recursive Gauss-Newton prediction error
algorithm (3.67) is then applied to these models in section 3.7.2. In
section 3.7.3 we describe a common way of approximating the gradient
that leads to so called pseudolinear regressions. Some useful formulas

relating certain variables in pseudolinear regression are given in appendix
3.D.

3.7.1 The Model Set

We mentioned in connection with the difference equation model (3.78)
that the main limitation with linear regression models is that the disturb-
ance terms {v(f)} cannot be modeled. Several different ways to include
a model of the noise have been suggested. We shall in this section give
a treatment of such models. Mainly for notational reasons, we shall
confine ourselves to the single-input/single-output (SISO) case, i.e.,
p =r=1. The results can be generalized to the multivariable case, in
much the same way as in example 3.8 [see e.g., Gauthier and Landau
(1978)].

In the section we shall make extensive use of operator polynomial
notation, which we used earlier in examples 2.1 and 3.1 and 2.2 and 3.2.
We thus have the delay operator ¢! and the polynomials

Ag@H=1+aqg '+ - +a,q " (3.97a)
Blg)=bg '+ - +bg™ (3.97b)

ClagH=1+cg'+ - +c,g ™ (3.97¢)
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D@ Y =1+dyg '+ - +d,g™ (3.97d)
F@)=1+/fig"+ -+ fig™ (3.97¢)

Some Different Models The simple linear regression model can be written
in the foregoing notation as in example 2.1:

A(g My (1) = B(g™Hu(®) + v(). (3.98)

Perhaps the most common noise model is to describe {v(f)} as a moving
average of a white noise sequence {e(7)}:

A(g™ Yy = B(g™Hu(r) + Clg™He(®). (3.99)
This yields the familiar ARMAX model already discussed in examples
2.1 and 3.1. As an alternative, we could choose to model v(¢) as an auto-
regression, which gives the model

A(g Yy = Blg HYu(t) + ——e(). (3.100)

D(q _‘)
Such a model was used by Clarke (1967) in the so-called generalized least
squares (GLS) method. In econometric literature the model (3.100) is
also known as a dynamic adjustment (DA) model.

A further alternative is of course to describe {v(z)} in (3.98) as an
ARMA process:

A0 = B ) + e, (3.101)
This model has been used by Talmon and van den Boom (1973).

In (3.98) the disturbance v(z) enters as an equation error. From a
physical point of view it is often more natural to work with disturbances
that are ““measurement errors” or “output errors”:

B(g™")
() ==""—""ult) + v(?). (3.102)
YW= Fq™
The difference between this model and (3.98) is also illustrated in figure 3.2.
Identification methods that use the model (3.102) are often known as
output error methods or model reference identification methods (see also
figure 2.1 in section 2.5).
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l v(t)
A
A
»(t)
ul?) 8 Y ult) b 410
T z — F 2
Figure 3.2

Left : Equation error model (3.98). Right: Output error model (3.102).

The measurement noise v(¢) in (3.102) can of course be further modeled.
If we choose to represent it as an ARMA process we obtain the model

B(g™) Cl@™h

F(q“)u(t) + D(q_l)e(t). (3.103)
In many ways this model is a natural one from a physical point of view:
the dynamics from u to y is modeled separately from the measurement
noise. It has been used, e.g., by Bohlin (1971) for identification problems
and by Young and Jakeman (1979) for a refined instrumental variable
recursive identification algorithm. It also corresponds to the type of
models that are used by Box and Jenkins (1970) for modeling stochastic
dynamical systems. We shall refer to (3.103) as the Box-Jenkins model.

¥ =

A General Model Description We have now listed six different models
for identification of SISO stochastic systems. They are all commonly
used in different identification procedures. They are black boxes, which
means that no internal structure has been imposed on them. In order to
give a general treatment of black box SISO models, we shall consider
the model set

B(@™) Clg™h

F(q“)u(t) + D(q‘l)e(t)’ (3.104)
where {e(r)} is a sequence of independent random variables each of zero
mean. This model obviously contains all the foregoing ones as special
cases. As it stands, (3.104) is too general. In most applications one or
several of the polynomials 4, F, C, and D would be fixed to unity. For
our purposes, however, it is convenient to develop the recursive prediction
error algorithm for the general case (3.104). Algorithms of practical
interest will then be obtained as simple special cases.

A(g Yy =
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An Expression for' the Prediction We shall now proceed to derive the
one-step-ahead prediction and its gradient for the model (3.104). The
calculations will show some resemblance to those of example 3.2.

From (3.104) we have

A(q‘l)D(q“)y(t) _ B D@
Clg™ Fig™HC(g™)

which also can be written as

_|;_4@™HDbE™ D(g"")B(g™")
>0 [l Cla™) }y('”aq-l)nq-l)

Notice that since the polynomials 4, C, D, and F all start with a 1, the
first term on the right-hand side contains y(s) only up to (and including)
time ¢ — 1. Similarily, since B(g~") starts with b,¢!, the second term
contains only u(s) for s <t — 1. Since {e(s)} is supposed to be white
noise, the term e(¢) is not predictable from data up to time ¢ — 1. Hence
the best one-step-ahead predictor for (3.104) is given by

. DA™ D¢ H)B(g™H)
H=|1-24 229 ) =4 179 ) 3.105

where we have used the parameter vector 6 to denote the unknown
parameters:

0"=(@a, ... a, by ... b, f; ... Ja, €1 oo € dy ... d,). (3.106)

u(t) + e(0),

u(t) + e(t).

The expression (3.105) assumes that all previous data z(k), k <t — 1,
are available. In practice, unobserved data z(k), k < 0, are often replaced
by zeros. The predictor (3.105) is then only approximate, but when the
polynomials

C*@)=z"+c, 2" '+ - +oc,,
F*(z)=z%+ flz"!_l + -+ f"!

have all zeros inside the unit circle, the difference is negligible, except in
the transient phase. The stability set for the predictor (3.105) is clearly
given by

D, = {6 C*(z) - F*(z) has all zeros inside the unit circle}. (3.107)

We will encounter the product C(g!)F(gq~!) several times in this section,
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so let us introduce the following notation for it:
Gl =Cl@ )F@™). (3.108)

For practical calculations, the predictor (3.105) is normally written as a
recursion

G(g~ (1| 0)

(3.109)
=F(g )[Cg™) — D@ ) A(g™ )]y + D(g ") B(g Hu().

From (3.104) and (3.105) we find that the prediction error
e(t, 0) = y(t) — y(t| 0)
can be written

— D(q_l) -1 _ B(q_l) 3.110
&1, 0) @ [A(q () F(q_l)u(t)]- (3.110)
It is convenient to introduce the auxiliary variables

_B@™
w(t, 0) = F(q“)u(t) (3.111)
and
o(t, 0) = A(g~Hy () — w(z, 0). (3.112)
Then
&(t, 0) = y(t) — 3(t] 0) = D (q_l)v(t, 0). (3.113)

Cl@™)

It is straightforward to put the linear filter (3.105) in the form (3.17).
The state vector would then be

o(t, ) =(—y@t—1) ... —y(t—n) u@—1) ... ut —ny)
—w(t—10) ... —w(t—n0) et—-1,0) ... e(t—n,0)
—o(t—1,0) ... —v(t—n, )" (3.114)

The state equation that ¢ (¢, 6) obeys follows from the definitions (3.111)—
(3.113). There is, however, no point in writing it down explicitly, since
it in practice is more efficient to generate (¢, 0) directly from (3.111)—
(3.113).
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With (3.105) and (3.114) we can give a convenient expression for the
prediction. To find this, we proceed as follows. From (3.111) and (3.113)
we obtain

w(t,0) =byu(t —1)+ - +bu(t—n) — fiwt—1,0—---
—f,,fw(t—nf, 0)

(3.115)

and

et, ) =0v(t,0) +div(t —1,0)+ - +d, vt —n, 0)
(3.116)
—cet—1,0)—~--- —c,e(t —n,0).
Now inserting

v, 0) =y +ayt—1)+ - +a,y(t—n)—w(,0)

into (3.116) and substituting w(z, 6) with the expression (3.115), we find
that

e(t, 0) = y(1) — 079 (1, 0). (3.117)
Hence
Pt ] 0) =0T, 0). (3.118)

An Expression for the Gradient In order to apply the recursive prediction
error method we need also the gradient y(z, 8) of the prediction. For
the derivative w.r.t. g; we find by differentiating (3.109)

G5t | 0) = —Fg™)Dig™y(t — i)
or

9 _ _Fa@HD@hH . _ D@ .
5aiy(t|9)— FaHcgH '~ 0=~y D (3.119a)

Similarily, we find for the other derivatives

3
ab,

(| 6) = gg:;u(t — i), (3.119b)

d - __Db@™hH .
;ﬁy(tlﬂ)— G(q—l)w(’ i, 0), (3.119¢)
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———&(t — 1, 0), (3.119d)

T Clg '1)

v(t—1i,0). (3.119¢)

___
C@@™)

The gradient vector y(z, ) is thus obtained analogously to ¢(z, 6) by
letting the components pass through filters that depend on 6, given by
(3.119).

We have now derived a set of recursions, (3.109) and (3.119), that
allows us to calculate y( | 6) and ¥ (¢, 0) from z* for any given parameter
vector 8. These recursions can, of course, also be summarized in a state-
space form (3.22). In the present context it is however more convenient
to work with (3.109) and (3.119).

Some Special Cases Before turning to the recursive estimation algorithm
we shall comment on some special cases of (3.104). When

Al@gh=1, Cq@H=1, D(ghH=1,

i.e., when the model is given by (3.102), we find that

e, N =wlt—-1) ... ut—n) —wt—1,0) ... —w(t—ng,0)).
This vector is formed entirely from the input sequence «*, in view of (3.111).

The prediction (3.109) is given by

-1
]| 0) = ﬁg_l;u(t), (3.120)

and is simply the output the model would produce for the given input.
The prediction error is then the difference between measured output and
model output, which explains the term “output error methods” for
algorithms that use the model (3.102). Moreover, for this model we find
from (3.119) that

Y(t, 0) = ———o(t, 0). @2

F(q '1)
(Notice that equations (3.119a, d, e) do not apply, since the parameters
a;, ¢;, and d; do not belong to 6.)

If we apply (3.119) to the ARMAX case (3.99) (F(¢g7)) =1,D(g ") = 1)
we find
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1
Ci@™)

just as in example 3.5.

Y, 0) = o1, 0), (3.122)

3.7.2 The Recursive Prediction Error Method

Having established how to compute the prediction (¢ | #) and its gradient
Y(¢, 8) for the general model, it is now straightforward to apply the
general recursive prediction error algorithm (3.67) to the model (3.104).
In the recursions that define (7 | 8) and ¥ (¢, 6), corresponding to (3.67e, ')
we simply use the latest available estimate of 0. Let us denote the compo-
nents of 6(f) by d,(r), bi(t), etc., and let §,(¢) be the coefficients of the
polynomial C,(g7!)- F(g™"). Since the output is scalar we dispense with
the matrix scaling A(¢), as commented upon previously. We now obtain
the following explicit form of (3.67):

&) = y@) — 3Q), (3.123a)
R =Rt —1)+y@) vy () — Rt — 1)], (3.123b)
6(t) = 6t — 1) + y(OR ()Y (D)e(), (3.123¢)
w(t) = b, (Du(t = 1) + -+ - + b, (Ou(t —ny) _
. . (3.1244)
— 1wt = 1) — - — [ (Ww(t —np), '
v =y +a, @)yt -1+ - + 4,0yt —n) —w(), (3.124b)
B0 = v(t) + dy (ot — 1) + - -+ +d, (ot — ny)
(3.124¢)
— (et — 1) — - - — &, (Dt — ny),
T+ D=(—p@) ... —y(t—n,+ D) u(®) ... ut—n, +1)
—w() ... —wlt—n,+1) &) ... ®(t—n+1)
—v(@®) ... —v(t—ny+ 1)), (3.124d)
P+ 1) =0T + 1), (3.124¢)

@) =p@) + di @yt — 1) + - + d, (Op(t — n)
— &Pt —1)— - =&, P —n,),

(3.125a)
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a(1) = u(?) + dy(Du(t — 1) + - - - + d, (Du(t — ny)

(3.125b)
— 4, a — 1) — -+ — g, (it — n,),
w(t) =w(t) + dy(Ow(t — 1) + - +d, ()w(t — ny)
(3.125¢)
— G (Wt = 1) — -+ — G, (DW(t — ny),
) =e) — 6,(DEE — 1) — -+ — &, (DE(t — n,), (3.125d)
() = () — &, ()3 — 1) — - -+ — &, (D5t — ny), (3.125¢)
YT+ D) =(=50) ... =t —n,+ 1) d4@t) ... d(t —n,+ 1)
—W(t) ... =W —n+ 1) &) ... Et—n + 1)
—3() ... —5(t—ny + D). (3.125f)

In this algorithm, (3.124) that calculates j(¢ + 1) and (3.125) that calcu-
lates y(+ + 1) correspond to (3.67¢, f). We could of course, also have
written (3.123b, ¢) in the form (3.70). Minimization of a general criterion
and/or using the gradient-updating direction gives obvious variants of
(3.123) corresponding to (3.72)—(3.73").

Notice that in the calculation of ¢ and ¥ the latest possible estimates
of f are used. This is the reason for making a distinction between the
“prediction error” ¢(1) (calculated using 6(z — 1)) that is required for
updating 0 and the “residual” &(¢) (calculated using 8(r)). We commented
upon this distinction also in section 2.2.3. It will turn out that the extra
effort involved in making this distinction (compared to using &(?) in
(3.1244), (3.125) instead of €(¢)) is worthwhile in practice ; see section 5.11.

The algorithm (3.123)—(3.125) for the general model (3.104) is well
known in some special cases:

1. For F(g7")=C(¢g") = D(¢"") = 1 the algorithm is, of course, the
recursive least squares algorithm of section 2.2.1.

2. For F(g7") = D(g™!) = | (an ARMAX model), the algorithm is the
RML (recursive maximum likelihood) algorithm derived in section 2.2.3.
3. For A(g)=C(g')=D(g™ ') =1 it corresponds to an algorithm
suggested by White (1975).

4. For F(q~'y = C(¢~ ') = 1 it is a recursive maximum likelihood method
derived by Gertler and Banyasz (1974).
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5. Consider again the model F(g~') = C(g™!) = 1. The matrix R(¢) defined
by (3.123b) is formed from a ¢-vector which reads

@™ (1) = (91 (1) 91(1),

where
i =(—y—1) ... —p(t —n) ut—1) ... u(t —ny),
p3()=(—v(t—=1) ... —v(t —ny)).

Suppose that the off-diagonal blocks of R(?) (corresponding to the cross
terms @, X @,) are forced to zero, so that R(¢) consists of two diagonal
blocks each updated, analogously to (3.123b), with ¢,(#) and ¢@,(?)
respectively. The resulting algorithm is then the recursive generalized
least squares algorithm derived by Hastings-James and Sage (1969). This
method was called RGLS in Séderstrom et al. (1974a, 1978).

6. If A(g™") =1 and the R-matrix in (3.123) is taken as block diagonal
(with blocks corresponding to B, F and C, D respectively, analogously
to case (5)), the refined instrumental variable method of Young and
Jakeman (1979) is obtained (see appendix 4.E for details).

Some Polynomial Known The general model (3.104) contains several
special cases. The ones we discussed in the beginning of section 3.7.1,
i.e., (3.98)—(3.103), correspond to the assumption that certain of the
polynomials in (3.104) are known to be unity. We could of course also
assume that they have other values. The derivation of the identification
algorithm is still given by the general recipe: Compute the prediction
and its gradient and use approximations of them to update the estimates.
The procedure is illustrated in the following example.

EXAMPLE 3.10 (An ARMAX Model with a Known C-polynomial) Sup-
pose that the model is given by

A(g~Hy(0) = Blg Hu(t) + C(g™He(1), (3.126)

where the polynomial C. is known and 4 and B are to be determined.
The one-step-ahead predictor is given by (3.13):

Clg™ Oy |0 =[C™") — Al )]y + Blg™Hu(®),
6=(a, a, ... a, by by ... b)".
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This expression can also be written as

P(t|0) = y(t) — y.(1) + 0T (1), (3.127a)
where
1 1
* = s * = < N . 7
yd5) C'(q—l)y(t) u(?) Ca l)u(t) (3.127b)
Q) =(—p(t—1) ... —yplt—n) u{t—1) ... w(t —n)".
(3.127¢)

From (3.127) it is immediately seen that
d T

— 3| )| = @.0).

[ yad )] 90

The recursive prediction error algorithm is then, for (3.126),

6(t) = 0(t — 1) + (R (H.(e(0), (3.128a)
R() = R(t — 1) + (O [@.() X (5) — R(t — 1)], (3.128b)
&(f) = y() — 3(¢] 6t — 1)) = pu) — 671 — Depu(0), (3.1280)

where the last equality follows from (3.127a). The algorithm (3.128) is
the same as we would have obtained by first filtering all quantities in
the model (3.126) through 1/C. (thus obtaining a model with white equa-
tion error) and then using the recursive least squares method on the
filtered variables. This latter procedure is a fairly natural ad hoc approach
when the equation error in models such as (3.98) has known covariance
properties. The method has been called generalized least squares (Mendel,
1973), but in recursive identification this term is usually reserved for
another procedure (see Clarke, 1967). We have here derived this filtered
ad hoc solution in a formal way as a recursive prediction error algorithm.
This illustrates the power of the general prediction error approach.

In most cases it is not very natural to assume that the noise character-
istics are known. One special case is however of interest. We may know
that the only noise source in the system is white output measurement
noise. This means that C(g™') is known to be equal to A(g™"). The value
of A4 is, however, not known. Based on (3.127)—(3.128) an approach to
this problem is obvious: Replace C. in (3.127b, c) by the current estimate
of the 4-polynomial and use (3.127)—(3.128) to estimate 4 and B. This



3.7 Application to a General SISO Model 119

.

procedure is a recursive variant of the Steiglitz-McBride algorithm
(Steiglitz and McBride, 1965). O

3.7.3 An Approximate Gradient: Pseudolinear Regression

Consider again the model set (3.104). We noted that the prediction can
be written, as in (3.118),

(| 0)=0T0(, 0).

If, when calculating the gradient of the prediction, the implicit 6-depen-
dence in ¢(¢, 0) is neglected, we would obtain an approximate expression

l:die}‘)(t | e)] ~ o(1, 0). (3.129)

Comparing this to (3.119), we see that the quality of the approximation
(3.129) will depend on how close the polynomials C, D, and F are to unity.

If we use the approximation (3.129) in the gradient calculations instead
of ¥ (¢, 8), we get the following recursive algorithm

e(t) = y(1) — 67(t — Do (1), (3.130a)
R(®) =Rt — 1)+ y([e(De™(H) — R(t — 1)], (3.130b)
6(r) = 6(t — 1) + y(OR (D p(D)e(?), (3.130c)

where ¢() is given by (3.124). This algorithm is a pseudolinear regression
(PLR) for the model (3.118), according to the discussion in section 2.5.1.
It is simpler than the recursive prediction error algorithm (3.123)—(3.125),
in that the filters (3.125) are not required.

The interpretation of this last algorithm as an approximate prediction
error method is of conceptual interest, since it shows the relationship
between the approaches. But it should perhaps be pointed out that these
algorithms are not necessarily inferior to the true prediction error algo-
rithm. The interpretation in terms of “simple approximations” of the
gradient refers to our general framework. The algorithm (3.130) has been
derived in a number of special cases in other frameworks and often
performs well in simulations and applications. See section 5.9 for a further
discussion of this point.

In some suggested variants 'of (3.130), the data vectors are filtered
through fixed filters chosen by the user:
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&(0) = y(t) — 07(¢ — Do), (3.131a)
er(t) = T(g™He(®), (3.131b)
er(®) = S(g7 Do), (3.131¢)
R =Rt — 1)+ y®O[er(eF(t) — R(t = 1], (3.131d)
0(5) = 0(t — 1) + y() R (D @p(Dex (), (3.131¢)

where ¢(¢) is given by (3.124).
The algorithm (3.130) or (3.131) is well known in a number of special
cases:

1. The extended least squares method (see example 2.7) is obtained as
(3.130) for F(g~') = D(g™") = 1, and for the filters 7(¢™') = S@g~") = 1.
2. For the special case F(g7!) =1, T(¢g"") = S(g”") = 1 the algorithm
(3.130) was called ‘““the extended matrix method” by Talmon and van den
Boom (1973).

3. The model-reference-based method suggested by Landau (1976) (see
example 2.8) is obtained as (3.131) in the special case A(g™") = C(¢™!) =
D(g"") = 1. Then T(q™") is taken as a polynomial and S(g~*) = 1. This
algorithm has also been called HARF (Hyperstable Adaptive Recursive
Filter) by Johnson (1979), and a stochastic gradient variant is called
SHARF (Simple HARF) (Johnson et al., 1981). The stochastic gradient
version has also been suggested by Feintuch (1976).

4. For F(g7")= C(g™") =1 (and filters S(g~!) = T(g~') = 1) the algo-
rithm is that suggested by Bethoux (1974).

5. For A(g™') = C(¢”") =1 the modified method of Landau (1978) is
obtained.

A natural extension of the algorithm (3.131) would be to let the filters
S and T be time-varying and dependent upon the current estimate. In
fact, the recursive prediction error algorithm (3.123)—(3.125) is obtained
for such properly chosen S-filters. It is of interest to note that the instru-
mental variable method described in section 3.6.3 can be interpreted
within the framework of (3.131).

EXAMPLE 3.11 (An Interpretation of the Instrumental Variable Method)
Consider the model corresponding to the special case

Alg)=Cg)=D@gH=1



3.7 Application to a General SISO Model 121

Choose in the algorithm (3.131) the filters S(g™") =1 and T(¢g™') =
E_,(g7Y) (the current estimate of the F-polynomial). Then

T =@ —-1) ... ut—ny) —wt—1) ... —w(t —ny)),

where

ét—l(q_l)
E—l(q‘l)

Here B,_,(¢"!) denotes the current estimate of the B-polynomial.
Moreover,

&) = y(1) — w(®)

and

er(®) = E_1(¢7)y(0) ~ F_1 (g™ w(®)
= F_(g7)y(1) — B, (g7 Hu(®).

Comparing this algorithm with the instrumental variable choice (3.94),
we find that ¢(z) given as above is identical to {(¢) when the instrumental
variables are taken as inputs and ‘“model outputs.” Moreover, gg(?) is
equal to the equation error:

er(t) = y(t) — 07(t — D@()
with
PO =(—y=1) ... =yt —n) u@—1) ... —u(t—ny)).

Hence the algorithm (3.131) with the above choices of S(¢”!) and T(¢™")
coincides with the symmetric recursive instrumental variable method
(3.91), (3.92b), (3.94). We have consequently obtained yet another inter-
pretation of the RIV method: as an output error, pseudolinear regression
method with a particular prediction error filter. O

w(l) = u(t).

3.7.4 Summary

We have in this section discussed a generalized SISO model, that contains
most commonly used ones:

B(g™)
F(g™")

Cl@™

Alg Dy = DD

u(t) +

e(n).
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To this model we have applied the general prediction error method,
yielding the algorithm (3.123)-(3.125). We have also described a natural
approximation of the gradient of the predictor, which leads to a pseudo-
linear regression (3.131). These algorithms are given by equations (3.104),
(3.110)—(3.118), (3.123)—(3.125), and (3.131). For future quick reference
we summarize them below in somewhat symbolic form.

Model: Ay = %u + %e.

Let W:%u T=dy—w z:%a

(3.132)

Then 7=0Tp e¢=y—J.

Algorithm: RPEM PLR
6:=0+yR e 6:=60+yR 'gc
R=R+yy y"~R R=R+7y( ¢"—R)

Within the two families of methods, some of the most commonly used
algorithms can be recognized. We summarize this in table 3.1.

3.8 Application to State-Space Models

In this section we shall discuss the estimation of parameters in state-space
models. The model set and corresponding predictors are described in
section 3.8.1. Application of the recursive prediction error algorithm to
a so-called innovations model is described in section 3.8.2. Algorithms
for the general state-space model are discussed in section 3.8.3 and 3.8.4,
with several of the technical details deferred to appendixes 3.B and 3.C.

3.8.1 The Model Set

We have in examples 2.3 and 3.3 described the general stochastic state-
space model that is widely used in systems theory and applications:
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Table 3.1

123

Special cases of the general model (3.104) and the corresponding RPEM and PLR algorithms

Special Case RPEM PLR
A=F=C=D=1 RLS RLS
F=C=D=1 RLS RLS
F=D=1 RML (RML2) ELS (RMLI, AML)
(Soéderstrom, 1973b; (Young, 1968; Panuska,
Fuhrt, 1973) 1968)
F=C=1 RGLS, RML (Bethoux, 1976)
(Hastings-James and
Sage, 1969 ; Gertler and
Bényasz, 1974)
A=C=D=1 (White, 1975) Model reference
identification; HARF,
SHARF (Landau, 1976;
Johnson, 1979; Feintuch,
1976)
A=1 Refined IV (Young, 1976);
Young and Jakeman, 1979)
F=1 Extended matrix method
(Talmon and van den Boom,
1973)

Note: See list of symbols for all acronyms.

x(t + 1) = F(O)x(®) + GO)u(t) + w(),
y(@) = HO)x() + e(),

where {w(?)} and {e(s)} are sequences of independent random vectors,
each vector being of zero mean; the covariance matrices are

(3.133a)

Ew(@w'()) = R,(5),

Ee()e™(r) = R,(0), (3.133b)
Ew()e™(t) = R,,(0).
The initial value x(0) has the properties
Ex(0) = x0(6),
(3.133¢)

E[x(0) — xo(8) ] [x(0) — xo(0)]" = T1(6).

The unknown parameter vector § may enter the matrices F, G, H, R,,
R,, and R;, in an arbitrary way. We shall only assume that the matrix
entries are differentiable with respect to 6. The parametrization of the
matrices may be based on different philosophies. The model (3.133) can
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have been obtained as a result of sampling a continuous-time stochastic
state-space model. Then the matrix elements of (3.133) are well defined,
but rather complicated, functions of the parameters of the original
continuous-time model. (The formulas for this are given in Astrom,
1970.) The model (3.133) could also be a canonical representation of
an input-output model. Then the parameter vector # consists of the
parameters of the original input-output model. In (1.C.22) we give an
example of a state-space representation of a single-input/single-output
ARMAX model. '

For a given fixed value of 0, the predictor corresponding to the model
(3.133) is
2@+ 1, 0) = [FO) — Ke() H(O)]2(2, 0) + G(O)u(@) + Ke(t)y(2) G134)
y(t|0) = HO)%(, 0);  £(0, 0) = xo(0)

(see appendix 1.C), where K,(¢) is the (time-varying) Kalman gain, deter-
mined from F(0), G(6), H(0), R,(0), R,(0), R,,(6), and TI(0) via the
Riccati equation in the well-known way:

Pyt + 1) = FO) P,() FT(0) + R,(6) — Ko(0)S,(DK] (1), (3.135a)
S,(6) = HO) Py () HT(0) + R,(0), (3.135b)
Ko(t) = [FOP,()H™(0) + R, (0)]S7 (), (3.135¢)
P,(0) = TI(6). (3.135d)

Here S,(¢) is the covariance matrix of the prediction error sequence
e, )y =y — @ | 0) (provided that 6 gives a correct description of
the system). Under weak conditions, the Kalman gain K,(¢) will converge
to a limit

Ky(t)> K, ast— o

that can be determined from the equations

Py = F(O)P,FT(0) + R,(0) — K, Ky,

S, = HO)P,H™(0) + R,(6), (3.136)
Ky = [FO)P,HT(0) + R,,(0)]S; .

The time-varying predictor (3.134) then approaches the time-invariant
one:
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2(t+1,0)=[F(0) — K,H(0)]2(t, 0) + GO)u(t) + Ky (2),

(3.137)
$(t] 6) = H(0)(z, 0).

In most applications of the Kalman filter actually the time-invariant
limit (3.137) is implemented instead of (3.134).

When using the predictor (3.137) we should, by solving (3.136), deter-
mine K, from F(0), G(0), H(0), R,(6), R,(6), and R,,(6). The only way
that the noise covariances R; affect the predictor is via K, in (3.137).
If these matrices do not contain a lot of a priori structure it seems more
reasonable to parametrize K, directly and explicitly rather than via R, (6),
R,(0), and R,,(0). That would give K(6) as a gain matrix whose entries
are direct functions of 6, and a model

X+ 1,0)=[F(0) — KO)H(0)]x(@, 0) + G(O)u(t) + K@)y (),

) (3.138)
P(1]6) = H(O)X(z, 0).
This model can equivalently be written
X(t+ 1, 0) = F(B)i(t, ) + GO)u(t) + K(O)w(),
(3.139)

y(© = HO)x(t, 0) + v(2),

where v(z) corresponds to the prediction error or innovation y(t) — y(t | 6).
For this reason (3.139) is usually known as a state-space innovations
model, or a model in innovations form. It can also be regarded as a special
case of the general model (3.133) corresponding to special choices of the
R;-matrices in (3.133b).

Notice that while the filters (3.137) and (3.138) are equivalent for a
given 60, the important difference for recursive identification is that the
innovations representation gives a Kalman gain matrix that is explicitly
parametrized, while the general model (3.133) requires indirect calcula-
tion of this gain. We shall discuss user aspects of the choice between
(3.133) and (3.139) in section 5.2.

3.8.2 The Recursive Prediction Error Method Applied to the Innovations
Model

The predictor model (3.138) is explicitly given in the form (3.17), which
was used when deriving the general algorithm. Application of the recursive
prediction error algorithm (3.67) to (3.138) is therefore straightforward.
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The matrix £ (0) in (3.17) corresponds to F(8) — K(0) H(#), the matrix
%(0)to (G(0) K(0)), and #(0) to H(0). We have only to derive an expres-
sion for the gradient

d . T
Y, 0) = [Ey(t | 9)] .
Computation of Y We obtain from (3.138)
(1, 0) = d% I:H(O))E(t, 9)].

To handle this expression we introduce (recall that n = dim x, d = dim 6,
p =dimy, r = dimu)

W, 0) = %f(z, 6) (ann x d-matrix) (3.140a)
and

D@, x) = 5‘%[1{(9)x]|‘,=‘j (a p x d-matrix). (3.140b)
Then

¥, 0) = HO)W(t, 0) + DO, £(1, 0)). (3.141)

Introduce also
e(t, 0) = y(©) — HO)X(t, 0), (3.142a)

which gives

d

—e(t, ) = —yT . .
a’@s(t’ ) Vi@, 0) (3.142b)

We now must find an expression for W(¢, ). To do this we differentiate
(3.138):

Wie+1,0)= a%[F(O)Sc(t, 0) — K(OYH(0)x(z, 0) + G(O)u(r) + KO)y(1)]

= %[F(O))E(t, 0) + GOu(r) + K@O)e(t, 0)].

Let us introduce the matrix
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M@®, x,u ¢ 2 ;—G[F(G)x + G(0)u + K(0)e]|p=s (an n x d-matrix),

(3.143)
This gives, using (3.141), (3.142b),

Wt + 1, 0) = [F(0) — K(O)H©O)]W(t, 0)

- (3.144)
+ M0, x(¢, 0), u(z), (¢, 8)) — K(B)D(0, X(t, 0)).

The equations (3.138), (3.141)-(3.144) now form a set for computing
$(¢] 0) and (s, 0) from y*, u', corresponding to (3.22) in the general
case.

The Identification Algorithm The recursive prediction error algorithm
(3.67) applied to the innovations model (3.138) thus gives the following
method:

e(r) =y — (), (3.1452)
AW =Al—1)+y@[e®e™@® — Al - 1)], (3.145b)
R() = R(t — D)+ y(O [y (OA () (1) — R(t — D], (3.145¢)
0(t) = 0t — 1) + y() R ()W (A~ (1)e(1), (3.145d)
£+ 1) = EX() + Gu) + Ke(0), (3.145¢)
P+ 1) = Hi(t+ 1), (3.145f)
Wi+ 1)=[F— KH]W(@) + M, — KD, (3.145g)
Wt + 1) = W'+ DHT + DT0(), 2(t + 1)). (3.145h)
Here

E=F0®), G =G0,
H = HO@), K, = K@),
M, = M(O(0), (1), u(D), (1)),
D, = D), %(1)).

In this case it is obvious that the stability region for the predictor is given
by

D, = {0 | F(6) — K(0)H(0) has all eigenvalues strictly

inside the unit circle}. (3.146)
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Hence the right-hand side of (3.145d) should be projected into D, as in
(3.67d).

The philosophy behind the ordering of equations in (3.145) can be
expressed as follows: “Always use the latest available estimate for 8 and
do not update a quantity before it is needed.”

EXAMPLE 3.12 (An ARMA Model) The process

y@O +ayt— 1N =e@) +ce(t—1) (3.147)
can be realized in state-space form as

x(t+ )= —ax(®) + (c — a)e(?),

y(@) = x(1) + e(1)

[see (1.C.21)]. Here we have

(3.148)

0=<‘Z>, F(0)= —a, K(O)=c—a, G@O)=0,

HO) =1, MO, x,e)=(—x—¢ &), D, x)=(0 0),
which gives the algorithm

(@)= —d_ 2@t — D)+ (é-y — 4,_ez — 1),

W)= —¢_  WiEt—D+(—2¢—1D—e(t—1) —e@—1)),
¥ =W,

&(t) = y(1) — X(),

R(t) =Rt — 1)+ y()[Yy @Y ") — Rt — D],

(“) = (") + Y (OR O D).

Since

— Xt -1 —et—-1)=—pt—-1),

we find that

(D) + gt — 1) = <‘y - ”).

gt—1)
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The algorithm is therefore identical to the recursive maximum likelihood
algorithm of section 2.2.3, and hence to the general algorithm (3.123)—
(3.125) of section 3.7.2, applied to the model (3.147). o

3.8.3 The Recursive Prediction Error Method Applied to the General
State-Space Model

Let us now consider the general model (3.133). In predictor form it is
given by (3.134)—(3.135). There is a slight complication with this predictor,
in that the dynamics [F(0) — K4(¢) H(0)] are not a direct function of 6
as in (3.17). Instead, the dynamics are determined via an intermediate
0-dependent equation (3.135). However, the gradient of the prediction

va.0=|sselo]

can still be computed as in (3.140)—(3.143):
W(t+1,0)=[F(0) — Ky()HO)]W(t, 0) + M0, X(t, ), u(z))

P (3.149a)
+ [%Kg(t)] e(t, 0) — Ky ()D(0, x(, 0)),
Y, 0) = HO)W(t, 0) + D0, x(t, 0)), (3.149b)
where D(0, x) is given by (3.140b) and where
M@, x,u) = %[F(@)x + G(0)u]. (3.150)

The components of the gradient of K,(#) are obtained by differentiating
(3.135). This gives a straightforward but lengthy set of equations.

Consider now the recursive identification situation, where { and ¢ are
to be calculated using a sequence of estimates {é(t)}. Let K, denote the
Kalman gain that is obtained from (3.135) by replacing 0 in each time
step by the latest available estimate 6(7). Also let 2’ denote the variables
obtained by differentiating K,(t) w.r.t. 6, (ith component) and, in the
equations resulting from (3.135), replacing 6 by the latest available
estimates 6(r). (See equation (3.B.3) for explicit expressions.) A reasonable
approximation of the gradient

J .
%Y(f | 0)|o=é(n

derived following the philosophy of this chapter will now be given by
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using (3.145e—h), with M, replaced by
M} = MO(@), 2(t), u(t)) + H,e(r). (3.151)

Here, the interpretation of the last term is that its ith column is J;e(¢).
With this modification of M,, the resulting algorithm is essentially given
by (3.145). A further difference is that the Riccati equation (3.135)
provides us with S(z), which is an estimate of the covariance matrix of
the innovations. It is natural to replace A(f) calculated according to
(3.145b) by S(#) in (3.145¢, d). The explicit form of the algorithm is
given in appendix 3.B.

3.8.4 An Approximate Gradient: The Extended Kalman Filter

We derived in example 2.4 and appendix 2.A another algorithm for
recursive identification of the parameters in the general state-space model
(3.133): The extended Kalman filter (EKF). It is of interest to compare
the EKF method with the recursive prediction error algorithm of section
3.8.3. The details of this comparison are given in appendix 3.C. The
bottom line of the analysis is that the EKF is virtually identical to the
recursive prediction error algorithm, except for the important fact that
the term J,¢(t) of the expression (3.151) is missing in the EKF. The EKF
can therefore be seen as an recursive prediction error algorithm, where
the coupling between the parameters 6 and the gain K,(¢) of the Kalman
filter has been neglected. It is true that such an omission is tempting, since
the calculation of /¢, may be very complex for the model (3.133). However,
leaving the term out may influence the convergence properties of the
algorithm. This is illustrated in appendix 4.G.

3.9 User’s Summary

The aim of this chapter has been to provide a framework for a systematic
discussion of recursive identification methods. Three aims have been
met:

¢ We have derived a general recursive identification method that can be
applied to any set of (linear) models.

¢ The general method has been and will be used as a framework for a
unified discussion of many special recursive methods.
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 Specific algorithms are obtained by making certain choices within the
general method. Consequently, the discussion of various different methods
can be carried out in terms of these “‘user choices.”

The model set is defined in general terms as a one-step-ahead predictor
(¢ | 6) that depends on the model parameter vector 6. We have considered
the case where this prediction is formed using a linear finite-dimensional
filter acting on the observed input-output data {z(¢)}:

ot +1,0) = F(0)o(1, 0) + 9(0)z(),
| 0) = H#O)o, 0).

Consequently p(z|0) is the one-step-ahead prediction of y(7) that is
obtained by processing the observed data z'~! through the constant
model (3.152). We have considered three particular examples of model
sets:

(3.152)

¢ Linear regression models:
| 0) = o (1), : (3.153)

where ¢(¢) is a function of z' .

¢ A general single-input/single-output model:

B(g™)
Fg™)
o State-space models:
x(t + 1) = F(O)x(1) + G(O)u(1) + w(),
y(©) = HO)x(1) + e(0).

u(ty + S9°D s (3.154)

Ay = D)

(3.155)

For the general model (3.152) we have shown how the gradient of (7 | 6)
w.r.t. 6, denoted by ¥ (¢, 6), can be computed by means of

&t + 1, 0) = AO)E(, 0) + B(O)z(2),
( P(]0)
coly(t, 6)

Here ““col” means that the columns of the d x p-matrix ¥ have been
stacked on top of each other.
For this general model (3.152) we derived the following algorithm

(3.156)
) = C(0)¢(1, 0).
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[see (3.67)]:

e(f) = y(t) — (1), (3.157a)
Aty =A@t — 1) + y()[e(OeT(®) — At = 1], (3.157b)
0() = [0t — 1) + vy R OYOA (De(t) I, » (3.157¢)
Et+ 1) = AB@)EQ) + BO®©)z(0), (3.157d)
<coy;f; (Jt’i)l)) = CHM)EE + D). (3.157¢)

Here {y(¢)} is a sequence of positive scalars. The bracket in the right-hand
side of (3.157¢) means that the argument should be projected into that
region of R where the linear predictor model (3.152) is stable. R(¢) is a
positive definite matrix that modifies the search direction. We have
discussed the following two particular choices:

* Gauss-Newton direction:

RO =Rt~ 1)+ @[y @OAOY () — Rt — 1)]. (3.158a)

» Gradient direction:

R(O)=r()1 (r(¢) a scalar),

r@®=rt—1)+y@O[cyOAOYT() — rit — D] (3.158b)
The use of a model of the general form (3.152) together with the

representation of the prediction $(¢ | 0) and its gradient (¢, 6) in (3.156),

and the subsequent calculation of the approximations y and y in (3.157d, €)

may seem complicated. The idea behind (3.156) and (3.157d, e) is, however,
simple:

Derive an expression for how the prediction y(¢ | 6) depends on the model
parameters. Then derive an expression for the gradient Y (¢, 6) of (¢ ! 6)
with respect to 6. These expressions will be filters that depend on 8 and
that have observed data as inputs. Then () and ¥ (¢) are determined from
these expressions by replacing past y(r — k| 6) and Y (s —k, 6) with
p(t — k) and (¢t — k) and by replacing 6 with its most recent estimate.

The algorithm (3.157) aims at minimizing the quadratic criterion

E3e(t, 0)Ag'e(t, 0),
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where A, is the covariance matrix of the prediction errors. If we instead
aim at minimizing the general criterion

El(e(1, 0)), (3.159)

the only difference is that A~'(s)e(s) in (3.157c) must be replaced by
IT(e(2)), so that that equation becomes

0) = [6( = 1) + yOR YO ()], (3.157¢")

Also, corresponding normalizations in (3.158) should be used [see (3.73)].

In this chapter we have given explicit expressions for (3.157d, e) when
the method is applied to the model sets (3.153)—(3.155). Within the
general algorithm (3.157) we have recognized a number of well-known
methods, as shown in sections 3.6-3.8. These are either special cases of
(3.157), or can be seen as certain approximations of it. The algorithm
(3.157) should thus be interpreted as a family of methods, with a number
of choices that have to be made by the user. Much of the discussion to
follow in this book will deal with these user choices. Let us therefore list
them here.

1. Choice of model set : The first choice the user has to make is that of the
model set. In our terminology, this means that the matrices % (6), 4(6),
and J(6) in (3.152) have to be chosen. In particular, for the model set
(3.154) one has to decide which polynomials should be chosen as unity.

2. Choice of input signal: The character of the input signal {u(z)} may
affect the resulting estimates 6(f) quite substantially. Depending on the
application, the input sequence may be at the user’s disposal, and then it
should be chosen properly.

3. Choice of criterion function l(t, 0, €): The criterion function /(z, 0, €)
by which the “‘size” of the prediction error is megsured will affect the
algorithm and hence the properties of the estimates.

4. Choice of gain sequence {y(t)}: The step size or gain sequence {y(?)}
(or, equivalently, the forgetting factors {4(z)}, related to {y(¢)} by (3.69))
strongly influences the behavior of the algorithm. In an algorithm designed
to track time-varying parameters y(¢) should not tend to zero, as discussed
in section 2.6. However, even for time-invariant parameters, the choice
of {y(¢)} greatly affects the convergence rate.

S. Choice of search direction: The algorithm (3.157) leaves the choice of
the matrix R(?) free (as long as it is positive definite). The matrix defines
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the updating direction. We have in particular mentioned the gradient and
the Gauss-Newton directions. Other choices of R can also be used.

6. Choice of initial conditions: To initialize (3.157), the values é(O), R(0),
and £(0) are required, and they have to be chosen by the user.

Depending on the particular model set used, further options and
choices may be possible:

7. Options of using “‘approximate’’ gradients of the predictor :

7a: For the linear regression model (3.153) we have the option to use an
instrumental variable approximation of the gradient of the predictor
(section 3.6.3). That is, {(¢) replaces ¥(¢) in the algorithm, and the form
of {(¢) has also to be chosen.

7b: For the single-input/single-output model (3.154) we have the option
to use a pseudolinear approximation, ¢(¢) of the gradient (¢(f) replaces
¥ (2) in the algorithm; see section 3.7.3). Then we also have the further
option of using filters as in (3.131).

7c: For the state-space model (3.155) we have the option of deleting the
gradient of the Kalman gain in the expression for the gradient of the
predictor (section 3.8.4 and appendix 3.C). This gives (essentially) the
extended Kalman filter.

8. Finally, we might add the choice between using prediction errors (1)
or residuals £(¢) in connection with the single-input/single-output model
(see (3.124)—(3.125) and the discussion in section 2.2.3).

Out of these choices and options, the first three ones are common for
any identification problem, recursive or not. The options 7 have, as we
shall see, important implications for the convergence properties of the
algorithm. Choices 4 and 5 are very important for the transient behavior
of the algorithm, but with reasonable choices they do not affect the con-
vergence properties. Choice 6 has only a transient effect. Choice 8 influ-
ences the transient behavior and may also have importance for overall
stability properties (see lemma 4.2).

The algorithm (3.157) with its eight choices and options in fact covers
most of the recursive parameter algorithms discussed in the literature
and used in practice. Specific algorithms, with certain names attached
to themselves, correspond to specific combinations of choices 1, 3, 4,
5, 7 and 8. We have given a few examples of this in sections 3.6-3.8.
Therefore, the question of which algorithm to use in a given situation can
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be answered in terms of choices 1-8. In chapter 5 we will give a compre-
hensive discussion of various aspects of each of these choices. In order
to give such guidance, however, we must first develop analytic results
concerning the asymptotic properties of the algorithms under discussion.
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4.1 Introduction

In the previous chapter we have discussed a framework for developing
and describing recursive identification algorithms. We have also studied
a number of specific identification schemes within this framework. We
now turn to the logical questions: How do these algorithms perform, i.e.,
what are the properties of the estimates {0(¢)}? How do the choices and
options that we listed in section 3.9 affect these properties?

Such questions can be answered in several ways. One way is to apply
the algorithms to known data sequences and to evaluate the obtained
estimates {0(¢)}. This is known as simulation. Simulation is a very useful
tool for investigating recursive identification algorithms. In chapter 5
we shall evaluate the algorithms and the effect of various choices mainly
by simulation. However, a serious limitation of simulation is that it may
not be conclusive. It is difficult to tell whether a simulation result has
universal implications, or merely reflects properties of the chosen data
sequence. To obtain results of more general validity we must use analysis.
In the present context, analysis means that we make certain assumptions
about the data set {z(r)} and try to calculate what the resulting prop-
erties of the estimate sequence {f(¢)} are. Since the mappings from z'
to 6(7) that we have discussed are nonlinear and time-varying, their anal-
ysis is quite difficult except in certain special cases. In general we can
analytically describe only the asymptotic properties of 6(t), i.e., the prop-
erties as ¢ approaches infinity. Such results will be given in this chapter
under the assumption that the gain sequence {y(¢)} tends to zero. There
are thus also limitations to the analytic treatment. Let us comment upon
two of these limitations here.

(1) Although analysis can provide us with information about asympto-
tic properties such as the value to which {é(t)} will converge, the asympto-
tic rate of convergence, and the asymptotic covariance matrix, it usually
does not provide any hints about how large ¢ has to be for the results to
be applicable. It may be ¢ ~ 100 or ¢ ~ 10°, which clearly makes a big
difference to the user. Therefore, to get some insight into the practical
convergence rate, transient behavior, and finite-sample properties, the
analysis must be complemented by simulation studies.

(2) The assumption that the gain sequence tends to zero is another
limitation of the analysis. The properties of the system or signal may be
varying with time. Then, as we remarked in section 2.6, we must have a
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gain that does not tend to zero in order to track the variations. In example
2.9 we gave explicit and simple analytical results in a special case of this
kind. Apart from that, few results have been given for the problem where
the true system is time-varying. When the system is slowly time-varying
the gain should tend to a small value y, > 0. The analysis we provide in
this chapter for the case y(¢) — 0 will thus have implications also for how
the algorithms behave in such a case when 7, is small enough.

There is of course a certain amount of mathematical satisfication asso-
ciated with analytical results, pushing assumptions to a minimum, etc.
The value of analysis for the user, however, is related to its implications
for the choice and understanding of algorithms. In our case the bottom
line of analysis is fairly easy to express, while the analysis itself is rather
complex and technical. We shall therefore, in the next section, provide a
preview of the results that are obtained later on in this chapter. In this
preview the user-oriented implications of the analysis will be pointed
out.

The present chapter is structured as follows. After the preview of results
in section 4.2, we discuss tools for convergence analysis in section 4.3.
Sections 4.3.1 and 4.3.2 will give the reader sufficient insight into the
character of the tools to be able to follow the rest of the chapter. Recur-
sive prediction error methods are studied in section 4.4. Pseudolinear
regressions are studied in section 4.5, and instrumental variable techniques
are analysed in section 4.6. A user’s summary of the chapter is given in
section 4.7.

Finally, we recognize that the analysis is technically difficuit. Portions
of this chapter are no doubt more difficult to read than the rest of the
book. At the same time, it is necessary to understand the basic analytical
results in order to follow the discussion in the remaining chapters. We
have tried to organize this chapter so that the reader can acquire such an
understanding, without having to get involved in the technicalities of how
things are proved. This is illustrated in figure 4.1.

4.2 Asymptotic Properties of Recursive Identification Methods: A
Preview

The general family of recursive algorithms was defined by (3.157). Here
the gradient of the prediction with respect to the parameters played a
crucial role. This gradient was denoted by (¢, 0), and the approximation
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A necessary and a sufficient path through chapter 4. ‘“Necessary™ and “‘sufficient” mean
“necessary/sufficient in order to understand the rest of the book.”

proposed in the recursive prediction error algorithm was denoted by
¥(2). In chapter 3 we also discussed some other approximation of ; see
choice 7 in section 3.9. In the pseudolinear regression approach, ()
was replaced by a vector ¢(r) [see (3.130)] and in the recursive instru-
mental variable approach it was replaced by {(¢) [see (3.91)]. It turns out
that the convergence properties of the algorithm will critically depend
on which of these approximations is used for (z). Therefore we shall
discuss the convergence properties separately for each of these choices.
In this section we will not state the underlying assumption under which
the results hold. They are, however, quite weak, and should not be con-
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sidered as restrictive when it comes to practical use of the algorithms—
with the important exception that adaptive control applications are not
included. This means that the results of the present chapter assume that
the generation of the input sequence is not based on the current estimates.
Other types of feedback are, however, allowed. Applications to adaptive
control are treated separately in section 7.3.

4.2.1 Recursive Prediction Error Methods

The general recursive prediction error method (3.72) was designed to
minimize the criterion

V(0) =El(t, 0, (1, 6)), 4.1)
where &(z, 0) is the prediction error associated with the parameter value 0:
e(t, 0) = y(1) — 3(¢t | 0), (4.2)

and E is defined as follows:
= . 1 &
Ef(y) = 1\}1—1}30? 1;1 Ef(2). 4.3)

This is done by recursively adjusting the estimates in what is believed to
be a descent direction (the negative gradient direction modified by multi-
plication with a strictly positive definite matrix R~'). The convergence
result is easy to express. The algorithm does exactly what it is required
to: The estimate 0(t) will converge w.p.1 to a local minimum of V(0) as t
approaches infinity. (This will be shown in theorems 4.3 and 4.4 in section
4.4.2.) The convergence properties of the recursive algorithm consequently
coincide with those of the off-line method, described in section 3.3.

There are two issues to be discussed in connection with this result. One
regards the word “local.” Since the algorithm is based on local search,
we cannot expect global convergence to a global minimum, if ¥(0) has
several local minima. The number of local minima will depend on the
character of the model set used. Some results about existence and non-
existence of undesired local minima for certain model sets will be reviewed
in section 5.3.

The other issue is that the quoted convergence result holds whether or
not the true system belongs to the model set. This means that even if the
true system is more complex then our models, the identification procedure
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will pick the best approximation of the system. “Best” here refers to the
prediction performance as measured by the criterion (4.1). Therefore the
algorithm is not sensitive to particular assumptions related to the true
system (which are difficult to verify): it does the best it possibly can.
This is a valuable robustness property.

Notice, however, that what is the best model approximation of a given
system in general depends on the input signal used. An approximation
that is good for a certain sinusoidal input may be bad for a white-noise
input. The recursive algorithm converges to that approximation that is
best under the input signal used during the experiment. If the true system
is a member of the model set, though, the *““best approximation” is equal
to the true system. Then the recursive identification algorithm will con-
verge to the true system description, regardless of the input, as long as
it is general enough (see section 3.2.1). Such issues are discussed in
section 4.4.4.

The asymptotic distribution of the estimate 6(¢) can also be determined.
Suppose we use a Gauss-Newton algorithm (3.72)-(3.73) with a gain
sequence such that ¢-y(¢) - 1 as ¢t » co. If 6* denotes the value to which
6(r) converges we then have

Jt[0() — 6*]e As N (0, P), (4.9)

which means that the left-hand side converges in distribution to the
normal distribution with zero mean and covariance matrix P. This is
proved in theorem 4.5 in section 4.4.3. In practical terms this implies
that probabilistic questions related to 6(¢) (such as, “What is the prob-
ability that 6(z) differs from 6* by more than 10%7") can be answered, for
sufficiently large ¢, using tables for the normal distribution. Such results
are of course useful when giving confidence intervals for the estimates.
The matrix P is the same as in the corresponding result (3.39) for the
off-line case. This means that the asymptotic properties of the recursive
algorithm are the same as those of the corresponding off-line method. This
may seem surprising, since information is continually being thrown away
in the recursive algorithm. The heuristic explanation is that when 6(z)
comes close to 6*, a quadratic Taylor expansion in 6 of the criterion
becomes very accurate. The recursive Gauss-Newton algorithm can then
be regarded as a recursive least squares (RLS) algorithm for this quadra-
tic criterion, and RLS does not destroy information, as we saw in section
2.2.1. It should be stressed, though, that this result is an asymptotic
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one. It does not imply that the recursive estimate is as good as the off-line
one after only a finite number of data has been processed.

In the case where 0* = 0, gives white prediction errors (i.e., {&(z, 0o)}
is a sequence of independent random vectors each of zero mean and
covariance matrix A,), and the algorithm (3.67) is used, we furthermore
have

R7'(0) > P =[EY(t, 0) A" ¥(1, 00)]"" w.p.last— oo, 4.5)

where R(f) is the matrix in the recursive Gauss-Newton algorithm and
P is the asymptotic covariance matrix. This means that RPEM provides
its own estimates of the covariance matrix for 0(r).

4.2.2 Pseudolinear Regressions

Consider now the case that the gradient vector ¥(¢) in the algorithm
(3.157) is replaced by the pseudolinear regression (PLR) approximation
(1) as described in section 3.7.3. The vector ¥ (¢) can be obtained from
@(?) by filtering its entries through certain filters associated with the
estimate 0(7). The exact form of these filters depends on the particular
model set that is used. For example, if we use an ARMAX model,

A(g Dy = Blg™u@®) + C(g™")e(?),

the relationship is
1
t) = =x—-o 4.6

[see (3.122)]. Here C(g™") is the current estimate of the C-polynomial.
Similarily, for the output error model

B@™)
F(g™")

the relation is

y(0) = u() + e(1)

y() = o). 4.7

1
F(q™)

We might say that the PLR approximation neglects the filtering that
should be done in (4.6) and (4.7).

One might then suspect that the success of the PLR method will depend
on how crude an approximation this is. In fact, if, in the ARMAX case,
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the true system is given by

Ao(g7 My (1) = Bo(g™Hu(r) + Colg™e(), (4.8)

then a sufficient condition for convergence of 6(7) to the true parameters
0, is that

|Cole) — 1| <1 Vo 4.9

provided the input is general enough. This condition can obviously be
interpreted as a measure of how good an approximation it is to replace
Y (2) by @(?) close to 0(r) = 6,. Notice that (4.9) can also be written as

| 1 1 ’
n —_— 4.1
Re (€™ 2 >0 Vo, 4.10)

1 1. ) "
—— — —1s strictly positive real.”
Cola™ ™ 2 yP

The analogous result holds for the output error model. These results are
proved in section 4.5.2.

While the aforementioned conditions are sufficient for convergence
it is also known that PLR algorithms may not converge. In fact, if

which is often expressed as “the filter

Re Co(ei®) > 0 Vo (4.11)

does not hold, we can always find an 4-polynomial, a B-polynomial and
a (well-behaved) input signal such that the probability that 6(r) converges
to the desired value 8, is zero. This means that as a condition on the
C-polynomial alone, (4.11) is necessary to assure convergence. These
results are proved in section 4.5.4.

Notice that these convergence results apply only if the true system
indeed belongs to the model set. If the true system is more complicated
than the models in the model set, there are no general results on to what
model the algorithm converges.

No explicit expression for the asymptotic covariance matrix for the
estimates obtained by PLR is known in general. Notice in particular that
it is not true for a PLR algorithm that R(f) converges to the asymptotic
covariance matrix (in contrast to the case (4.5) for RPEM).

4.2.3 Instrumental Variable Methods

We introduced in section 3.6.3 the instrumental variable (IV) method
as a way to estimate the parameter vector 6, in a relationship
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y(®) = 050 + v(0). 4.12)

Here {v(¢)} is a sequence of zero-mean disturbances of unspecified
character, not necessarily white noise. Convergence and asymptotic
properties of the nonsymmetric method (3.96), i.e., of

0() = 6t — 1) + YO R OO [yet) — 07t — Dop1)],
R(t) = R(t = 1) + y([{D i) — Rt — D],

ye®) =T y@),  @p(t) = T o),
t-y(@)—>last— o,

can be established by examination of the off-line expression

-1t

o) = [g 4 (k)q);(k)] ;C ©)yr(k), | (4.13)

when the filters involved in the generation of {{(¢)} are time-invariant.
The result is that if (4.12) describes the true system, then 0(¢) will tend
to 6, as t approaches infinity if

E{(H)@T(¢) is nonsingular 4.14)
and
EL(1)u(t) = 0. 4.15)

These conditions (4.14) and (4.15), in turn, are generically satisfied
for all the choices of {(¢) and prefilters mentioned in section 3.6.3, based
on time-invariant filters, provided that the system operates in an open-
loop mode and that the model orders coincide with the true system orders.
“Generically” should here be interpreted as follows: Conditions (4.14)
and (4.15) depend on the properties of the true system (4.12) as well as
on the choice of instrumental variables and filters. If, for a given choice
of {{(9)} and T(¢™'), the true parameter 0, is picked at random, then
the probability that (4.14) and (4.15) will not hold is zero. This is discussed
in section 4.6.2. The conditions for convergence are consequently quite
liberal.
Furthermore, it can be shown that

J[0(2) — 0,1 € AsN(0, P)

where an explicit expression for P can be given in terms of the true system
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(4.12), the properties of {v(f)}, and the chosen instrumental variables
and filters (see theorem 4.8). It turns out that the “‘size” of P significantly
depends on the choice of {{(¢)} and T(g™'). It is therefore of interest to
make optimal choices of these variables to minimize P. Such choices,
however, depend on the properties of the true system (4.12). It turns out
that the choice of prefilter T(g ™) is related to the properties of {v(¢)},
and the choice of {{(#)} is related to the true value 6,. These properties
are, however, unknown a priori. Hence a natural idea is to generate
{{(t)} and choose T(g~!) based on 6(s) and on current estimates of the
properties of {v(f)}, Young (1976). A closer look at these choices shows
that the resulting algorithm is in fact identical to the recursive prediction
error method for the model (3.154) with 4(g™") = 1. This is discussed
in appendix 4.E.

4.3 Tools for Convergence Analysis

4.3.1 Introduction

The asymptotic analysis of this chapter will deal both with convergence
and with asymptotic distribution. In this section we shall discuss tools
for the convergence part of the analysis. A major goal is to have the
analysis be applicable to general algorithms. Let us therefore here extract
an algorithmic structure that covers the different families of methods
previously described.

The basic structure for algorithms related to quadratic criteria is, as
we found in section 3.9,

e(r) = y(1) — 3(0), (4.16a)

R =Rt — 1)+ yOmOA (O)n7(1) — Rt — )], (4.16b)

6(t) = 6(t — 1) + py(OR™(OR(OA L (D)e(D), (4.16¢)

E(t + 1) = AB)E) + BOM)2(), (4.16d)
ye+1 N .

(col n(e + 1)> = COM)EE + 1). (4.16¢)

Here, in the parameter updating equation (4.16¢), 5(r) is a vector that
is related to the gradient of the prediction p(z) with respect to 6. We have
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in chapter 3 discussed three specific choices of 5(¢) (¥, ¢, and {; see
section 3.9).

When aiming at minimizing general criteria El(¢, 0, (¢, §)), using a
general search direction, the equations (4.16b, ¢) should be replaced by

R()=R(t— 1)+ y()H(, Rt — 1), é(t — 1), &(t), n(2)), (4.16b%)
6(1) = 6t — 1) + y(OR™ (DA, 0t — 1), £(0), n(D)). (4.16¢)

Here the functions H and h are related to the criterion function / by
expressions like (3.72), and (3.73).

Convergence analysis of (4.16) is in general difficult. A major reason
for that is the coupling between (4.16¢c) and (4.16d, e): The quantities
n(®) and &(r) are formed using (implicitly) all previous estimates (k),
k=1, ..., t— 1,which makes the mapping from z* to () fairly complex.
In the literature the following approaches have been taken to treat this
problem.

1. Associate a deterministic differential equation with (4.16). Its stability
properties will be tied to the convergence properties of (4.16 ). This approach
to convergence analysis was suggested in Ljung (1974, 1977b). It can be
applied to the general algorithms (4.16).

2. Introduce a function that plays the role of a stochastic Lyapunov function
for the problem (4.16). Use martingale theory to study the convergence of
this function and hence of (4.16 ). This approach was apparently first used
in Moore and Ledwich (1980) and Solo (1978, 1979). The approach has
so far been applied only to pseudolinear regressions.

3. Examine the expression for a “summed regression” R(1)0(z). This ap-
proach was apparently suggested by Hannan (1980) and subsequently
used by Solo (1978). It has so far been applied only to Gauss-Newton
type algorithms for fairly simple special cases.

In this chapter we shall primarily use approach (1), due to its general
applicability. In appendix 4.C we will illustrate the second approach by
giving an alternative proof for a key lemma in the analysis of pseudo-
linear regressions. The remainder of this section will be devoted to an
outline of the theory behind approach (1). The approach is based on a
theorem in Ljung (1977b), which can be regarded as the counterpart of
the martingale convergence theorem used in approach (2). That theorem



146 Chapter 4 Analysis

/
is quoted in section 4.3.3. We will in section 4.3.2 give a heuristic outline
of the proof and some intuitive explanations of the results. The required
regularity conditions on (4.16") will be stated and discussed in section
4.3.4, and the basic theorem will be formulated in section 4.3.5.

This section is structured so that the reader who is not concerned with
the formalities and technicalities in the convergence proofs may read
only section 4.3.2. This should give sufficient background for an under-
standing of the results and proofs of sections 4.4 and 4.5.

4.3.2 An Associated Differential Equation: A Heuristic Discussion

Consider the algorithm (4.16). It is a recursive stochastic time-varying
difference equation. We shall in this section heuristically investigate how
it is likely to behave when ¢ becomes large.

For sufficiently large ¢, the step size y(¢) in (4.16¢) will be arbitrarily
small, due to our assumption that y(f) — 0 as ¢ - co. Then the estimates
{6(2)} will change more and more slowly. Let us study the consequences
of this fact for (4.16d, €). We have from (4.16d)

t—1 =1

{OED) [ I1 A(é(k))] BEA()z2())- (4.17)
j=ol k=j+1

Suppose now that 6(k) belongs to a small neighborhood of a value 6 for

t — K<k <t— 1,suchthat e D,. (Remember that D,, defined by (3.24)

is the set of those 0 for which 4(8) has all eigenvalues strictly inside the

unit circle.) Then, if the neighborhood is small enough, we can write

ﬁ AB(k)) =~ A(B)X, (4.18)
k=t—K

which has a norm smaller than C- A for some A < 1. For large enough
K, we may thus approximate (4.17) as

(D~ Y- AGY T B@)20). (4.19)
j=t—K

Now we can add terms corresponding to A(0) /B(0)z(j) for j <t — LS
to this sum. That will only make an arbitrarily small change, since 4(6)
is stable. We thus have

E0 20T 2 L 4G BO:0), (4.20)
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which can be written recursively as

E(t + 1, 0) = AB)E(, 0) + B(O)z(0),

_ 4.21)
£(0,6) = 0.
As a consequence we also have
YO =3t ]0), n@)=n, 0),

_ (4.22a)
e(t) = e(t, 0),
where
L) I

(Coln « 5)) = C(0)¢, 0), (4.22b)
e(t, 0) = y(0) — 3(t | 0). (4.22¢)

When 6(¢) is close to 8 and R(?) is close to R and ¢ is large we can con-
sequently use the approximation (4.22a) to conclude that (4.16b, c)
approximately behave like

6(t) = 6(r — 1) + y()R'5(r, A e(t, 0), (4.23a)
R(t) ~ R(t — 1) + y(©) [n(e, YA 47 (¢, 6) — R]. (4.23b)

Remark Notice that in going from (4.16b, c) to (4.23) we have simply
reversed the chain of arguments that took us from (3.51) to (3.54) in
section 3.4.

Introduce the expected values
S(0) 2 En(t, HA™e(1, 0), (4.24a)
G(0) £ En(s, )A~'n"(1, 0), (4.24b)

where expectation is over z'. Since ¢ is large, we have neglected the tran-
sients in (4.21) and assumed the right-hand side of (4.24) to be time-

invariant. We thus have
0(t) = 6(t — 1) + YRS (O) + y(0)v (o),

B _ (4.25)
R() = R(t — 1) + y()[G(O) — R] + y()w(2),

where {v(#)} and {w(r)} are zero-mean random variables. Now, let At
be a small number and let ¢, ¢’ be defined by
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’

y(k) = At. ‘ (4.26)

=
Il

If 6(f) = 0 and R(¢) = R, we then have from (4.25)

6(t') ~ 0 + AR (0) + Z y(k)v(k),
= . @.27)
R(t)~ R + At[GO) — R] + Y. y(Ow(?).

Since v(k) and w(k) have zero means, the contribution from the third
terms of the right-hand side will be of an order of magnitude less than
those from the second terms. Therefore

6(r') = 0 + AR £(D),

_ _ _ (4.28)
R({#)~ R + A7[G(0) — R].

With a change of time scale, according to (4.26) such that <1 and
t' <1 + At we could regard (4.28), for small Az, as a scheme to solve
the differential equation

2 910 = Ry (0 Bo(®),
(4.29)
Ed_RD(‘L') = G(0p(1)) — Rp(7).
T

Here we use subscript D to distinguish the solution of (4.29) from the
variables in the algorithm (4.16). The chain of arguments suggests that
if for some large ¢,

o) = Optro). ROt = Rofw). .3 70) = o,

then for ¢t > ¢,

0(r) ~ 0p(7), R() = Ry(1), k‘; yk) = . (4.30)
These arguments have of course been entirely heuristic. They point,

however, to the result (4.30), that asymptotically the algorithm (4.16) can

be linked to the differential equation (4.29). The estimates 6(7) should,
in some sense, follow the trajectories of the d.e. (4.29) asymptotically.
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Figure 4.2
An invariant set D, and its domain of attraction D,.

Now, the asymptotic behavior of a d.e. is usually expressed in terms of
stability. Before giving details of the nature of the link between (4.16)
and (4.29), let us therefore pause to give a brief background of stability
theory. For details, see Hahn (1967).

A Brief Account of Stability Theory Consider a d.e. [ X = dx(1)/dt]
x = f(x). 4.31)

A set D, is called an invariant set for the d.e. (4.31) if any trajectory that
starts in D, remains there:

x(0)e D, = x(t)e D, for all 7. (4.32)
A stationary point x* of the d.e. (4.31) is a point such that

f(x*)=0. (4.33)
A stationary point is thus an invariant set, since

x(0) =x*=>x =f(x*) = 0=x(1) = x* for all 7.

Any invariant set D, has a domain of attraction D, which is such that
any trajectory that starts in D, will converge to D, as t — 0

x(0)e D = x(t)—» D, as 1 - 0. 4.34)

Obviously, D, = D.. These concepts are illustrated in figure 4.2. If D,
contains a neighborhood of D, (““is strictly larger than D,”) the set D, is
a stable invariant set. If D, equals the whole set for which the d.e. is
defined, we speak of ““global asymptotic stability”” of D,.
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Now, how can stability be proven? The usual way is to use Lyapunov
theory. Let V(x) be a positive function

V(x) = 0 for all x (4.35)

such that when evaluated along solutions to (4.31) it is decreasing:

d d d
- V(x(7) = p V(x(7))- EX(T)

(4.36)
= V’'(x(7))f(x(7)) < 0 for all x(7)

and
d V(x(1)) = 0=x(1)eD.. 4.37)
dt

Such a function is called a Lyapunov function. We see that outside D,
the function ¥(x(t)) is strictly decreasing as a function of t. But since V'
is bounded from below, it cannot continue to decrease indefinitely. Hence
x(7) must tend to D.. The condition (4.35)-(4.37) thus guarantees that
D, is a globally asymptotically stable invariant set.

To establish that D, is a domain of attraction of D,, we require (4.36)
to hold only for x(t) e D,, but introduce the condition

C> V(x) >0, V(x) = C for xedD, (4.38)

(6D, = the boundary of D,) in order to assure that the trajectories do not
leave D,. It can also be shown that if an invariant set D, has a domain of
attraction D,, then there exists a function ¥(x) with the above properties.

Connection between the Algorithm and the Differential Equation We now
return to the link (4.30) between the algorithm (4.16) and the d.e. (4.29).
With the stability language just reviewed, we could phrase our conjectures
about the connections between (4.16) and (4.29) as follows:

(A) Suppose D, is an invariant set for the d.e. (4.29) and D, is its domain
of attraction. Then, provided we know that 8(¢) e D, “sufficiently often,”
the estimate 0(¢) will tend to D, w.p.1 as ¢ approaches infinity.

(B) Only stable, stationary points of (4.29) are possible convergence
points for the algorithm (4.16).

(C) The trajectories 6,(7) of (4.29) are the “asymptotic paths” of the
estimates 0(¢), generated by (4.16).
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Notice that the statement (A) is also a statement of local convergence. If
a stationary point 6* is locally stable, it will have a domain of attraction
that contains a neighborhood of 6*. Thus if the sequence of estimates
belongs to this neighborhood sufficiently often, it will converge to 6*.

All the above conclusions (A)—(C) can be proven to be formally
correct. We shall give the formal result corresponding to (A) in the next
three subsections.

We summarize this discussion with the following recipe for conver-
gence analysis of (4.16):

1. Compute the prediction errors &(¢, ) and gradient approximations
n(z, 6) that would be obtained for a fixed and constant model 6.

2. Evaluate the average updating direction for the algorithm, based on
these variables [see (4.24)].

3. Define a differential equation that has this direction as the right hand
side:

91) = R1_>1f(91>),
R, =G(0p) — R,.

(4.39)

4. Study the stability properties of this differential equation.

Steps 1-3 are often quite easy, since £(¢) and #(¢) are typically constructed
as approximations of &(¢, 6) and #5(¢, 6) when the algorithm is derived.
(see section 3.4).

We illustrate the outlined procedure by an example.

EXAMPLE 4.1 Let us apply the foregoing recipe to a simple recursive
prediction error algorithm, estimating the parameter ¢ in a first-order
moving average model

y(@) =e(t) + ce(t — 1). (4.40)

This algorithm is a special case of the algorithm developed in section
3.7.2. With n,=n;=n,=n,=0 and n.=1 we obtain from (3.123)-
(3.125)

e(t) = y(1) — 3(), (4.41a)
R =Rt -1+ y®[¥*@® - Rt - 1], (4.41b)
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O=2et—-1+ v(t)mt//(t)b‘(t) (4.41¢)
(1) = y(1) — é(OE( — 1), (4.41d)
y(t + 1) =0, (4.41¢)
Y+ 1) =%@) — @)y (4.411)

Here we write ¢ for the estimate ¢ and note that y and R are scalars.

Siep 1 Compute the prediction errors (¢, ¢) and gradient approxima-
tions (7, ¢) that would be obtained for a fixed and constant model in
(4.414, f):

et,c) =y() —ce(t — 1, ¢),

1e.,
e(t, c)= 1 -1}’() (4.42)

Similarily, from (4.41f) and (4.42) we would get the gradient
approximation

l//(t + 1’ C) = 8([, C) - C!/j(t, C)’

i.e.,
Y(t, )= %cq_le(t —1,0). (4.43)

Step 2 Evaluate the average updating direction for the algorithm,
based on these variables: The average updating direction for a given ¢
in (4.41c) is the expected value of the quantity y(¢)e(r), evaluated with
the variables (4.42) and (4.43):

f(e) = Ey(e, o)elt, o). (4.449)

From (4.42) and (4.43) we know that both i and & are formed by filtering
{ y(D)}. The variable (4.44) will therefore depend on the covariance prop-
erties of this signal. If {y(f)} is a stationary stochastic process, then
(4.44) can be evaluated using complex integrals, as shown in (1.A.8):

_ 4 eiw . 1
Q= La F e (1 4 cem) @, (4.45)
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where @ (w) is the spectrum of {y(s)}. The actual value of f(c) thus
depends on the properties of the true signal y(7). If we suppose that this
signal can be described by

(1) = e(t) + 0.5e(t — 1), (4.46)

where {e(?)} is a sequence of independent random variables each of zero
mean value and variance 1, then calculation gives

1+ —=25¢

SO =50 4.47)

For the average updating direction in (4.41b), we similarily obtain
G(e) = E[¥*(1, 9]

1251 + ¥ — 2
- (1=c»

(4.48)

where the second equality follows if (4.46) holds.

Step 3 Define a d.e. that has this direction as its right-hand side. This
gives

Seo(®) = 7 o) (4.492)
£ Ry(s) = Glep(®)) — Ro(®) (4.490)

Step 4 Study the stability properties of this d.e.

Solving the equation numerically. We start by solving the d.e. (4.49)
numerically for some different initial conditions of ¢,(0) and R,(0),
using the expressions (4.47) and (4.48). These solutions are shown in
figure 4.3 as a function of time. In figure 4.4 we have plotted c,(7) against
Rp(7)in a phase diagram. From these figures we see that the point ¢ = 0.5,
R = 4/3 appears to be a globally asymptotically stable stationary point
of the d.e. (4.49), since all trajectories end up at this point.

