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Preface

Seismic imaging is the process through which seismograms recorded on the Earth
s sur�
face are mapped into representations of its interior properties
 Imaging methods are
nowadays applied to a broad range of seismic observations� from near�surface environ�
mental studies� to oil and gas exploration� even to long�period earthquake seismology
 The
characteristic length scales of the features imaged by these techniques range over many
orders of magnitude
 Yet there is a common body of physical theory and mathematical
techniques which underlies all these methods


The focus of this book is the imaging of re�ection seismic data from controlled sources

At the frequencies typical of such experiments� the Earth is� to a �rst approximation� a
vertically strati�ed medium
 These strati�cations have resulted from the slow� constant
deposition of sediments� sands� ash� and so on
 Due to compaction� erosion� change of
sea level� and many other factors� the geologic� and hence elastic� character of these layers
varies with depth and age
 One has only to look at an exposed sedimentary cross section
to be impressed by the fact that these changes can occur over such short distances that
the properties themselves are e�ectively discontinuous relative to the seismic wavelength

These layers can vary in thickness from less than a meter to many hundreds of meters
 As
a result� when the Earth
s surface is excited with some source of seismic energy and the
response recorded on seismometers� we will see a complicated zoo of elastic wave types�
re�ections from the discontinuities in material properties� multiple re�ections within the
layers� guided waves� interface waves which propagate along the boundary between two
di�erent layers� surface waves which are exponentially attenuated with depth� waves which
are refracted by continuous changes in material properties� and others
 The character
of these seismic waves allows seismologists to make inferences about the nature of the
subsurface geology


Because of tectonic and other dynamic forces at work in the Earth� this �rst�order view of
the subsurface geology as a layer cake must often be modi�ed to take into account bent
and fractured strata
 Extreme deformations can occur in processes such as mountain
building
 Under the in�uence of great heat and stress� some rocks exhibit a ta�y�like
consistency and can be bent into exotic shapes without breaking� while others become
severely fractured
 In marine environments� less dense salt can be overlain by more dense
sediments� as the salt rises under its own buoyancy� it pushes the overburden out of the
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way� severely deforming originally �at layers
 Further� even on the relatively localized
scale of exploration seismology� there may be signi�cant lateral variations in material
properties
 For example� if we look at the sediments carried downstream by a river� it is
clear that lighter particles will be carried further� while bigger ones will be deposited �rst�
�ows near the center of the channel will be faster than the �ow on the verge
 This gives
rise to signi�cant variation is the density and porosity of a given sedimentary formation
as a function of just how the sediments were deposited


Taking all these e�ects into account� seismic waves propagating in the Earth will be
refracted� re�ected and di�racted
 In order to be able to image the Earth� to see through
the complicated distorting lens that its heterogeneous subsurface presents to us� in other
words� to be able to solve the inverse scattering problem� we need to be able to undo all of
these wave propagation e�ects
 In a nutshell� that is the goal of imaging� to transform a
suite of seismograms recorded at the surface of the Earth into a depth section� i
e
� a spatial
image of some property of the Earth �usually wave�speed or impedance�
 There are two
types of spatial variations of the Earth
s properties
 There are the smooth changes �smooth
meaning possessing spatial wavelengths which are long compared to seismic wavelengths�
associated with processes such as compaction
 These gradual variations cause ray paths
to be gently turned or refracted
 On the other hand� there are the sharp changes �short
spatial wavelength�� mostly in the vertical direction� which we associate with changes in
lithology and� to a lesser extent� fracturing
 These short wavelength features give rise to
the re�ections and di�ractions we see on seismic sections
 If the Earth were only smoothly
varying� with no discontinuities� then we would not see any events at all in exploration
seismology because the distances between the sources and receivers are not often large
enough for rays to turn upward and be recorded
 This means that to �rst order� re�ection
seismology is sensitive primarily to the short spatial wavelength features in the velocity
model
 We usually assume that we know the smoothly varying part of the velocity model
�somehow� and use an imaging algorithm to �nd the discontinuities


The earliest forms of imaging involved moving� literally migrating� events around seismic
time sections by manual or mechanical means
 Later� these manual migration methods
were replaced by computer�oriented methods which took into account� to varying degrees�
the physics of wave propagation and scattering
 It is now apparent that all accurate
imaging methods can be viewed essentially as linearized inversions of the wave equation�
whether in terms of Fourier integral operators or direct gradient�based optimization of
a waveform mis�t function
 The implicit caveat hanging on the word �essentially� in
the last sentence is this� people in the exploration community who practice migration
are usually not able to obtain or preserve the true amplitudes of the data
 As a result�
attempts to interpret subtle changes in re�ector strength� as opposed to re�ector position�
usually run afoul of one or more approximations made in the sequence of processing steps
that make up a migration �trace equalization� gaining� deconvolution� etc
� On the other
hand� if we had true amplitude data� that is� if the samples recorded on the seismogram
really were proportional to the velocity of the piece of Earth to which the geophone were
attached� then we could make quantitative statements about how spatial variations in



iii

re�ector strength were related to changes in geological properties
 The distinction here
is the distinction between imaging re�ectors� on the one hand� and doing a true inverse
problem for the subsurface properties on the other


Until quite recently the exploration community has been exclusively concerned with the
former� and today the word �migration� almost always refers to the imaging problem
 The
more sophisticated view of imaging as an inverse problem is gradually making its way
into the production software of oil and gas exploration companies� since careful treatment
of amplitudes is often crucial in making decisions on subtle lithologic plays �amplitude
versus o�set or AVO� and in resolving the chaotic wave propagation e�ects of complex
structures


When studying migration methods� the student is faced with a bewildering assortment of
algorithms� based upon diverse physical approximations
 What sort of velocity model can
be used� constant wave speed v� v�x�� v�x� z�� v�x� y� z�� Gentle dips� Steep dips� Shall
we attempt to use turning or refracted rays� Take into account mode converted arrivals�
	D �two dimensions�� �D� Prestack� Poststack� If poststack� how does one e�ect
one�way wave propagation� given that stacking attenuates multiple re�ections� What
domain shall we use� Time�space� Time�wave number� Frequency�space� Frequency�
wave number� Do we want to image the entire dataset or just some part of it� Are we
just trying to re�ne a crude velocity model or are we attempting to resolve an important
feature with high resolution� It is possible to imagine imaging algorithms that would work
under the most demanding of these assumptions� but they would be highly ine�cient when
one of the simpler physical models pertains
 And since all of these situations arise at one
time or another� it is necessary to look at a variety of migration algorithms in daily use


Given the hundreds of papers that have been published in the past �� years� to do a
reasonably comprehensive job of presenting all the di�erent imaging algorithms would
require a book many times the length of this one
 This was not my goal in any case

I have tried to emphasize the fundamental physical and mathematical ideas of imaging
rather than the details of particular applications
 I hope that rather than appearing as a
disparate bag of tricks� seismic imaging will be seen as a coherent body of knowledge�
much as optics is
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Chapter �

Introduction to Seismic Migration

��� The Re�ection Seismic Experiment

The essential features of an exploration seismic experiment are�

� Using controlled sources of seismic energy

� Illumination of a subsurface target area with the downward propagating waves

� Re�ection� refraction� and di�raction of the seismic waves by subsurface heterogen�
eities

� Detection of the backscattered seismic energy on seismometers spread out along a
linear or areal array on the Earth
s surface


On land� the seismometers are called geophones
 Generally they work by measuring the
motion of a magnet relative to a coil attached to the housing and implanted in the Earth

This motion produces a voltage which is proportional to the velocity of the Earth
 Most
geophones in use measure just the vertical component of velocity
 However� increasing
use is being made of multicomponent receivers in order to be able to take advantage of
the complete elastic wave�eld
 For marine work� hydrophones are used which sense the
instantaneous pressure in the water due to the seismic wave


The receivers are deployed in clusters called groups� the signal from each receiver in a
group is summed so as to a� increase the signal to noise ratio� and b� attenuate horizontally
propagating waves
 On land� horizontally�propagating Rayleigh waves are called ground
roll and are regarded by explorationists as a kind of noise inasmuch as they can obscure
the sought�after re�ection events
 The reason that receiver group summation attenuates
horizontally propagating signals and not the vertically propagating re�ected events is

�
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that the ray paths for the vertically propagating events strike the receivers at essentially
the same time� whereas if the receivers in a group are placed so that the horizontally
propagating wave is out of phase on the di�erent receivers� then summing these signals will
result in cancellation
 Sometimes the receivers are buried in the ground if the environment
is particularly noisy�in fact� burying the receivers is always a good idea� but it
s too
expensive and time�consuming in all but special cases
 The individual receiver groups are
separated from one another by distances of anywhere from a few dozen meters to perhaps
��� meters
 The entire seismic line will be several kilometers or more long