Examining the right-hand side of the d.e. The function f(c) given by
(4.47) is plotted in figure 4.5. We see that f is positive for ¢ < 0.5, and
negative for ¢ > 0.5. Since R,(7) in (4.49) is always positive, this means
that, in the interval |¢| < 1, the solution cp() is increasing whenever it
is less than 0.5 and decreasing whenever it is greater than 0.5. This clearly
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ey, ‘T

0
0 z i 7

Figure 4.3
The solution of (4.49) as a function of t for different initial conditions:
A: ¢p(0) = —08, RL0)=1
B: ¢,(0) = —0.8, Rp(0) =02
C: ¢p(0) = 09, Ry0) =02
D: ¢p(0)= 08, Ry0) =2
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o 2 & (7)
Figure 4.4

The solution of (4.49) where ¢, is plotted against R, for the same inital conditions as in
figure 4.3.

Flc)
54 L
0

-5

Sl ]

-/

Figure 4.5
The function f(c) given by (4.47).
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implies that ¢,(7) must converge to 0.5, thus confirming what figures 4.3
and 4.4 show.

Using a Lyapunov Function. What we said in the previous paragraphs
can be formalized using Lyapunov theory. Try the function

W(c) = 3(c — 0.5)

as a Lyapunov function. We have

d
g W(cp(r)) = W,(cn(f))dircn(f) = [ep(r) — 0.5] - Rn( )f (cp(D)
2, [CD(f) 2] 4.50
2R e )[cD(r) 0.5]% 0= 301 (4.50)
Hence
% Wi(cp(t)) <0alwaysin |cp| < 1
and (4.51)

L Wep(s) = 0= ep0) = 0.5

4]
M
051
0 -
_0.5 -
o / Z R)
Figure 4.6a

Estimates obtained from the algorithm (4.41) with y(z) = 1/z. Here é(2) is plotted against
R(1). Algorithm initialized at # = 10 and run for 1,000 steps.

Compare this to figure 4.4. The initial values A—-D are the same in that figure and
these figures 4.6a—c.
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Figure 4.6b

As figure 4.6a, with algorithm initialized at 1 = 100 and run for 1,000 steps.

&)
C’\A\ 0
05} . >
0 -
0.5
8 A
0 ;o z £(¢)

Figure 4.6¢c

As figure 4.6a, with algorithm initialized at z = 1,000 and run for 10,000 steps.

According to the stability theory given earlier in this section, this implies
that ¢, (7) — 0.5 as 7 —» o0. When ¢,(7) - 0.5 it follows from (4.49b) that
Rp(t) must tend to G(0.5) = 4/3. The solution (¢, R) = (0.5, 4/3) is thus
asymptotically stable (with domain of attraction |¢| < 1; R > 0).

Comparing the Algorithm with the Trajectories of the d.e. To illustrate
the intuitive claim (C) that “the trajectories of (4.49) are the asymptotic
paths of the algorithm (4.41)” let us compare the trajectories in figures
4.3 and 4.4 with simulations of the algorithm. In figures 4.6a~c simula-
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tions are shown. Comparing with figure 4.4 we see that the estimates
from the algorithm stay close to the trajectories of the d.e. when initialized
at t = 1,000. When initialized at 1 = 10 the estimates quickly move away
from the corresponding trajectory. This illustrates the asymptotic nature
of the link between (4.41) and (4.49). O

In the foregoing example, we performed some fairly detailed analysis
based on an explicit evaluation of the right-hand side of the d.e. For-
tunately, it is often not necessary to do such detailed calculations. As
we shall see in sections 4.4.2 and 4.5.2, most of the analysis can be carried
out on the basis of more general relationships.

4.3.3 An Associated Differential Equation: The Basic Theorem

Based on heuristic arguments in the previous section we described a link
between the recursive identification algorithms under discussion and a
certain associated differential equation. The analysis suggested that the
convergence of the algorithm could be studied in terms of the stability
properties of the differential equation, as summarized in claims (A)—(C).

We shall in this section arrive at these claims in a formal manner. These
formal results for the analysis of recursive stochastic algorithms were
developed by Ljung (1977b, 1978a). Using a different approach, similar
results were proved in Kushner and Clark (1978). The applicability of
the results to the particular algorithms under discussion in this book is
described in section 4.3.5.

In Ljung (1977b) the following algorithm is studied:

X(l) = X(l - 1) + ’Y(I)Q(t’ X(l - 1), (p(t))’ (4523)
o(1) = A(x(t — 1))(t — 1) + B(x(t — 1))e(?). (4.52b)

The following regularity conditions are introduced (D is a subset of the
x-space, where the conditions are assumed to hold.):

C1: The function Q(¢, x, ¢) is Lipschitz continuous in x and ¢ in any
neighborhood of (%, ¢), where X € Dy and @ is arbitrary:

|Q(ta X1 (pl) - Q(tﬂ X2 (p2)| < K(f’ ?, P> U)I:|x1 - X2| + |(p1 - (p2|]
for|x, — %[ <p, |@;—@|<v,

where p = p(x¥) > 0, v = v(@) > 0. The Lipschitz constant X may thus
depend on the neighborhood.
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C2: The matrix functions 4(x) and B(x) are Lipschitz continuous in x
for x € Dg.

C3: The sequence {e(t)} is such that

Y B, k)Q(k, x, p(k, X)) > f(¥) as t - oo for all Xe Dy.

k=1

Here B(1, k) are the weights corresponding to {y(¢)} [see (2.128)], and
o(t, x) is defined by

o(t, X) = AX)e(t — 1, %) + B(x)e(r), ¢(0,x)=0.

C4: For all xe D, we have, for some C(x, 4, ¢),

S B, B[ + ok, 4 O] K(, o(k, %), p(D), v(k, 4, )
k=1

- C(x,A,c)<o0ast— 0.

Here A is the maximum eigenvalue norm of 4(X), v(¢, 4, ¢) is defined by
o(t, A, ) & ¢ Y, AHe(k)],
k=1

and K is the Lipschitz constant defined in C1.

C5: Y. y(t) = o0.
C6:y(t)y>0ast— o0.

The interpretation of these conditions is as follows. C1 and C2 assure
that the functions are smooth so that a small change in x or ¢ cannot
give a big change in the estimates. Recall that £ (1, k) =1 if y(1) =1
according to (2.129). This means that the variable

i B, K)Q(k, X, @k, X))
k=1

in C3 is a weighted average of the terms {Q(k, X, @(k, X))}. These in turn
are the average asymptotic updating steps that the algorithm uses when
{x(k)} stays close enough to a certain value x. Hence the limit f(x), that
is assumed to exist in C3 represents an average, asymptotic update direc-
tion for (4.52a). Comparing with the heuristic discussion in the previous
subsection, this value therefore corresponds to the expectation (4.24).
C4 is a technical way of expressing that no large deviations from the
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average behavior must occur. Finally, C5 expresses that the estimates
must be able to travel an arbitrary distance, and C6 implies that we may
have convergence despite random fluctuations in Q.

C3 and C4 may seem to be complex and difficult to verify. We shall,
however, show in section 4.3.5 that they are satisfied for the algorithm
(4.16").

Several different results on convergence and asymptotic paths of (4.52)
are proved in Ljung (1977b). Here, we shall concentrate on convergence
and quote the following result (corollary 1 in Ljung, 1977b, p.555).

THEOREM 4.1 Consider the algorithm (4.52) subject to the conditions
C1-C6. Let D be a closed subset of Dg. Assume that there is a constant
C < o0 and a subsequence {f,} (that may depend on the particular
sequence {e(r)}) such that

x(t)eD and |o(,)| < C. (4.53)

Assume also that there exists a twice-differentiable function V(x) in Dpg,
such that, with f(x) given by C3,

V'(x)f(x) <0, xeDy. (4.54)

Then either

x(t) = D, = {x|xeDg and V'(x)f(x) = 0} as t —» o0 (4.55a)
or
{x(r)} has a cluster point on the boundary of Dy. (4.55b)

The proof of this theorem is given in Ljung (1977b) and follows the
heuristic outline of section 4.3.2. That {x(7)} has a cluster point on the
boundary of D means that there exists a subsequence {#;} such that x(z;)
tends to the boundary of Dy as j approaches infinity.

In this theorem, no explicit reference is made to any d.e. The asympto-
tic, average updating direction for the algorithm is, according to C3,
given by f(x), so the corresponding d.e. is

2 3@ = =) (4.56)
T

We then recognize in the assumption (4.54) the Lyapunov condition
(4.36). Hence (4.54) assures that all trajectories of the d.e. (4.56) that
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start in Dy will either leave Dy or converge to D, as time tends to infinity.
It is often useful and suggestive to think of (4.54) as such a stability
condition on the trajectories of (4.56).

Let us stress that theorem 4.1 holds for any sequence {e(?)}, subject
to C3 and C4. If {e(s)} is regarded as a stochastic process, such that C3
and C4 hold w.p.1, then the conclusion of the theorem also holds w.p.1.

To illustrate the verification of C1-C6 and the application of the
theorem we give a trivial example.

EXAMPLE 4.2 (Estimation of Mean Value) Consider the algorithm in
example 2.5 for estimating the mean of a random variable:

x()=x(t—-1)+ %[e(t) —x(@t—=1)]

We see that this algorithm is obtained from the general one by

o, x, ) =0 —x, et)y=-e(®) (i.e. A(x) =0, B(x)=1), and y(¢) = I/t.

Conditions C1 and C2 are trivially satisfied with Dy = R. In C1 we can
take K(x, ¢, p, v) = 1. In C3 we find that (¢, x) = e(t) and that (¢, k) =
1/t for y(¢) = 1/t, so the condition is that

1< 1<

” Y [etk) —x] == e(k) — x
k=1

ey

should converge. This is the case if {e(?)} is such that

e(k)om ast— . 4.57)

~ =
1~

k=1

Then f(x) = m — x. To verify C4 we note that since A(x) = 0, its maximum
eigenvalue A is also 0. Hence v(¢, 4, ¢) = 0, and we had K(x, ¢, p,v) = 1.
The condition thus reads

t
Y B(t,k)» C ast— oo,
k=1

which is trivially satisfied with C = 1. Finally, C5 and C6 are satisfied
for y(¢) = 1/t
Thus we can take D = Di = R so (4.53) is satisfied. The existence of
a bounded subsequence of {e(s)} follows from the assumption (4.57).
The associated d.e. now is
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xX=m-—Xx,

which definitely is globally asymptotically stable with x = m as stationary
point. We could, e.g., take V(x) = (m — x)?/2, which gives

V/(x)f(x) = —(m — x)?,

which is negative for all x. The theorem thus tells us that x(¢) will either
tend to infinity or to m as ¢ approaches infinity.

In this trivial case we have of course not accomplished anything by
using theorem 4.1, since the assumption (4.57) about {e(s)} directly
implies that x(¢) tends to m. However, the example illustrates the basic
steps in applying the theorem. O

In the proof of theorem 4.1 it is shown that the estimates {x(¢)} follow
the trajectories of (4.56) more and more tightly as ¢ increases (see lemma 1
in Ljung, 1977b). Intuitively, we may picture the sequence of estimate as
eventually being “caught” by a trajectory and forced to follow it. This
applies only in the set Dy, where the regularity conditions C1-C4 are
assumed to hold. Outside Dy the d.e. (4.56) is not defined and hence
does not describe the behavior of the algorithm. Thus we must assure
by (4.53) that the estimates are inside D — Dy infinitely often, so that
they will eventually be captured by a trajectory. This also explains the
alternative asymptotic resuit (4.55b). Even if the stability of the d.e.
(4.56) is assured by (4.54), we have not said that its domain of attraction
coincides with D. There may therefore exist trajectories that start in D
and then leave Dg. The sequence {x(#)} could follow such a path and
leave D and Dg. Once out of Dy we have no control over the estimate
sequence, except that by (4.53) we know that it will come back into D.
But that could be anywhere along the aforementioned trajectory, and the
story could be repeated. This indicates that if the sequence of estimates
leaves D an infinite number of times (so that it will have a cluster point
on the boundary of D), then it may have a cluster point also inside D.

Projection Algorithms A remedy for the foregoing situation is to force
the estimates to remain inside a compact subset D of Dy by projecting
them according to the rule

x(n)=x(t— 1D +y(00@ x(t — 1), (),

(@) = {f(z) if x(H)eD

. . (4.58)
x(t—1) ifx()¢D
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(Several other projection rules are possible.) Then we assure that the reg-
ularity conditions C1-C4 are always applicable and that the d.e. (4.56)
will thus describe the asymptotic behavior of {x(¢)} without reservation.
This means that if no trajectory of the d.e. that starts in D ever leaves
D, then {x(#)} will not have a cluster point on the boundary. However,
if some trajectory points out of D, then {x(z)} may follow that. With
the projection (4.58), {x(#)} will then get stuck at the intersection of the
boundary and the trajectory. In that case {x(z)} converges to the bound-
ary of D (and may consequently not have any cluster point inside D).
This is a stronger result than (4.55b). We summarize it as a corollary.

COROLLARY TO THEOREM 4.1 Consider the algorithm (4.52b), (4.58) un-
der the same assumptions as in theorem 4.1. Then either

x()->D,ast—> (4.59a)
or
x(t) » 6D ast— oo, (4.59b)

where 8D is the boundary of D.

The conclusion (4.59b) may hold only if there is a trajectory of the
d.e. that leaves D (see theorem 4 in Ljung, 1977b). If the projection is
done so that the existence of a bounded subsequence of {¢(?)} is guar-
anteed, then of course the assumption (4.53) can be dispensed with in
the corollary.

With Theorem 4.1 we have obtained a formal version of the heuristic
convergence claim (A) of section 4.3.2. In Ljung (1977b), corresponding
formalizations are given also of claims (B) and (C) under conditions that
are of the same type, but not identical to C1-C6. Our main concern in
this chapter is with convergence, and therefore we shall not spend time
on giving these details here, but just quote informal versions. The result
corresponding to claim (B) is

RESULT 4.1 (Theorem 2 in Ljung, 1977b) Suppose that x(¢) given by
(4.52) converges to x* with a probability greater than zero. Then

S(x*)=0 (4.60a)
and
H(x*) = di; -f(x) has all its eigenvalues in the left half-plane.

x=xt (4.60b)
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Here f(x) is the function defined in condition C3.
The result corresponding to claim (C) is

RESULT 4.2 (Theorem 3 in Ljung, 1977b) The probability that {x()}
does not remain in an e-neighborhood of the corresponding trajectory
of (4.56) over the interval t = ¢, to t = N is bounded by

N
R
=ty

Our next goal is to apply the results quoted in this section to the general
recursive identification algorithm (4.16’). This will be achieved by ver-
ifying that the regularity conditions C1-C6 are satisfied for (4.16"). We
shall first, in section 4.3.4, state a number of assumptions about (4.16’).
Then in section 4.3.5 we shall show that these assumptions imply that
the conditions of theorem 4.1 are satisfied.

4.3.4 Regularity Conditions for the General Recursive Identification
Algorithm

In this section we shall impose a number of conditions on the algorithm
(4.16"), which will ensure the applicability of theorem 4.1.

The model set determines the form of the matrices 4(6), B(6), and C(0)
in (4.16d, e). We shall work with the following conditions on these:

MI1: D, is a compact set of R?, such that e D, = A(0) has all eigen-
values strictly inside the unit circle.

M2: The matrices A(6), B(6), and C() are continuously differentiable
w.r.t. 8 for6eD,.

Condition M1 defines D, as a compact subset of the stability region D
defined in (3.24). We have earlier (section 3.4) remarked that it may be
important to ascertain that the estimates are confined to such a region.
Let us also stress that by definition D, is the stability region for the
predictor, not for the system dynamics, and that constraining 6 to D,
does not impose any serious restriction on the model. Condition M2 is a
weak condition, that should not be restrictive in practice.

When we consider the general algorithm (4.16b’, ¢’), we must also
introduce two smoothness conditions for the function # and H. These are
as follows.
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Crl: h(t, 0, &, 1) is differentiable w.r.t. 6, ¢, and #, such that, for some
C < o0,

|h(z, 0, &, )| + |ho(2, 6, &, m)| < C(1 + |&]* + |n]*)

and

|1, (2, 0, &, )| + |hy (2, 0, &, )| < C(L + |¢] + |n])

for8eD,.

Cr2: H(t, R, 0, ¢, n) is differentiable w.r.t. R, 0, ¢, and 7 such that, for
some C < 0,

|H(t, R, 0, &, m)| < C(1 + [¢|* + |n]* + |R]),
'HR(t’ R: 0, &€, 7])| + |H0(t7 R9 0, g, 7])| < C(l + |8l2 + "1'2)’
and

|H,(t, R, 0, &, n)| + |H,(t, R, 0, &, m)| < C(1 + |¢| + |n])
forfeD,.

Here h,y denotes the partial derivative w.r.t. 0, etc.
In the algorithm (4.16) we have

H(t, R, 0,e,n)=nA"'n" — R (4.61a)
and
h(t,0,e,1) =nA"g, (4.61b)

which clearly satisfy Crl and Cr2. If the matrix A is a function of ¢, we
must require that its inverse is uniformly bounded.

In the general Gauss-Newton algorithm (3.72)—(3.73) for minimization
of a criterion El(¢, 0, ¢(¢t, 0)) we have

H(t, R, 0,e,m) =1l 0, n™ + 1,1, 0,¢e) — R, (4.62a)
h(1,0,e,0) =nil(t, 0,&) — (1, 0, ¢). (4.62b)

In this case conditions Crl and Cr2, respectively, are implied by the
following conditions on the criterion function I(z, 0, ¢).

Cr3: The function /(¢, 0, ¢) is twice-continuously differentiable w.r.t. 0
and ¢ and

|2e(2, 6, &)] + |leo(2, 0, 8)] < C(1 + |e])?,

2,2, 0, )| + |Lo(t, 0, €)] < C(1 + |e]),
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‘Ies(t9 0s 8)‘ < C
for e D,,.

Cr4: The function K1, 0, &) is three times continuously differentiable
w.r.t. 6 and ¢ and

|15£(t, g, 8)| + |lm(t, 0, 8)| + llm;(t, 0, 8)| <C,
\los(2, 0, &)| + |Loag(2, 0, &) < C(1 + |e])?,
|lg6:(2, 0, €)| < C

for e D,,.

In the algorithm (4.16") the inverse of the matrix R(¢) is used. To ensure
that no problems arise here we introduce the following condition.

R1: The generation of the matrix R(f) by (4.16b’) is such that R(?) is
symmetric and R(¢) > 81Vt for some é > 0.*

In section 4.4 we shall discuss how this condition is assured by a certain
modification of the algorithms derived in chapter 3. We shall in section
6.5 explain why such a modification should in any case be introduced for
practical reasons and how it is best implemented.

Regarding the gain sequence {y(¢)} we shall impose the condition:

Gl:lim?-y(t) = u> 0.

This condition restricts the choice of y(¢) to asymptotically behave like
u/t. We know from section 2.8 that the effect of {y(¢)} in (4.16) can be
interpreted as a “forgetting” of old data. Only the choice y(¢) = 1/t gives
equal weight to all observations. Since, for the convergence theory, we
suppose the system to be time-invariant, it makes sense to asymptotically
give equal weight to the observations. Then Gl is a natural condition. It
is, however, not necessary for our analysis—it basically just makes
certain expressions nice. Later in this section we shall remark on this
explicitly.

Conditions on the Data We have not yet introduced any conditions on
the observed data {z(¢)}. Such conditions will now be discussed.

Let the variables &(z, 0), $(z | 0) and n(z, 6) be obtained from z* by the
linear filter

* A > B means that the matrix 4 — B is positive semidefinite.
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£t + 1,0) = A40)E(, 6) + B(O)z(1), £0,0)=0,

yalo) \
(coln . 9)> = C(0)¢(, 0),

e(r,0) =y(t) — p(1] 0).

Here 0 is any value in D,. These variables played an important role in
our heuristic analysis in section 4.3.2. They correspond to what the time-
varying filter (4.16d, e) in the algorithm would produce for a constant
estimate 6. The sequences {¢(¢, 0) } and {5(z, 0)} are consequently obtained
by filtering the data sequence {z(#)}. Their properties will depend both
on {z(#)} and on .#(0).

Our first condition on {z(#)} will be phrased in terms of convergence
properties for these variables.

(4.63)

Al: The data sequence {z(?)} is such that the following limits exist for all
feD,.

() }Lm% S h(t, 0, (1, ), n(t, 0)) 2 (0)

(b) }Lm% S H(1, R, 6, o(t, 0), n(t, 0)) 2 F(R, 6).
. oy .

© 2\1{1_{’1;10 sup— ;1 [1+]z()|]? < .

This condition Al (that corresponds to C3 of section 4.3.3) on the data
sequence {z(¢)} is certainly implicit, and one may wonder how it can be
verified. We shall return to this question shortly.

Werecognizein Al(a) and A1(b) the “‘average adjustments” that would
be made in the algorithm if # were held constant. Qur heuristic derivation
of the differential equation in section 4.3.2 was based on this concept.
We notice that in the case (4.61) of a Gauss-Newton method for a quadra-
tic criterion, assumptions Al(a, b) are of the simple form

tim LS00, OAe(1, 0) = £(0), (4.64a)
N—-w N 1
lim % S0, OA 01, 6) = G(O): (4.64b)
N—-w© 1

hence
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F(R,0)=G(0) — R.

Remark The equal weights in the averages above are a consequence of
condition G1. If we used an arbitrary gain sequence {y(f)} with corre-
sponding weights {B(¢, k) } according to (2.128), we would have to replace
the sums in Al with accordingly weighted averages.

Condition Al refers to a particular observation sequence {z(¢)}. It is
often useful to regard the output sequence, and sometimes also the input
sequence, as a stochastic process, to account for the random disturbances
during the data collection. If we do that, the observed sequence {z(f)}
will be a realization of that stochastic process, and Al refers to that
particular realization. We shall then demand that condition Al holds
w.p.1, i.e., that almost all realizations of the process {z(f)} are such that
Al holds. Let us discuss what conditions must be imposed on {z(?)} in
order to assure this.

Introduce

h, = h(1, 6, &1, 0), (1, 6)). (4.65)

Then Al(a) will hold w.p.1 if the following two conditions are satisfied:

N

% S (h,— Eh) >0 w.p.las N> o (4.66a)
t=1

and

1 N

N Y Eh,—> fas N - c. (4.66b)
=1

The sum in (4.66b) that consists of expected values is of course non-
stochastic. Equation (4.66a) is the arithmetic mean of a sequence of
random variables, {h, — Eh,}, where each variable is of zero mean. The
property that such a sum converges to zero w.p.1 is known as “‘the strong
law of large numbers™ in probability theory. It is a well-known elementary
theorem that (4.66a) holds when the random variables are independent
(see, e.g., Chung, 1968). In our application, however, the sequences will
not be independent. For the strong law of large numbers to hold, though,
it is sufficient that variables for time instances far away from each other
be almost independent. We have the following result by Cramér and
Leadbetter (1967), pages 94-96 (where it is proved for the continuous-
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time case; but it is easy to see that it is valid with trivial modifications
also for the discrete-time case):

Let {x(#)} be a sequence of random variables each of zero mean and
suppose that

1P+ 5P
<C—7p"",0g2- . .67
|Ex(t)x(s)|_ 1+|t—s\‘1’0_2p<q<1 (4.67)
Then
1 N
N Y x()>0w.p.l as N> c0. (4.68)
t=1

We conclude from this that Al should hold w.p.] if we impose two
conditions: One corresponding to (4.66b) about the behavior of the
expected values (condition A2 below), and one requiring A, and A, to be
almost independent when |z — s| is large (condition S1 below), so that
(4.66a) will hold. We first formulate the two conditions and then prove a
lemma showing that they indeed imply Al w.p.1.

The first condition is

A2: The following limits exist :
Eh(1, 0, (1, 0), n(1, 0)) = £(0),
EH(1, R, 0, e(t, 0), n(1, 0)) = F(R, 0).

Here, as before,

T

Bf(w & lim - 3" E/(),

with an implied assumption that the limit exists. Expectation is here over
the stochastic process {z(r)}. We may very well choose to let {z(z)}
contain deterministic parts, such as the input sequence.

To assure that 4, and A, are asymptotically independent we introduce a
condition on {z(¢)}, basically requiring that old values of z(¢,) are almost
independent of the present value z(?); ¢ » t;,. We express this formally as
follows.

S1: Foreacht, s, t > s, there exists a random vector z%(¢) that belongs to
the o-algebra generated by z' but is independent of z* (for s =t take
z2(t) = 0), such that
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Elz() —z2(|* < C- A5, C<w, i<l

Think of z2(¢) as an approximation to z(f) computed from the new
information obtained during the time interval [, ¢]. The condition then
requires that this approximation is “very good” if the time s is remote
enough. That is to say that what happened before time s has a very small
influence on what is going on at time ¢, ¢ » s. This appears to be a reason-
able condition for most data sequences. We could phrase it as requiring
the data generation to be ‘“‘exponentially stable.”

Remark Conditions like S1 that require a sequence of random variables
to be asymptotically independent are called mixing conditions in probabil-
ity theory. Our way of phrasing it, however, is not the conventional one.

We can now give a result assuring that the condition A1 holds w.p.1:
LEMMA 4.1 Suppose that Crl, Cr2, A2 and S1 hold. Then A1 holds w.p.1.

The proof is given in appendix 4.A.

We have now imposed a series of conditions on the algorithm (4.16"):
M1, M2, Crl, Cr2, R1, G1, A2, and S1. The following example demon-
strates how the conditions can be verified.

EXAMPLE 4.3 (Example 4.1, continued) Let us verify that the regularity
conditions are satisfied for our simple example (4.41), where 6 = ¢ and
n = . This algorithm corresponds to the general one (4.16") with

_(Ee—1) _(—c 0
m’( v ) Aw‘(—c —c>’

1 c 0
wo=(") co=(° ).

z(t) = y(2), h(t, c, &, ) = e, H(, R, c,e, ) =y*—R.

Condition M1 : The eigenvalues of A(c) are in this case both equal to —c.
The condition thus is that D, = {c||c| < 1 — 8} for some (small) positive
number 4. From figure 4.5 we see that the d.e. will anyway not be defined
outside this set.

Condition M2 : The differentiability condition is obviously satisfied for
the matrices A(c), B(c), and C(c).

Condition Crl: From h(t, c, ¢, ) = e we find, with C =1,



4.3 Tools for Convergence Analysis

|B| + || = |We| +]0] < CQA + |¥|* + |e]?)
and
Byl + ko] = |e] + |¥] < CA + le| + ¥,

so Crl holds.
Condition Cr2: From H(t, R, ¢, &, ) = R — Y2 we find

|H| + |Hg| + |H| = |R— ¥* +|1] +]0] < CA + |e]* + |¢|* + |R])
and
|H,| + |Hy| = [0] + |2¢] < € + |¢] + |y

so Cr2 holds.
Condition R1: We would modify (4.41b) to

R(t) = max {3, R(t ~ ) + y()[y* () — R(z — 1]}

to ensure this condition. See also (4.95) in section 4,4.2.
Condition G1: This is just a condition on the choice of y(7).
Condition Al: This means that the limits

)

N
@ lim 5 YU 9et o)

N
®) Jim & > [R= 2 0]

=
and
N

© lim sup— ¥ (1 + [y0) < o0

t=1
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should exist. From (4.42) and (4.43) we know that y and ¢ are just filtered
versions of the signal { y(¢)}. Whether these limits exist is thus entirely de-
pendent on the properties of this signal. The requirement is basically that
sample covariances of filtered y-signals should converge. This is a weak
condition and can be assured by a variety of assumption on {y(s)}. Let
us show that S1 and A2 hold so that lemma 4.1 can be applied. For the

simple case (4.46) in example 4.1,

y(t) =e(@®) + 0.5¢e(t — 1),
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we find that y(z) is independent of everything that happened up to time
t — 2. Hence we can take, in condition S1, y2(¢) = y(t) when s < ¢ — 2, so
this condition is certainly satisfied if the fourth moment of y(r) is bounded.
In (4.46) the process y(¢) is stationary. Hence so will the filtered processes
Y1, ¢) and ¢(¢, ¢) be (apart from possible, exponentially decaying tran-
sients). This means that the limits in A2,

N N
lim % Y EY(,0et.c) and  lim % X BV,

will exist, and since S1 holds, we find from lemma 4.1 that condition Al
holds w.p.1. O

It is worth pointing out the philosophy underlying conditions M1, M2,
Crl, Cr2, R1 and G1 on one hand and A1, A2 and S1 on the other. The
former conditions all deal with functions and variables chosen by the
user, and they can always be verified in a strict sense. The latter conditions
deal with properties of the true data {z(¢)}, and hence might better be
regarded as hypotheses. This means that we can never achieve a formal
verification of them. What we do is to make certain hypotheses about
the data generation and then check that these assumptions imply the
conditions we need. From that point of view S1 and A2 are as good
as any other hypothesis about {z(f)}. SI says that the data generation
should be stable and A2 that it should be asymptotically mean stationary.
Both these assumptions appear to be reasonable.

Another often-made assumption about the data generation is that the
system can be described by one of the models in the model set (or, perhaps,
by a higher order model). For the general model (3.17) that we have used,
this would mean that

y() =t ] 6o) + e()

where {e(r)} is a sequence of independent random vectors each of zero
mean and with covariance matrix A,, and where j(t | 6,) is given by
(3.17). Then from (3.17)

@t + 1, 00) = [F(6,) + %, (06)# (06)]0(t, 65) + F(0) (;Eg)
(4.69)
() = #Oo)e(t, bp) + e(1),

where ¢, is the first p columns of 4.
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It is now easy to establish that S1 and A2 will hold for data generated
as in (4.69) if

o F(0,) + 9,(0,)# (0,) is asymptotically stable.
¢ ¢(?) has bounded fourth moments.

« 1 is a deterministic input sequence, such that the limits
N

lim le S w()u™(t + k)

N—w IV =1

exist for all k.

(Let in S1

4]
20) = (ys (t)>’

u(1)
where y2(¢) is the output of (4.69) if initialized at time s with ¢(s, 6,) = 0.)

The only situation where it is not realistic to assume S1 and A2 a priori

is when the generation of {z(7)} may depend on past estimates, such as in
adaptive control applications. Then asymptotic stationarity of {z(s)}
would be a result, rather than an assumption in the convergence analysis.

Such situations can, however, be handled with a modified but similar
approach, as explained in section 7.3.

4.3.5 A Theorem for the Convergence Analysis of the General Recursive
Identification Algorithm

In this section we shall discuss the application of theorem 4.1 to our
algorithm (4.16"):

6()= 0@t — 1) + @R-l(z)h(z, 6(r — 1), e(t), n(0)), (4.70a)
R(t)=R(— 1) + @H(z, R(t — 1), 6t — 1), e(2), n(1)), (4.70b)
() =y — (), (4.70c)
Et + 1) = AQ@)EQ) + BO(1))z(8), (4.70d)
(c oyl (1;(;2)1) = COW)E + 1), (4.70¢)
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We shall verify that the regularity conditions C1-C6 in section 4.3.3 are
satisfied for (4.70) provided that the conditions introduced in section
4.3.4 hold. In (4.70a, b) we have written u(f)/t = y(¢), keeping in mind
that u(f) - p according to condition G1.

We first slightly redefine (4.70c, d, €) to include y(?) in the &(f)-vector:

vy = (0 o (A©®) BO)
£ (’)"(z(t)>’ y (9)_( N )
B* — <0> C*(0) = (c’f(e)> _ (—cl(e) I o>‘
I C3(0) C0) 0 0
Then
£ = A0 — D)EE— 1) + B*2(0), (4.700")
sty \ _ [Crb— 1), /
(coln(t)> - (C;(é(z - 1)))é (@. (4.70¢")

The algorithm (4.70) can now be identified with the general structure
(4.52) by

0
and
_( BORK(L, 0, CHOE, CH(O)E®)
Q. x, 9) = (u(t) col H(, R, 0, CFHO)E*, c;(e)c*)>’ @72
=1, @.73)
A(x) = 4*(0), B(x)=B*,  e(i) = z(). @.74)

(We will drop the superscript * henceforth.)

Condition Cl requires Lipschitz continuity of Q(¢, x, ¢) with K(6, R,
¢, p, v) as a uniform Lipschitz constant in a p-neighborhood of 8, R and
a v-neighborhood of &. To verify this, and to find an expression for K, we
may simply differentiate (4.72) w.r.t. R, 6, and ¢ and evaluate upper
bounds for it in these neighborhoods. Straightforward calculations, using
Crl, Cr2, and M2 [and using the facts that C(6) and its derivative is
uniformly bounded in D, (according to M2), that u(¢) < & (according to
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G1), and that |R™!| < 67! (according to R1)], give
K(O,R & p,0)=C(1+v+f])>, 0OeD,, (4.75)

where C is a constant computed from J, ji, and the constants in Crl and
Cr2. Hence C1 holds with (4.75) as a Lipschitz constant.

Condition C2 follows directly from M2.

To prove C3 we have to show that, in our notation, with y(¢) = 1/1,

N
lim% S wORh(1, 0, £(t, 0), n(t, 6)) exists for fe D,
N=oo [V 4=y

N
lim% S w(O)H(, R, 0, (1, 0), 7(t, 0)) exists for 6e D.y.
N=oo [¥ 4=y

This is almost A1(a, b), except for the factors u(f) and R . We have, with
f(0) defined as in Al(a),

lim %i W()Rh(t, 0, e(t, 0), n(t, 0)) — uR™* f(B)‘

N

— tim |~ Y [p() — k]RA(2, 6, &(1, 0), 1z, 9))\

N—-w N 1

1. 1 N 5_2 3 1/3
< lim N; [u() — ]

1 N 2/3

x lim|= Y C[1 + |e(t, 0)|* + |n(z, 0)]2] 2

N—w N 1

Here the first equality follows from A1(a), and the inequality is Holder’s
inequality using R1 and Crl. Now the first factor on the right-hand side
tends to zero according to G1, and the second one is bounded according
to Al(c) (since &(t, 8) and #n(¢, #) are obtained by exponentially stable
filtering of z*). Hence

N
lim % LUOR A, 0, &1, 0), (L, 0)) = uR™'£(6). (4.76a)
N—-w 1
Similarly,

N
lim % L uOH{, R, 0, &(t, 0), n(t, 0)) = pF(R, 0) (4.76b)
N—-w 1

in view of Al(b). Consequently C3 holds, with the limits given by (4.76).
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Let us now consider C4. With the expression (4.75) for K, C4 means
that

%icn +o(t, 4 O] [1 + o, 4 ©) + £, O]
should be bounded, where
o(t, b ¢) = ck_jl AHz ().
We have
%Cé{[l + ; A |2(9)| + |, 0)|]2. [1 +; cﬂ.'_stz(s)l]}
<C, % é [1 + |z(»|]? < const, 4.77)

where the second inequality follows from Al(c). In the first inequality
we used

|E@, 0)] =

S A(0)*B(0)z(s)
s=1

t t
< ;IA(@)ll—s‘B(Q)HZ(SN <G, Zli'l_‘|z(s)|,

according to M1 and the definition of &(z, ). With this expression
inserted, the second step in (4.77) follows by calculation. The constant
C, is formed from C, C,, 4, and A,. Hence C4 holds.

Finally, C5 and C6 are trivially satisfied for y(¢) = 1/z.

We have now verified all the underlying regularity assumption of
theorem 4.1. The right-hand side of the d.e. corresponding to (4.56) will
be given by the limit in C3, i.e., by (4.76). The d.e. is consequently

L 910 = uRz 0, (@.782)
‘%Rp(r) = uF(Rp(1), Op(7)), (4.78b)

where we have written (4.78b) with R as a matrix d.e. Obviously the
positive scalar p only acts like a time scaling and does not affect the
stability properties of (4.78).
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With the conditions verified, we can now apply Theorem 4.1 and its
corollary to the algorithm (4.70).

THEOREM 4.2 Consider the algorithm (4.70) where a projection is used to
keep 6(z)in D  «» SO that there is a bounded subsequence of £(7). Assume
that M1, M2, Crl, Cr2, R1, GI, and A1l hold (see section 4.3.4). Assume
also that there exists a positive function V'(8, R), such that

%V(HD(T), Ry(1)) <0 forb,eD, 4.79)
when evaluated along solutions to the d.e.

2 0p(0) = R5* () 0p(0),

(4.80)
d
2 Ro() = F(Ry(2), 0,(2)),
T
where fand F are defined by Al. Let
D.={6,R %V(Hb(t), Rp(1)) = 0}. 4.81)

Then as t — o either {A(7), R(7)}tend to D, or {é(t)} tends to the boundary
of D,.

Remark 1 1f the sequence {z(7)} is a stochastic process and Al holds
w.p.1, then the conclusion of the theorem holds w.p.1. Notice that this
is implied by A2, Crl, Cr2, and S1 according to lemma 4.1.

Remark 2 Notice that (4.79), (4.81) imply that the trajectories of the
d.e. (4.80) that remain in D, converge to D, as T — o0. Conversely, as we
pointed out in section 4.3.2, if the d.e. (4.80) has an invariant set D, with
a domain of attraction that includes D, then the existence of a function
V with the property (4.79) follows.

With theorem 4.2 we have obtained a formal version of the heuristic
claim (A) of section 4.3.2. For the claim (B) we obtain from result 4.1
(section 4.3.3):

RESULT 4.3 Under conditions of the same character as M1, M2, Crl1, Cr2,
R1, G1, A2, and S1 the algorithm (4.70) can only converge to values
(0*, R*) that are stable stationary points of the d.e. (4.80).
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This result can be used to improve on the convergence result in theorem
4.2, by excluding from D, unstable stationary points. It can also be used
to prove failure of convergence to the desired limit.

In the case of a quadratic criterion, the algorithm has the form (4.16).
Then, according to (4.64) the d.e. (4.80) is

0 = R71(0), (4.82a)
R=G(®) - R (4.82b)
The stationary points of (4.82) are

{6, R| f(6) = 0 and R = G(8)}.

Let us linearize (4.82) around a stationary point § = 6*, R = R* = G(6%).
We then obtain

AO = [G(6%)]* H(O*)AO,

) (4.83)
AR = —AR + G'(6%)A0,
where AO = 6 — 0%, AR = R — G(0*), and
d
¥ _ 4

0=0*

and the term G’(6*)A0 is a formal way to write the second term in the
Taylor expansion of G(6* + Af). Clearly, the stability properties of the
linearized equation (4.83) are entirely determined by the matrix

L* = [G(0%)]7 H(6*). (4.85)
Result 4.3 can therefore be rephrased for the algorithm (4.16) as

é(t) can only converge to a value 0*, such that f(6*) = 0 and such that
L* (given by (4.84) and (4.85)) has all eigenvalues in the left half-plane
(including the imaginary axis).

This result will be of some use in section 4.5 when we study pseudolinear
regressions.

With this we conclude the discussion of tools for convergence analysis.
The heuristic treatment was summarized in conclusions A—C in section
4.3.2. The formal treatment is summarized in theorem 4.2. We shall now
use the tools to analyse the general algorithm (4.16") with the different
choices of “gradient vector” 5(¢): y(t) (RPEM), ¢(¢) (PLR), and {(?)
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(RIV), respectively. This will be done in sections 4.4, 4.5, and 4.6, respec-
tively.

4.4 Analysis of Recursive Prediction Error Algorithms

4.4.1 Introduction

In this section we shall analyse the general recursive prediction error
algorithm (3.72)—(3.73%):

e(t) = y() — »(), (4.86a)
R(t) = R(t — 1) + y()H(t, R(t — 1), 6(t = 1), £(t), Y (1)), (4.86b)
0(t) = 0 — 1) + yOR' D[ - 151, 6 — 1), &)

) (4.86c)

+ YOI, 0 — 1), ()],

£t + 1) = AO@)EW) + BOW®)z(), (4.86d)
(C oy1 (J/Ji)lg = COW)E( + 1). (4.86¢)
This algorithm is a special case of (4.16") or (4.70) with the choices
n(t) =y (1) (4.87a)
and
h(t, 0, e, ¥) = —I7(1, 0, &) + WiX(1, 6, ¢). (4.87b)

Recall that the RPE algorithm aims at minimizing a criterion
El(1, 0, e(1, 0)).

It can thus be regarded as a recursive counterpart of the off-line prediction
error method described in section 3.3., which minimizes the criterion
(3.30):

Va0, z%) = il([, 0, &z, B)).

_ 1
N,
The result of the analysis is that the asymptotic properties of RPEM in
fact coincide with those of the off-line prediction error method. We shall
treat the convergence properties in section 4.4.2 and the asymptotic
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distribution in section 4.4.3. The treatment in these two sections will
basically be formal and a discussion of the significance, implications, and
use of the analytic results will be deferred to section 4.4.4.

In the following sections we make frequent references to the conditions
introduced in section 4.3.4. We therefore provide a quick guide to these
conditions:

M1 : The model predictor is stable for fe D .

M2: The model predictor is differentiable with respect to the model
parameters 6.

Cr2: The function H in (4.86b) is smooth enough.

Cr3 and Cr4: The criterion function / is smooth enough.
R1: R(?) = 6L

Gl:t-y(@®)>uast— .

A2: The data generation is asymptotically mean stationary. (‘‘Data
generation” refers to the measurements {z()}.)

S1: The data generation is exponentially stable.

4.4.2 Convergence of Recursive Prediction Error Algorithms
We start with a simple example.

EXAMPLE 4.4 (Example 4.1 continued) Let us once more consider the
simple RPE algorithm (4.41). We established in example 4.3 that the
regularity conditions of theorem 4.2 hold, and we showed in example
4.1 that the d.e. is stable. Theorem 4.2 then tells us that é(¢), as generated
by (4.41) will converge to 0.5 with probability one as ¢ approaches infinity.
This value is the true one, according to (4.46).

The stability of the d.e. was proven using fairly detailed computations.
We shall now investigate whether it could be established more simply. In
the example we have, according to (4.42) and (4.46),

1 1+0.5¢7!

&(t, ¢) = ch_ly(t) =7 e e(1).

The variance of the prediction error is given by

_1125—¢

1
V(C) = EEEZ(I, C) = 3 ﬁ

(4.88)
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Simple calculation reveals that

2
Q== = ) 89)
where the last equality follows from (4.47). The average updating direc-
tion f(c) is thus the negative gradient of the prediction error variance V(c).
This is no surprise, since the RPEM algorithm (4.41) indeed was designed
to make adjustments in a negative gradient direction.

But if (4.89) holds we could use ¥(c) as a Lyapunov function for the

d.e. (4.49) rather than 1(c — 0.5)? (which we used in example 4.1), since
|
Rp(7)’

yielding the same conclusions as in (4.50)—(4.51). This choice of Lyapunov
function has promise of general applicability. O

L Y (ea®) = SV (ep(@) -2k ep(@) = — | flen(®)

General Algorithm The foregoing example indicates that the criterion
El(t, 0, &(t, 0)) can be used as a Lyapunov function to prove stability of
the d.e. associated with (4.86). This seems reasonable, since the algorithm
is designed to update the estimates in a descent direction.

We introduce the following condition.

A3: The limits
(@ EI, 0, e, 0)) = V(0),

—| d T
(b) E[El(t, 0, (1, 9))] = —f(0),

(© EH(@, R, 0,¢, 0),y(t, 0)) = F(R, 0),
exist for all 0 D, . (The symbol E was defined by (4.3).) Here H is the

function in (4.86b). Notice that A3(b) and A3(c) are just restatements of
A2 in view of (4.87b).

We have thus introduced a new condition on the criterion function.
This condition will hold when the data sequence is asymptotically mean
stationary. Then the filtered sequence {¢(z, 0)} is also stationary in the
sense that the limit in A3(a) will exist.

We note that if A3 holds, then under weak conditions

V0, z¥) = V(0) w.p.1 as N = o0
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(see Ljung (1978¢c) for a proof). This means that the criterion function
V(0) will also be the limit of the off-line criterion (3.30). Theorem 4.2
applied to (4.86) now gives the following result.

THEOREM 4.3 Consider the algorithm (4.86). Assume that it includes a
projection to keep 6(r) inside D, and to assure a bounded subsequence
of {¢()}. (The subsequence may depend on the realization of {z(¢)}.)
Assume that M1, M2, Cr2, Cr3, A3, S1, R1, and G1 hold. Then {é(t)},
w.p.1, converges either to the set

D=

or to the boundary of D, as ¢ approaches infinity.

Before giving the proof let us stress a number of important points.

» The theorem is formulated for a general search direction. The only
condition is that R(f) be positive definite. This means that the theorem
applies to the Gauss-Newton scheme (3.67) and the stochastic gradient
scheme (3.74) as well as to other descent search directions.

» Nothing is assumed about the true system, other than that the data
generation be stable (condition S1) and ‘‘asymptotically mean stationary”
(condition A3). The system itself may be much more complex than the
resulting model, but this model is the ““best approximation” of the system
in terms of the chosen criterion. Of course, it must be realized that the
true system hides behind the symbol E since all expectations are with
respect to {z(¢)}. The function V() will thus depend on the system and
will not be accessible to the user before the data is collected. (If it were,
there would be no need for identification).

o The theorem states that the estimate 6(r) converges to a stationary
point of the criterion function. In view of result 4.3 (p. 177), this can be
strengthened to convergence to a local minimum of the function ¥(0).

d —
57O =0}

Proof of Theorem 4.3 Condition A3 ensures that A2 holds, and Cr3
implies Crl. Hence lemma 4.1 shows that Al holds w.p.1. All conditions
of theorem 4.2 are therefore satisfied, and we need only find a function
V, subject to (4.79).

Our candidate for this function clearly is ¥(6) defined in A3. To verify
(4.79) we must first establish that

1o = —% V), (4.90)
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where f(0) is defined in A3. By definition,
V(6) = lim EVy(0, z%).
N—-w®

Moreover, by differentiating Vy(0, z) we obtain

VN(B My = —Z l(t 0, (1, 6)). 4.91)
Hence, in order to prove (4.90), we only have to show that the limit
operation, the differentiation w.r.t 0, and the E-operator commute when
applied to (4.91). Slnce (t 0, e(1, 6)) is dominated by a 6-independent

integrable function accordmg to Cr3 and S1, we have

d d
pEL 0.1, 0) = EZ, 6, 50, 60)

and

deNZEl(t 0, (¢, 0))-—2‘5 50,0, (2, 0)).

The right-hand side of the above expression converges according to A3.
In fact, the convergence is uniform in 6 e D, since the second derivative
of El(z, 0, e(¢, 0)) is bounded according to Cr3 and S1. Therefore, the limit
operation commutes with differentiation and we have established (4.90).
We now verify (4.79). We have that the d.e. associated with (4.86) is

2L 05(6) = Ry (00 = = R5* @7 @D,
(4.92)

d% Ry(t) = F(Ry(), 0p(1)).

Hence, along trajectories of (4.92),
d = =, d
—V(0p(1)) = V' (6p(r))—0p(7)
dt dr

= — V' (0p()Rp' (@) [V'(0p(x)]" <0,

where the inequality follows from R1. Moreover, equality is obtained
only for 0,(t) € D,. We have thus proved that (4.79) holds. Hence theorem
4.2 implies the conclusion of theorem 4.3. =
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Theorem 4.3 tells us that the estimate will converge to a stationary
point (local minimum) of the chosen criterion ¥(6), or it will get stuck
at the boundary. According to our discussion preceding the corollary in
section 4.3.3, the estimates can get stuck at the boundary only if there is a
trajectory to (4.92) that points out from D, i.e., if ¥(6) is decreasing as
0 leaves D, at some point. Now, at the boundary of the stability region
D,, V() tends to infinity. Hence, if the boundary of D, is chosen close
enough to the boundary of D, no trajectory will point out from D, and
the algorithm will not converge to the boundary of D,.

Recall that ¥ (0) is also the limit of the off-line criterion, and the off-
line estimate is usually found by local numerical minimization of ¥y(6, z"),
as we discussed in section 3.3. The convergence properties of the recursive
estimate and the off-line one will thus coincide.

In section 3.3 (example 3.7) we pointed out that ¥Vy(0, zV) is the negative
log likelihood function if the function /( -, -, - )is chosen in a certain way.
Theorem 4.3 thus implies convergence to a stationary point (local max-
imum) of the expected value of the likelihood function, i.e., it implies that
6(z) will asymptotically coincide with the maximum likelihood estimate.

The only flaw in the result is that we cannot guarantee convergence to
the global minimum of the criterion. If other local minima exist, the
estimate may converge to one of these. This must be kept in mind when
chosing criterion function and model set, which both may affect the
possible existence of “‘undesired” stationary points of ¥ (0), as we will see
in sections 5.2 and 5.3.

Gauss-Newton Algorithm with Constant Weighting Matrix Consider now
the stochastic Gauss-Newton algorithm for a quadratic criterion, (3.54),
(3.61):

0ty =0(t — 1) + y()R (WY (OA e(0), (4.93a)
RO=Rt— D)+ y0O[YyOA YT () — Rt - 1] (4.93b)
For this case obviously Cr2 and Cr3 are satisfied, and A3 takes the form
3Ee(1, O)A ™' e(t, 0) = V(0),
EY(t, O)A'e(r, 0) = f(O) (= —[V'(O]), (4.94)
Ey(t, DA YT (1, 0) = G(0).

Now condition R1 (i.e. R(t) = dI) is not automatically satisfied for
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(4.93b). The reason is that G(6) (defined in (4.94)) may be singular for
certain 0, i.e., that there is a certain linear dependence among the entries
of Y (¢, 8). (We shall see in sections 4.4.4 and 5.4 that this will happen
if the input is not exciting the system, or if the model contains too many
parameters). This means that (4.93b) has to be modified to

R() =Rt = D) + vy OAYT() — Rt — 1],

R(t)if R(1) = 61
R(t) + Ms(t) otherwise’

(4.95)
R(t) = {

where M;(¢) is chosen so that R(¢?) > dI. A modification of this sort
should always be included in any implementation of Gauss-Newton
algorithms. It is required to ensure good numerical behavior. Specific
ways of implementing (4.95) will be discussed in section 6.5. With
the modification (4.95), theorem 4.3 can be applied to (4.93), with
the result that 6(z) will converge to a stationary point (local minimum)
of

1EeT(1, O)A e(z, 0).

Gauss-Newton Algorithm with Estimated Weighting Matrix In section
3.4 we found it suitable to replace A by an estimate of the prediction error
covariance matrix [see (3.67)]:

6(r) = 6(1 — 1) + y(OR (Y OA (D), (4.96a)
R =R — 1)+ yO[¥ A @OYT() — Rt - 1)], (4.96b)
Ay =A@ — 1) + y(O)[e(0)e™() — A — D] (4.96¢)

We will assume that (4.96b) in fact is implemented in its modified form
(4.95). A corresponding modification for (4.96¢) is normally not required,
since in the typical case

Ee(t, 0)e™(t, 0) > 81, 6> 0for all 6, 4.97)

meaning that no linear combinations of the output vector y(f) can be
predicted exactly.

For the algorithm (4.96) it is not immediately clear what criterion we
are minimizing, since the replacement of A by A(7) was made by means
of an ad hoc argument. The answer is that the algorithm minimizes the
criterion
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(0, A) = LEeT(t, O)A (¢, 0) + Llog det A. (4.98)

This is proved in the following theorem. Notice that this criterion is the
expected value of the negative log likelihood function if the prediction
errors are assumed to be Gaussian with unknown covariance matrix A,
see (3.35).

THEOREM 4.4 Consider the Gauss-Newton algorithm (4.96), subject to
the same assumptions as in theorem 4.3 as well as to (4.97). Then {é(t),
A(t)} converges w.p. 1, either to the set of stationary points (local minima)
of V(0, A), defined by (4.98), or to the boundary of D, as ¢t approaches
infinity.

Proof The algorithm (4.96) is slightly more complex than (4.70), in that
it estimates not only () and R(?) but also the matrix A(¢). Therefore also
col A has to be included in the estimate vector x when forming (4.71). The
regularity conditions will still hold with this modified x, as is easy to
verify. The d.e. then becomes

0p = Rp"f(6p, Ap),

Ap=Hy(0) — Ap, (4.99)
Rp = G(0p, Ap) — Ry,

where

H(0) = Ee(t, 0)e™(1,0) (= D),

G0, A) = Ey(t, DAY (1, 0)

and

10, A) = Ey(t, O)A ™ e(t, 0).

As in the proof of theorem 4.3 we have

a _ T
f0,A) = — [6_0 Ve, A)] . (4.100)
We shall now verify thakt, along solutions to (4.99),

4 F0p(1), Ap(e)) < 0
dr
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for all § and A with equality if and only if (6, A) is a stationary point
of V.
We will use the differentiation formula

d P
dalog det A(e) = tr |:A daA(cx)} (4.101)
which can be readily established. We now have
d -
LV (6), Ap())
T

_ldz 1 -1 1d
=5 dTEa (t, Op()AL (D)e(t, 05(7)) + > dflogdetAD(t)

T

- [di %(r)] BU (1, 00() A5 @501, 05(0)
3[BT (, Op()AG DU, 0] 5 0p()
T

~Ig {ST(Z, Op(x))Ap' (2) [iAD(T)] Ap'(@)e(s, BD(T))}
2 dt

+ %u [A;l(r)di‘;/\l,(r)]

= —f(0p(1), Ap(®)) Rp" (D)f(0p(0), Ap())

—%tr {E[e(t, 0p(1))e™(t, Op(t) AR (1) [H(Op(1) — Ap(D)] AL (D)}

+ 3t (A @ LHENE) — Ap®)]}

Here, in the second equality we used (4.101) and in the third one, (4.99),
and (4.100), together with the fact that AT B = tr BA™ for column vectors
A and B. The two last terms can be written (suppressing the argument )

—Ltr {HO)A™'[H(0) — AJA™ — A™I[H(0) — A]}
= —Ltr[H(6) — AJA\[H(6) — AJA™
= —Ltr ATV2[H(6) — AJATI[H(6) — AJA™"2,
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where A™'? is a symmetric square root of A~!. This is of the form
_%trATA = —%Z,aijlz
i
for the symmetric matrix
A =AP[H©O) — AJA 2.

These facts show that

4 50,(1), Ap(c)) < 0

dr S PR

with equality only for 8, A such that
0, A dy 0, A '

and

8 -
H(0) AT V0. M) =0,
i.e., for 0, A that are stationary points of (8, A). This proves the theorem,
according to theorem 4.2. m

This concludes the derivation of convergence results for RPEM. In
section 4.4.4 we shall discuss the practical implications of these results;
but first we will investigate the asymptotic distribution of the estimates.

4.4.3 Asymptotic Distribution of Recursive Prediction Error Estimates

Once the convergence properties of a recursive estimate are known, the
next natural question is to determine “how fast” it converges to the
limit. This is usually expressed in terms of an asymptotic distribution for
the estimate. In section 3.3 we quoted such a result for the off-line predic-
tion error estimate (see (3.38)):

Ny — 0% € AsN(0, P). (4.102)

This expression means that the random variable \/N (éN — 0*) converges
in distribution to a normal distribution with zero mean and covariance
matrix P. A general expression for P is given by (3.39). We shall here
first evaluate this expression under the following conditions about the
limiting prediction errors:
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L1: The limit 8* = 6, is such that
e(2, 6y) = e(t) + r(2),

where {e(?)} is a sequence of independent random variables each of zero
mean and covariance Ay, and {r(#)} is a sequence of random variables
such that for some § > 0

Y2 8r(t) >0 w.p.l ast— co.

L2: The random variables L(z, 8,, e(1)), Lo(t, 65, e(?)), and l,(z, 8,, e(?))
have zero means and the d x d-matrix

G(OO) = E[lﬂﬂ(ta 905 e(’)) + W(f, 90)155(1’ 90’ e(’))WT(’, 90)]
is invertible.

Let us comment on these conditions. L1 requires that the limit 8, give
prediction errors that are asymptotically white. This means that 8, gives
a description of the system that is asymptotically correct. The term r(?) is
included to allow for the fact that there may be transient phenomena in
the true system (such as initial conditions) that are not accurately described
by 6,. For all practical purposes we may think of L1 as a condition that
6, is the true value of the model parameter. To illustrate the significance
of L2, consider the special case /(t, 0, ) = $¢"A"'e. Then the first part of
L2 is automatically satisfied if L1 holds. The second part, which amounts
to saying that y(z, 6,)A "'y (¢, 0,) (= G(0,)) is invertible, poses certain
conditions on the model parametrization and on the input properties.
These matters are discussed in some detail in section 4.4.4 (see examples
4.8 and 4.10).

Asymptotic Covariance Matrix for the Off-Line Estimate We shall now
evaluate (3.39) under conditions L1, L2, and Cr4 (p. 166). With the loss
function

V0, 2 =L S 14, 6, 501, 0))

1
N
and with

V(0) = EVy(0, z™),

we obtain
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[Vi@, zM]" = %ih}(l, 0, e(t, 0)) — Y1, )L (1, 0, (1, 0)),

_ N
77(6) = Him B0 [lo(, 0, (1, 6)

+ Y (1, 0)1,,(2, 0, 6(t, ONDYT(L, 6) — Lo (2, 6, ez, 0))Y(2, 0)
- lp(t’ 6)150(19 0, 8([, 0)) - %(1, B)I;r(t’ 0’ 8([, 6))]

Now when we evaluate V”(0) at 6 = 6, the three last terms will not give
any contribution to the limit, in view of L1, L2, and Cr4 (expand in
Taylor series around & = e, use independence of e(f) and Y (¢, ), and use
Cauchy’s inequality for the remainder term). Hence

V" (00) = E[lgg(t, 0, e(D)) + ¥ (t, 05) o1, Op, e(D)W (2, 6p)].
Also
gim N-E[Vi(0y, z") ] [Va(0y, zM)]

= tim L S B{[(t, 0o, (5, 00)) ~ Yt G)ITC, Bo, e, 00)]

X [l(;r(sﬁ 607 8(5’ 00)) - lp(ss 60)13(55 00: 8(5’ 60))]T}
=E{[[5(t, 05, e(t)) — Y1, 0) L] (2, 05, e(1))]
x [[§ (1, 0o, €(1)) — ¥(t, B) I (¢, 05, (1)1} £ Q(60)-

Here, the second step follows since the effect of the cross terms s # ¢
vanishes asymptotically due to L1, L2, and Cr4.

The asymptotic covariance matrix P in (4.102) for the off-line estimate
is consequently given by

P =[G(05)]7 ' Q0)[G(65)]* (4.104)

under conditions L1, L2, and Cr4.
Specializing to a quadratic criterion

I(1,0,8) =1eTA e

(4.103)

gives

G(6,) = Ey(t, ) A~ y(2, 6,), (4.105a)
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Q(00) = EY (1, o)A Ao AT YT (2, 0,), (4.105b)
which, of course, coincides with the expression (3.45).

Asymptotic Distribution for the Gauss-Newton Recursive Prediction Error
Algorithm We shall now derive the asymptotic distribution for the
recursive prediction error algorithm. The rather remarkable result is
that, if the Gauss-Newton search direction (3.73) is used and if the gain
sequence (asymptotically) is y(#) = 1/¢, then the result (4.102), (4.104)
holds also for the recursively computed estimate.

Before formulating the theorem, we shall discuss a complication in the
recursive case. We know from the previous section that the estimate will
converge w.p.1 to a local minimum of the criterion function. In the
general case we cannot exclude the possibility that several distinct local
minima exist. Hence we may converge to different points, depending on
the realization, and results such as (4.102) would not be possible. (Strictly
speaking, the same applies to the off-line situation, where the numerlcally
obtained estimate 0y may differ from the globally minimizing value 0y,
to which (4.102) refers.) To resolve this problem we shall henceforth
consider only a subset of realizations Q such that 6(1)— 6, as 1 — o
almost everywhere on €. All probabilistic quantifiers, such as “E,”
“w.p.1,” etc., will refer to Q. We express this by the phrase “conditioned
on the event 6(r) - 0,.”

We shall prove the result under the following restriction about the data
{z(O}.

S2: The sequence of data is subject to
|z(0)| < «y,
where «, is a t-independent random variable with finite variance.

The restriction that the data sequence is bounded is of course not unrealis-
tic, but it does exclude, e.g., that {z(z)} be a normal process. However,
S2 simplifies the proof.

For the asymptotic normality result, we shall also strengthen the
condition on the model set.

M3: The matrices A4(0), B(0), and C(0) defining the model set in (4.86)
are twice continuously differentiable for 6e D, .
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The main result of this section can now be formulated. This theorem
and its proof are inspired by a corresponding result in a special case by
Solo (1981).

THEOREM 4.5 Consider the recursive Gauss-Newton prediction error
algorithm
- . 1,4 T
0 =00t—1+-R (N[5 (¢, 6(t — 1), e(1)
+ YO, 0@ - 1), &(0)],

R() = R(t— 1) + %[1‘,‘,(:, 0t — 1), &(t))

+ Y (O,(1, 6 — 1), s (1) — Rt — D],

where {e()} and {Y(r)} are determined as in (4.86a, d, €). Assume that
the limits

G(6,) = I_E[lag(t, o5 (2, 05)) + W (t, B)L.(¢, O, &(t, O NV (2, 0,)],
Q(0o) = E{[I5(z, 65, &(t, 65)) — W(t, 0p)I](1, B, &(t, 6o))]
X [l(;r(t’ 005 E(t’ 60)) - lp(t’ BO)IET(Z’ 003 E(tQ 00))]T}

exist, and that S1, M1, and Cr4 (all three defined in section 4.3.4) as well
as L1, L2, S2, and M3 (defined in this section) hold. Then, conditioned
on the event that 6(¢) - 6,, we have

J1[0(t) — 0,] € AsN(O, P)

where

P=[G(0:)]' Q) [G(6o)] "
Moreover for any 6 > 0,

£F1270\6(1) — 0y| - 0 w.p.1 as 1 — oo.

The proof of this theorem is given in appendix 4.B.

The important point is, of course, that the asymptotic covariance
matrix for RPEM under the conditions of the theorem is the same as the
off-line expression (4.104). We shall elaborate on this fact later in this
section.
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Gauss-Newton Recursive Prediction Error Algorithm with Estimated
Weighting Matrix for Quadratic Criteria Let us now consider the algo-
rithm (4.96), where the prediction error variance is estimated:

66 = 0t = 1) + 1 R OWOA 02 0),
A =At-D+ %[e(t)sT(t) — At - 1], (4.106)

1 <_
R()=R(t—1)+ ?[n//(z)A YOy () — Rt — D]
We showed in theorem 4.4 that A(r) will tend to a minimum of the function
(4.98). For its asymptotic distribution we have the following corollary.

COROLLARY 4.5 Consider the algorithm (4.106), subject to the same
assumptions as in theorem 4.5. Assume that A, is invertible. Then, condi-
tioned on the event that 6(¢) — 6,, we have

JI[0() — 0,]1€ AsN(O, P)
where
P =[Ey(t, 0) A"y (1, 0p)]7". 4.107)

The proof is given in appendix 4.B.

Notice that P given by (4.107) is also the limit of R™*(¢), according to
lemma 4.B.2. Therefore the algorithm (4.106) provides its own estimate
of the covariance matrix of 6(r):

cov (6() ~ %R‘l . (4.108)
In the implementation (3.70) of (4.106) we actually work with this estimate
P() = %R‘l ®

explicitly in the algorithm. Notice the scaling Ay in (4.107)! If the output
is scalar-valued so that A, = Eg?(¢, 6,) is a scalar, then we can write

P =[Ee*(t, Oo) 1 [EY (2, 0¥ (1, 60)]7".
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When the R-equation in (4.106) is implemented without the A-scaling, as
may be the case when p = 1, it is important to remember this scale factor
before using (4.108).

The asymptotic covariance matrices for the recursive estimate 6(f) and
for the off-line estimate 6, coincide under the assumptions of the theorem.
This matrix also equals the Cramér-Rao lower bound, as we remarked in
section 3.3, if the function I( -, -, -) is chosen as the negative logarithm
of the probability density function of the prediction errors. Therefore we
cannot hope for a better asymptotic behaviour than what the algorithm
(4.106) achieves. In this algorithm the search direction is the Gauss-
Newton one, and the gain sequence is y(¢) = 1/t. We may ask how impor-
tant these two facts are for the result to hold.

First, the Gauss-Newton direction is absolutely crucial for lemma
4.B.4 to hold. Other (asymptotic) search directions will give a contribu-
tion of order |§(k)| to the term in question. It is therefore to be expected
that such directions will give strictly larger covariance matrices.

Second, suppose we use a general gain sequence {y(¢)} in the Gauss-
Newton scheme (4.106) with corresponding weights

[

B, k)= [l [1 -], B, =70, y1)=1 (4.109)

s=k+1

[see (2.128)]. Then averages like
1 13
TS
1
in the proof of the theorem will be replaced by weighted averages
t t
Y. B, k)fk), where Y B(t,k)=1. (4.110)
1 k=1

Pursuing these weights through the proof in appendix 4.B shows that the
theorem will hold with the P-matrix replaced by

1
[-P where [=lim¢- ) f2(t, k). 4.111)
P k=1

Here, of course, with y(f) = 1/t we have f(t, k)= 1/t and T = 1. It is
also straightforward to verify, using (4.110) and Schwarz’ inequality,
that I' > 1 for all y(¢)-sequences. Moreover, I' = 1 when ¢-y(f) » 1 as
t— o0.
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The fact that we obtain the same asymptotic distribution for the off-
line and the recursive estimates may seem surprising. In the recursive
algorithm we are constantly throwing away information, and we might
have expected a worse asymptotic performance. The intuitive explanation
of theorem 4.5 is, however, that the Gauss-Newton algorithm can be seen
as a least squares algorithm for a quadratically expanded approximation
of the criterion function around the current estimate. As the estimates
come close to the minimum this approximation becomes better and better,
and asymptotically no information is wasted. Compare the calculations
in section 2.2.3, where the approximations (2.42)—(2.45) become exact as
6(¢) tends to the minimum.

Notice, however, that at any given finite ¢ the off-line estimate 6, is
usually strictly better than the recursive estimate 6(¢). The theory is not
able to tell at what ¢ the asymptotic distribution becomes applicable and
whether this is significantly later for 6(¢) than for 6,. This question must
be left to simulation studies (see tables 5.4 and 5.5 in section 5.7). This
also means that while it is natural, from theorem 4.5, to use the Gauss-
Newton search direction and the step size y(¢) = 1/t asymptotically,
other choices could be advantageous in transient stages.

4.4.4 A Discussion of the Asymptotic Properties

In the two preceding sections we have proved some quite general results
about the asymptotic properties of the estimates obtained by recursive
prediction error identification. These results were given in theorems 4.3,
4.4, and 4.5. In this section we shall discuss some practical aspects of
these results; in particular, how they relate to the choice of model set
and experimental condition.

Let us first point out that we introduced several conditions for the
general case studied in this section. The results of the theorems might
hold under less restrictive assumptions when applied to particular mem-
bers in the algorithm family. For example, convergence and asymptotic
distribution for the recursive least squares (RLS) method, described in
section 2.2.1, can more easily be analyzed using the explicit (off-line)
expression for the estimate, (2.13). From this it is clear that projection
is not required in RLS, and that the estimates will converge to the only
stationary point of the criterion (which is quadratic in 6), viz, to the
global minimum.

The general convergence result (theorem 4.3) is easy to understand:
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The estimates converge to a local minimum of the chosen criterion
function V(0) = El(t, 6, e(¢, 6)). Thus, an important question is whether
other local minima (stationary points) than the global one exist. One can
think of several ways of testing and manipulating the estimates so that
they are not caught in “false” local minima. For example, the correlation
of the prediction errors can be monitored and appropriate action can be
taken if they are not found to be “white enough.” However, such proce-
dures have not been extensively tested so far.

Some results concerning the existence and nonexistence of local min-
ima for particular model sets are summarized in section 5.3. The current
knowledge of such results is, however, fairly limited. On the other hand,
the problems with ““false” local minima should not be exaggerated. When
it comes to black box models, which perhaps are the most common ones
in on-line applications, the practical experience is good. In most reported
cases convergence to the global minimum has been obtained.

When convergence is to the global minimum, theorem 4.3 can be
formulated in the following more suggestive way : The estimate converges
to the best possible predictor, i.e., to the best possible approximation of
the system (in the sense of the chosen criterion). When the system has
no input signal {u()}, i.e., when the properties of a time series, or signal,
{¥(1)} are modeled, this is a very strong robustness result. It means that
we obtain a very meaningful approximate description of the signal. For
a system with an input, the algorithm still makes the best of the situation
when the system is more complex than the model set: it chooses the best
approximation. This may have some surprising effects on the parameter
estimates of the model, which we illustrate in the following simple
example.

EXAMPLE 4.5 (Bias in LS Estimates) Suppose that the system is given by
y(O) +aoy(t — 1) = bou(t — 1) + e(t) + coe(t — 1), (4.112)

where {u()} and {e(?)} are independent sequences of independent ran-
dom variables each of zero mean and unit variance. Let the model set
be given by

y@) +ay(t — 1) =bu(t — 1) + e(?). (4.113)

It is easy to verify that values of a and b that give the best predictions
when applied to (4.112) are



4.4 Analysis of RPE Algorithms 197

a* =ap— ?9
0]
(4.114)
b* = by,
where
2 — —_—
ro = Ey?(t) = by + colco — ap) — agco + 1.

1 —at

To show (4.114) we can reason as follows: The true prediction for (4.112)
is given by

P(t]00) = —agy(t — 1) + bou(t — 1) + coé(z — 1),

where é(¢ — 1) is computed from y*~! and «'~! using (4.112). Our model
set, however, only allows a structure

|0 = —ay(t — 1) + bu(z — 1),

and cannot accomodate the term é(z — 1). It has to be replaced by an
estimate based on y(r — 1) and u(t — 1) only. Now, since u(t — 1) and
e(t — 1) are independent, it is easy to see that the best estimate of e(z — 1),
given y(t — 1) and u(t — 1), is

E[e(t — 1) | p(t — 1), u(t — 1)] = E[e(t — 1) | y(t — )] =r—10y(t — 1),

since u(t — 1) is independent of y(z — 1). The value of the parameter a
in the model is thus changed from a, to a* in order to incorporate the
contribution from cyé(¢r — 1).

The values a*, b* give a prediction error variance

€

Via*, b*)=1+c2 — @.115)

o
The “true values” a, and b, inserted into (4.113) give a higher variance:
V(ag, bo) = 1 + c3. (4.116)

For example, with by = a, = 0 and ¢, = 0.9, we have V(a*, b*) = 1.36
and V(ay, bo) = 1.81.

When we apply the recursive prediction error method (which in this
case coincides with RLS) to (4.112), (4.113) the estimates 4(¢) and b(?)
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will, according to theorem 4.3, converge to the values given by (4.114).
Since a* # a, we say that the estimate is “‘biased.”” However, it is clear
from (4.115)—(4.116) that the bias is beneficial for the prediction perfor-
mance of the model (4.113). It gives a strictly better predictor for a = a*
than for a = a,.0

The example stresses that the algorithm indeed gives us the best pos-
sible predictor, and it uses its parameters as vehicles for that. It is, how-
ever, important to keep in mind that what is the best approximate
description of a system may depend on the input used when the true system
does not belong to the model set. We illustrate this in the next example.

EXAMPLE 4.6 (Effect of Input on Best Approximation) Consider the
system

y() =bou(t — 1) + v(9) (4.117)
where
u(t) = dou(t — 1) + w(t) (4.118)

and where {v(¢)} and {w(¢)} are independent white noise sequences with
zero means and unit variances. Let the model set be given by

(| b) = bu(t — 2). (4.119)
The prediction error variance associated with (4.119) is
E[y(0) — bu(t — 2)]* = E[bou(t — 1) + v(f) — bu(t — 2)]*

= E[(body — b)u(t — 2) + bow(t — 1)]* + Ev?(?)

AY
= 7(”(1)‘10 v 2) + by + 1.
— o
Hence, according to theorem 4.3,
b(r) » b* & byd, w.p.1ast — o0,

since this gives the smallest prediction error variance. Now the model
prediction

Pt | b*) = bodou(t — 2) (4.120)

is a fairly reasonable one for the system (4.117) under the input (4.118).
It yields the prediction error variance 1 + b3, which could be compared
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to the optimal 1 for a correct model and the output variance 1 + b3/
(1 — d). Notice, however, that the identified model is heavily dependent
upon the input that was used during the identification experiment. For
example, suppose that the model (4.120) is used for another input signal,
e.g., let the input be white noise with variance 1. Then the model gives
the prediction error

y(2) — bodyu(t — 2),

which has variance 1 + b3 + b3-dZ, which is worse than the output
variance itself, which in this case is | + b3. O

The foregoing example shows that the expression ‘‘the best possible
predictor” should be interpreted with some care. There are, however,
other cases where the best approximation does not depend on the partic-
ular input even though it does not give an exact description of the system.
“Output error methods” form an example of this, as we will now see.

EXAMPLE 4.7 (Box-Jenkins Model Set) Suppose that the true system is
given by [see (3.103)]

BO(q_l) Co(q_l) 121
Fola " Dy 12D

where {e(?)} is a sequence of independent random variables. Suppose
also that the system operates in open loop (no feedback), so that the
sequences {u(?) } and {e(r)} are independent. Let the model set be given by

u(t) +

() =

y(1) = ﬁg:l)) u(t) + e(o). (4.122)

This was called an output error model in section 3.7 (see also figure 3.2b
and example 2.8). The predictor corresponding to (4.122) is given by

(| 6) = f_g;;u(t)- (4.123)

Suppose that the orders of the polynomials B and F are large enough,
so that, for some 0 = 0,

B(q™") = By(q™"), F(g™") = Fo(q™ ). (4.124)

The prediction error corresponding to (4.123) is given by
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_ ; _|Bolg™) _Blg™H Colg™)
et, )=y —3¢|0) = [Fo(q'l) — F(q—l):l u(t) + Dolq _l)e(t) (4.125)
Since {u(¢)} and {e(?)} are independent we note that any reasonable
measure of the prediction error is minimized for § = 6,, irrespective of
C, and D,. The estimate from a recursive prediction error method will
thus converge to the true description of the dynamics B, and F,, despite
the fact that the output noise in (4.121) is colored and the true predictor
for (4.121) is more complex than (4.123). Output error methods are thus
robust with respect to properties of the output noise.
Suppose now we use a more complex model

- (" (q_l) 4.126
90 = 20 + T e (4.126)
with the corresponding predictor [see (3.105) ]
" _ D(g™) D(g™") B(g™")

0 =|1 + . 4.127
$e] ) [ C(q“)]y(t) Clg™ F(q“)u(t) ( )

Suppose also that (4.124) holds, but the true noise properties in (4.121)
are more complex than those of the model (4.126), i.e., suppose that the
orders of C, and D, are higher than those of C and D. The prediction
error is given by

5,0 = 50— 50| ) = L) B’lg; - ﬁgﬂ u(t)

D™ Colg™)
Clq™ Dog )

Again the two terms of the right-hand side are independent, and the
variance of the first one is always minimized by B = B,,, F = F, no matter
what C, D, C,, and D, might be. Therefore also for the model (4.126) we
obtain a correct description of the dynamic part, B, and F,, even though
C and D may have orders too low to provide a true description of the
whole system.