Seismic sources come in all shapes and sizes
 On land these include� for example� dynam�
ite� weight drops� large caliber guns� and large resistive masses called vibrators� which
are excited with a chirp or swept continuous�wave signal
 For marine surveys� vibrators�
air guns� electric sparkers� and con�ned propane�oxygen explosions are the most common
sources
 The amount of dynamite used can range from a few grams for near�surface
high�resolution studies� to tens of kilograms or more
 The amount used depends on the
type of rock involved and the depth of the target
 Explosive charges require some sort
of hole to be drilled to contain the blast
 These holes are often �lled with heavy mud
in order to help project the energy of the blast downward
 Weight drops involve a truck
with a crane� from which the weight is dropped several meters
 This procedure can be
repeated quickly
 Small dynamite blasts �caps� and large caliber guns �pointed down �
are popular sources for very high�resolution near�surface studies
 By careful stacking and
signal processing� the data recorded by a vibrating source can be made to look very much
like that of an impulsive source
 Vibrators also come in all shapes and sizes� from 	�
ton trucks which can generate both compressional and shear energy� to highly portable�
hand�held devices� generating roughly the power of a hi�� loudspeaker
 Sparkers� which
rely on electric discharges� are used for near�surface surveys conducted before siting o��
shore oil platforms
 Airguns use compressed air from the ship to generate pulses similar
to that of an explosion
�

The time�series� or seismogram� recorded by each receiver group is called a trace
 The
set of traces recorded by all the receivers for a given source is called a common source
gather
 There are three other standard ways of organizing traces into gathers
 We could
look at all the traces recorded by a given receiver group for all the sources
 This is called
a common receiver gather
 We could look at all the traces whose source�receiver
distance is a �xed value �called the o�set�
 This called common o�set gather
 Finally
we could look at all the traces whose source�receiver midpoint is a �xed value
 This is a
common midpoint gather


Figure �
� illustrates these coordinate systems for a two�dimensional �	d� marine survey

�It
s called 	d since the goal is to image a vertical plane through the earth� even though the
data were recorded along a line
� The source�receiver coordinates r and s are connected

�For more details on sources and receivers see ���� and �����
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�� Relationship among the coordinates r� s� h� and x
 Each � indicates a seismic
trace




� CHAPTER �� INTRODUCTION TO SEISMIC MIGRATION
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Figure �
	� Common midpoint ray paths under three�fold coverage
 Sources are on the
left and receivers are on the right
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Figure �
�� In this example the shot spacing is half the group interval �the distance
between receivers on a given line�
 Thus the CMP spacing is half the group interval too


to the o�set�midpoint coordinates x and h via a ��� rotation�

x � �r � s��	

h � �r � s��	 ��
�
��

For the most part in this course we will be discussing post�stack� or zero�o�set� migration
methods� in which case the common midpoint domain �CMP� is generally used
 The
fold of a CMP gather is the number of source!receiver pairs for each midpoint
 This is
illustrated in Figure �
	 which shows three�fold coverage
 In this example the distance
between sources is half the distance between receivers �Figure �
��
 Therefore the CMP
spacing will be equal to the shot spacing and half the receiver spacing �known as the group
interval�
 In Figure �
� the source!receiver raypaths S� �R� and S� �R� are associated
with the same CMP location at R�




�	�	 HUYGENS� PRINCIPLE �

Figure �
�� Huygens
 Principle� every point on a wavefront can be considered as a
secondary source of spherical wavelets
 Here the plane wave moves a distance v�t in the
time increment �t
 Its new position is found by drawing a line through the envelope of all
of the spherical wavelets


��� Huygens� Principle

Huygens
 principle� that every point on a wavefront �propagating in an isotropic medium�
can be considered a secondary source of spherical wavelets� allows us to reduce problems
of wave propagation and de�propagation �migration� to the consideration of point sources

Figure �
� shows Huygens
 construction for a plane wave propagating to the upper right

Each secondary spherical wavelet satis�es the equation

�z � z��
� � �y � y��

� � �x� x��
� � v��t� t��

� ��
	
��

where �x�� y�� z�� is the origin of the spherical wavelet and t� is its initiation time
 If
the medium is homogeneous� we can use spherical wavelets of �nite radius� otherwise the
construction must proceed in in�nitesimal steps


If we could view snapshots of the Earth
s subsurface after a point source were initiated�
we would see an expanding spherical wavelet just as when a stone is thrown into a pond

So Equation ��
	
�� de�nes a family of circles in x�z space �image space�
 But that
s not
how we actually see the seismic response of a point source
 We record data for a range of
times at a �xed depth position z �usually z � ��
 If z is �xed� Equation ��
	
�� de�nes a
family of hyperbolae in x� t space �data space�
 So just as the spherical wavelet is the
fundamental unit out of which all other wave propagation phenomena can be built �via
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Huygens
 principle�� so the hyperbola is the fundamental feature of re�ection seismology�
in terms of which all other re�ection!di�raction events recorded at the surface can be
interpreted


To be precise� what we really need is a generalization of Huygens
 principle due to Fresnel�
who combined the wavelet construction with the Young
s principle of interference
 In
other words� the expanding spherical wavelets are allowed to interfere with one another

Further� you will notice in Figure �
� that the spherical wavelets have two envelopes�
one propagating in the same direction as the original plane wave and one propagating in
the opposite direction
 We only want the �rst one of these
 Fresnel solved this problem
by introducing an angle�dependent scaling factor called the �obliquity� factor
 We will
see later when we discuss integral methods of migration how this obliquity factor arises
automatically


Fresnel was the �rst person to solve problems of di�raction� which is any deviation from
rectilinear propagation other than that due to re�ection and refraction
� Fresnel
s predic�
tion that there should be a bright spot in the geometrical shadow of a disk was a major
blow to the corpuscular theory of light
 In fact� this surprising prediction was regarded
as a refutation of his memoir by French Academician Poisson
 Fortunately� another mem�
ber of the committee reviewing the work� Arago� actually performed the experiment and
vindicated Fresnel "�#


��� Zero�O�set Data

So with the Huygens�Fresnel principle in hand� we can think of any re�ection event as the
summation of the e�ects of a collection of point scatterers distributed along the re�ecting
surface
 Each one of these point scatterers is responsible for a di�raction hyperbola
 In
order to be able to make a picture of the re�ector� which is the goal of migration� we
need to be able to collapse these di�raction hyperbolae back to their points of origin on
the re�ector
 There is one circumstance in which this procedure is especially easy to
visualize� zero�o�set seismograms recorded in a constant velocity earth
 Imagine that we
can place a seismic source and receiver right next to one another� so close in fact they are
e�ectively at the same location
 With this arrangement we can record the seismic echos
from the same point whence they originated
 �To be precise� if we start recording at the
same time that the source goes o� we will record the direct arrival wave� and no doubt

�Geometrical optics is the limit of wave optics as the wavelength � goes to zero� In this limit there is
no di�raction	 there is no light in the shadow of a sharply de
ned object� So in contrast to refraction
which a�ects the shorter wavelengths more strongly� di�raction tends to de�ect the 
red� end of the
spectrum more than the 
blue� end� the de�ection being relative to the geometrical optics ray path�
The coronae around the sun and moon are di�raction e�ects caused by the presence of water droplets
randomly distributed in a layer of haze and are strongest when the droplets are of approximately uniform
size� whereas the halos around the sun and moon are caused by refraction through ice crystals in thin
cirrus clouds �See ����� Chapter V��
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Figure �
�� Simple model of a syncline
 The velocity above and below the syncline is
assumed to be constant


shake up the receiver pretty thoroughly too
 Therefore in practice we must mute the
direct arrival� either that or wait until just after things have settled down to turn on the
receiver
� Then we pick up our apparatus and move down the survey line a bit and repeat
the procedure
 This is called zero o�set experiment
 In practice we can approximate the
zero�o�set section by selecting the common�o�set section having the minimum o�set


Figure �
� shows a model of a geologic syncline
 The velocity is assumed to have the
constant value v� in the layer above the syncline� and a di�erent value v� in the layer
below
 This jump in the velocity gives rise to a re�ection coe�cient which causes the
downgoing pulse to be partially re�ected back to the surface where it is recorded on the
geophone


Figure �
� is a computer generated zero�o�set section collected over this model
 Notice
that the travel time curve becomes multi�valued as the source receiver combination moves
over the syncline
 That
s because there is more than one zero�o�set ray arriving at the
receiver in the time window we have recorded
 The goal of migration is to make
Figure ��� look as much like Figure ��� as possible�

��	 Exploding Re�ector Model

If T is the two�way time for a signal emanating at t � � to travel from the source to
the re�ector and back to the surface� then it follows that T�	 is the time it takes for a
signal to travel from the source down to the re�ector� or from the re�ector back up to the
source
 So apart from �let
s assume for the moment minor� distortions� the data recorded
in the zero�o�set experiment are the same that would be recorded if we placed sources
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�� Synthetic zero�o�set data recorded over the syncline model shown in Figure
�
�
 Shown are ��� traces sampled at 
�� seconds per sample� spanning � km on the
Earth
s surface
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along the syncline and �red them o� at T�	 with a strength proportional to the re�ection
coe�cient at the syncline
 Equivalently we could �re o� the exploding re�ectors at t � �
and halve the velocity


This means that if we somehow run the zero�o�set wave�eld recorded at the surface
p�x� y� z � �� t�
 backwards in time� then by evaluating the results at t � � we would have
a picture of the re�ection event as it occurred p�x� y� z� t � ��� provided we use half the
true velocity when we run the recorded �eld backwards in time
 As we will see in detail
later on� in the case of a constant velocity medium this time shifting of the wave �eld can
be accomplished by a simple phase shift� i
e
� multiplying the Fourier transform of the
recorded data by a complex exponential
 For now� Figure �
� must su�ce to show the
results of just such a procedure
 This is an example of phase�shift migration


You will notice that the vertical axis is time not depth
 This is referred to as migrated
time or vertical travel time
 In the simple case of constant velocity media� there is a simple
scaling relationship between depth and time� t � z�v
 This extends to depth�dependent
or v�z� media via

t �
Z z

�

dz

v�z�
� ��
�
��

When we use this migrated time rather than depth for the output image� the migration
is called time migration
 Evidently time migration will be a reasonable choice only if the
velocity shows no signi�cant lateral� or v�x�� variation
 Time migration has the advantage
that the migrated section is plotted in the same units as the input seismic section� it has
the disadvantage of being less accurate than depth migration
 The more the velocity
varies laterally� the less accurate time migration will be


��
 Finite O�set

The exploding re�ector analogy is a powerful one
 Unfortunately it only applies to zero�
o�set data� and typically exploration seismic surveys involve kilometers of o�set between
each source and the farthest receivers
 Further� there are even true zero�o�set situations
where the exploding re�ector concept fails� such as in the presence of strong lenses or
when rays are multiply re�ected


Life gets more complicated when there is o�set between the sources and receivers
 Instead
of there being a single two�way travel time for each source� we have a travel time curve
as a function of o�set
 Figure �
� shows a CMP gather associated with � source!receiver
pairs
 The dotted curve is the hyperbolic travel time versus o�set curve for a constant
velocity layer


�Invariably z is taken to be the vertical coordinate� But in earth science z increases downward�
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�� Constant velocity phase shift migration using the correct velocity
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Figure �
�� Hyperbolic travel time curve associated with a CMP gather over a horizontal�
constant velocity layer


If the depth of the re�ecting layer is z� and we let h denote half the distance between
source and receiver� then by the Pythagorean theorem it follows that the two�way travel
time as a function of half�o�set h is given by

t�h��
�
v

	

��
� h� � z� ��
�
��

where t is now the two�way travel time and v is the �constant� velocity in the layer above
the re�ector


Now the zero�o�set two�way travel time is simply

t� � 	
z

v
� ��
�
	�

So� the di�erence between the two is

t�h�� � t�� �

�
	h

v

��
� ��
�
��

This is called the normal moveout correction and is the amount by which the real traces
have to be shifted in order to make them approximate the results of a zero�o�set experi�
ment
 Normal moveout �NMO� refers generally to the hyperbolic moveout associated with
horizontal layers
 In the event that we have a stack of horizontal layers� the travel time
curves are still approximately hyperbolic
 If we apply the NMO correction to traces shar�
ing a common midpoint and sum them� we get a plausible approximation to a zero�o�set
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Figure �
�� The travel time curve for a constant velocity� horizontal layer model is a
hyperbola whose apex is at the one�way zero�o�set travel time t��	


trace
 This means that we can apply zero�o�set migration to seismic data with nonzero
o�set
 Further� stacking the traces in this way results in signi�cant improvement in signal
to noise� not only is random noise attenuated by stacking� but nonhyperbolic events are
attenuated as well
 Stacking is often the only way to see weak� noise�contaminated events

And the resulting post�stack migration results are sometimes surprisingly good even in
cases where common midpoint �CMP� stacking should be a poor approximation to the
zero�o�set trace


Further� if we knew that the re�ecting layer were horizontal� then we could estimate the
velocity above it by measuring the slope of the asymptote to the hyperbola
 This is
illustrated in Figure �
�
 The slope of the hyperbolic asymptote is just one over the
velocity in the layer above the re�ector
 And the hyperbola
s apex is at the one�way
zero�o�set travel time


��� Stacking Velocity Analysis

In order to correct for normal moveout prior to stacking we must have a velocity model
�v in Equation ��
�
���
 This is equivalent to stacking along the right hyperbola as
shown in Figure �
��
 If we choose too high or too low a velocity then stacking will not
produce a very high power in the output trace
 We could imagine doing a suite of stacks
associated with di�erent velocities and zero�o�set travel times and plotting the resulting
stack power
 At each zero�o�set travel time �equivalent to depths in a constant v or
v�z� medium� we could scan across velocity and pick the v which gives the highest stack
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Figure �
��� Stacking along successive hyperbolae as we vary the velocity and zero�o�set
travel time gives a stack power S�v� t�� as a function of v and t�
 Finding the �best�
velocity model is then a matter of optimizing the stack power function


power
 Proceeding down in depth or zero�o�set travel time in this way we could map out
the depth dependence of stacking velocity automatically


We can illustrate this �stacking velocity analysis� with a simple example
 Consider an
Earth model which is composed of � horizontal� horizontal layers
 Figure �
�� shows ��
common source gathers for such a model assuming a constant velocity of 	 km!second

The stacking velocity panel for this is shown on the right in Figure �
��
 The sweep
over velocity consisted of �� increments of �� m!s
 The stacking panel shows maximum
coherency at a constant� or depth�independent� velocity� but the coherence maxima are
somewhat smeared out
 Next� if we put in a depth�dependent velocity �dv�dx � ��� then
the common source gathers look like the left side of Figure �
�	
 The stacking velocity
panel is shown on the right
 It
s clear that we would have no di�culty picking out the
linear trend in velocity


��� Dipping Re�ectors

So far we have only considered the re�ection seismology of �at �i
e
� horizontal� layers

But because of tectonic and other forces �such as buoyant material welling up under the
in�uence of gravity�� dipping layers are very common�in fact mapping apparent dip �that
which we see on the zero�o�set seismic sections� into true dip is one of the principle goals
of migration
 Unless the dip is actually zero� true dip is always greater than apparent
dip
 Consider the limiting case of re�ections from a vertical layer ��� degree dip�
 Since
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��� �� common source gathers for a � layer constant velocity model �left�

Stacking velocity analysis for these gathers �right�
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�	� �� common source gathers for a � layer model with a constant v�z� gradient
�left�
 Stacking velocity analysis for these gathers �right�
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Figure �
��� Unless the re�ector is horizontal� the apparent dip on the time section is
always less than the true dip in the earth


the re�ections must propagate along the surface� the zero�o�set section will have a linear
moveout whose slope is inversely proportional to the velocity


More generally consider a re�ector dipping at an angle of � in the true earth �cf
 Fig�
ure �
���
 The relation between depth and position is� z � x tan �
 Now the normal
incidence �i
e
� zero�o�set� travel time for a ray propagating from x down to the re�ector
and back up again is t � 	r�v� where r is the ray path length
 But r � x sin �
 So that
we may compare apparent and true dip� we need to convert this travel time to depth via
z � vt�	
 Therefore in the unmigrated depth section we have� z � x sin �
 The slope
of this event is� by de�nition� the tangent of the apparent dip angle
 Call this angle 	

Therefore we have tan	 � sin �
 This is called the migrator
s equation and shows that
apparent dip is always less than true dip


Let
s carry this analysis one step further and consider a segment of dipping re�ector as
in Figure �
��
 The events associated with the two normal incidence rays drawn from
the dipping re�ector to the two receivers will appear on the unmigrated section at the
position locations associated with the two receivers
 Therefore not only will migration
increase the apparent dip of this segment of the re�ector� but it will have to move the
energy horizontally �updip� as well


To recap what we have shown thus far in this introductory chapter� migration will�

� Focus energy by collapsing di�raction hyperbolae


� Increase apparent dip


� Move energy horizontally in the updip direction
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Figure �
��� In addition to increasing apparent dip� migration also moves energy updip


��
 Resolution

Just as the stacking velocity panels in the last section did not collapse to points� so di�rac�
tion hyperbolae do not collapse to points when migrated� they focus
 The spread of the
focus tells us something about the resolution of our imaging methods
 Vertical resolution
is governed by the wavelength of the probing wave� v�f � where f is the frequency
 But
we need to remember to divide v by two for the exploding re�ector calculation� we divide
in two again to get the length of one half cycle
 So the e�ective vertical resolution of a
�� Hz seismic wave propagating in a medium whose wavespeed is ���� m!s is about ��
m "��#