Notice that the key property in (4.126) is that the dynamic part B, F
and the noise part C, D are parametrized by independent parameters.
If we used an A-polynomial as in (3.104), this would be a common denom-
inator in (4.126) and the results of this example would no longer hold
true. O

(4.128)
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We have so far discussed the “‘best possible predictor.” The ideal
situation is, of course, when this is precisely identical to the “true pre-
dictor” so that we have obtained a true system description. There are
essentially two conditions associated with this. One is that the model set
# should be large enough so that the system % actually belongs to it.
The other is that the experimental condition & (the input) should be
general enough, so that no other model is equivalent to the system under
Z . This latter condition is illustrated in the following example.

exaMPLE 4.8 (Effect of Input) Suppose that the system is given by

P(0) + a®p(t — 1) = bSu(t — 1) + bSu(t — 2) + e(t) (4.129)
and that the input is

Zu()=1. (4.130)
Let the model set be given by

My +ay(@— 1) =bu(t — 1)+ byu(t — 2) + e(d). (4.131)

This set is ““large enough” to include the true system (4.129). However,
under the input (4.130) all models .# (), such that

by+b,=b+5b3, a=a° (4.132)

will give an exact description of the system. All these models will therefore
give the best possible predictor, and convergence to the true values
b, = b3, b, = b9 cannot be guaranteed. The experimental condition
(4.130) is not “‘general enough.” O

Let us now turn to a discussion of the covariance matrix of the asymp-
totic distribution. In the case of the stochastic Gauss-Newton method
for a quadratic criterion, (4.106), it is, according to corollary 4.5, given by

P=R"1, R=[Ey(, 0)A;" ¥t 6,)]. (4.133)

As an example, let us evaluate this expression explicitly for a linear
regression model.

EXAMPLE 4.9 (Covariance Matrix for a Linear Regression) Consider the
model

vy +ay(@— 1) =bu(t— 1)+ e(d),



202 Chapter 4 Analysis

which, with

eI =(=y(t =1 u(t—1)), 0T=(a b),

is written as a linear regression

(O =0T (00 +e(); 3(t|0) =0 (1)0.

In this case y(t, 0) = @(¢). If {e(t)} is white noise with variance o2, then
the inverse of the asymptotic covariance matrix is

Ey*(r— 1) —Ey(t - l)u(t)>
Ey(t — Du(t — 1) Eu?(t— 1)

R="1Eo(09™0) = —(

(4.134)

This matrix is derived from variances and covariances of the input and
output sequences. O

The matrix R defined by (4.133) is related to the algorithm (4.106) in
the sense that R(f) » R w.p.1 as t — co. If R is not invertible, this means
that the algorithm (4.106) will encounter numerical problems when the
gain y() R~ ()Y (A ~1(2) is formed. It is therefore of interest to discuss
when R may be singular. Also, under assumption L1 (page 189), R

equals the second-derivative matrix of the criterion function V() =
L1Ee™(¢, O)Ay'e(t, 0), evaluated at 6 = 0,. Hence, if R is singular, the
criterion will not typically have a well-defined unique minimum in 6. It
will have a “valley” (along the null space of R) and certain linear combi-
nations of 8 will not converge (or converge an order of magnitude more
slowly).

If R is singular, then for some column vector L

0= LTRL = EL™(t, 0,)Aq ¥ (z, 6,) L. (4.135)
This means that the linear combination
LT‘#(’: 00)

is essentially identically zero. Now

L ) = 17| 145610)|" = s o)

d(LTe)

The last expression is the derivative of the prediction with respect to the
linear combination L6 of the parameters. Consequently, the matrix R
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is singular if and only if the prediction is ( essentially ) unaffected by changing
certain linear combinations of the model parameters.

This is a perfectly natural result. If a certain parameter (or linear
combination of parameters) does not affect the prediction, there is no
way to find out the value of this parameter from input-output data.

It is also clear that this situation arises when the model set contains
“too many”’ parameters or when the experimental condition is such that
individual parameters do not affect the prediction. In example 4.8, for
example, any change of b, and b, along the line b, + b, = const does
not effect (¢ | 6), due to the particular input (4.130).

EXAMPLE 4.10 (Overparametrization) Suppose that the true signal { y(¢)}
is described by the ARMA process

() + agy(t — 1) = e(t) + coe(t — 1).

Let the model set be given by

y(O) +a, vyt —1) +a,y(t —2) =e(f) + c,e(t — 1) + ce(t — 2).
We see that all g;, ¢; such that

l4+aqg ' +a,g72=(1+agqg (A +dg™),

1+cig  +c972=(+cog (1 +dg™"),

with an arbitrary number d give the same (and the true) description of
the system. Hence the predictor does not depend on the number d (which
corresponds to a certain combination of a;, ¢;). In this case, consequently,
the matrix R is singular. We may say that the model is overparametrized,
since it is of unnecessarily high order. O

The concept of identifiability is closely related to the problems we have
now discussed. Several different definitions of identifiability and iden-
tifiable parameters have been given (see, e.g., Gustavsson et al., 1977).
The basic idea is that a parameter is said to be identifiable if it can be
uniquely determined from the data. A model set is then said to be (param-
eter) identifiable if all its parameters are identifiable. We have thus seen
that lack of identifiability is linked to singularity of the matrix R and
can be caused by overparametrization or non-exciting inputs.

Finally, we shall derive a useful formula from the expression (4.133)
under the assumption L1 (page 189). With
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V(0) = 3EeT(t, O)AG e(2, 0),

we can tell how good the model corresponding to §(N) is by evaluating
V(6(N)). By Taylor expansion we have

V(O(N)) = V(8o) + V' (0)(B(N) — 6,)
+2O(N) — 0)T V" (0) (B(N) — 6) + o(|O(N) — 6|?).

In view of L1, ¥'(6,) = 0 and ¥”(0,) = R. By deleting the last term we
thus have

VO(N)) = V(8o) + 3tr R - (O(N) — 0p) (B(N) — 0,)".

Now é(N )} is a random variable, and we may evaluate the expectation
of the above expression w.r.t (N). Now we use

1

EB(N) — 0) (B(N) — 6,)T ~ ]—VP, P=R"!

from theorem 4.5, and obtain

EV(@(N)) ~ 7(6,) + %tr <§%P>

— 1 — d 1 d

2N 2 N
or
Ee(t, G(N)AGe™(t, O(N)) ~ Ee(t, 0,)A;'€™(t, 0p) + %, (4.136)

where d = dim 0.

This result is remarkable in its generality. It tells us that the expected
prediction error variance increases with the number of independent
parameters in the model (once the model set is large enough to satisfy
L1), irrespective of where the parameters enter the model. We used the
words “independent parameters™ to stress that the derivation assumes
R to be invertible, so that parameters that do not affect the prediction
are not included. The result, which is well known, was first derived by
Akaike (1972, 1981). The implications of the result (4.136) for the choice
of model set will be discussed in section 5.2.
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4.5 Analysis of Pseudolinear Regressions

4.5.1 Introduction

In section 3.7 we studied a single-input/single-output model (3.104),

- B(g™") Clg™)
A(@ Hy(®) ==L 2u(d) + =1—2e(d). 4.137
@) = s u@ + S e (4.137)
We found that the predictor for this model could be written as (3.118):
| 0)=0"0(, 0), (4.138)

where @(¢, 0) is defined by (3.114). The recursive prediction error method
applied to the model (4.137) was described in section 3.7.2, and the
asymptotic properties of the resulting estimates were given in the analysis
in section 4.4.

We also discussed an alternative estimation algorithm for (4.137) in
section 3.7.3. This alternative algorithm can be regarded as a recursive
prediction error algorithm in which the gradient of j(z | 6) is computed
from (4.138), neglecting the implicit §-dependence in ¢(¢, 6). For this
reason we called the algorithm a pseudolinear regression (PLR). The
algorithm can be written

e(f) = y(1) — 07(t — Do(), (4.139a)
R() =R — 1)+ y®0)[e®)e" () — Rt — 1)], (4.139b)
0(t) = 0@t — 1) + y() R (D p(De(2) (4.139¢)

[see (3.130)], where @(2) is given by (3.124). We also mentioned that it
may be of interest to replace ¢(¢) and £(¢) in (4.139b, ¢) by filtered versions:

or()) = S(g" Do), ep(t) = T(g™")e(0). (4.140)

Special cases of this algorithm are well known. We treated, e.g., the ex-
tended least squares (ELS) method in example 2.7 [F(g~!) = D(g ') = 1]
and Landau’s output error method in example 2.8 [4(g"!) = C(g™") =
D(g™") =1].

In this section we shall investigate the convergence properties of
(4.139)—(4.140). The results will differ from the analysis of the predic-
tion error algorithms in three ways.
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(1) We will have to introduce a more precise assumption about how
the recorded data is generated. The assumption is that there exists a value
8, in the model set such that (¢, 6,) is uncorrelated with ¢(¢, 6) for all
0, i.e., the assumption is

Eo(t, 0)e(t, 0,) =0 VOeD,. (4.141)

This essentially means that the system belongs to the model set, so
that the data has to be generated according to the model set (4.137) for
specific values of the polynomials: 4,(¢g™"), Bo(g™), Colg™™), Do(g™ "),
and Fy(g~"). Hence no results for the case when the system does not
belong to the model set will be obtained for PLR.

(2) The results will be more restrictive. Global convergence will be
proven only for two special cases, ELS and the output error method.
Also, in these cases convergence will depend on positive realness of
certain transfer functions associated with the true system. Recall that a
transfer function H(g™') is said to be strictly positive real if

ReH(e*®)>0, Yo-nt<w<T. (4.142)

(3) One step in the derivation of the general recursive prediction error
method was motivated by an assumption that the prediction is generated
by stable filters. Therefore we introduced projections into this stability
region, a measure that indeed proves to be necessary in practice. For
PLR it turns out, however, that stability takes care of itself. This was
apparently first proved by Solo (1978), and we have the following lemma.

LEMMA 4.2 (Solo, 1978) Consider the algorithm (4.139) with y(¢) = 1/t.
Suppose that

N
lirhrll_‘s;)lp% 21: Y20 < C*.
Then
1 N
limsup— Y 2%(s) < C*,
N-w N 1
where
(1) = y(1) — 07(D)o(0).

Remark Notice that there is no assumption about boundedness of

{u(t)} or {6()}.
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Proof Let R(f) = t- R(¢). Then, from (4.139b),
R(t)= Rt — 1) + o) (1);
and, from (4.139b, ¢),
6T(ORBO() = 0"t — DR(t — DO — 1)
+ [0 — Do)]* + 2:(0)0™ (00 - 1)
+ 2" (R (Do)
=0T — DRt — DO — 1) + y*(0)
— X1 - TR (D],
where, in the last step, we used
07(t — Do) = y() — &(0).

Summing from ¢ = 1 to £ = N gives

0T(N)R(N)O(N) = T(0)R(0)0(0) + iyz(t)

N —
=~ LEON - ¢TOR™ W]

/

Now, use that

e(0)
L+ @ "(OR™'(t — De(t)

[see (3.D.10)—(3.D.11)] to obtain

&= =e(0[1 - TR ("]

N —
%;52(1)[1 + TRt — D]
- A A A — Py
= % ;J’Z(’) + ILVHT(O)R(O)H(O) - %HT(N)R(N)H(N),

which proves the lemma. n

The foregoing lemma has important implications for the stability of
the predictor. Consider, e.g., the ELS method. Then the residuals z(¢)
are generated by

Clg™ V() = A (a7)y(0) — B.(g™"u(r). (4.143)
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Moreover, if we use residuals in the regression vector ¢(¢),
T =(—yt—=1) ... —yt—n)ut—1) ... —u(t—ny)
Tt —1) ... Bt —n)),

then the vectors {¢()} will be mean square bounded according to the
lemma. This means that the step size in the algorithm (4.139) will tend to
zero and the filter C,(¢™") in (4.143) will change more and more slowly
with ¢. Hence if C(g™!) were to remain outside its stability region or con-
verge to the boundary of this region, the generation of €(¢) in (4.143)
would be unstable, thus contradicting the lemma. Hence C,(g™?) will be
inside the stability region at least infinitely often and it will not converge
to its boundary.

After these introductory observations we now turn to the analysis. In
section 4.5.2 we shall study a special case for which explicit sufficient
conditions for convergence can be given. The differential equation asso-
ciated with the general pseudolinear regression according to theorem 4.2
is derived in section 4.5.3. Local convergence properties and possible
convergence points are discussed in section 4.5.4, and a comment on the
asymptotic covariance matrix for these estimates is given in section 4.5.5.
A summary is given in section 4.5.6.

4.5.2 Basic Convergence Results for Some Special Cases
The PLRs that we considered in section 3.7.3 were all given by (3.130):

e(f) = y() — $(), (4.144a)
R(1) = R(t — 1) + () [@r()@F(2) — R(z — )], (4.144b)
er(t) = T(g™He(®), (4.144c)
0 = 6t — 1) + y() R () pr(D)er(0), (4.144d)
ot + 1) = AW0©) (1) + BO®))z(1), (4.144e)
P+ 1) =0T o), (4.144f)
@r() = S(g" (1) (4.144g)

We assume that the invertibility of R(¢) is assured by some mechanism
such as described by (4.95). Compared to the general algorithm (4.70d, ¢),
the filter (4.144e, f) is simpler, since the gradient approximation n(f) =
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@(2) can itself be used as a state vector £(¢) (see (3.124)). The algorithm
(4.144) is thus a special case of the general algorithm (4.70) for which
theorem 4.2 was given, with ¢(¢) corresponding to #(¢). We can therefore
use this theorem to investigate the convergence properties of (4.144). Let
us for the moment proceed without verifying the regularity conditions
for this theorem. That will be done later, in theorem 4.6. Define ¢(¢, 6) by

ot + 1, 0) = A0, 0) + BO)z(); (0, 0) = 0. (4.145)

Notice that explicit expressions for this vector were given in (3.114). The
differential equation (4.80), which according to theorem 4.2 is associated
with (4.144), is then given by

|

diel,(r) = Ry @)/ (0p()),
T

(4.146)
d

= Ro() = Gx(0p(1) — R5'(0),
T

where we have found the right-hand side, as before, by evaluating the
average asymptotic updating direction in (4.144) for a given 6, R:

S#(0) = Eog(t, 0)er(1, 0), (4.147a)
G#(0) = Eox(1, )i (1, 0), (4.147b)
e(t, 0) = y(1) — 0%o(1, 0), (4.1482)
ep(t, 0) = T(g Ve(t, 6), (4.148b)
or(t, 0) = S(g™ Do, 0). (4.148¢)

This and the following two sections will be devoted to a closer study
of this differential equation.

Since f; determines the stability properties of (4.146), it is clear from
(4.147a) that the correlation between the “‘regression vector” ¢g(t, 0)
(the gradient approximation) and the prediction error &(z, ) will be
crucial for the asymptotic behavior of (4.144). Let us therefore examine
this correlation a bit more closely for the ELS method. For ELS we have

T, N =(—yt—=1) ... —y(t—n) u(t—1) ... u(t —ny)
et—1,0) ... &t —n,0)),

0T=(y ... a, by ... b, ¢ ... c,)
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Here (¢, 0) is recursively defined from z* by

e(t, 0) = y(1) — 07 0(1, 0). (4.149)
Suppose now that the true system is given by
Ao(g™Dy(t) = Bo(g™u(®) + Colg™e(®), (4.150)

where {e(?)} is a sequence of independent random variables. Assume that
the orders of the polynomials in (4.150) are less than or equal to the
corresponding model orders. Then (4.150) can be rewritten as

y(0) = 0 oo (D) + e(d), (4.151)
with

O =(al ... a2 b ... B0 Y ... Y,

Go)=(=y(t=1) ... —y(t—n) u(t—1) ... u(t—ny)

et—1) ... e(t—n)).

Using this expression in (4.149) gives
&(t, 0) = Ogpo(t) — 070 (1, 0) + ()

= O5[@o(0) — o(t, 0)] + (0o — O) (¢, 0) + e(1).
But
03[ @o(t) — (2, )] = [Cola™) — 11[e(®) — &2, )],
according to the definition of C, and ¢,. Hence
Cola D [e(t, 0) — e()] = ¢™(1, 0) (6 — 0), (4.152)

which gives us a basic relationship between 6,, &(¢, 6), and ¢(t, 0). (See
also lemma 4.3 in section 4.5.3.) This relationship motivates the following
theorem.

THEOREM 4.6 Consider the algorithm (4.144) subject to conditions M1,
M2, R1, and G1 stated in section 4.2.4. Suppose that the data sequence
{z(9)} is subject to S1. Let @ (¢, 0) and (¢, 0) be defined by (4.145) and
(4.148), and suppose that there exists a relationship

H(g™")ex(t, 0) = (1, 0)(0, — 0) + H(g De(?) (4.153)
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for some causal and strictly stable filter H(g™") and some value 6,, where
{e(r)} is a sequence of random variables each of zero mean, such that
e(t) is independent of @((¢, 0) for all 6 D ,. Assume that

Re[[H(™)] ' -3]>0 Vo, —n<w<m, (4.154)
and that
Eog(t, 0)pf(t, 0) = G¢(6) (4.155)

exists for all 0. Suppose that the algorithm includes a projection that
keeps 0(¢) in D, and such that there is a bounded subsequence of ¢(¢).
Then, w.p.1,

0(t) > D. = {0 | E[ep(t, 0) — e()]* =0} ast— oo (4.156)

/
or

6(z) converges to the boundary of D,.

Remark Note that according to (4.152) the relationship (4.153) will hold
for ELS with H = C,,.

Proof We shall apply theorem 4.2 to (4.144). All the regularity condi-
tions of this theorem are satisfied, since Crl and Cr2 are satisfied for the
choice of & and H in (4.144b, d). Moreover, S1 and (4.155) imply that
Al holds w.p.1. (lemma 4.1). The associated differential equation (4.80)
is given by (4.146)—(4.148). Using (4.153) we can write

1¢(0) = E@g(t, 0)eg(t, 0)
= E@g(t, 0)@F(t, 0)(0, — 0) + Epg(t, 0)e(r)
= G(0)(6, — 0),

where

. 1

(pF(t’ 9) = m(pi‘(t, 6) (4157)
and

Gr(0) = Eog(t, 0)¢1 (¢, 0). (4.158)

Here we also used the fact that e(f) and ¢g(¢, 6) are independent. The
d.e. is thus
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2 gy() = R3*(Ge(0p() [0 — Op(0)].

(4.159)

dit Rp(7) = Gp(8p(1) — Ry(n).

We shall now show that (4.154) implies that the matrix
Gr(0) + GF(6) — Gx(0)

is positive definite: For any column vector L # 0, define
z(1, 0) = LTp.(1, 0), 2(1, 0) = LT @(1, 0).

Then [see (4.157)]

(1, 0) — %Z(t, 0) = {[H(q_l)]_1 - %} z(1, 0)

and [see (4.155), (4.158)]
LT[GH(0) + GF(0) — Gx(O)]L

— 2Ez(1, 0) [z*(z, 0) — %z(t, 9)]

—2 J @, () {[H(ei“’)]_l - %} do

) J ®,(w) Re {[H(e"”)]—1 — %} do > 0.

Here ®,(w) is the spectral density for z(z, 0), and the second equality
follows from (1.A.8). To be exact, ®,(w) is the Fourier transform of
r(k) & Ez(t, 0)z(t + k, 0). Equality in the above inequality will hold only
for ®,(w) =0, i.e., only for

E[z(t, 0)]* = E[LT (1, )]* = 0.
We have thus established that
LY(Gr+ GF — Gp)L = Oforall L,
and that equality holds only if
E[LT (1, 0)]* = 0.



4.5 Analysis of PLRs 213

With this property we can now show that

V(0, R) = (0 — 00)TR(0 — 0,)

is a function that satisfies condition (4.79) of theorem 4.2 when applied
to (4.159). We have

2y (05(2), Rpl®))

dr "> P

= —[05(x) — 06]" G (0p(x)) [05(7) — 0]
—[0p() — 06" G (Op(c)) [0p(x) — 6,]
+ [00(1) — 06]"[Gr(0p(2)) — Rp(x)] [0p(x) — 6,]
= — [05() — 01" [Gr(Op(®)) + GE(05(x)) — G(Op(2))
+ Rp(t)] [0p(x) — 6] <0,
with equality only in the set
D, = {0 E[(0 — 0)Toy(t, 0)]* = 0},

where 6 — 6, corresponds to L above.

From theorem 4.2 we thus see that (f) — D, w.p.1ast— oo. It remains
now only to prove that this set D, is the same one as in (4.156). But
it follows from (4.153) that E[(0 — 0,)"@s(t, 0)]> =0 implies that
E[ex(t, 0) — e()]* = 0, and hence the theorem is proven. =

Remark Notice that the condition

Re {[H(ei“’)]‘1 - %} >0

is equivalent to

|H(e"‘°) — 1| < 1. (4.160)
This can be seen as follows:

2Rez —|z|?
Re I_1 > O¢L|z| >0<2Rez>|z|?%,
z 2 ‘z‘ 2
|z—1|<le-DE—-1)<le|z|* —2Rez+1< 1
Hence the positive realness condition can also be regarded as a condition
that H(g™!) should be close to the unit transfer function.



214 Chapter 4 Analysis

COROLLARY 4.6 Consider the gradient version of the algorithm (4.144)
in which R(?) is replaced by r(¢) - I, where

P =t = 1) + 30 [|oeO] - r(t — D].

Let the conditions of the theorem hold, with (4.154) weakened to
ReH(E™) >0 Vo, —n<w<nm. 4.161)
Then the conclusion of the theorem holds.

Proof The associated differential equation is in this case

1

rp(7) GF(HD(T)) [00 - HD(T)],

d
d’f D(r) =
(4.162)

£ 1) = 4r(0p(0) — 15(0),

where

gr(0) = Ei‘PF(t, 0)|2~

With ¥V(0) = |6 — 6| as a Lyapunov function for (4.162), we see that it
is only required that G(0) be positive definite, and this is implied by
(4.153) and (4.161). =

Remark In view of the discussion following lemma 4.2 in the section
4.5.1, we see that the projection into the stability region D, will not be
necessary. Nor will the estimate converge to the boundary of the stability
region. The assumptions in theorem 4.6 regarding this can therefore be
dispensed with, and the conclusion (4.156) still holds for the algorithm
(4.144).

Theorem 4.6 can also be proved using the martingale convergence
theorem. This latter proof is capable of handling the stability problems
in a nicer way. The conditions on the sequence {e(¢)} in (4.153) are,
however, slightly more restrictive. The details of this approach are given
in appendix 4.C.

Application to ELS The condition (4.153) of theorem 4.6 imposes a
restriction on the model structure, and it prevents the application of the
theorem to the general PLR algorithm. Several special cases of interest
can, however, be treated. From (4.152) we see that the theorem is appli-
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cable for ELS with H(g™!) = Cy(q™!). Also, the regularity conditions M1
and M2 are trivially satisfied for the models we are discussing. We shall
assume that condition S1 about the true data is satisfied. This is the case,
e.g., when they are produced by (4.150) and the input is a deterministic
sequence or a stochastic process with rational spectral density or a combi-
nation of these. (See the discussion at the end of section 4.3.4.) We shall
also assume that R1 and G1 (p. 166) hold. Finally, condition (4.155) will
hold provided the limits

Eu(Hyu(t — k) and Ee(He(sr — k)

exist, since the (¢, 8)-vector consists of elements obtained by filtering
u' and e’ through constant filters. We can consequently apply theorem 4.6
to ELS and find that the estimate 6(f) will converge w.p.1 to the set

D, = {0 | E[e(t, 0) — e(1)]* = 0} (4.163)
as t — o0, provided the filter

| 1

"3 (4.164)

is strictly positive real, and provided the data are described by the system
(4.150).

Remark Notice that we have so far made no assumption that the repre-
sentation (4.150) should be of minimal order. This gives a certain amount
of freedom for the condition (4.164), as pointed out by Shah (1981).
Suppose, e.g., that a true, minimal order representation is given by

Ao(g™(0) = Bo(gHu(r) + Colg™Ve(),

where the orders of the polynomials are all 7. Then apply ELS with
model orders n > 7. It is then a sufficient condition for convergence to
D, that there exists a monic* polynomial G(¢~!) of order n — 7 such that

N f—

[G@HColg™)] ™" ~

is strictly positive real. The reason is that we can regard

G(g™ ) Ao(g My (0) = G(g ™) Bolg Hu(t) + G(g™")Colg Ve(?)

*monic: The leading coefficient is a **1.”
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as a true (although not minimal) description of the system. Notice,
though, that such an increase of the model orders may cause problems
in the algorithm (see example 4.10).

All models in the set D, give the same input-output description of the
system, since they give the same prediction errors. If the model orders
and the input signal are such that no two different models can give the
same description of the true system, we conclude that D, = {6,}. Then
we obtain convergence of 6(¢) to the true parameter values.

Consider now the ELS scheme with filters as in (4.144c, g). The rela-
tionship between &z(¢, 0) and @g(¢, 6) will be given by

CO(q—l) I:T( —I)SF(I 0):| S( 1—1)(pF(t’ 0)(00 - 0) + CO(q—l)e(t)9

according to (4.152). This can also be written

S(g™HColg™)

_ S@NCd™) o1
T eplt, 0) = @p(t, 0) (0, — 0) + 0 [T(g"He()].

T(q™)
Comparing this to (4.153), we see that theorem 4.6 requires T(g~ "e(?)
to be uncorrelated with ¢@g(t, 6)v6e D ,. [See the sentence following
(4.153).] Since @g(z, 8) contains y(z — 1), this will normally be the case
only for T(g™ 1) = 1.

We thus have the following general result.

Consider the ELS method with filtered variables according to (4.144).
Suppose that T(g™"') = 1. Then 6(f) will converge to D,, given by (4.163),
provided that

[S(gHCog™H] ™ = % is strictly positive real (4.165)

and provided that the true system is given by (4.150), with orders less
than or equal to those of the model.

Notice that we could think of the filter S(g~') as a prior estimate of
1/Co(q™1), since if these are close enough (4.165) will hold.

Application to Output Error Methods The relationship (4.153) exists also
for Landau’s output error method (example 2.8), obtained from the gener-
al scheme by setting 4(g™") = C(¢™!) = D(g”"') = 1. In this case we have
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3] 0) = w(t, 6) = l;,g:liu(t) (4.166)

[see (3.111) and (3.120)]. With
0T=(®, ... b, f1 ... /)

and

eI, =wi—1) ... ut—ny) —wt—1,0) ... —w(t—ng,0)),
we can write (4.166) as

J(t]0) =0T, 0). (4.167)
Now suppose that the true data can be described by

70 = 20+ w09 @.168)

for some polynomials B, and F; of degrees equal to those of the model
(4.166), and a disturbance sequence {v(z)}. The relation (4.168) can be
written

¥ = 6300(0) + v(0) (4.169)
with

9(-)[=(b(1) b,?b ... ,,Of),

OIO =t —1) ... ut—m) —wolt—1) ... —wolt—ny),

where

wolt) = 229Dty = ya) — v(o).

Folg™)
From (4.169) and (4.167) we obtain
e(r, 0) = y(1) — 07 (1, 6)

= 0500(2) — 070 (1, 0) + v(r)

=65 [@o()) — 01, )] + (6o — O)T@(t, 6) + v(1)

= —[Folg™) — 1][wo(t) — w(z, )] + (6 — 0) "0 (1, 0) + v(2).
Using that wo(r) = y(1) — v(¢) and that w(z, 6) = y(¢) — e(1, 6), we can
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rewrite this expression as
Folg e, 0) = @™ (t, 0)(6, — 0) + Fo(g~ o (®). (4.170a)
With filtered variables as in (4.144) we obtain

Fog™H)Sg™H
T(q—l) SF(I’ 0)

4 -
— 0F(t, 0)(8, — 0) + O@ISE D o1y (4.170b)
T(¢g™)
This is exactly of the form (4.153) in theorem 4.6. We must then also
require that the noise sequence T(g!)v(¢) has zero mean and is indepen-
dent of @g(t, 0) V0. However, @g(t, 0) is constructed entirely from the
input sequence. Therefore if the measurement noise {v(¢)} is independent
of the input this condition will hold. The regularity conditions of theorem
4.6 will hold just as for ELS. We thus have the following result.

Consider the output-error method obtained from the general PLR with
A(g™") = C(g*) = D(g™") = 1. Assume that the true system is given by
(4.168) with the measurement noise {v(f)} independent of the input
sequence {u(#)}. Assume also that

T@™ 1. . ..
——1 2 — — g strictly positive real. “4.171)
Fog™)S@ D 2 P

Then 6(¢) converges to
D, ={0|E[5(t|0) — wo(t)]* =0} w.p.1 as t > c0.

If the input sequence is not independent of the measurement noise (e.g.,
due to output feedback) it is also required that T(g ')v(¢) be a white
noise sequence.

These two schemes, ELS and Landau’s output error method, are
essentially the only PLRs for which sufficient conditions for convergence
are presently known. We can of course use theorem 4.2 to investigate the
convergence properties of any PLR algorithm, by studying the associated
differential equation (4.146)—(4.148). In section 4.5.3 we give an explicit
expression for this equation; however, we will not be able to give an
analytic stability treatment of the d.e. in the general case.
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4.5.3 The Associated Differential Equation for the General Pseudolinear
Regression

The general PLR algorithm (4.144) is associated with the d.e. (4.146)—
(4.148) according to theorem 4.2. The expressions for fi() in this d.e.
can be given a more explicit form by using the particular structure of the
algorithm.

We shall start the analysis by deriving an expression for how &(z, ),
given by y(¢) — 8T (z, 0) [see (4.138)], relates to the prediction error for
another value of 0, say 6,. To derive this expression, it is useful to intro-
duce the partitioned structure [see (3.110)—(3.114) ]

@) =(—y@—1) ... =y(t—n,)),

0T =(a, ... a,),

e t, )=t —1) ... u(t—ny) —w(t—1,0) ... —w(t—ng,0)),
=Gy . by fi oo S,

oIt 0)=(t—1,0) ... ett—n,0 —v(t—1,0) ... —o(t—ny, 6)),

0f=(c, ... e, dy ... d).

Then

@1, 0) = (¢, () @1, 0) @J(1,0))

and

0T = (0] 6 6.
We now have the following result.

LEMMA 4.3 Let the value 0 correspond to the model (4.137) and let
0, €D, correspond to the model

- B,(¢™h) Culg™
l =
A a7y (@) F,(q-l)“(’) +5 ‘a ,l)e(t) 4.172)
Then the prediction errors are related by
e(t, 0) = (6, — 0)T@(1, ) + &(1, 6,), 4.173)

where
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@T(t, 0) = (@, (1) ¢.(1,0) ¢J(1,0)) (4.174)
with
. Dygh
¢, = C*(q“)%(t)’
(4.175)

D,¢™
C, (g HF, (g™

(,0).

¢u(t, 0) = @.(t, 9),

1
P.(t, 0)=——x0.
@9 C*(q 1)

Proof Consider first the expression given by (4.166). In the present
notation we have

w(t, 0) = B(g"u(®) — [F(g™") — 11w(s, 0)
=bju(t— 1)+ - + b, u(t —np) — fiw(t -1, 0) —f,,!w(t —ng, 0)

= 07 9.(t, 0). (4.176)
Hence
w(t, 0) — w(t, 0,)
= 0,01, 0) — 0, ,0,(1,0,) (4.177a)

= (07 — 05.00.(1, 0) — 07 ,[o.(t, 0,) — 0,1, 0)].
Now by definition of ¢, we have
[o.(t, 0,) — 9.6, O]"
=0 ... 0 wt—-1,0—w(-1,6)] ... (4.177b)
oo [wlt —ng, 0) — w(t —ng, 0)]).

Recall that the F-polynomial corresponding to 0, ,is F, (¢~ "). Then (from
(4.177b) and the definition of 6,)

Osul@ut, 0,) — 0,(1, )" = [F(g7") — 1][w(t, 0) — w(t, 6,)].

Inserting this into (4.177a) gives

F (g H[w(t, 0) —w(t, 0,)] = (6, — 0, )" .(1, 0). (4.178)
Define the vector ¢/ (t, 6) by
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@i, 0) = ?.(1, 0), (4.179)

1
F g™
ie., @f(t, 0) is obtained by filtering the data vector ¢,(t, 6) through
1/F,(g""). Then (4.178) can be written

[w(z, 0) — w(t, 0,)] = (6, — 6, ) 0L (t, 0). (4.180)

We are now prepared to turn to the expression for the residual. This is
handled similarly:

e(t, 0) —e(1,0,)
= —0Tp(1,0) + 0,0, 0) — 0 (s, 0) + 0] 0(s,0,) (4.181)
= (0, — 0) "oz, 0) + 0] [o(s, 6,) — o(t, O)].
As above, we find that
0L, 0,) — (1, 0)]
= [Fg™) — 1][w(t, 0) — w(, 0,)]
+ [Dy(¢7) — 1][v(t, 0) — v(z, 6,)]
+[1 = Culg™H][e(t, 0) — &(t, 0,)].
From (3.112) we have
v(t, 0) — v(t, 0,) = [4(g7") — A, (g HIy(®) — [w(z, 0) — w(z, 0] (4.183)
= —(0, — 0,,)" 0,() — [w(t, 0) — w(z, 0,)].
The first term of (4.181) can be written
0 — 0,70, 0)
=0, — 0,,,)"0,(0) + (0, — 0,,)70,(t, 0) + (0. — 0, )T 0.(2, 0).
Collecting (4.182)—(4.184) and (4.180) into (4.181) now gives
Cylg D e, 0) — ez, 6,)]
= (04, — 0)"Do (g7 )0, (1) + Oy — 0Dy (a7 D (1, 0) (4.185)
+ (Oy,c — 07 0.(1, 0).

Now we introduce ¢(z, 0) as in (4.174)—(4.175), and we find that (4.185)
transforms into (4.173), and the proof is complete. m

(4.182)

(4.184)
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Remark Note that the expression (4.173) holds for any two values 6
and 0, in the model set. Notice also the relationship with the gradient
expressions (3.119). Clearly these derivatives could be derived from (4.173)
by letting 6, — 0. However, lemma 4.3 is not a direct consequence of the
mean value theorem.

We also note that when specializing to F(g™!) = D(g"!) = 1 we obtain
(4.152) and when specializing to 4(g™!) = C(g~!) = D(¢™") = | we obtain
(4.170a).

Now assume that there is a value 0, in the model set such that
a true description of the system is obtained, in the sense that &(t, 6;)
= T(qg™Y)e(t, 0,) is independent of ¢.(¢, 0), for all 0, and further assume
that it is of zero mean. Except for the output error method case, this holds
in general only when 7(q ') = 1and {&(¢, 6,) } is a sequence of independent
random variables. We then have, from (4.147) and (4.173) with 0, = 0,,

Jfe(0) = E(pF(t’ 0)ex(t, 0)
= E@i(t, 0)@5(t, 0)(6p — 0) + Egg(t, O)ex(t, o) (4.186)
= Gx(0)(0, — 0)

where

Gr(0) = Ege(t, 0)31 (2, ) (4.187a)
and

or(t, 0) = S(g”Ho(t, 0), (4.187b)
Gr(t, 0) = T(g"H)¢(1, 0), (4.187¢c)

with @(t, 6) given by (4.174)—(4.175). The d.e. associated with the general
PLR algorithm (4.144) is thus

2 05(2) = Ry GO [0 — Op()],
(4.188)

d
FTRD(I) = GF(9D(f)) — Rp(1),

where, as in (4.147),

G¢(0) = Eor(t, 0)@i(t, 0).
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With theorem 4.2 and the d.e. (4.188) we can investigate the convergence
properties of any PLR. However, no Lyapunov function V(0, R) for
(4.188) is presently known in the general case. Only when ¢(z, ) and
@(z, 0) are related through a single filter is analytic treatment found to
be possible, as demonstrated in theorem 4.6.

4.5.4 Possible Convergence Points and Local Convergence

In our study of the properties of the PLR we have been able to give
sufficient conditions for convergence to the true parameter values in a
number of special cases. These conditions have involved positive realness
of certain transfer functions related to the true system description. It is
an interesting question whether such conditions indeed are necessary
ones, or are merely required in the proof for technical reasons.

Result 4.3 in section 4.3.5 gives us a tool to investigate the necessary
conditions for convergence. A desired convergence point for the algorithm
must be a stable stationary point of the associated d.e. Otherwise conver-
gence cannot take place. For d.e.s of the kind that we consider here (4.82),

0 = R(0),

. (4.189)
R=G(0)— R,
we found the condition to be that the matrix (4.85)
L* = [G(O®) ] 1H(6*) ‘ (4.190)

has all eigenvalues in the left half-plane, where

d
HO*)=—f(0
) =/O|
and where 6* is the desired convergence point. Let us here use this result
to investigate the local convergence properties of the general PLR.
Suppose that the true data are generated according to the system

By(¢™h) Colg™)

Fo(q")u(t) + Do(q“)e(t)’ (4.191)
where {e()} is white noise. Let 6, denote the parameters of these true
polynomials. Suppose that the orders of the model polynomials in (4.137)
are greater than or equal to those of (4.191). We then found that the
differential equation associated with the general PLR algorithm is given
by (4.188). The corresponding matrix L*, evaluated for 8* = 6,, is then

Aolg™ )y () =
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Ly = ~[Gp(00)] 7 Gr(0o), (4.192)

where Gg(6,) is given by (4.147) and G(0,) by (4.187) and (4.174)—(4.175).
We would like to determine the eigenvalues of the matrix L, in order
to find out if the true value 8, is a possible convergence point for the
algorithm. In the general case we have to resort to numerical evaluation
of Ly. A number of interesting special cases can, however, be treated
analytically using the following lemma, which is a development of an
earlier result by Holst (1977) [see Stoica et al. (1982)].

LEMMA 4.4 Let
1

Fg™)
with {e(s)} white noise of zero mean and F(q~') a polynomial of degree
less than or equal to m,

(1) et—1) ... et —m)T"

Fgh)=1+ fig'+ -+ f,g™ (possibly f,, = 0, etc.).

Let

F@)=z"+ fiz" '+ -+ f

and assume that F*(z) has all zeros inside the unit circle. Define

M = [Ee(e (0] [Ee()- H(g He (0], (4.193)

where H(q™!) is a rational, asymptotically stable, scalar-valued filter.
Then the eigenvalues of the matrix M are given by

H(ay), i=1,...,m,
where {«;}7L, are the zeros of the polynomial F*(z).

Proof Weshall firstassume that F*(z) has m distinct zeros. Then we shall
treat the general case of multiple zeros using a perturbation argument.

Therefore, assume that F*(z) has distinct zeros {a;}™,. The eigenvalues
of M are given by

det[Al—M]=0
or equivalently

detA=0 with A=E[4— Hg )]e® o). (4.194a)
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Introduce the noise variance o2 = Ee?(¢) and the residuals of 1/F(z) F*(z)
in the zeros of F*(z):

Alim—Z2—*%  k=1,....m
A im ey o M

Then we can write

0'2 1 . m—1
A=2_m(j;[j,_}1(z)]m :_1 (z ... Ddz

=0 Y B[4 — H(x)] e (CHan A |
A :

ort
1 1 Bi[A — H(xy)] 0
o %
= 62 '1 .
aT—l e ar’r’:vl 0 :Bm['1 - H(am)]
amt o 1
x : . (4.194b)
ot o 1

Now, the first matrix in (4.194b) as well as the third one are Vandermonde
matrices associated with F*(z). Since {o;} were assumed to be distinct,
these matrices are nonsingular. Furthermore, 8, #0, k=1, ..., m due
to the assumption of distinct zeros. Then it follows easily from (4.194a)
and (4.194b) that the eigenvalues of M are given by {H(x) }i-,.

Assume then that the polynomial F*(z) has multiple zeros. A small
perturbation of order ¢ of the coefficients of F*(z) can always be done
such that the resulting polynomial, say F*(z), has distinct zeros {af}
(situated inside the unit circle). Denote the matrix (4.193) corresponding
to FX*(z) by M,. According to the above analysis, the eigenvalues of M,
are {H(«)}. However, since the eigenvalues are continuous functions of
the matrix elements it follows that (denoting by A,(*) the kth eigenvalue
of the matrix in question) we formally have
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(M) = A (lim ME) =limH(y) =H(y), k=1,...,m.
0 0

The proof is thus complete. m

COROLLARY Let

O =x@—-1) ... x(t—n,) et—1) ... e(t —n)7,
where {e(7)} is white noise and {x(#)} is an ARMA process
A(g™)x(1) = C(g™De(®)

A(Z)=ao t+a,z+ -+ +a,z"™

C@)=co+ciz+ - +c,z"

Assume that 4(z) and C(z) are coprime. Let H(g~!) be a rational asympto-
tically stable scalar-valued filter and consider the matrix

M =[E®() - ®"()] '[E®(2)- H(gHD" (1] (4.195)
This matrix has the eigenvalues:

H(0), of multiplicity »,

H(), k=1,...,n,

where {a, }i<, are the zeros of 4*(z) = z™A(z7").

Proof We have, with the notation from the lemma, m = n, + n, and
Q1) = L(C, A)e),

where F(g™") = A(¢q™") and the Sylvester matrix & (C, A) is given by

o €y C,
0 0 n, TOWS
¢ ¢ c
LC A= — >+
o 1 .. a"a
0 0 n, TOWS
aO al « .. a"a

Since the polynomials A(-) and C(-) are coprime, the matrix & (C, 4)
is nonsingular (Kailath, 1980). Thus M has the same eigenvalues as
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[Ee(e (O] '[Ee(®)-Hg e (1].

It then follows from lemma 4.4 that the eigenvalues are given by H(o),
where {a,} are the zeros of z"*"4(z™'). There are n, eigenvalues in H(0),
since oy = - - - = a, = 0. The remaining ones are

H(o) with z™A(z™")|,=,, =0, k=1,...,n, =

a

With the aid of lemma 4.4 we can calculate the eigenvalues of (4.192)
corresponding to some particular algorithms. This will be done in three
examples.

ExAMPLE 4.11 (ELS Applied to an ARMA Model) Suppose that we have
no input signal and an ARMA model
A(g™Hy(1) = C(g He( (4.196)

is to be determined. Suppose also that the output signal y(¢) has rational
spectral density so that it can be described by an ARMA process

Ao(g™Hy(1) = Colg™He(1), (4.197)

where the orders of 4, and C, are less than or equal to those of the model
(4.196). We then have

@'t 0)=(—yt =1 ... —y(t—n)et=1) ... et —n)),

(ﬁ(t’ 90) = (p(t’ 90)’

1
Co(q_l)
where the second equality follows from (4.175). We can then apply the
corollary of lemma 4.4 directly with H(g™') = 1/C,(g™"). The eigenvalues
of the matrix L, (4.192), become
—1, of multiplicity n,

__ 1
Co(2)’

A¥@=z"+alz"' + - + 4l

k=1, ...,n,, where {o;} are the zeros of the polynomial

Therefore, if for some root off of A¥(z), the value C,(of) has negative
real part, then the matrix (4.192) will have an eigenvalue in the right
half-plane. Since this matrix is the system matrix of the corresponding
differential equation, linearized around 6y, this linear d.e. will be unstable.
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Hence the true value 0, = (4,, C,) is not a possible convergence point
for the identification algorithm according to result 4.3.

The foregoing brings out the necessary character of the positive real
condition that we encountered as a sufficient condition (4.154) for
convergence in section 4.5.2. Clearly if the filter Cy(g™") is positive
real, then the matrix L, (4.192) will always be stable, no matter what
Ay(q~") might be. However, if Co(g ™) is not positive real, so that Re Cy(z)
assumes negative values for ze D* when D* is a subset of the unit disc,
then there will always exist a polynomial 4,(z*) with zeros in D*. Hence
as a condition on Cy(q~ ') alone, positive realness is a necessary condition
for the ELS algorithm to converge to the true values.

As a numerical example, let us consider the ARMA process

() +09p(t — 1) + 0.95p(t — 2) = e(t) + 1.5e(t — 1) + 0.75¢(t — 2).
(4.198)

The zeros of the A*-polynomial z? + 0.9z + 0.95 = 0 are given by
oy,, = —0.45 + 0.865i;

This gives

Co;, ;) = —0.0845 4+ 0.713..

The eigenvalues of the corresponding linearized d.e. are {—1, —1,
0.162 + 1.383;}. Hence, when the ELS scheme is applied to identify the
system (4.198), the estimates cannot converge to the true values. On the
other hand, it can also be shown that the true values form the only station-
ary point of the corresponding d.e. (see Ljung et al., 1975). Therefore,
there is no possible convergence point for the ELS scheme in this case,
and the estimates will continue to oscillate. Simulations of ELS when
applied to the identification of (4.198) are given in example 5.15. O

EXAMPLE 4.12 (Landau’s Output Error Method with a White Noise
Input) Consider the PLR algorithm (4.144) applied to the model

s B!

Pt ]0) =— "= u(, (4.199)
| Fg™)

with the filter S(¢7!) = 1. This is what we have called Landau’s output

error method. Suppose that the input sequence {u(f)} is white noise and

that the true system can be described by
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By(g™")

)= ——"—=7ull) + v(?), 4.200
where {v(7)} is a stochastic process that is independent of {u(?)}. Assume
that the orders of the true system (4.200) are less than or equal to those
of the model (4.199). We then have [6, being the parameter vector
corresponding to (4.200)]

@I, 00) = (—wo(t = 1) ... —wot —np) u(t—1) ... ut —n)),
where

Bo(q_l)
Fo(q_l)

(We have interchanged the orders between w and u in ¢ here to be in
formal agreement with lemma 4.4.) According to lemma 4.3 and (4.187¢),
we have

u(r).

wo(l) =

_T@™
Fo(q_l)

We can now apply lemma 4.4 to calculate the eigenvalues of the matrix
LO = _[E(P(t’ 90)(PT(t’ QO)J_I[E(P(t, 90)¢g(t’ 90)]

It follows directly from the corollary that these eigenvalues are

Pr(t, 0) @(t, 0).

— 1, of multiplicity #,,
T(oy)

 Fo(a)’
F§@=zv +f02% 7+ - +fy.

k=1, ...,n,, where {,} are the zeros of

The comments on the necessity of positive realness made in the previous
example apply of course also in this case. Similarily, numerical counter-
examples to convergence can easily be worked out using the above
result. o

EXAMPLE 4.13 (The Box-Jenkins Model with a White Noise Input) Con-
sider the PLR algorithm (4.144) applied to the model

B¢
F(g™)

u() + €97 o) (4.201)

0= D™
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with the filters S(¢™!) = T(¢™!) = 1. Suppose that the input sequence
{u(#)} is white noise and that the true system can be described by

-1 -1
S Gl

where {e(7)} is a white-noise process that is independent of {u(¢)}. Assume
that the orders of the true system (4.202) are less than or equal to those
of the model (4.201).

With calculations analogous to those in the previous two examples,
we find that the matrix L, is block diagonal with eigenvalues

()

u(t) +

— 1, of multiplicity n, + n,

—%, =1, ..., n,, where o, are the zeros of
O\k. 0\
F¥(i)=z" +f102n;‘1 + ... +f'3; (4.203)
—ﬁ, k=1, ...,n, where j, are the zeros of
o\ Fk

D§(z)=z"+diz" ' + - + dp.

The result implies that if the two transfer functions

Do(g™) I
= and — (4.204)
Colg ™ Fo(g™) Colg™)
are not both positive real, then the system may be such that the linearized
differential equation will have eigenvalues in the right half-plane. For
such systems the algorithm will fail to converge to the true parameter
values. O

In the foregoing three examples we have given an analytic treatment
of the eigenvalues of the matrix L, (4.192). Thereby we have also given
the exact conditions under which the true parameter values 6, form a
possible convergence point for the PLR algorithm. If the linearized
differential equation has its eigenvalues strictly in the left half-plane, then
also the original differential equation will be locally asymptotically stable
around 0,. As we pointed out in section 4.3.2, this will imply local con-
vergence of the algorithm. The three examples, consequently bring out
the necessity character of the positive real condition.
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4.5.5 Asymptotic Distribution for Pseudolinear Regressions

Unfortunately, derivation of the asymptotic covariance matrix and the
asymptotic distribution for the estimates obtained by PLR is not as direct
as for the recursive prediction error method. Referring to theorem 4.5,
we see that the property that —i/(¢) is approximately the gradient of &(¢)
is crucial for lemma 4.B.4. This lemma allows us to get rid of the last
term in (4.B.1). When ¥/(¢) is replaced by (), this is no longer possible.
The asymptotic distribution and asymptotic covariance matrix for PLR
are therefore not fully understood at the present time. Solo (1978, 1980)
has discussed this subject in detail.

For a recursive prediction error method applied to a quadratic criterion
we know from theorem 4.5 that the asymptotic covariance matrix is given
by

1= _ _
P() = Y[E!ﬂ(k)/\ ROUA)]
Let us stress that the analogous result is not true for a PLR. This is shown
by a counterexample.

EXAMPLE 4.14 (Covariance Matrix for PLRs) Consider a second order
moving average process

y(0) = Colg™Ne(®) = e(t) + cRe(t — 1) + cSe(t — 2), (4.205)

where {e(?)} is a sequence of independent random variables each of
zero mean and unit variance. If {e(f)} has a Gaussian distribution, the
Cramér-Rao lower bound for the covariance matrix of any unbiased
estimator is given by (see theorem 4.5)

LB by 601 = A,

where

1 e(t—1)
Vi 0o = e <e(z - 2))

and

Colg)=1+c3q7" + g2
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Now we shall show that the matrix Q,, defined by

LB, 0071 0] = O,

where

_ et—1
o, 00) = (e(t B 2)>,

cannot be the asymptotic covariance matrix for the estimates obtained by
applying a PLR to (4.205). If Qy were the covariance matrix we would
have to have

Oy=Py, or Pyl Qxl, (4.206)

since Py is the lower bound. We find after straightforward calculation
that

Oy =N-1,
Pl N (1 +¢) - >
(1=DLA+cD* = (D] \ =} 1+
The inequality (4.206) can thus be written
<<c3)2(1 + 9+ (1 = ) < > -0
—c} (D1 + ) + (D’ — D))

or
D1+ ¢D? + (DA = D) + ([ 1 +2(c)* — 2(c2)*] 2 0.

This inequality is violated, e.g., for ¢§ =0, |c?| < 1. Thus (4.206) does
not hold for these values of ¢?, and therefore Q cannot be the asymptotic
covariance matrix of the estimates obtained by PLR. O

4.5.6 Summary

We have studied the convergence properties of pseudolinear regressions
applied to estimate the parameters of the general linear model

B(g™") Clg™h
Fg™) D(g™)

An explicit expression for the associated d.e. was derived in section 4.5.3
under the assumption that the data are generated by a system

A(g Hy(n) = u(n) + e(?).
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By(g™) Co(q_l)
Fo(g™) Dy(g™h)
This d.e. is given by (4.187)—(4.188).

It is easy to give an analytic treatment of the global stability properties
of this d.e. only in the cases

Ao(‘]_l)J’(t) =

u(t) +

e(d).

F(g')=D(g"")=1 (ELS)
and
A@H=C@gY)=D(g')=1 (Landau’s output error method).

This has been done in section 4.5.2. Convergence of these algorithms is
proved under the condition that

l 1 1 1

Colg™) 2 Fog™) 2

respectively, be positive real.
These conditions can also be written

|Cole™) — 1| < 1, |Fole™) — 1| < L.

When the regression vector and/or the prediction errors are filtered
as in (4.144c, g), the above positive reality conditions are modified to
(4.165) and (4.171), respectively.

Now

|55 10]" =400 = G000

1
Cl@™
in the ELS case, and ELS uses ¢ as a gradient approximation rather
than y. Thus, the quoted conditions have the natural interpretation that
convergence will occur when the C-filter is “close to unity,” and hence
it is a reasonable approximation to replace ¥ by o.

In section 4.5.4 we investigated the necessity of these conditions on
the true system. This was done by examination of the eigenvalues of the
linearized d.e. at the true parameter values. Whenever this linear d.e. is
unstable, convergence to these values cannot take place. We then found
as a condition on Cy(g~!) alone in the ELS case, that it is necessary for
convergence that it be positive real. An explicit counterexample to conver-
gence was also constructed [equation (4.198)]. A corresponding result
also holds for Landau’s output error method.
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4.6 Analysis of Instrumental Variable Methods

4.6.1 Introduction

The general recursive IV algorithm is given by (3.96):

0()) = 6t — 1) + YR @O [yr (1) — @F (00 — 1], (4.207a)
R(ty=R(— 1) +y0O[LOn" (&) — Rt — 1)], (4.207b)
Y =T Y0  ex®) =T He®). (4.207¢)
For the nonsymmetric version (3.92a) we have

n() = (), (4.208)
and for the symmetric version (3.92b) we have

n(6) = L(0). (4.209)

The vector ¢(f) contains delayed input/output variables, as described in
section 3.6.3, and is independent of the parameter estimates. The filter
T(q™ ') as well as the instrumental variables {(¢) are to be chosen by the
user. In section 3.6.3 we described some common choices of {(¢).

This section, together with appendix 4.D, will deal with the asymptotic
properties of 6(¢) as generated by (4.207). We will discuss how convergence
and asymptotic distribution depend on {(f) and T(q~!) as well as on the
choice between (4.208) and (4.209). Most of the discussion will be confined
to single-input/single-output systems and to instrumental variables that
are generated according to (3.93). Treatments of more general cases can
be found in Stoica and Soderstrom (1981a, b, 1982a, 1983a, b) and Soder-
strom and Stoica (1983).

For the analysis we shall assume that the data actually are generated
by a system

y(&) = T (00, + v(1), (4.210)
v(t) = H(g Ve(1), (4.211)

where H(g™') is an asymptotically stable and inversely stable filter and
{e(r)} is a white noise sequence with zero mean values and variances o°.
In difference equation notation, (4.210) is written

Ao(q™ My (1) = Bo(g™Hu(t) + v(2). (4.212)
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We shall also throughout this section assume that
{u(z)} and {v(?)} are independent. 4.213)

This means that the generation of #(f) must not depend on past y() [see
(4.210)]. Hence no output feedback is allowed in the input sequence.

Convergence of the nonsymmetric IV method is studied in section
4.6.2, while the asymptotic distribution of the estimates is calculated in
section 4.6.3. The symmetric IV method is examined in appendix 4.D.
A natural, adaptive choice of instrumental variables { and prefilter 7,
the so-called refined IVAML method, is described in appendix 4.E, where
it is also shown that this method in fact is a recursive prediction error
method.

4.6.2 Convergence of the Nonsymmetric 1V Method

The convergence analysis will be based on an explicit expression for the
estimates, obtained from (4.207).

An Expression for §(/) Assuming for the moment that y(®) = 1/t, and
defining

R(t) =t R(?),
we find from (4.207b) and (4.208) that
R(®) = R(t — 1) + {(Dof (). (4.214)
Multiplying (4.207a) by R(7) now gives
ROO@) = [R( — 1) + {0)oF1)]100 — 1) + L(Oy£()
— {OPF 00 — 1) = Rt — DO — 1) + L@O)yp(®)-

Hence
R()i) = ROIO) + 3. [(y(h) (4.215)
where
R() = RO) + z {Ro1 (). (4216)

For a general gain sequence {y(#)} we obtain analogous results [see
(2.116), 2.128)].
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If we use the expressions (4.210) and (4.207¢) for y(¢) and yg(¢) in
(4.215), we obtain

R0 = ROWO) + Y, Lkywe(k) + [z C(k)qﬁ(k)} 6o,
where

vp(t) = T(g v (). (4.217)

This can also be rewritten as [recall that R(t) = tR()]
ROLOE) - 06] = LROLIO ~ 0] + 1 3 LKz k). @4.218)

The convergence analysis is based on this expression, and it will be carried
out in three steps:

1. Establish that R()[0(r) — 6,] — 0.

2. Establish that R(r) — R.

3. Examine when R is nonsingular.

Step 1: Convergence of R(1)[0(r) — 6,] From (4.218) it is easy to estab-
lish the following result.

LEMMA 4.5 Consider the algorithm (4.207), (4.208) with y(¢r) = 1/t. Sup-
pose that (4.210)—(4.211) hold, and that the instrumental variables {{(f)}

are of bounded variance and independent of the noise sequence {v(¢)}.
Then

R0 —60,] -0 w.p.1as— 0.

Proof Let us consider the second term of the right-hand side of (4.218).
According to the assumptions of the lemma we have

EC(Z)UF([) =0,
[0 [E(5)vp()]T| = [ELOLT6) - Bop(Dop(s)] < €A,

for 2 < 1. The first equality follows since { and v are independent; and
the second, since {() is of bounded variance and since vz(¢) is the output
of an exponentially stable filter driven by white noise (see (4.217), (4.211)).
Then we can use the convergence result (4.67)—(4.68) to infer that
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t
%ZC(k)vp(k) -0 w.p.last— oo,
1

which with (4.218) proves the lemma. =

Remark The condition that {{(¢)} and {v(¢)} should be independent is
obviously satisfied if {(¢) is constructed entirely from old inputs u‘, pro-
vided that the open loop condition (4.213) holds. This case covers most of
the common choices of {(f). When current estimates 6(f) are used in the
filter that produces {(¢) from u’, as in (3.94), the condition is (slightly)
violated, though. The reason is that some dependence of v(¢) on {(¢) is
transferred via 6, when v(¢) is not white. However, it should be clear
that this dependence is negligible asymptotically, that we have E{(f)v (1) =
0, and that the lemma still holds in this case.

Step 2: Convergence of R(¢) With the result of lemma 4.5 we can focus
our attention on the matrix R(¢). If R(¢) converges to an invertible matrix,
we conclude that () tends to 0, w.p.1 as ¢ approaches infinity. More
generally, this result holds as long as the eigenvalues of R(¢) are bounded
away from zero asymptotically, even if R(¢) does not converge.

We confine the study to the case (3.94) where the instrumental variables
are generated by a prior chosen and time-invariant filter given by 4 and B:

(WO=(—x(t—=1) ... —x@t—n) u(t—-1) ... u(t —m)", (4.219a)
A(g™Y)x(2) = B(g~Yu(r), (4.219b)
AgH=1+a,g"+ - +aq™,

_ _ _ (4.219¢)
B(g)=biq7 + -+ bag™™

As before,

e =(—p(t=1) ... =yt —n) u(t—1) ... u(t — m)". (4.220)

For the limit of the matrix R(f) we now have the following lemma.

LEMMA 4.6 Suppose that the input sequence {u(¢)} is subject to (4.213),
and asymptotically stationary in the sense that

Eu()u(t — j) & r,(j) exists for all ;. (4.221)

If {u(r)} is regarded as a stochastic process assume also that condition
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S1 (section 4.3.4) holds. Let ¢.(¢) be given by (4.220), (4.207c) and let
{(¢) be given by (4.219). The data is subject to (4.210)—(4.211). Then

R = EL(H)@F(2) exists (4.222)
and
R() = %i{(k)(p}(k) SR wop.last— oo, (4.223)

Remark Recall that when {u(7)} is regarded as a deterministic sequence,
then

N
Bu()u(t — ) = lim ]lvzu(z)u(z —j.

Proof The existence of R in (4.222) is immediate since the entries of
this matrix are formed from quantities obtained by stable time-invariant
filtering of the (asymptotically) stationary sequences {u(f)} and {e(s)}.
The convergence result (4.223) then follows just as in lemma 4.1. »

Step 3: Invertibility of R We now proceed to study the matrix R in
(4.222). From lemma 4.5 we know that if

R is invertible, (4.224)

then f(r) will converge to the true value 0, w.p.1 as t —» o0.
It can be shown that

R =E{()e; (1)

N C
E(q'l)u(t D

| B
=B~

u(t—1)

u(t — n)
(4.225)

u(t‘— m)

XxT(@HY(—yt=1) ... —y(t—n)ut—=1) ... u(t —m))
= y(_E’ “D'@(Aoa ‘Z’ Ta u)yT(‘BO’ AO)’
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where & T(— B, A) is the Sylvester matrix

0 0 1 0
| .
by "
FT(—B, 4= o 1 1, (4.226)
—bl : a, a,
|
|
0o . l} 0
—bn | a,
and where £ is given by
u(t—1)
A 1‘? T = E-:— N
9( 0> ] ] u) ; A(q_l) :
u(t —n —m) (4.227)
. T4~ D)

w@—=1) ... ut —n—m)).

Ao@™)

All matrices in (4.225) are square and of order » + m. When establishing
(4.225) we used the fact that {{(¢)} is uncorrelated with the disturbance
{v()}. B

From (4.225) we see that R is nonsingular if and only if the matrices
F(—B,y, Ag), ¥(—B, A), and P(A4,, A, T, u) all are nonsingular. For the
first ones, it is well known (see Kailath, 1980) that #(—B, 4) is non-
singular if and only if the polynomials 4 and B are coprime. Notice that
2 does not depend on B, so, as long as 4 and B are coprime, the choice
of B does not affect the invertibility of R.

The condition that 4, and B, are coprime implies that the model is
not overparametrized in both 4 and B. The polynomials 4, and B, are
defined through (4.212) for the true system but with degrees » and m
given by the chosen model set. If 4, and B, in (4.212) do have a common
factor, there exists another representation of the form (4.212) with co-
prime polynomials such that deg 4, < n, deg B, < m.

Let us now discuss the matrix £ in (4.227). Suppose that the input
signal is persistently exciting of order n + m, so that with 4y =4 = T =1
the matrix is nonsingular (see section 3.2.1). We could then say, heuristi-
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cally, that it requires some very special relationships between Ao, 4, T,
and the properties of u to make (4.227) singular (such an example will
be given later: example 4.15). It can in fact be proved that 2(4,, 4, T, u)
is generically nonsingular (i.e., it is nonsingular outside a null set of
Ao, A, T). The arguments are as follows. Consider det [2(4,, 4, T, u)]
as a function of the coefficients of A,, 4, and T. This function is analytic
and not identical to zero (e.g., for 4, = A = T = 1 it is nonzero). Thus by
the uniqueness theorem of analytic functions the function is nonzero
almost everywhere. This result has been shown by Finigan and Rowe
(1974) for the case T'= 1. It has been extended to general IV schemes by
Soderstrom and Stoica (1983). Here we will give some sufficient condi-
tions for the nonsingularity of £:

LEMMA 4.7 Consider the matrix 2(4, 4, T, u) given by (4.227). The
following three cases guarantee the nonsingularity of this matrix:

(1) The matrix #(A4, A, 1, 1) is nonsingular if and only if the signal u(z)
is persistently exciting of order n + m.

(ii) Assume that u(¢) is white noise and that the filter T(¢™"') and its
inverse are asymptotically stable. Then 2(A4, A, T, u) is nonsingular for
all asymptotically stable 4 and A.

(i) Assume that A(gHT(gY)/A(g™Y) is strictly positive real. Then
P(A, A, T, u) is nonsingular for all signals u(¢) that are persistently
exciting of order n + m.

Proof Let
E = (hl st hn+m)T

be an arbitrary vector, and set H(g™") = Y 2" h;q~". Consider now the
expression

0=h"P(A, A, T, uh

_ | H@™ \:H(‘I—I)J (¢~ i|
=F|—=
[A(q_l) u(t):| A(g™) “)

-[ AL

"0,() {Re %T,f)ew)} do. (4.228)

H(eiw)
E(eiw)

H(eiw)
Z(eiw)
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Here ®,(w) denotes the spectral density of u(¢) (or the discrete Fourier
transform of Eu(z + 1)u(t) when u(?) is not stationary). Assume that u(z)
is persistently exciting of order n + m, but otherwise arbitrary. Then
®,(w) > 0 with strict inequality in at least » + m distinct points. When
A=A and T =1, equation (4.228) then implies |H(e)|* @,(w) = 0.
However, as H(z) is a polynomial of degree n + m — 1 only, it follows
that H(z) = 0 and # = 0. Thus 2(4, 4, 1, u) is nonsingular, which proves
case (i). Case (iii) follows in the same way from (4.228).
Consider now case (ii). Assume

0=h'P(4, A, T, u),

which implies

H(g™) T(q™") . .
O_EI:A( =1y ()}[A(q_l)u(z—])], l<j<n+m,

or, with expectation written as complex integration,

1 [z""mH(™Y T(z)Z dz
T 2mi J Az A(z) ’

l<j<n+m.

The integration path is the unit circle. Consider the integrand in the
complex integral. Since by assumption 4, T, and 7! are stable, all zeros
of A(z), T(z), and T(z)"! are outside the unit circle. The poles and zeros
of the integrand inside the unit circle are thus given by

Z""mA(z7Y) = 0: n 4+ m poles,
and, excluding the origin,
Z"""H(z"Y)=0:n4+m — 1 zeros.

(Recall the definition of H(g™')!) Since the integral is zero for 1 <j <
n + m, it follows from lemma 1 in Astrdm and Soéderstrom (1974) that
the listed poles and zeros all cancel. This is not possible unless H(z ') = 0,
which shows that A must be zero and that 2(4, 4, T, u) is nonsingular
also in case (ii). m

The following counterexample shows that the matrix 2(4, 4, T, u) is
not always nonsingular.

EXAMPLE 4.15 (A Singular #-matrix) Consider the matrix (4, A, T, u)
@.227). Let n=2, m=1, Az) = (1 — az)?, Az) = (1 + az)?, T(z) =1,
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and u(?) = (1 — ag™")*(1 + ag ")*w(?), with w(t) being white noise of
zero mean and unit variance. Then

1 —40® +o* —20(l —a?) a?
PAg, A, T,y =| 20(1 —a)> 1—4da®>+a* —20(1—a? |,
o? 20(l —a?) 1 —4a* 4ot

which turns out to be singular if « = (3 — /5)/2)"? ~ 0.618. O

Convergence of é(t) We can now collect the results that we have obtained
in the preceding steps 1-3 into the following theorem:

THEOREM 4.7 Consider the nonsymmetric IV algorithm (4.207), (4.208).
Suppose that the true data are given by (4.210), (4.211), where the input
is such that (4.213) and (4.221) hold. Assume that the polynomials A4,
and B, (of degrees n and m, respectively) have no common factor. Suppose
that the instrumental variables {(¢) are given by (4.219), where 4 and
B are coprime. Assume also that the matrix 2(4,, 4, T, u) given by
(4.227) is nonsingular. Then

6(r) - 0, w.p.last— 0.

Notice that we can use lemma 4.7 to obtain conditions for the non-
singularity of 2.

4.6.3 Asymptotic Distribution for the Nonsymmetric IV Method

A Basic Result The basic result about the distribution of the IV estimate
(4.207), (4.208) is the following one.

THEOREM 4.8 Consider the nonsymmetric IV estimate (4.207), (4.208).
Assume that the system is given by (4.212). Suppose that the assumptions
of theorem 4.7 hold. Then the estimate are asymptotically normal:

J1[0(2) — 6,] € AsN(0, P), (4.229)
where
P =’[E{(NoF(n]"

x E[T(g"")H(g™){() T(g )Y H(g™){" ()] (4.230)

x [Egp(CT()] ™"
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Proof 1t follows from (4.218), neglecting the initial conditions, that
1 t

" t -1
V[0 — 0] = B 2 ¢ (S)%T(S)] [— 2 L) T(q‘l)v(S)] .
s=1 \/;

s=1

According to lemma 4.6 we have

J =

" . L9 (s) > EL(Def (1) w.p.last— co.
s=1

Moreover, from a variant of the central limit theorem as given by Ljung
(1977¢), it follows that

% > 1) T(q)u(s)e AN (0, Qo)
s=1

\/,
with
02 lim%E[i {(s)- T(g™")o(s) i {7 T(q_l)v(S')]-
2w s=1 s'=1

It then follows from standard convergence results for random variables
that (4.229) is true. It only remains to show that

Qo =E[T(g"")H(g ){(1)- T(g"HH(g ){T(1)].
Introduce for convenience K(¢7") = > 2o kg™ 2 T(g *)H(g™") and put

k; =0, i <0. Straightforward calculation gives

Qo=limd 3 3 BT IEITG06) TG 0]

s=1s"=1

limd 3 (¢~ [WDERLTG6 + DIELT™)00) - Tl + 0]

i E[{(0T(¢ + 1) ]E[T(@ o) - T(g Hv(r + 1)]

T=—a
t

—tim? 3 B[ s + DIELT(@ o) T@ ™ )ots + 9.

=—t
Since K(q~!) is asymptotically stable it follows that
|ET(g")v(s) - T(g "v(s + 7)| < CAM

for all = and some constants C > 0, 0 < 4 < 1. Thus the magnitude of
the last term is bounded from above by
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hm Z |t|C Al

(7® b=y

< 11m¥ Y 1A =0.

=0

The last term will thus vanish. The first term can be written as

-3 E[C(t)CT(t+r)]|: > k m]

xR0

=023, Y kkEBLOLT@+i—))

i=0 j=0

Lz e - i)] [ 3 k- j)]
= 6B[K(g ) K HTO)

which completes the proof. =

8

8

Theorem 4.8 shows that the asymptotic accuracy of the estimates is
given by the covariance matrix P. While (4.230) gives an explicit expression
for P in terms of how it depends on the choice of instrumental variables
as well as on the prefilter T(¢™?), it is not easy to evaluate the effects of
these choices. We shall study these effects in the remainder of this section.

Optimal IV Methods The Cramér-Rao inequality of course imposes a
lower bound for P. The following lemma establishes a lower bound for
P that is attained within the family of refined IV methods. (It will be
shown in example 4.16 that this bound in fact equals the Cramér-Rao
bound if the signals are Gaussian.)

LEMMA 4.8 Consider the matrix P given by (4.230). Let ¢(¢) be the
“noise-free” part of ¢(¢), i.e., let

@)

(Bl - B R

_< A:))(q_l)u(t D AZ(q_l)u(t n) u(t—1) ... u(t m)) .
4.231)

Then

P—o*{E[H (g HeO]I[Hg™)e®0]"} ™ 20, (4.232)

i.e., the left-hand side is nonnegative definite. Moreover, strict equality
in (4.232) is obtained with the choice
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(=H (g @, T@)=H'(@g™"). (4.233)

Proof Using again that K(g~') = T(¢ " *)H(¢™!) and that {(¢) is uncor-
related with the disturbances, we have

EL()eF() = E[L@) T(g™Hé"(0)]

=E[0 5. kg™ H g9 7(0)]

= E{[f kLt + i)} H‘l(q‘l)qBT(t)}-
i=0

Moreover,
E[K(g™){() K@) (0] = i i kEL(t — DkLT(t =)
i=0 j=0

~E [i kil + i)] {i KT +j)]
i=0 j=0
Thus the relation (4.232) can be rewritten as
{EL®-H '@ " OD"EROTTOHEH (¢ Hé0 - TT0]}
—{E[H'@ e -H ' (¢H$ (0]} =0,
where {(¢) = Y2 k;{(t + i). This matrix inequality is equivalent to
= (H_l(g_‘)fﬁ(t)
&)

which is obvious. Thus (4.232) is proved. It is then easy to verify that the
choice (4.233) gives strict equality in (4.232). m

>(H_1(q_1)¢T(,) E() = 0,

Comparison with Prediction Error Methods The important conclusion
is that the choice (4.233) of instrumental variables and prefilter gives
optimal accuracy. Let us now compare this with the accuracy that will
be obtained with a prediction error method.

EXAMPLE 4.16 (Comparison between the Optimal IV Method and Recur-
sive Prediction Error Methods) The model structure chosen for the
recursive prediction error algorithm is important for this comparison.
Suppose the model is

A(g™Hy(t) = B(g™Hu(t) + H(g He(1), (4.234)
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where H(q ') is a known filter and {e(?)} is white noise. This model is con-
sistent with the true system description (4.210)—(4.211). The asymptotic
covariance matrix for the estimates of 4 and B obtained by a recursive
Gauss-Newton method is, according to theorem 4.5, Pyppy/t With

Preen = 6 [EY(1, 0)4 (1, 0p)]7". (4.235)
In this case (4.234) we have

| 0)=H" g H[H@G™")— Al H]y® + H ' (g7HBlg Hu(),

which means that

Y, 0)=H '@ Do), (4.236)

where ¢(t) is given by (4.220). Hence ¥(t, 0) = @g(t) with T(g™") =
H™'(g™"). Comparing this to the definition of @(¢) in (4.231), we see that

e(t—1)
_ py-1g,-1 g1y -1y 1 e(t;n)
Y(1,00)=H (g )o()=H '(q )¢(1)+7A0(q_1) 0 . (4.237)
0
Hence, from (4.235) we have
., (P O\]!
Preem = [Pw + (o o)] , (4.238)

where P,y is the covariance matrix for the optimal IV method (4.233),
ie.,

Py =0 {E[H ' (gHo0][H (¢ He®)]"} ! (4.239a)
and P is the n x n positive definite matrix
| e(t—1)

e(t —n)

Consequently, the recursive prediction error method for (4.234) is strictly
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better than the optimal IV method, as far as the asymptotic accuracy is
concerned.