Horizontal resolution is usually measured in terms of the Fresnel zone
 Imagine a spherical
wave striking the center of a hole punched in an in�nite plate
 How wide would the hole
have to be to allow the sphere to penetrate to one half of its wavelength 
� Answer�
by de�nition� one Fresnel zone
 Alternatively we can measure the Fresnel zone across
a di�raction hyperbola as the distance spanning one zero crossing �Figure �
���
 This
concept goes back to the Huygens�Fresnel principle previously discussed
 Picture a point
source in an in�nite homogeneous medium
 As we will see later� the spatial part of the
solution of the wave equation in this case is eikr�r where r is the distance from the origin
of the disturbance to the wavefront and k is the reciprocal wavelength
 Figure �
�� shows
the spherical wavelet at some point in time after its origination at the point P 
 To get the
�eld at some observation point Q we consider each point on the spherical wavefront as a
secondary source of radiation
 In other words� the seismogram at point Q� S�Q� must be
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��� The �rst Fresnel zone is the horizontal distance spanned by one half a
wavelength


proportional to the integral over the spherical wavefront of

eikr

r

Z
�

eiks

s
K���d� ��
�
��

where � refers to the surface of the spherical wavefront� � is the angle between the
position vector and the propagation direction� and K is an angle�dependent fudge factor
that Fresnel had to add to make the wave have the proper directional dependence
� The
�rst exponential� the one outside the integral� is just the point�source propagation from P
to the spherical wavefront
 The second exponential� inside the integral� is the propagation
from the wavefront to the observation point Q


The key idea for this discussion is how Fresnel actually computed the integral
 As il�
lustrated in Figure �
��� he broke up the sphere into zones whose radii �measured from
the observation point Q� di�ered by one�half wavelength 
�	
 The total radiation at the
observation point is then just the sum of the contributions from the individual zones
 Ths
surprising conclusion is� the total disturbance at Q is equal to half the disturbance due
to the �rst zone alone
 And since the intensity is the square of the disturbance� if we could
somehow screen o� all but the �rst zone� the intensity recorded at Q would be � times
as large as if there were no screen there
 Claerbout �"��#� page ��� gives an analogy of
shouting at a hole in the Berlin wall and says that holes larger than one Fresnel zone cause
little attenuation
 This might be true for an irregularly shaped hole� but the disturbances
due to the even and odd numbered zones are of opposite signs
 In fact� it can be shown
that the disturbances due to the �rst two zones are nearly equal
 Therefore� if all but
the �rst two zones are somehow covered up� the disturbance at the observation point
will be nearly zero This is worth repeating� if we go from having all but the �rst zone

�This obliquity factor will be explained rigorously later when we get to Kirchho� migration�
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��� Fresnel zone construction

screened o� to having all but the �rst two� the intensity measured at Q will go from �
times the unobstructed intensity to zero
 For more details see "�# �Chapter VIII� and "��#
�Chapter V�
 Especially note Section �� of "��#� which discusses di�raction from sharp
obstacles
 In this section Sommerfeld reproduces an astonishing �photograph� taken by
E
 von Angerer using a circular sheet�metal disk 

Exercises

��� What is the vertical travel time for a medium whose velocity increases linearly with
depth�

��� What are the angles of incidence and re�ection for zero�o�set rays� Does your
answer depend on the re�ector geometry�

��� The travel time curve for a common source record in a model with a single� hori�
zontal constant�velocity layer is a hyperbola
 What is it if there are two horizontal
layers instead� What is the NMO correction in this case�

��� A point scatterer in image space gives rise to a hyperbolic event in data space

What re�ector geometry would give rise to a point in data space�

��� What are the minimum and maximum vertical resolution in a � layer model whose
wavespeeds are 	
�� �
�� �
�� �
�� and �
� km!second�

��� Look at Figure �
�� again
 Why are the hyperbolae associated with the deeper
re�ectors �atter looking than the ones associated with the shallower re�ectors�
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��� Figure �
�� shows the geometry for a re�ector with arbitrary dip �
 The velocity
above the re�ecting layer is a constant v
 Consider the zero�o�set section recorded
over such a re�ector
 Convert the curve of zero�o�set travel times versus o�set
to migrated times
 Let the dip of the resulting curve be called 	
 What is the
relationship between � and 	� This is called the migrator
s equation


��� Show that apparent dip is always less than migrated dip


��� Computer Exercise� I

In most of the computer exercises in this course we will take advantage of the SU �Seismic
Unix� processing system developed at the Center for Wave Phenomena
 Instructions on
how to obtain SU� as well as a User
s Guide� are in Appendix A


To get a list of all the executables �including graphics� type suhelp
 Then simply type
the name of any executable �with no command line arguments� to get information on how
to run the program


For example� here is what happens if you type su�lter at the Unix prompt�

SUFILTER � applies a zero�phase� sine�squared tapered filter

sufilter �stdin �stdout �optional parameters�

Required parameters�

if dt is not set in header� then dt is mandatory

Optional parameters�

f�f	�f
���� array of filter frequencies�HZ


amps�a	�a
���� array of filter amplitudes

dt � �from header
 time sampling rate �sec


Defaults� f��	���nyquist
��	���nyquist
������nyquist
�

�����nyquist
 �nyquist calculated internally


amps����	������	���� trapezoid�like bandpass

filter

Examples of filters�

Bandpass�

sufilter �data f�	��
������� � ���

Bandreject�

sufilter �data f�	��
������� amps�	��������	� � ��
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Lowpass�

sufilter �data f�	��
������� amps�	��	������� � ���

Highpass�

sufilter �data f�	��
������� amps�������	��	� � ���

Notch�

sufilter �data f�	��	
����������� �

amps�	�����������	� ���

Here is an example shell script for generating some synthetic data and then migrating it


n	�	�	

n
�	�	

�

�� use susynlv to make synthetic data

susynlv nt��n	 dt����� ft���� nxo�	 �

nxm��n
 dxm���� fxm���� er�	 ob�	 �

v���	�� dvdz�� dvdx�� smooth�	 �

ref�������	������
�����
���	������������������������ �

sushw key�d
 a���� � junk�susyn

supsimage � junk�susyn label	��Time �sec
� �

label
��Distance �km
� �

title��Synthetic Data� � synthetic�data�ps

� apply gazdag

sugazmig � junk�susyn tmig�� vmig�	 � junk�out

supsimage � junk�out label	��Migrated Time �sec
� �

label
��Midpoint �km
� �

title��Phase Shift Migration� � migrated�data�ps

In this example we
ve used the postscript based plotting routine supsimage
 The �le
migrated data
ps� for example� can be displayed on an X�windows device using ghostscript
�gs� or sent to a laser printer
 See the information in suhelp under plotting for more details


Exercises

��	 Dip� Use susynlv to make ��� zero�o�set traces over a single �at �horizontal� layer
�km deep
 Make the model � km across and use a constant velocity of 	 km!sec�
use an o�set �or trace� spacing of �� m
 and a sample interval of � ms
 Then redo
this experiment� varying the dip of the layer from � to �� degrees in 	� degree steps

So you should end up with � zero�o�set sections
 Measure the apparent dip of each
section
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���� O�set� For the same � models as in the �rst problem� record one common source
gather of ��� traces with a maximum o�set of �km


���� Band limited data� Take one of your zero�o�set sections from above and use
su�lter to band limit it to a reasonable exploration�seismic range of ���� hz


���� Migration� Use susynlv to generate a zero�o�set section over a layer dipping at
�� degrees
 Use a constant velocity of 	 km!sec and record ��� traces spaced ��
m apart
 Migrate your zero�o�set section with sugazmig and verify that migration
increases apparent dip
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Chapter �

Harmonic Analysis and Delta
Functions

We collect here a few miscellaneous but essential results results about Fourier Transforms�
Fourier Series� the sampling theorem� and delta functions


��� Fourier Series

Suppose f is a piecewise continuous function periodic on the interval "�� 	�#
 Then the
Fourier coe�cients of f are de�ned to be

cn �
�

	�

Z ��

�
f�t�eint dt �	
�
��

The Fourier series for f is then

f�t� �
�X

n���
cne

�int� �	
�
	�

One has to be a little careful about saying that a particular function is equal to its
Fourier series since there exist piecewise continuous functions whose Fourier series diverge
everywhere However� here are two basic results about the convergence of such series


Pointwise Convergence Theorem� If f is piecewise continuous and has left and right
derivatives at a point c� then the Fourier series for f converges converges to

�

	
�f�c�� � f�c��� �	
�
��

�A right derivative would be	 limt���f�c � t�� f�c���t� t � �� Similarly for a left derivative�

	�
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where the � and � denote the limits when approached from greater than or less than c


Another basic result is the Uniform Convergence Theorem� If f is continuous with
period 	� and f � is piecewise continuous� then the Fourier series for f converges uniformly
to f 
 For more details� consult a book on analysis such as The Elements of Real Analysis
by Bartle "�# or Real Analysis by Haaser and Sullivan "	�#