The comparison is, however, somewhat unfair. The recursive prediction
error method uses the knowledge of H not only to improve accuracy
but also to secure unbiased estimates. The optimal IV method uses the
knowledge of H only for improving the accuracy. The IV estimates will
be unbiased even if H does not correspond to the true noise properties.
Moreover, if the filter H in (4.234) was to be estimated by a recursive
prediction error method, then the accuracy of the 4 and B estimates
would be worse.

Let us therefore consider the model

. )
@) = f{f]ﬂ;u(z) + Hg (), (4.240)

where H is a known filter and {e()} is white noise. This model is consistent

with the true system description (4.210)—(4.212) with

Fo(g™") =Ao(g”") and H(g™") = H@g™. (4.241)

1
Ao(q—l)
The asymptotic covariance matrix for the recursive Gauss-Newton
algorithm is still given by (4.235). This time

5010) = A B w0 + [1 = B0, @242

which gives [see (3.121)]

_HYg Y ( Bsg™H,
VI 0 =5 ( g ¢ Y

F"Eq:;u(z—n) we—1y ... u(t—m)).
1]

A comparison with (4.231) shows that, using (4.241), we can write

(e, 0p) = [H(g H] "¢,

and hence that

Preem = Pry

in this case. The optimal IV method therefore gives an asymptotic
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covariance matrix that equals the Cramér-Rao lower bound for the
estimation problem (4.240), provided the disturbances are Gaussian.
Finally, suppose that H in (4.240) is not known so that a model (3.103)

-1 -1
ﬁg“; gz;}_l;e(t) (4.243)

is used. Then the recursive Gauss-Newton algorithm gives an asymptotic
covariance matrix for the B- and F-estimates that still is given by Pgpgy =
= Py. (Further details of this are given in appendix 4.E.) O

u(t) +

Y=

It follows from the foregoing example that the optimal IV method
(4.233) is not only optimal in the IV class, but also gives the best accuracy
possible for any estimation method for a reasonably posed problem
(i.e., for the model (4.240)). The problem with (4.233) is, of course, that
it cannot be exactly implemented, since it requires knowledge both of
the system Ay(g™ "), Bo(¢™!) and of the filter H(g™!). Some ways of
including this knowledge by replacing these filters by current estimates
are discussed in appendix 4.E.

4.6.4 Summary

In this section we have studied the asymptotic properties of the estimates
obtained by the instrumental variable method. Most of the results have
been confined to the case where the instruments are generated by a time-
invariant filter from the input signal. It has been shown that consistency
is assured for “‘most” choices of filters (theorem 4.7). We have also shown
that the estimates have asymptotically normal distributions (theorem 4.8)
and have given an explicit expression for the asymptotic covariance matrix
(4.230). Examination of this expression shows that optimal accuracy is
obtained for a certain choice of instrumental variables, viz., (4.233). The
construction of these instrumental variables requires knowledge of the
system dynamics and the disturbance properties. Replacing these un-
known quantities with their current estimates leads naturally to algorithms
of the recursive prediction error class, as explained in appendix 4.E.

4.7 User’s Summary

In section 3.9 we described a general family of recursive identification
methods. The present chapter has dealt with the analysis of their asympto-
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tic properties. The analysis of most of these algorithms is technically
difficult. The chapter has therefore been a long one, and at places filled
with technical calculations. At least with the currently available tools,
this seems unavoidable. Nevertheless, the results of the analysis are easy
to express and understand. Section 4.2 contains a summary of the resulits;
it is necessary to read that summary before continuing with the following
chapters.

The basic asymptotic results are given in theorems 4.3-4.8. The
significance of the theorems 4.3-4.5 is discussed in section 4.4.4. This
section can be read independently of the analysis in the preceding sections.

The tools by which the results have been obtained in this chapter have,
as such, no independent interest in this context. Still, let us point out that
most of the convergence analysis was carried out in terms of an associated
differential equation. We shall use this technique occasionally also in
chapter 7. An outline of the idea was given in sections 4.3.1 and 4.3.2,
which may provide sufficient insight for understanding its use. We will
also (in appendix 4.C) give some details of another approach to conver-
gence analysis, that can handle certain PLR schemes in a very nice fashion.

Finally, we stress that all analytic results in this chapter have been
asymptotic. This means that they will apply when the number of processed
data has become large. We do not, however, know how large it has to be.
This caution must be kept in mind when the results of this chapter are
applied to practical cases.
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5 Choice of Algorithm

5.1 Introduction

In section 3.9 we summarized the algorithms that we are treating in this
book. We listed eight choices that the user has to make. Taken together,
these eight choices constitute the actual choice of algorithm. In this
chapter we return to the question of how to make these choices. Our
discussion will be based partly on the analytical results given in chapter 4
and partly on simulation studies.

Simulations often suffer from a lack of conclusiveness: To what extend
does the result depend on the chosen system? It is impossible to recom-
mend nontrivial user choices that are universally applicable. In the present
chapter we mostly consider scalar-output systems and models of fairly
low order (typically, less than 10 parameters). The conclusions we draw,
as summarized at the end of each section, are based on rather extensive
simulation studies of such systems. When reading the chapter, it should
be kept in mind that the conclusions might be modified for other types
of systems.

The reason for cataloging the aforementioned eight choices is so that
the user can, in a rational way, find an identification algorithm that is
*“good” for his application. In this context a “‘good’” identification method
is one that gives a ““good” model at a low price. In order to evaluate a
simulation result we thus need to measure the quality of a model. How
can that be done? We can of course use the covariance matrix of the
parameter estimates, but it is often more important to look into the
application itself. We shall in this chapter use four scalar measures of the
validity of a model that relate to its use in prediction, in description of the
impulse response of a system, and in control. These measures are illus-
trated in the following example.

EXAMPLE 5.1 (Measures of Model Validity) Consider a scalar-output
stationary system

¥(t) = Golg™Hu(t) + Holg He(s), (5.1

where H,(0) = 1 and where {e(¢)} is white noise independent of the input
{u()}. Use a model

y()=G(g™", Our) + Hg™*, 0)e(), (5.2)

where G and H are rational functions of ¢~*, and where H(0, 6) = 1.
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Then one possible measure of how well (5.2) describes (5.1) is to take
the one-step prediction error variance. This gives

7¥(0) = E£2(1, 0)
=E{H (¢, 0)[y(® — G(g™*, Ou(®]}?
=E{H (g7, 0)[Go(g™") — G(g™", )]u(®}?
+E[H (g7, 0)Ho(g He(n].

(5.3)

Another possibility is to take the sum of squared differences between
the impulse responses of the model and the true one. This means that

710) = 52 P66 0) - GEIGE, 0 - Goe N E, 54

where the path of integration is the unit circle.
Similarly, a measure of how well H(g™*, 0) approximates H,(g™!) is

710 = 5o LHG, 0 — H@IHE " 0 — B 1% 59

A further possibility can be constructed as follows. Use the model (5.2)
to design a minimum variance controller (Astrém, 1970), i.e., one in
which the stationary output variance is minimized. If we take

Glg ' 0=g:0)q" + 90O+ -
with g, (0) # 0, then the controller becomes

_H@L0) -1

“O= GG )

y ().

Assume that this controller is applied to the true system (5.2). Then the
output variance is

. Holq H)G(g™, 0) 2
V#©0) = Ey*(t) =E | —— old ) LE— :
O =Er® [G(q )= Golg ) + Golg HH(G ,e)e(’)]

(5.6)

which is then taken as the measure of how well the model (5.2) describes
the true system.
For the foregoing validity measures the following inequalities apply:

VEO0) = 62, VHO) =0, VH0)=0, V(0 =02 (5.7)
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where 6% = Ee?(f). Moreover, if the model (5.2) coincides with the system
then all the inequalities in (5.7) become equalities. This means that the
lower bounds are obtained if the model gives a perfect fit to the system.
(The converse is, however, not always true). Note that of these measures
only V*(0) will depend on the input. The criteria ¥*(0) and V*(0) have
clear physical meanings.

An important advantage of these measures is that models within
different model sets can be conveniently compared. For evaluation of any
of these measures it is necessary to know the true system or to make
prior assumptions about the properties of the data {z(¢)}. o

As several of the examples in this chapter include simulations it is
appropriate to give some general comments on how these were performed.

The disturbance e(r) was simulated using a random number generator
giving Gaussian distributed noise. The input u«(f) was in some cases
simulated as a pseudorandom binary sequence (PRBS). In other cases it
was taken as white noise, i.e., a sequence of independent random variables.
In all cases the mean values of e(?) and u(¢) were kept equal to zero. The
variances were selected to obtain a prescribed value of the signal-to-noise
ratio

SIN = {E[G,(q™u()]*} {E[Ho(g De(n)]?}.

Here Go(¢7') and Hy(¢™") are the true transfer functions from u and e
respectively to y as in (5.1).

The symbol N also denotes generally the number of data generated.

In many examples several runs or realizations were used. For every run
a new initial value for the random number generator was used in order
to giveindependent realizations. When results of several runs are presented
in a table the arithmetic means and standard deviations evaluated over
the number of runs indicated are shown. Plots always represent one
particular run.

This chapter is organized as follows. The choice of model set is discussed
in general terms in section 5.2. Aspects of how to choose a model set
within the SISO family (3.104) are discussed in section 5.3. The choice of
input signal is treated in section 5.4, and the choice of criterion function
in section 5.5. The step size or gain sequence in the algorithm is studied
in section 5.6, and the search direction in section 5.7. Effects of initial
conditions are discussed in section 5.8. The choice between RPEM and
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PLR (see section 3.7) is illustrated in section 5.9, various IV methods are
discussed in section 5.10, and, finally, the choice between prediction
errors and residuals in the gradient vector is treated in section 5.11.

5.2 Choice of Model Set

5.2.1 General Considerations

The selection of a suitable model set is no doubt the single most important
choice to make for any identification problem. At the same time it is
difficult to give general recommendations. The choice is application-
dependent, and it may also be influenced by factors such as the availability
of particular computer programs.

We list here four factors that should be taken into account when
selecting the model set.

1.Flexibility The model set should be capable of describing most of the
different system dynamics that can be expected in the application in
question. Both the number of parameters and the way they enter the
model are important.

2. Parsimony From the important expression (4.136), we have, in the
notation of (5.3), that

EVHB(N)) = VE(6,)(1 + (dim B)/N), (5.8)

once the model set is large enough to contain the true system. There is
consequently a strict penalty associated with the use of models with many
parameters. The model set should be parsimonious. Results similar to
(5.8) apply also to other validity measures (Gustavsson et al., 1977).

3. Algorithm Complexity The model set determines how j(f|6) and
Y (¢, 6) are computed. The complexity of these calculations depend on the
dimension of 0 as well as on the structure of the model.

4. Properties of the Criterion Function The asymptotic properties of
RPEMs depend on the criterion function V(8) = El(1, 6, (¢, 6)), as we
found in section 4.4. The existence of nonunique global minima as well
as that of local minima that are not global is affected by the model
parametrization.
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We shall illustrate how the foregoing factors can be used as a guide in
two special cases: state-space models and, in section 5.3, black box SISO
models.

5.2.2 Choice between a General State-Space Model and an Innovations
Model

In section 3.8 we discussed the use of state-space models for RPEMs. We
pointed out in section 3.8.1 that we could choose between a general model
(3.133)

x(t + 1) = F(O)x() + GO)u(r) + v(2),
y(1) = HO)x () + e (1),
where {v(f)} and {e()} are white noise sequences with covariance matrices

R(0) = Ev()v(1), Ry(0) =Ee(e™(r), R.,(6) = Ev(d)e'(v),

(5.9)

and an innovations model (3.139),
x(t + 1) = F(O)x(1) + G(Ou() + KO)v(2),
y(&) = HO)x(1) + v(2).

The difference between these two models is that the steady-state Kalman
gain is explicitly parametrized in (5.10) while it is computed indirectly
from R,(0), R,(0), R ,(0), F(0), and H(B) in (5.9). Also, (5.9) can use a
time-varying predictor in the transient phase while (5.10) uses the steady-
state one all the time.

Both models offer the same flexibility for the steady-state predictor.
The model (5.9) has an advantage in that it can also handle time-varying
predictors. This may be important in applications where the data record
is relatively short. If some prior knowledge is gained from physical
modeling it would as a rule be in terms of the model (5.9) (or its continuous-
time counterpart) rather than in terms of (5.10). The reason is that we
might know that one state variable is the derivative of another (e.g.,
angular velocity and angle). Then no process noise affects this state
variable directly, and the corresponding entries in R, would be zero. Such
structural knowledge is more difficult to incorporate in (5.10).

To consider parsimony, we note that the model (5.10) contains pn
parameters (p = number of outputs, n = number of states) for K(0),

(5.10)
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while n(n + 1)/2 + np + p(p + 1)/2 parameters would be required to fully
parametrize the noise covariance matrices in (5.9). This would in any case
be too many, since only np + p(p + 1)/2 (which is equal to the number of
independent entries of the steady-state Kalman gain and the prediction
error covariance matrix) of them are identifiable. However, with prior
structural knowledge as discussed above, the number of parameters in
(5.9) may be reduced, while this is less easy to do in {5.10).

The model (5.10) gives a considerably less computationally complex
algorithm than (5.9), because the calculations leading to K are avoided in
(5.10). This is even more true in an RPEM where the gradient of K with
respect to 8 is required. The use of (5.9) then requires solution of (3.B.3)
to find this gradient, while dK(6)/d6 is immediate in (5.10). Hence from
the viewpoint of algorithmic complexity (5.10) is to be preferred.

Summary If the time variation of the predictor in the transient phase is
important or there is prior structural knowledge about the noise covar-
iance matrices that considerably reduces the number of parameters below
pn, then use of (5.9) should be considered. In all other cases use the
innovations model (5.10).

5.3 Choice of Model Set within the General Family of SISO
Models

In section 3.7 a general family of model sets was given for black box
modeling of a SISO system. This family is given by

- Bg™h Ci@™
A(g Hy(@) = 11
@0 = Euw + 5 Ao (s.11)
[see (3.104)]. The choice of model set within this family will now be
discussed in terms of the factors listed in section 5.2.1.

5.3.1 Flexibility versus Parsimony

Adequate flexibility can be obtained by either using several of the poly-
nomials in the general structure (5.11) or by taking high degrees of the
polynomials included. That means that the absence of some polynomials
can, at least to some extent, be compensated for if the polynomials
included are given high orders.

With a total number of parameters given, the best flexibility is usually
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obtained if they are spread out to some different polynomials. This is
easy to realize. Consider, e.g., a model with A(z) = C(z) = D(z) = F(z) =
1; the model is then y(f) = B(qg ")u(r) + e(?), but such a model with a
limited number of parameters (a limited degree of B(z)) will not be good
for systems with a slow impulse response. Similarly, stochastic distur-
bances can in general be described with fewer parameters as an ARMA
process (take B(z) = 0, D(z) = F(z) = 1) compared to a pure AR descrip-
tion (with B(z) =0, C(z) = D(2) = F(z) = 1).

The tradeoff between flexibility and parsimony should thus best be
met by using three or more polynomials in the structure (5.11).

If the system is unstable (assuming it is stabilized during the experiment
with an appropriate feedback) it is important to note that F(g~') in (5.11)
is constrained to be asymptotically stable. Thus if it is known or expected
that the system is unstable, then the polynomial 4(g~") must be included.
It can also be said that it seems to be common practice to use 4(¢*) or
F(g™"), but not both, in the model.

The choice of model set within the general structure (5.11) is further
illustrated in the following example.

EXAMPLE 5.2 (Achievable Accuracy within Various Model Sets) The
purpose of this example is to investigate the role of the model set when
it is not large enough to allow an exact modeling of the true system.

A system of the form (5.11) is assumed. The degrees of the polynomials
were taken as n,=0, n,=n, =7, n, = ny= 4. The zeros of the poly-
nomials are given in table 5.1. The static gain By(1)/F,(1) was set to 1.

The impulse responses of By(q~")/Fy(¢™") and Co(q™")/Dy(g™") are
shown in figures 5.1 and 5.2, respectively. The disturbance sequence
{e(r)} was assumed to be white noise with zero mean. Two different
inputs were considered:

I. {u(?)} is filtered white noise so that its covariance function becomes

r,()=010-025)r,(0) t=1,2,3
r()=0 t=4

This is a good approximation of a PRBS with the clock period equal to
4 sampling intervals.

IL. u(r) is white noise.

The variance r,(0) was chosen so that S/N became equal to 9.95 for
case I and 0.68 for case II. A number of different model sets were con-
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Table 5.1
Zeros of the polynomials for example 5.2.
Polynomial By(2) Fy(2) Col(2) Dy(2)
Zeros -0.5 0.4 0.5 0.75
0.95 0.8 0.7 0.92
0.6 +0.2¢ 0.9 0.75 £ 0.1¢ 0.8 +0.2i
0.7+0.1; 0.8 +0.15¢
0.7 £ 0.25i

sidered, each with dim 6 = 8. For each model set the limit 6* of RPEM
was determined. According to theorem 4.4 6* minimizes the validity
measure V¥(6) in (5.3). In this example 6* was determined by numerical
minimization of this function, rather than by simulation.

The resulting models were further compared by evaluating all the four
validity criteria V¥(0) — V*(0), (5.3)-(5.6). The numerical results are
given in tables 5.2a, b for the two inputs in question.

Some comments to the results are in order. The given values must not
be compared to the last digit. Since the minimization of ¥'¥(0) has been
performed with a numerical search routine the given values have a
limited accuracy.

Another comment is that all optimizations started with all parameter
values equal to zero. These initial values caused no problems except for
the model set given by n, = 0,n, = 4,n, = 4,n, = 0,n, = O where in case
the algorithm was stuck in a local minimum. Several initial values were
tried for this case before the global minimum could be found. This
indicates that for a set with A = C = D = 1 false local minima may cause
convergence problems in practice. The model set with A= C=D=1
has also another interesting property. It corresponds to an output error
method. It gives the smallest value of the criterion V¥, but the second
largest one of V¥. The reason for this is not difficult to understand.
The parameters of this model are essentially determined to minimize V%.
(This is exactly so in case II when u(¢) is white noise). On the other hand
the criterion ¥} becomes always at least as large as E[C(g 1)/ D(g De(1) 1%,
which is 2.7707 for this system. The assessment of this model set must
thus be strongly influenced by the purpose of the modelling.

The following conciusions can be drawn from this example:

¢ Many model sets show about the same performance. The difference in
performance is not very significant, with a few exceptions.
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Figure 5.1

Impulse response of By(q~ )/ Fo(g™*) for example 5.2.

/
0.5
0 T S —
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Figure 5.2

Impulse response of Co(g™ 1)/ Do(g™") for example 5.2.
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Table 5.2a

Numerical results for example 5.2, case I. The missing figures for the measure ¥,* means
that models obtained by minimizing 7;*(0) did not lead to stable closed-loop systems
when a minimum variance controller was used as feedback.

Polynomial degrees

Model set n, nm, n, nn vE A y* A
y=Bu+te 8 4.3770 0.7017 1.7707
Ay=Bu-+e 4 4 1.1130 0.0593 0.4069 -
Ay = Bu + Ce 3 3 2 1.0943 0.0381 0.4387 1.0841
Ay = Bu + %e 2 2 2 2 1.0213 0.0329 0.0437 1.0151
” 3 3 1 1 1.0821 0.0306 0.4551 1.4534
Ay = Bu + %e 3 3 2 1.0724 0.0361 0.3818 1.0561
B
y= Fu +e 4 4 3.1954 0.0273 1.7707
B C
y= ?u + Be 2 2 2 2 1.0163 0.0333 0.0511 1.0094
7 3 3 1 1 1.0206 0.0287 0.0227 1.0646
y= -lFiu + 2158 3 3 2 1.0203 0.0310 0.0399 1.0092
B C
Ay = ?u + Be 2 2 2 1 1 1.0858 0.1400 0.4247 1.0326
Ay = %u + Ce 2 2 2 2 1.0644 0.0406 0.3334 1.0653
” 3 2 2 1 1.0953 0.0471 0.3992 1.0915
Ay = %u + %e 2 2 2 2 1.2469 0.2052 0.2827
” 2 2 3 1 1.2317 0.1894 0.2225

o There is no advantage in using all the five polynomials. On the contrary,
most of the other model sets give better performance than this “full
structure.”

o The purpose of the model, e.g., the choice of criterion V*, will strongly
influence what model set to select. The model set y = Bu + e is generally
inferior to the other ones, though. If it is essential to estimate the dynamics
of the system (e.g., if the influence of the input on the output as measured
by V# should be small) then the model set y = B/Fu + e is the best choice.
However, if good prediction (as measured by F'*) is the most important
issue, then the model sets y = B/Fu+ C/De, y = B/Fu + 1/De, and to
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Table 5.2b

Numerical results for example 5.2, case II.

261

Polynomial degrees

Model set n, my nonon [ v* Vy* vy
y=Bu+e 8 29343 0.1636 1.7707
Ay=Bu+e 4 1.0312 0.2781 0.0440 ..
Ay = Bu + Ce 3 3 2 1.0140 0.1381 0.1168 1.0285
Ay = Bu + %e 2 2 2 2 1.0146 0.1393 0.1145 1.0387
” 3 3 1 1 1.0263 0.2517 0.0911 1.0451
Ay = Bu + %e 3 3 2 1.0225 0.1961 0.0852 1.0748
B
y= Fu +e 4 4 2.7981 0.0274 1.7707 2.7689
C
y= Fu + Be 2 2 2 2 1.0036 0.0321 0.0096 1.0059
” 3 3 1 1 1.0043 0.0319 0.0137 1.0057
y =Fu +%e 3 3 2 1.0061 0.0316 0.0148 1.0142
B C
Ay = Fu + Be 2 2 2 1 1 1.0209 0.2523 0.0319 1.0880
Ay = Fu + Ce 2 2 2 2 1.0225 0.2549 0.0394 1.0749
” 3 2 2 1 1.0185 0.2339 0.0250 1.0640
1
Ay = %u + Be 2 2 2 2 1.0241 0.3305 0.0383 1.0504
” 2 2 3 1 1.0314 0.3622 0.0484 1.0576

some extent Ay = Bu + C/De, are the best. However, these results must
be interpreted with care. 1t is, e.g., clear that the experimental conditions
can influence which one of two competitive model sets gives the best

performance. O

The signal-to-noise ratio of the application in question also has an
important effect on flexibility. For an application with very low noise
level, only the dynamic part in (5.11) is of interest. Then we can take
C= D=1 and either F=1 or 4 = 1. Since F=1 (which gives the LS
method for estimation of 4 and B) has several advantages, as we shall
see, this choice is usually the best one for applications with low noise

level.



262 Chapter 5 Choice of Algorithm

5.3.2 Algorithm Complexity

The complexity of the equations for updating the estimate f(z) and the
matrix R(r) depends only on the fotal/ number of parameters; both the
number of computations and their complexity are independent of the
way the parameters enter into any particular model. To find y(t | 6) and
Y (t, 0) the data must be filtered [see (3.105) and (3.119)]. The number of
computations involved in this filtering is proportional to

n.+ny;+n.

Filtering requires that stability tests be included so that the step length,
whenever necessary, can be reduced, and an asymptotically stable filter
can be maintained. For the model (5.11) the polynomials C(z) and F(z)
must be tested for their stability properties (see section 6.6).

The algorithm becomes especially simple when C(z) = D(z) = F(z) = 1.
This is nothing but the standard LS method. Then »o filtering is necessary,
since the vector (¢, 0) contains only delayed outputs and inputs.

5.3.3 Properties of the Criterion Function

The properties of the criterion function

SO\ _ T =1D@ | 4 -1 Bg@™") 2

V(0) = Ee(t, 0) = E{—_ Alg DYy () — ="=u(t) (5.12)
c@ YO R

will certainly depend on the model set. We shall discuss the existence of

local minima and the existence of *““valleys’ due to overparametrization.

Analysis of local minima is important, but harder to perform than a study

of the existence of multiple global minima.

Local Minima Some partial results are known concerning the existence
of local minima. Assume that the input is persistently exciting and that
the system is operating in open loop, subject to

Bolg™") Colg™
Fo(q_l) Do(q—l)

Assume further that the polynomials of (5.13) do not have higher degrees
than the corresponding polynomials in (5.11). This means that the true
system belongs to the model set. The following results are known (““‘false
local minimum” = nonglobal local minimum):

Ao(g )y = u(?) + e(?). (5.13)
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e f B=0and D = F=1 (i.e., ARMA models), then there are no false
local minima. (Astrém and Séderstrom, 1974).

e If C = D = F = 1, then there are no false local minima. This is trivial
since the criterion function in this case is quadratic in 6:

o If C = F =1, then there are no false local minima if the signal-to-noise
ratio is large enough. On the other hand, if it is very small then there are
false local minima (Soderstrom, 1974).

o If A =1, then there are no false local minima if n, = 1. When n, > 1
false local minima can exist in some cases (S6derstréom, 1973a, 1975).

e If 4 = C = D =1, then there are no false minima if the input is white
noise. For other inputs, however, false local minima can exist (S6derstrom,
1975; Stearns, 1980).

Overparametrization of the Model Set We showed in example 4.10 a
case where the second derivative matrix ¥”(6*) became singular at the
convergence point as a result of using too-high model orders. Such
overparametrization leads to problems in the algorithm since the matrix
R(?) in (3.158a) will be almost singular. Let us now discuss in more general
terms when overparametrization can lead to a singular V”(0*).

From the analysis in section 4.4.4 it followed that V”(0*) is singular
precisely when the prediction y(r | 6) is unaffected by changes in certain
parameter combinations. For the model (5.11), which also can be written

B(g™") Cig™h
A(g~HF(g™) A(@gHD™)
this is the case when a factor can be cancelled in one of the transfer func-

tions B/(AF) or C/(AD) at the convergence point 6*. It is easy to see that
this in turn happens when any of the following conditions hold:

y(1) = u(t) + e(?),

o There is a factor common to all of 4*, B*, and C*, (5.14a)
¢ B*and F* have a common factor, (5.14b)
e C*and D* have a common factor, (5.14¢)

where the starred polynomials correspond to 6*. Therefore when the
model polynomials have higher degrees than the minimal description at
the convergence point, overparametrization may result. Notice, however,
that this also depends on the structure of the model. For example, when
F* = C* = 1, neither of the conditions (5.14) can hold.
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Independence of Dynamic and Noise Models It was pointed out in
example 4.7 that when 4 = 1 and the true transfer function B,/F, can be
described within the model set, then the estimation of B/F and of C/D are
asymptotically decoupled (provided u and e are independent). This may
be a useful advantage when it is more important to have a good model of
the dynamic part of a system than of the noise.

5.3.4 Choice of Model Order

The choice of the order of the model (5.11) is a nontrivial problem, that
requires a careful tradeoff between good description of the data and model
complexity. Most methods of model order selection are developed for
the off-line situation. (See Soderstrom (1977) for a discussion of some
different methods.) The basic approach is to compare the performance of
models of different orders and test if the higher-order model is worthwhile.
For recursive algorithms in on-line applications this would in general
require parallel identification of several models.

It should be noted, though, that for the LS method (where ¢ is a known
function of the data) it is easy to afterwards compute models with lower
order. This can be seen as follows. The LS estimate is equal to

6 = R0 1. Bt Do1y(o), (5.152)
ﬂ0=§ﬁm@w@wa) (5.15b)

(see example 2.10). To derive the estimate for a lower-order model we
can write the original model as

0
YOy = (0 + e(t) =[] (1) @I (1] (;) + e(1), (5.16)
2

and let the lower-order model be
y(© = @1(00; + e(0). (5.17)

Typically ¢,(¢) then contains u and y with additional delays as compared
to @, (f). We also partition R(¢) correspondingly, viz.,

(El (D) Ry, (t))

RO=Rn0) R
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The LS estimate ¥ for the lower-order model can then be simply derived:
— t
0¥ () = Ri{ (D) X B(t, K)o (D y ()
k=1

= Ri{ (D[R (90,() + Ry,()0,(5)] (5.18)
= 0,(t) + RTHOR,2(0,(2).
5.3.5 Summary

The equation error model set
A(g™ My = Blg " u(?) + e()

(the “LS model”) has all advantages except parsimony. It is a good first
choice, especially if the noise level is low. A rather high model order
might be required when noise is present.

The output error model set

-1
y(0 =28

has the advantage that the estimation of the transfer function B/F is
independent of the noise properties, as long as the noise is independent
of the input.

If more elaborate models are needed one can try either

A(g™ Y y(1) = B(g™Hu(?) + Clg™"Ye(r)

or

u(t) + e()

Bg™) Cl@™h
F(g™) D™

or possibly variants with modified noise models. The first of these is well-
tested. It has been used in many applications. The second one has the
advantage that the order chosen for C(¢g !)/D(¢"!) does not influence
the consistency properties for the transfer function estimates. Compar-
isons of the two model sets have not often been carried out; there is no
general result (theoretical or empirical) that clearly favors either model
set.

y@) = u(t) + e(?),
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5.4 Choice of Experimental Conditions

The design of an identification experiment involves a number of issues
such as choice of input signal, sampling rates, presampling filters, signals
to be measured, etc. We shall in this section give some remarks only on
the choice of input signal.

The experimental conditions affect the covariance matrix of the esti-
mates. Typically, for a RPEM, the inverse of the asymptotic covariance
matrix for a single output system is given by

P =kTTEY(L, 0o)¥ (1, 6,), (5.19)

where « is some scaling factor [see theorem 4.5 and (5.23b)]. We saw in
example 4.8 that with a bad choice of input the parameters of the model
may not be identifiable, so that the matrix (5.19) is singular.

In general terms, we may say that the objective of experiment design
is to choose an input that enhances interesting parameters and parameter
combinations. This means that y(z, 0) = (dp(¢ | 6)/d0)" should be large
when the gradient is evaluated with respect to these parameter combina-
tions. There is a rich literature on such experiment design; see, e.g., Mehra
(1976, 1981), Zarrop (1979), Gustavsson et al. (1977, 1981), and Goodwin
and Payne (1977).

Now, recursive on-line identification is often used during normal plant
operation rather than during specifically designed experiments. It is still
important, however, to understand how the input choice may affect (5.19).
The following example shows how feedback effects may make (5.19)
singular.

EXAMPLE 5.3. (Effect of Experimental Conditions on Identifiability) We
take the model set

y@) +ay@— 1) =bu(t — 1) + e(2),
and assume that the true system satisfies
YO + aoy(t — 1) = bou(t — 1) + e(2),

where {e(r)} is white noise. If identification is performed using the LS
method, (5.19) becomes

—y(0)

-1 __ -1
Pr=x E(u(t)

)(—yU)uUD-
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This matrix is singular precisely when there is a static linear relation
between y(¢) and u(?). In particular this means that the system is not
identifiable if the input is determined as a constant feedback from the
output, i.e., if the experimental condition is

Z, u(®)= —kyQ).

Identifiability can be obtained by modifying the experimental condition
to either a feedback law of higher order than in &, e.g., by using the
condition

X, u@®=—ky() —ly@—-1), 1#0,

or to include also a persistently exciting external signal (e.g., a varying
set-point) v(¢), to give the condition

Xy ul®)= —ky@® + v().

It is assumed in this last case that the signal v(7) is uncorrelated with the
noise. O

A survey of how an experimental condition with feedback influences
the identifiability properties is given by Gustavsson et al. (1977, 1981).

In general terms, it can be said that a persistently exciting signal (see
section 3.2) applied to a system in open loop operation will give identifi-
ability. There is no need to use special inputs. If the input is generated in
a digital computer it is often convenient to let it be a pseudorandom binary
sequence (PRBS), wherein the input can take only two values. It shifts
between these values according to certain rules. The minimal time
between two shifts, the “clock period,” is often chosen as a multiple of
the sampling interval. In such a way there will be some long pulses and
the slow modes of the system will be well excited. The static properties
can then be reasonably well estimated. By varying the clock period, one
obtains inputs with different spectral properties.

When the system is too complex to be described within the chosen
model set, it is not interesting to discuss identifiability. If the parameter
converges to a vector 0*, then the predictor j(¢ | 6*) will be the best in the
model set for the experimental condition used under the identification
experiment. It is thus a good practice to choose an input for the identifica-
tion experiment that as far as possible is similar to inputs to be used for
the system at later occasions.



268 Chapter 5 Choice of Algorithm

Summary

The design of optimal identification experiments is seldom interesting
when on-line identification is applied.

If the input is determined as a time-invariant feedback of low order,
identifiability of the system can be lost.

The input signal under the identification experiment should if possible
be chosen similar to inputs to be used for later control of the system.

The input should excite all modes of the system (i.e., be persistently
exciting of a sufficiently high order). PRBSs satisfy this requirement, and
can be generated very easily with a digital computer.

5.5 Choice of Criterion Function

In section 3.5 we studied recursive algorithms for minimizing
N

Vo)=Y It,0,¢@,0). (5.20)
t=1

The criterion function I(, 8, (¢, 8)) is at the user’s disposal and can be
treated as a design variable. It was mentioned in section 3.3 that, for an
off-line algorithm minimizing the function ¥(8#) in (5.20), optimal accuracy
is achieved and the Cramér-Rao lower bound is obtained if the criterion
function is chosen as the maximum likelihood one, i.e., if

I, 6, e(, 0)) = —log /{1, 0, &(t, 0)), (5.21)

where f(-, -, -) is the probability density function of the prediction
errors. Theorem 4.5 showed that the same accuracy is obtained asymptot-
ically for RPE algorithms if the stochastic Gauss-Newton direction is
used and the gain sequence satisfies, at least asymptotically, y(¢f) = 1/t.
The expression (5.21) shows in particular that for disturbances with
Gaussian distributions it is optimal to let /(-, -, -) be a quadratic
function of e.

In practice it is necessary to be concerned with abnormal data. Ab-
normality can arise for many reasons, sensor failures being one example.
It is clear that some single but large measurements (‘“‘outliers”) can
have a large influence on the identification of a model. If such defects
are expected in the data, one should modify the algorithm to make it
more robust.
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One simple and common way to robustify, at least in process control
applications, is to filter all data and to make realiability checks on the
data before processing them. However, filtering and checking can also be
performed on-line with recursive methods.

Another approach is to choose the criterion function /(z, 0, e(¢, 8))
such that the algorithm becomes robust. Assume, e.g., that the prediction
errors, excluding some occasions with outliers in the data, are Gaussian.
Then (5.21) suggests that /( -, -, -) should be quadratic in &. However,
due to the existence of some outliers the probability for large values of
|e(r)] is no longer Gaussian. Then according to (5.21) it is better to let
I(-, -, -) grow slower than quadratic with |e(s)|. This means that we
base the choice of criterion function on a distribution that gives higher
probability for large prediction errors than a Gaussian distribution. This
approach for modifying estimation schemes to be less sensitive to large
errors in the data has been extensively studied for the static case by
Huber (1973), who calls it “‘robust regression.”” Applications of the idea
to dynamic systems have been discussed by Ljung (1978c) for the off-line
case and by Polyak and Tsypkin (1979, 1980) for the recursive case.

Let us now specialize the discussion to scalar-output systems and
consider the case when the criterion /(z, 6, £) can be written as a function
of the prediction error ¢ only. This is the far most common case in practice.
Then the Gauss-Newton algorithm is given by

0@ty = 0 — 1) + ¥R (Y1) [} (e(0)), (5.22a)
R() =R — 1)+ y()[¥ () L)Y () — Rt — 1] (5.22b)

[see (3.72") and (3.73)]. The quality of the estimates produced by (5.22)
will of course depend on the function /(g). Using theorem 4.5, we can
determine the asymptotic covariance matrix. It is given by

P=x(D[Ey(t, 0)¥(t, 65)]7". (5.23a)

This covariance matrix depends on the criterion function only through
the scalar

_ B[]
O = e (-230)

The choice of /(-) should thus be such that this scalar is as small as
possible. In view of what we said about the maximum likelihood estimate
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above, it is clear that the best choice is

I(e) = —log f(e),

where f'is the probability density function of the true prediction errors.
In practice one typically chooses I(¢) to be a function that is quadratic
for small ¢ but increases more slowly for large &. This means that the
function must contain a parameter, say a, that determines what a “large™
prediction error is. The choice of a is a tradeoff, based on the variance of
the prediction errors, perhaps recursively determined. Huber (1973) and
Polyak and Tsypkin (1979, 1980) contain several examples of such

criterion functions. Let us illustrate the behavior for some typical choices
of I(g).

EXAMPLE 5.4 (Some Criterion Functions) We simulated the first-order
system

y() — 0.8y(t — 1) = 1.0u(t — 1) + e(d),

where u(f) and e(¢) are white noises of zero mean and unit variance, so
S/N = 1. The system was identified within the model set

y@O) +ay(t—1)=bu(t — 1) +e(?)
using the following methods:
» 4., given by (5.22) with /() = £2/2.

» #,, given by (5.22) with
—ex+a%f2, e< —a
L) =+« &2, le] < e .
e —a2f2, e>a

Here we have taken o = 2.1. Notice that the effect of /, in (5.22) is just
that a limiter of +2.1 is introduced for &(¢).

» Another way of handling single outliers is .#;, based on filtering of the
data. For each ¢ it was tested if the prediction error ¢(¢) is large compared
to a given limit. When

le()] <o
the algorithm is exactly as for .#;,. However, when this condition is not

satisfied, the measurement y(¢) was considered to be erroneous and
P(t] 0) =¥ T(1)0(t — 1) was substituted. The parameter o was taken as 5.
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The numerical results are summarized in table 5.3. We also present plots
of the parameter estimates in figures 5.3a, b. These plots also show what
happened when the identification was repeated with data containing an
outlier: The same data as before was used, except that the value of y(30)
was changed from —0.416 to 10.00. Table 5.3 and the figures show that
the methods give similar results when there are no outliers in the data.
However, a single outlier has a drastic influence of the parameter estimates
for the method .#;. It takes a long time for the estimates to recover after
this single piece of bad data. The method .#, shows, as expected, better
resistance to the outlier. The method .#, was specifically designed to
handle single, large outliers, and gives almost perfect results for this case. o

Summary

When the measured data set contains some values that are abnormal, e.g.,
dueto sensor failures, straightforward use of a quadratic criterion function
will give substantial jumps of the parameter estimates. Moreover, a long
time elapses before the estimates converge to their previous levels.

A way to make the algorithm robust, is to use a criterion function that
grows more slowly with ¢ than the quadratic one; then large prediction
errors will have less influence on the parameter estimates.

Another approach is to test recursively if the data contains outliers.
This can be done by comparing the prediction errors with a specified
limit. Large prediction errors means that an outlier or a measurement
error is probable. The predicted value can then be substituted for the
measurement. This approach is applicable when there are only a few
outliers in the data.

5.6 Choice of Gain Sequence

The gain sequence {y(#)} and tracking were discussed in section 2.6. Two
different approaches to manipulate the gain were described.

Table 5.3

Parameter estimates for example 5.4. Ten runs, N = 100.

Method d b

S, and ¥, —0.758 + 0.041 0.982 + 0.080
A —0.764 + 0.042 0.992 + 0.131

True value —-08 1.0




272 Chapter 5 Choice of Algorithm
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Figure 5.3a

Identification of the system in example 5.4 with methods .#, and .#,. Heavy curves:
Result for .#; when no outlier was present, as well as the result for .#; both with and
without outlier data. Light curves: Result for .#, with outlier.
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Figure 5.3b

Identification of the system in example 5.4 with method .#,. Heavy curves: Without
outlier. Light curves: With outlier.
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One approach is to use the sequence {y(z)}. Then the estimates are
given by

6(r) = 0(t — 1) + L(D)e(?), (5.24a)
L(®) = y(ORT (¥ (), (5.24b)
R() = R(t — 1) + y) [y (Y1) — R(z — D]. (5.24¢)

It should be noted that the gain sequences in (5.24b)-and (5.24¢) need not
be the same. Usually, though, they are chosen to be equal, and we shall
assume that this is the case in the following discussion.

Instead of y(¢r) and R(z) we may use the matrix P(¢) and the forgetting
factor A(¢), which are defined by

a0 =200 -0 (5.25)
P(t) = y()RT (). (5.25b)
The algorithm (5.24) then becomes

6(r) = 6(t — 1) + L(0)e(2), (5.26a)

L@ty =Py (1) = P(t — WY O[AOI + Y (P — DY (O], (5.26b)
P(t)={P(t— 1) = P(t — DY) [ADI + Y ()Pt — Y (O]
x YH(OP(t — D}AQ).

The design variable for the gain is here the scalar sequence {y(z)} or
equivalently {A(2)}.

The other approach is based on the model (2.111) incorporating the
behavior of 6 and the accuracy of the measurements. The algorithm then
becomes

6(5) = 6 — 1) + L(D)e(0), (5.27a)
L(t) = Pt — DY O[R(1) + Yy ()Pt — DY (n]7, (5.27b)
P() = P(t — 1) — P(t — DY () [Ro(8) + ¥ () P(r — DY (O]

x YT (OP(t— 1)+ R, ().

(5.26¢)

(5.27¢)

The design variables for the gain are R, () and R, (?).
We will discuss the choice of gain sequence for time-varying and for
time-invariant systems in the following two sections.
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5.6.1 Time-Varying Systems

For true real-time identification the purpose is to track time-varying
parameters. Then there is obviously a tradeoff between tracking ability
and noise sensitivity. It will be impossible to accurately follow parameters
which change fast. However, a slow time variation can often be tracked
reasonably well.

If the algorithm (5.26) is used a common choice is to take

in=7<l. (5.28a)

The elements of the corresponding sequence {y(¢)} are readily found to be

>

() = 3 (5.28b)

1 —
1 —

oo

A suitable value of the forgetting factor A can be determined in the
following way. A fixed value of A(¢) as in (5.28a) corresponds to a loss
function

N
V(0 = 3 %12, 0)

t=1
[see (2.115) and (2.118)]. Old prediction errors thus contribute only
marginally to the criterion function. When 4 is close to 1, which is always
the case in practice, we have

N = etlnd — prInG-1+1) o HG3-1)

This gives an exponential-decay time constant of

1
To=——. 5.29
=T (529)
Hence a prediction error older than T;, time units has a weight that is less
than e™! = 36% of that of the most recent data. We may call T, the
memory time constant of the criterion.
Note also that for (5.28b) we have

lim y(¢) = TL

t— a0 0
In the more general case let {y(r)} decrease to a positive limit

() =7y, > 0. (5.30a)
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Then we get that asymptotically y(f) corresponds to a constant A:
Ao=1—=1,. (5.30b)

We can still speak of a memory time constant, in this case given by
To = 1/7,. The choice of the time constant T, (and hence 4 or y,) shall be
chosen to match the expected variation of the parameters. These should
be “‘almost constant” over a period of length Tj,.

If instead the algorithm (5.27) is used, the matrices R,(¢) and R,(¢)
must be selected. If one has prior knowledge about the time variation,
this should be used for the choice. If not, the matrices are normally
taken as constant diagonal matrices. The diagonal elements of R, will
describe the supposed rate of change for the different parameters, while
the elements of R, describe the confidence of the various components of
the measured vector.

To illustrate the two approaches consider a simple example.

EXAMPLE 5.5 (Two Approaches to Tracking of Parameters) The system
y@® +ay(@—1)=b(t— Du(t—1)+ e(r)

is of first order. Its gain varies with time while its pole is kept fixed. We
simulated the system for N = 100 using

a= —0.8

) 2, 0<1<20, 41<r<60, 81 <r<100
T3, 21<1<40, 61 <1< 80 ’

and where {u(¢) } and {e(¢)} were white noise sequences of zero means and
unit variances.

In this simulation the parameters behaved quite differently from one
another. The parameter a remained constant while the parameter 5 made
some large and quick changes.

The system was identified within the model set

(&) + ap(t — 1) = bu(t — 1) + e(f)

using the LS method. First the basic algorithm with R, (¥) = 0, R,(¢) = 1,
A(f) = 1 was tried. The estimates so obtained are shown in figure 5.4.

The estimate b is, as expected, quite poor; b cannot follow the step
changes in the true parameter b(¢). It merely converges to a mean value
of 2.5. Note that the estimate 4 is quite good.
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Figure 54

Identification results for example 5.5 with R, = 0, R, = 1,1 = 1.
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Figure 5.5
Identification results for example 5.5 with R, = 0, R, = 1,1 = 0.9,
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Next, the system was identified using R, =0, A() =1 < 1. With 4
close to 1 the algorithm has a large memory time constant [see (5.29)],
and will not be alert enough to follow the changes of b(f). On the other
hand, if 4 is small, then the gains L(7) in (5.26b) will be relatively large
and the estimate d will jump around and not be very accurate. Several 4
values were tried. A reasonable tradeoff between alertness to follow the
time variations in b(f) and insensitivity to noise effects was found with
4 =0.9, which corresponds to T, = 10. The estimates so obtained are
shown in figure 5.5. The estimate b(r) follows now the time variation of
b(z) much better than in figure 5.4, where 4 = | was used. Note, however,
that the estimate d is worse since it is now varying more around its true
value.

With the approach using the algorithm (5.27) it is possible to obtain a
better result. The matrices were taken as

00
Rl(t)=(0 r), R,(H=1.

The matrix element r accounts for the time variation of b(¢). Again,
several values of the design variable were tried to suitably weight alertness
against noise sensitivity. It was found that r = 0.05 gave a reasonable
tradeoff. This corresponds, as we saw in example 2.9, to a model for the
parameter b of the form

b(t) =b(t — 1) + v(2),

where the white noise {v(¢)} has a standard deviation of 0.22. It describes
the “‘average change” of b(¢f) per time unit. The parameter estimates
obtained with this approach are displayed in figure 5.6. It is clear from
the figure that this approach is the better one for this example. The
estimate d is very calm and close to its true value for a long time (i.e., the
good property from figure 5.4 is kept). Simultaneously the estimate b(r)
now follows the time variations in b(f) reasonably well (i.e., the good
property from figure 5.5 is also kept). O

It should be noted that although R,(f), R,(¢), and A(¢) have been
chosen constant in example 5.5 this is by no means necessary. It can in
fact be an advantage to let these quantities be time-varying in a transient
phase. This idea applies also to time-invariant systems, as will be discussed
in section 5.6.2.
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00
Identification results for example 5.5 with R, = [0 0 05} R,=1, i=1

Summary If appropriate prior knowledge about the time variation of
the parameters is available, then the algorithm (5.27) will give the best
result, especially if different parameters are changing at different rates.
The matrices R, (f) and R,(¢) should be chosen constant and diagonal if
no detailed knowledge about the dynamics is at hand.

If there is no prior knowledge of the time variation then the algorithm
(5.26) can be used. The forgetting factor A(f) should be chosen as a
constant A somewhat smaller than 1. The loss function corresponding to
the algorithm gives weighting of approximately the last 1/(1 — 1) predic-
tion errors. An alternative is to use the algorithm (5.27) with R,(f) = r, I,
R,(t) = r,I and to choose the scalar r, rather small. This choice cor-
responds to an expected variation of the parameters of approximately
/ry per time unit and a variance r, of the measurement noise. Only the
ratio r,/r, will influence the parameter estimates.

5.6.2 Time-Invariant Systems

For constant parameters it was shown in section 4.4.3 that the gain
should be chosen asymptotically as y(¢f) = 1/t. If the Gauss-Newton
direction is used then the estimates will have the minimal achievable
variance. However, in the transient phase, i.e., for small and intermediate
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values of ¢, the gain y(¢) should in some cases be chosen differently. It
has in fact turned out in practice that the choice of y(¢) [or equivalently
A()] will often have an important influence on the convergence rate. The
one situation in which this is not the case is the LS case when the model
is a regression

(&) = 0Tp() + e(1),

with ¢(#) exactly known from the measured data. For other cases, the
estimates of the variables in the gradient will in the beginning of the
recursion be rather poor. Then there is reason to discount these estimates
and the corresponding prediction errors in the further processing of the
algorithm. This corresponds, to the use of a “weighting profile” B(N, )
(see example 2.10). The criterion

Vel®) = 3 BN, 61, 0) (5.31a)
t=1

is then minimized recursively. As in (2.117), we assume that B(N, ¢) has
the structure

N-1

B(N, )= [] k), B(N,N)=1, (5.31b)
k=t

which leads to the algorithm (5.26).

When old data are discounted it is required that A(f) < 1, which
corresponds to y(¢f) > 1/t. On the other hand, it is desirable to let A(¢) — 1,
i.e., ty(f) > 1 as t » oo. These objectives can be reached in many ways.
In practice it has often been useful to let A(f) grow exponentially with ¢
to 1. This can be written as

A = Aod(t = 1) + (1 — Ap), (5.31c)

where the rate i, and the initial value A(0) are design variables. The
properties of the gain sequence determined by (5.31) are studied in the
following example.

EXAMPLE 5.6 (Gain Sequences) Consider the forgetting factor A(z) given
by (5.31c). The gain sequence {y(#)} can be found from (5.25a). It satisfies

N S
A(D)
1
NS

() =
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Plots of ry(¢) are shown in figures 5.7a, b, for different values of A(0) and
4o. In figure 5.8a—c we give plots of the forgetting profile B(N, f). The
product of #y(¢) (excluding the case A, = 1) starts at 1, increases to 2 or 3,
and falls again to 1. The parameter A(0) influences mainly the magnitude
of the maximum. (A small A(0) gives a large maximum and vice versa).
The parameter A, influences both the value of ¢ for which the maximum
occurs and the flatness of the maximum. (A large A, gives a late and flat
maximum).

The weighting profile B(¥, ) is an increasing function of ¢. For N > 200
it typically starts (for 7 = 0) at a small value close to 0. For ¢ > 500 it is
often quite close to 1.0

In practice the exponentially increasing form (5.31¢) for A(¢) has shown
to work quite well. The numerical values

Ao =0.99, A(0) =0.95

have proven useful in several low-order applications.
The influence of the forgetting factor on the convergence rate will now
be illustrated by means of simulations.

eExaMPLE 5.7. (Effect of Forgetting Factor on Convergence Rate) We
simulated the first-order system

y(6) — 0.8y(t — 1) = 1.0u(t — 1) + e(t) + 0.7e(t — 1).

The input was a PRBS with S/N = 10 and S/N = 1. Identification was by
RPEM within the model set

y@& +ay(t— 1) =bu(t — 1) + e(t) + ce(t — 1).

Numerical values of the measures V*(0) — V*(6) were then computed;
these results are shown in tables 5.4a, b. It can be seen from the tables
that a time-variable forgetting factor gives better accuracy than A(¢) = 1.
The choice 4, = 0.99, A(0) = 0.95 appears to be the best. This is most
significant for short data lengths which means that the time-variable
forgetting factor improves the convergence rate.

It can be noted that some of the values obtained by simulation are
even better than the ““ideal values™ based on the Cramér-Rao bound. This
is no contradiction and happens for a number of realizations. It should
be regarded as an illustration of the statistical efficiency of the RPEM.
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Figure 5.7a
Plots of ty(f) vs. t for A, = 0.95. I, A(0) = 0.9; II, A(0) = 0.95; III, A(0) = 0.99.
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Plots of ty(¢) vs. t for 4, = 0.99. I, A(0) = 0.9; II, A(0) = 0.95; III, A(0) = 0.99.
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is given by 4(0) = 0.9 and 4, = 0.95 (1), 4, = 0.99 (ID).
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As figure 5.8a, but 4(0) = 0.95.
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As figure 5.8a, but 4(0) = 0.99 and 4, = 0.95 (I), 2, = 0.99 (II), A, = 1.0 (III).

Finally, PLR was used on the same runs and with the same values of A(D).
The result was again that A, = 0.99, 4(0) = 0.95 is the best choice. O

Let us continue with another example illustrating the same type of
results.

EXAMPLE 5.8 (Effect of Forgetting Factor on Convergence Rate) Con-
sider a second order system given by

y@) — 1.5 - 1D+ 07y - 2)
=1.0u(t — 1) + 0.5u(t — 2) + e(t) — 1.0e(t — 1) + 0.2e(z — 2).

The input was chosen as a PRBS with S/N = 10 and S/N = 1. Identifica-
tion was by the PLR and the RPE methods within the model set

YO +ay—1)+ay(-2)
=biu(t — 1)+ bu(t —2) + e(t) + ce(t — 1) + ce(t — 2).

Numerical results are given in tables 5.5a, b. It is clear from the tables that
the results vary a lot from run to run. Nevertheless some general tendencies
can be seen.
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Table 5.4a
Validity measures for different values of 4, and A(0), example 5.7 with /N = 10. Ten runs
Ao 20) N V*(9) V,*(6) V*(6) V0
0.99 0.9 100 1.1951 0.0298 0.0674 ...8
500 1.0078 0.0031 0.0133 1.0025
2000 1.0010 0.0007 0.0018 1.0001
0.99 0.95 100 1.5354 0.0186 0.0597 el
500 1.0073 0.0024 0.0104 1.0025
2000 1.0009 0.0007 0.0017 1.0001
0.99 0.99 100 1.1035 0.0452 0.1254 1.1426
500 1.0082 0.0023 0.0081 1.0035
2000 1.0011 0.0007 0.0018 1.0002
0.99 0.999 100 1.0901 0.0642 1.0642 1.0665
500 1.0099 0.0043 0.0128 1.0037
2000 1.0013 0.0009 0.0002 1.0003
0.999 0.95 100 2.2362 0.0308 0.0767 ...
500 1.0634 0.0181 0.0537 1.0187
2000 1.0108 0.0044 0.0148 1.0050
0.999 0.99 100 1.1260 0.0394 0.1098 1.3073
500 1.0104 0.0041 0.0129 1.0031
2000 1.0029 0.0020 0.0056 1.0010
0.999 0.999 100 1.0910 0.0633 0.1705 1.0687
500 1.0091 0.0037 0.0110 1.0034
2000 1.0012 0.0009 0.0022 1.0002
1 1 100 1.094 0.0666 0.1789 1.0626
500 1.0102 0.0048 0.0137 1.0037
2000 1.0014 0.0009 0.0024 1.0003
Ideal values based on 100 1.0300 0.0133 0.0429 1.0109
g;ﬁg‘;"k“ lower 500 1.0060 0.0027 0.0086 1.0022
2000 1.0015 0.0007 0.0021 1.0005
2Ellipses points ... in this table and in table 5.4b mean that the measure is not defined

{due to instability) for at least one run.
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Table 5.4b
As table 5.4a with S/N = 1.
Ao 4(0) N V,*(9) V2 (0) V:*(6) V2 0)
0.99 0.9 100 3.2525 0.1096 0.1850 .
500 1.0065 0.0105 0.0362 1.0047
2000 1.0007 0.0025 0.0055 1.0004
0.9 0.95 100 8.0698 0.1195 0.3314 ...
500 1.0062 0.0089 0.0290 1.0064
2000 1.0007 0.0024 0.0053 1.0004
0.99 0.9 100 1.1390 2.0854 5.4485 ..
500 1.0152 0.0219 0.0766 1.0211
2000 1.0016 0.0055 0.0151 1.0011
0.99 0.999 100 1.1618 0.1438 .. .
500 1.0352 0.4047 0.9743 1.0317
2000 1.0047 0.0227 0.0615 1.0027
0.999 0.95 100 2.5892 0.1228 0.2290 .
500 1.0616  0.0627 0.1384 1.0617
2000 1.0092 0.0160 0.0342 1.0129
0.999 0.99 100 1.1549 1.3706 3.6263 ..
500 1.0088 0.0145 0.0382 1.0068
2000 1.0022 0.0063 0.0142 1.0021
0.999 0.999 100 1.1617 0.1429 .. .
500 1.0306 0.2832 0.6855 1.0275
2000 1.0026 0.0122 0.0325 1.0014
1 1 100 1.1627 0.1468 . ..
500 1.0375 0.4964 1.0331 1.1889
2000 1.0053 0.0258 0.0698 1.0030
Ideal values based on 100~ 1.0300 0.0790 0.1810 1.0185
Cramér-Rao lower 500 1.0060 0.0158 0.0362 1.0037
bound

2000 1.0015 0.0040 0.0091 1.0009
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Table 5.5a _
Validity measure V ¥(0) for example 5.8 with S/N = 1.

A(#) = 0.994(¢r — 1) 4+ 0.01

A =1 A(0) =0.95

Run Method N=200 N=500 N=1000 N=200 N=500 N=1000

1 PLR 1.1189 1.0398 1.0307 1.0953 1.0518 1.0377
RPEM 1.3844 1.3212 1.2676 1.2683 1.0811 1.0244

2 PLR 1.1525 1.0988 1.0618 1.2748 1.1005 1.0232
RPEM 1.0197 1.0093 1.0055 1.0297 1.0169 1.0080

3 PLR 1.1205 1.0497 1.0175 1.0453 1.0253 1.0068
RPEM 1.0488 1.0072 1.0039 1.0352 1.0033 1.0019

4 PLR 1.0911 1.0251 1.0086 2.3493 1.0643 1.0024
RPEM 1.4302 1.3884 1.3640 1.2465 1.0314 1.0044

5 PLR 1.0522 1.0379 1.0153 1.0994 1.0303 1.0110
RPEM 1.5365 1.0039 1.0014 1.0388 1.0094 1.0014

6 PLR 1.0304 1.0322 1.0080 1.1816 1.0169 1.0170
RPEM 1.4334 1.3999 1.3782 1.0921 1.0037 1.0081

Ideal values -

based on

Cramér-Rao

lower bound 1.0300 1.0120 1.0060 1.0300 1.0120 1.0060

o If V*(0) becomes large, e.g., due to bad parameter estimates in the
transient phase, then it decreases quicker for the time-variable forgetting
factor as compared to the case A(f) = 1. This is natural, since A(¢) < 1
makes the algorithm more alert. This property is of course an important
advantage of the time variable A(¢).

* The choice of A(t) is more critical for RPEM then for PLR.

It can be remarked that if prediction errors are used instead of residuals
(which there is no reason to do; see section 5.11), then the choice of A(f)
becomes more critical than shown in the table.

As a further illustration the parameter estimates are plotted versus
time for run no. 6, S/N = 10. The RPE method was used. The plots are
shown in figures 5.9a, b. They illustrate the effect of using a forgetting
factor less than unity in the transient phase. In figure 5.9b, where this is
the case, the estimates ¢,, ¢é, converge considerably faster than for
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Table 5.5b
As table 5.5a but with S/N = 10.

(D) = 0.994( — 1) + 0.01

A =1 A(0) = 0.95

Run Method N=200 N=500 N=1000 N=200 N=500 N =1000

1 PLR 1.8855 1.0587 1.0537 1.3917 1.0572 1.0594
RPEM 2.4435 2.1923 1.9456 1.3921 1.0868 1.0259

2 PLR 1.2391 1.1680 1.0937 1.3821 1.0571 1.0112
RPEM 2.2491 1.9110 1.3779 1.0642 1.0283 1.0104

3 PLR 1.0538 1.0712 1.0323 1.0261 1.0273 1.0122
RPEM 1.0295 1.0053 1.0033 1.0573 1.0039 1.0028

4 PLR 1.1429 1.0503 1.0252 2.0859 1.0383 1.0097
RPEM 2.3285 1.7344 1.2195 1.0497 1.0044 1.0003

5 PLR 1.1417 1.0611 1.0409 1.0827 1.0096 1.0110
RPEM 1.5365 1.2486 1.0617 1.0617 1.0127 1.0013

6 PLR 1.1941 1.1141 1.0505 1.2889 1.0617 1.0201
RPEM 1.0855 1.0323 1.0157 1.0651 1.0073 1.0096

Ideal values

based on

Cramér-Rao

lower bound 1.0300 1.0120 1.0060 1.0300 1.0120 1.0060

A(®) = 1 (see figure 5.9a). It can also be seen that more smooth curves
are obtained when A(f) = 1, which simply means that the algorithm then
is not so alert in tracking parameter changes. 0

We stated at the beginning of this section that the matrices R, and R,
can be used as an alternative to A(¢) for varying the gain. This is illustrated
in the following example where the two approaches are compared.

EXAMPLE 5.9 (Two Approaches for Affecting the Gain) We simulated
the system

y(@) —0.8y(t — 1) = 1.0u(t — 1) + e(?) + 0.7e(z — 1).

The input u(f) was a PRBS, S/N = 1. The system was identified using
PLR within the model set

y(@) +ay(t — 1) = bu(t — 1) + e(t) + ce(r — 1).
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As figure 5.9a, but with the forgetting factor given by (5.31¢) with 4(0) = 0.95, 4, = 0.99.
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Three different cases were treated:

(a) the basic algorithm: (5.24) with y(¢) = 1/1.

(b) the algorithm (5.24), with the gain y(r) given as a forgetting factor
A(?) satisfying (5.31¢) with 4, = 0.99, 1(0) = 0.95.

(c) the algorithm (5.27) with

50 0
R®O=[0 5 0]x105 R)=1,
00 75

where the larger value of the last diagonal element in R, is an attempt to
increase the convergence rate of the estimate ¢.

The system was simulated using 500 data points. The results are shown
in figure 5.10a—c. The plots illustrate that roughly the same behavior is
obtained in cases (b) and (c). Both these cases show a considerably
improvpd convergence rate over that of case (a). O

Summar\y The gain sequence has a considerable influence on both the
transient behavior and the accuracy for reasonably long data sequences
(N a few thousands).

Optimal asymptotic accuracy is obtained if lim,_,  ty(¢) = 1. For good
transient behavior it is required that y(z) > 1/t for moderate values of .
It is often reasonable to let #y(¢r) have a maximum of 2 to 5, between
t = 50 and ¢ = 400.

One way to obtain the aforementioned gain sequence is to use a forget-
ting factor A(?) that grows exponentially to 1 [see (5.31c)]. In many cases
the numerical values

A() = 0.994(t — 1) + 0.01, A(0)=0.95

have proved to be useful. When a high-order model is used so that many
parameters must be estimated, it may be better to let A(f) grow more
slowly to 1.

Another way to obtain similar transient behavior is to add a small
matrix R; in the updating of P(¢) [see (5.27)]. The parameters appearing
linearly in &(¢) should have small values in the corresponding diagonal
elements of R,. An advantage of this approach is that the convergence
rate can be manipulated more or less independently for each parameter.
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5.7 Choice of Search Direction

The search direction for a recursive algorithm can be chosen in different
ways. In this section some possibilities and their consequences will be
discussed. As noted in sections 2.4 and 3.5, the two main alternatives are
the stochastic Gauss-Newton and the stochastic gradient directions. The
stochastic Newton algorithm, for single-output systems, is given by

6@ty = 6z — 1) + y@O R @)Y (0)e(1), (5.32a)
R(@® =R -1+ OOV () — Rt - 1)] (5.32b)

[see (3.67)]. The stochastic gradient algorithm is obtained if R(¢) in
(5.32a) is replaced by r(z)I, where (for scalar-output systems) the scalar
function r(¢) is given by

r)=r@t =1+ O¥O - r@t—1)] (5.33)

[see (3.74)]. There also exist some hybrid variants. Kumar and Moore
(1980) discuss a gradient given by
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Figure 5.10a

Parameter estimates for the system in example 5.9 identified with PLR. The algorithm
(5.24) with y(r) = 1/t was used.
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Parameter estimates for the system in example 5.9 identified with PLR. The algorithm
(5.26) was used with a forgetting factor A(?) satisfying A() = 0.994(t — 1) + 0.01,
A(0) = 0.95.
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Parameter estimates for the system in example 5.9 identified with PLR. The algorithm
(5.27) was used with the matrices R, (f) = diag (5, 5, 75)- 1075, R,() = 1.
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0(t) =0t — 1) + yOY D), (5.34)

where Y (£)' denotes the componentwize pseudoinverse: ¥;()" = y;(r) ™
if Y;(¢) # 0, and ,()' = 0 if () = 0, for each component ;(¢) of ¥ (2).
In practice y;(7)" is set to zero if |,(¢)| < & for some small 6 > 0.

Other schemes have been reported by Hastings-James and Sage (1969)
and Young (1976) for specific model sets. In these schemes, the stochastic
Newton method has been used, with the parameter vector partitioned
into two parts; one part describes the transfer function from u(¢) to y(z)
while the other part contains the noise parameters. The corresponding
R(#) matrix is constrained to be block diagonal. The overall algorithm
then consists of two coupled algorithms of lower dimensions due to the
partitioning. Such coupled algorithms are illustrated in (4.E.12).

The choice of search direction will influence

« the asymptotic accuracy,
« the convergence rate,

« the algorithm complexity.

It was argued in section 4.4.3 that essentially only the Newton direction
will give asymptotically efficient estimates. In general, it can be said that
the Newton direction gives quicker convergence than the stochastic
gradient direction. A similar statement can be made for numerical
minimization algorithms in general. As was discussed in section 5.6, the
gain sequence may have a major influence on the convergence rate. It has
been found in practice that gradient algorithms are much more sensitive
in this respect than Newton algorithms. Since the choice of gain sequence
is not trivial, this property argues in favor of choosing Newton directions.
It should, however, be pointed out that the modified stochastic gradient
algorithm (5.34) can give an improved convergence rate over those of the
stochastic gradient algorithms (5.33), (see Kumar and Moore, 1980).

We can quickly compare the complexity of the algorithms. Let d denote
the number of parameters; d is assumed to be “large”” compared to 1.
The basic stochastic Newton algorithm will then require ~ 4d? arithmetic
operations. The storage requirement is =~ d?/2. For the stochastic
gradient methods the number of arithmetic operations is between 34 and
4d; and the storage requirement is &~ 2d. In these expressions the computa-
tion of the prediction errors &(f) is not included. The computational
requirement for this calculation can differ greatly between different model
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sets. It should also be mentioned that there are computationally *‘fast”
algorithms for updating the gain R~ (1) (¢) (see section 6.3). A more
detailed discussion of computational requirements will be given in
chapter 6.

The following numerical examples will compare the Newton algorithm
(5.32a) and the stochastic gradient algorithm (5.33).

EXAMPLE 5.10 (Comparison of Search Directions) We simulated the
system

y() — 0.8y(t — 1) = 1.0u(t — 1) + e(2).

The input u(r) was a PRBS, S/N = 1. The LS method was applied to the
data using the model set

y() +ay(t — 1) = bu(t — 1) + e(¥).
The forgetting factor used obeyed (5.31¢):
MOy = AgAt — 1) + (1 — Ap).

Different values of 4, and A(0) were tried. The results are given in table
5.6. Several features are illustrated by the results. The estimate 4 is
insensitive to the choice of method. However, b is given with much better
accuracy by the Newton than by the gradient method. Finally, the
choice of forgetting factor, i.e., the choice of the numbers i, and A(0),
has a greater effect on the estimates in the gradient algorithm. O

EXAMPLE 5.11 (Search Directions, Continued) We simulated the system

Table 5.6

Parameter estimates for Newton and the gradient methods, example 5.10. Ten runs.
N=150 N =500

Method 4, HON b G b

> Newton 1.0 1.0 —0.792 +0.045 0937 +0.158 —0.796 + 0.011 0.994 + 0.054

099 095 —0.795+0.034 0.929 + 0.121 —0.796 + 0.017 1.005 + 0.056

Gradient 1.0 1.0 —0.770 £ 0.054 0.916 + 0.430 —0.792 + 0.015 0.947 + 0.300
099 0.95 —0.778 +0.032 0.923 + 0.350 —0.795 £ 0.016 0.971 + 0.158
0.9975 0.9 —0.787 £0.043 0.932 + 0.246 —0.785 + 0.040 1.027 + 0.056

True
values -0.8 1.0 —-0.8 1.0
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() — L.8y(t — 1) + 1.54y(t — 2) — 0.592(t — 3)
= 1.0u(r — 1) — 0.9u(t — 1) + 0.196u(t — 3) + e(2).

The input was a PRBS, S/N = 1. The resulting estimates are given in
table 5.7. The forgetting factor was again chosen to satisfy (5.31c). As
seen from the table, the difference between the algorithms is now much
more substantial than for example 5.10. The reason is that in this example
there are more parameters to be estimated, which makes the P-matrix
more ill-conditioned. As a further illustration, we give in figure 5.11a-d
plots of the estimates. O

The difference between gradient and Newton algorithms thus becomes
more pronounced as the model order increases. In certain applications,
such as adaptive equalization (see section 7.5.2) high-order models are
often used. The next example illustrates such 4 case.

EXAMPLE 5.12 (Comparison of Search Directions for a High-Order Model)
(The calculations in this example were performed by F. Soong, 1981.) The
system

B(g™h)
F(g™)

was simulated, with

() = u(t) + e(t)

B(g™") =0.2111¢g7" — 0.1539¢% + 0.93084 3,
F(g)=1-0.2431¢7" + 0.49004 2.

The input {u(¢)} was chosen as white Gaussian noise, and S/N = 10*.
The model set was

:::::nse.;r estimates for Newton and gradient methods, example 5.11. One run, N = 2,000.
Method 4, A0) 4, d, dy b, b, by
Newton 1.0 1.0 —1.78 1.52 —0.58  70.99 —0.87 0.21
Gradient 1.0 1.0 —0.95 0.40 0.09 1.30 —-0.12 —-0.07
0.999 0.8 —1.52 1.15 —0.35 0.99 —-0.59 0.04
0.9995 0.6 —1.68 141 —0.52 0.99 —0.87 0.13
True

values —1.8 1.54 —-0.592 1.0 —0.9 0.196
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30
(] 0) = Z bu(t — i).

The normalized stochastic gradient algorithm [ (2.82), (2.83b), in standard
notation ],

bty = 6t — 1) + 0.00SW-w(Os([),

as well as the Newton algorithm (5.32) (= RLS in this case) were used.
In the latter case we had A(¢) = 0.995 and P(0) = 100-I. In both cases,
6(0) = 0.

Twenty-five runs, each with N = 1,000, were performed ; for each ¢ the
ensemble average

25 . .
20 =55 ¥ [0 — 0~ )]
i=1

was evaluated, where / indicates the ith run. These averages are shown as
a function of ¢ in figures 5.12a, b. It is obvious from these plots that for
this example the Newton algorithm gives the better convergence.

In this example, the RLS algorithm was, due to the high dimension of
0, implemented as a lattice algorithm. Such an implementation is described
in section 6.4. 0

Summary

The Gauss-Newton algorithm gives considerably better accuracy than the
gradient algorithm. This is to be expected, from the theory developed in
section 4.4.3.

The choice of forgetting factor is more crucial for the gradient algorithm
than for the Newton algorithm.

The aforementioned differences are more significant for models of high
or moderate order than for models of (very) low order. The reason for
this is probably that the P-matrix then becomes more ill-conditioned.

The Newton algorithm is more complex computationally than the
stochastic gradient algorithm.

If there are no very strong constraints on computer time and storage,
the Gauss-Newton direction should thus be chosen.
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Parameter estimates for example 5.11. The Newton algorithm was applied with 4(0) = 1,
Ao=1.
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Parameter estimates for example 5.11. The gradient algorithm was applied with 4(0) = 1,
Ao=1.
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Parameter estimates for example 5.11. The gradient algorithm was applied with A(0) = 0.8,
Ao = 0.999.
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Parameter estimates for example 5.11. The gradient algorithm was applied with A(0) = 0.6,
Ao =0.9995.
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Identification of the system of example 5.12. The stochastic gradient algorithm was used.
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Identification of the system of example 5.12. The Newton algorithm was used.
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5.8 Choice of Initial Values

For a recursive algorithm, we require the initial values 6(0), P(0), and
£(0). The choice of these initial values will be discussed in this section.

In section 2.3 the variables 6(0) and P(0) were interpreted using
Bayesian theory. We found that 6(0) can be considered as a prior estimate
of the parameter 0. Moreover, for a single-output system the covariance
matrix of this estimate is P(0). If, for a single-output system, the algorithm
is used with A(7) = 1, then the covariance matrix is a2P(0), where o2
is the variance of the output innovations. Thus if we have large confidence
in the initial value §(0), the matrix P(0) should be chosen with small
elements.

If some prior information about @ is available it should of course be
used for determining suitable values of 6(0) and P(0). If 62 is not known,
a rough estimate of the output variance can be used instead. Then the
initial value P(0) can be taken as

P(0) = cov[B(0)]/Ey2(1). (5.35)
If no prior information is available, the most common choice is to take
6(0)=0, PO)=p-I, (5.36)

where p is a large number, e.g., 100/Ey*(2). If the input signal and the
output signal have significantly different amplitude, this should be taken
into account. One way-to do this is to let P(0) be a diagonal matrix with
different values in the diagonal. An alternative is to use a direct scaling
of the signals before starting the estimation.

For the LS method it is possible to make a more explicit statement of
the influence of P(0) and 9(0). Let é, denote the off-line estimate

0, = [kg cp(k)cpT(k)] B LX; cp(k)y(k)] - (-37)

Then (2.21) with o, = 1 gives easily, with (5.37),
6(r) — 6, = P(yP~(0)[0(0) — ] (5.38)

Equation (5.38) illustrates how the on-line estimate §(¢) differs from the
off-line estimate 6, due to the initial values. This difference becomes small
under two different conditions:
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1. When ¢ tends to infinity the matrix P(¢) will tend to zero and so will
both sides of (5.38).

2. When P(0) is very large the right-hand side of (5.38) will be very small.
The following example illustrates the effect of P(0).

EXAMPLE 5.13 (Effect of P(0)) We simulated the system

y(&)—- 08yt — 1) =1.0u(t — 1) + e(?),

where u(f) and e(f) were generated as independent Gaussian white noise,
S/N =1, N =100. The recursive least squares algorithm was applied
with a first-order set,

y(t) + ay(t — 1) = bu(t — 1) + e(?). S

The forgetting factor A(f) was kept equal to 1 for all ¢.
First, the initial values were taken as

6(0) =0, P(0)=

The parameter p was varied, and the resulting parameter estimates
compared for different values of p. The results are shown in figure 5.13.
As can be seen, the parameter estimates converge quickly for p > 1.

o(¢) I;'_‘-,,-j $=100, 0

-/ I

Figure 5.13 i
Parameter estimates for example 5.13. Initial values were 8(0) = 0, P(0) =
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It can also be seen that in the transient phase (say 0 <1 < 25) large
changes from one measurement to the next one are obtained for large
values of p. On the other hand, when p is small (0.1 or 0.01) the estimates
converge slowly. The explanation is that too much confidence is given
to the erroneous initial values. In this example, then, p = 1 seems to be
a good choice. It is possible to make an approximate analysis using
(5.38) for examining values of p for this example. Simple calculations
show that the difference between the off-line and the recursive estimates
(5.38) decays for the parameter a as 1/(1 + ptEy?(¢)). The same result
is true for the parameter b, with Eu?(¢) replacing Ey?(?).
Next, the initial values were taken as

. —0.8
0(0)=< 1.0>, P0) = pl,

i.e., we start with the true values in §(0). Some runs with different values
of p are shown in figure 5.14.

A comparison between figures 5.13 and 5.14 shows that for p =1
the parameter estimates are practically the same. This means that p = 1
is too large a value to capitalize on the good initial condition 6(0). O

6t

-/ .
o 50 ¢

Figure 5.14 . .
Parameter estimates for example 5.13. Initial values were 8(0) = (—0.8 1.0)7, P(0) = pI.
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Consider now the choice of initial value £(0) in (3.157d). Basically,
this value should be determined using data z(f) prior to ¢ = 0. Since
these are not available, we are left with three possible approaches:

1. Take £(0) as an estimate of E&(¢). If no prior information is available
then take £(0) = 0.

2. Determine £(0) based on the assumption that z(¢) = z(0) for t < 0.
3. Wait to start the updating of 6 until £(r) has become reliable.

If £(0) is badly initialized it can take very long time to compensate for
this effect in the estimates. In its effect it therefore resembles an outlier;
see the discussion in section 5.5.

In the linear regression case, £(f) equals the regression vector ()
that is determined from data z(s) in a finite time interval 1 - M < s <
¢ — 1. In this case two of the above choices are known as particular variants
of the LS method. The first approach (¢(0) = 0) is in signal processing
known as “prewindowing.” For off-line methods one can similarly add
zeros in ¢@(¢) at the end of the experiment, which is known as ‘“‘post-
windowing.” In speech analysis, the LS method with pre- and post-
windowing is often referred to as the “autocorrelation method.” The
third approach, to start updating only when ¢t = M, is called “non-
windowed” in signal processing and the “‘covariance method” in speech
analysis.

In many cases where £(0) is reasonably chosen, it has only a quickly
decaying influence on the estimates. Then the exact choice is not very
crucial. Some care must be used, though, when dim 6 is not small com-
pared to the number of processed data and/or when 4(9,) in (3.157d) has
eigenvalues close to the unit circle.

Summary

A large value of P(0) makes the value of 9(0) only marginally important.
The parameter estimates will change quickly in the transient phase (for
small values of 7). A small value of P(0) will give only small corrections
of 8(¢) since L(2), (3.70d), will be small for all 7. The convergence will then
be slow unless 6(0) is not close to the convergence limit.

If some prior information is available, then use it to determine 6(0).
Furthermore, use (5.35) and the confidence in 6(0) to find an initial value
P(0).
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If no prior information can be used, take 6(0) = 0, P(0) = pI with p
large.
Take £(0) as an estimate of E£(¢).

5.9 Approximation of the Gradient by PLRs

It was shown in sections 2.5.1 and 3.7.3 that the gradient y(¢) can be
approximated using a PLR. When this is done some filtering is omitted
and the algorithm complexity is reduced as compared to an RPEM. This
section will be devoted to a discussion of the choice between PLR and
RPEM. The choice between PLR and RPEM has consequences for

» convergence properties,
e algorithm complexity,
» asymptotic accuracy,

« transient behavior.

5.9.1 Convergence

It should first be noted that the convergence properties are quite different
in the two methods. Assume first that the system belongs to the model
set. Then for PLR the key condition for convergence is positive realness
of appropriate transfer functions and filters (see section 4.5). This con-
dition is satisfied for a great deal of systems but there are also counter-
examples. On the other hand, an RPEM gives convergence under very
general conditions, which are the same as for the corresponding off-line
identification algorithm.

We now give an example which illustrates the different convergence
properties of PLR and RPEM.

EXAMPLE 5.14 (Comparison of Convergence Properties using PLR and
RPEM). We simulated the system (4.198):

y() + 0.9yt — 1) + 0.95p(t — 2) = e(t) + 1.5e(t — 1) + 0.75e(t — 2).
(5.39)

[We showed in example 4.11 that the PLR method will not converge
when applied to (5.39).] Identification was by PLR and RPEM. The
model set was

yO) +ayt— D) +ay(t —2) =e(t) + cre(t — 1) + c,e(t = 2).
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Results of a recursive identification using PLR for the system (5.39) initialized by P(0) =
1007, 6 = 0.
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As figure 5.15a, but with P(0) = 0.00057, 6(0) = 0,.

The results are summarized in figures 5.15a, b, 5.16a, b, and table 5.8.
The results clearly demonstrate that for these systems the RPEM con-
verges rapidly, while the PLR does not even converge. O

When the model set is not large enough to include the true system,
it is not easy to make comparisons between PLR and RPEM. In section
4.4.4 we saw that RPEM gives an approximation of the true system that
is optimal in a certain sense. The PLR, on the other hand, may give a
bad approximation of the system when it does not belong to the model
set. This is illustrated in the following example.

EXAMPLE 5.15 (PLR and RPEM Approximations in a Small Model Set)
In this example, the MA(2) system
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Figure 5.16a
As figure 5.15a, but using RPEM.
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Figure 5.16b
As figure 5.15b, but using RPEM.

Table 5.8
PLR and RPEM parameter estimates and ¥ #(0) for example 5.14. Ten runs, N = 2,000.
PLR RPEM
True 80)y=0 0(0) = 6, 0(0)=0 8(0) = 6,
Estimate  value  P(0) = 1001 P(0) =0.00051  P(0) = 100I P(0) = 0.00051
d, 0.90 0.898 + 0.037  0.912 + 0.049 0.901 £ 0.007  0.901 + 0.007
a, 0.95 0.944 + 0.041  0.941 + 0.060 0.953 £ 0.006  0.953 + 0.006

1.50 1.260 +£ 0.129  1.338 + 0.120 1.490 + 0.021 1.491 + 0.021
0.75 0.407 + 0.246  0.559 + 0.153 0.741 £ 0.017  0.742 £+ 0.017
1.207 1.206 1.002 1.002
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y(t) = e(t) + 1.90e(t — 1) + 0.95e(t — 2), Ee*(H =1,
is approximated by the MA (1) model
y() =e(t) + ce(t — 1).

The limiting value of the estimates can then be found by solving the
equation of f(0) = 0 (4.24a). This will give c};x = 0.9987 for PLR and
ctpen = 0.9744 for RPEM. The models can be evaluated by examining
the variance of the prediction errors. This variance is

1+ 1.90g7 +095¢°% 2
1+ c*q™! e -

V*(0%) = Be2(1, 0%) = E[

With the foregoing values of the estimates we find that the optimal
value of ¥;(6*), which is achieved for 0%,.,,, is 1.903. Use of PLR will
give V¥(0}. ) = 2.765. In this somewhat artificial example, RPEM gives
a much better approximation of the system than PLR. O

5.9.2 Algorithm Complexity

When algorithm complexity is considered it is clear that a RPEM requires
more computations than a PLR. The reason for this is twofold. In a
RPEM we must include filtering in order to compute the gradient ().
Moreover, the RPEM algorithm must be monitored, i.e., we must, when-
ever necessary, reduce the updated estimate so that the filter remains
asymptotically stable. Although these differences are very important,
the requirements on computer time and memory do not differ very
much between PLR and RPEM.

5.9.3 Accuracy

The asymptotic accuracy was derived in section 4.4.3. It was shown that
under weak assumptions an RPEM gives asymptotically efficient esti-
mates, i.e., that the Cramér-Rao lower bound is achieved. The accuracy
of recursive PLR is not yet solved (see section 4.4.5). There is no reason
why PLR should be statistically efficient. The RPEM is therefore superior
to PLR from the asymptotic accuracy point of view.

We now give numerical illustrations of the differences in accuracy
between PLR and RPEM.

EXAMPLE 5.16 (Accuracy of PLR and RPEM) We simulated the systems
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y@©) =159 - 1)+ 0.7p( — 2)
(5.40a)
= 1.0u(t — 1) + 0.5u(t — 2) + e(t) — 1.0e(t — 1) + 0.2e(t — 2)
and
y() — 1.6y(t — 1) + 1.61p(t — 2) — 0.776y(¢t — 3)
=1.2u(t — 1) — 0.95u(t — 2) + 0.2u(t — 3) + e(¥) (5.40b)
+0.1e(t — 1) + 0.25e(t — 2) + 0.873e(r — 3).

The input was a PRBS, S/N = 10 for (5.40a) and S/N =1 for (5.40b).
Identification was by PLR and RPEM in model sets compatible with
the system descriptions (5.40). The forgetting factor 4(¢) was in both cases

A() =0.994(r — 1) + 0.01, A(0) = 0.95.
~

The results are given in tables 5.9 and 5.10. It is clear from the tables
that for the systems of this example the PLR method is often superior
for short data series while RPEM is best for long samples. O

It should be mentioned that when many simulations are made, one
occasionally encounters realizations which give outlier performance, i.e.,
the estimates are nowhere close to the typical behavior. We have found
that such outlier behavior is more common for RPEM than for PLR.

5.9.4 Transient Behavior

Concerning the transient behavior of the algorithm, i.e., the parameter
estimates based on small data sets, it has been observed in practice,
that PLR is often slightly better than RPEM (see example 5.16). A
possible explanation of this can be given as follows. When few data
are processed the estimate of the noise properties is rather poor in general.
Then a bad filtering of the data (using this poor estimate) is obtained
for RPEM. It might very well be better to use no filtering at all for short
data series. It is thus natural to propose a modified filtering for RPEM
such that no or very “weak” filtering take place for the first data. One
way to achieve this has been suggested by Friedlander (1982a), as shall be
illustrated in the following example.

EXAMPLE 5.17 (Modified Filtering of an RPEM) Consider the model set
A(@Hy(®) = B(gHu(®) + C(g™e().
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Parameter estimates and validity measures for the system (5.40a) of example 5.16. 10 runs.
Ellipses . .. mean that the measure has no finite value (the corresponding filter is unstable)
at least for one of the runs.

PLR RPEM
True
Estimate value N=100 N=500 ~N=2000 N=100 N=500 N=2000
d, —1.5 —14719 —1.4928 —1.49%4 —1.4692 —1.5045 —1.5001
d, 0.7 0.6738 0.6865 0.6965 0.6698 0.7038 0.6997
Z)l 1.0 0.9796 1.0046 1.0081 0.9606 1.0046 1.0092
b, 0.5 0.6426 0.5047 0.4979 0.6255 0.4804 0.4886
é, —1.0 —09048 —0.9558 —0.9883 —0.7233  —-0.9855 —0.9920
é, 0.2 0.1110 0.1543 0.1754 0.0863 0.2050 0.1954
1244 1.0 1.0415 1.0101 1.1771 1.0096 1.0015
124 0.0 0.5126 0.1238 0.0343 0.2761 0.0245 0.0055
144 0.0 0.3845 0.0287 0.0041 0.3814 0.0059 0.0004
12+ 1.0 1.0149 1.0025 1.0043 1.0005
Table 5.10
As table 5.9, for the system (5.40b).
True PLR RPEM
Estimate value N=100 N=500 N=2000 N=100 N=500 N =2,000
a, -1.6 —-1.6119 —1.5931 —1.5955 —13279 —1.5751 —1.5981
4, 1.61 1.5663 1.5997 1.6062 1.2378 1.5826 1.6083
d, —0.776  —-0.7751 —0.7670 —-0.7722 —0.5369 —0.7489 —0.7741
Z)l 1.2 1.1674 1.2060 1.1939 1.0934 1.2060 1.1867
b, —0.95 —1.0667 —0.9856 —0.9525 —0.6870 —0.9467 —0.9510
by 0.2 0.1456 0.1602 0.1923 0.0774 0.1709 0.1920
é, 0.1 0.2599 0.1446 0.1194 0.4952 0.1785 0.1167
¢, 0.25 0.1494 9.2124 0.2335 0.3182 0.2002 0.2325
éy 0.873 0.6482 0.7802 0.8333 0.3742 0.7320 0.8388
~
12 (1.0) .. 1.1232 1.0247 1.7202 1.0927 1.0140
Vv (0.0) 8.5201 1.0896 0.1816 12.171 0.7009 0.0343
124 (0.0) 1.7644 0.4635 0.0799 3.3472 1.1390 0.0997
| 24 (1.0) 1.0375 1.0370
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When the basic RPEM is used, the data and the prediction errors (or the
residuals) are filtered through 1/C.(¢™"). To modify the filter, let it have
poles closer to the origin for small ¢. This can be achieved by instead using
the filter 1/C(K,g™"). If z, is a zero of z"C,(z™") then z"C(Kz™") will
have a corresponding zero in Kz,. The “contraction factor” K, should
be time-varying. For small ¢ it should be close to 0 so that the filtering
does not decreaSe the convergence rate. For large ¢, however, K, should
be taken as | in order to obtain the strong convergence and accuracy
results of an RPEM. A simple way to achieve thisis to let K, grow exponen-
tially to 1 according to

K=pK_+(1—p, K,=0,

where p is a constant somewhat smaller than 1, e.g., 0.98-0.99. It is clear
that, with various choices of K,, it is possible to obtain any method
“between” PLR and RPEM. D

5.9.5 Summary

The estimates obtained with RPEM converge under more general con-
ditions than those obtained with PLR. For use of PLR the key require-
ment for consistency is that a certain filter is positive real. This condition
is not always satisifed.

RPEM gives asymptotically statistically efficient estimates so that the
Cramér-Rao lower bound of the covariance matrix is obtained for long
data series.

Despite the above results (which are valid for long data series and
when the model set is consistent with the data) the PLR method sometimes
gives better results than RPEM for short data series.

Important goals like good convergence properties and optimal accuracy
are thus obtained if RPEM is used. If “cautious” filtering is applied in
the transient phase the transient convergence rate should not be worse
than for PLR. The only drawback with RPEM compared to PLR will
then be that the algorithm is a bit more complex.

5.10 Approximation of the Gradient by IVs

The possibility of approximating the gradient with instrumental variables
(IVs) was discussed in section 3.6.3. In section 4.6 we analysed the IV
methods. Here we shall discuss how the IVs should be chosen. We will
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also make some comparisons between recursive 1V methods and RPEMs.
One important difference between RIVs and RPEMs is that for RIVs
only the transfer function from the input u(z) to the output y(¢) is
estimated. For an RPEM, typically, the effect of the disturbance on the
system is also included in the identified model.
The asymptotic accuracy can differ considerably between a RIV and
a RPEM. This is shown in the following example.

EXAMPLE 5.18 (Asymptotic Accuracy of RIV Methods and RPEMs)
Consider a first-order system

Y(t) + ag y(t — 1) = bou(t — 1) + e(t) + coe(t — 1). (5.41)

where {u(?)} and {e(?)} are mutually independent white noises of zero
mean and variance 62 and o2, respectively. Let u = ¢2/c2. Suppose that
the system is identified using the I'V method (3.93). Then

(@) =(—=x(t — 1) u(t — 1), (5.42a)
with x(#) being defined by filtering the input as
x(t) + ax(t — 1) = bu(t — 1). (5.42b)

This method will give consistent parameter estimates, i.e., 6(z) will con-
verge to the true value 6, as ¢ approaches infinity (see lemma 4.7). The
asymptotic covariance matrix Pg,y for 0(f) can be found from theorem
4.8. Straightforward but tedious calculation gives

Prv(@)
_ (1 — ao@)*(1 + ¢ — 2dcy) —boco(l — an@) (1 — @)
T b1 — @)\ —boco(l — ap@)(1 — a?) b1 + cA(1 — a?)
(5.43)

The notation Py y(@) is used in order to emphasize the dependence on
a. Note that b has no influence on Pg,y !

For comparison, consider a RPEM with the Gauss-Newton search
direction applied to the model

-

y@) +ay(t —1)=bu(t — 1) + e(®) + ce(t — 1).

Then the asymptotic covariance matrix of the estimate 4(1), i)(t) becomes,
according to theorem 4.5,
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N S

b + plco — ao)’?

X( (- ad)(l —apee)® ~  —boco(l — a)(1 = aoco) )
~boco(l = af)(1 —aoco) bE(1 —afed) + ulco — ao)*(1 — cB))

(5.44)

Preem =

Calculation shows that Pgy(@) — Pgrpry is nonnegative definite for
all a. Thus RPEM is, as expected, generally superior to the RIV method.
Moreover, it can be seen from (5.43) that there is no value a* such that
Priv(@) — Pgrv(@*) is nonnegative definite for all @. To optimize the
accuracy within the class of 1V methods (5.42) it is thus necessary to
have a scalar measure. For this we take the determinant of the covariance
matrix, i.e.,

Wriv(@) = det Py (a)

2 — ayd)? (5.45)

=1 = ) [1+4c3+ c§—2coa(l — cd) + cda?].

It can be seen that Wy (@) is not minimized for a = a, unless ¢, = 0.
This is in contrast to the common conjecture that @ = ag, b = b, is the
best choice of the parameters in (5.42b).

Similarily, (5.44) gives

2 2 2 2
w(d —agy(l — ageg)* (1 — ¢f)
W, —det P = . 5.46

RPEM et Prpem [bz (o ao)z] ( )

Calculated values of Wy y(a) and Wgpgy are given in tables 5.11 and 5.12
for two different systems. It is clear from the tables that an RPEM gives
far better accuracy than an IV method. Also note that @ = 0 corresponds
to an 1V method with only delayed inputs as instrumental variables,
and is of rather poor accuracy.

A constant prefilter T(g™') = 1/(1 + dq~') used as in (3.96) can improve
the accuracy of the 1V estimates considerably, if it is chosen appropriately.
For example, consider table 5.11. If a prefilter with d = 0.7 is used,
the value Wy (a,) decreases from 1.3365 to 0.4468. O

We now discuss the relation between the IV variant with only delayed
inputs as instrumental variables, [see (3.95a)], and the more general
correlation matrix obtained by extending the IV vector.
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Table 5.11
Weiv and Wepey [equations (5.45) and (5.46) of example 5.18] for g = —0.8, by = 1.0,
and ¢, = 0.7. @* = —0.717 is the value of a at which W;,y is a minimum.

Calculated value for
Measure u=10 u=1 u=0.1
Weivlag)b?/u? 1.3365 1.3365 1.3365
We(0)6?/u? 1.7301 1.7301 1.7301
Warv@*)b*/u? 1.3013 1.3013 1.3013
Wepemb?/1? 0.019 0.138 0.365
Table 5.12

As table 5.11, fora, = —0.8, b, = 1.0, and ¢y = —0.8. @* = —0.939. The calculated values
are independent of u.

Measure Calculated value
Wavlao)b?/u? 0.1296
Wan(0)b?/u? 2.0496
War(@*)b? /u? 0.0785
Wepemb?/ i 0.0168

EXAMPLE 5.19. (Comparison of an IV Method and a Correlation Analysis)
Consider again the first-order system

y(O) + agy(t — 1) = bou(t — 1) + e(t) + coe(t — 1),

where u(¢) and e(¢) are mutually indendent white noises of zero mean and
variance ¢, 62, respectively. Let the IV vector be given by

(O=@@—1) u(t—2) ... u@t —n)7,

and assume that for n > 2 an overdetermined system of equations is
solved in a least squares sense as explained in section 3.6.3. Calculation
then gives the normalized covariance matrix

l+c§ 1—af (1—ah)(1—af"*2a5co| co 1—aj

2| B2 1-a? (1 -a23)? b2 bo 1 — a2r 2

Since the 2, 2 element does not depend on 7 it is clear that there exists
no optimal value n* of n such that P, — P,. is nonnegative definite for
all n.
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Let us now examine if the scalar det P, improves when n is increased.
We have

2 4 4
I +¢5+c5 0,

det P2 = bg 6—:,
1 4
det P, = -5(1 = ad)[(1 + ¢ — 2a0c0) (1 + ) ~ cb(1 — a})] gz
0 u
For some numerical values, e.g., a, = —0.7, ¢, = 0.7, det P, will be

larger than det P,, so that it does not generally pay to increase the di-
mension of {(¢).O

The discussion so far has concerned RIV methods where the IV vector
¢(f) does not depend on previous estimates 6(s), s < ¢. In practice, how-
ever, ((¢) is often constructed using previous estimates; an example is
(3.94). The analysis of RIV methods given in section 4.6 does not cover
such cases. For such a scheme, i.e., one with a built-in adaptive filter,
we must require that all models in D, have stable polynomials 4(g™!).
To show some properties of such RIV methods we give a numerical
example based on simulation studies.

EXAMPLE 5.20 (RIV Method with Time-Varying Filtering vs. RPEM) We
simulated the system

y(&) — L5p(t — 1) + 0.79(t — 2)
= 1.0u(t — 1) + 0.5u(t — 2) + e(t) — 1.0e(t — 1) + 0.2¢(¢ — 2),

where u(¢) is a PRBS and S/N = 10. Identification was by RPEM in the
model set

¥y +ayt—1)+ay—2)
=bu(t— 1) + bu(t — 2) + e(t) + cre(t — 1) + cye(t — 2),
with the forgetting factor
A(®) =0.994(r — 1) + 0.01, A(0)=0.95.
The 1V method given by
() =(=x(t=1) —x(t—2) uz—~1) u(t—2)T,
x(0) = "0 - 2)
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Figure 5.17a
Parameter estimates for one run, example 5.20. The 1V method was used.
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Figure 5.17b
As figure 5.17a, but using RPEM.

was also applied to the simulated data. The reason for using é(z -2
rather than 6(¢) is an attempt to get better stability of the algorithm.
Such a delay in é(z), or, alternatively, use of a low-pass filter, is often
used in practice. Note that x(¢) can be viewed as an estimate of the noise-
free part of the output. The model set used for the IV method is

YO +aiy(t—1) +ayy(t =2) =byut — 1) + bou(t — 2) + e(1).

The results are given in table 5.13. Besides the parameter estimates,
the criterion V;*(6) [see (5.4)] is given. It can be seen from the table that
for a small amount of data RIV and RPEM give about the same per-
formance, as measured by the criterion ¥;*(0), but that the RIV estimates
converge faster. Beyond 100 data points the RIV method does not
improve the overall accuracy, while the RPEM shows a much improved
accuracy for a large amount of data.
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The foregoing results are further illustrated in figures 5.17a, b, where
plots of the parameter estimates are displayed for one run. It is clear from
the plots that the IV method gives slightly more rapid convergence. O

We know from section 4.6 that IV estimates can be improved if properly
chosen prefilters are included. The best choice of prefilter and instrumental
variables requires knowledge of the true system, and therefore an adaptive
approach to the problem is natural. As explained in appendix 4.E, this
adaptive refined IV method can be interpreted as an RPEM with a block
diagonal Gauss-Newton search direction.

Summary

A basic IV algorithm without filtering of the measured data has low
algorithmic complexity and converges rapidly. The accuracy of the
estimates is less than that of an RPEM, especially for longer data series.

The IV algorithm estimates only the transfer function from the input
to the output. If there is no feedback from output to input, the consistency
of the IV estimates is insensitive to the character of the noise affecting
the system. On the other hand, the character of the noise can substantially
influence the accuracy of the estimates.

When prefiltering of the data is included, considerably improved
accuracy can be obtained. The optimal prefilter can only be implemented
in approximate ways. Such an approximate algorithm will be as complex
as an RPEM.

5.11 Choice between Residuals and Prediction Errors in the
Gradient Vector

For many recursive identification algorithms the gradient vector ¥ (?)
depends in one way or another on the prediction errors. The LS method,
wherein only inputs and outputs are used is one exception.

It was shown in sections 2.2.3 and 2.5.1 that instead of the prior pre-
diction errors

e(f) = y(t) — p(t| 6Y) (5.47a)

based on estimates up to time ¢ — 1, the residuals or posterior prediction
€rrors

8(0) = y(t) — y(¢| 67 (5.47b)
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based on estimates up to time ¢ can be used when computing the elements
of the gradient vector.
For PLR we have the following simple relationship between g and &:

1
L+ ") Pt — Do)

[see (3.D.11)]. We may expect £(f) to be a better estimate of the true
prediction error e(f) than ¢(¢), but the difference is according to (5.48)
quite small, except for small ¢. The effect of this difference on transient
convergence behavior is illustrated in the following example.

HO &(?) (5.48)

EXAMPLE 5.2]1 (Comparison of Residuals and Prediction Errors) We
simulated the system

y() —08y(t — 1) = 1.0u(t — 1) + e(t) + 0.7e(t — 1),
with u(¢) a PRBS, S/N = 1. Identification was by PLR in the model set
y@O) +ay(@—1) =bu(t— 1)+ e(t) + ce(t — 1).

Both residuals and prediction errors were tried in the gradient. Two
different forgetting factors of the form

A = Aot — D+ (1 = Ap)
were used. The results are summarized in table 5.14. The table shows that
Table 5.14

Parameter estimates for different A, and 4(0), using prediction errors and residuals (example
5.21). Ten runs.

N T A0 a b ¢
50 prediction 1.0 1.0 —0.799 £ 0.104  0.958 + 0.065  0.379 + 0.140
errors 099 095 —0.799 +0.043 0943 +0.091 0474 £ 0.115
residuals 1.0 1.0 —0.819+0.105 0.978 £0.072  0.576 + 0.157
099 095 —0809+005 0.956+0.089  0.638 +0.131
500  predicion 1.0 1.0 —0.792+0.019  0.994 +0.034  0.606 + 0.074
errors 099 095 —0.794+0.014 1.003+0.036 0.684 + 0.046
residuals 1.0 1.0 —0.800 +0.023 0999 + 0.031  0.665 + 0.039

099 095 —0.796+0014 1.003 +0036 0.698 + 0.047

true
value —0.8 1.0 0.7
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Parameter estimates for one run of example 5.21. Prediction errors were used. The
forgetting factor was A(f) = 1.
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As figure 5.18a, but with residuals.
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Figure 5.18¢
As figure 5.18a, but with the forgetting factor A(¢) = 0.99A(t — 1) + 0.01, 4(0) = 0.95.
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Figure 5.18d
As figure 5.18a, but with residuals and the forgetting factor A(f) = 0.994(¢t — 1) + 0.01,
A(0) = 0.95.
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the estimate ¢ is considerably improved when residuals are used instead
of prediction errors. The time-variable forgetting factor gives the best
performance. A typical run is illustrated in figures 5.18a-d. O

The martingale convergence proof for PLR in appendix 4.C relies
upon the use of residuals in the regression vector. Moreover, lemma 4.2
assures a stable PLR without stability monitoring, provided residuals
are used in @(#). The use of residuals rather than prediction errors in
the gradient vector is thus well motivated.

Summary

The use of residuals (posterior prediction errors) instead of (prior)
prediction errors results in more rapid transient convergence and greater
accuracy. The effect is most significant for parameters that enter non-
linearly into the prediction error. Since residuals require only slightly
more computation than prediction errors, it is generally preferable to
use residuals in the gradient vector.

5.12 Summary

The choice of a recursive identification algorithm for a particular abpli-
cation may not be easy. The literature offers an abundant supply of
candidates. We have in this chapter tried to give a systematic discussion
of how to choose a suitable algorithm among the many possible ones.
The discussion has been carried out in terms of eight choices within the
general family of algorithms (3.157)—(3.158) as listed in section 3.9:

¢ Choice of model,

« Choice of input,

¢ Choice of criterion functions,

« Choice of gain sequence,

¢ Choice of search direction,

« Choice of initial values,

+ Choice of gradient approximation: RPEM, PLR, or RIV,

» Choice of residuals or prediction errors in the gradient vector.

The choices have been discussed using the analytical results of chapter 4,
calculation, and simulation. The conclusions regarding these choices are
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summarized at the end of each section. These summaries will certainly
be useful for applications to systems similar to the ones used in our
examples. But a more important use of this chapter is perhaps that we have
shown how to itemize the decision about what algorithm to use, and how
to study the effects of the different items.

5.13 Bibliography

Section 5.1 A further discussion on validity criteria can be found in Séderstrém et al.
(1974a, b). Wittenmark and Bar-Shalom (1979) discuss another validity measure related to
control applications. It describes how uncertainties in the model parameters influence the
closed-loop behavior when the system is used with the controller based on the identified
model. Our criterion V}(0) is a special case of this approach.

Section 5.2 An interesting and early discussion on the parsimony principle has been given
by Tukey (1961). See also Box and Jenkins (1970). Equation (5.8) can be used to compare
any two model sets. To compare the expected values of other validity measures for two
model sets, it is usually necessary to assume that one is a subset of the other ; see Gustavsson
et al. (1977) and Stoica and S6derstrém (1982b).

Section 5.4 A discussion of PRBSs and their use in identification can be found in Davies
(1970) and Eykhoff (1974).

Section 5.5 Huber (1973) gives a comprehensive discussion of robust regression. The
calculations leading to (5.23) can be found in Ljung (1978b).

Section 5.6 The tracking algorithm (5.27) based on an addition of R, when P(¢) is updated
has been used by Bohlin (1976), who gives some interesting case studies.

There are many ways to generate the gain sequence {y(f)} such that y(¢) ~ 1/t asymptot-
ically. One possibility is to use (5.31c), i.e., to let the forgetting factor grow exponentially
to 1. Kumar and Moore (1980) discuss other choices of y(¢). In particular the variant

YO =1+KWOy ¢ —1) (5.49a)
with
K<, K()—>1last— o, (5.49b)

is recommended. With K(¢) a constant less than 1, the gain sequence is given by

1-K
1+ KT = K)y©0) — 17

y() =

With some effort it can also be shown that the gain sequence given by (5.49a) will satisfy
lim,_, , ty(¢) = 1, and, with an appropriate initial value, ¢y(¢) > 1 for all «.

Section 5.8 A discussion of nonwindowing and prewindowing can be found in Morf,
Dickinson, Kailath, and Vieira (1977). The application of such algorithms to speech analysis
is discussed by Markel and Gray (1976).

Section 5.9 Example 5.14 was first published in Ljung et al. (1975).

Section 5.10 The omitted calculations in example 5.18 can partly be found in S6derstrém
and Stoica (1978). In example 5.19 we use an IV vector of dimension larger than the number
of parameters to be estimated. It is shown by Stoica and Soderstrom (1983a) how theorem
4.8 can be generalized to this case. The result can be written as
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P =0*(RTR)'RTE[T(g")H(g "){(t)- T(gTHH(@ )" (O]RRTR),
where

R=E[l() -T(@ He (]



6 Implementation

6.1 Introduction

In chapter 3 we developed the general Gauss-Newton algorithm for
quadratic criteria:

&(t) = y(t) — H(1); (6.1)
AW =A@ - 1) +70)[e@®eT @) — At - 1], (6.2a)
R(W) =Rt — 1) + 70O [y A () (1) — R( — D], (6.2b)
L) = ()R (YA (1); (6.2¢)
() =[6(t — 1) + L(Oe(1)] . (6.3)
&t + 1) = ABW)E@) + BO@)z (), (6.42)
(Coﬁl (JIJBID — COM)E + 1) (6.4b)

[see (3.67)]. We analyzed the properties of (6.1)—(6.4) and its variants in
chapter 4, and discussed the user aspects of the choices in chapter 5. We
are now faced with the problem of implementing the chosen algorithm.

Even with all of the quantities in (6.1)—(6.4) chosen, there will be many
algebraically equivalent ways of performing the calculations. The dif-
ferent ways of organizing the computations may have a substantial
influence on the numerical properties of the identification algorithm.
By numerical properties we include the following:

« Computing time required by one iteration of (6.1)—(6.4).
« Memory size.

« Numerical accuracy and stability (error propagation) related to round-
off and other errors.

e Programming effort.

The algorithm can be regarded as consisting of four parts, (6.1)—(6.4).
The first part, (6.1), is then trivial.

The second part, (6.2), gives the gain vector L(z). This is probably the
most interesting part from a numerical point of view. The reason is that
R(}) is a d x d (d = dim 0) matrix that has to be inverted in (6.2c); and
this can be done in a number of different ways. We shall devote sections
6.2-6.5 to this problem. In section 6.2, we discuss various ways of imple-
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menting (6.2) that are valid for any gradient sequence {y(¢)}. Often this
sequence is such that elements are shifted down the vector () as ¢ in-
creases. When such a structure is at hand, it can be utilized to speed up
the calulation of L(¢). This is described in sections 6.3 and 6.4. Finally,
in section 6.5 we discuss how to cope with the problem that R(¢) as defined
by (6.2b) may be singular or nearly singular. The problem of making
matrices invertible is generally known as regularization.

The third part, (6.3), is fairly straightforward, once L(¢) is determined.
The problem of how to accomplish the projection into the set D, is
discussed in section 6.6.

The final part, (6.4), depends on the particular model set chosen. There-
fore, no general discussion of how to organize this part can be given. In
chapter 3 we spelled out these calculations in some detail when we dis-
cussed applications to specific model sets [see (3.124) and (3.125) for
the general input-output model set, and (3.145¢—h) and appendix 3.B
for state-space models].

There is a particular way of reorganizing (6.4), together with (6.2) and
(6.3), that can be applied to PLRs. This is known as the ladder algorithm
(also known as the lattice algorithm), and can be described as a contin-
uous change of basis in the state-space description (6.4) to make the
covariance matrix of £(r) diagonal. There is a close relationship between
such ladder implementations and the fast algorithm for L(¢), described
in section 6.3. Therefore the ladder algorithms are discussed in the
subsequent section 6.4.

6.2 Computation of the Gain Vector for the Gauss-Newton
Algorithm

The gain vector is given by
L@) = y@R YA @), (6.5a)
R() = R(t = 1)+ yO[YOA Y "() — Rt — D], (6.5b)

These expressions appear in all algorithms. They are not influenced
by the model set except the way in which the gradient ¥/(¢) depends on
the measured data {z(7)}.

In this section we will discuss some approaches for the computation
of L(¢) for the Gauss-Newton algorithm. A direct solution of (6.5) is not
very practical, since (6.5b) contains the matrix R(f), while R™!(¢) is needed
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in (6.5a). This means that a system of linear equations must be solved
in each step if (6.5) is to be implemented in a straightforward manner.
There are, however, ways to compute L(f) without inverting large
matrices in each step. The following three strategies will be described:

1. Using the Matrix Inversion Lemma. A difference equation for P(r) =
() R™*(?) is used instead of (6.5b) (section 6.2.1).

2. Using Factorization. The matrix P(¢) is factored into a product of two
or three matrices, and these matrices are then updated rather than P
itself. The advantage of this approach is that better numerical properties
can be obtained (section 6.2.2).

3. Using Fast Algorithms. When only L(#) is needed it may be unnecessary
to compute R(t), which is of larger dimension than L(t). This idea can be
used to derive so-called fast algorithms. With these, the number of opera-
tions and the memory requirements can be reduced, in particular for
model sets with many independent parameters (section 6.3.2).

We have mentioned earlier, in section 2.3, that recursive identification
algorithms are closely linked to Kalman filtering. In fact, much of the
results discussed in the present section have been primarily derived for
Kalman filters. Since (6.5) is algebraically identical to the gain and the
covariance equations for a Kalman filter, those general results can and
will be applied here.

6.2.1 Using the Matrix Inversion Lemma

Coping with (6.5) by means of the matrix inversion lemma 2.1 was
considered in section 3.4. There it was shown that the substitution

P £ y(OR' (1) (6.6)
gives with (6.5b) the new recursion

P@) =[Pt —1)— Pt — Yy (ST Y (Pt — D]/A(0), (6.7a)
S@ =y¢TOPE — DY@ + AAQ), (6.7b)

where the time-varying forgetting factor A(z) is related to the gain sequence

{y(®} by

e =D
M) = 0 [1—y(®] (6.8)




A

326 Chapter 6 Implementation

[see (3.69)]. Then the gain vector is easily found to be
L(ty = POYOA™ () = P(t — DY()ST(9) (6.9)

[see (3.70d)]. It is advantageous to use the second of these expressions,
since the product P(f — Dy (£)S™1(¢) must be computed anyway to get
P(7) [see (6.7a)].

Unfortunately the recursion (6.7a) is not numerically sound; the equa-
tion is sensitive to round-off errors, that can accumulate and make P(¢)
indefinite. This property of (6.7a) is discussed by Bierman (1977). One
might suspect dubious numerical properties of (6.7a) especially when
A(?) = 1. Then the new P matrix is computed by successive subtractions
of correction terms. If the correction terms due to round-off errors become
toolarge, it is easy to imagine that numerical problems can be encountered.

Equation (6.7a) can be rewritten in a form that apparently has better
numerical properties. Straightforward calculation gives

P@0)=[1— LOY ()]P( — DL =y (LT (9]/2()

) (6.10)
+ LOA@LT(2).

This is sometimes referred to as the ““stabilized Kalman equation” (Bier-
man, 1977). With this expression, repeated subtraction is avoided. Never-
theless, this recursion does not guarantee numerical stability, although
it has somewhat better numerical properties than the original equation
(6.7a). However, it also requires considerably more computation.

One should not exaggerate the numerical problems of (6.7a). When

' the dimension of P(¢) is low, say d < 10, often no problems are en-

countered. The problems are usually associated with applications for large
d and/or ill-conditioned P matrices. As Thornton and Bierman (1977)
rightly point out, though, this is no excuse for ignoring the problems
altogether.

6.2.2 Using Factorization

For factorization, we start with the equation (6.7a) for P(7) and with
P() as a product of matrices. Since P(¢) is known to be positive definite
it can be decomposed, e.g., by using Cholesky decomposition.

We first describe a square root algorithm, in terms of P(¢) represented as

P()=Q0Q" (0, (6.11)
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where Q(¢) is a nonsingular matrix. Equation (6.7a) is then replaced by
one for computing Q(¢) from Q¢ — 1). :

It is possible to constrain the matrix Q(¢) to be triangular. Then the
decomposition (6.11) is nothing but the Cholesky decomposition. The
algorithm for updating Q(¢) will then require more calculations, but it
is still relatively simple.

A popular factorization is known as U-D factorization; this can be
described as a normalized Cholesky decomposition (also called square
root free Cholesky decomposition). For it, P(¢) is written as

P(ty=U@)D()UT (1), (6.12)

where U(¢) is an upper triangular matrix with all diagonal elements equal
to 1, and where D(¢) is a diagonal matrix.

Using factorization for computing P(f) guarantees that P(f) remains
positive definite. Extensive experiments for the Kalman filter case have
shown that the aforementioned factorizations have good numerical sta-
bility, and that the rounding errors do not affect the solution significantly
(Bierman, 1977; Thornton and Bierman, 1980).

We shall next describe in some detail a square root algorithm due to
Potter (1963) and the U-D factorization given by Bierman (1977). We
shall consider a system having a scalar output. Then A(¢) in (6.7b) is
also scalar. If this is chosen to be a constant, then it simply acts as a
scale factor, and can as well be chosen as 1, as we remarked in section
3.4. A time-varying scalar weighting A ~!(r) = o, may make sense in some
applications. We shall, however, first treat the case o=, 1, remarking on
the general case later. We consider the following version of equation
6.7):

Pit—1) PE—DYyYTOPer-1) 1
P() = — — 6.13
O="30 "~ a0+ ¥ 0P 0D A0 (@19
The extension to the multivariable case will be discussed later in this
section.

Potter’s Square Root Algorithm The square root algorithm due to Potter
(1963) is based on the factorization (6.11). The matrix Q(¢) is computed
by means of the following algorithm.

Potter’s Square Root Algorithm (6.14)
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Initialize at time ¢t = 0: Q(0)Q7(0) = P(0).

At time ¢, update Q(¢ — 1) by performing steps 1--5.

LA = Q7 — Dy ().

2.8(0) =A@ + TS .

3. a() = 1/[B() + BDAD)].

4. L(t) = Q(t — Df().

5.0(0) =[Q(t — 1) — a() LT (O]JAO.

The algorithm becomes a bit simpler when A(¢f) = 1, since the square

root and the division in step S then can be avoided. The vector L(¢) is
a normalized form of the gain vector L(¢). We have

L(1)= L@)/B(.

Note that it is not necessary to compute L(f) explicitly, since the param-
eter updating can with advantage be computed by

0() = 6 — 1) + LO[()/B(0)], (6.15)

i.e., the single division &(¢)/(¢) is computed first.
For real-time tracking there is often reason to use the algorithm (2.112)
as an alternative to (6.13) (see also section 5.5). Then the equations

5 — s 1y P —DYy@y 0P — 1)
PO = Pe= 1) = (6.162)

P(t) = P(t) + Ry(1) (6.16b)

are used. If a square root approach is taken, the algorithm (6.14) can be
used for finding P(t) = (1)@ (¢) from P(t — 1) = Q(t — DQT(t — 1). It
then remains to find Q(¢) using (6.16b). One way to do this is as follows.
Let R, (¢) be factored as

Ri(1) = V()V(»), (6.17)

where V(f)isad x s-matrix of full rank s. In most cases R, (f) is a diagonal
matrix with some diagonal elements equal to zero. In such cases it is
easy to find V(¢). Then orthogonal transformations are applied to the
rectangular matrix (J(¢) V(r)). The problem is to find an orthogonal
matrix 7(¢) and a triangular matrix Q(¢) such that

Q@) V()T() = (Q) 0). (6.18)
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Then we have

Bt)+ R, ()= 0000 + V)V (1)

e NN
— (@) VE)TOT@) (VT m)
— (W) 0) (Q 0(’)> — PO,

as required by (6.16b). The matrices T(r) and Q(¢) in (6.18) can be found
using a QR factorization or a Gram-Schmidt orthogonalization. Such
factorizations are common in numerical linear algebra for solving certain
eigenvalue and least squares problems (see Stewart, 1970), and have
appeared in many applications.

Bierman’s U-D Algorithm for (6.13) We next turn to the U-D factoriza-
tion algorithm. Our treatment follows Bierman (1977). Consider again
the equation (6.13). Assume that the matrix P(¢r — 1) is factored as

Pt—1D=U@—- DDt —- DU -1,

where U(t — 1) is upper triangular with all diagonal elements equal to 1,
and D(t — 1) is a diagonal matrix. We seek a similar factorization of P(¢).
We have

DU ()

T (6.19a)

— I:U(t _ I)D(t _ I)UT(I _ 1) _ U(t - l)g(t)g (t)U(t - l):l/i(t)’
B(1)

where
f() = UT(t = (), (6.19b)
g(®) = D@t — (D), (6.19¢)
B = Aty + YT P(t — DY(1) = A1) + fT(Dg(0). (6.19d)

It follows from (6.19) that

unDOUT () =U@r—1) [D(t -DH- %:)(f)} UT(1 — D/A@).

If the part in brackets can be factored as
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D(t—1) — “%f;” U DO T (), (6.20)
we get

U = UG — DHUGQ), (6.21a)
D(t) = D(O)/A(1). (6.21b)

It remains to find the factorization (6.20). To simplify the writing,
the time argument will be dropped. Introduce the notation (recall that
d = dim 6)

do= (o, ..a)-| . |
0 Uit
1
D, 0
D(1) = R
0 D,
D, 0
pi—-nH=| . |,
0 D,

and let ¢; be the ith unit vector. Then (6.20) implies

d
TR 1
(]i(]iTDi = Z i 1 l ﬁgg (622)

Introduce also ( f; = ith component of f)

M-

i

Bi=B=2)+ Y fig» ca=1/B, V=14

We shall denote the ith component of the column vector ¥, by ¥V, ;. Then
(6.20) can be written

o d
D,UUT Z Emw (6.23)

i

i
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We shall determine D, and U, (given B, D, and V,) from this relation. To
do that consider the matrix

M, = D,U,U" — Dyeej + ﬂiV;I’;‘T-
d

It is easy to verify that the choices

D V;izd
Dy= D, — %, (6.24a)
Ba
Upa=1, (6.24b)
(Z,d: _—V;’d V:i,ia l=1a ---’d_la (6240)
Dy B,

we thus find that M, can be written

= (fidz + i) Vi Ve, (6.24d)
Ddﬂd d

If we introduce
| k
B =40 + ; fi9; Ba=P),

we find, using (6.19) that

Via (1 _ 1

DB} Bi Bis

and

Dy = Dyfy—/Bs (6.25a)
Ui,d= —(falBa-1)gis i=1,...,d— 1 (6.25b)

Now, returning to (6.23), we find that
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-1 d—1 d—1
dz 51171(? = Z Dieel — M, = Z Diejel — 1 Vis Vit
i=1 i=1 i=1 ﬂd—l
provided U, and D, are chosen according to (6.25). This expression is,
however, exactly of the form (6.23), except that d has decreased tod — 1.
Therefore the same procedure can be used again to find numerically
54—1, (7,,_1, etc.

The algorithm to find U and D can be performed together with the
multiplication (6.21) to determine the updates U(f), D(f) and the gain
vector

L) = U@ — DD — HUT( — Dy(0)/B(6) = Ut — Dg(1)/B(D).
This leads to the following algorithm, given by Bierman (1977).

Bierman’s U-D Factorization Algorithm for (6.13) (6.26)

Initialize U(0) and D(0) at time ¢ = 0, U(0)D(0) UT(0) = P(0).

At time ¢, compute L(¢) and update U(z — 1) and D(z — 1) by performing
steps 1-6.

1. Compute f:= U™t — D)y (1), g : =Dt — 1)f, By = A).
2.Forj=1, ...,d, go through the steps 3-5.

3. Compute
B; = Bi-1 + 95
D(t)jj = j—lD(t - l)jj/ﬁj'l(t),
v; =g,
= —filB-1-
4 Fori=1,...,j— 1, go through step 5. (If j = 1, skip step 5).
5. Compute
U(1);; = Ut = 1);; + v,
v =+ Ut — Dy
Uy
6. L(1) = s L@ = L(@t)/B,.

Ug
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The scalar 8, obtained after the dth cycle of steps 3-5 is the “innovations
variance”

Bi= A0 + YT (O P - DY Q).

Similarly the normalized Kalman gain L(f) [see (6.15)] is obtained in
step 6 after d cycles of steps 3-5.

U-D Algorithm for (6.16b) Let us now continue to discuss how to treat
the equations (6.16b). The following method, based on Gram-Schmidt
orthogonalization, is due to Thornton and Bierman (1977).

Assume again that a factorization (6.17) of R,(¢) is available. Then
form a matrix W with row vectors W{, ... K Wr:

Wi
w=|: |=00 Vo),
wi

and set

D) 0
D=<é)4>
where [, ~is the identity matrix of dimension s (recall V(¢) is d x s) and the
matrix P(¢) of (6.16) is factored as
P(y=00D0T™ ).
We can then write (6.16b) as
P(t) = P(t) + R, (t) = U)DT™ () + V() V() = WDW'T.
To obtain a U-D factorization of P(¢) we need to rewrite
WwDW?T = U D(HU(1)

for some diagonal matrix D(f) and some upper triangular matrix U(¢)
with 1’s along the diagonal. Applying a Gram-Schmidt orthogonalization
to the vectors Wy, ..., W, using the scalar product

<W,, W;> = WIDW,

gives a matrix W = TW with orthogonal column vectors (in the D-norm),
ie.,
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WDWT = diagonal.

Here 7 is a triangular matrix. It is now easy to verify that the desired
decomposition is obtained with U(z) = T~' and D(r) = WDW?T. The
final algorithm can be organized in the following way.

Updating the U-D Factorization for the Algorithm (6.16b)

At time ¢z — 1 U(z — 1) and D(t — 1) are given as well as the factorization
R, (H) = V() V() with V(¢) as a full rank d x s matrix.

1. Compute L(¢), U(#) and D(r) by performing steps 1-6 of (6.26) (U(r)
and D(r) are the matrices called U(r) and D(?) in (6.26)).

2. Define the (d + s)-dimensional column vector W as the kth column
of U™(¢) stacked on top of the kth column of ¥VT(¢); k=1, ..., d.

3. Define the (d + s) x (d + s) diagonal matrix D as the block diagonal
matrix formed from D(f) and the s x s identity matrix.

4.For j=d,d— 1, ..., 2, go through steps 5-8.
5. Compute

D(t).U = [Wj(d_j)]TDWj(d_j).
6.Fori=1,2,...,j— 1, go through step 7.

7. Compute

Uty = [WE T DW= D(r);,
WA = i) U, Wj“"f’.
8. Compute

D(1)y, = [W{ V" DWWV,

Remark If a general weighting sequence is used for the scalar output
case, A7'(?) = a,, the difference in the square root algorithm (6.14) is
that (6.14:2) is replaced by

B@t) = Ao, + fTOF (D).

For the U-D factorization algorithm (6.26) the difference is that the
quantity f, is initialized as

BO = /1([)/(1, .
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Multioutput Systems We shall now discuss the treatment of multioutput
systems. This seems to be a topic where there presently is no complete
theory. One approach, indicated in Bierman (1977), is to transform the
problem into a sequence of scalar problems. To be more specific, con-
sider again (6.7). Assume that a Cholesky decomposition is applied to
the estimated covariance matrix A(¢). Then

Ay =M@O)M (),

where M(¢) is a triangular matrix. Its inverse is easy to find. Introduce
the notation

YO =yOMTO) =Y, ... (0],

where M~T denotes (M ~1)T and y,(7) denotes the ith column vector of
¥ (2). Then (6.7) becomes

P(0)={P(t— 1) — Pt — DYO[Y 0P — DY) + AOI]™
x YO P — D}/AQ).

The recursion (6.27) can now be replaced by the sequence of “‘scalar
outputs”

P,) =Pt —-1), (6.28a)
P(t) = Py () — PO [¥F (O Po, (09,0
+ A0 YO P (1)

(6.27)

(6.28b)

fori=1, ...,p. Then
P(1) = P,(0)/A(D). (6.28¢c)

This follows, e.g., from the interpretation in terms of state-estimation
theory. Since there are p different and independent outputs, the optimal
state-estimation problem can be solved by adding the effects of one out-
put at a time. Equation (6.28b) looks formally like a time update [see
(6.16a)]. We can therefore apply the U-D factorization method in a
straightforward way to (6.28b) by using the algorithm (6.26).

6.2.3 Summary

We have now described four methods for determining the gain: equations
(6.7a), (6.10), (6.14), and (6.26). A comparison concerning the number of
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Table 6.1
Number of arithmetic operations used for updating P(f) once. The number of parameters
is d. Adapted from Bierman (1977).

Square
Method Additions Multiplications Divisions roots
Conventional Kalman 1.5d% + 3.5d 1.5d* + 4.5d 1 0
equation (6.7a)
Stabilized Kalman 4.5d* + 5.5d 4d* + 7.5d 1 0
equation (6.10)
Potter’s square 3d* + 3d 3d? + 4d 2 1
root (6.14)
U-D factorization 1.5d* + 1.5d 1.5d* + 5.5d d 0
(6.26)

arithmetic operations required by these algorithms is given in table 6.1,
which is adapted from Bierman (1977). It is clear from the table that the
U-D factorization algorithms require roughly the same amount of com-
putation as the Kalman equations. It must be remembered, though, that
the updating of P(r) is only a part of the total algorithm, so the total
number of operations needed per sample is higher than that given in table
6.1. The computations needed to get &(¢) and y (¢) will depend critically on
what model set is chosen.

6.3 Fast Algorithms for Gain Computation

The ways of computing the gain vector L(?) in the recursive identification
algorithm that we discussed in the previous section were valid for any
sequence of “‘gradient” vectors y(¢). In this section we shall discuss al-
gorithms that utilize a specific structure of {/(r)} that is present for many
typical model sets. This structure is defined and illustrated in section 6.3.1.
In section 6.3.2 it is explained how the structure in question allows a
fast way of computing L(z). The computational load per time step is
then reduced from being proportional to d* (d = dim ) for the algorithms
in section 6.2 to being proportional to 4. Section 6.3.2 is therefore an
interesting complement to section 6.2.

It should be noted that the ladder algorithms to be discussed in section
6.4 also use the structure described in section 6.3.1.
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6.3.1 A Shift Structure

The gradient vector in the algorithms we have been discussing is of major
importance. We have here used the symbol (¢) for it. Recall however,
that the structure covers also PLRs (i replaced by ¢) and symmetric
recursive IV algorithms (¥ replaced by {).

Now, in most cases, the sequence {/(r)} possesses some structure in
the sense that y(¢) and ¥(z + 1) are related. Typically they will have '
several elements in common. The reason is, loosely speaking, that for |
dynamical systems the states are closely related at adjacent sampling
instants.

We consider the structure

x(t—1)
Y = : , (6.29)
x(t—n)
where {x(-)} is a sequence of a-dimensional column vectors (a-vectors).
The dimension of y(#) is consequently o -»n = d. The important thing in
(6.29) is that (¢ + 1) and y(¢) will have a number of elements in common,

viz, x(s), t—n+1<s<t—1.
If we introduce the vector

x(1)

* é , 630
y*() ( " t)> (6.30)
we see that (6.29) can also be expressed as

x(1) v+ 1))

*(1) = = . 6.31

Vo (wm) (x(z —n) (@3

We could also have assumed the slightly more general structure that
for some i *(f) we have

x()\ . Y+ D\ .
(wm) = S0, (m _ n)> = S0, (6.32)

where ¥ and & are permutation matrices, and x(¢) and %(¢) are not
necessarily the same. Clearly, (6.31) is a special case of (6.32). However,
in order not to get involved in too-complex notation, we shall confine
ourselves to the simpler assumption (6.29).
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We shall now illustrate how the structure (6.29) relates to the model
sets we have discussed previously.

EXAMPLE 6.1 (Multivariable Difference Equations) Consider the linear
regression model (3.78) in example 3.8 (with n = m):
D+ A4yt—D+ -+ A4y(t—n
yO + Ay —1) y(t —n) 6.33)
=Bju(t—1)+ --- + Bu(t —n) 4+ v(2).

Here y(f) is a p-dimensional column vector and u(¢) an r-dimensional
column vector. 4; and B; are matrices of compatible dimensions. We
found in example 3.8 that the predictor for (6.33) could be written

P ] 0)=0Tp), (6.34)
where
0T = (A, B, A, B, ... A, B) (6.35)
and

x(t—1)
o)) = |, x= ( Y (')) . (6.36)

: u(t)
x(t —n)

In (6.35) and (6.36) we have reordered the elements compared to (3.79).
Due to (6.36), the model (6.33) leads to a shift structure (6.29) for the
regression vector ¢(¢) = y(¢). In thiscase a =dimx =p +r. O

EXAMPLE 6.2 (A General Linear Input-Output Model) Consider the
general linear black box model (3.104),

A(@Hy() = 5‘8:1;“(') + ggg:ige(o. (6.37)

The orders of the polynomials are n,, n,, n;, n,., and n, respectively [see
(3.97)]. We shall in this example assume that the nonzero orders are all
the same, say n. That is,

n,=nor0, ny=nor0, n.=nor0, nyj=nor0, n,=nor0.
(6.38)

In section 3.7.2 we derived a RPEM for this model. It is given by (3.123)—
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(3.125). The gradient vector (¢) is given by (3.125):
(-1
Y = : , (6.39)
Xt —n)
where
-5 @)
a(t)
=\ -w®]. (6.40)
i)
— (1)

Here we have reordered the elements of 8, ¢, and y, compared to (3.123)—
(3.125), so that

0T=(a1 by ficidyay by f, ¢, d, ... a, by fu €4 dy).

Similarly,
-y
x(t—=1) u(?)
o) = : , x()=|—w® | (6.41)
x(t — n) (1)
—v(?)

Hence both the RPE algorithm (3.123)-(3.125) and the PLR (3.130)
(¥ replaced by ¢) are subject to the structure (6.29).

In (6.40) and (6.41) we have assumed that all model orders in (6.37)
are nonzero. If a certain polynomial order is zero, then the corresponding
entry in x(¢) is deleted (e.g., n, = 0 = w(¢) is deleted). Hence the number
o = dim x equals the number of nonzero polynomial orders in (6.37). O

The structure (6.29) or (6.31) is thus quite common for recursive
identification algorithms. The restriction that all model polynomials
should have the same order is a consequence of the simple structure
(6.31). With (6.32) we could have included also the case of different
model orders.
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6.3.2 Fast Calculation of the Gain Matrix

Here we shall derive an algorithm for computation of the gain L(¢), given
by (6.2), that utilizes the shift structure (6.29). The section is based on
the paper by Ljung, Morf, and Falconer (1978). The derivation is fairly
long, and we have broken it into several steps, with details given in
appendix 6.B.

The Problem The problem is to determine L(¢), given by (6.2). We shall
treat the case when ¥/(¢) is a column vector (which covers both examples
6.1 and 6.2). Then A(¢) is a scalar, and we shall assume that A(r) = 1.
This means that we consider the algorithm

R(t)y=R(t— D) +y@OO¥ () — Rt - D], (6.42a)
L) = y(ORT () (1) (6.42b)
Assume that the initial condition is

R(0) = &1 for some 6 > 0. (6.42c¢)

If we introduce

R = RO,

(1)
we know from (2.124b) and (2.126b) that (6.42a) can be rewritten as
R(H) = 2(OR( — 1) + Y (YT (1), (6.43)

where A(?) is given by (6.8).
We shall now make the further restriction that

Al = A (6.44)

Hence

R = Xt: ARG YW T(k)y + A5 1 (6.45)
k=1

The problem is thus to find the solution L(¢) to
R(L(2) = ¢(1), (6.46)
with R(¢) given by (6.43) and (6.44).
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Exploiting the Shift Structure The idea is to utilize the structure (6.29)
or (6.31) in Y(r) when solving (6.46). This structure will make L(¢) and
L(t + 1) closely related, as we will now show.

Let y*(t) be defined by (6.30) and define

R*(t) = i AT XK [Y*k)]T + A5 (6.47)
k=1

This is a matrix of dimension (n + 1)a X (n + 1)a. Now, the property
(6.31) implies the relationship

_ :*j** N 2
R*(t) =(:R(l))= (R(z+ 1) %), (6.48a)
* 3 e e ok ok ok ok ok Ak

where * marks bordering elements, whose exact form does not interest
us for the moment. The “width” of these elements is «.
In (6.48a) we have

R+ 1D =R+ 1) —Ay)yT(A) + A*(1 — AL (6.48b)

Now, if x(¢) = 0 for ¢ < 0, the second term of the right-hand side will be
zero. If either A = 1, or § = 0 the third term will also be zero, in which
case we have

R+ 1) =R+ 1) (6.48¢)

We will in this section as well as in section 6.4 work with relation (6.48a, c).
It should be kept in mind that this is exactly correct only when 4 = 1 or
¢ = 0, but can be regarded as a reasonable approximation of (6.48b) also
when 4 is close to 1 and § is small.

The defining relationships for L(f) and L(z + 1), i.e.,

R(L() = y(1),
R+ DL+ D =y@+ 1),

can in view of (6.48) also be written

_ 0 *
* — 6.49
R (L(t)> (l//(l)) ' (€4

R*(9) (L(t; 1)) = (l//(t: 1)). (6.50)
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Here again, * denotes an a-vector (an a-dimensional column vector),
whose exact expression is unimportant for the definition of L(¢).

In view of the relationship (6.31), it seems to be a good idea to de-
termine a quantity L*(f) as an intermediate step from L(?) to L(t + 1),
where

R*())L*(t) = ¥ *(0). (6.51)
The idea is thus to go from L(¢) to L*(¢) and then to L(z + 1).

Some Auxiliary Variables In order to accomplish the aforementioned
steps, we need tools with which we can operate on the *-elements in
(6.49) and (6.50). These tools are the no x a-matrices 4(f) and B(¢) that
satisfy

R* e 5292 1 a rows
wo(g) (57 65

sy (BON Z (0
R (t)< 1 ) (R(t))iarows (6.53)

where R® and R" are a x a-matrices.
It is useful to interpret these auxiliary variables. The bottom no rows
of (6.52) read

T AP R)xT(K) + R(@O)A@) = 0
k=1

or

-1,

A() = — [i AW (k) + 1'5Ij| Y A (k) x T (k). (6.54)

A comparison with the least squares formula (2.13), shows that A(r) is
the least squares estimate of the matrix A in the regression model

x(f) = — ATY(1) (6.55)

based on data up to time ¢ and using a forgetting factor A. Moreover, the
o first rows of (6.52) read

S A x()xTk) + A1+ Y A xR A) = RE(1).
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A comparison with the proof of lemma 3.D.1 shows that
1

Re(t) =Y a7 e' (k) [e' (k)] + A4, (6.56a)
1

where the a-vectors e’(k) are the residuals from (6.55):
e'(k) = x(k) + AT (k). (6.56b)

The matrix R(¢) is thus an estimated covariance matrix for the residuals
e'(k).

Similarly, we find that B(#) defined by (6.53) is the least squares estimate
of a regression

x(t—n)y=—-B Wi+ 1), (6.57)
and that

R()= Zt:l""r’(k) [F'(k)]" + 4141, (6.58a)
where

ri(k) = x(k — n) + BY () (k + 1). (6.58b)

The interpretations of A(¢) and B(¢) as forward and backward predictors
for the sequence {x(#)} are quite interesting. For the formal development,
however, we need only the algebraic property (6.52)—(6.53).

The formulas for updating A, B, and L are derived in appendix 6.B.
The result is summarized as follows.

The Algorithm Let {x(r)} be a sequence of a-vectors such that x(¢) =0
fort <0, and let

x(t—1)
OES

x(t —n)
Then the gain

L= [ 3 AR Tk + MJ_ W)

k=1

can be recursively computed as follows.
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Fast Calculation of the Gain Matrix

1. Initialize:
A(0)=0,B0)=0,R(0)=46-1, L(1) = 0.

2. Given A(¢t — 1), B(t — 1), R*(¢t — 1), and L(¢), update:

e() =x() + AT — Dy (), (6.59a)
A(t) = A(t — 1) — L(De" (), (6.59b)
B() = LT (Y (), (6.59¢)
e =[1— B@)]e(, (6.59d)
Re() == AR(t — 1) + (D) e (d), (6.59¢)
e [Re(] te(r)

Lo = (L(t) + A@®) [Re(t)]‘lé(t))' (690
Partition L*(¢) as

L*(1) = (—A{(—’Z) o Tows, (6.5%)

u(t) ) o rows

Compute

r(t) .= x(t — n) + BY(t — Dy(r + 1), (6.59h)
B(?) =[B(t— 1) — M@Or"®)][1 — p()r" O], (6.591)
L+ 1) = M©E) — B(Ou@). (6.59)

Remark on Initialization An alternative to step 1 is to take 6 =0 and
initialize the algorithm at time ¢ = t* when the matrix R*(¢*) in (6.47)
is of full rank (typically, then, t* = (d + 1)a). Then A(t*), B(¢*), R°(t*)
and L(t* + 1) are determined from (6.52), (6.53) and (6.50), respectively.
In view of (6.48b, ¢) this may be a better alternative when A < 1 and/or

Y1) #0.

The algorithm computes the gain vector L(¢). If a linear regression, or
a pseudolinear regression is used, this gain is subsequently used to update
the parameter estimate:

0 =00t — 1)+ L[y — 07 — Dy (0]" (6.60)

[see (3.86) or (3.130)]. Now in several cases the vector x(f) contains y(f)
[see (6.36) and (6.41)]. If the first p rows of x(¢) equals — y(7) we find by
comparison of (6.60) with (6.59a, b) that the first p columns of A(¢) will
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be equal to 6(¢). Hence, when we are using a pseudolinear regression for
the model (6.37) with A(g™!) # 1 or a linear regression for the model
(6.33), the updating of 6(¢) is obtained as a by-product of the algorithm
(6.59) to determine the gain.

Computational Complexity The algorithm (6.59) requires the following
elements to be stored at time 1 — 1:

Y (2): an na x 1-matrix,

L(?): an noe x 1-matrix,

A(t — 1): an no X o-matrix,

B(t — 1): an na X o-matrix,

Ré(¢ — 1): an a X o symmetric matrix.

All this requires

2na? + 2no + 3a? + o) (6.61)
memory cells. With d = na, we can write (6.61) as

20d + 2d + 3(a? + ). (6.61)

In comparison, the algorithms described in section 6.2 need to store the
symmetric matrix P(¢) (or the triangular matrix U(f) and the diagonal
matrix D(¢)) together with the vector (¢). This requires

1(na)? + 3na (6.62)

memory cells, which is an order of magnitude (in #) more.
A count of the number of operations involved in (6.59) gives

no® + 6no? + na + 30 + 4a® 4+ 2o multiplications,
no® + Tna? + 2na + Jo? + 3o additions,

which again is an order of magnitude less (in n) than the algorithms of
section 6.2 (see table 6.1).

The algorithm (6.59) has, therefore, a distinct advantage over conven-
tional methods, when the model order » is high: it is much faster and
requires much less memory.

Numerical Stability Most reported numerical studies concern relatively
short samples and have shown satisfactory behavior (see Falconer and
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Ljung, 1978). The error propagation properties are studied in more detail
in Ljung (1983), where it is established that the algorithm is not numer-
ically stable for 4 < 1.

Some Extensions The general shift structure (6.32) is treated in Ljung,
Morf, and Falconer (1978). This reference treats also the nonsymmetric
IV method. The case when (¢) is a matrix can be treated along the same
lines as the vector case; the derivation remains essentially the same.

6.4 Ladder and Lattice Algorithms

For black box models we have worked with difference equations, such
as (6.33) or (6.37). From an implementational point of view, these models
can be seen as digital filters driven by {u(s)} and {e(¢)} and producing
{y(9)}. There are several ways of implementing a given transfer function
as a digital filter, corresponding to the different possible state-space
realizations. The difference equation representation itself may not be the
best choice, due to sensitivity with respect to round-off errors. This fact
has been widely recognized in digital filtering and signal processing (see
Oppenheim and Schafer, 1975). A useful form for implementation of
digital filters is ladder or lattice filters. These terms originate from net-
work theory where they denote a certain way of realizing a given transfer
function. The name ‘“ladder” or ‘“lattice” then refers to the pattern
formed by a diagram of the signal flow in the filter (see figure 6.1 later in
this section). Interpreted in terms of the corresponding state-space reali-
zation, ladder implementation uses a state vector that has a diagonal
covariance matrix. This gives several nice features to the filter, as we
shall see.

In view of the usefulness of the ladder filter, it is natural to look for
ways of recursively identifying systems and signals in a ladder representa-
tion. Compared to our conventional difference equation models, this
means that the model is reparametrized. For a black box model, this
should not be much of a disadvantage, since black box parameters are
just vehicles for describing the input-output behavior. Recursive identi-
fication of ladder representations has been extensively studied by Morf
and his coworkers (Morf, 1977; Morf and Lee, 1978; Lee and Morf,
1980). Morf’s algorithms are algebraically equivalent to the recursive
least squares algorithm. Gradient lattice schemes have also been described
and studied (Griffiths, 1977; Makhoul, 1977, 1978).
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In this section we shall first describe the rationale for the ladder al-
gorithms (section 6.4.1). We shall then (section 6.4.2, with details in
appendix 6.C) develop a basic ladder algorithm for the same setup that
we considered in section 6.3, using much the same technique. Finally
(section 6.4.3), we shall comment on some variants of the ladder schemes.

6.4.1 Difference Equations and Ladder Forms

Change of Coordinate Basis for Linear Regressions Given a linear re-
gression model

P(t]0) =0T, (6.63)

several different representations can be obtained by change of basis in
the regressor space (i.e., the space spanned by ¢). Ladder forms corre-
spond, as we mentioned, to a particular change of basis. Before discussing
ladder forms, we shall first give some general facts on linear transforma-
tions of the representation (6.63). Consider a new regression vector

(1) =To() (6.64)
for some invertible matrix 7. With

0=r1"T"0, (6.65)
we can write the model (6.63) as

2| 0) = 0Tp@) = (T T 3() = §73(0). (6.66)

The problem of determining the least squares estimate of 6 from (6.66)
is of course equivalent to the original problem (6.63), and we obtain

i) = RO Eoy®). 6.67)
Here

R0 = L0060 = TROT. (6.68)
where

R® = imk)w(k). (6.69)

Obviously, we have
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by = T-70(0) = T "R ()Y k) y k). (6.70)

A change of basis in the regressor space therefore has some straight-
forward consequences for the estimates, as described by (6.65), (6.67),
and (6.70).

Increasing the Order of an Autoregression Model Let us consider a
special case of (6.63): an autoregression

y(t) + a;y(t D4+ 4 ay—n)=e().

Using y(t — k) as regressors in this model is natural, since these are the
actual measurements. This choice has, however, the disadvantage that the
best (least squares) estimate of g; actually depends on the order n. We
illustrate this by a simple example.

EXAMPLE 6.3 Consider the system
y(© +aiyt — 1) + ady(t — 2) = e(), (6.71)

where {e(f)} is a sequence of independent random variables each with
unit variance and zero mean value. The output sequence generated by
(6.71) has a covariance function

n=Ey@®y@ — k),
where elementary calculation gives

. 1+ad
CT I+ ad)? - @)1 —ad)’

ay

——1r
1+ ad

r,= 0>

r,= —asro—adr,.
A first-order model

y@ = —aPy( - 1)

will give the asymptotic estimate

@ = lim [z Yk — 1)]_1 S —y(k — Dy(k)

7| k=1

= —ry/rg :a?/(l +ag)-
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A second-order model
§O) = —aPyt - 1) — aPy(t - 2)

will, however, asymptotically yield the true values

i af, @ -l

We notice in particular that the asymptotic values of 4{!’ and 4% differ
if a # 0.

Now, even if the true value of a3 is zero, so the limit of 4, does not
depend on the model order used, the accuracy is affected. To show this,
we proceed as follows: We know from theorem 4.5 that the asymptotic
covariance matrix for \/N[4{"(N) — a7] is

[Eyz(t)]-l = 1/rg

when model order n = 1 and a3 = 0. For n = 2 we find that the covariance
matrix for

dPWN) - af
vy ( a(N) )

is

—y(t—1) '1__ ro ri\’
<E<_y(t_2)>(—J’(l—1) —y(t—2))> —(rl r0> ,

when a? = 0.
We thus obtain that

N [62(N) — a] has the asymptotic variance — 1 < 2 57 >

The asymptotic accuracy obtained when estimating a, in a second-order
model is thus strictly worse than in a first-order model. There is conse-
quently a penalty for going beyond the true order. (We saw this also in
section 4.4.4.) O

The reason why the estimates 4;, i < n, change when the model order is
increased can be described as follows. Suppose that we have estimated
an nth order autoregression, which we write

Pult) = 070, (2). 6.72)
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Here the subscript n emphasizes that the model is nth order, and ¢,(?)
consists of y(t — i), 1 <i < n. We now increase the order to n + 1 and
add the regressor y(t — n — 1):

j}n+1(t) = OnT(pn(t) - an+1y(t —h—- 1) (673)

This regressor is typically correlated with ¢(?), i.e., with previous values
of y(t — i), 1 <i<n, but it also contains new information that is not
present in ¢(f). We can state this by writing

yt—n—1)=—BTo@) +r,(t—1), 6.74)

where r,(t — 1) is the new piece of information in y(¢t — n — 1), not
present in @(#). Hence r,(t — 1) and ¢(¢) are uncorrelated. With (6.74)
inserted into (6.73) we obtain

Fus1() = (Op + y41 B @(1) — @iy 1, (t = 1). (6.75)

When now the parameter a,., is adjusted to take the new information
in r,(¢ — 1) into account, the value of é,, must also be readjusted compared
to (6.72) because of the term a,,, B in (6.75). More specifically, if 6
denotes the estimate of 6, in (6.72) and 4" denotes the estimate of 6,
in (6.73) = (6.75), we must have

60D g, B =™ (6.76)

Changing the Basis of an Autoregression Having understood why the
estimates of g; in an autoregression depend on the model order, it is easy
to see how to construct a scheme that does not have this feature. If, when
we extended the model to account for the variable' y(t — n — 1) we had
added only the new information r,(z — 1) instead of y(¢+ — n — 1), then
the estimate of 6, would have been unchanged. The idea consequently is
to use the variables r(t — 1), k=0, ..., n, as regressors instead of
y(t — k —1). From (6.74) we see that r,(t — 1) can be interpreted as
the backward prediction error (or innovation) associated with predicting
yt —n—1)from @) = (—y(t ~ 1) ... —y(t — n)).

We also see from (6.74) that r(t — 1) is a linear combination of
y(t — k — 1) (coefficient 1), y(t — k), ..., y(t — 1). Hence

ro(t — 1)
GRS : = To(1), (6.77)
rn—l(l - 1)
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where T is lower triangular with 1’s along the diagonal.

The transformation from the original regressors y(¢t — k) to the back-
ward innovations r, (¢ — 1) is therefore a linear change of basis in the
regressor space as in (6.64). The corresponding change of coefficients is

Ko

A B A (6.78)
Kn—l
where the coefficients K; usually are known as reflection coefficients (from
an analogy with transmission-line theory). The model description is thus

$(E) = 0"@) = Koro(t — D+ - + Ky_yr,_1(t — 1). (6.79)

To be efficiently used for simulation and prediction the model (6.79)
needs to be supplemented with a way of computing r,(t — 1) from y'.
Such a way is described by (6.77), but we shall develop more efficient
algorithms in the next subsection. The model (6.79), together with an
algorithm to determine r,(t), is known as a ladder or lattice form (see
figure 6.1, p. 357).

Relation to U-D Factorization In the foregoing heuristic description of
the ladder form we have not been specific about what we formally mean
by “uncorrelated” regressors and that r,(t — 1) is “uncorrelated” with
¢@,(?). A formal treatment is given in the next subsection.