��� Fourier Transforms

If a function is periodic on any interval� that interval can be mapped into "��� �# by a
linear transformation
 Further� if a function is not periodic� but de�ned only on a �nite
interval� it can be replicated over and over again to simulate a periodic function
 �This
is called periodic extension
� In all of these cases� the Fourier series applies
 But for
functions which are not periodic and which are de�ned over an in�nite interval� then we
must use a di�erent argument
 In e�ect� we must consider the case of a nonperiodic
function on a �nite interval� say "�r� r#� and take the limit as r � �
 If we do this� the
Fourier series becomes an integral �cf
 "	�#� Chapter ��� section ���
 The result is that a
function f�t� is related to its Fourier transform f�
� via�

f�t� �
�

	�

Z �

��
f�
�e�i�t d
 �	
	
��

and
f�
� �

Z �

��
f�t�ei�t dt �	
	
	�

Here� using time and frequency as variables� we are thinking in terms of time series� but
we could just as well use a distance coordinate such as x and a wavenumber k�

f�x� �
�

	�

Z �

��
f�k�e�ikx dk �	
	
��

with the inverse transformation being

f�k� �
Z �

��
f�x�eikx dx� �	
	
��

It doesn
t matter how we split up the 	� normalization
 For example� in the interest of
symmetry many people de�ne both the forward and inverse transform with a ��

p
	� out

front
 It doesn
t matter as long as we
re consistent
 We could get rid of the normalization
altogether if we stop using circular frequencies 
 in favor of f measured in hertz or cycles
per second
 Then we have

g�t� �
Z �

��
g�f�e���ift df �	
	
��

and
g�f� �

Z �

��
g�t�e��ift dt �	
	
��
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Figure 	
�� The kernel sin�x��x for � � ��� ���� ����� and �����


These transformations from time to frequency or space to wavenumber are invertible in
the sense that if we apply one after the other we recover the original function
 To see this
plug Equation �	
	
�� into Equation �	
	
���

f�x� �
�

	�

Z �

��
dk
Z �

��
f�x��e�ik�x

��x� dx�� �	
	
��

If we de�ne the kernel function K�x� x�� �� such that

K�x� � x� �� �
�

	�

Z �

��
e�ik�x

��x� dk �
sin��x� � x�

��x� � x�
�	
	
��

then we have
f�x� �

Z �

��
f�x��K�x� � x�dx� �	
	
��

where K�x��x� is the limit �assuming that it exists�� of K�x��x� �� as ���
 In order
for this to be true K�x� � x� will have to turn out to be a Dirac delta function


We won
t attempt to prove that the kernel function converges to a delta function and hence
that the Fourier transform is invertible� you can look it up in most books on analysis

But Figure 	
� provides graphical evidence
 We show plots of this kernel function for
x � � and four di�erent values of �� ��� ���� ����� and �����
 Clearly� in the limit that
��� the function K becomes a Dirac delta function


�We�re being intentionally fuzzy about the details to save time� If you�ve never encountered a careful
treatment of 
generalized functions� you should spend some time with a book like Volume I of Gel�fand
and Shilov�s Generalized Functions ����� It�s quite readable and very complete�
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����� Basic Properties of Delta Functions

Another representation of the delta function is in terms of Gaussian functions�

��x� � lim
���

�p
�
e��

�x�� �	
	
���

You can verify for yourself that the area under any of the Gaussian curves associated with
�nite � is one


The spectrum of a delta function is completely �at sinceZ �

��
e�ikx��x� dx � �� �	
	
���

For delta functions in higher dimensions we need to add an extra ��	� normalization for
each dimension
 Thus

��x� y� z� �
�

�

	�

�
 Z �

��

Z �

��

Z �

��
ei�kxx�kyy�kzz� dkx dky dkz � �	
	
�	�

The other main properties of delta functions are the following�

��x� � ���x� �	
	
���

��ax� �
�

jaj��x� �	
	
���

x��x� � � �	
	
���

f�x���x� a� � f�a���x� a� �	
	
���Z
��x� y���y � a� dy � ��x� a� �	
	
���Z �

��
��m�f�x� dx � ����mf �m���� �	
	
���Z

���x� y���y � a� dy � ���x� a� �	
	
���

x���x� � ���x� �	
	
	��

��x� �
�

	�

Z �

��
eikx dk �	
	
	��

���x� �
i

	�

Z �

��
keikx dk �	
	
		�

��� The Sampling Theorem

Now returning to the Fourier transform� suppose the spectrum of our time series f�t� is
zero outside of some symmetric interval "�	�fc� 	�fc# about the origin

 In other words�

�In fact the assumption that the interval is symmetric about the origin is made without loss of gen�
erality� since we can always introduce a change of variables which maps an arbitrary interval into a
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the signal does not contain any frequencies higher than fc hertz
 Such a function is said
to be band limited� it contains frequencies only in the band "�	�fc� 	�fc#
 Clearly a band
limited function has a �nite inverse Fourier transform

f�t� �
�

	�

Z ��fc

���fc
f�
�e�i�t d
� �	
�
��

Since we are now dealing with a function on a �nite interval we can represent it as a
Fourier series�

f�
� �
�X

n���
�ne

i�n��fc �	
�
	�

where the Fourier coe�cients �n are to be determined by

�n �
�

��fc

Z ��fc

���fc
f�
�e�i�n��fc d
� �	
�
��

Comparing this result with our previous work we can see that

�n �
f�n�	fc�

	fc
�	
�
��

where f�n�	fc� are the samples of the original continuous time series f�t�
 Putting all
this together� one can show that the band limited function f�t� is completely speci�ed by
its values at the countable set of points spaced ��	fc apart�

f�t� �
�

��fc

�X
n���

f�n�	fc�
Z ��fc

���fc
ei��n��fc��t� d


�
�X

n���
f�n�	fc�

sin���	fct� n��

��	fct� n�
� �	
�
��

The last equation is known as the Sampling Theorem
 It is worth repeating for em�
phasis� any band limited function is completely determined by its samples chosen ��	fc
apart� where fc is the maximum frequency contained in the signal
 This means that in
particular� a time series of �nite duration �i
e
� any real time series� is completely speci�ed
by a �nite number of samples
 It also means that in a sense� the information content of
a band limited signal is in�nitely smaller than that of a general continuous function


So if our band�limited signal f�t� has a maximum frequency of fc hertz� and the length
of the signal is T � then the total number of samples required to describe f is 	fcT 


����� Aliasing

As we have seen� if a time�dependent function contains frequencies up to fc hertz� then
discrete samples taken at an interval of ��	fc seconds completely determine the signal


symmetric one centered on ��
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Figure 	
	� A sinusoid sampled at less than the Nyquist frequency gives rise to spurious
periodicities


Looked at from another point of view� for any sampling interval $� there is a special
frequency �called the Nyquist frequency� given by fc � �

��

 The extrema �peaks and

troughs� of a sinusoid of frequency fc will lie exactly ��	fc apart
 This is equivalent to
saying that critical sampling of a sine wave is 	 samples per wavelength


We can sample at a �ner interval without introducing any error� the samples will be
redundant� of course
 However� if we sample at a coarser interval a very serious kind
of error is introduced called aliasing
 Figure 	
	 shows a cosine function sampled at an
interval longer than ��	fc� this sampling produces an apparent frequency of �!� the true
frequency
 This means that any frequency component in the signal lying outside the
interval ��fc� fc� will be spuriously shifted into this interval
 Aliasing is produced by
undersampling the data� once that happens there is little that can be done to correct the
problem
 The way to prevent aliasing is to know the true band�width of the signal �or
band�limit the signal by analog �ltering� and then sample appropriately so as to give at
least 	 samples per cycle at the highest frequency present


��	 Discrete Fourier Transforms

In this section we will use the f �cycles per second� notation rather than the 
 �radians
per second�� because there are slightly fewer factors of 	� �oating around
 You should
be comfortable with both styles� but mind those 	�s Also� up to now� we have avoided
any special notation for the Fourier transform of a function� simply observing whether
it was a function of space�time or wavenumber�frequency
 Now that we are considering
discrete transforms and real data� we need to make this distinction since we will generally
have both the sampled data and its transform stored in arrays on the computer
 So for
this section we will follow the convention that if h � h�t� then H � H�f� is its Fourier
transform
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We suppose that our data are samples of a function and that the samples are taken at
equal intervals� so that we can write

hk � h�tk�� tk � k$� k � �� �� 	� � � � � N � �� �	
�
��

where N is an even number
 In our case� the underlying function h�t� is unknown� all
we have are the digitally recorded seismograms
 But in either case we can estimate the
Fourier transform H�f� at at most N discrete points chosen in the range �fc to fc where
fc is the Nyquist frequency�

fn � n

$N
� n �

�N
	

� � � � �
N

	
� �	
�
	�

The two extreme values of frequency f�N�� and f�N�� are not independent �f�N�� �
�fN���� so there are actually only N independent frequencies speci�ed above