It should be pointed out, though, that the change of variables (6.77)
actually depends on time, so that at time ¢, we use regressors

5k — 1)
¢'(k) = : = T() (k). (6.80a)
ik —1)

The significance of the backward innovations r; being independent is
then that the matrix

R = Y60 [# (0)]F 2 D(r) (6.80b)

is diagonal.
Comparing (6.80a) with (6.68) we find that

R() =T 0DOT (),



352 Chapter 6 Implementation

or, in terms of the inverse,
P()=R7'(t) = TT(OD ' (HT(Q). (6.81)

We notice that the change of variables to backward innovations in
(6.77) achieves exactly the U-D factorization of the P matrix discussed
in section 6.2.2 [see (6.12)].

The fact that the regressors ¢ are uncorrelated has an interesting
consequence for the corresponding estimate § of the reflection coeffi-
cients. In the model

(0 =06 @),

the gradient of the prediction with respect to the model parameters 0
is @(1). Hence, according to theorem 4.5, the covariance matrix of the
asymptotic distribution for \/N[O(N) — 8] is proportional to

P=[E¢)e (0]

This matrix is diagonal by construction. Hence the estimates of the
different components of § are asymptotically uncorrelated. Neither the
value nor the accuracy of the estimate of K; are therefore affected by
the estimation of other reflection coefficient. This is in contrast to the
case studied in example 6.3.

As a final comment, we note that if an input signal {u(z)} is present
in the regression vector ¢(¢), then the diagonalizing transformation 7(r)
in (6.80) will depend on the properties of this input. This should be kept
in mind in applications where the properties of {u(f)} may vary.

6.4.2 A Fast Algorithm for Recursive Estimation of the Reflection
Coefficients

In this section we shall develop a fast algorithm that both accomplishes
the (time-varying) transformation from {y(?) } to {r,( — 1)} and estimates
the coefficients K; of the model (6.79). Such an algorithm can be derived
in several ways, using various degrees of mathematical sophistication
and elegance. Here we choose a straightforward and rather lengthy
derivation, that, however, has the advantage of using only elementary
matrix manipulations. It is inspired by, but not identical to, the deriva-
tions given by Morf and Lee (1978) and by Gevers and Wertz (1983).
Details are deferred to appendix 6.C.
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The Problem Consider a linear regression model of order n,

Iult | 6) = 07 0 (0), (6.82)
where ¢,(¢) is a column vector, subject to the structure (6.29):
x(@—1)
@a(0) = : : (6.83)
x(t —n)

The elements of the a-vector x(r) may very well contain variables that
are constructed using past estimates of 8, as described in example 6.2.
Therefore (6.82) includes also pseudolinear regressions. We assume that

x(®)=0 for t<0. (6.84)

Remark Since we shall only treat (pseudo) linear regressions in this
section we use the symbol ¢ for the “gradient™ vector in order to be
consistent with the rest of the book. Certain formulas from section 6.3
will be used in the derivation here. The reader should keep in mind that
then ¢ replaces y, which is only a change of notation. Also, the fact that
a more general situation (x(¢) being a general a-vector) is considered in
(6.83) means that there will be certain departures from the heuristic
discussion in section 6.4.1. The ‘“backward innovations” r; will be a-
vectors and the decomposition (6.80) will give a block diagonal (o x a-
block) rather than a diagonal matrix.

The problem is to determine the predictions ,(f):
Pul®) = 01t = Dy (1) (6.85)

based on the least squares estimate ¢,(¢) given by

1

0,00 = RN D) Y. 2, (k) yT(k), (6.86)
=1
where
E,,(t) = tz A“’%p,,(k)(p,,T(k) + A1 (6.87)
k=1

This should be done for n = 1 up to a maximum order n = M.
The calculations of j,(z) will not be performed explicitly in terms of
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6,(t — 1). Rather, the problem is to recursively reparametrize (6.82) to
a ladder form

I =Korg(t =D+ - + K 11, (1 = 1), (6.88)

where r;(+ — 1) are uncorrelated a-vector regressors, such that {ry(t — 1)
... (¢t — 1)} lie in the span of {x(t — 1) ... x(¢ — k)}. The problem
is also to recursively estimate the reflection coefficients K;(¢) of the model
(6.88). If the dimension of the output is p, then K; obviously are p x a-
matrices.

The Method The idea is to construct the r, (¢ — 1) vectors as backward
prediction errors of the sequence {x(f)}, based on n future values, i.e.,
use a regression

x(t —n)= =BTt + 1) + r,(0). (6.89)

The minus sign in (6.89) is used for notational convenience only. The
regression problem (6.89) to determine B,(¢) (the estimate based on data
up to ?) is of the same character as the given one, (6.82), and will be
solved simultaneously, using an analogous technique.

When working with models of increasing order n we shall utilize the
shift structure (6.83). In the notation of section 6.3.2 we then have (recall
that ¢ replaces ¥ in this section)

R(D) = R, (1), R*(t) = Ryyy(t + 1), (6.90)

Consequently the shift structure (6.83) can be expressed as in (6.48a, ¢):

o o e o ke 3k ok koK ook ok _ *

R0 =(FRET) =B 1) (631)
¥ 3¢ e e e e e e e

Here we have used the assumption (6.84).

When we develop the method the following variables will be crucial.
x,(t): The prediction of x(¢) based on the information in ¢,(¢), and based
on dataupto — 1.

e,(t) = x(¢) — x,(¢): The forward prediction errors.

X,(#): The backward prediction of x(¢) based on the information in
¢,(t + n+ 1) and based on data up to ¢ + n.

r.(t) = x(t — n) — X(t — n): The backward prediction errors.
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R:(2): The sample covariance matrix of the forward prediction errors,
based on data up to ¢.

R;(): The sample covariance matrix of the backward prediction errors,
based on dataup to t.

E,(2): The cross covariance matrix between the forward and the backward
prediction errors, based on data up to ¢.

B.(t) = @, ()R, (D), ().

Formal definitions of these variables are given in appendix 6.C. Simple
relationships between the variables can be derived using (6.91). The
derivation itself is, however, tedious and lengthy. It is given in appendix
6.C.

The Algorithm Collecting the equations in appendix 6.C marked with
a ' gives the following algorithm.

A Fast Ladder Algorithm 6.92)
1. Initialize at time ¢ = 0: Set

RE(0) =41,

Rr(—1) =4I,

F,(0) =0,

r,(0) =0, n=0,...,M—1.

2. Attime ¢ — 1, store

R(it—1), F(—-1), R(t-2), r,t—=1), n=0,...,M—1.
3. At time ¢ — 1, compute, forn =0, ..., M — 1,

K, (t— 1) = F(@— D[R -],

KX@¢—1) =F(@—- D[R - D]

4. The predictions x,(¢) can now be computed forn =1, ..., M from
X,(8) 1= Xy () + K,y (¢ = D,y (0 = 1),
Xo(®) :=0.

5. Compute, forn=0, ..., M — 1,

Ryt — 1) = ARt = 2) + [l = B, ]r,(t = Dt = 1),
Bus1(8) 1= B (1) + [1 = Bu()]?r (¢t — D[Rt = D] 'r, (e — D),
Po(t) :=0.
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6. At time ¢, x(?) is received.

7.Forn=0, ..., M — 1, update:

(1) i=r,1 (1 = 1) = KX (t — De,_,(0),

e,(t) 1= x(1) — x,(1),

ro(t) 1= x(1).

8. Forn=0, ..., M— 1, update:

Ra(1) := ARy (1 — 1) + [1 = B,(1)Jen(t)ey (©),
E) = AF(t = D)+ [1 = (&) Jr(t — De, (o).
9. Goto 2.

When y(#) is part of x(¢), the recursion (6.92:4) gives the prediction
¥,(2) sought in (6.85), as an automatic by-product. If y(¢) does not belong
to x(t), the algorithm (6.92) must be supplemented by the following steps.

K(—1)=[Fl- DR — 2T, (6.932)
$ult) 1= Juct () + K-yt = Doy (1 = 1), (6.93b)
&) 1= y(t) — 5:(0), (6.93¢)
F3(1) 1= AF2(t — 1) + [1 = B,()]r,(t — Del (o). (6.93)

This follows by entirely analogous arguments.

In the algorithm (6.92) we separated the calculation of e,(f) into two
steps: step 4 and step 7. When the predictions x,(¢) are not explicitly
required it is natural to skip step 4 and perform (6.C.27):

en(t) = en—l(t) - Kn—l(t - l)rn—l(t - 1)5
) =r_(t—1)— K¥ (1 — De, (1),
eo(1) = ro(t) = x(1).

The signal flow in this equation can be depicted as in figure 6.1. This
figure shows why the computations are said to have a “ladder” or “lattice”
structure.

For the ELS algorithm we have xT(¢) = (—y(¢) u(r) %,,(¢)), and hence
the variable g,,(?) is part of the x(¢) vector. Then the sequence of events
in the algorithm is as follows:
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&, y(t) : e, (t)

—~*

(%)
&)

o /(f) -
g z

(¢

Figure 6.1
Signal flow in the ladder algorithm.

At time ¢ — 1 perform steps 2-5.

At time ¢, y(t) and u(¢) are received.

Compute &,,(2) = y(£) — pp (D).

Compute g,,(2) = [1 — Bry(2) ]er (D).

x(?) is now complete; continue from step 6.

Some Comments on the Algorithm The algorithm (6.92) requires
2(a*M + oM) (6.94)

memory locations to store its updated variables (which can be reduced
to 3(@®M + aM); see next section). A pass through steps 3 to 8 requires
approximately

303M 4 60’ M + 4aM (6.95)

multiplications. The ladder algorithm consequently has a computational
complexity that is slightly larger than, but of the same order of magnitude
as, the fast gain algorithm (6.59). On the other hand, it accomplishes
more. For any given maximal order M, we obtain the predictions y,(f)
for all orders n < M. These are the true nth-order predictions, and they
are not equal to what we would have obtained by truncating the estimate
6,,(r — 1) to its na first rows. The estimates of the reflection coefficients
K,(#) and K}(¢) are not affected by the fact that higher-order models are
estimated at the same time. In terms of reflection coefficients, our models
can thus be truncated to any order n < M, without affecting the per-
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formance of the low-order models. This is in contrast to the case studied
in example 6.3.

These facts on models of different orders must be discussed further
when the algorithm is applied to PLRs. For ELS we have x"(¢) =
(—y(®) u(?) g4,(2)), where the residual used in x(¢) is based on the M th-
order model. Consequently in the x(¢) vector itself, there is a decision
about what model order is to be estimated. The predictions for other
model orders will then only be approximations.

At any desired time, the original parametrization (r) can be recovered
from the reflection coefficients, using (6.C.18) and (6.C.21). Recall that
6() equals the first p columns of A(f), when — () equals the first rows
of x(). Notice, though, that going through (6.C.18) and (6.C.21) from
n = 1ton = M requires a number of operations proportional to M?.

In the algorithm (6.92) we have theoretically thate,(¢) = 0,7,(t — 1) =0,
and B,(¢) = 1 when ¢ < n. The reason is that when the number of param-
eters exceeds the number of data points, then a perfect fit, i.e., zero
residual, is possible. Hence in (6.92) one may limit the calculation of
Ri(r — 1), Ri(#), e (v), and r,(t — 1) to n < min(¢, M). (Due to the
initialization with 4 > 0 in (6.92), we will, however, have a slight deviation
from zero in the quantities e,(¢), 7,(t — 1), and B,(¢) for ¢t < n.) The error
propagation properties of (6.92) are studied in Ljung (1983). In contrast
to the fast algorithm (6.59), the ladder algorithm (6.92) is numerically
stable for 4 < 1.

6.4.3 Variants of Ladder Algorithms

In the literature, several different variants of ladder algorithms are sug-
gested and used. They can all be derived using the tools that we developed
in the previous subsection. We shall here give a brief account of such
variants and how they relate to (6.92).

Order Updates for R° and R” 1In (6.92) we updated Re(¢) from Ri(r — 1)
and R(¢) from R,(t — 1) [see (6.92:5, 8)]. As an alternative, we could
use the “order updates” (6.C.20) and (6.C.22). The sequence of operations
would then be:

1. Store at t — 1

Et—-1), R(t-2), r,t—=1), n=0,..., M—1, e — 1.
(6.96a)
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(Notice from (6.C.7) and (6.C.5¢) that

Ri(t—1)= til A7 R x(k)x T (k).

K=
2. Determine R;(t — 1)and K,(t — 1) forn=0, ..., M — 1 by
K,(t—1) =F(@—-D[R(—-2)]", (6.96b)
R, (t—1)=R(t—1)—FE(t— DKt —1). (6.96¢)
3. Determine Rj(t — 1) and K}t — 1) forn=0, ..., M — 1 by

KXt —1) = F(— D[R — D], (6.96d)
R, (-1 =R(t—-2)—E(t—D[KX—D]" (6.96¢)
Ro(t —1) == Ro(1 - 1)

4. Perform step 4 of (6.92).
5. Determine §,(t) forn=0, ..., M — 1 by

Buri(8) = Bu(0) + [1 = B(D]*r[(r = DRt — D] ot — 1),

(6.96f)
Bo(?) :=0.
6. Perform steps 6 and 7 of (6.92).
7. Update, forn =0, ..., M — 1,
F(0) = ARt — 1) + [1 = B()]r,(t — De, (). (6.96g)
8. Update
e(f) = ARS(t — 1) + x(H)xT(2). (6.96h)

9. Go to step 1.

This algorithm has the advantage that R2(¢) does not have to be stored
for n=1, ..., M — 1. No major difference in performance between
(6.92) and (6.96) has been reported.

Using Residuals Instead of Prediction Errors The quantities r,(¢) and
e,(t) that we have been working with are the “prediction errors,” ac-
cording to (6.C.5a). We obtained the ladder (6.C.25)—(6.C.26) for these
variables by first delaying (6.C.18), (6.C.21) one time step before multi-
plying them by ¢ (¢). If (6.C.18) and (6.C.21) are multiplied by ¢, (¢)
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and then x(¢) and x(t — n), respectively, are subtracted, we obtain the
following ladder relationship between the residuals:

e,(1) =€, () — K, ()7, (1 = 1), (6.97a)
() =T,y (t — 1) — KXy (D), (1) (6.97b)

Now, (6.97) can be used in the fast ladder algorithm (6.92) to update the
required quantities. The prediction errors used in (6.92) are then trans-
formed to residuals via (6.C.11) and (6.C.13). The resulting algorithm
has the disadvantage that the one-step-ahead prediction 3,(f) is not
automatically available.

With a similar technique, we could also have obtained formulas using
k-step-ahead predictions and corresponding prediction errors.

Normalized Equations The matrices R;(t) and R;(¢) can be regarded
as covariance matrices of €,(¢) and 7,(¢), respectively. The use of their
inverses in, i.e., (6.92:3) and (6.92: 5) can therefore be interpreted as
normalization of these residuals. As an alternative, we could work
directly with normalized residuals,

&) £ [RI] T = B,(0e,(0)

and

7)) £ [RU(D] 71 = Bt + DF(0).

Such an algorithm has been developed by Lee and Morf (1980). It has the
advantages that it requires fewer operations per time step and that the
matrices R; and R/ need not be stored.

Using the Matrix Inversion Lemma The equations
Ru() = ARS(t — 1) + [1 — B ()]eq()es (o),

F(0) = ARt — 1) + [1 = B,(0]r(t — De,(0),
[KHO]" = [R(O]E ()

are entirely analogous to the least squares problem (2.13). We can thus
use the matrix inversion lemma (2.16) to develop an expression for up-
dating K}*(r) and [Ri(r)]™* directly as in (2.19). This could be advan-
tageous when o is not a small number.



6.5 Regularization 361

“Gradient” Algorithms If the second-order properties, i.e., the covari-
ance functions, for the sequence x(7) are known a priori, it is possible
to derive an expression for the reflection coefficients in the corresponding
ladder. That would give, assuming stationarity,

K, = [Ee,()ry (t — D)][Er,(t — Dri(z — D],
K¥ = [Er,(t — Des()][Ee,(Der (]

[compare this to (6.92:3)]. When the expected values are not known, a
straightforward approach to estimate K, and K}* would be to use the
approximations

Ee, (0rT(t — V)~ ET()) = ¥ 2 *e, (kyrFk — 1),

(6.98)

and analogously for the other ones. The recursion for £,(¢) will be
E@=2E(t— 1) +r,(— Del. (6.99)

Such an approach will lead to an algorithm that is identical to (6.92),
except that f,(¢) is always replaced by 0. Such algorithms, known as
gradient lattice algorithms, have been developed by Griffiths (1977) and
Makhoul (1977). Since we have Er,(t — 1)rf(t — 1) = Ee,(¢)er (¢), this
equality is sometimes enforced when computing R and R’.

The gradient lattice requires somewhat less computation than (6.92),
since f§,(f) need not be determined. Moreover, when A is close to 1, §,(7)
is a small value, except in the transient stage. Hence the gradient version
appears to be a reasonable approximation. However, it has worse per-
formance than (6.92), as pointed out by Satorius and Pack (1981).

6.5 Regularization

6.5.1 The Problem
In the Gauss-Newton algorithm the gain L(?) is given by

R(t)=R(t— 1)+ y@OWOA @O () — Rt - D], (6.100a)
L =y R (YA (). (6.100b)

Now it may happen that the matrix R(¢) as defined by (6.100a) is singular
or nearly singular. In section 4.4.4 and example 5.3 we discussed some
causes for such a situation [see (4.135) and example 4.10]. Typically,
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R(?) is almost singular either if the model set contains too many parame-
ters, or if the input signal is not general enough. Let us consider a simple
example.

EXAMPLE 6.4. Consider a first-order difference equation model
y() + ay(t — 1) = bu(t — 1) + e(2),
to which the recursive least squares procedure is applied. Then

_ (-1
Y == ( u(t - 1) >
With the notation R(f) = R(#)/y(t) we have, as in (6.43),
R(1) = AR — 1) + o)™ ().

If A(t) = 4 and R(0) = 0, we obtain

ina-

B2 — 1) ~ 3 0k — Dutk — 1)
R() = k=1

ipa-

A%k — Dutk — 1) i ARtk — 1)
k=1

Suppose now that at ¢,
E(IO) = 1,

and that for ¢ > ¢, a constant feedback law is used:

u(®) = —koy(). (6.101)
We then find that
t—tg
Rt = ('1 tro k°’°(2’) , (6.102a)
koro(?) Ao 4 kgro(1)
where
ro(ty = Y A Ry2(k — 1). (6.102b)

k=t,

This means that

R = 1 oA oro(®) - —koro(d) )
P2 00+ kD) \ —korold) AT+ rof0)
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Hence all elements of R™!(¢) tend to infinity exponentially as (1/4)' "
when ¢ — t, approaches infinity. On the other hand,

L =R ()e()
1
TR 4 ae(1 + k()

9 (—l'_"’y(t — 1) = kgro(Oy(t — 1) + kjro()y(t — 1)) (6.103)
koro(Dy(t — 1) — koA ™'op(t — 1) — koro(Dy(t — 1),

_ 1 -y -1
Ao 4 (14 kdro() \—koy(t — 1))’
so that the elements of the gain vector are bounded and well-defined. O

The example tells us a number of things. First, that if the input ceases
to be general enough (like the proportional feedback law (6.101)), then
the elements of R~!(f) start to increase exponentially (with rate 1/4,
where 4 is the forgetting factor). However, the elements of the gain vector
L remain bounded. The latter property obviously holds generally, since
the eigenvectors of R™*(¢) that correspond to eigenvalues that tend to
infinity all must lie in the null space of y/'(¢), t > t,. The elements of
L(¢) are formed as differences of numbers tending to infinity. Therefore
numerical problems will eventually occur.

In implementations of recursive identification algorithms for long-
term adaptive control or monitoring applications, it is important to have
resilience to this sort of numerical problem, since it can never be guar-
anteed that the input will remain general enough. We must consequently
somehow assure ourselves that the elements of R™!(f) will remain
bounded, R‘l(t)| < C. As amatter of fact, we needed such an assumption
also for the theoretical analysis in chapter 4. This was condition R1:

R(t) =8I, 8> 0. (6.104)

Dealing with almost-singular matrices that need to be inverted is generally
known as an “ill-posed problem.”” A standard technique is regularization,
which can be described as measures to ensure (6.104). In this section we
shall discuss how to implement some schemes that achieve (6.104) for
the recursive identification problem.
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6.5.2 The Levenberg-Marquardt Method

The matrix R(¢) in (6.100a) is by construction positive semidefinite.
Hence, one way of achieving (6.104) is simply to add 61 to (6.100a). We
then obtain

R@®) =Rt — 1)+ 90 [n//(t)f\*‘(t)n/ﬁ(t) + 0l — R(t— D] (6.105)

We shall call (6.105) the Levenberg-Marquardt regularization, after the
techniques suggested by Levenberg (1944) and Marquardt (1963) for a
nonlinear least squares minimization problem.

The modification (6.105) is conceptually simple. The positive number
S can be chosen as quite small, say 6 = 1072-10"*, compared to the
magnitude of the elements of y(#). Therefore the search direction obtained
from (6.105) will differ only slightly from the true Gauss-Newton one.

There is, however, an implementational disadvantage to (6.105). We
have previously applied the matrix inversion lemma to (6.2b) = (6.100a)
to obtain a recursion for P(f) = p(¢) R (). This recursion [see (6.7a)]
will contain an inverse of a matrix of dimension equal to the rank of the
updating quantity Y (DA ()Y (#). In (6.7a) this rank was p=dimy,
which typically is (much) smaller than d = dim 0. In (6.105) the updating
quantity is Y ()AL (YT (t) + oI, which has rank d. Hence (6.105) is
quite costly to use, since it will involve inversion of a d x d-matrix in each
time step.

A possible remedy is the following. Instead of adding the d x d-matrix
ol at each step, we could add one diagonal element at a time. Let J,(¢)
be a matrix whose t(modd) + 1 diagonal element is 1 and the other
elements are all zero. Then consider

R() =Rt — D)+ y(O[WOA T (OY (&) + doJ,(t) — R(t — 1)].  (6.106)

This expression is virtually identical to (6.105). Over a period of d time
steps we have

k+d

Y. déJy(t) = dél,

t=k+1

so a multiple of the identity matrix is being added to R(¢) to ensure (6.104).
The version (6.106) has the advantage that it can be written

R(t) = R(t — 1) + y(O)[Y*@OA* @O W* ()" — R(t — 1)], (6.107)
where *(¢) is the d x (p + 1)-matrix
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0
*(f) = 0 6.108
Vo= o 1 | «post(modd)+ 1 (6.108a)
0
and
S A@® 0O
A (z)_< 0 d&)' (6.108b)

The matrix inversion lemma can now be applied to (6.107), giving

P@) = {P(t— 1) — P(t — DY*O[S* )] Y*OTP(t — 1)}/A1), (6.10%)
S*(0) = Y*(OTP(t — DY*(0) + HOA*(2), (6.109b)
where

P() = y()R™(1)

and A(?) is given by (6.8). The dimension of $* has been increased from
p in (6.7) to p 4+ 1 in order to accomodate the Levenberg-Marquardt
modification. Otherwise the algorithm for determining the gain vector
is left unchanged.

6.5.3 Regularization of U-D Factorization Algorithms

The Levenberg-Marquardt modification (6.105) or (6.109) adds a positive
definite matrix to R(¢) constantly, whether required or not. It would
seem more natural to add such a modification only to an emerging null
space, sO as to prevent any eigenvalue of R(7) from tending to zero.
We described such an algorithm conceptually in (4.95). It apparently
requires more work than the straightforward regularization (6.104),
since the eigenspaces must also be determined. In the U-D factorization
algorithm described in section 6.2.2, this type of information is, however,
automatically present. We have, as in (6.12),

P(H) = UW)DWOUT @), (6.110)

where U(r) is a normalized upper triangular matrix and D(¢) is a diagonal
matrix. By introducing limits for the elements of D(¢) and U(¢) we can
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consequently ensure that P(f) remains both bounded and positive definite.
For all practical purposes it is, in fact, sufficient to introduce a limit
for D(#). The reason is as follows: From (6.110), (3.59), and (3.68) we have

HOPT' () = R(1) = 21 B, Yy (YA (k) = y()U T (DD (U ().

Assume that y(f) does not tend to zero and that the i vectors do not tend
to infinity (if they did, we would have worse problems than numerical
ones to worry about.) Then the elements of U ! (¢) must remain bounded,
and so must the elements of U(¢) (since det U(¢) = 1). The boundedness
of U(¢) will thus take care of itself, and it is sufficient to introduce a limit
for the elements of D(¢). This means that regularization is obtained for
the U-D algorithm in (6.26) by modifying step 3 as follows:

3.

b(t)j,. == min (C, f;_, D(t — 1);/B,(1)). (6.111)

Here C is a positive number that bounds the elements of D(¢). It corre-
sponds to y(#)/é with & chosen as in the discussion in the previous section.

The regularization (6.111) is natural and very easy to implement within
the U-D algorithm. As long as the input sequence is well-behaved, so
that () is a full-rank process, the limit in (6.111) is never reached and
the update step coincides with the true Gauss-Newton one.

We noted that the ladder algorithms of section 6.4 correspond to block
U-D factorization of the P matrix. The matrices [RZ(£)]™* and [R:(1)]™"
then are the diagonal blocks of Dg(¢) with

P(1) = Ug(t) Dp(t) Ug (1).

The corresponding regularization procedure for the ladder algorithm
will thus be to ensure the invertibility of those matrices by adding &/ to
them when necessary.

6.6 Stability Tests and Projection Algorithms

The parameter-updating algorithm (6.3) contains a projection into the
subset of stable predictors. This is used to ensure the stability of the filter
(6.4a). When we derived the algorithm (section 3.4), we used an argument
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involving the stability of this filter. Also, for the convergence results
in section 4.4 an assumption that 8(f)e D, (at least infinitely often)
had to be introduced. These facts as such do not of course imply that the
projection in (6.3) is necessary for the practical use of the algorithm. In
fact, we saw in lemma 4.2 (section 4.5) that for a PLR the stable behavior
of (6.4) is guaranteed even without the projection feature.

For an RPE algorithm without projection, however, experience shows
that occasionally the estimate (z) steps out of the stability region and
makes the algorithm ‘“‘explode.” An RPE algorithm should therefore
contain stability monitoring and projection into the stability region, as
indicated in (6.3).

Now, the aforementioned stability problem is fairly rare. In the simula-
tions summarized in table 5.10, for example, the projection feature was
in action less than ten times in a simulation containing 2,000 data points.
This means that the projection does not have to be very sophisticated,
and we do not have to worry about the mistreatment of information
related to the projection.

In practice, projection is often implemented as a succesive reduction
of the correction term for the parameter estimates. This can be done in
the following way.

Projection Algorithm 6.112)
1. Choose a factor 0 < u < 1.

2. Compute 6(1) = y(OR (DY OA L (De(D).

3. Compute 0(2) := 6(z — 1) + 6(2).

4. Test if 6(t)e D ,. If yes, go to 6; if no, go to 5.

5. Set é(t) = ué(t) and go to 3.

6. Stop.

In step 4, the testing if é(t)eD « boils down to ascertaining whether
certain polynomials have all zeros inside the unit circle. This is a classical
problem in the analysis of linear discrete-time systems. There are well-
known algorithms for such tests (see Jury, 1974; Kucera, 1979).

In step S, the factor u determines the reduction of the step size. It is
our experience that the choice u = 0.5 works well.

Strictly speaking, the algorithm (6.112) violates the rules of a recursive
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algorithm as defined in section 1.2, since there is no absolute bound
on the number of iterations required. This could be resolved by taking
1 =0. Then a measurement that would take 6(z) out of the stability
region is simply ignored.

For the general input-output model (3.104) treated in section 3.7,
the difference between the PLR and the RPE algorithms is that the
gradient is computed by filtering the regression vector through certain
filters. These filters are exactly the ones whose stability is monitored in
(6.112: 4). An alternative to step (6.112: 5) would then be to use PLR
steps if é(t)¢D « (1.e., skip the filtering when computing the gradient).
According to what we said above about PLR, we have then ensured that
the estimates will return to D .

6.7 Summary

The implementation of the general recursive identification algorithm
(6.1)-(6.4) has been discussed. The model-independent calculation of
the gain vector, i.e., (6.2), has been treated in some detail.

As general advice for implementation of (6.2) we suggest the use of
the U-D factorization algorithm described in section 6.2.2. The reason
is that this algorithm has better resilience to numerical problems due
to ill-conditioned P matrices. It also easily incorporates the regularization
feature (6.111). These aspects are especially important for algorithms
that are to be used in automatic systems without direct human monitoring.

The complexity of the model-dependent part of the algorithm, i.e.,
(6.4), very much depends on the character of the model. For difference
equation models such as (3.104) or discrete-time state-space models in
innovations form, such as (3.138) the computational effort is fairly
moderate. As an example, we give in appendix 6.A a FORTRAN sub-
routine for the RPE algorithm applied to an ARMAX model. It utilizes
the U-D algorithm for computation of the gain.

6.8 Bibliography

Section 6.2 The basic reference for the implementation of the Riccati equation (6.7) is
Bierman (1977).

Section 6.3 The idea behind the derivation of the fast gain algorithm has its origin in
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7 Applications of Recursive Identification

7.1 Introduction

At this point we have acquired a certain understanding of how to identify
dynamic systems using recursive methods. The question we turn to in
this chapter is what this knowledge can be used for.

There are many situations in which a mathematical model of a system
is required before we can make certain decisions. Such a model does not
necessarily have to be constructed on-line. Quite often, a batch of data is
collected from the system, perhaps during an identification experiment
which has been specifically designed to yield relevant information about
the system’s properties. These data are then analyzed by an off-line proce-
dure to infer a model of the system. We called this procedure off-line
identification in section 1.4, and we gave a few details about it in section
3.3. Even though the algorithms described in this book have been devel-
oped for another problem, that of recursive identification, it turns out
that they are also quite efficient for off-line identification. The reasons
for this, as well as how the algorithms are used in this latter context, are
discussed in section 7.2.

There can be any number of reasons why a mathematical model .#(6)
of a given system would be required. The system could be a plant that has
to be controlled by a regulator, and most control design techniques re-
quire a model of the plant. Or the system could generate a signal whose
properties we need to know in order to predict it, or to design matching
filters. ‘

Again, such problems can sometimes be handled by first identifying
the system in an off-line fashion and subsequently designing a regulator/
predictor/filter based on the resulting model. In such a case, the model
is treated as a true description of the system.

In other situations this may be impractical or impossible; e.g., where
the system’s properties actually are time-varying, or where it is impossible
to perform separate identification experiments. Then a natural idea is to
use recursive identification in an on-line fashion to infer the properties of
the system.

An approach to this problem is to choose a standard model set in terms
of which the system can be identified, such as the model sets we discussed
in chapter 3 and sections 5.2 and 5.3. Based on the model .# (é(t)) current
at time ¢, a regulator (or predictor or filter) is computed. This regulator/
predictor/filter is then used until the next data pair z( + 1) is collected at
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time 7 + 1, and the model has been updated, at which time the procedure
is repeated using .#(6(r + 1)).

Schemes for on-line determination of suitable regulators/predictors/
filters are usually called adaptive. We thus speak of adaptive control,
adaptive prediction, and adaptive filtering.

The calculation of the regulator from .#(6) may be more or less com-
plicated. Given a certain design technique, it is natural to choose the
model set .# so that the computations that have to be carried out at each
iteration are as simple as possible. The easiest case is when the parameters
of .# coincide with those of the regulator/predictor/filter; then the cal-
culations are indeed trivial. We might say that the system is parametrized
in terms of the corresponding optimal regulator/predictor/filter. In this
chapter we will illustrate how this can be achieved for a number of control
and signal-processing problems.

Schemes for which the “decision parameters” (regulator parameters,
filter coefficients, etc.) are directly updated by a recursive algorithm are
usually not thought of as identification algorithms. In our framework,
however, it is useful to regard them as just that, corresponding to a specific
choice of model set .#, tailored to the particular application. Most of the
development and discussion in this book applies to general model sets and
hence also to these adaptive control and signal-processing schemes. We
shall discuss adaptive control from this point of view in section 7.3. Adap-
tive prediction and adaptive state estimation are treated in section 7.4, and
other adaptive signal-processing problems are discussed in section 7.5.

7.2 Recursive Algorithms for Off-Line Identification

We described the off-line identification problem in section 3.3. Given a
model set .#, with corresponding predictors y(z | 6), we wish to minimize
a criterion

Wi(0, zM) = % i i1, 0, ez, 0)), .1
where
e(t, 0) = y(1) — (1| 0). (7.2)

Let us for ease of notation restrict outselves to
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(1, 0, &, 0)) = 1e7(1, O)A™'e(z, 6). (7.3)

The off-line estimate 6y is defined as the parameter that minimizes
V4 (0, z¥). Except in simple special cases, the minimization of (7.1) must
be performed using numerical iterative procedures. Basically, the itera-
tions are determined from the gradient, and perhaps also the Hessian, of
Vi(0, z%):

0§D = 1109, Vi(0F, %), Vi (0F), 2M). (74)
Here
1 N
VR, 2] = =5 2 (@, 0)A™ e, 0), (7.5)
t=1

Vi, zVy = % i y(t, OA WY@, 0) + % i YL, )N e(t, 0), (7.6)
t=1 t=1

where (¢, 0) and (¢, 6) are computed by means of (3.23).
Several minimization schemes (7.4) can be used. For example, we
could*use a Gauss-Newton scheme

» N . N . !
01(\;+1) — 01(\;) + a(l)[%/'zl//(t’ Ox))A_ll//T(t’ 01(\11)):|
1 (1.7)
1 N . PN
x Y GO e(t, ).
N7

Ideally, «'” in this equation can be set equal to 1. However, in many cases
met in practice, it will be found necessary to assign a value other than |
to o in order to assure that the criterion decreases.

Another possibility is to provide a standard numerical minimization
program with subroutines for the computation of ¥y, (6, z¥) and ¥ (6, z¥)
forany@[i.e., (3.23) + (7.1) + (7.5)], and leave the search for the minimiz-
ing 6y to this program.

We may compare the foregoing expressions with the recursive pre-
diction error method (3.157). The programming effort to implement
(3.157d, e) and (3.23) is the same. Also, the computing effort to deter-
mine the sequence {¥/(), &(¢)}, 1 =1,2, ..., N is basically the same as
that to find {y/(z, 0), ¢(z, 0)} for any given 0. Similarily, the programming
and computational effort to determine {R(f)} in (3.158a) is comparable
to determining the Hessian approximation
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13 -1, T
N2V AT 0)

in (7.7).

In summary, the programming effort spent in implementing the Gauss-
Newton algorithm (3.157), (3.158) is comparable to that of implementing
(7.7) (not including the choice of a”’). The computational complexity is
such that going through the recursive scheme once for the data z" is com-
parable to performing one iteration with the off-line scheme (7.4).

We know that except for the recursive least squares procedure, for
which the off-line and recursive estimates coincide, the off-line estimate
éN is a better estimate than the recursive one, (N). The reason, briefly,
is that in the transient period information is misused in the recursive
algorithm. One might then think of improving the recursive estimate
by making several passes through the data. The procedure would be
the following:

1. Apply the recursive identification method to the data set z(¢), t =1,
2, ... N. This gives é(i)(N) and PO(N) =y(N)R'(N) withi = 1.

2. Use the estimate 6%*(0) = §?(N) as an initial condition to apply the
recursive scheme once more to the data. For ¢(0), take the initial condi-
tion zero. If the eigenvalues of 4(6%*P(0)) are close to the unit circle let
the estimate 0 be frozen at its initial condition for that number of steps
over which the effects of the initial condition &(0) are damped out [this to
avoid the influence of biased calculations of §(f) and ¥(¢)]. For P¢*1(0)
use the initial condition P’(¥) (perhaps somewhat increased to allow for
more alert adjustments.) The sequence {y(f)} (or {A(r)}) is, however, not
reinitialized.

3. Repeat step 2 until 6 has converged.

The foregoing procedure will give estimates 0©)(N) that converge to
Oy as i —> co. This limiting value is that which minimizes (locally) the
criterion (7.1). This follows from the following lemma.

LEMMA 7.1 Let M be a fixed given value and let z™ be a given data
sequence. Construct the infinite sequence Z(¢):

z()=2z(j) for t=k-M+j, k=0,....

Let 0(¢) be the estimates that result when the recursive prediction error
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algorithm is applied to the data sequence {Z(#)}. Then é(t) converges
to a local minimum of the function
Vo, zM) = — f lz—:T(t NALe(t, 6)
T MA2
or to the boundary of D, (see section 4.3.4) as ¢t > 0.

Proof Regard z™ as a given deterministic sequence. Then z' will be a
deterministic periodic sequence. Since z is deterministic, condition S1 of
theorem 4.3 will be trivially satisfied (take z2(¢) = z(¢); this variable is

“independent” of z*); and since the sequence z' is periodic, the conditions
A2, A3 will trivially hold. In particular,

LEeT(t, O)A e, 0)

N

= lim % ; %sT(t, NHALe(s, 6)

= hm— Z Lo, A~ e, )

isoo -

= lim~ |:Z Z T, OA e(t, 0)]

i—a l k
— L Lr a1s, 0).
Mt=l 2
Here, the first equality follows since E can be dispensed with for a deter-
ministic sequence. The third equality follows from the periodicity of Z,
which allows us to write &(¢, ) = &(t + k- M, ). Theorem 4.3 now gives
the desired result. =

The lemma proves the desired behavior of §@(M), since (M -i) =
69(M).

The use of recursive identification algorithms for off-line identification
has been suggested and extensively used by Young and Jakeman (1979)
in connection with the refined instrumental variable method. The tech-
nique has several potential advantages:

« There is no need to develop specific software for the off-line problem.
As remarked above, the development of such software may involve more
work than implementation of (3.157).

e The minimum of the criterion function can be found faster with a
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recursive algorithm than with the off-line schemes (7.4). The reason for
this can be expressed as follows. Once the recursive estimates have come
into a neighborhood of the true minimum, a second-order Taylor’s expan-
sion becomes very accurate and there is no further loss of information,
despite the recursive character of the calculation (see section 4.4.3). This
means that if a pass through data has initial values close to the actual
minimum, then this pass will essentially bring the estimate to the mini-
mum. We also know from the simulations in chapter 5 that the estimates
are already quite close to the true values after one pass through the data
when M = 1,000 and dim 6 =~ 6. Hence, relatively few passes will be
required. To put it another way, the off-line iterative schemes (7.4) go
through all the data to determine the modifications of the first estimates.
This is certainly wasteful, since almost as good adjustments could be
computed from a fraction of the data.

» The recursive algorithms can be used to detect nonstationarities in
the data and the system properties. If a certain pattern in the estimates is
repeated during different passes through the data, this is an indication
that the dynamics is changing over that period. An off-line method gives
only the average behavior and cannot give this more detailed informa-
tion about the dynamics.

We thus conclude that recursive identification can be a valuable tool
in off-line identification. This has been confirmed in practical experience,
e.g., by Young and Jakeman (1979).

7.3 Adaptive Control

7.3.1 The Adaptive Control Problem

As mentioned in section 7.1, a typical problem in control design is that the
dynamics of the plant to be controlled are not sufficiently well known and/
or are time-varying. The design of a suitable regulator is then difficult.
Adaptive control is an approach to this problem that has been widely
discussed. For example, see the comprehensive treatments by Landau
(1979), Astrom et al. (1977), and Goodwin and Sin (1983).

The approach can be described as follows.

(1) Choose a regulator structure. A regulator is a feedback mechanism
by which the input is determined based on previous observations {z(f)}
and possibly on a sequence of reference signal values {r(f)}. The regulator
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contains a number of parameters to be determined. Let these be collected
in a parameter vector p. We can then describe the regulator symbolically
by

u() =hip; 1,y u't, r). (7.8)
For example, a proportional regulator is given by

u(t) = K,[r(t) — y()],

a simple special case of (7.8), with the gain K, corresponding to p.

(2) Choose a model set .# parametrized by a parameter vector 6.

(3) Choose a design procedure such that the best (or ““optimal”’) values
of the regulator parameters p can be computed from the model .# (6) of
the system. In our framework, a design procedure is a mapping from 6
to p:

p = k(0). (7.9)

(4) Choose a recursive identification algorithm that provides estimates
0(1) of 0 on-line based on input-output observations z'.

(5) At time ¢ use the control law corresponding to the regulator
parameter

p() = k(B()), (7.10)
l.e., use
u(t) = h(p(®; 1, y', u =1, r). (7.11)

Now the expressions (7.10) and (7.11), together with the recursive iden-
tification algorithm to determine 6(¢), define an algorithm for adaptive
control. This approach to adaptive control is depicted in figure 7.1.

The adaptive control problem has many interesting aspects. Each of
the above five items, as well as the analysis of the resulting scheme, is
worthy of a lengthy discussion. In this section, though, we shall concen-
trate on issues that are directly related to recursive identification.

Two different approaches to the adaptive control problem can be dis-
tinguished. These have been called the indirect (or explicit) and the direct
(or implicit) approaches, respectively, by Narendra and Valavani (1978)
and Landau (1979). In our notation, they can be described as follows:

“Indirect” (“explicit’) schemes use ‘‘conventional” model sets .# in (2).
These schemes are further discussed in section 7.3.2.
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Figure 7.1
An adaptive control scheme.

“Direct’” (“implicit”) schemes use a model set .# that is tailored to the
specific regulator structure and design procedure so that the mapping k
in (3) becomes the identity mapping p = 6 (or another trivial mapping,
perhaps involving scaling of 6 to yield p). We may then say that the regu-
lator parameters are identified. Such a scheme is discussed in section 7.3.3.

With the control law (7.11) the input-output sequence {z(¢)} is generated
from the reference signal {r(z)} (if present) and from the noise sources
that affect the system. It is obvious from (7.10) and (7.11) that the data
sequence {z(z)} will depend on the estimate sequence {0(r)}. As we
remarked several times in section 4.3, this fact will essentially prevent
us from verifying the regularity conditions A1-A3 of section 4.3.3, since
these conditions require “‘asymptotic mean stationarity”” of the data
sequence. The convergence problem can, however, still be handled by
means of the techniques of section 4.3. We give the formal details of
this in appendix 7.A. Here the results are outlined at a level that matches
section 4.3.2.

Pretend that the regulator parameter p is kept fixed in (7.8). This
constant feedback law will then give us an input-output sequence that
is generated by the reference signal and the disturbance signals (that
are independent of p) via (7.8) and the system. Denote this (fictitious)
data sequence by {z(¢, p)}. (It will obviously depend on the regulator
parameter p.) The data sequence {z(¢, p)} will satisfy “asymptotic mean
stationary” conditions provided {r(f)} and the noise signals do. Now
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let z(¢, p) be the data sequence that drives the generation of model
predictions y(¢, 0), prediction errors &(z, 0), and gradients (or gradient
approximations) 7(z, 8) as described in section 4.3.2 (and 4.3.3-4.3.5).
To indicate the p-dependence explicitly we use the notation &(z, 6, p)
and #5(¢, 6, p) for these quantities.

We found in section 4.3 that the associated differential equation for
the general recursive identification algorithm (4.16) is given by (4.82),
(4.64). In the present case, if the identification procedure is actually
applied to the data sequence {z(, p)}, the corresponding differential
equation will be

0 = R'f(0, p),

.- (7.12)
R=G(0,p) — R,
where
£(0, p) = En(t, 0, p)A~"e(t, 0, p),
(7.13)

G(9, p) = En(t, 0, p)A"'n"(1, 0, p).

In view of the link between 0 and p expressed in (7.9) and (7.10), the dif-
ferential equation that is associated with the adaptive control algorithm
will be

0 = R7'f(0, k(0)),

. (7.14)
R=G, k() — R

A more formal treatment of these arguments is given in appendix 7.A,
but the above discussion may be sufficient for an understanding of the
convergence studies to follow in the next subsection.

One nontrivial difficulty with the present approach must now be
pointed out. The fictitious data sequence {z(z, p)} will give well-defined
limits in (7.13) only if p is such that the closed-loop system obtained
for the regulator (7.8) is stable. This means that the differential equation
(7.14) is defined only for such 6 that:

(i) give stable predictors,
(ii) via p = k(0) give a stable closed-loop system.

The region corresponding to (i) is known to the user, who can always
assure that 0 belongs to this set. The second region presents a more
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difficult problem. The stability of the closed-loop system depends on
the (unknown) properties of the controlled plant. Therefore a projection
into this stability region cannot be used. Hence other techniques must
be applied to prove that the closed-loop adaptive control scheme is
stable, so that the signals under consideration remain bounded. Knowing
that, the differential equation (7.14) can be used to investigate the con-
vergence properties.

The overall stability (or “boundedness’) problem for adaptive re-
gulators is an interesting problem, the details of which, however, are
beyond the scope of this book. The first complete solutions for special
cases appeared in Jeanneau and de Larminat (1975), de Larminat (1979),
Egardt (1979a), Goodwin, Ramadge and Caines (1980, 1981), Narendra
and Lin (1980), and Fuchs (1980). A comprehensive treatment is given
by Goodwin and Sin (1983), but a general theory for the boundedness
problem, applicable to the general scheme described above, is still lacking.

7.3.2 Adaptive Control Based on Explicit Identification

The family of “explicit” adaptive control algorithms is a large one. In
the recipe described in the previous subsection we may take any combina-
tion of model set, recursive identification algorithm, and control design
procedure; many specific combinations have been considered in the
literature. It may be said that it is not a problem to invent adaptive
control algorithms in this family—the problem lies in the evaluation and
analysis of the methods.

We shall here not go into details of any specific control laws. Instead,
we shall discuss some general convergence aspects of the resulting adaptive
control schemes.

Suppose first that we use a recursive prediction error algorithm to
estimate the parameters of the model. This means, in the notation of
the previous subsection, that we use #(f) = Y¥/(¢). Thus we have

vt 0,p)= —a—%e(t, 0, p), (7.15)

where the argument p indicates, as before, that the algorithm is applied
to the data sequence {z(, p)}. Let us define
V(0, p) = 1E&"(¢, 0, p)A"2e(2, 0, p),

with f(0, p) defined as in (7.13). We have, as in section 4.4, that
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f10,9) =~ V0, p) (7.16)

This means that for any given data sequence {z(z, p)}, we can use V(0, p)
as a Lyapunov function for (7.12) just as in theorem 4.3. However,
when the control loop is closed the associated differential equation is
given by (7.14). The function f(0, k(6)) in (7.12) will, however, not be
the gradient (with respect to 0) of the function V(6, k(6)), since the
p = k(6)-dependence is not accounted for in (7.16). Therefore V(0, k(0))
cannot be used as a Lyapunov function to prove stability of (7.14), and
the general convergence result of theorem 4.3 cannot be applied when the
recursive prediction error algorithm is used in an adaptive control loop.
The differential equation (7.14) still describes the convergence properties,
though, and can be analysed in special cases. A general analysis has,
however, not yet been performed.

Let us now consider a case wherein a pseudolinear regression (such
as ELS) is used. In the notation of section 7.3.1 we then have #(¢) = ¢(¢)
and n(t, 0, p) = @(t, 0, p). Suppose now that the system in fact can be
described by an ARMAX model:

Ao(g™ () = 4™*Bo(g™Hu(t) + Colg™ Ve (), (7.17)

where the degrees of 4,, By, and C, are less than or equal to the model
orders. We then still have the relationship between ¢(z, 6, p) and (¢, 6, p)
given by (4.152) in section 4.5.2:

Colg™Me(t, 0, p) = @™ (t, 0, p) (8o — 0) + Colg™e(),

since this holds for any data sequence z'. Here 6, corresponds to the
parameters of (7.17). Thus, as in section 4.5.2, we find

116, p) = G(8, p)(6, — 0), (7.18a)
where
G(0, p) = Eo(1, 0, p)$(1, 0, p), (7.18b)
p(t, 0, p) = —(t, 0, 7.18¢
¢ p Co( 1)<p( p)- ( )
Hence, if the transfer function

I _1 is strictly positive real, (7.19)

Co(q_l) 2
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then we have, as in the proof of theorem 4.6, that G(, p) + G (0, p) —
G(0, p) is positive semidefinite. This holds for all values of p. In par-
ticular, it is true for p = k(6). Therefore we can apply the same con-
vergence analysis to (7.14) as we did in section 4.5.2. This gives that
if the ELS method is applied to the system (7.17), where (7.19) holds,
then the differential equation (7.14) is globally stable and the trajectories
will converge to

D, = {0]E[&(t, 0, k(0)) — e()]* = 0}. (7.20)

This is true for an arbitrary regulator and design technique p = k(6).
- To conclude from this that the adaptive control algorithm also converges
to D, requires that the overall stability, or boundedness, condition is
satisfied, as explained in section 7.3.1.

In words, the set D, can be characterized as the set of models that are
equivalent, from an input-output point of view, to the true system (7.17)
under the feedback law p = k(6) induced by the model in question.
We can summarize this result as follows:

Consider the ELS algorithm applied to an ARMAX model, used in an
adaptive control scheme with arbitrary regulator structure and control
design technique. Suppose that the true system is given by (7.17) and that
(7.19) holds. Then, assuming that the boundedness condition holds, the
adaptive control algorithm will converge w.p.l to 0-values that give a
correct input-output description of the system.

7.3.3 Self-Tuning Regulators and Model Reference Adaptive Control
Schemes

The schemes described in the previous subsection computed a control
law from a current system model. In the adaptive control application
we might say that the objective is control, i.e., optimal choice of the
regulator parameters. In this case the model is of no interest in itself—
it merely serves as a vehicle to arrive at the control law. It would thus
seem to be more appealing to develop algorithms that directly update
the regulator parameters.

This point of view has been stressed for so-called model reference
adaptive systems (MRASs) (see, e.g., Landau, 1979). In these adaptive
regulators the difference between the actual output y(f) and that pro-
duced by an ““ideal” reference model, r(¢), are compared. The difference
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A model reference adaptive system.

between these signals is used to update the regulator parameters. The
idea is depicted in figure 7.2.

The Self-Tuning Regulator suggested by Astrom and Wittenmark
(1973) is also based upon the idea that the regulator parameters should
be updated directly.

It may seem that the identification step is avoided when the regulator
parameters are updated directly. This has sometimes been claimed as
an advantage of the model reference approach, compared to the schemes
of section 7.3.2. However, from our point of view it is more useful and
illuminating to think of the “direct” methods of adaptive control as
recursive identification of the parameters of a model set that is specifically
chosen to make the mapping (7.9) trivial. ‘

The heuristic idea is the following. There is usually a close relationship
between a system model and the regulator that gives optimal behavior
(according to a chosen criterion) when applied to the model. Given the
model we can compute the optimal regulator. Conversely, given the
regulator, we can determine (perhaps up to a scaling factor) the model
for which it is optimal. This means that a system can be modeled in terms
of its optimal regulator. Hence we can think of a parametrized regulator
as a model set for the system. The algorithms described in this book
have mostly been developed for general model sets, and nothing prevents
their application to the model sets just described. In this sense direct
adaptive regulators can be regarded as recursive identification methods.
We shall illustrate this interpretation with an example.

EXAMPLE 7.1 Consider a system described by
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Alg D y() = Blg M u(r) + Clg™Me(n), (7.21)

where B(g™ ') starts with the term b,¢~! and b, = 1. We want to design
a regulator that minimizes the variance of y(r). Simple calculations (see,
e.g., Astrom, 1970) show that this is accomplished by the control law

AlgH—Cg™h)
B(g™)

which gives y(f) = e(?).

In order to implement (7.22) we need to know the polynomials A4, B,
and C. We could find these adaptively, as in the previous section, by
estimating the parameters in (7.21) using RML or ELS and subsequently
using these estimates in (7.22). Another approach is to postulate a
regulator structure

u(t) = y(0), (7.22)

Sg™h
u(t) = —y(1) (7.23)
R’
and directly update the parameters of the R- and S-polynomials. Let us
pursue this idea. The leading coefficient of R is taken to be unity. Then,
with

0T =(sy ... Sy 1y o0 )
QT =(—y—=1) ... —yt—n) u(t—=2) ... u(t —m+1)),
(7.23) can be rewritten as
u(t) = —0Tp( + 1). (7.29)

Let us now regard (7.23) as a model of the system. That is, we assume
that (7.23) is the true minimum-variance regulator for the system. Then
we must have 4 — C =g 'S and B= g 'R. [see (7.22)]. In this case we
cannot calculate the model parameters 4, B, and C uniquely from .S and
R. To overcome this lack of uniqueness, we fix C to be C,. Then 4 =
C, + ¢q7'S, and the system description (7.21) can be written

Cug™Hy(®) = R@ Hu(t — 1) = S Hy(t — 1) + C, (g e
=u(t — 1)+ 6%(t) + C (g e(d).

The predictor and its gradient now are
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5[ 0) = s [t = 1 + 0700,

V.0 = & o 00

With the regulator at time r — 1,

ut — 1) = —0"( — Do),

inserted, we find that

e() = y(1) — (¢ | 6z — 1)) = ().

Hence the RPEM for estimating 0 in the regulator model (7.23) or (7.24)
becomes

01y = 0t — 1) + y(O R (W ()y(2),
R(t) = R(t — 1) + p()[Y()Y (1) — R(t — 1)],

Y(n = @(1).

1
Culg™
When we take C,(¢”')=1, this is exactly the self-tuning regulator
suggested by Astrém and Wittenmark (1973). Notice, though, that in
the framework of our example, it is just a RPEM for the particular model
(7.23). ©

Adaptive regulators such as the foregoing can be analyzed in the same
way we have analyzed the other recursive identification methods in this
book. See Ljung (1977b, 1980a), Dugard and Landau (1980b), and
Egardt (1980b) for some such results. The martingale approach has been
used to prove convergence for a number of similar schemes (Goodwin
and Sin, 1983).

7.3.4 Summary

In this section we have sketched the application of recursive identification
to the problem of adaptive control. That identification is a key to the
understanding of adaptive control schemes that are themselves based
upon explicit system identification is obvious. We have, furthermore,
pointed out that the recursive estimation techniques treated in this book
also provide a key to those algorithms designed to update regulator
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parameters. Thus recursive identification must be considered an impor-
tant tool for solving problems in adaptive control and for the design of
adaptive control systems.

7.4 Adaptive Estimation

7.4.1 Introduction

Linear estimation concerns the problem of estimating the values of a
signal {s(#)} based on observations of a related signal { y(¢)}. This subject
has attracted extensive interest in the fields of control, communication,
and signal processing. See, e.g., the books Kailath (1976) and Anderson
and Moore (1979) for comprehensive treatments of the problem.

In the linear estimation literature, the properties of the signal {s(z)}
are assumed to be known. This information can be given in many ways:
as the spectrum of {s(z)}, as its covariance function, or as a state-space
model that generates {s(¢)} as its output.

A situation that is frequently encountered in practice is that the prop-
erties of the signal are not known. By adaptive estimation we mean those
techniques used to solve the estimation problem when incomplete or no
information about {s(¢)} is available. In the present section we shall
comment on this adaptive estimation problem. Some applications to
signal processing will be described in section 7.5.

One approach to adaptive estimation is straightforward. Using the
techniques described in this book we can recursively build a model of
the properties of {s(¢)}. For any such model, we can apply the well-
established methods of linear estimation to determine the estimate
(prediction) using the current values of the model parameters. This
gives a large and obvious family of adaptive estimation methods.

Another approach is to reparametrize the model, so that the computa-
tion of the predictor or filter becomes simpler. We may then say that
the parameters of the predictor/filter/smoother are directly adapted to
the signal. The idea, as well as the technique, is quite similar to the direct
adaptive control methods that were described in section 7.3.3.

7.4.2 Adaptive Prediction

Our formulation of the identification problem in this book is closely
related to prediction, since we have described a model in terms of its
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(usually one-step-ahead) prediction. This means that the variable y(?),
which is present in all our algorithms, indeed is a one-step-ahead adaptive
prediction of y(t). Adaptive prediction of the next output y(¢) is therefore
contained in our recursive identification framework. Adaptive prediction
of values further into the future can always be achieved by calculations
using the current model.

In this section we shall give some details on adaptive prediction of
signals described by ARMA models. Such signal models are common
in communication and control theory. We consequently consider the
model

Cg™h
H= —~e(1), 7.25
(0 A(g D) (0 (7.25)
assuming for simplicity that y(?) is scalar-valued. Here {e(?)} is a white-
noise process and

CeN=T+cag"+ - +eg™
AlgHY=1+a,g"'+ - +a,qg™

Fortunately, this is one of the models for which we have a fairly detailed
understanding of the convergence properties for the corresponding recur-
sive identification algorithms. Suppose that the signal can indeed be
described by

Co(q_l)
Ao(‘]_l)

where the degrees of C, and A, are less than or equal to those of (7.25).

» If we apply the pseudolinear regression approach (see section 3.7.3)
to (7.25), the ELS algorithm results. From section 4.5.2 (or appendix 4.C)
we know that a sufficient condition for the convergence w.p.1 of the ELS
algorithm to the true description (7.26) is that 1/[Co(g™")] —1/2 is
strictly positive real. From section 4.5.4 we know that a necessary
condition is that

y() = e(r), (7.26)

ReCy(x) >0, i=1,...,n,,
where «; are the roots of

4 afz 4+ +ad =0,
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e If we apply the recursive prediction error approach (section 3.7.2) to
(7.25) the RML algorithm results. We then know from section 4.4 that,
provided the C-polynomial is kept stable, the estimates will converge
w.p.1 to the true system, regardless of its properties. This follows since
all stationary points of the corresponding criterion function are in fact
global minima, a result that was quoted in section 5.3 and proven by
Astrom and Séderstrom (1974). Even if the true description of the system
may be more complex, the RML algorithm will converge to a value that
(locally) minimizes the prediction error variance.

The foregoing paragraphs summarize the situation of recursive identifi-
cation of the parameters of (7.25). Since both ELS and RML automatically
provide a one-step-ahead prediction y(¢) of the signal, we have also
described the properties of the corresponding adaptive predictors. In
section 6.4 we described ladder and lattice algorithms to implement the
recursive least squares and the ELS schemes. When our prime objective
is to determine p(¢) and the model order is high, these algorithms are
quite efficient. The fact that they reparametrize the model set (from
difference equation parameters to reflection coefficients) is no dis-
advantage at all for the adaptive prediction problem.

k-Step-Ahead Prediction: Indirect Methods Let us now turn to the
k-step-ahead adaptive prediction problem for the ARMA model. First
we shall establish a formula for the k-step-ahead predictor for a given
ARMA model (7.25). This predictor will be denoted by p(t + k | t; 0),
where @ denotes the parameters of (7.25). Conceptually, the k-step-ahead
predictor can be obtained by concatenation of k one-step-ahead predic-
tors. We illustrate it for k = 2: Use the known formula for p(¢ + 2 | £ + 1;
6). Wherever y(z + 1) appears in this expression, replace it by j(t + 1| ¢;
). This procedure has some interest for the interpretation of the k-step-
ahead predictor. When deriving an explicit expression it is, however,
more efficient to go a direct route: From (7.25) we have

Yt + k) = j—gi—ge(z + k). (7.27)

The right-hand side can be expanded in Maclaurin series in powers of

g~!. If the series expression is truncated at the power ¢~ * we obtain

W+ k) = Fq et + 8+ -89 D o 1 gy, (7.28)
Alg™)
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where F(g™') is of degree k — 1:

F@ =14 fig7' + - + fimg ™"

In (7.28) F and G are polynomials that must satisfy

Clg =A@ NF@ ) +q7*G@™) (7.29)

for (7.28) to be equivalent to (7.27). It follows from (7.29) that G will be
of degree n — 1, where n = max(n,,n. —k + 1, 1). In (7.28) the term
F(g Ye(t + k) is independent of y*, since it contains only terms e(s) for
s > t. Hence

$+ k|15 0)= jg:;e(t). (7.30)

Now using the fact that e(r) = A(g™!)/C(g~ 1) y(), we can rewrite (7.30) as

A Glg™)
(t+k|t;0) =—"="y(. 7.31
$+k|13.0) = 2y (7.31)
This is the form given by Astrém (1970), and we have basically followed
his derivation of it.
From (7.28) we see that the k-step-ahead prediction error will by given
by

6t | 1 =k 6) = y(t) — 9t | 1 — k3 6) = Flg™)e(0). (7.32)

To obtain an adaptive k-step-ahead predictor we could simple recur-
sively identify the parameters of the ARMA model (7.25) using either
the ELS or the RML method. The current estimates 4, and C, are then
used in (7.29) to determine G,. Finally the predictor j(t + k | 1) is com-
puted from (7.31) using G, and C,. Such a procedure could be called an
“indirect” adaptive predictor. Its convergence properties coincide with
those of the respective recursive identification algorithms, and they were
quoted earlier in this section. In particular, the RML algorithm gives a
globally convergent adaptive k-step-ahead predictor if the true system is
given by (7.26), regardless of the properties of Cy(g™1).

k-Step-Ahead Prediction: Direct Methods As an alternative to the
explicit identification of ARMA parameters we could choose to directly
update the predictor coefficients. Introduce the notation, assuming that
the degree of the C-polynomial is n,
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Tt +k, =) ... yt—n+1) —pt+k—1|1—-1;0) ...
—pt+k—nl|t—n;0)), (7.33)

0T=(gy ... guey €1 ... C).

Then (7.31) can be written

P+ k|1;0)=0Tp( + k, 0). (7.34)

We also find from (7.31) that

t;0)=

% P+ k o(t + K, 0). (7.35)

1
Ci@™

These expressions look much the same as the corresponding formulas
for the ARMA model [see (3.118), (3.122) ], and we can easily derive a
recursive k-step-ahead prediction error algorithm:

6(1) = 6t — 1) + YO RO (D)e(2), (7.36a)
ey =y(t) — p(t| 1 — k), (7.36b)
|t —k) =01 — Do), (7.36¢)
e =0 —k) ... yo—k—n+1) p—1|t—k—1) ...

(7.36d)

Je—n|t—n—k)),
1

Y@ = mq’(f), (7.36¢)
R() =R — D) +yOW®OY () — Rt — D] (7.36f)

Just as in the RML algorithm, it is usually worthwhile to replace the
predictions y(z | ¢ — k) in (7.36d) by their posterior values

y(t|t—k)y=0"We @ (1.37)

to achieve better transient-convergence properties (see section 5.11).
Similarily, by ignoring the implicit #-dependence in (7.34), we can derive
a pseudolinear regression for the estimation of 0:

6(r) = 61 — 1) + y(DR (D e(D)e(), (7.38a)
R =R — 1) +y()[e()e(?) — Rt~ D], (7.38b)
&(?) and ¢(¢) defined as in (7.36b-d) or (7.37).
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The convergence properties of each of these two schemes can be
analyzed with the same techniques as in section 4.4 [for (7.36)] and in
section 4.5 [for (7.38)]. The first algorithm will converge to a value that
minimizes the variance of the k-step-ahead prediction error. The second
one will converge to the true predictor, provided that the signal can be
described as an ARMA process with compatible orders, and with a
C-polynomial such that [1/Cy(g~')] — % is positive real. A comprehensive
discussion of convergence properties of the algorithm (7.38) is given by
Holst (1977) and Goodwin and Sin (1983).

7.4.3 Adaptive State Estimation and Smoothing

Smoothing and filtering of signals to eliminate the influence of additive
measurement noise plays a major role in communications and control
applications. Optimal enhancement of the signal and suppression of the
noise requires knowledge of the properties of the signal. When these are
unknown we may use adaptive techniques. Just as for adaptive control
and adaptive prediction, this can be achieved by a combination of explicit
recursive identification and any established design technique for smooth-
ing and filtering. We may point out that for the algorithms that we
developed for state-space models, such as (3.145), the adaptive state
estimate x(f) is obtained as an automatic by-product of the recursive
identification algorithm.

Adaptive state estimation has often been approached through adaptive
observer techniques, as described in, e.g., Liiders and Narendra (1974)
and Caroll and Lindorff (1973). When the state-space models are obtained
by canonical representation of input-output models (as typically is the
case for adaptive observers), the state variables are linear combinations
of delayed inputs and outputs, with the (unknown) system parameters
as coefficients. That, however, means that any recursive identification
method that estimates the parameters also yields a natural adaptive
observer: one just uses the current parameter estimates in the linear
combination of inputs and outputs to obtain the state estimate.

7.5 Adaptive Signal Processing

7.5.1 Introduction

In a broad sense most applications in the control and communication
area can be regarded as ‘“‘signal processing.” The recursive identification
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problem that we have discussed in this book concerns various way of
processing a signal {z(¢)} in order to extract interesting and relevant
features.

The term “‘signal processing” is, however, often used in a more narrow
sense. It refers, generally speaking, to filtering used to enhance or modify
signals. In this section we shall discuss the use and importance of recursive
identification for such applications. For readers with a signal-processing
background, the section will also serve as an interface between our
problem formulation and notation and that used in signal processing.
It is not our intention to give comprehensive treatments of the different
problems, or to provide extensive references. Rather, we shall describe a
number of important problems in signal processing and explain why
they may require adaptive techniques. We shall show how the adaptation
process can be described in terms of a recursive identification algorithm.
The most common model sets used in the respective applications will be
displayed, and the techniques typically applied to estimate their parame-
ters will be outlined.

As a preliminary, we mention that linear regression models are by far
the most common ones. This means that of two measured or known
signals {y(z)} and {u(?)}, one is typically expressed by a regression on
the other:

y(t) = B(g”u(®). (7.39)

Such a model is called a finite impulse response (FIR) model; it is, of
course, a special case of the linear input-output models described in
section 3.7. In signal processing (7.39) is often called a transversal filter
or a “‘tapped delay line,” since the output signal y(¢) is obtained by linear
combination of delayed input signals as shown in figure 7.3.

From our studies in sections 4.4 and 5.3 we know that the model (7.39)
has an important property: It is the only model that combines the advan-
tages of being a linear regression and being robust against colored additive
noise. The latter property means that if the true data is described by

y(1) = Bolg™ Hu(®) + v(2), (7.40)

then a prediction error method, such as the least squares method, will
give consistent estimates of B,, regardless of the properties of {v(z)}, as
long as it has zero mean and is uncorrelated with {u(r)}. [This was
shown in example 4.7: Here we apply it to the special case F(g~!) =
Fy(¢g~") = 1.] A disadvantage with the model (7.39) is that it may require
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Figure 7.3
A “tapped delay line”” model (7.39).

a high-order B(g™!)-polynomial to give sufficient flexibility to the model.
This was illustrated in table 5.2.

When only one signal is involved, it is customary to model that signal
as an autoregression

A(g Ny = e(1) (7.41)

driven by a source {e(r)} that is supposed to be white noise, or in some
cases an impulse or an impulse train.

A typical feature of models used in signal processing is that the dimen-
sion of the parameter vector 0 to be estimated is often quite high, i.e.,
anywhere from about 15 to 250 or so. A reason for this is, of course,
that the models (7.39) and (7.41) require high orders to offer sufficient
flexibility. At the same time, typical signal-processing applications provide
many signal samples, so estimating many parameters is not a problem
from the statistical point of view. However, the sampling rates are often
high (in most applications, at least several hundred Hz). This means that
the calculation per time step must be fast. As a consequence, adaptation
techniques have focused on simple gradient schemes, and, in some recent
work, on the fast implementations of the least squares method described
in sections 6.3 and 6.4.

The well-known LMS algorithm was introduced by Widrow and Hoff
(1960) and has been widely used in adaptive signal processing. In our
terminology it is a stochastic gradient algorithm for a linear regression
model. It is commonly used with a fixed gain y, that is not normalized
to the regression vector ¢(#):

6(t) = 8(r — 1) + yo0()e(). (7.42a)

It is, however, suitable to normalize the gain, so that it is invariant to
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changes in the signal levels:

6(y=00—-1)+ e )lz(p(t)s(t) (7.42b)
or
0(t) = 0(t — 1) + 7, v )q»(t)s(z)

(7.42c)
r@=r(t — 1)+ p[le@] —r@ - D]

[See also (2.83b), (2.84)]. The use of fast ladder and lattice methods (see
section 6.4) was first suggested by Itakura and Saito (1971), and has
since then become widely used, in particular for speech processing.
While the literature on adaptive signal processing has been mostly
confined to linear regression models, there is nothing that prevents the
use of more sophisticated models. In particular, other members of the
general input-output model family (3.104) (allowing one or more of the
F, C, and D polynomials to be different from unity) could be used. The
advantage of this would be that the same model flexibility could be
achieved with fewer parameters, as discussed in section 5.3. This in turn
would lead to faster calculations and potentially faster adaptation. Some
recent contributions discuss the use of such models in signal processing,
e.g., Friedlander (1982b), Goodwin, Doan, and Cantoni (1980), and John-
son (1982). The book by Willsky (1979) also emphasizes the close relation-
ship between identification techniques and signal-processing problems.

7.5.2 Adaptive Equalization

The Problem When a signal {y(7)} is transmitted over a communication
channel, the received signal {u(?)} is always somewhat distorted. This is
depicted in figure 7.4. The reason is that the channel acts like a filter
which is not a perfect delay. Instead, we may describe the received signal as

u(t) = H(g™)y(1) + v(0), (7.43)

where H(q™') is a linear filter and v(¢) is additive noise. The impulse
response of the filter H(g™') has its peak after a delay of k&’ samples,
where typically, &’ is something from 10 to 30 samples. In digital signal
transmission {y(7)} is a sequence of quantized values (like 0’s and 1’s).
But as a consequence of (7.43) their corresponding responses {u(r)} will
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Figure 7.4
Transmission of a signal { y(r)}.

overlap, so that the reading of individual u(¢)’s will be difficult. Such
“smearing out” of the impulse response of (7.43) is known as intersymbol
interference.

To overcome this problem, the received signal {(¢)} is fed into a linear
filter whose output will be an estimate y(f) of the transmitted signal:

¥t ~ k) = G(@ "u(). (7.44)

Such a filter is known as an equalizer, and its characteristics should of
course resemble the inverse of (7.43). If in (7.44) we put a delay of k
samples to allow for the peak of the response in y(t) to pass before deliver-
ing the estimate, the quality of the estimate will be considerably improved.
When the input signal y(¢) is restricted a finite number of quantized values
(like 0’s and 17s), it is customary to let the actual estimate be a quantized
version y*(¢) of y(¢) as given by (7.44).
If the equalizer filter is a transversal filter [see (7.39)], i.e., when

Pt — k) = B(g""Hu(), (7.45)

where B(q ") is a finite-order polynomial, we talk about a linear equalizer.
If previous decisions j* are fed back into the equalizer, as in

It — k)= B(g Yu(r) + [1 — A(g"H]p*(t — k), (7.46)

we have a decision feedback equalizer. This can also be seen as an imple-
mentation of (7.44) with a rational transfer function G = B/A.

When the filter H(g™') in (7.43) is known, the design of the equalizer
filter G(g™") is conceptually straightforward: we just let it be as good as
possible an approximation of g *[ H(g~')]~'. A problem arises when the
same receiver can be attached to different communication channels, as
in a telephone network. Then the equalizer should be able to adapt
itself to different channel characteristics. We thus need an adaptive equal-
izer. This is in practice achieved by sending a known ““training” sequence
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{y()}} at the beginning of the transmission, during which period the
equalizer adapts.

Models As a model for the communication channel we could use (7.43).
It is, however, more suitable to directly parametrize the equalizer. [ This
resembles the direct adaptive control models, which we have parametrized
in terms of the corresponding optimal regulators (section 7.3.3). In the
present case, however, our task is easier; we might say that we have
parametrized the inverse of the channel characteristics.] This leads to
the finite impulse response model

y(t — k) = B(g Hu(®) + v(1) (7.47)
for the linear equalizer, and a linear difference equation
A(g™"y(t — k) = B(g™u(®) + v(2) (7.48)

for the decision feedback equalizer. Notice that during the training period
both {u(r)} and {y(¢)} are known sequences, so (7.47) as well as (7.48)
can be written as linear regressions. Notice also that the parameters of
these models coincide with the parameters of the corresponding equal-
izers. Hence the parameter estimates obtained by the adaptation proce-
dure can be directly used in the equalizer filter. The polynomials in (7.47)
and (7.48) are typically of degree 15-60.

Adaptation Methods Since the models used here are linear regressions,
parameter estimation is easy. The use of gradient methods was suggested
by Lucky (1965), and treated also by, e.g., Gersho (1967). The application
of the stochastic Newton algorithm for this model, i.e., application of
the recursive least squares method, was suggested by Godard (1974). He
derived the algorithm by posing the problem as a Kalman filter, as we
did in section 2.3. Therefore the recursive least squares scheme is in this
application known as the Kalman-Godard algorithm. The application
of the fast-update algorithm for the gain (section 6.3.) to the equalizer
problem was treated by Falconer and Ljung (1978). Ladder and lattice
schemes (section 6.4) are applied to equalizers by Satorius and Pack (1981).

7.5.3 Adaptive Noise Cancellation

The Problem Measured signals are often corrupted by disturbances of
various kinds. It is then desirable to filter the observed signal in order
to enhance the useful part of it. We described this problem as a smoothing
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Figure 7.5
A disturbance acting on a useful signal.

problem in section 7.4.3, where we considered the disturbances to be
white noise. In many situations, however, we may know what a distur-
bance source is, and even measure an auxiliary signal that is generated
from this source. Think, e.g., of a signal that is corrupted by a 50 or
60Hz periodic signal, which we know arises from the AC voltage mains.
Such a case can be depicted as in figure 7.5. The transfer function H,(g™")
is typically not known, however. The relationship between the measured
signals can then be written ’

y(0) = H(g M Hu(®) + s(1), (7.49)
where
H(g™") 2 H\(g ) [Hy(g H] ™" (7.50)

Now the transfer function H(g™!) need not be causal. Therefore, we
choose k so that the filter

H(g )2 ¢ *H(g™)
is causal, and rewrite (7.49) as
y(t — k) = H(g Hu(t) + s(t — k) + e(?). (7.51)

Here, for completeness, we have added a stochastic disturbance term e(?)
to account for possible other noise sources affecting the measurements
of y(¢) and u(y).