A sensible numerical approximation for the Fourier transform integral is thus�

H�fn� �
Z �

��
h�t�e��ifnt dt �

N��X
k��

hke
��ifntk$� �	
�
��

Therefore

H�fn� � $
N��X
k��

hke
��ikn�N � �	
�
��

De�ning the Discrete Fourier Transform �DFT� by

Hn �
N��X
k��

hke
��ikn�N �	
�
��

we then have
H�fn� � $Hn �	
�
��

where fn are given by Equation �	
�
	�


Now� the numbering convention implied by Equation �	
�
	� has � Nyquist at the extreme
ends of the range and zero frequency in the middle
 However it is clear that the DFT is
periodic with period N �

H�n � HN�n� �	
�
��

As a result� it is standard practice to let the index n in Hn vary from � to N � ��
with n and k varying over the same range
 In this convention � frequency occurs at
n � �� positive frequencies from from � � n � N�	 � �� negative frequencies run from
N�	 � � � n � N � �
 Nyquist sits in the middle at n � N�	
 The inverse transform is�

hk �
�

N

N��X
n��

Hne
���ikn�N �	
�
��
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Mathematica� on the other hand� uses di�erent conventions
 It uses the symmetric nor�
malization ���

p
N in front of both the forward and inverse transform�� and de�nes arrays

running from � to N in Fortran fashion
 So in Mathematica� the forward and inverse
transforms are� respectively�

Hn �
�p
N

NX
k��

hke
��i�k����n����N �	
�
��

and

hk �
�p
N

NX
n��

Hne
���i�k����n����N � �	
�
���

If you are using canned software� make sure you know what conventions are
being used�

����� Discrete Fourier Transform Examples

Here we show a few examples of the use of the DFT
 What we will do is construct an
unknown time series
 DFT by hand and inverse transform to see what the resulting time
series looks like
 In all cases the time series hk is �� samples long
 Figures 	
� and
	
� show the real �left� and imaginary �right� parts of six time series that resulted from
inverse DFT
ing an array Hn which was zero except at a single point �i
e
� it
s a Kronecker
delta� Hi � �i�j � � if i � j and zero otherwise� here a di�erent j is chosen for each plot�

Starting from the top and working down� we choose j to be the following samples� the
�rst� the second� Nyquist��� Nyquist� Nyquist��� the last
 We can see that the �rst
sample in frequency domain is associated with the zero�frequency or DC component of a
signal and that the frequency increases until we reach Nyquist� which is in the middle of
the array


Next� in Figure 	
�� we show at the top an input time series consisting of a pure sinusoid
�left� and the real part of its DFT
 Next we add some random noise to this signal
 On the
left in the middle plot is the real part of the noisy signals DFT
 Finally� at the bottom�
we show a Gaussian which we convolve with the noisy signal in order to attenuate the
frequency components in the signal
 The real part of the inverse DFT of this convolved
signal is shown in the lower right plot


����� Trigonometric Interpolation

There is yet is another interpretation of the DFT that turns out to be quite useful in
approximation theory
 Imagine that we have N samples spaced evenly along the x axis�

�xk� fk� k � �� �� � � � � N � �
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Figure 	
�� The real �left� and imaginary �right� parts of three length �� time series� each
associated with a Kronecker delta frequency spectrum
 These time series are reconstruc�
ted from the spectra by inverse DFT
 At the top the input spectrum is �i��� in the middle
�i��� and at the bottom� �i�������


where the fk may be complex� and xk � ��k
N
� Then there exists a unique polynomial

p�x� � 	� � 	�e
ix � 	�e

i�x � 	 	 	� 	N��ei�N���x

such that p�xk� � fk
 Moreover� the 	j are given by

	j �
�

N

N��X
k��

fke
���ijk�N � �	
�
���

Thus by performing a DFT on N data we get a trigonometric interpolating polynomial
of order N � �


Exercises

��� Verify Equation �	
	
��


��� Find the Fourier transform pairs of the following� for a generic function g�t� and
where a� b� t�� 
� are arbitrary scalars
 g�at�
 �� jbj g�t�b�
 g�t� t��
 g�t�e�i��t


��� De�ne the convolution of two functions g and h as

�g 
 h��t� �
Z �

��
g�� �h�t� � � d�
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Figure 	
�� The real �left� and imaginary �right� parts of three time series of length
��� each associated with a Kronecker delta frequency spectrum
 These time series are
reconstructed from the spectra by inverse DFT
 At the top the input spectrum is �i������
in the middle �i�������� and at the bottom �i���
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Figure 	
�� The top left plot shows an input time series consisting of a single sinusoid

In the top right we see the real part of its DFT
 Note well the wrap�around at negative
frequencies
 In the middle we show the same input sinusoid contaminated with some
uniformly distributed pseudorandom noise and its DFT
 At the bottom left� we show a
Gaussian time series that we will use to smooth the noisy time series by convolving it
with the DFT of the noisy signal
 When we inverse DFT to get back into the �time�
domain we get the smoothed signal shown in the lower right
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Show that the convolution of two functions is equal to the product of their Fourier
transforms


��� The correlation of two functions is just like the convolution except that the minus
sign becomes a plus
 Show that the correlation of two functions is equal to the
product of the Fourier transform of the �rst times the complex conjugate of the
Fourier transform of the second


��� Show that the autocorrelation of a function �its correlation with itself� is equal to the
absolute value squared of the Fourier transform of the function �Wiener�Khinchin
Theorem�


��� Show that if a function is imaginary and even� its Fourier transform is also imaginary
and even
 �A function is said to be even if f��x� � f�x� and odd if f��x� � �f�x�


��� What is the Fourier transform of �p
�
e��

�x��

��� What is the Nyquist frequency for data sampled at � ms �i
e
� 
��� seconds!sample�


��
 Computer Exercise� II

In this exercise we
re going to get a little experience playing with real data
 You will
be given instructions on how to ftp a shot record from the collection described in Oz
Yilmaz
s book Seismic Data Processing
� This book has data from all over the world�
recorded with many di�erent types of sources� both marine and land


The subject of this exercise is shot record number 	�
 Here is its header �le�

	 inner offset zero trace ���
 added� source at trace ��

phone spacing �� meters� inner offset �� meters

survey�land area�Alberta source�Dynamite spread�split

n	�
��� d	����
 f	����
 label	���Time �sec
��

n
��� d
����� f
��
���� label
���Offset �km
��

n��	

title���Oz 
���

plottpow���	�	���

The SU plotting programs will accept �les of this form as command line arguments
 Thus
once you get your segy version of the data �see below� �call it� for example� data
segy�
you could do the following�

�At present these are available via ftp from hilbert�mines�colorado�edu �������������� in the directory
pub�data�



�	�	 COMPUTER EXERCISE� II 
�

suximage � data�segy par�oz
��H

or

supsimage � data�segy par�oz
��H � data�segy�ps

Exercises

��	 The �rst thing you need to do is put the data in segy format so that you can use all
the SU code on it
 This is easy� just use suaddhead
 You only have to tell suaddhead
to put in the number of samples �ns�something� and �if the data are other than �
mil� the sample interval
 Look closely at the example in the selfdoc of suaddhead�
however� to see the way in which sample intervals are speci�ed


���� Now that you
ve got an segy data set you can look at it with various programs such
as supswigb� supswigp� supsimage �and displayed using ghostscript in X windows or
open in NeXTStep� or suximage in X windows
 However� you
ll immediately notice
that the traces are dominated by ground roll �Rayleigh waves� near the origin
 In
fact� that
s about all you
ll see
 So that you can see the other events too� try using
the �perc� option in the plotting
 For example�

supswigb � data perc���

where �data� is the name of your segy data set


���� Ground roll is a relatively low�frequency kind of �noise� so try using su�lter on
your data to get rid of it
 Play around with the frequencies and see what pass band
works best for eliminating these events


���� OK� now that you
ve eliminated the ground roll� let
s try eliminating the �rst ar�
rivals
 These are the diagonal �linear moveout� events associated with head waves
propagating along the base of the near�surface weathering layer�s�
 Here we can
just use a plain mute to kill these events
 The program sumute will do this for you

It expects an array of x locations and t values
 For example if we wanted to mute
straight across a section having 	�� traces� at a time of 	 seconds� we might use
something like

sumute � data xmute�	�
�� tmute�
���
�� key�tracl � out

The use of the keyword tracl lets us input x locations in terms of trace numbers
rather than o�sets
 If you
d rather do things in terms of o�set� however� that
s up
to you
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Figure 	
�� Shot record 	� and a cleaned up version

���� Finally boost the amplitude of the deeper re�ections by running sugain over the
data
 In the �gure below� I
ve used the tpow option
 You might have success with
other options as well


Look around at the other SU programs and see if there are any things you
d like to do to
help clean up the data
 What you want to end up with is the section with the best�looking
re�ections �i
e
� hyperbolic events�
 Be sure you keep track in which order you do things�
seismic processing operators are de�nitely NOT commutative