Now if the transfer function H(g™!) were known, it would be easy to
cancel the effect of {w(s)} on the measurements {y()}:

§(t — k) = y(t — k) — H(g Hu(n). (1.52)

Then (7.52) would be a noise-cancelling filter. The idea is the same as
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feedforward control in control theory. The problem in practice is that
the filter H(g™') is not known, and that it may vary in time. Then adaptive
noise cancellation is required. This basically means that the transfer func-
tion H(g™') in (7.51) is recursively identified, and its estimate is used in
the filter (7.52). There have been many successful applications of adaptive
noise cancellation. A survey, including several interesting applications,
is given by Widrow et al. (1975).

Models In most applications the model (7.51) has been used ‘with H(qg™)
as a transversal filter, i.e., as a finite-order polynomial

y(t — k) = B(g~Hu(t) + v(1), (7.53)

where the disturbance v(¢) corresponds to s(t — k) + e(t). Here y(t — k)
and {u(r)} are measured signals, so (7.53) is a linear regression model.
The fact that the output y(r — k) is delayed k steps causes no problems
for the estimation of the B-parameters, but it allows for much more
efficient noise reduction in the noise canceller (7.52).

Adaptation Methods The most common recursive identification algo-
rithm for these applications is the LMS algorithm (7.42a). In this case
we have

eT () =) ... u(t—n))
and (7.54)

e(t) = y(t — k) = 07t — Do(1).

The asymptotic properties of this algorithm follow from our analysis in
chapter 4 and were reviewed in section 7.5.1. Let us, however, for the
sake of illustration discuss the application of our general convergence
results to the described adaptive noise canceller (i.e., using (7.52) with A
derived from 6, which in turn is obtained by using (7.42a), (7.54)).

Suppose that the measured data is actually generated according to
(7.51),1.e., by

y(t — k)= H(g Hu(®) + st — k) + e(?). (7.55)
We also assume that the disturbance w(r) is independent of the signal:

Ew(t)s(t —j)=0 for all j, (7.56a)
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as is the measurement noise :
Ee(t)s(t —j)=0 forall Jj- (7.56b)

Finally, assume that the gain sequence y in the adaptation mechanism
(7.42) tends to zero, so that we can study the convergence properties.
This algorithm is then a (gradient) recursive prediction error scheme.
Hence theorem 4.3 can be applied to infer that 0(¢) will converge to a
local (in the present case local = global, since the criterion is quadratic)
minimum of the criterion function

V(6) = E[y(t — k) — 0Tp (]’
= E[y(t — k) — B(g™Hu(n)]*.
Inserting the expression for y(t — k) from (7.55) gives
V() = E[H(g"u() — Bg™)u(t) + st — k) + e(9)]?
=E{[H(g™") — Blg™)]u®)}* + E[s(t — k) + e)]’,

where the second equality follows from (7.56). The second term is inde-
pendent of 0, and the first one is quadratic in 0. (Recall that the 6 are
coefficients of the B-polynomial). Hence B, will converge to a polynomial
B*, corresponding to the global minimum (= the only stationary point) of

w(0) = E{[H(g™") — Blag ) ]u()}>. (7.58)

This also gives the best possible predictor in the model set.
Now using the estimate B in the noise canceller (7.52) gives

§(t — k) = y(t — k) — B(g™")u().

With (7.55) we have

$(t — k) = {H(g™") — B(@™")}u(t) + s(t — k) + e(r)
and

E[5(t — k) — s(t — k)]* = W(0) + E[e(©)]*. (7.59)

(7.57)

Hence the limit estimate B* that minimizes (7.58) will also give the best
signal reconstruction § in the mean square sense (7.59). The described
adaptive noise canceller therefore asymptotically gives the best possible
performance within the given parametrization. The same result would
hold for other model choices and other recursive prediction error methods.
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7.5.4 Adaptive Spectral Estimation

The spectrum of a signal plays an important role in many signal-
processing problems. The spectrum of a stationary stochastic process is
defined as the discrete Fourier transform of the covariance function,
r(k) = Ey(t + k) y(t), and will thus describe the frequency contents of
the signal. The importance of the spectrum is a consequence of the fact
that many signal properties are more easily interpreted in the frequency
domain than in the time domain.

A common problem is that of finding one or a few low-level sine
waves in noise. Finding periodic components in the presence of noise
is called the (spectral) line enhancement problem. Now, as we have men-
tioned a number of times, the signal properties are often time-varying.
Therefore, the spectrum will also be time-varying, and we must apply
adaptive techniques to spectral estimation. For the line enhancement
problem the task is to find “‘the instantaneous frequency” in a rapidly
time-varying spectrum. Applications where this is important include
vibration measurements, Doppler radar returns, and geophysical process-
ing (Griffiths, 1975). We call this task adaptive line enhancement (Widrow
et al., 1975).

Several methods of spectral estimation were developed during the
1950s. The idea behind these methods is as follows: estimate the covar-
iance function of the data, #(k) ; multiply this estimate with a “‘lag window”’
w(k) i.e., determine 7(k) = w(k) - 7(k); and then take the discrete Fourier
transform of the modified estimate 7. The lag window is used to suppress
the covariance estimates for large k, which are less reliable. This is the
Blackman-Tukey approach (see, e.g., Jenkins and Watts, 1969). With the
advent of the fast Fourier tranform (FFT) several spectral estimation
algorithms were developed. In these, the spectral estimate is formed by
averaging a number of squared transforms constructed from blocks of
the original data (see, e.g., Welch, 1967).

The aforementioned approaches have the disadvantage of not being
able to give reliable estimates of resonance peaks when the data record
is short. The reason for this can be explained as follows. The Blackman-
Tukey method typically uses w(k) = 0 for |k| > M, where M should be
less than, say, a tenth of the data record length; otherwise the estimates
will be unreliable. This means that the spectral estimate will be a poly-
nomial of order M in cosw. The same is true when the FFT method is
applied to blocks of length M. To produce a sharp resonance peak, such
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a function must use a large M, which may require more data than is
usually available.

To resolve this problem, Burg (1967) introduced the maximum entropy
method (MEM) for spectral analysis. It eventually (van den Bos, 1971),
became clear that this method could be regarded as a least squares method
for an autoregressive model of the signal: The MEM spectral estimate
is given by

Dypm(w) = m:Tw)P, (7.60)

/f(q_l) =144+ +ayqg ™,

with d; being the least squares estimates of the parameters in an auto-
regressive model

YO +ayt =D+ - +ayy(t — M) =e(), (7.61)

and where 67 is the estimated variance of {e(t)}. The number M corre-
sponds to the size of the lag window.

We notice immediately that this approach is well-suited for revealing
sharp resonance peaks in the spectrum. Already for M = 2, the model
(7.61), (7.60) is capable of producing an arbitrarily sharp resonance at
an arbitrary frequency.

A number of different variants of the least squares estimates have been
discussed for the spectral estimation problem. If we introduce our usual
notation

y(O)=0T() + e()

for (7.61), the criterion we have mostly used for the determination of
is [see (2.12)]

g [y(0) — 0Tp(0)].

In the present application, unavailable values of y(s), for s < 0, entering
@(¢) are usually taken to be zero. This criterion is sometimes referred to
as the “prewindowed case,” since a data window is applied to the first
data to screen out unavailable unknown values.
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We could of course also delay initialization of the criterion until the
vector ¢(¢) is filled with known values, i.e., until # = M + 1, when the
criterion is

N

Y, [y —0TeO].
t=M+1
All our recursive methods are applicable to minimization of this criterion.
The approach is known as the “covariance method” (Makhoul, 1975).
A third criterion results from extending the summation to N + M,
replacing missing data points by zero:

N+M
; [y® - 0Te®]

This makes the autoregressive parameter estimates equal to the Yule-
Walker estimates. Makhoul (1975) called the method based on this
criterion “‘the autocorrelation method.” It has the advantage of assuring
a stable 4-polynomial, but cannot be made into a recursive algorithm
as easily as the other criteria.

Finally, Burg (1967) used a fourth criterion

N

Y Ay — 0T ] + [yt — M) — 073(]*},

t=M+1

where

T =(—-M+1) ... y©®),

using both forward and backward prediction errors. This criterion also
assures a stable 4-polynomial.

The literature on spectral estimation via autoregressive modeling
discusses the aforementioned criteria; for some of these aspects, see
Makhoul (1975, 1977). Here we note only that as N/M becomes large,
the differences between the criteria become insignificant, i.e., the as-
ymptotic properties of the estimates are the same for the four criteria.

The most important aspect of this brief exposé of spectral estimation
techniques is that the problem has been reduced to identifying the para-
meters of the autoregressive model (7.61) and then forming the spectral
estimate (7.60). Adaptive spectral estimation and adaptive line enhance-
ment can thus be carried out by applying any recursive identification
algorithm to the model (7.61). The use of the LMS algorithm (7.42) has
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been discussed, e.g., by Widrow et al. (1975), Griffiths (1975), and
Treichler (1979). Ladder and lattice forms have been studied in Griffiths
(1977) and Reddy et al. (1981). Finally, it must pointed out that another
approach is to describe the signal as an ARMA process,

A(g Ny = CgMel), (7.62)
and form the spectral estimate

R é —imy| 2
D(w) = 1—AAE:_T;120'2

(van den Bos, 1971). This approach will allow the modeling of sharp
peaks, as well as sharp dips, without too many parameters. Adaptive
spectral estimation is then achieved by applying a recursive identification
method to (7.62). ‘

7.6 Summary

We have discussed a number of important problems in control, communi-
cations, and signal processing. Many of these problems require on-line
decisions that should be based on a model of the signal or system. We
have seen how the adaptive algorithms that solve such problems incor-
porate recursive identification schemes. These schemes may have been
constructed explicitly to yield the desired information about the system
or signal. They may also be regarded as implicit ways of gaining that
information by adapting an optimal controller/filter to the system. In
either case, recursive identification plays a key role in providing the
mechanism of adaptation.

7.7 Bibliography

Section 7.3 The literature on adaptive control is extensive. The idea of using recursively
identified models for controller design goes back to Kalman (1958). The idea of comparing
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et al. (1958). The role of Lyapunov stability theory for the analysis of these regulators was
first noted by Parks (1966). Since then a large number of papers on various aspects of
adaptive control have been published. The model reference approach is surveyed in Landau
(1974, 1979). The self-tuning approach is surveyed in the paper by Astrém et al. (1977).
The relationship between these two approaches is clarified by Egardt (1979b, 1980a). A
comprehensive study of convergence properties is given in Goodwin and Sin (1983).

Section 7.4 The adaptive prediction problem for ARMA processes is treated, e.g., in
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Wittenmark (1974), Holst (1977), and Goodwin and Sin (1983). Adaptive filtering was
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unknown noise properties. This problem is treated, e.g., in Jazwinski (1969) and Mehra
(1970). Adaptive smoothing seems to be a problem less studied in the literature. An inter-
esting contribution to this problem is Hagander and Wittenmark (1977).

Section 7.5 The equalizer is a standard tool in data communication. See, e.g., Lucky,
Salz, and Weldon (1968). Adaptive equalization using gradient techniques was suggested
by Lucky (1965). The technique of Widrow and Hoff (1960), i.e., the LMS algorithm, was
applied to equalizer design by Gersho (1967). An adaptive decision feedback equalizer
based on stochastic gradient techniques was described in George, Bowen, and Storey (1971).

A good reference for the adaptive noise cancellation is the survey paper by Widrow et al.
(1975). This paper gives an account of early applications, as well as a theoretical background
pertinent to the use of the LMS algorithm. Friedlander (1982b) discusses the use of other
algorithms for this problem. An interesting application of noise cancellation is echo cancella-
tion in telephone networks. The paper by Sondi and Berkley (1980) can serve as a good
introduction to this application.



Epilogue

We have now come to the end of the discussion of this book. Some
aspects of the approach and of the results deserve to be stressed. The
major theme has been to describe the long list of possible recursive
identification methods within a unified general framework. We have
exposed different particular methods as the result of certain choices to be
made by the user within the general framework. In fact, it can be said
that the whole discussion of this book has been focused on these user
choices: We explained and exposed them in some detail in chapter 3.
We provided theory that can be used to make rational decisions regarding
some of the choices in chapter 4. The discussion of aspects of the choices
was carried out in chapter 5. The problem of how to implement a given
algorithm was treated in chapter 6.

We have now a fairly good understanding of the asymptotic properties
of the algorithms when the gain tends to zero. Among the more challenging
problems for the future is to achieve an equally good understanding of
the transient properties, and how they are affected by the user choices,
in particular the gain sequence. A good theory for the asymptotic pro-
perties of tracking algorithms (the gain not tending to zero) is also highly
desirable.

In the book and within our framework we have described a number of
different algorithms, ranging from simple least squares schemes to highly
sophisticated ones. One may ask which problems can be adequately
handled by simple methods and what type of problems necessitate more
advanced approaches. The need for sophisticated methods depends very
much on the actual problem that has to be solved, and no general advice
to this effect can be given. It is an important task for the user to get a
good feeling for this question in his or her particular application area.



Appendix 1.A Some Concepts from Probability Theory

In this appendix we list some concepts from probability theory. Texts that
cover the material are Papoulis (1965) or Chung (1968).

An n-dimensional random variable, or random vector, y is a function
from an “event space” or sample space Q to R". The “outcomes™ or
“realizations” of y, i.e., the observed values, will be denoted by y(w),
where weQ. However, we shall omit the argument @ when there is no
risk of confusion.

There is a probability measure associated with Q so that certain subsets
of Q are assigned a probability. To y there is associated a probability
density function (pdf) f, from R" to R, such that

PO(w)eB) = j Fdx, (LAD)

xeB

where B is a subset of R” and ““P(4)” means ‘‘the probability of the event
A’"; 1.e. the probability measure of the set of those w for which y(w)e B.
The expectation or mean value of y is denoted by

Ey = .[ xf,(x)dx. (1.A.2)

The covariance matrix of y is
covy =E(y —m)(y — m)", (1.A3)
where m = Ey.

The vector y is said to have Gaussian or normal distribution if

f,(x)= (ZJW mexp {—%(x —mTP(x - m)}. (1.A.4)

The mean value is then m and the covariance matrix is P. This is often
written as

yeN(m, P). (1.A.5)
Two random vectors y and z are said to be independent if
P(y(w)ed and z(w)eB)= P(y(w)eA)- P(z(w)e B)

for any subsets 4 and B for which the probabilities are defined.
A (discrete time) stochastic process is a sequence of random vectors
y@®),t=0,1,2, .... For each w, the realization

)’(’,CU), t=0,1,2,...



408 Appendix 1.A

is a sequence of R” vectors. If for each weQ*, where Q* is a set with
measure (probability) one,

y(t, ) > y*(w) as 11— o0,
we say that
y() converges to y* with probability one as ¢ — co. (1.A.6)

“With probability one” is often abbreviated as ““‘w.p.1” or “a.e.” or “a.s.”
(almost everywhere or almost surely). If the associated sequence of
probability density functions converges (weakly) to a pdf f*:

Sy = f*(x) as t— o,

we say that {y(1)} converges in distribution to the pdf f*. In the special
case when f* is the Gaussian distribution (1.A.4) we say that y(¢) is
asymptotically normal with mean m and covariance P, and denote it as

y(t)e AsN(m, P). (1.A.7)

For a stochastic process we define the mean value function

m(t) = Ey()

and the covariance function

R,(t, 9) = E[y(2) — m,()][y(s) — my(9)]".

Ifmy(t) =m,and R(t +1,8) = ﬁy(r), the process is said to be (weakly)
stationary. We can then define the spectrum as

d>y(w)=i 3 R(e o,

T=—®

From this a useful formula for the variance can be obtained:

T

R, (0) = J P (w)dw.

(See Astrém (1970) for efficient schemes for the numerical evaluation.)
More generally, if two stochastic processes each of zero mean are related
through

Y=Y h_wu(),

k=—w
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then
Ey(0u'(r) = J” H(e*)®,(w)dw, (1.A.8)

-n

where
H(iz)= ) hz ™~
k=0

In the proofs of theorems 4.5 and 4.C.1, we shall use the concepts of
g-algebras, conditional expectation, and martingales.

A g-algebra # is a set of subsets of Q for which probabilities are defined.
A random vector y generates a c-algebra by virtue of the fact that all
possible outcomes of y define subsets in the event space Q.

The conditional expectation of a random vector z, given the c-algebra
&, is denoted by

E(z| #), (1.A.9)

and is itself a random vector. The formal definition is that the probabil-
ities related to E(z | &) and to z coincide when evaluated over subsets in
& . When # is the s-algebra generated by y, (1.A.9) is often written

E(z | y).

Intuitively, E(z | y) is the expected value of z, if we happen to know the
outcome of the random vector y. It will of course be a function of y.

A martingale is a sequence of random variables y(f) and an associated
sequence of g-algebras &, such that

y(e#, (1.A.10a)
F1 € F,, (1.A.10b)
E(y(0) | #i-y) = y(2 = 1). (1.A.10c)

Here (1.A.10a) means that %, contains the o-algebra generated by y(¢).
Often %, is taken as the o-algebra generated by y(0), y(1), . .. , y(¢), which
clearly satisfies (1.A.10a, b). The intuition in (1.A.10c) is that the incre-
ment y(7) — y(t — 1) is “unpredictable” even if we know everything that
happened up to time ¢ — 1. An important property of a martingale is
that if the second moments E|y(s)|*> are bounded in ¢, then y(r) will
converge w.p.1 to a random vector y* as ¢t — 0.



Appendix 1.B  Some Concepts from Statistics

Identification and recursive identification procedures are in the end
nothing but estimation of parameters in specific structures. In this
appendix we provide a refresher for some statistical concepts on para-
meter estimation. For a text on statistical parameter estimation, see Rao
(1973).

1.B.1 Samples and Estimators

Consider a random vector in R”, y" = (3(1) y(2) ... y(n)). Letits (joint)
probability density function be

f0; %y, ..., %) = £(0; x™, ‘ (1.B.1)

which is known up to a finite-dimensional (dim 6 = d) parameter vector
0. The problem we are faced with is to find an estimate of 6 based on an
observation (or ‘‘a realization” or “‘a sample”) of y".

Realizations of y" will be denoted by y"(w), where w is a point in the
event space. We shall usually suppress the argument (w) for realizations,
when there is no risk of confusion. We shall also drop the superscript n
in y" when not essential.

Remark We could also consider the situation when a function of 0, say
r(0), is to be estimated. Then typically dimr < dim 6. This would lead to
obvious changes in notation in what follows,

An estimator of 0 is a function from R" to R¢:

0(y). (1.B.2)

Since this is a function of a random variable, it is itself a random variable.
Its value after y = y(w) is observed is 8(y(w)).

EXAMPLE 1.B.1 Let y(i),i=1, ..., n, be independent random variables
with normal distribution with means 0 (independent of /) and standard
deviations o;:

(HeN(, a}). (1.B.3)

The mean 0 is to be estimated. Some more or less suitable estimators of
0 can be

0,(y" = % 3 (), (1.B.4)
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8, = y(3), (1.B.5)
0,0y = ia.-,ny(i), (1.B.6)
1

where a; , in (1.B.6) are weighting coefficients. o

1.B.2 Properties of Estimators

Certain properties of estimators are desirable. An estimator is thus said
to be unbiased if

E,0(y") = 6, (1.B.7)

i.e., if its expected value is the true parameter value. Here we have used
the subscript ¢ on the expectation symbol to emphasize that expectation
is taken with respect to the probability associated with (1.B.1). That is,

Eh(y™) =J h(x™) f(0; x")dx". (1.B.8)

For an unbiased estimator it is of interest to know its variance (covari-
ance matrix if & > 1) around the mean:

P, = E[0,(») — 0][6.(») — 6]". ' (1.B.9)
An estimator 6, ( y) is said to be more efficient than an estimator éz(y) if
P <P (1.B.10)
(The matrix inequality (1.B.10) means that P, — P, is a positive semi-
definite matrix.)

We must sometimes consider the case where the sample » increases to
infinity. The dimension of the parameter 6 in the joint probability density
function (1.B.1) is assumed to remain fixed, even though the dimension
of the random vector y" increases.

The estimator is said to be consistent if

6(y") > 0 as n— . (1.B.11)

Since 9(y") is a random variable, we must specify in what sense (1.B.11)
holds. Thus, if (1.B.11) holds w.p.1, we say that §(y") is consistent w.p.1,
or that it is strongly consistent.
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Another question of interest is the asymptotic distribution of 6(y") as
n — co. It turns out that the central limit theorem can often be applied to
O(»") to infer that \/n[6(y") — 0] is asymptotically normal with zero mean
as n— .

In fact, much of the analysis of suggested estimators (or identification
methods, as we call them in this book) concerns questions of consistency
and asymptotic normality.

1.B.3 The Cramér-Rao Inequality

We are interested in estimators that are as efficient as possible, i.e., ones
that make the covariance matrix in (1.B.9) as small as possible. It is then
interesting to note that there is a theoretical lower limit to what variance
can be obtained. This is the so called Cramér-Rao inequality.

THEOREM 1.B.1 Suppose that y(i) may take values in interval(s), whose
limits do not depend on 6. Suppose that 6 is a real scalar and that /(8; -)
in (1.B.1) is twice continuously differentiable with respect to 8. Let 6( ")
be an estimator of 6 with expected value E48(y") = y(6), which is assumed
to be differentiable with respect to 6. Then

A oM _ [dy(6)/d6]*
E, L6(y") —y(0)]* = B9 log /(0 y/00°] (1.B.12)
Proof By definition
E (") = Jé(x")f((?; x")dx" = y(6).

Differentiate w.r.t. 0:

j 6(x™) % 1(0; x"dx"
- jé(x"){a—‘i)logf(e; x")}f(e; ) dx”

= B,00) 510865 ) = 25(0).

Since
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Sf(@; xNdx" =1,

by analogous calculation we also have

Ja%log £(0; x7) - f(0; x")dx" = 0 (1.B.13)
or

£, log f(0; y") = 0

069 g ’y -

and
Egp(0) 2:log /(0: y7) = 0.
00

Subtracting this from the previous expression gives
Ey [[é(y") — 1)1 55026 y“)} £9(0).
The Schwartz inequality now gives

d 2 5 0 2
[%v((?)] < Eo[0(»"™) — 7(0)]* - E, [aelogf(B;y")} -
It remains only to show that

0 2 0?
Eo[aelogf(e;y")} = — By 3108 f(0; 7). (1.B.14)
But (1.B.14) follows by differentiating (1.B.13):
02 0

Haez log f(0; x") +[ log f(0; x")} }f(@;x")dx" =0. =
COROLLARY Let f(y") be a vector-valued unbiased estimator of 0. Then

E[6(y") — 6]1[0(»™) — 61" = M,

where

M= 5| Glows@: || Gons0:]| = ~Er e 017
(1.B.15)
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is the expected value of the second derivative matrix (the Hessian) of the
function —log f.

Remark The matrix M in (1.B.15) is known as the Fisher information
matrix. The corollary shows that it is of fundamental importance in
estimation problems.

ExaMPLE 1.B.1 (continued) Let us calculate the Cramér-Rao lower
bound for estimators of € in our example. The random variable y(i) has
the probability density function

L (=0
2na; P 26} |

Since y(i) i =1, ..., n are independent, the joint density function is
n 1 (x; — 0)*
0;x1, ...,x,) = exp{ ———-—3%, 1.B.16
e L (LB.16)
and
n n _ 2
log f(0;x,, ..., x,)= —Eloan — Y logo; 1 > (x_,_20_)
2 i=1 25 o;
Hence
By T log (0 y(1), ...y = 3.
9602 g Y 7--‘5y _i=10-i2‘

Therefore all unbiased (y(#) = 6) estimators of 6 have a variance greater
or equal to

1
1/o

e (1.B.17)

ips

1.B.4 The Maximum Likelihood Estimator

The joint probability density function for the random vector to be
observed is given by (1.B.1). The probability that the realization indeed
should take the value y”" is thus proportional to

SO;yQ), ..., y(m) = f(0; y").
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This is a deterministic function of 6 once the numerical values of the
observed variables y(i) are inserted. 1t is called the likelihood function. A
reasonable estimator of 6 could then be to select it so that the observed
event becomes as “likely as possible.”” That is, we seek

mgle(Q;y"), (1.B.18)
and let the maximizing vector
éML "

be our estimator. This is known as the maximum likelihood estimator
(MLE).

i
mafflins  vevaiweglouwzy  CEve

EXAMPLE |.B.] (continued) From (1.B.16) we can determine the like-
lihood function for the estimation problem:

ol s R _G® -0

For given observations y(i), we can maximize this function w.r.t. 8 by
maximizing its logarithm:
n n N 2
max [—Zlog2n — Y loga; 1 Y M .
0 2 i=1 2.5 i

O-l
We immediately find the maximizing value

0(y") = I (1.B.20)

M=
=
—~
=

The MLE is a widely used estimator. It has some very attractive
asymptotic properties, as the following theorem shows. These properties
were first proved by Wald (1949) and Crameér (1946).

THEOREM 1.B.2 Suppose that the random variables {y(i)} are indepen-
dent and are identically distributed, so that

ﬁt(e’ Xis o0y xn) = ﬁﬁ(as xi)'
i=1

Then éML (y™) is strongly consistent as # tends to infinity and

ﬁ[éML 0" - 0]

LI

1

31

The
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is asymptotically normal, of zero mean, and with a covariance matrix
equal to the Cramér-Rao lower bound.

Note that recursive estimators can be constructed with the same nice
asymptotic properties for a general identification problem. This is one of
the more important analytical results in this book (see theorems 4.3—4.5).



Appendix 1.C Models of Dynamic Stochastic Systems

In this book we use several different types of models for dynamic stochastic
systems, as well as for stochastic signals. Much of the discussion on models
is developed in examples and sections throughout the book. In this
appendix we provide some “initial conditions” for this development.
Dynamic stochastic models are treated in detail in Astrom (1970),
Kwakernaak and Sivan (1972), and Jazwinski (1970).

1.C.1 Input-Output Models

A general linear dynamic model can be described by

y(©) = 3 h(Ru(t — k), (1.C.1)
k=1

where y(¢) is the output at time ¢, u(¢) is the input at ¢, and A(k) is the
impulse response of the system. With

H(g™") = kil h(k)q™, (1.C.2)
where ¢! is the delay operator

q 'u(t) =u(t — 1), (1.C.3)
the model (1.C.1) can also be written

y(0) = H(g u(). (1.C.4)

Now in the real world the output y() is always influenced by a number of
signals other than the input u(z). Most of them are beyond our control
and often also not understood in detail. The effects of such signals can be
described as an additive disturbance v(z):

y(©) = H(g Hu(®) + v(0). (1.C.5)

There are many ways of describing the properties of this disturbance term.
For a stochastic model it is customary to model {v(s)} as a stationary
stochastic process with zero mean value and spectrum

@, (). (1.C.6)

If, in addition, the process {v(r)} is assumed to be Gaussian, the spectrum
(1.C.6) will uniquely describe its properties.
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Suppose now that v(¢) is scalar-valued, so that the spectrum is a real-
valued function of w. Suppose also that it is a rational function in cos w.
It then follows from the spectral factorization theorem that

_ [ C(e')C*(e'™)

@, (w) 27 D(e®) DH ()’ (1.C.7
where 67 is a positive scalar and where
C@=1+ciz+ - +cpz™
C*2)=z"+cz" '+ - +c,,
(1.C.8)

D) =1+dyz+ - +d,z",
D*z)=:z"+d;z" '+ --- +d,.

Here ¢; and d; are real-valued coefficients. Notice that the zeros of C and
C* (and of D and D*) are each others’ mirror images in the unit circle (i.e.,
if Bis azero of C, then 1/f is a zero of C*). This means that we can always,
if desired, select C* and D* so that they have all their zeros on or inside
the unit circle.

Now the stochastic process defined by

Clg™
v(t) = —~e(1), (1.C.9)
)=7 @ Q)
where {e(r)} is a sequence of independent random variables each of zero
mean and variances o2, will have the spectrum given by (1.C.7). When
the spectrum of v is rational, we can consequently describe the stochastic
model (1.C.5) as

- Cg™)

() = H(@g Yu(t) + —~—Le(r). 1.C.10)
y q ) Dig ) 0 (
Several special cases of (1.C.10) are of interest. A particularly common
model is the ARMAX model

A(g™H)y(®) = Blg™Hu(t) + Clg He(), (1.C.11)

where 4, B and C are polynomials in ¢~! and e() is as above. Clearly
(1.C.11) is a special case of (1.C.10) with

B(¢g™")

H(g™ )= Alg Y D(g =A™
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Notice in particular that we can always choose C in (1.C.11) so that
C*(z) has all its zeros inside or on the unit circle.

1.C.2 State-Space Models

Another common way of describing the relationship between the input
u(?) and the output y(¢) is to use the state-space model

x(t 4+ 1) = Fx(t) + Gu(p),

(1) = Hx(1),

where x(7) is an n-dimensional vector, and F, G, and H are matrices of
compatible dimensions. In this description we can include stochastic
disturbances as follows:

(1.C.12)

x(t+ 1) = Fx(1) + Gu(t) + w(z),
(1) = Hx(1) + e(1),

(1.C.13)

where {w(?)} is a sequence of independent random vectors each with zero
mean value and covariance matrix

Ew(dwT(s) =6, ,R, (9, ,is Kronecker’s delta).

This disturbance describes how the process is affected by other signals in
addition to the input. We shall therefore use the term process noise for
W(l). vumow A wmodidle

In (1.C.13) {e(z)} is another sequence of independent random variables
each with zero mean and covariance matrix

Ee(1)eT(s) = 6, ,R,.

We shall call it the measurement noise. In general it may be correlated with
the process noise: B geviave A et e

Ew(1)e™(s) = 6, R, ,.

In (1.C.13) the initial condition x(0) is assumed to be a random vector,
independent of future noise terms, with mean x, and covariance matrix
,.

For the model (1.C.13) we may consider the state estimation problem,
i.e., estimation of the state vector, based on observations of y(¢) and u(¢).
Let
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() = E(x(®) | p(0), u(0), ..., y(t — 1), u(t — 1)).

If the noise terms {e(?)}, {w(?)}, as well as the initial condition x(0), are
Gaussian, then x(¢) is determined by the Kalman filter :

x(t + 1) = FX(0) + Gu(t) + K@) [ y(r) — HZ(?)],

(1.C.14)
2(0) = x,.
Here the “Kalman gain™ K(¢) is determined by
K(t) =[FP(H™ + R],][HP()H™ + R,]™* (1.C.15)

and the n x n matrix P(¢) is calculated from the Riccati equation
P(t+ 1) = FP()F" + R, — [FP()H™ + R},][HP(HH™ + R,]™*

x [FP()H" + R1,]7, (1.C.16)
P(0) =I1,.

In (1.C.13)—(1.C.16) the matrices F, G, H, R,, R,, and R,, may very well
depend on time ¢, although we did not write out such a dependence
explicitly.

When the disturbances are not Gaussian, the estimate £ given by
(1.C.13)—-(1.C.16) will not in general be equal to the conditional expecta-
tion. However, among all estimates formed by linear operations on y
and u, it is always equal to the estimate with the smallest error covariance
matrix.

It is sometimes of interest to find the filtered estimate

f(t | t) = E(x(t) | y(0)5 u(O), cees y(t - l)a u(t - l)a y(t))

This is given by (when the noises are Gaussian and R, = 0)

(| 1) = %@1t) + K@) [ y(0) — HZ(D)], (1.C.17)
where
K() = P()H'[HP(OH™ + R,]™! (1.C.18)

and where P() is given by (1.C.16).

We may also remark that a continuous-time stochastic state-space
model can also be used. Formulas for transforming it into a discrete-time
one, (1.C.13), are given in Astrém (1970). Formulas for computing state
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estimates for the continuous-time model given discrete-time observations
are described in Jazwinski (1970).

1.C.3 Relations between Input-Output and State-Space Models

The state-space model (1.C.13) can be written in input-output form as
y(0) = H(g " u() + Hy(g7")w() + e(0), (1.C.19)
where

H(gY=q'HI-q'F)7'G,
(1.C.20)
Hy¢gY=q 'HU-q'F)"".

The input-output model (1.C.11) with a scalar output can be represented
in observable canonical state-space form as

—a, 1 0 --- 0
—a, 01 ... 0
x(t+1) = oL . ]x®
—a, 00 --- 0
(1.C.21)
b, ¢y —ay
+] u(t) + : v(1),

b c,—a

y@ =10 ... 0)x@® + v(2),
where a;, b; and ¢; are the coefficients of the polynomials in (1.C.11):
A@Y=14+a;g"+ - +a,q™"

Blg)=byg '+ - +byg" (1.C.22)

C@H=1+cg '+ - +c,qg™"



Appendix 2.A The Extended Kalman Filter Algorithm

In this appendix we give the algorithm that results when the extended
Kalman filter is applied to the problem of estimating 6 in (2.68)—(2.69).
The calculations and interpretations are analogous to those in example
2.4. See Ljung (1979a) for further details.

We partition vectors and matrices according to the natural block
structure

x(?) _ K(t — P () P,(t
xo = ) ko= (70). 70 = (e o)
¢ -1 L) Py(1) P3(1)
where K and P are the “Kalman gain” and “covariance” matrix for the
extended state. This gives the algorithm:

#(t + 1) = EX(t) + Gu(t) + K@) [y() — H(1)], (2.A.1)
£(0) = 0;
60 =600 — 1)+ LO[y(©) — H_,%(0)], (2.A2)
6(0) = 6,;

K@) = [EP(OHT + MPNOHT + EP, (0D (2.A3)
+ M, Py()DT + R,,]S7;

S, = HP\()H" + HP,()D! + DPF()H + D,Py()D] + Ry; (2A4)

L) = [PY)HT, + P©ODT)S s @A

Pyt + 1) = EP()E" + FP()M,]

. (2.A.6)
+ M,PJ()E™ + M,Py()M," — K()S,K"(t) + R,,
P,(0) = 1o (6o);
Py(t + 1) = EP,(t) + MPy(t) — K()S,LT(1), +1-2 (2.A.7)
P,(0)=0;
Py(t + 1) = Py(t) — L()S,L™(1), (2.A.8)
P4(0) = P,.

Note that (2.A.7) with the aid of (2.A.5) also can be written as

Pyt + 1) = [F — KO H]P,(0) + [M, — K() D] P5(0). (2.A.7)
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Here
E = FO@),
G, = G(O®)),

) (2.A.9)
H, = H(0()),
M, = M6(), £@2), (@),
with
M@©, x, u) = % [F(O)x + G(O)u] (an n x d-matrix), (2.A.10)
and
D, = D@ — 1), (1)),
with
D@, x) = %[H(@)x] (a p x d-matrix). (2.A.1D)

As pointed out in the remark in example 2.4, it may be natural and use-
ful to use the latest available measurements when updating the parameter
estimates. To do that, we would update the “filtered” state estimate

2|0 = %) + K@O)[y(0) — HX(1)] (2.A.12)
[see (1.C.17)], where (R, = 0)

K(1) = [Py()HT + P,()D]S, 2.A.13)
and define
M, = M), %( | 1), u(t)) (2.A.14)

rather than as in (2.A.9).



Appendix 3.A An Alternative Gauss-Newton Algorithm

In section 3.4 we derived the Gauss-Newton algorithm (3.70), which is
equivalent to (3.67). In this appendix we shall derive an alternative to
this algorithm. It is still based on the Gauss-Newton updating direction,
but certain filtering operations involved in forming the gain vector L(¢)
will be done in a different order. The main interest in this modified
algorithm is that it will facilitate detailed comparisons with the extended
Kalman filter algorithm. See appendix 2.A and appendixes 3.B and 3.C.
In the algorithm (3.70) the gain vector L(¢) is given by (3.70d):

L(t) = P(t — DY (H) S~ (o), (G.A.D
where P(t) is given by (3.70f):
P()y=[P(t — 1) — LS L) ]/A), (3A.2)

and Y(7) is obtained from (3.70g, h). By going back to the original
equations (3.20) and (3.22) defining (¢, 6), we find that () is also
given by

{O=F -1+ M_,, (3.A.3a)
Y =H#_,{()+ D, (3.A.3b)
where

M, = MB(t), o(2), 2(D)),
D, = D@ - 1), (1)),
F =F0W®),

X, = 2 (0()),

3.A4)

with M and D defined by (3.21). The vector ¢(¢) is obtained by
e+ 1) = F o) + %.2(0). (3.A.5)

The vector (f) can be seen as the output of the linear filter (3.A.3). This
filter is driven by the inputs M, and D,. When forming L(¢) in (3.A.1),
this output ¥ (¢) is multiplied by P(t — 1). As an alternative, we could
instead multiply the inputs to the filter by this quantity. This would give

()= F - 1)+ M_,P(t— 1), (3.A.62)
YI(0) = H#,_,L(t) + D,P(t — 1). (3.A.6b)



Alternative Gauss-Newton Algorithm 425

The corresponding gain vector would then be
L) =y (S (.A.7)

The difference between (3.A.1)—(3.A.3) and (3.A.6)—(3.A.7) is that the
effect of P(t) passes through the dynamics of the filter (3.A.6) when L(¢)
is formed. If P(¢) were a constant, then L(¢) and L(f) would be identical.
The matrix S(¢) is given by (3.70c):

S =y P — DY) + ADAQ. (3.A8)
With the expression (3.A.3b) in (3.A.8) we obtain
Sty = H- LOPC - DITOHAL,

+ H,_ L(O)P(@ — 1)DT + D,P(t — 1){T()H#L,

+ D,P(t — 1)D + A(OA().

Deleting the first term of the right hand side (which is an ad hoc approxi-
mation) and using {(¢) for {(¢) P(t — 1) now gives the expression

S(t) = A, L(OD + DLW AL, + D.P(t — 1)D] + AOA®.

Now, collecting these expressions gives us the alternative Gauss-Newton
algorithm:

() = y() — 50, (3.A.93)
Ay =A@ — D) +y(0)[e@®e™(t) — At — 1)], (3.A.9b)
S() = H#,_ L)DT + DL (0)#L, + D,P(t — 1)DT + A()A(r), (3.A.9)
L() = y(1)S ~1(»), (3.A.9d)
6y = [0 — D) + L(e®]p, , (3.A.9)
P(t)=[P(t — 1) — LOSE)LT()]/A@), (3.A.9f)
{(t+1) = ZLO) + MP(), (3.A.9)
YT+ 1) = H#Lt+ 1) + D, P(0). (3.A.9h)

Here y(¢) is computed as in (3.70g, h). Notice that using the barred
variables in (3.A.9g, h) actually changes { compared to (3.A.6).

Remark The matrix P(¢) in (3.A.1) and (3.A.2) is guaranteed to be
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positive semidefinite by construction, since it is given by (3.68). With
the approxim_ations made that lead to (3.A.9¢, d, f), positive semide-
finiteness of P may not be automatically guaranteed.

This alternative Gauss-Newton algorithm (3.A.9) is not equivalent to
(3.70) since the gains L(7) and L(¢) differ. They are, however, asympto-
tically equivalent in the sense that for a constant P the vectors L and L
would be the same. More precisely, it is shown in appendix 4.F that (see
also Ljung, 1979a) the algorithms (3.70) and (3.A.9) are associated with
the same differential equation, describing their asymptotic properties.



Appendix 3.B An RPE Algorithm for a General State-Space
Model

In this appendix we give the formulas for the algorithm described in
section 3.8.3.
The predictor is given by

x(t+ 1) = FEx(0) + Gu(t) + K(t)e(2), (3.B.1)
where, as before
F,=F0@), G =G0,

and the Kalman gain K(¢) is given by (3.135a—c), with 0 replaced by the
current estimate 6(t):

K@ty =[FP,()HT + R,()]S7\(), (3.B.2a)
P, (t + 1) = EP,(DFT + R,(t) — K(S(HK (), (3.B.2b)
S(t) = HP,()HT + R,(1). (3.B.2¢)
Here

R, =R,(0(0), Ri() =R, 0O@1), R,()=R,0(),
H,= H(0(p)).

The gradient of K,(¢) is obtained by differentiating (3.135) and evaluating
along {0(k)}. If we use the notation

i d
'l;( ) = dgl Ko(t)’
; d
at() = dgl So(t),
i d
mo = & PO,

we obtain the equations

'%/t(i) = [aae F(H)Pl(t)HtT + Enfi)HtT

i

H(0) +iR12(0)J

+ EP (1) 20.

-S7'() (3.B.3a)

P
20,
— K()o’S7'(1),

0=6(1)
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o = [ O HOP,OH + HIVOH]

26,
(3.B.3b)
0 0
+ B2 HT0) + Rz(e)] ,
26, 26, st
0 = | G FOPOR + EIOE!
+ EP, (-2 FT0) + 2 R, (0) ' (3.B.3c)
00, 20, ! ‘ o
_ XOSOKT() — KoK (1) — K(,)s(,)(x,«ﬂ
0=6(r)

Here P, (t), K(t), and S(?) are given by (3.B.2). With ., defined as above,
we can now form M}* according to (3.151) and the algorithm reads
[see also (3.145) ]

e(t) = y(t) — $(0), (3.B.4a)
R(®) =Rt —1)+yOOSOY(H - Rt - D], (3.B.4b)
0() = 6t — 1) + y(OR (W (1) S (1)e(r), (3.B.4c)
%(t + 1) = E%, + Gu(t) + K(0)e(d), (3.B.4d)
e+ 1)=Hi(1t+1), (3.B.4¢)
M* = MOQ), 2(0), u(t)) + He(), (3.B.4f)
W(t+1)=[F— KOH]W() + M* — K(1)D,, (3.B.4g)
Yt + 1) = Wit + )HT + D), 2(t + 1)). (3.B.4h)

As before, D, = D(0(2), %(f)). Equations (3.B.2) and (3.B.3) are naturally
used between (3.B.4c) and (3.B.4d) to determine K(r) and .¥,. We have
replaced A(¢) in (3.145b) by S(¢), defined by (3.B.2), which is an estimate
of the prediction error covariance matrix.

If instead the alternative way of calculating the Gauss-Newton direc-
tion, described in appendix 3.A, is used, we obtain the algorithm [see
(3.A9]

e(r) = y(1) — P(), (3.B.5a)
S(t)=H,_,W()DT + DW()HX, + D,P(t — 1)D;" + S(1), (3.B.5b)
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L@ =y (S, (3.B.5¢)
0(t) = [0t — 1) + L®e®)]1p, , (3.B.5d)
P()=[P(t— 1) = LOSOL®]/A0), (3.B.5¢)
W(t+1)=[F — K(OH]W(t) + [M* — K()D]P(), (3.B.5F)
YT+ )= HW(@t+ 1)+ D.P@). (3.B.5g)

Here S(2) is given by (3.B.2) and $(¢) by (3.B.4). We also introduced the
notation ‘

D, = D@ — 1), £(2)).

These algorithms for the general state-space model (3.133) are clearly
more complex and time-consuming than the algorithm (3.145) for the
corresponding innovations model. The main computational burden is in
(3.B.3), the calculation of the gradient of the Kalman gain. The number
of equations in (3.B.3c) is n? - d, and that may be forbidding for higher-
order problems.

Remark The time indices and the ordering of the equations may seem
complicated. The general idea is simple, however, and can be expressed as
follows: Always use the latest available parameter estimate for 0 and do
not update a quantity before it is needed.



Appendix 3.C Comparison of the EKF and RPEM

We have seen two different algorithms for the general state-space model
(3.133): The (EKF) in appendix 2.A and the RPE algorithm in appendix
3.B. Comparing equations (2.A.2)—(2.A.11) with the alternative Gauss-
Newton algorithm (3.B.5) shows that the variables are related as shown
in table 3.C.1. With these interpretations of corresponding variables, a
close look at the algorithms shows that they are indeed identical, with
the following two exceptions.

1. In the Kalman filter equations (2.A.3), (2.A.4), (2.A.6), and (3.B.2),
respectively, the cross-coupling terms containing P,(f) and P,(¢) do not
appear in (3.B.2). These terms, however, tend to zero as ¢ — 00, but could
of course still be important for the transient behavior of the algorithm.
Also, these terms will guarantee that the matrix P; is positive semidefinite.

2. M, in the EKF does not contain the term ,&(7). This term is included
in M*, and corresponds to the coupling between the parameters and the
Kalman gain K(¢).

Remark In the RPE algorithm we use the strategy of ordering equations
mentioned in the remark of appendix 3.B. In the EKF the time indices
are consequences of the general structure. A close look at the equation
shows that in (3.B.5f) we use D((z), #(f)); while in the corresponding
expression (2.A.7"), D(6(t — 1), %(r)) is used. This, however, we consider
to be a minor difference.

The only difference of any importance asymptotically between the two
algorithms is (2). By deleting the term J¢,&(f) a major computational
burden, viz., (3.B.3), is eliminated in the EKF. The penalty, however,
is the loss of certain convergence properties, as shown in appendix 4.G.
Finally, we comment upon the EKF using filtering state estimates,
discussed in appendix 2.A [see (2.A.14)]. We noted that in the original

Table 3.C.1

Variables in EKF and in (3.B.5).

In EKF In (3.B.5)
P9 W

M, MX

Py(r) Py

1 j;(t)
S, S()
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EKF, (2.A.1)-(2.A.7"), the gain L(¢) is formed using only y(k) for k up
to and including time ¢ — 2. In the filtered version, y(z — 1) is also used.
The gain vector L(¢) in the prediction error algorithm, however, depends
on y(k) for k <t — 1, since M* contains &(f) and hence y(¢). In fact,
the difference between the “filtered” M, given by (2.A.14) and the
“predicted” M,, given by (2.A.9), can be seen as an approximation of the
term J¢e(¢):

M@O@), £(t| 1), u(t)) — MO, £(0), u(t)) = A,e(t). (3.C.1)

Hence, the filter version (2.A.14) can be regarded as a better approxima-
tion of the RPE algorithm. To show (3.C.1) we find that the ith column
of the left hand side is given by

0 0

20, [FO)%(t| 1) + GOWu®)] — 26, [F(0)x(1) + G(O)u(1) ]
= 6?% FO)[£( | 1) — ()] (3.C.2)
0

= %6 FOKO[y(@) - HZ@®)],

where, in the last equality, (2.A.12) was used. With the expression (2.A.13)
for K(z), suppressing the “small” terms containing P,(¢), we find that
(3.C.2) can be written

26,

The factor within brackets is the first term of %) in (3.B.3a) which
justifies the interpretation (3.C.1). See also Westerlund and Tysse (1980).

[ 0 F(H)Pl(t)H,TS,_{I &(2).



Appendix 3.D Some Formulas for Linear and Pseudolinear
Regressions

The general linear regression algorithm is given by (3.84) (take u(t) = 0)

e() = () — 9T (0t — 1), (3.D.1)
R(®) =Rt - 1) +y0)[e()A™ (D™ (1) — R(t — 1], (3D.2)
() =6t — 1) + yOR ' (O)e()A (D). (3.D.3)

Notice that the PLR (3.130) is given by exactly the same expression for
the special case A(f) = I and &(¢) a scalar.

In this appendix we shall develop some formulas that are algebraic
consequences of the structure (3.D.1)~(3.D.3). Hence, the formulas will
apply to both the linear regressions of section 3.6.2 and to the PLRs of
section 3.7.3.

First introduce

RG) = ﬁR(t). (3.D.4)
Then (3.D.2) can be written

R = A(OR( — 1) + (DA (D@ (D), (3.D.5)
where

ARy =y(t = D1 =01/ ). (3.D.6)
If we write

P(H) =R, (3.D.7)

we know that P(r) will satisfy (3.70c, d, ).
We have, as in the expression preceding (3.70):

L(t) = POeOA(O) = P(t — Do) [0 ()Pt — Do) + AOAND]™
or
eT(POP(OAT ()

=0T (OP(t — DA (D[ ()P — DA™ () + A(OI]™.
This gives

I— " (OPOeOA (1)
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=[e"OPE — DoA™ () + 2O — 9T (OP(t — Do()A™' (1)]

x [T Pt — DoA™ () + ADI]!

or

1= OPOeMA™ () = AN [0 (OP(r — DoA™ @) + AI]7",

which is our first basic relationship.

(3.D.3)

3.D.1 A Relationship between Prediction Errors and Residuals

By definition, the residual is

&0 = y() — ¢ (06(@).

Using (3.D.3) in this expression gives

&0 = y() — @O0 — 1) + POeOA™ (De(r)]
=e() — TP (A (De(2)

or

&) = [1— " PO(OA (D]e().

With (3.D.8), this can also be written as

&) = AO[AD] + TPt — DA ()] e ().

3.D.2 “Solving” the Recursion

From (3.D.5) we directly obtain

R(f) = B(t, ORO) + Y. B2, D)p(k)A™ (K)o (K),
k=1

where

t

B, k)= [1 AU), B@ =1

j=k+1

Multiplying (3.D.3) by R(¢) gives

3.D.9)

(3.D.10)

3.D.11)

(3.D.12)

3.D.13)
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R®OO@) = RO — 1) + (A ()e(1)
= AR — )0t — 1) + (A ()T (1)0(t — 1)
+ oA (OO — e(OA (DO - 1),
where the second equality follows from (3.D.5) and (3.D.1). Hence
R(G(1) = AR — DO — 1) + o(OA™ () y(0), | (3.D.14)

which can be summed to yield
R()0@) = B(t, 0)RO)6(0) + Zt: B(t, k)p()A™ (k)y(k). (3.D.15)

This off-line expression coincides, of course, with the least squares formula
(2.116). Our derivation shows that it applies also to PLR. It is not useful
in practice for PLR, though, since {¢(k)} has an implicit §-dependence.

3.D.3 Updating the Criterion Function

Let
V(5) = Bz, 00T () RO)0()

+ 3 B B[y k) — 9T @]
! ) (3.D.16)
x A1 R)[y(k) — 0T (R)(1)]

The second term is the weighted sum of residuals, computed at time ¢.
The first term is of vanishingh importance.

Despite the multiple dependence of ¢ in (3.D.16), there is a remarkably
simple updating formula for V(¢):

LEMMA 3.D.1 Consider the recursion (3.D.1)-(3.D.3). Assume that
6(0) = 0. Then

V() = A0V — 1) + eT(A 1 (D)E(0), (3.D.17)
where V(1) is defined by (3.D.16).
Remark Notice that with the aid of (3.D.11), this can be written as

V() =20 {7t = 1) + e"(O[AOAW® + 9T (O P — Do(0] 'e()}.
(3.D.18)
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The scaled quantity V(¢) = y(z) ¥(¢), which gives a weighted mean of the
summands in (3.D.16), obeys

-1
Vie)=V(—1)+ y(t){sT(t) [A(t) + oT()P(t - 1)%} &(0)

V(- 1)}. (3.D.19)
Proof
70 = 3 B Ly - o wIOTTA 1y 6) + 00,
where
00) = — ¥ (B, HLyk) — ¢ T@IO] ™A™ Gy ™))}
+ B(t, 08T (1) R(0Y0(r)
— 070) [B(z, 0RO+ 3 e, k)<p(k)A'1(k)<pT(k)] 60
- Lz 0 k)yT(k)A—l(k)q:T(k)] )
A comparison with (3.D.12) and (3.D.15) shows that Q(z) = 0. Hence

V(o = ill-f(t, )y (kYA (k)y (k) — 07(2) i B, K)p(k)A™  (k)y (k)
k= k=1
t—1
= A1) k; [B(— L k)yT(kK)AT (K)y(k)] + yT (DA™ (O)p(1)

— 0T — 1)2 [A0BE — 1, Det)A" ()y()]
— 07t — oA )y ()
~TOAT O OR™ O 3 flt pWIA R0
Here the second equality follows from (3.D.3) and from the definition of

B(t, k). We notice that the sum of the first and third terms is A()) V(z — 1).
The last term is, according to (3.D.15),
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eTOAT T ().

Therefore the second, fourth, and last terms add up to
eT(OATT(DE(D).

Thus

V() = A0V — 1) + e"OA L (0)E(@),

and the lemma is proven. =

Appendix 3.D



Appendix 4.A Proof of Lemma 4.1

Let z2(¢) be defined as in S1. Let £2(z, 0) be the corresponding approxi-
mation of the vector £(z, 6) defined by (4.63). (We shall henceforth drop
the argument 6, since it is a given constant vector in D , throughout the
proof.) We thus have

Bk + 1) = AE2(k) + Bz2(k), k>3,
£(s)=0.

Clearly £2(k) is independent of anything that happened up to time s.
We now have

)~ 8@ = 3 ATBU) + Y Az - 2]

k=s+1
Since fe D, we have
|4'| < CA, forsome A, < 1. 4.A.1)

We would like to evaluate the fourth moment of the foregoing expression.
If we write 2(k) = z(k) — z%(k), with the convention that z%(k) = 0 for
k < s, we obtain

E|é(n) - &)
t t t t
<) Y Y XAk B (4.A2)
k=1 k=1 ky=1 k=1

x E|z(k1)2(k2)2(k3)z(ka)|}-

From the Schwarz inequality we have

4 4 1/4
fllz(k,-)‘ < [[11 E|z-(ki)|4]

< CAK thythyth,—dsya o Cllil+£2+i3+i4—4s

E

’

where we used Sl in the second inequality, and used 4; = AY* in the last
one. Moreover k; = max (k;, s). Now use (4.A.1) and the above expression
in (4.A.2) and let A = max(4,, 4,). Then we have

E|£(r) — E%(1)|* < Ca*e™- f} 2 Ml CPES, (4.A.3)

i=1 k=1

Now let
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(ﬁs"(t)

15 ()

where y?(#) is the y-component of z%(¢), and

h(2) = h(z, £)(2), 13 (2)),

h(t) = h(1, &(1), n(0)).

Then

|h(8) — B ()] < |h(D)] |e(®) — &2(O] + | (D] [n(O) — 19 (1)
<C1+ @[] [¢( = &),

where the second inequality follows from Crl and the relationship be-
tween &, 7, and &. We consequently have

Elh(®) — h{(0))* < CLE[1 +|E|]* - E|E() — O TV < cx™°
according to (4.A.3). Now let
h(t) = h(t) — Eh(1).

Notice that 4%(r) and A(k) are independent for k < 5. Thus, with &, as
the ith component of h, we have

|ER(0) - hu(s)| = |cov (i(D), hi(s)))|
= |cov (h(8) — h2,(2) + R2(0), hi(s))|
= |cov (h;(t) — h2,(2), hi(s))|
<[E|h(@®) — R2(O|* - E|h(s)*]* < C- 27

) = CEW), 20 = y20) — 500),

This means that the sequence 4(?) (easily) satisfies (4.67) and thus by (4.68)

& 2B =3 Y[, 0,50, 0), n(e, 0)) — A, 0, a(t,0), n(t, 6)]

tends to zero w.p.1 as N — co. With A2 (a) this implies that A1l (a) holds

w.p.1. The proof of A1 (b) is of course entirely analogous.
For the proof of Al (c) we note that

E[1+|z0|]*<C

by the results we already proved. Thus it is sufficient to show that
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‘}gi{[l + [z()|1? — E[1 + |z(0)|]*} >0 w.p.l as N - 0.

The proof of this is entirely analogous to the proof of Al (a). m



Appendix 4.B  Proof of Theorem 4.5

In order not to conceal the ideas of the proof with too much notation
we first consider the special case of

I, 0,¢e)= %gTA_le, r(t)=0 (seeLl).

The general case is treated later. In the proof, C and A will denote any
positive constants not necessarily the same when appearing in different
terms. The constant 1 will always be less than one. The constants may
depend on the realization of {z(s)}, which is indicated by the argument

(w).

The Gauss-Newton algorithm for the quadratic case is given by

6()=0(t—1)+ %R“(t)lp(t)A“s(t),

RO = RG~ 1) + L [YOAY™ (0 — R(~ D]

With the notation
6(t) = 6(1) — 6,, R(1) = t R(),
we obtain
R(DO() = R1O(t — 1) + (DA "e(r)
= R(t — DO — 1) + YA W00 — 1) + Y () A e(0).

This expression can be summed from ¢ = 0 to ¢, giving

p— ~ —_— ~ t ~

R(D6(1) = RO)0(0) + ¥ YA [Y R)0(k — 1) + e(k)].
k=1

With the notation &(¢, 6,) = e(?), we can rewrite the foregoing expression
as

R(1)0(1) = R(0)H(0) + i Y(k)A  e(k)
t = 4.B.1)
+ kzl YA YT KOk — 1) + e(k) — e(k)].

Our analysis will be based on a closer study of each of the terms appearing
in (4.B.1). We first have a number of lemmas.
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LEMMA 4.B.1 Conditions S2 and M2 along with é(t) — 0, imply that

¥k, 0)| < C; - a(w),

%W(k, 6)‘ < Cyra(w), |pk|0)| < Cy-a(w)

for all 6e D 4; and furthermore

W ®)| < Clw), |9k)| < Clw),

where C(w) is a finite constant that may depend on the realization, but
is independent of k. C, is a fixed constant and o(w) is the random variable
defined in S2. Moreover

Wk) — ik, 6,) >0 w.p.l ask - co.

Proof We have that 6, € D,. Hence |4(6,)'| < C-4' for some 4 < 1.
Moreover, for 6, belonging to a small enough neighborhood of 6, we
also then have

<C- &

n A(6)

for some (other) 4 < 1. This means, since é(t) — 0,, that 6(¢) enters and
stays in this neighborhood at some time 7 (depending on the realization).
We thus have

< < Cp-C- AT = C(w)A,

(4.B.2)

q A(0(K)) H A(é(k))\ :

H A(0(K))

where C; can be taken, e.g., as C[, where

C, = sup |4()|.
8Dy

For each given realization (i.e., for a given T), C, is a finite constant.
Since from (4.86d) we have

Et+ 1) = AWB))E@) + BO®)2(D),

we obtain

t

0 = 3| [1460»] swp:.

k=1

which with (4.B.2), and |B(6)| < C gives
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0] < € Y 4420 < C(o)

This proves that |y ()| and | j(r)| are bounded. The proof that |y (z, 6)|,
|y (1, 0)/d6|, and |§(r|6)| are bounded is immediate, since A(6) is
exponentially stable for 6e D,.

Finally, if we write
&= E(k) — E(k, 6p),
“Tk = A(é(k)) - A(go), Bk = B(é(k)) - B(Bo),

we have
Eerr = ABR)E, + ALk, 0,) + B.z(k)

and

&=y [ﬁ A(é(f))] [4.E(k, 60) + Biz(k)]. 4.B.3)

1| j=k

Since ¢é(k, 0,) and z(k) are bounded and A4,, B, tend to zero, and due to
(4.B.2) we find that & -0 w.p.1 as t— oo. Hence y(f) — ¥ (¢, 65) > 0
wp.last—-oo.m

LEMMA 4.B.2
R() - EY(t, ,)A W (2, 0,) = G(6,) w.p.1 as t - co.
Proof
RO = ¥ WOATYT6) = 3 ik, 69Nk, )
41 3 D0 — Uik, 6)AY (K, )
+ 2 Y WA R — uk, 6]

The last two terms will tend to zero w.p.1 according to lemma 4.B.1. The
first one tends to Ey (¢, ,)A 'y (¢, 0,) according to lemma 4.1. m

LEMMA 4.B.3 For any 6 > 0,

1
ZIT1+6 Y y(k)A'e(k) >0 w.p.last— co.
k=1
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Proof The proof relies upon the martingale convergence theorem. There
is a slight complication in that we know from lemma 4.B.1 only that
|¥ (k)| < C(w), but we do not know if C(w) has finite variance. Therefore
introduce the random variable

_ (W) i [pR)] < 2C, - alw)
V(&) _{0 if [y (k)| > 2C, - a(w)

From lemma 4.B.1 we know that y(k) - y(k, 0,) and that Y(k, 6,) is
bounded by C;a(w). Hence

Yk) =y(k) for k> K(w).
Now consider

13 —
se= Y kU (kyA e(k).

k=1
This random variable is a martingale with respect to the g-algebra gener-
ated by z'", since
E(s,|z7!) =5,y + E{t7 "7 (HA e(t)|2' ™}
=8y + 7P YA E{e(®)]2' 7} = 5,4

Here the first equality follows since s,_, is z'~'-measurable, the second
one since ¥(f) is z'~'-measurable, and the last one according to LI.
Moreover

t : - ©
E|s|? < ¥ kT 2E[gk)|? Ele(®)|?-|A7 | < C- 3 k7172 < oo,
k=1 k=1

since (k) has bounded variance by construction. Hence s, is a martingale
with bounded variance and it will thus converge w.p.1 to a finite limit

5, =85, < oo w.p.l

(Chung, 1968). Hence, according to Kronecker’s lemma (Chung, 1968),
we obtain

o
128 Z Y(k)A Le(k) > 0O w.p.l as t > co.
k=1

To establish the lemma we now only have to prove that y can be replaced
by . But this is true, since y (k) and Y (k) coincide from a certain k on. m
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LEMMA 4.B.4 There is a finite valued constant C(w) (dependent on the
realization), such that

WA [Y "(k)Bk — 1) + e(k) — e(k)]| < C(@)[|Bk — 1)|> + 1/k].
Proof The intuition for this result is that
s(k) — e(k) ~ e(k, 6(k)) — &(k, 6,) ~ —yYT(k)O(K),

since  is the negative gradient of ¢. The formal reasoning goes as follows.
In view of lemma 4.B.1, ¥(¢) and &(¢) are bounded ; and in view of lemma
4.B.2, R(¢) tends to an invertible matrix. Hence from the updating
formula for 6 we obtain

6(2) — 6z — 1)| < C(w)/1,

which implies that
|6(k) — 6()| < C(a))-logé for > k. (4.B.4)

Introduce

£ = &) - ¢ 6,

Ak, 1) = 4(6(k)) — 46,

B(k, 1) = B(6(k)) — B(6(1)).

According to (4.B.4) and M2, we have

|4k, )| + |B(k, 0| < C(w)logt/k for 1> k. (4.B.5)
We also have, as in (4.B.3),

(o= i [ Elk A(é(j))J [Ak, &k, 6(0)) + Bk, nz(k)).

k=1

Now, using (4.B.2), (4.B.5), and the boundedness of £(k, é(t)) and z(k),
we have

|E)] < C(w) 2 X k- logt/k < C(w)/t.

This result in particular implies (see definition of  and (4.86¢))
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|e(r) — &2, B(0)| < C)/1,
(@) — ¥, 6(1)] < Cw)/t.

From M3 we have that ¢(¢, 6) is twice differentiable, and Taylor expansion
around 6, gives

e(t, 0) — e(t, 0p) = p(t | 66) — y(¢ | 0)
= —¥T(t, 0)(O — 0p) + 3(0 — 66) "5 (t, M) (6 — 65),

where 7 is a point between 6 and 6,. According to lemma 4.B.1, ¥, is
bounded, so when we evaluate the above expression for 6 = (¢t — 1) we
obtain

le(, 6t — 1)) — e(2) + Y7, 6z — 1)) — D| < C|6¢ — D*.  (4.B.7)

Now use (4.B.6) to replace (¢, 6(t — 1)) by &(r) and y(¢, 6(t — 1)) by
Y (?). Then (4.B.7) gives the desired expression. m

(4.B.6)

Let us now return to the expression (4.B.1). Using lemmas 4.B.2-4.B.4
for the entities in this expression gives for any é > 0

~ 3 ~
0| < CY |0k — D|* + C- " wp.l, (4.B.8)
k=1
where the constant C may depend on the realization and on é. To study
(4.B.8) we first prove the following result.
LEMMA 4.B.5 Let b, be a sequence of scalars such that
b,>0,b,00asn—>

and, forsome C>0and 1 >a >0,

nb <C (kf b2 + n“). (4.B.9)
=,

Then

kg b2 < Cn*, (4.B.10)

where

o' = max (0, 2¢ — 1) for o # 1/2,
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o = & > 0 (arbitrarily small) for « = 1/2.

Proof Denote
"i 2
=_a bk'
n- k=1

We first find that

e[S () g

With the approximation

<1+1) ~1+2,
n n

which for sufficiently large n becomes arbitrarily good, we obtain
Too = T — |12 =25 42|, 4.B.11)
a+1) " 3

Since b, tends to zero we see that 7, can increase only by a small amount.
Hence if 7, is unbounded there must for any C; > 0 be an infinite sequence
n, such that

L —T,=

I,>C, and T, — T, >0. (4.B.12)
The second inequality implies, according to (4.B.11) that

n—1
nebl>a ) b

k=1

Using (4.B.9) in this inequality leads to
n,—1 n,—1

a- ) b <nm bl <Ch, Y b+ Cb,ng
k=1

k=1

or

n,—1

(x—Cb,) Y b < Cb,n.
k=1

Since b, tends to zero and o > 0, this implies that for sufficiently large
we can write
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T, < Cb,,,
which contradicts the first inequality in (4.B.12). Hence 7, is bounded,
and (4.B.10) is proven for o’ = «. Insert this result into (4.B.9), which gives

a—1
b, <n* .

This in turn implies that

» <C ifo < 1/2
k22 < Clogn ifa=1/2,
- <Cn® ' ifa> 12

n—1 n
Ybi<C
k=1 k
and the desired result has been proven. =

Let us now apply lemma 4.B.5 to (4.B.8) with b, = |(§(n)| and o =
(1/2) + 6. We find that

t ~

Y |0k — D] < C-1%. (4.B.13)
k=1

With (4.B.13) inserted into (4.B.8) we find that
t(1/2)—o'|é(t)| < C- Wty + Cr Y, (4.B.14)

Since ¢ can be taken as any positive number, we have now established the
last statement of the theorem. In particular, returning to (4.B.1) we
obtain

J10() = [R(H]™

v

L S y(k, A~ ek) + h(o), (4.B.15)

NI=!

where

h@) = [R(f)]_li i [ (k) — Yk, O)JA  e(k) + L[R(t)]_‘R(O)é(O)
t k=1 \/;
+[ROT = S WO [0 03K = 1)+ o(h) - e(®)].
k=
LEMMA 4.B.6 h(f) >0 w.p.l as t— oo.
Proof That the second term of 4(¢) tends to zero is trivial, and that the

third term of A(¢) tends to zero follows from lemma 4.B.4 and (4.B.13).
Consider the variable
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Pk = w(k) — Yk, 6y).
Use now (4.B.3) together with the fact that
(4| + |§k| < C-k~Ware
according to M3 and (4.B.14). This gives

- k
&) < Clw) Y, 243702 < Clapk~02,

j=1

and hence
[¥ (k)| < Clw)k= 123, (4.B.16)

As in the proof of lemma 4.B.3, we have a complication in that we do not
know if C(w) and hence (k) has finite variance. (We do know, however,
that C(w) is finite w.p.1). Therefore introduce

Yk if|Pk)| < C, kWA
0 otherwise

vk =

Because of (4.B.16), y(k) = (k) for k > K(w). Consider now

t

S=)—~ lﬂ(k)l\ ‘e(k).

k=1

As in the proof of lemma 4.B.3 this variable is a martingale, and its
variance is subject to

E|S|2<Z oL Ele(®)]*|A <o (< 1/4).

&
Hence S, converges w.p.1, and, according to Kronecker’s lemma, we have

€
Ji

Since ¥ (k) and (k) coincide for k > K(w), the same result holds when
Y is replaced by . Hence also the first term of A(r) tends to zero w.p.1,
and the lemma is proven. m

i V(k)A 'e(k) > 0 w.p.1 as t — cC.
1

LEMMA 4.B.7

i Wk, o)A "e(k) e AsN(O, Q),

k-
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where
0 = Ey (1, 0p)A™ " AgA™YT(1, 6,).

Proof This result is a direct application of Billingsley’s central limit
theorem for martingales (Billingsley, 1961), which was extended to non-
stationary processes by Brown (1971). Brown’s theorem is formulated
for scalar random variables, and to get the above result for vectors we
simply apply it to all linear combinations of the vector components in
our case. This is essentially the same as pretending, in the calculations,
that e, A, and ¥ are scalars. To apply Brown’s theorem 1, we must verify
two conditions:
v,2 . .
) s'z' — 1 in probability as n — oo,

where
V2= 3 E{[u(k, 0)A e ®]? | )
k=1
= i '/’(k’ QO)A—IAOA_lll’T(k, ‘90)
k=1

and s? = E¥,%. But in view of the assumptions of the theorem and lemma
4.1, both s2/n and V,%/n tend to G(0,) w.p.1, so this condition is satisfied.

iz Z E|y(k, O) A~ [2 - P(y(k, 8)A~"e(k)| > 55,) — 0 as n — oo

But s, — oo and ¥ (k, 6,)A"'e(k) is bounded according to lemmé 4B.1,
so this condition is also satisfied. Now Brown’s (1971) theorem 1 implies
our lemma 4.B.7. u

If we now use lemmas 4.B.2, 4.B.6, and 4.B.7 in (4.B.15) we find the
final result

J10(t) e AsN(0, P),
where
P=[G(6)]'Q[GE)] ",

which proves the theorem for / given by the quadratic expression and

r(n=0
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Now suppose that &(t, 6,) = e(f) + r(f) with f¥2*%(f) 5> 0 w.p.1, as
in L1. This gives a fourth term in the expression (4.B.1):

1
D, = Y y(k)A (k) (4.B.17)
k=1
(In the third term of (4.B.1) we use (¢, 6,) instead of e(¢)). Now
1 C &, -1 122 _
—D < —= k1/2 JSC.‘_SCI 6,
\/7 t ‘ \/; kgl tl/2

where the first inequality follows from lemma 4.B.1 and the properties
of r(k). Hence ¢t~ D, tends to zero w.p.1 as f —» c0. Therefore this term
will not affect the expression (4.B.8), and it can be included in the term
h(?) in (4.B.15).

If we now consider the general Gauss-Newton algorithm

60 =6t = 1) + LR OT- K, 6 - 1), 20)
+ YL, 06 = 1), (1)),

RO =R(t— 1)+ ; [Loo(t, 6t — 1), (1))

+YOL(1, 6 — 1), e (@) — R(t — D],

we find with
6(r)=6(1) — 0, and R(t) = tR(2)
that
R(O(0) = R(t — DO — 1) + Iy(t, 6z — 1), e(£))6(z — 1)

+ YO8, 0 — 1), s (DO — 1)

— 13 (&, 00t = 1), 8(0) + Y(DIT 1, 61 — 1), &(1)).
Summing this expression gives

R@6()

= R(0)6(0) + é: [ 15k, 0o, e(k)) + Y (k)L (k, b5, e(k))]
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+ 3 AT K, 6, e()) — [5Gk, Bk — 1), 6(6))
k=1

+ Ly(k, Ok — 1), e(k))A(k — 1)

+ loy(k, Ok — 1), e(k)W T (k)O(k — 1)]

+ (k) [k, Bk — 1), e(k)) — L] (k, By, e(k))
+ 1k, 6k — 1), e())WWT(k)(k — 1)

— Ik, Ok — 1), e(k)ik — 1)]}.

This expression is dealt with in the same fashion as (4.B.1). Lemma
4.B.1 is not affected. Lemma 4.B.2 is analogous. Lemma 4.B.3 for the
first sum applies, with the analogous proof. Lemma 4.B.4 has a cor-
responding counterpart, where the terms linear in 8 in each of the ex-
pressions within square brackets in the second sum above cancel when a
Taylor expansion around 6(k — 1), &(f) is used. The proof is entirely
analogous to that for lemma 4.B.4. This brings us to (4.B.8), from where
the rest of the proof of the theorem coincides with the one given. m

Remark 1In the proof, we did not consider the modified algorithm, in
which 6(¢) is projected in D, and the version (4.95) is used for the R-
update. However, for é(t) — 8,, these modifications will be in force only
a finite number of times, and will therefore not affect the asymptotic
distribution.

Proof of Corollary to Theorem 4.5 We can immediately verify that the
proof of the theorem holds if A in (4.B.1) is replaced by any sequence
A(t) with |[A™!(1)| < C. The algorithm (4.106) produces such a sequence.
We only have to prove that

G(60) = Ey(t, B)A™ (Y (¢, 65) = By (t, 6) A5 Y (2, 6o)
and that (in lemma 4.B.7)
Q = Ey(t, ) AT (O AAT (Y2, 0)

= Ey(t, ) A5 v (2, 6,).

But, since 6(t) - 6,, we have that &(r) — (s, 0,) (see lemma 4.B.1), and
hence
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! —
AG) = %Za(k)aT(k) — Ba(t, 0,)€7(t, ) = Ag w.p.1

1
just as in lemma 4.B.2. Therefore the foregoing expressions for G(6,)
and Q hold, which proves the corollary. =

Remark Theorem 4.5 is proven here under the assumption L1 that 6,
produces asymptotically independent prediction errors. This assumption
was used in the proof only in lemmas 4.B.3, 4.B.6, and 4.B.7. The theorem
is true also without assumption L1, and can be proven using a central-
limit theorem for mixing processes in lemma 4.B.7 (Ljung and Caines,
1979) and using Borel-Cantelli’s lemma (Chung, 1968), rather than the
martingale convergence theorem in lemmas 4.B.3 and 4.B.6. We must,
however, use a full Newton algorithm to obtain the result, since the last
three terms of the expression for ¥”(6) (p. 190) will not disappear unless
L1 holds. This means that in the updating of R(¢), the corresponding
terms must be included for the counterpart of theorem 4.5 to hold.
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The martingale convergence technique to prove convergence of PLRs
was suggested by Moore and Ledwich (1980). A related technique had
been used for the least squares case by Ljung (1976b). The technique
was carried further by Solo (1978, 1979), and this appendix is based on
his work. Goodwin and his coworkers (see the book by Goodwin and
Sin, 1983) have developed and applied the technique to a number of
interesting problems.

The basic convergence result is the following one, which we will not
prove. For the proof, see Neveu (1975), p. 34.

LEMMA 4.C.1 Let {7,} be a sequence of nonnegative random variables
and {#,} a sequence of increasing adapted c-algebras (i.e., T,€%,).
Suppose

E(T,| Z)) < Ty + 4 @.C.1)

and
Ya, < wp.l.
1

Then T, converges w.p.1 to a finite nonnegative random variable T as
n— oC.
We now restate this result in a form that suits us better.

LEMMA4.C.2  Let {T,}, {®,+,}, and {B,.,} be sequences of nonnegative
random variables, adapted to a sequence of increasing o-algebras {£,}.
Suppose that

E(Tn ' '9-;"—1) < Tn—l + oy — Bn (4C2)

and that
Yo, <o wp.l.
1

Then 7,,» Tw.p.l asn— o0, and

a0

Y B, <o wp.l.

1

Proof Clearly, (4.C.2) implies (4.C.1), so T,—» T w.p.1 follows from
lemma 4.C.1. Next, introduce



454 Appendix 4.C

k=1
then (4.C.2) can be written as

E(T;

9:,_1) < Tr:—l + Oy
We can now apply lemma 4.C.1 to T, which proves the lemma. »
We can now state the counterpart of theorem 4.6.

THEOREM 4.C.1 Let {&(f)} and {@(?)} be sequences of scalars and vectors,
respectively, such that

N
lim sup—JIVZl:|<p(t)|2 < . 4.C.3)
Define the sequence {6(2)} by

6= 6 = 1) + | R Dp(@)e(0),

(4.C.4)
R =R = 1)+ [9()0™(®) — R — D],
Let
HOERU)] [1 — %(PT(I)R”(I)(P(I)} 4.C.5)
and suppose that, for some value 6,,
H(g™Me(t) = —o(O[0(1) — 6,] + H(g ")e(0), (4.C.6)
where
(1) {e(n} is a sequence of random variables such that
E(e(t)| F_)=0 (4.C.72)
E@(H) | #_)) = o2 (4.C.7b)
and
e(t) — e(NeF_,, (4.C.7¢)

where &,_, is the o-algebra generated by
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e0), ...,e(t — 1), 0(0), ..., 0.

(2) H(g" Yisa causal, strictly stable transfer function, such that ﬁﬁ - %
is strictly positive real, i.e.,
Re[[H(™)] ' —3]>0 Vo, —z<w<n (4.C.8)
Then
[0() — 6,]"R()[O(2) — 0,] >0 w.p.1 as 1 — o0 (4.C.92)
and
1 &
ﬁ; [¢(t) — e(®)]* > 0 w.p.1 as N - co. (4.C.9b)
Proof Let R(¢) = 1- R(¢) and 8(¢) = 6(s) — 6,. Then
LR 0p0s0) = 2 PO
= R7'(r = D),

and hence from (4.C.4)
61y =6(r — 1) + Rt — Do()e(r), (4.C.10a)
R() =Rt — 1)+ o)™ (2). (4.C.10b)

Introduce

T(t) = (D R1O();

then the assertion (4.C.9a) can be expressed as 7(¢)/t - 0 w.p.1 as t > co.
We shall eventually apply lemma 4.C.2 to 7(¢)/t and we first seek an
expression for how T(¢) relates to T(: — 1). We have from (4.C.10a) that

R(t — D@ = Rt — DA = 1) + o()E().
Add ¢())e"(1)8(?) to both sides and then multiply by §7(¢); this gives
GT(t)R(1)0(z)
= TR — DO — 1) + 0T (Dp()a(0) + [0 (e 1)]*.
Using (4.C.10a) for the first term on the right-hand side gives
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T(t) = T(t — 1) + " (&6t — 1) + 0" () e(D)e(r) + [0 ()]
= T(t — 1)+ 2070 p()E(t) + [T (Do) ]? (4.C.11)
— TRt — D) ().

Consider first the two middle terms of the right-hand side:
20701 + [T (e

= oT(O0() {oT (D) + 2[5(2) — e(D)]} + 2e(t) 0T (1) ().
Now we have
E(e() @™ (00() | #_,)

= E((e" (08¢ — 1) | #_,) + E(()e ()R ' (De(D)e(t) | F_)

= @"(N0(t — DE(e(t) | #._,)

+ TR ()@(DEE* () + e()[e(t) — e()] | Fimy)
=04+ @T(OR Y (DNe(Ho2.

In the first equality we used (4.C.4), in the second one that ¢(f), R(?),
and 6(t — 1) are #,_,-measurable, and in the third one the properties
(4.C.7). For the first term in (4.C.12) we introduce the notation

at) = —@™(06(),

B =&(1) — e(®) + 30T (OO().

Collecting the expressions (4.C.11)~(4.C.13) now gives

E(T() | %)) = Tt — 1) = 2E(()B() | F-1) + 26%0 ()R (D (0)
— "R (1 - De(OEE* (D) | F,-)

(4.C.12)

(4.C.13)

or
E(T(1) + 22()B(t) | Fio)) < T(t — 1) + 262" (VR (Do (0).
Introduce

2
t

7= [T(z) + z'za(k)ﬂ(k)] — T ORI + ga(k)ﬁ(k).

Then, noting that a(k)e #,_, for k <t — 1, we have
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E(t-T(t) | #-) <t = DTt — 1) + 26%0" ()R o(2)

or
ET0 | F )<Tae-1) - % T(t— 1)+ 2”72¢T(z)1¥—1(z)¢(z). (4.C.14)

We shall now apply lemma 4.C.2 to (4.C.14); in order to do this, we need
to establish that 7(¢) > 0 and that the last term is summable. These
assertions are proven in two lemmas.

LEMMA 4.C.3

t t

Y ak)pk) = 1- ) «*(k),
k=1 k=1
where

A=_inf IiRe[H(e"")] ! %]

Proof Comparing the definition of « and f in (4.C.13) with (4.C.6)
shows that

p(n = [—o" 0] + 5 ¢T(t)9(t)

H(q '1)

N B S Y N N
—[H(q~1) 2] )= ¥ At = Kya),

where

1 - ~k A (-1
[H(q ] 2 hg L Hig ™).

Thus

t

S a(0Bk) = 3 k) 3, k= (s

k=1 k=1
\\

_1 [
T 2n r
_1 [
 2n _"

t

Z a(k)eikw

k=1

2 — .
- H(e')dew

tz a(k)e*® g Re H(e'*)dw

k=1
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t

Z a(k)eikw

k=1

2
daw

l n
- 2n J:n

=13 sk,
k=1

which proves the lemma. In the second step, we neglected the expo-
nentially decaying effects from s < 0. m

LEMMA 4.C 4
SLowR e < o wpl,

where # is such that R(n — 1) is invertible.

Proof First note that

R ') =Rt — Do/l + "Rt — De®)]

and that

PTORTORT(t = Do) = tro(e "R (OR™ (¢ — 1)

=tr {[R(t) ~ Rt — D]R'OR ¢ — D)} =tu[R¢—1)—R (]
With these, we find

S "OLR ()P o)

< T T ORI OR ¢ - Do)
g (4.C.15)
=Ytu[R'(t—1)— R'(1)]
=tr[R '(n—1)— R ()] < 0.
We have
ST R Do) < |R(|eTO[R (02 0(0),

where Riz) is the operator norm of R(f). We have

o _ t
Ry s uRm =Y |ok)|
k=1
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Consequently

according to (4.C.3) and (4.C.15), which proves the lemma. m

tr R(t)

PT(R (De(1) < Z eT([R' (1] e(t) < o,

N|D—l

Lemmas 4.C.3 and 4.C.4 show that lemma 4.C.2 is applicable to
(4.C.14) where a,, in (4.C.2) corresponds to 2629 (n)R™(n)p(n)/n, and
B, to T(n — 1)/n. Hence there exists a nonnegative finite random variable
T such that T(1) > T w.p.1 as t — oo and

Z%T(:) < oo w.p.l.

1

The latter condition shows that 7 = 0 w.p.1. Since 7(¢) is the sum of two
positive terms we conclude that

6T(HR()O(t) > O w.p.l as 1 > oo

and
% Y a(k)Bk)y >0 w.p.last— 0. (4.C.16)
1

Thus (4.C.9a) has been proven. To see (4.C.9b), we note that lemma 4.C.3
and (4.C.16) imply that

%Zaz(k)—>0w.p.1 as t — 0. (4.C.17a)
1
Hence also
1]
%Zﬁz(k)—mw.p.l as t — o, (4.C.17b)
1

since B(r) is obtained by exponentially stable filtering of {«(k)}. But
E(t) — e(t) = B(1) + F(1),

and therefore (4.C.9b) follows from (4.C.16) and (4.C.17). Theorem 4.C.1
is now completely proved. m

Theorem 4.C.1 applies to general sequences of {¢ () } and {&(¢) }, related
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via (4.C.4)—(4.C.7), and is as such more general than theorem 4.6. Let us
specialize to the ELS scheme; Landau’s output error method will be
analogous.

We first note that for ELS

e(t) = (1) — 67(t — Do(1), (4.C.182)
e =(—ya-1) ... L/y(t —ng u(t—1) ... u(t —ny),

Bt —1) ... &t —n)).
Then &(¢) given by (4.C.5) is

(4.C.18b)

50 = ¥ — 19T OR D9 y(0)

— 0"W0— 1) + 1" ORT De@T( — Do)
(4.C.19)

=y(1) — @™ (1) {é(t -+ %R‘l(t)<p(t)[y(t) — 07— 1)<p(t)]}

=y()) — 0T () e(0),

so &(t) is the residual, while ¢(¢) is the prediction error. We notice that
according to lemma 4.2, (4.C.3) will hold when ¢(¢) is given by (4.C.18b),
provided

lirlzl sup i [V2() + u* ()] < 0. (4.C.20)

We now proceed to verify (4.C.6), which is an analogous, but slightly
stronger condition than (4.152)—(4.153). We then assume that the true
svstem indeed can be described by (4.150), i.e., by an ARMAX model of
orders less than or equal to those of the model. We can then write [see
4.151)]

s =05 go(1) + e(t),

where

sorima—vt =1 .0 —y(t—n) u(t —1) ...
wr—m)e(t—1) ... e(t —n)).
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Then, analogously to the calculations leading to (4.152), we have
&(0) = y(t) — 0" (1))
= 0 9o(t) — 0T (D) + e(2)
= 05 [eo(®) — 0] + [0, — 0T()] (@) + e(2)
= [Colg™) — 1][e(® — 2] + @ ()6, — 0] + e(1)
or
Colg () = —@ M [0Q) — 6,] + Colg e (). @4.c.21y

We have thus established (4.C.6) with H(¢™!) = C,(¢™!). Conditions
(4.C.7a, b) will hold, since {e(r)} is a white noise sequence. Finally,
condition (4.C.7c) follows from

e(t) — e(t) = y(t) — 07(t — Dp(0) — y(1) + 0F o)
= 07 @o(2) — 07(t — 1)o(2).

We now conclude that, provided

1 1
Re [ O 5] > 0 Vo, (4.C.22)
we have
[0() — 6,]"R@)[0() — 6] » O w.p.l as t — o0 (4.C.23a)
and
% i[é(z) —e(®)]* > 0w.p.las N— co. (4.C.23b)
1

From the latter conclusion it also follows that if
1 t
Ro(t) = YooK p5 (k),
1

then
R(t) — Ry(1)> 0ast— . (4.C.24)

Now R,(#) is defined only in terms of the system variables {y(¢)}, {u(?)}.
and {e(?)}, and its convergence properties are independent of the estima-
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tion procedure. If the model orders and the input are such that no two
different models can give the same correct description of the system, then
Ry (#) will be bounded from below by a positive definite matrix, and we
conclude from (4.C.23a) that 6(r) —» 6, w.p.1 as t — oo.

In the general case we find that under assumption S1 (p. 169) R,(?)
will converge to

G(6,) = E‘PO(I)(PJ(’),

provided this expression exists. Then (4.C.23a) tells us that (1) — 6, will
converge into the null space of G(6,). But

0e{0|(0 - 0,)TG(0,) =0} =E[e(t, 0) — e()]* = 0, (4.C.25)
which can be seen as follows: Analogously to (4.152) we have

Cg D[, 0) — e()] = @5 (1) (0 — 0),

where C(g™") is the polynomial corresponding to the “C-part” of 0.
Hence if

E[g(1)(6 — 0)]* = (0, — 0)"G(6) (6, — 0) = 0,
we conclude that (4.C.25) holds. We have thus shown that
0(t) » D, = {0 E[e(t, 0) — e(n]* = 0}. (4.C.26)

Notice the difference between the very similar conclusions (4.C.23b) and
(4.C.26)! The result (4.C.26) is the same one as proven by the d.e. approach
in section 4.5.2, under essentially the same conditions. Notice, though,
that the conclusions (4.C.23) are obtained under weaker assumptions (S1
and the existence of E¢,(f) p{ (7) are not assumed). We can now summarize
the result of the ELS analysis.

Consider the ELS algorithm with y(¢) = 1/f and assume that the true data
are generated by (4.150), such that (4.C.20) and (4.C.22) hold. Assume
that residuals rather than prediction errors are used in the regression
vector. Then

Tir = 8, ]TRo(D[6(r) — 6] » O w.p.1as t — oo

and

A

%_:ﬂ:?mw —etn]*>0w.p.las N— o0.
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Furthermore, if S1 holds and the limit Eqq(f)¢q (f) exists, we have that

6(t) > D. = {0| E[e(t, 0) — e(2)]* = 0} w.p.1 as ¢ — c0.

The case where the regression vector is filtered is analogous. Also, the
treatment of Landau’s output error method will be analogous. However.
in this case conditions (4.C.7) limit us to the case where the measurement
error v(t) [see (4.168)] is such that T(g~")v(¢) is white noise. Thus a less
general conclusion is obtained from theorem 4.C.1 than the one derived
from theorem 4.6 in section 4.5.



Appendix 4.D Asymptotic Properties of the Symmetric 1V
Method

We shall in this appendix consider the symmetric I'V method, (4.207) and
(4.209), only in the case when the generation of {(¢) does not depend on
the estimates. The associated d.e. is

2 95() = R3O0, @D1a)
2 Ro(®) = GOp() — Ro(2), (4D.1b)
where

1) = ECO L) - 9F0)0], (4Dp2)

G(0) = ELLT ).

Note that G is in fact independent of 6, since {(f) does not depend on
f. Using the assumption (4.210) about the true system, we can write
4.D.2) as

S0 = EL) [36(D) — oF(1)0]
=Bl {T(@a e (D, — ) + v(1)]}
=G x (0, — 0) + EL(D)vp(2),

where

G = BL(D) o). (4.D.3)
Now introduce the assumptions

G+G">0, (4.D.4a)
G = BL(#){T (1) > 0, (4.D .4b)
EZ()ep(r) = 0. (4.D.4c)

The first assumption is a way of expressing that {(7) should be positively
correlated with the gradient ¢p(f). (Compare the interpretation of {(z)
as an approximate gradient in section 3.6.3!) The last assumption is the
usual one. requiring the instrumental variables to be uncorrelated with
the noise. The d.e. can then be written

%»ATDW — RIIG [0y — 0p(0)], (4.D.52)
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4 R(1) = G — Ry(). (4.D.5b)
dt

To prove stability of this equation, consider the Lyapunov function
V0, R) = (6 — 0)"R(O — 0,).
Along trajectories of (4.D.5) we have (see the calculations in the proof
of theorem 4.6)
d
7V 0o(0), Rp(1)
T

= —[05(t) = 6,]"[G + G — G + Ry(D)][6,(x) — 6,].

From (4.D.5b) we see that Rj,(7) converges to G independently of 6.
Hence, in view of (4.D.4a), we have

—R(D+G<G+GT

from a certain 7° on. This means that
d
Z V(0p(z), Rp(7)) <0,

T

with equality only for 6, = 0,. Hence, theorem 4.2 proves that 6(2)
converges to 0, w.p.l under the assumptions (4.D.4).

Remark A perhaps simpler way of seeing the stability of (4.D.5) is
to argue as follows. From (4.D.5b) the matrix R, (t) will approach G
at an exponential rate (in the t time scale). Hence the stability of (4.D.5a)
is the same as that of the linear time-invariant system

0=G"'G6,—0). (4.D.6)

But G ! and G are positive definite matrices, and the product of two
such matrices has its eigenvalues in the right half plane. Hence the
stability of (4.D.6) follows.

In the remainder of this appendix we shall confine ourselves to the
choice

{1 = T(g HeW), (4.D.7)

where ¢(2) is the “noise-free part” of ¢(¢), as defined by (4.231). Recall
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that this choice of instrumental variables is possible only if we know
A, and B,, and should thus be considered as an idealization. We have

o() = ¢() + o,(0), (4.D.8)

where ¢,(?) is a vector depending on v only, and whose last m elements
are equal to zero. Since v and $ are independent, we obtain

G = E{(0oF (1)
=E[T(g"He0]1[TG He0]" + E[T(@ )0 ][T e, 0]
=E{(O"() = 6.

Hence in this case the condition (4.D.4a) follows from the much weaker
one (4.D.4b). This latter condition can be analyzed in the following way.
Let

=0, ... OGpyp)T

be an arbitrary vector and consider the quadratic form & "Ga. By defini-
tion G is nonnegative definite. We therefore examine the solutions to
0=a"Ga = E[a"((1)]?,

which implies that

0 - a_ C(l) - _a .V( BO ‘11))—T(q 1) (t. 1)
' A(q 1)
u(t —n— m)

w.p.1

[see (4.225), (4.226)]. Provided the polynomials 4,(z), B,(z) are coprime,
the Sylvester matrix &(— B,, 4,) is nonsingular. Let a(g~") be defined as

n+m

wWg =Y aq.

i=1
We then have

2wug HT(g™H

H=0w.p.l.
Ag™h u(®) w-p-1

If the input is persistently exciting (see lemma 4.7), it follows that a(g ') =
0.1e.thar3=0.
These calculations show that the matrix defined in (4.D.4b) is positive
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definite under mild conditions when {(¢) satisfies (4.D.7). It is required
only that Ay(z), By(z) are coprime and that the input is persistently
exciting.

To study the asymptotic distribution of the symmetric IV estimate for
the choice (4.D.7) we proceed as follows. Let y(¢) = 1/t. With

0ty =0() — 6, R() = tR(),
we can rewrite (4.207a, b) as
00 =0¢—1) + R OO~ eF 900 — D + 5:()],
RO=Rt—1+ O,
where we used (4.210). Multiplying the first equation by R(z) gives
R(0B(1) = [R(t — 1) + L0)T(916( — 1)

—LOeF OB — 1) + LDue (1),

and hence

ROD) = 1 ROTO) + 3 W00
4.D.9)
+ %;c(k) [L(k) — e (k)] Tk — 1).

This expression is like (4.218), except for the last sum (and the fact that
the Rs are different). However, for the choice (4.D.7) we have, according
to (4.D.8), that

{(k) = op(k) = T(qg )@, (k).

The terms of the second sum in (4.D.9) are therefore of the same character
as those of the first sum, except that they are multiplied by 8(k — 1),
which we know tends to zero as k — co. It may consequently be argued
that the first sum of the right-hand side of (4.D.9) dominates the second
sum. We leave the question at this heuristic level and tentatively conclude
that

6(1) ~ R_l(t)%iﬁ(k)vp(t) (4.D.10)

for large t. We also have
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R() = }i((k)ﬂ(k)

= 1 SU0eF 0 + Y LOITE o],

where the second sum tends to zero since {(k) and ¢,(k) are independent.
Therefore the R matrix in the symmetric IV method will asymptotically
coincide with that of the nonsymmetric method (again, assuming (4.D.7)).
This, together with (4.D.10) indicates that the asymptotic distribution for
the symmetric IV method will coincide with that of the nonsymmetric
method for the instrumental variables (4.D.7). This means in particular
that the optimal IV accuracy, discussed in section 4.6.3, can also be
obtained for a symmetric IV method.



Appendix 4.E Refined IV Methods and RPE Methods

In this appendix we shall discuss recursive estimation of the parameters
of the input-output model (3.103):

B(g™) Ci@™h 4E1
Fa )Y T D" “E1D)

In section 3.7 we described the RPE method and a PLR approach to the
identification of (4.E.1). The IV method suggests still another approach:
To estimate the dynamic part B/F using an IV algorithm and to determine
C/D by modeling y — (B/F)u as an ARMA processes. Such a procedure has
been suggested and extensively used by Young (1976), who calls it IVAML
[AML (approximate maximum likelihood) is a synonym for ELS].
From the analysis in chapter 4 we know that the accuracy of the IV
estimates can be improved by carefully selecting the instruments and the
prefilter T. Young (1976) and Young and Jakeman (1979) have described
a recursive algorithm with prefilter, under the name refined IVAML.
This algorithm is based on the equation for the stationary point of the
likelihood function (assuming Gaussian disturbances). It leads to the
prefilter T(¢g~') = H (g™ '). We shall first describe this method and then
compare it with the RPE method for (4.E.1), as given in section 3.7.2.
The dynamic part of (4.E.1) can be written

u(t) +

y() =

F(g™H)y(2) = B(g™Yu(?) + Fg~ (), (4.E2)
o(2) = ggg:lie(t). (4.E.3)

If B, F, C, and D were known polynomials, we could estimate the dynamic
part in (4.E.2) using the optimal IV method derived and described in
section 4.6.3 and appendix 4.D. This method is described by

_B@g™
w(t) = F(q-l)“(’)’ (4.E.4a)
n=(—yt—1 ... —y@t—ny) ut—1) ... u(t—n))", (4.E.4b)
o ()=(—wt—=1) ... =w(t—ny) u@t—1) ... u(t—n))", (4.E.4c)
___ D™
C(Z) - C(q—l)F(q—l)(pl(t)’ (4E'4d)
ne(t) = Mﬂ@), (4.E.4e)

Cla™HF@™)
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ye(t) = ﬁl—)ym, (4.E.4f)
Oo=(fr ... fo b1 ... BT, (4.E.4g)
0:(0) = 6,(t — 1) + y(ORT OO [y, @) — nF®6, (¢ — D], (4.E.52)
Ri(®) =Rt = D)+ yO[LOI™(O — Ryt — D]. (4.E.5b)

Here we have chosen the symmetric IV variant. According to the dis-
cussion in appendix 4.D, this will not affect the asymptotic properties of
the estimates. Notice that the filter 7= H ' is D/CF in this case, accord-
ing to the assumptions (4.E.2) and (4.E.3).

Similarily, if F and B were known polynomials, we could compute
v(r) as

B(g™")
F@@g™)

and apply the RML method to estimate the parameters of the ARMA
model (4.E.3) (see sections 2.2.3 and 3.7.2):

D(g™Hu(n) = Clg He(®.

o)) = (1) —

u(t), (4.E.6)

Let

O,=, ... d,c ... )7, (4.E.7a)
o) =(—=v(t—1) ... —v(t—n) ¢t —1) ... &t—n))T, (4E.7b)
() = v() — pF (D6,(1), (4.E.7¢)
¥, (H) = Ct(;_l)(pz(t). (4.E.7d)
Then the RML algorithm is

t:(1) = 6,(t — 1) + ¥R O, (O [p(1) — 07 (D6, — D], (4.E.8a)
R,y =Ryt — 1) + (@) [¥2 (DY 7 (1) — Ryt — D]. (4.E.8b)

Now the algorithm as described cannot be implemented, since the poly-
nomials B. C. D, and F in (4.E4a, d-f) and (4.E.6) are unknown. The
obvious solution to this problem is:

Replace F. B. C. and D in (4.E.4) and (4.E.6) by their current

. . 4.E.
estimates according to 6, (f) and 0,(?). (4.E.9)
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The algorithm (4.E.4)—(4.E.9) is now the refined IVAML algorithm as
described by Young and Jakeman (1979). In their paper, they also discuss
a variant of (4.E.8) where /] (¢) in (4.E.8b) is replaced by ¢ (¢), which they
call refined AML.

Let us now discuss the RPE method applied to (4.E.1). It is given by
(3.123)—(3.125). We can summarize it as follows: Let

6, ®1(0) ( C(t)>
0 = b = b = ’
(0.) #0= () ¥0= (o
where 0, ¢, {, and ¥, are given by (4.E.4)—(4.E.8). [To see that {(¢) is

indeed the gradient of (¢ | 6) with respect to 6;, check (3.119b, ¢).] The
algorithm then is

0) = 0(t — 1) + y(OR WY () [¥(1) — 9T (10t — D], (4.E.10a)
R() =Rt — 1)+ O[O () — Rt — D] (4.E.10b)

The matrix R(¢) will have a block structure:

Z::ﬂ(t, k) (k)T (k) Z::ﬂ(t, k) (k)3 (k)

21‘,[3(!, k), (k)L (k) 21‘,[3(!, k2 (k)Y (k)

R() = (4.E.11)

where {(k) is determined entirely from the input «* (neglecting the vanish-
ing influence of y that leaks over via C, D, and F, as discussed in section
4.6.2). When B and F in (4.E.6) are equal to the true values, ¢, and y,
will depend entirely on the noise term e. Hence {(k) and y/,(k) are asymp-
totically uncorrelated as the algorithm converges to the true parameter
values, provided the input sequence is independent of the noise. This
means according to (4.E.11) that the matrix R(¢f) converges to a block-
diagonal matrix. It is therefore reasonable to replace R(¢) in (4.E.10) by
a block-diagonal version:

= R, () 0
R(’)_( 0 Rz(z)>‘

This will, among other things, reduce the computational complexity of
(4.E.10). With this modification, the algorithm (4.E.10) can be written

0,(1)= 6,1 — 1) + y(ORT DL [ ¥(1) — 9™ (16 — 1], (4.E.12a)
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Ri()=R(t— 1)+ 0[O — R, (t — D], (4.E.12b)
0,(1) = 0,(t — 1) + y(ORT DY, (D[ y(®) — @" (10 — )],  (4E.12¢)
Ry(1) = Ry(t — 1) + () [¥, (0¥ (0) — Ryt — D]. 4.E.12d)

This algorithm very much resembles the refined IVAML scheme (4.E.4)—
(4.E.9). In fact, if

y(©) — @0t — 1) = yp(t) — nF(©)0,(t — 1) (4.E.13)
and
() — T(z)()(z —D=v()— }(z)éz(t ) (4E.14)

were to hold, the algorithm (4.E.12) would indeed be indentical to (4.E.5),
(4.E.8).
Let us study these relationships. From (3.110) and (3.117), we find that

@ - T(t)é(t =1

_D._ 1(‘1_1) B, 1(‘1-1)
=@ [y(t) 7. _1)u(t)] (4.E.15)
and that
o) — 93 (0, — 1) = 2= ‘Eq_liv(t) (4.E.16)

Now using the expressions (4.E.6) and (4.E.9) for v(z), we see that (4.E.14)
holds. Moreover, from (4.E.4b, g) we have

¥(0) =0T (0)0,(t — 1) = E_ (g7 (1) — B (g ")u().
Hence
p(1) = ()6, — 1)
_ D@
Coi@HE_ (g7

_ D@ [ Boi@™h
- i o - Fiwol.

so that (4.E.13) also holds. Therefore, our conclusion is that the refined
IVAML algorithm (4.E.4)-(4.E.9) is identical to the RPEM method
(4.E.12) with a block-diagonal R-matrix.

[£-1(@ )y () — B-1(g™Hu()]
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It should be said that there may be differences of transient nature in
(4.E.13) and (4.E.14), depending on how the time-varying filter opera-
tions are ordered.

Our conclusion implies in particular that the convergence result of
theorem 4.3 holds for the refined IVAML algorithm. Also, since the
block-diagonal approximation of R becomes exact asymptotically, the
algorithm is (asymptotically) a true Gauss-Newton scheme, so that the
asymptotic-distribution result, theorem 4.5, can also be applied. The
expression for the asymptotic covariance matrix of the 8, estimate is,
according to this theorem and (4.E.11),

P, = e’ [BL(OLT(H] ™.

This result of course coincides with the expression (4.239a) for the optimal
IV estimate.



Appendix 4.F The Associated Differential Equation for the
Alternative Gauss-Newton Direction

In the derivation of the Gauss-Newton algorithm in section 3.4, we gave
the basic form (3.67) and an algebraically equivalent form (3.70). We also
pointed out a variant (3.A.9) that we claimed to be asymptotically equi-
valent. This claim will be verified in this appendix.
In Theorem 4.2 we determined the d.e. associated with (3.67). When

A(t) = A (constant), it is
0 =R7'1(9),

. (4.F.1)
R=G(0) — R,

where
f(6) = By (1, )A~"e(1, ),
B (4.F.2)
G(0) = Ey (s, )A W (s, 6).
Here (¢, 6) is determined by
(E+1,0)=F0)@ 0)+ MO, o1, 0), z(1)),
U, 0) = #(0)L(, 6) + DO, o(t, 0))

[see (3.22)]. Let us now consider (3.70) with A(f) = 1 and A(#) = A. Recall
that P() = R™1()/t [see (3.68)], so the elements of P and L decay as 1/t.
Therefore introduce

(4.F.3)

Py=t-P(, L=t L@). (4.F4)

Now (3.70c—f) can be rewritten as

S() = A +0Q/, (4.F.5a)
L= Pt — Dy ()S~@) + 01 /p), (4.F.5b)
PUy = P~ 1)+ 1~ P~ DU OS ™ OY 0P~ 1)
(4.F.5¢)
+ P(t — 1)} +0Q/t»)
A =0(t— 1)+ %F(z — DY (S L (Det) + O(1/t?), (4.F.5d)

where O(z) denotes a term that behaves like |«| when a — 0. Comparing
with the general algorithm (4.52), x corresponds to 6, col P. Keeping
these variables constant and evaluating the resulting average updating
direction in (4.F.5c. d) gives the d.e.
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6 = Pf(0),

) . (4.F.6)
P=P— PG)P,

where f and G are given by (4.F.2). Obviously (4.F.6) is equivalent to
(4.F.1) with the change of variables P = R™!. This is also trivial, since we
know that (3.67) and (3.70) were algebraically equivalent to begin with.

Let us now consider the alternative Gauss-Newton algorithm (3.A.9)
for A(t) = A and A(¢) = 1. As in (3.70) the elements of L and P will tend
to zero as 1/t. Therefore introduce

L@ =1L, P@)y=1-P@), {(&)=1tT0), ¥ =19

Equations (3.A.9c—h) can now be rewritten as

St =A+0()), (4.F.7a)
Le+ 1) = FLQ) + MP@) + O(1)s), (4.F.7b)
VT = #_, L) + D,P(t — 1) + O(l/1), 4.F.7c)
Loy = (A~ + 0/, (4.F.7d)

P()=P(t— 1) + %[—lﬁ(t)A‘lnﬁT(t) + P —1)]+0(/t?}), (4F.7e)

60) = 6 — 1) + %l/:/(t)A_ls(t), 4.F.7F)

Comparing with the general algorithm (4.52) we find that the estimate
x corresponds to 6, col P. Keeping these variables constant and evaluating
the resulting average updating direction in (4.F.7e, ) gives

0 =1, P),

PR (4.F.8)
P=P—G@, P),

where

f6, Py = Ey(t, 6, PYA (1, 0) (4.F.9)
and

G0, P) = Ey(1, 0, PYA™N (1, 0, P). (4.F.10)

Here l/:/(t, 0, 129) is the variable that (4.F.7b, ¢) produces when 6 and P are
kept constant, i.e.,
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Et + 1,0, Py = F(0)L(, 0, P) + MO, o1, ), (1) P,

~ =~ = ~ - 4.F.11)
¥ (¢, 0, P) = H#(0){(t, 6, P) + D(0, o(1, 0)) P.
Comparing this to (4.F.3), we see that
W1, 0, P) = Pyt, ). (4.F.12)
Hence
0, Py = P(0),
(4.F.13)

G(0, P) = PG(O)P,

where fand G are given by (4.F.2). This means that (4.F.6) and (4.F.8)
coincide, and our claim has been proved.



Appendix 4.G  The Differential Equation Associated with the
Extended Kalman Filter

Let us derive the d.e. associated with the RPE algorithm (3.B.4) (or (3.B.5),
which according to appendix 4.F is the same) and the EKF (2.A.1)-
(2.A.11).

In both of these algorithms there is a technical complication in the
application of theorem 4. 1. The filters generating %(¢) and W(¢) in (3.B.4d,
g) are not entirely determined by 6(¢), as required in (4.52b) (§ corresponds
to x; X and w to ¢). When we ask our question, ““What would the average
updating directions be, if 6 is held constant?” we must therefore first
evaluate to what limit, K,, K(¢) in (3.B.2) would tend and then use this
constant value for K in (3.B.4d, g). The technical formalities, allowing
this slightly more general structure, are justified in Ljung (1979a).

The d.e. associated with (3.B.4) will thus be

6 = R7/(6),
. 4.G.1)
R=G() — R,
where
f(6) = Ey(1, 0) S, 'e(t, 0),
4.G.2)

G(9) = Ey (1, 0)S; 'y (1, 0).

Here ¢(¢, 0) is defined from (3.B.4a, d, €) in the usual manner, and ¥ (¢, 6)
is obtained from (3.B.4f-h) as

W(t+ 1,0 =[F0O) — KHO)]W(2, 6)
+ M6, £(¢, 0), u(t)) + Hpe(t, 0),
W, 0) =Wt OH™(0) + DT, (1, 0)), (4.G.3b)

(4.G.3a)

and S, and K, are the steady-state solutions defined in (3.136), and ¥}

is the limit to which J; in (3.B.3) converges for a fixed 6(r) = 6. By

construction,

A=K 4.G.4)
o 60 o . . -

Therefore (¢, 8) will obey

V0 0 =550 0) 4.G.5)
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which, of course was the objective of the algorithm (3.B.4). This also
means that the d.e. (4.G.1) have the stability properties of theorem 4.3.
The general convergence results on RPE algorithms consequently apply
also to (3.B.1)-(3.B.4). Notice that we can alternatively use (3.B.5).

Now, as we found in Appendix 3.C, the only, nontransient difference
between (3.B.5) and the EKF (2.A.1)-(2.A.11) is the missing term J¢,&(?).
Hence, the d.e. associated with the EKF will be given by (4.G.1)-(4.G.3)
with the exception that the last term in (4.G.3a) is deleted. Exclusion of
this term may, however, result in loss of the nice convergence properties,
as shown in example 4.1 in Ljung (1979a).



Appendix 6.A A FORTRAN Subroutine for RPE Identification

In this appendix we give the code for a FORTRAN subroutine which
performs RPE identification. In order to not complicate the code un-
necessarily, we choose a SISO model set

A(g™Hy(1) = Blg™Hu) + Clg Me(), (6.A.1)
with

A@ Y =1+a,qg '+ - +a,q",

B@ ) =big '+ +bg" (6.A.2)
CgH)=1l+c g+ +cqg "

Extensions to cases with different degrees of the polynomials or the more
general model structure, (3.104) are straightforward. However, more
administration will be needed in the subroutine, since the amount of
old data necessary to save for the filtering procedures, is then no longer
identical to the vectors ¢(?), (3.124d), and ¥ (¢), (3.125f). With the model
set (6.A.1), the administrative parts of the program become very simple.

The subroutine is written so that the basic algorithm (6.1)—(6.4) is
iterated one step. This means that a new call to the subroutine must be
done at every new sampling point. The U-D algorithm described in section
6.2 is used.

It should be noted that the algorithm can be made still more efficient.
To make the description clear both the normalized gain vector L(z)
[see (6.15)] and the usual gain vector L(¢) are computed. This is, of course,
not necessary.

In table 6.A.1 we give a list of the variables involved in RPEM and

“the corresponding notations used in the book.

Notice that the choice K = 0 gives the PLR algorithm for (6.A.1), i.e.,
ELS.

The variable V' shown in table 6.A.1 is used to estimate the loss function.
It is taken as

t EZ(S)
0= L i T oG~ Do)
For A(s) = 1 this expression gives the exact minimal loss for the least
squares case (see lemma 3.D.1).

The subroutine has been implemented on a NORDI100 computer.
The CPU time for floating-point addition is 8 usec. Typical CPU times

(6.A.3)
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Table 6.A.1

Notation in subroutine RPEM and in the book.

Variable in RPEM Notation in the book
THETA 6

P P

N n

§) u(t)

Y ()

LAMBDA ()

K Kseeex. 517

C Csee (6.111)

A -

EPS (1)

EPSI &(1)

FI @)

PSI Y(n)

L L(t)

AMY u see (6.112)
Y1 $(r) see (3.125a)
Ul (1) see (3.125b)
El &(1) see (3.125d)

for one call to the subroutine is 4.6 msec for a first-order model and 8.7
msec for a second-order model.

The subroutine contains the following seven steps.

1. [nitialization, lines 81-94. If the integer INIT is given a nonzero
value (typically at the first call to the subroutine), then the variables are
initialized as

(t=0)

p0)=0 Y©0)=0

6(0)=0 LO)=0 P0O)=0
V=0

2. Computation of the prediction error, lines 96—100. This computation
is given by (3.123a) and (3.124e).

3. Updating the parameter estimates, lines 102—126. When the integer
ISTABI is nonzero, monitoring is performed. Then the step length is



FORTRAN Subroutine for RPE Identification 481

reduced so that C(z) has all zeros outside the unit circle. The algorithm
(6.112) for this is contained in the lines 108—121. The stability test on
line 117 is given in a separate subroutin NSTABL. This routine is based
on the Schur-Cohn algorithm as given by Kucera (1980). The updating
(6.3) of the parameter estimates are then performed in lines 125, 126.

4. Computation of the residuals, lines 128—132. The equation (3.124c)
is used here.

5. Computation of filtered signals, lines 134—144. Here the equation
(3.125a, b, d) are implemented.

6. Updating the vectors @(t) and (1), lines 146—164. These computations
are quite straightforward.

7. Computation of the gain vector and updating of P(f) and V, lines
166—203. Here the FORTRAN mechanization, given by Thornton and
Bierman (1980), of the U-D algorithm is implemented. The computations
are described in section 6.2.
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1% SUBROUTINE RPEM(THETAsPsNsyUsYsLAMBDAIKyCyISTAB1

2% + ISTAB2yVEPSsEPS1yINIT»PDY1IDIM)

3 C

4% C RECURSIVE PREDICTION ERROR METHOD

5% C

&% C THE SUBRQUTINE PERFORMS THE MODIFICATION OF THE PARAMETER
7% C ESTIMATES THETA FOR ONE SAMPLING INTERVAL.

8% C A NEW CALL TO RPEM MUST BE MADE FOR EVERY

9% C NEW SAMPLING INTERVAL

10« C
11 C

12# C
13« C MODEL STRUCTURE USED

14% C
15% C -1 -1 -1

16 C ACQ JY(T) = B@ HU(T) + €@ IECT)Y

17 C

18% C #%% DESCRIPTION OF PARAMETERS ##%

19# C

20+« C THETA - VECTOR OF ORDER (3 #* N) CONTAINING
21% C THE PARAMETER ESTIMATES

22% C THETA= (AC1) ... A(NIHBC(1) ... B(N)»C(1) ... C(NI}
23% C THETA 1S CHANGED IN THE SUBROUTINE

24% C P - SYMMETRIC MATRIX OF ORDER (3 % N)
25% C P IS USED IN THE U-D FORM

26% C P = UxD*U(TRANSPOSED)
27% C WITH D DIAGONAL AND U UPPER TRIANGULAR

28% C THE ELEMENTS OF D ARE STORED IN THE DIAGONAL OF P
29% THE ELEMENTS OF U ARE STORED IN

0« C THE UPPER TRIANGULAR PART OF P
31 C P IS CHANGED IN THE SUBROUTINE

3z% C N - MODEL ORDER (MIN 15 MAX 102
33 C V] - THE LAST INPUT VALUE

4% C Y - THE LAST OQUTPUT VALUE
35% C LAMBDA- THE FORGETTING FACTOR (TO BE ENTERED)

36% C K - THE CONTRACTION FACTOR USED FOR FILTERING OF
37+ C THE DATA (TO BE ENTERED)

38« C COMMENTS
39 C FOR REASONABLE RESULTS

40« C 0.LT. LAMBDA .LE.1 LAMBDA CLOSE TC 1 AFTER MANY
41% C CALLS TO RPEM

42% C 0.LT. K .LE.1 K CLOSE TC 1 AFTER MANY CALLS TO RPEM
43 C C - PARAMETER USED FOR THE REGULARISATION
44% C C SHOULD BE CHOSEN RATHER LARGE

45% C ISTAB1- FLAG (TO BE ENTERED) FOR STABILITY TESTS OF C(2).
4% C IF ISTAB1=0 NO MONITORING (STABILITY TEST

47% C AND STEP S1ZE REDUCTIONS) 1S PERFORMED

48% C IF ISTAB1 .NE.O MONITORING (STABILITY TEST AND
49% C POSSI1BLY STEP S1ZE REDUCTION) 1S PERFORMED
50% C ISTABZ- INTEGER AT RETURN GIVING THE NUMBER OF STEP SIZE
51% C REDUCTIONS PERFORMED. IF ISTAR1=0
5z# C THEN ISTAB2 IS NOT SIGNIFICANT

53% v ~ LOSS FUNCTION - SUM OF SQUARED PREDICTION ERROQRS.
54% C MODIFICATION DUE TCO UNCERTAINTIES IN THE

55#% C TRANSIENT PHASE 15 INCLUDED

56% C V IS CHANGED IN THE SUBRCQUTINE

57+ C EPS - THE PREDICTION ERROR (GIVEN AT RETURN)

58% EPS1 - THE RESIDUVAL (GIVEN AT RETURN?
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59% C INIT - FLAG TO BE USED FOR STARTING THE RECURSION
60% C IF INIT=0 ALL PARAMETERS ARE UPDATED

61% C IF INIT.NE.O APPROPRIATE INITIAL VALUES ARE
62% C FIRST SET. THEN THE PARAMETERS ARE
63 C UPDATED USING THE AVAILABLE DATA UsY
64% C PO - SCALAR PARAMETER USED TO GIVE P AN INITIAL
65% C VALUE (T0 BE ENTERED WHEN INIT.NE.OD.

66% C IF INIT.NE.D P= PD*UNIT MATRIX

&7% C IDIM - DIMENSION PARAMETER

&8 C

69% C

70 C SUBROUTINE REQUIRED

71 C NSTABL

72¢ C

73 C

T4% DIMENSION THETA(134PCIDIMs12sR(1)

75% DIMENSION FI(30),PSI(30)sTSTABC11) 1 WORK(Z2)F{30)1G(30)
76% REAL LAMBDAsKsL (307

77% C

78% IF (N.LT.1 ,OR., N.GT.10) RETURN

79% NN= N#*3

80* C

g1% ¢ *x%%%  TEST FOR INITIALIZATION *x%¥»

8zx C

83 IF (INIT.EG.0) GO TO 100

84% C

85% . v=0.

8b% DO 10 I=1.NM

87 Do 10 J=1,NN

88% 10 PCIsdi= Q.

89 PO 20 I=1:NN

90 F(I,12= PO

F1* THETACIY= Q.

9% Lil)= 0.

3% FI{I>= 0.

T4 20 PEICIy= 0.

5% C

Fox **¥#%  COMPUTE PREDICTION ERROR #¥¥x%

37+ C

8% 100 EPS= Y

o9% DO 14D I=1sNN

100% 110 EPS= EPS -~ FI(I1)*THETA(I)
101+ €

102 C #x%xx COMPUTE NEW PARAMETER ESTIMATES #x%¥
103% C

1G4ox AMY=1.

i25% €

106 € *%#% TEST FOR NEED OF MONITORING %#*#

107+ C

108% IF(ISTAR1.E®@.0) GO TO zZ0O0

109% ISTARZ=0

110% 120 DO 130 1=1RN
111 % NI=2%N+I

112# 130 TSTAB(I+1)= THETA(NID+L(NI1)*EPS*AMY
113 TSTABC(1)=1,

114+ C
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=3

%% TEST FOR STABILITY OF C(Z) %%

CALL NSTABL(TETABsNs»WORK,IST?
IF(IST,.E2.0) G& TO 200
AMY=AMY/Z.

ISTABZ=1STABZ+1

g0 TG 120

#x% UPDATE PARAMETER ESTIMATES #x+x

[ RsNe)

DO 210 I=1,NN
THETACIY= THETACI? + L(I)*EFS*AMY

*x¥¥¥  (OMPUTE RESIDUALS #*xxx

CaOney

EPS1= Y
oo I=1,NN
2Z0 EPS1= EPS1 - FI(I)»*THETACI)

O ¢

##xxx COMPUTE FILTERED SIGNALS Y13U1sE1 #x%xx

Y=Y
uis=y

E1=EPS1

3]

00 620 I=1sN
CI=THETA(Z#N+I)#K%#*]
Y1=Y1+CI#PSIC(I)
U1=U1~-CI*PSI(N+12
620 E1=E1-CI#PSI{N%Z+I>

**¥%% UPDATE VECTORS FI AND PSI #xx%%

[sRsNel

IF(N.EQ.1Y GO TO 720
0o 700 J=ZsN
I=N+2-J
FItID=FICI-1;
PSI{I1)=PSI(I-1}
I=Z%xN+2-1
FICLI=FICI-1)
PSICI)=PSI(I-12
I=3%N+2-)
FICI)=FI(I-1)
700 PSICI)=PSICI-12

720 F1(i)==Y
PSI(13=-Y1
FI(N+1)=U

PSI(N+1)=U1
FI(Z#N+1)=EPS1
PSI(Z#N+1)=E1

o
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*xxx*  COMPUTE GAIN VECTOR L UPDATE P AND V *xxxx

00 810 I=ZsNN
J=NN+Z~1
ALFA=PSI(J)
Ji1=J-1
DO 800 KK=1:J1

800 ALFA=ALFA+P(KKjsJ)*PSI(KK>
F(J)=ALFA

810 G(Jr)=P{JyJI*ALFA
GC(13=P(1,1)%#PSI(1}
F(1)=PSI(1)

ALFA=LAMEDA+F (1)%G(1)

GAMMA=0.

IF(ALFA.GT.0.) GAMMA=1./ALFA
IF(G(1) ,NE.D.) P(1+1)=GAMMA*P (1,1

DO 830 J=24NN

BETA=ALFA

Dh=G(J}
ALFA=ALFA+DD*F (1)
IF(ALFA.E@.0.) GO TO 830
AL=-F (1) *GAMMA

J1=J-1

Lo 820 I=1,J1

E=P(I.0)

P{I-JI=S+AL*G(1}

3(1)=G{I1)+DD*S

GAMMA=1,/ALFA
P(JyJ)=BETA*GAMMA*P (J,J)/LAMBDA
P{laJ)=AMINI(R(Jd)»C)

&30 CONTINVE

gzl

©

V=V+EPS**2/ALFA
DO 840 I=1yNN
840 L{Ir=G(I)/ALFA

*¥x¥% END OF COMPUTATIONS s*xxx

*Xs X2

RETURN
END
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22
23%
24%
25%
26
27+
28+
29%
J0*
J1%
32
33+
36k
I5%
36+
I7%
38#
I9x
40%
L1%
42#%
43
(Y8 )
45
Lh%
47%

COoOO00000O00000000000

(2N s]

-

10

11

12

98
99
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SUBROUTINE NSTABL{AsNsWsIST)

TEST FOR STABILITY

REFERENCE V. KUCERA: BISCRETE LINEAR CONTROL:s 1980, P. 153

A - VECTOR OF ORDER N+1 CORRESPONDING TO THE POLYNOMIAL
ACI)=A(1) #Z#aN+A(2)#2(N-1)4+ ... +A(N+1)
N - ORDER OF THE POLYNCGMIAL (MIN O, NO MAX)
W - WORKING ARRAY OF ORDER Z#N+2
IST- INTEGER AT RETURN SHOWING THE STABILITY OF A(I)
IF 15T=0 THEN A(Z) HAS ALL ZERQS STRICTY INSIDE THE UNIT CIRCLE
IF 1ST=1 THEN A(Z) HAS AT LEAST ONE ZERO
ON OR OUTSIDE THE UNIT CIRCLE

SUBROUTINES REQUIRED
NONE

DIMENSION A(1)sW(1)

I8T=1
N1=N+1

DG 1 I=1,sN1
W(I)=A(L)
W(N1+1)=0.

K=0

IF (K.EQ.N) GO TQ 99
NK1=N-K+1

D0 11 J=1,NK1
WINT+J)=WINK1-J+1}
IF(W(N1+NK1).EG.D.? GO TO 98
AL=W(NK1) /W (NT+NK1)
IF(ABS(AL).GE.1.0) GO TO 98
NK=N-K

DO 12 J=1,NK
WJI=W(J)-AL*#W(N1+J2

K=K+1

G0 T0 10

RETURN
I15T=0
RETURN
END



Appendix 6.B Derivation of a Fast Algorithm for Gain
Calculation

In this appendix we derive the algorithm (6.59). For easy reference we
have marked those equations with an asterisk * that are important for
the final algorithm, and not just intermediate results. In addition, the
equations marked with a dagger ' will be used in the derivation of the fast
ladder algorithm in appendix 6.C. The variables introduced in (6.47)—
(6.58) will be crucial for the derivation.

6.B.1 Updating L(?)

We now suppose that we know L(f). As in (6.49) we find that

_ 0 0)
* = 6.B.1
Rm@& @&’ (6D

where the a-vector X(?) is given by
xm=[z»*ﬂmwwﬂua
k=1
Using that
L(n)= R (¥ ()
and comparing with (6.54), we find that
() = —ATOY Q). (6.B.2)

This expression, can, according to (6.55) be interpreted as a prediction
of x(#), which explains the notation.
Now in order to determine L*(¢) in (6.51), i.e.,

_ x(l)>
R* *(P — () — , 6.B.3
OL*(@) = y*() ('1’(’) ( )

we need just replace x(¢) in (6.B.1) by x(¢). This we can accomplish with

1
(A (t)) ’

that according to (6.52) can operate on the first 2 rows on the right-hand
side, without affecting the na bottom rows. In fact, with

e(r) £ e'(t) = x(r) — %), (6.B.4)
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we have

D% 0 I e e
R(”R2m>+(«Q[R“” dﬂ

O\ (RO
_Qm)+<0:ﬁRMJem

LR +eo\  (x0\
—<wm>'@J‘w”

A comparison with (6.B.3) now shows that we must have
[R(H] 'e(2) )

L@ty + AQ[R (D] e(r))

We have now gone from L(z) to L*(¢). In order to go from L*(¢) to

L(z + 1), we first make another decomposition of L*(z), where we single
out the last o elements:

L*(t) = < (6.B.5)*

iy = (M© *
L*(t) = ( D ) Lo rows’ (6.B.6)
We have
= M(1) (!//(t + 1))

R* = . 6.B.7
m(u@) x(t = ) @B

We would like to obtain (6.50); i.e., we would like to obtain

R*(1) (L(t 0+ 1)) = (dj(tj D) (6.B.8)

for some a-vector denoted here by *. In order to achieve this we have to
remove the last « rows of the left-hand side of (6.B.7) without affecting
the upper na rows of the right-hand side. This can be done using

B
o)

We have

_ M B
R*(r)[( m(,r,,l - ( ;r)) ”(t)}
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(Y@ + 1)> 0 B Y+ 1) >
B (x(t -n) (R'(z)>”(’) B (x(t —n) — R Ou@))

Comparing this to (6.B.8) we find that
L(t + 1) = M) — B()u(r). (6.B.9)*
With (6.B.5), (6.B.8), and (6.B.9) we have now gone from L(¢) to L(z + 1).

6.B.2 Updating A4(¢) and R*(?)

Suppose that we have A(z — 1) available, i.e., suppose we have

E*(z-l)( ! >=(RE(’_1)>. (6.B.10)

A(t—1) 0
Since from (6.47),
R*(f) = AR*(t — 1) + ¢* () (W* (1), (6.B.11)

we also have

I
[w*(t)]T(A(t B 1)> =xT(O+ ¥4 - D).

Hence,

R0l L)
(t) A —1)
= AR*(1 — 1)<A(t B 1)> +P*O[xT() + ¥ (DA — 1]  (6.B.12)
- (me(;_ ”) + U0,

where we have introduced the notation
e 2 e =x() + ATt — DY (o). (6.B.13)*

We may view e(¢) as the prediction error associated with the linear regres-
sion (6.55) [see (6.56b)].

From (6.B.12) we see that we need to remove the last nx rows of the
last term. This can be achieved with the matrix
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(1)

In fact, using (6.B.1) we have

_ 0 X
R*(0) <L(t)>eT(t) - (;((g) eT(2). (6.B.14)

Consequently, from (6.B.12) and (6.B.14) we obtain

R0 (4 )~ ()]
® (A(t—l) e

_ ARt —1) x(O\ X\
= ( 0 > * (wm) c0- (wm) e

B (iRe(t — D+ [x() - )E(t)]eT(t))
= o .

Comparing this to (6.52), we find that we have

A =A@t -1 — Le™ () (6.B.15)*
and
Ré(t) = AR(t — 1) + e(De™ (1), (6.B.16)*

where we have used the definition (6.B.4) of e(z).
There is a useful simple relationship between €(¢) and e(z). We have
from (6.B.15)

e(t) = x(1) + AT (YD)
=x( +[40=1) = LOe" (O] ¥ ()
=x(t) + AT(t ~ DY (1) — e(OLT DY (1)
=e()[1 - LT(y()].
Let us introduce the notation
B(1) = LT () (2). (6.B.17)**
Using this scalar, we then have

ot = e(nN[1 — B()] (6.B.18)*"
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and
Re(t) = ARC(t — 1) + [1 — B(0)]e(D)e™ (). (6.B.19)*

With (6.B.15), (6.B.17), and (6.B.19) we have thus updated 4(r) and
Re(1).

6.B.3 Updating B(r)
Assume that B(r — 1) is known, so that we can compute

B(t—l))_( 0 (6.8.20)
CA\R( -1 -

I
We then have from (6.B.11)

R0 (B(t I— 1))

R*(t — 1)(

0 T ;

We introduce the notation
r@=r"')=x(@t—n) + BT - Dy +1). (6.B.21)**

Then we have

sy (BC-IN_( 0 Y+ D\
R (t)< 1 ) - (,{R’([ _ 1)) + (x(t _ n))r (. (6.B.22a)

We would like to eliminate the first na rows of the right-hand side. We
first note that

e (LE+DN Y+ 1)

R (t)( ) ) = (m M n)) (6.B.22b)
[see (6.50)], where

Xt —n) = [ S 2 xtk — m)yT(k + 1)} Lt + 1). (6.B.22¢)

Now using that

L+ 1D)=R*(t+ D y+1
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and recalling the interpretation of B(r), we find that
Xt—n)=—B"(OyY(+ 1),

which is the backward prediction of x(z — n), given ¥ (¢ + 1).
Also introduce

F(f) =x(t —n) — X(t —n) = x(t —n) + BT(OY(t + 1).
We then obtain

ol ()
B 0 Yyt + 1\ y(t+ DY
- (iR’(z — 1)) + (x(t - n)>' Ok (;Z(z — n)>' ®

0
N (iR'(z — D)+ [x(t—n) — x(t - n)]rT(z)>'
Comparing this to (6.53), we find that

B(H=B@t—1)—L(t+ DrT® (6.B.23)
and
R () =AR(t — 1) + F(Or' (o). (6.B.24)*

Now the equations (6.B.9) and (6.B.23) are in fact a system of equa-
tions for solving for L(¢ + 1) and B(f). Substituting (6.B.9) into (6.B.23)
gives
B[ — p()r" ()] = Bt — 1) — M(t)r"()
or
B(y=[B@t—1)— MOr"OI[I - u@®r*@®]" (6.B.25)*

With (6.B.25) we have now also updated B(¢).
With this the derivation is completed. The equations marked with an
asterisk * constitute the algorithm as summarized in (6.59).
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In this appendix we shall derive the algorithm (6.92). We mark equations
that will be part of the algorithm with a dagger ! in order to separate them
from all the intermediate relationships.

6.C.1 Auxiliary Variables

We use B,(1) as the least squares estimate of B, in the regression (6.89)
based on x(j), 0 <j <t i.e., we use

B,(0) =[ Y Aig,(j + Do+ 1) + m]"l

x 3 i+ DI-x"( ~ ]

As in (6.53), this relationship can also be written [recall (6.90)]

D Bn(t) _ __0__
R, (t+1) (——I——) —(R;(t)> o rows (6.C.1)

We shall also use 4,(¢) as the least squares estimate of A, in the regression

x() = — Al @ (1)
based on x(j), 0 <j < t. It is defined, as in (6.52)~(6.55), by

R, (1+ 1)(2_%5) - (5_50(_’5 Lorows (6.C.2)

Notice that when — y(¢) is part of the x()-vector, say equal to its first
p rows, then the first p columns of the no x a-matrix A4,(f) will be equal
to —#6,(¢) as defined by (6.86).

We shall also use the na-vector L,(¢) as an auxiliary variable. It is defined
by

R, ()L, (1) = ¢,(t) (6.C.3)
[see also (6.46)].

6.C.2 Additional Notation

We use the residuals

en(k) = x(k) + A7 (D@, (k), (6.C.4a)
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Table 6.C.1

Matrix dimensions.

Appendix 6.C

scalar
a-vectors
na-vectors

no X a-matrices
o X a-matrices
p-vectors

p X o-matrices
no X p-matrix

[0)

x(1), £,(0), e,(0), &(1), r,(®), 7o)
@,(1), Ly(1)

A4,1), B,(1)

Ri(1), R, E ), K (0, KX
YO, 5a0), (0, El)

K0, BOF

6,(1)

ra(k) = x(k — n) + B (e,(k + 1),
exlk) = y(k) = 67 (), (K).
In particular, we use

e () =e () () =170 8,(0) = 8, 71(2)

and

,(1) = ex(1); 7,(t) = ra(D): 2,(0) = £,(0).
For notational convenience we introduce

eo(t) = ro(t) = €o(t) =To(1) = x(1).

(6.C.4b)
(6.C.4¢)

(6.C.5a)

(6.C.5b)

(6.C.5¢)

We also use the one-step-ahead prediction of x(r):

X,(0) = — A7 (t = Depy (D).

We thus have

en(t) = x(t) - ﬁn(t)

6.C.6)

We give the matrix dimensions for important quantities in table 6.C.1.

6.C.3 Useful Results from Section 6.3.2

The definitions (6.C.1) and (6.C.2) coincide with (6.52) and (6.53). There-

fore (6.56a) implies that

Rin = Y i *et(k)[el(k)]T + A'S1,
k=1

6.C.7)
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and (6.58a) implies that

RI(D) = i ATRLE) i) ]T + ASL (6.C.8)
k=1

Moreover from (6.B.16) and (6.B.24) we know that

Re(t) = ARY(t — 1) + g, (De) (1), 6.C.9)

RI(f) = ARL(t — 1) + 7,(D)rY(2). (6.C.10)

We also established the following relation between &(f) and e(?) [see
(6.B.17) and (6.B.18)]:

g,(1) = e,()[1 — Bu(1)], (6.C.11)
where

B.(1) = Ly ()9, (2). (6.C.12)
Analogously, from (6.B.21) and (6.B.23) it follows that

() =r,O[1 — B, + D] (6.C.13)

6.C.4 Order Updates for 4,, B,, R;, and R}

Suppose that A, _,(¢) and B,(t — 1) are known at time ¢; from these, we
wish to determine A,(¢#) and B,(f). From the defining relation (6.C.2)
and from the second equality in (6.91) we have

I
Rya(t+1) __A_":l(_t)_,
0 1 o rows
x I
=| RG+1D % || 40 (6.C.14)
**********: 0
1 R;_,()\ 1o rows
R+ [——-=
[ )(An_l_(p_)_ B .
Foy(0) E,_ (1) ] § x rows

a columns
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Here F,_,(¢) is the product of the last (starred) « rows of R,.,(¢ + 1), and

Spelling this out gives

1
{2520 S U ——
FA@) = Y A %k —n— Doy (k) | Ayy (1)
k=1 O
= Y A%k — n)[x(k) + A (D@, (K)]" (6.C.15)
k=1
=Y A *x(k —n)[es_,(K)]".
k=1
Similarty we have
O :******* O
R+ 0| B =1 | =} R |\ Bra— 1)
1 i 1

(6.C.16)

I
=

R,_,(t—1)/ larows

An explicit expression for F*,(f) can be derived as in (6.C.15), but
there is simple relationship between F* and F. To find that, we multiply
(6.C.14) from the left by

0 T
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The left-hand sides of the resulting expression are then each other’s
transposes by construction, while the right-hand sides yield

Ex (0= FL (. _ (6.C.17)

Now the matrices 4,(¢) and B,(¢) are defined by (6.C.1) and (6.C.2).
In order to go from (6.C.14) to (6.C.2) we need to remove the last «
rows from the right-hand side of (6.C.14). This can be accomplished using
(6.C.16). We obtain

I 0
Ryt + D 42 | = [ Bucsc = D) J[Ri-1t = DIE, ()
0 I
RO\ [ ELOMR - DITEL0)
= _'_0__— - 9 ____________
E(n)  \R_ (= DRt — D] 'E_,0)
Rii () — ELO[R-1( = D] E ()
= o
0

Comparing this to (6.C.2) shows that

A () = (A"‘Ol @ ) — (B"‘l(; B D) K, (1), (6.C.18)

where we have introduced the notation

K0 = EF@) Ryt — D] (6.C.19)'
It also follows that

Ri(t)=R:_,(t) — EY L (OKE (1), 6.C.20)

By an analogous argument applied to (6.C.16), we find that

0 1
(0= (Bn_l(z)) B (An_l(t)) K0 ©c2ny

and

Ry =R, (t = ) — F,_ (O[KE, D], (6.C.22)"
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where

KX =FO[R(] . 6.C.23)

6.C.5 A Ladder Form

We shall now show how the forward and backward predictions and
prediction errors, defined in (6.C.4)—(6.C.6), are related. The expressions
(6.C.18) and (6.C.21) will be instrumental for this.

Transposing (6.C.18) and delaying it one time step gives

AJ@ - D=4t —1)|0) — K, (t — )(B (1 —2) | ]). (6.C.24)
We note that

At — Do, (t) = = %,(0),

(Ap-1(t = D | 0)@, (1) = A7, (t = Dy (1) = —%,-1(0)

and

(By—1(t = 2) | Dop(t) = By (t = D@,y () + x(t —n) =1,y (1 = 1)

in the notation of (6.C.4)—(6.C.6). Hence multiplying (6.C.24) by ¢,(1)
gives

(1) = %1 () + K,_y (¢ — Dr,_,(t = 1), (6.C.25)"

By analogous calculations [transposing (6.C.21), shifting it one time
step backward, multiplying by ¢,(t + 1), and subtracting x(¢ — n)] we
find that

r()=r,_(t —1)— K} ,(t — De,_,(0), (6.C.26a)
en—1 () = x(t) — %,_,(2). (6.C.26b)
With e, (6.C.25)—(6.C.26) can be rewritten as

enr) = €,1(t) — K,y (t = D,y (£ = 1),

rdn=r,_ (t —1)— KX ,(t— e, (9, (6.C.27)
eolt) =roln) = x(2).

The signal flow in this recursion is depicted in figure 6.1.
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Notice that when the p first elements of x(f) are equal to — y(#), then
the first p rows of (6.C.25) read

j)n(t) = .}A)n—l(t) + K:—l(t - l)rn—l(t - 1)’

where K _; are the first p rows of the « x a-matrix — K,_;. This relation
can also be written

Pu() = K3t — Dyrgt — 1)+ Kt — Dry(t = 1)
4o+ K2t~ Dy (2= 1)

(6.C.28)

This is exactly of the form (6.88) that we are seeking. The recursions
(6.C.25) and (6.C.26) therefore contain the desired ladder form repre-
sentation of the prediction, and the variables K7 are consequently the
reflection coefficients.

We now discuss how (6.C.25) and (6.C.26) are to be used in recursive
estimation, and what additional information is required. Suppose that
at time 7 — 1, we have the following quantities available:

R(t—1),F(t—1),R(t—2), i=0,...,M~1, (6.C.29)
r(t —1), i=0,...,M—1. (6.C.30)

We want to update these variables to time .
1. From (6.C.29) we can compute

K(t—1) and K*@-1), i=0,...,M—1, (6.C.31)

using (6.C.19) and (6.C.22), (6.C.23).

2. With K(t — 1) and K*(t — 1) given, ¥,(¢) can be computed from
ri_()fori=1, ..., Musing (6.C.25).

3. At time ¢, the information x(¢) arrives.

4. We can now compute e,(¢) and r(f) using (6.C.26) for i=0, ....
M — 1. Hence the information (6.C.30) has been updated.

5. To update R](t — 1) from R](t — 2) we need, according to (6.C.10)
and (6.C.13), r;(¢ — 1) and B;(z).

6. To update R{(¢) from R{(t — 1) we need, according to (6.C.9) and
(6.C.11), e;(?) and B;(2).

To be able to update the information (6.C.29) we need consequently
only discuss how to find f;(¢) and how to update F(¢) from F(r — 1.
This will be discussed now.
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6.C.6 Computation of f;(¢)

The idea is to update §,,,(?) from S,(¢) based on an update formula for
L,.1(®) from L,(¢). To find the latter, we note from (6.B.22b, ¢) that
[recall that R*(¢) = R,,,(t + 1)]

L,() @a()
Ryi( )< ) (,"(t o 1)>, (6.C.32)

where
X(t—n—1)=—-BI¢t—De,(0)= -7t — 1) +x(t—1—n). (6.C.33)

The last equality in (6.C.33) follows from (6.C.4)—(6.C.6). Consequently,
using (6.C.1), we have

Enﬂ(t)((L"o(’))+(B - )[R'(t—l)]l (t_l))

_ @a() 0 ~
- ()En(t -—n— 1)) + (7;.([ — 1)> - (P,.+1(t),

from which we see that

Loi(0) = (L"O(t)) + (B"(tl— 1)> [Ri(t — D] %, = 1). (6.C.34)

Multiplying this expression by ¢, (1) now gives

Busr () = Bu(D) + 71t — DR — D]'7,e = D). (6.C.35)
With (6.C.13), this can also be written

Bus1(D = Bo(®) + [1 — B(Orf (¢t = DLRI = D] 'r,(t = 1. (6.C.36)'

6.C.7 Updating F(1)

The relation (6.C.14) defines F,_,(¢). The left-hand side of (6.C.14) can
be written

R t+D]| 4,0
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N 0o
=Ryt + DY | 41— 1) )= | L, (De ()
0 0
S
= [iﬁn+1(t) + @pi (t + Dol + 1)] X _14.n_—l(_t:1)_
0
4;__0___
- E"H(t + 1) _12-:1_(_0_ el (D). (6.C.37)
0

Here we used (6.59b) and (6.B.11), respectively. The first term on the
right-hand side equals

_Ii::L(_t___p,
Al 0 e+ el ),
F,_(t—-1)

:******* 0 *

¥ N[
i RO L@ ) =N _ 0@
x 0 X . (—n)

using (6.91) and (6.C.32). Collecting these expressions into (6.C.37) and
just reading the last « rows now gives

Fy(t) = AF,y (0 = 1) + x(t — mel () — %,y (1 — mel 1 (2)
=AF 1t = D) + 7,4 (t — De,y (D)
using (6.C.33). With (6.C.13) we finally obtain
Foy() = ARyt = D) + [1 = By ) ]rnes (8 — Dy (o). (6.C.38)"

With this the derivation is finished. The equations marked with a dagger
f give a complete set of relations for updating all necessary quantities, as
summarized in (6.92).



Appendix 7.A Convergence Analysis of Recursive Identification
Methods with Adaptive Input Generation

In this appendix we give a lemma about the convergence analysis of the
adaptive regulator (7.10)—(7.11), used with the general recursive identi-
fication algorithm (4.16). The approach follows the heuristic outline in
section 7.3.1. The lemma will be proved using theorem 4.2. This means
that we have to make the restriction to linear dynamics as in (4.52b). In
the present case, both the predictor and the closed loop system that
generates the input output data must be linear in the data. This is, of
course, a restrictive assumption. However, it is not a necessary one; a
counterpart of theorem 4.1 with nonlinear dynamics in (4.52b) can also
be given (see Ljung, 1975).

We thus assume that the system can be described by the linear structure

x(t + 1) = Fox(t) + G,u(t) + w(t),
y(1) = Hy x(1) + e(?).

We also specialize to a linear feedback law,

u(t) = L (p(0)o.(1) + L, (6(1))9,(1). (7.A.2)

Here ¢,(¢) and ¢,(¢) are vectors, constructed from input output data
{y(t), z(t—1),...,z(t —n)} and from the reference signal {r(?),
r(t — 1), ..., r(t — n)}, respectively. L, and L, are matrix functions of
the current value of the regulator parameter p. Compared to (7.11) we
have imposed a linear structure on the regulator.

The equations (7.A.1) and (7.A.2) can be combined to yield a descrip-
tion of the closed-loop system:

X(t + 1) = F(p(0)x(t) + G(p(1))v(n),

(1.A.1)

~ (7.A.3)
z(t) = H(p())x(0).
Here we introduced the notation
r()
vy =] w® |. (1.A.4)
e(t+ 1)

As before,

¥
0 =| ;(::)
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The complete adaptive control algorithm now follows by combining
(7.A.3) and (4.16) and (7.10):

() = y(1) — y(1), (7.A.5a)
R(®) =R — 1) + y)[1@A ()0 () — R¢t — 1], (7.A.5b)
0(2) = 61 — 1) + y(O)R~ () A~ (De(?), (7.A.5¢)
p(1) = k(O@)), (7.A.5d)
(1t + 1) = Fp)x@) + G(p0)v(), (7.A.5¢)
z(t) = H(p(0)x(), (7.A.5f)
(e + 1) = A0 + BO®)2(), (1.A.5g)
(c Oyl(,:(': :)D> — OO + 1), (7.A.5h)

The driving noise and reference signals v(7) are independent of p. We can
therefore write the (fictitious) input-output data z(z, p), that we would
have obtained for a constant feedback law p, as

%t + 1, p) = F(p)x(1, p) + G(p)v(2); %(0, p) = 0,
z(1, p) = H(p)%(t, p).

The variable z(¢, p) will be well-defined as 1 — oo only when p is such that
F(p) is stable:

(7.A.6)

peC, = F(p) has all eigenvalues inside the unit circle.

We can also compute the prediction errors ¢ and gradient approxima-
tions # that would result if the data {z(¢, p)} is fed into (7.A.5g, h) for a
constant value of 0:

(e + 1,6, p) = A(0)L(, 6, p) + B(O)z(1, p),

»al6,0) \
(coln(t, 0, p)) = CO)X@ 6, p) (7.A.7)
Let

8(’9 0, p) = )’(’, p) - .j}(t ‘ 0’ p) (7A8)
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We now introduce the condition
Al” The data sequence {v(#)} is such that the following limits exist for
all pe C and all e D:

@ 1imL 5 n(t, 0, YA 201, 0, p) 2 716, p),
N-ow Nt=1

(b) fim L3 n(t, 0, YA~ (00" (2, 0, p) £ GO, p).
N-wo N,=1

. ] X 3
© I}IggosupNt;(l +[o(0)])* < oo,

where 7(¢, 0, p) and (¢, 0, p) are defined from v* by (7.A.6)—(7.A.8).
Compare this to assumption Al in section 4.3.4. Obviously we could
introduce counterparts of assumptions A2 and A3 and infer that they
imply Al’ under certain conditions on {v(z)}. This would be entirely
analogous to lemma 4.1.
We also introduce the assumptions

Reg 1 The matrix functions L;(p), i = 1, 2, in (7.A.2) are continuously
differentiable for p e C,.

D1 The regulator design mapping p = k(6) in (7.A.5d) is continuously
differentiable for 6eD,.

Let D, be the inverse image of C, under the mapping k(0):

D, = {0|k(0)eC,}. (7.A.9)
Also, let
D=D,ND,. (7.A.10)

We can now formulate the basic lemma.

LEMMA 7.A.1 Consider the algorithm (7.A.5). Assume that conditions
M1. M2, R1, and GI1 of section 4.3.4, as well as assumption Al’, Reg 1,
and D1 hold. Assume also that

&) e D and | %(1,)| + |¢(8)] < C for an infinite subsequence #,. (7.A.11)

Suppose that there exists a positive function V' (6, R) such that
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diT V(0p(z), Rp(1)) <0 for O,e D, (7.A.12)
when evaluated along solutions to the d.e.

L 05(2) = Ry () f10p(0) k(O ())),

. ) (1.A.13)
77 Ro(0) = GOp(1), k(0p(D)) — Rp(),
where f and G are defined by Al’. Let
D= {9, R}d% V(0p(0), Ry(t)) = 0}. (1.A.14)

Then as ¢ — oo either {0(¢), R(?)} tends to D, or {6(1)} has a cluster point
on the boundary of D.

Proof Equations (7.A.5d—h) can be merged into
L+ 1) = A0 + BO@y)©(),

e+ 1 -~ s

(coln(z + 1)) = CO@XRE+ 1. (7.A.15)
The algorithm (7.A.5a—c) + (7.A.15) now looks exactly like the algo-
rithm (4.70) (with particular choices of # and H) for which theorem 4.2
was given.

Our choices of 4 and H clearly satisfy Crl and Cr2 of theorem 4.2.
Moreover the matrices 4, B, and C satisfy M2 as a consequence of assump-
tions Reg 1, D1, and the fact that 4, B and C satisfy M2. M1 holds for
D, > D.

The variables obtained from (7.A.15) when keeping 6 constant are

i+ 1,0) = A0, 0) + BO)(2),

e +1]0) ~ s
= C(O(+1,0).
(col N+ 1, 0)) O )
Comparing these to (7.A.6) and (7.A.7) shows that
e+ 1]0)=50+1]0, k@),

n*@ +1,0)=n(+ 1, 0, k(0)).
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Hence the counterpart of assumption Al in theorem 4.2 follows from
Al’. (In fact it is sufficient to require the limits in A1’ to exist for p = k(6).)

The assumptions of our lemma thus imply that theorem 4.2 can be
applied to (7.A.5a—c) + (7.A.15). This proves the lemma. =
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