If you
re using X windows� suximage is nice
 You can enlarge an image by pushing the
left mouse button and dragging a box over the zone you want to enlarge
 To get back
to unit magni�cation� click the left mouse button
 You can view postscript images in X
with gs� which stands for ghostscript
� So typing gs �le
ps will display it on your screen

You can send postscript �les to be printed on the laser printer just by typing lpr �le
ps�
as you would for an ordinary �le� provided your default printer is equiped for postscript

In Figure 	
� you will see my attempt at cleaning up these data
 The �gure illustrates
simple straight�line mutes
 Perhaps you can do better
 These plots su�er somewhat since
I
ve used supswigb instead of supswigp
 The latter does fancy polygon �ll drawing� but
at the expense of a huge postscript �le
 That
s OK for you since once you print if o� you
can delete the postscript
 But for these notes we must keep a copy of all the postscript
plots around� so we
ve chosen to use the more economical supswigb


�Ghostscript is freely available over Internet from various archive locations� if it�s not already on your
system� Ghostview is a free X�� user interface for ghostscript� You can view multi�page documents with
it�
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Sinc Function Interpolation
via

Mathematica
The sampling theorem says that if we multiply
the Nyquist-sampled values of a function by a
suitably scaled sinc function, we get the whole

(band-limited) function

Here is the first example.  25 Hz data on the time
interval [0,.5].  First, let’s look at two different sinc
functions.

fc = 25.;
sinc[t_,n_] = Sin[Pi ( 2. fc t - n)]/

(Pi ( 2. fc t -n));
plot1 = Plot[sinc[t,10],{t,0.,.5},PlotRange->All];
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plot2 = Plot[sinc[t,11],{t,0.,.5},PlotRange->All];
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The key point is that when we multiply each of these
by the function values and add them up, the wiggles
cancel out, leaving an interpolating approximation to
the function.

Show[plot1,plot2]
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Suppose we are trying to approximate the constant
function f(x) = 1.  So we multiply the sinc functions
by 1.

myapprox[t_] = sinc[t,11] + sinc[t,10]

Sin[Pi (-11 + 50. t)]   Sin[Pi (-10 + 50. t)]
--------------------- + -----------------------------------------    --------------------  
  Pi (-11 + 50. t)        Pi (-10 + 50. t)

Plot[myapprox[t],{t,0.,.5},PlotRange->All]
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Extend this.  Sum a lot of these up.
myapprox[t_] = Sum[sinc[t,n],{n,1,25}];
Plot[myapprox[t],{t,.01,.49},PlotRange->{{.1,.4},{0,2}}]

0.15 0.2 0.25 0.3 0.35 0.4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2



�� CHAPTER �� HARMONIC ANALYSIS AND DELTA FUNCTIONS



Chapter �

Equations of Motion for the Earth �

In the course of our study of migration methods we will encounter many di�erent wave
equations
 How can that be� you say� I know the wave equation� it
s

r�� � �

c�
� � �

So what are you trying to pull�

As you will see shortly� this is only an approximate wave equation
 Implicit in it are
assumptions about the frequency of the waves of interest� the smoothness of the material
properties� and others
 Further� migration involves many kinds of manipulations of the
data which a�ect the approximate wave equations that we use
 For example� since stacking
attenuates multiples� if we
re doing post stack migration we need a wave equation which
does not give rise to spurious multiples� something which certainly cannot be said for the
above equation
 Therefore we thought it would be useful to give a careful derivation of
the �wave equation� with all of the �well� almost all of them� assumptions up front
 If
derivations of the wave equation are old hat to you� feel free to skip ahead to Section �
�
on page ��

So� let us begin by deriving the equations governing the in�nitesimal� elastic�gravitational
deformation of an Earth model which is spherically symmetric and non�rotating� has an
isotropic and perfectly elastic incremental constitutive relation� and has an initial stress
�eld which is perfectly hydrostatic
 This is kind of a lot at one time� and some of these
complications are not important in many seismological applications
 It is better in the
long run� however� to do the most complicated case initially and then simplify it later


We characterize the Earth
s equilibrium �non�moving� state by its equilibrium stress �eld�
T�� its equilibrium density �eld� ��� and its equilibrium gravitational potential �eld� ��


�This chapter and the next two� on elastic wave equations and rays� were co�written with Martin
Smith of New England Research�

��
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These are related by
r 	T��x� � ���x�r���x� ��
�
��

and by Poisson
s equation
r����x� � ��G���x� ��
�
	�

plus some boundary conditions
 We also suppose that T� is purely hydrostatic
 Then

T� � �p�I p� � equilibrium pressure �eld
 ��
�
��

This is reasonable if the Earth has no signi�cant strength
 The equilibrium equations are
then

rp� � ���r�� ��
�
��

r��� � ��G�� ��
�
��

Suppose� now� that the Earth is disturbed slightly from its equilibrium con�guration
 We
have to be a little careful with our coordinates
 We express particle motion in the usual
form

r�x� t� � x� s�x� t� ��
�
��

where x can be regarded as the particle
s equilibrium position


We express the time�dependent stress� density� and gravitational potential at a �xed
spatial point r as

��r� t� � ���r� � ���r� t� ��
�
��

��r� t� � ���r� � ���r� t� ��
�
��

T�r� t� � T��r� �T��r� t� ��
�
��

� �p��r�I�T��r� t� ��
�
���

These equations de�ne the �incremental� quantities ��� ��� and T�
 Note that the incre�
mental quantities are de�ned as di�erences from the equilibrium values at the observing
point� they are not� in general� the changes experienced by a material particle
 We also
need the particle acceleration

dtv�r� t� � ��t s�x� t� to �rst order in s ��
�
���

The equations of motion �i
e
� F�ma� are� to �rst order�

���
�
t s � ���r�� � ��r�� � ��r�� �rp� �r 	T� ��
�
�	�

using the fact that the incremental quantities are all of order s and keeping only terms
through the �rst order
 If we subtract the equilibrium condition we are left with

���
�
t s � ���r�� � ��r�� �r 	T� ��
�
���



�


Each term in this equation is evaluated at the spatial point r� but the equation governs
the acceleration of the material packet which may be at r only for the single instant of
time� t


We also must have

�t��� � ��� � ��� � ���r 	 ��ts� � ��ts� 	 r��� � ��� � � ��
�
���

since the continuity equation for conservation of mass is

�t� �r 	 ��v� � �� ��
�
���

So to �rst order

�t�� � ��r 	 ��ts� � ��ts� 	 r�� � � ��
�
���

�tf�� �r 	 ���s�g � � ��
�
���

�� � �r 	 ���s� ��
�
���

since �� � � if s � �� ��
�
���

Further� for Newtonian gravity we have

r���� � ��� � ��G��� � ��� ��
�
	��

r��� � ��G�� � ���Gr 	 ���s� ��
�
	��

The last bit we have to sort out is how to compute T�� the incremental stress at the point
r
 This is more complicated than it might appear because T� is not simply the product
of the local in�nitesimal strain tensor and the local elastic tensor
 The reason we have
this problem is the presence of an initial stress �eld� T� which is not in�nitesimal but is
of order zero in the displacement


Suppose� for example� we keep our attention on the point r while we rigidly translate the
Earth a small amount
 After the translation� we will be looking at the same spatial point
r but at a di�erent piece of matter
 This new piece will in general have a di�erent initial
stress �eld than our old piece
 If we translated the Earth an amount d we would perceive
an incremental stress of

T��r� t� � T��r� d��T��r� �� � in general
 ��
�
		�

However� a rigid translation produces no strain� as we well know� and thus cannot cause
any elastic stress
 Thus T�� above� has nothing whatever to do with elasticity or strain
but is solely a result of the initial stress �eld


To see how to handle this problem� consider the stress tensor at a material particle� which
we express as

�p��x�I�Tm at r � x� s�x� t� ��
�
	��
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We have expressed the total stress at the particle x� which is now located at r� as the
initial stress at the particle plus an increment Tm
 �Note that we can use either Tm�x�
or Tm�r� since Tm� as we will see� is �rst�order in s
 We cannot use p��r�� however� if
we want Tm to mean what we claim it to
� We now claim

Tm � 
�r 	 s�I� ��rs� sr� ��
�
	��

because the only way to alter the stress at a particle is by straining the continuum
 �sr
is shorthand for �rs�T 
� Remember that the stress tensor describes the forces between
parts of the continuum across intervening surfaces
 These forces� in turn� are exactly a
result of the material being distorted out of its preferred state
 The expression for Tm�
in fact� de�nes what we mean by an �incremental constitutive relation
�

If �p��x�I�Tm is the stress tensor at a particle� then the stress tensor at a point in space
is simply

�I� s 	 r���p�I�Tm� � T� �T� ��
�
	��

which is just a Taylor series
 To �rst order� we must have

T� � Tm � �s 	 rp��I ��
�
	��

So the full set of linearized equations is

���
�
t s � ���r�� � ��r�� �r 	Tm �r 	 �s 	 rp�� ��
�
	��

�� � �r 	 ���s� ��
�
	��

r��� � ��G�� ��
�
	��

Tm � 
�r 	 s�I� ��rs� sr� ��
�
���

rp� � ���r�� ��
�
���

Remember that we have assumed that the Earth

� was not rotating

� had a hydrostatic prestress �eld

� was self�gravitating

� was spherically symmetric

� had an isotropic� perfectly elastic incremental constitutive relation

Remember� too� that in formulating these equations we encountered a situation in which
the distinction between spatial and material concepts was crucial
 It is often said that
in linear �in�nitesimal� elasticity there is no di�erence between Eulerian �spatial� and
Lagrangian �material� descriptions
 That is wrong
 There is no di�erence in problems
which do not have zeroeth order initial stress �or other� �elds
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��� Computer Exercise� III

The purpose of this exercise is to make sure you are thoroughly familiar with segy headers
and to prepare you for a later exercise in which you will need to process a blind data set

You will begin by making some synthetic data with susynlv
 Then you will add whatever
header information is necessary for you to complete the following processing �ow�

� Do stacking velocity analysis using velan


� NMO correct and stack the data to produce a zero�o�set section


� Migrate the data with sugazmig


� Repeat the migration and velocity analysis until you are satis�ed with the image


These are just the main steps
 There will be other small steps such as �guring out which
headers are required� sorting the data and so on


For creating the synthetic data with susynlv use the following description of the re�ectors�

ref������
��	�����
��� �

ref����������������	��������� �

ref���������	���	���� �

ref�����	���	���	����

The sample interval is � ms� the shot spacing is ��� the receiver spacing is ��
 You can
do either a split spread or single ended survey
 For velocities� use v����
� dvdz�	��

dvdx��
 Record enough samples so that you can see the deepest re�ector


A quick way of seeing what
s going on might be to pick the near o�set traces o� of each
shot record and take these as a zero�o�set section


Susynlv will dump all the traces� shot by shot into a single �le
 You can examine all of
traces simultaneously with suximage� or you can use suwind to pick o� a smaller number
to look at
 Or you can use the zoom cababilities of suximage to zoom in on individual
shot records


��� Computer Exercise� III � An Example Solution

Here is one solution to Exercise III contributed by Tagir Galikeev and Gabriel Alvarez

At the time this was done� we had not begun using SUB in the class
 Try writing a SUB
script to do the pre�processing
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���� Create Data �������������������������������

susynlv � data�su nt�
�	 dt������ nxs�
�� dxs����� �

nxo��� dxo����� fxo��	���� ref������
��	����
�� �

ref���������������	������� ref���������	��	��� �

ref����	���	��	��� v���	�� dvdz�
�� verbose�	 �

���� Reformat to SEGY ��������������������������

segyhdrs �data�su

segywrite �data�su tape�data�segy

���� Geometry Assignment � CDP Sort ������������������

sushw �data�su key�sx a�	���� b�� c�	�� d�� j��� �

sushw key�offset a��	��� b��� j��� �

sushw key�gx a�	�	 b�	 c�	 d�� j��� �

suchw key	�cdp key
�gx key��sx a��	 b�	 c�	 �

susort �data�geom�cdp�su cdp offset

���� Perform Velocity Analysis �����������������������

���� Analysis on CDP 
��

suwind �data�geom�cdp�su key�cdp min�
�� max�
�� �

suvelan �semblance
���su fv������ dv�	����

���� Analysis on CDP ���

suwind �data�geom�cdp�su key�cdp min���� max���� �

suvelan �semblance����su fv������ dv�	����

���� Analysis on CDP ���

suwind �data�geom�cdp�su key�cdp min���� max���� �

suvelan �semblance����su fv������ dv�	����

���� Analysis on CDP ���

suwind �data�geom�cdp�su key�cdp min���� max���� �

suvelan �semblance����su fv������ dv�	����

���� Apply NMO Correction� Stack ��������������������

sunmo �data�geom�cdp�su cdp�
�������������� �

vnmo�	
���	����	����
��� �

tnmo�����������	���	��� �

vnmo�	
���	����	����
�������� �

tnmo�����������	���	���	��� �

vnmo�	
���	����	����
��� �

tnmo�����������	���	��
 �

vnmo�	
���	����	����
��� �

tnmo����������	����	�� �

sustack �stack�su
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�� The raw data

���� Gazdag Migration ���������������������������������

sugazmig �stack�su tmig�����
�� vmig�	���������� dx�
� �

supsimage �stack�mig�ps �

title��Migrated Stack with True Velocities�
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Chapter �

Elastic Wave Equations

	�� Gravity Versus Elasticity

Our most recent version of the equations of motion�

���
�
t s � ���r�� � ��r�� �r�s 	 p�� �r 	Tm ��
�
��

� four more relations

is a little overwhelming and we might hope that not every geophysical application requires
solving the full�blown system


There is a very important class of problems requiring the simultaneous solution of the
entire system� namely the elastic�gravitational normal mode problem
 On the other hand�
as we will crudely demonstrate here� at the higher range of frequencies of seismological
interest� a large portion of the equation of motion can be neglected


To see this� we shall have to make premature use of the notion of a propagating seismic
wave
 Suppose that some sort of wave with angular frequency 
 and wave�vector k is
propagating through the Earth
 Then� being deliberately vague�

s goes like ei�k�r��t� more or less
 ��
�
	�

Let us consider how the various terms in the momentum equation scale with 
 and
k � jkj
 We neglect the spatial variation of �� 
� and � and use S to denote the scale size
of displacement�

���
�
t s � 
���S ��
�
��

�� � ��kS ��
�
��

��r�� � ��kgS where g � gravity ��
�
��

r�s 	 rp�� � ��kgS ��
�
��

r 	T � k�
S or k��S ��
�
��

��
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�We have skipped over ��� for simplicity
 Generally speaking� �� is less signi�cant than
��
�

The right�hand side of the momentum equation is the sum of various elastic or gravita�
tional terms
 Elastic terms scale like k�
� gravitational terms scale like ��kg
 Thus the
ratio of gravitation to elastic forces goes like

gravity

elasticity
� �kg

k�

�

�g

k

��
�
��

�



� c� the elastic velocity ��
�
��

�g

k

� g

c�k
� ��
�
���

�I confess to reaching ahead somewhat
� We see that k � � results in an elastically�
dominated system while k � � results in a gravitationally�dominated system
 The two
in�uences are crudely equal when

g

c�k
� � ��
�
���

or

k � g

c�
� ��


����
� ���� in the Earth
 ��
�
�	�

Let us further suppose that we are essentially in the elastic domain
 Then k � 
�c
 This
is obviously somewhat contradictory but it does give us a useful idea of where gravity
becomes important
 Then we can argue�




c
� ���� ��
�
���


 � ���
 ��
�
���

t �
	�



� ���� seconds
 ��
�
���

This asserts that at periods which are short compared to �
 ��
 seconds� the equations
of motion are dominated by elasticity
 In the high�frequency limit� then� we can make do
with

���
�
t s � r 	Tm ��
�
���

Tm � 
�r 	 s�I� ��rs� sr� ��
�
���

These are the equations of motion used in conventional short�period seismology ����� sec
to �� sec�
 At longer periods the in�uence of gravity becomes non�negligible and we must
�nd ways to study the complete equations of motion
 �A much better way to determine
the point at which gravity becomes signi�cant is to solve both versions of the equations
of motion and compare the solutions
�
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	�� The Elastic Wave Equation

We will �rst boil down the equations of motion �for high frequencies and therefore without
gravity� into a form called �the elastic wave equation
� Then we will brie�y review why
equations of the form are called wave equations


For su�ciently high frequencies we have

���
�
t s � r 	Tm ��
	
��

and
Tm � 
�r 	 s�I� ��rs� sr� ��
	
	�

where sr is shorthand for �rs�T 
 Then

���
�
t s � r�
�r 	 s�� �r 	 "��rs� sr�# ��
	
��

���
�
t s � �r 	 s�r
 �r� 	 �rs� sr�

� 
r�r 	 s� � �r 	 �rs� sr� ��
	
��

The �rst two terms result from spatial gradients of the elastic constants
 We are going to
drop them for two reasons�

�
 As we could show by scale analysis� they are relatively unimportant as long as the
wavelength of the solution is short compared to the scale length of changes in the
elastic properties
 For any continuous distribution of properties there will be some
scale frequency above which we may ignore these terms


	
 These terms can cause an incredible amount of grief


After surgery we have

���
�
t s � 
r�r 	 s� � �r 	 �rs� sr� ��
	
��

where 
 and � are �su�ciently constant
� Since

r 	 �rs� sr� � 	r�r 	 s��r
r
 s ��
	
��

���
�
t s � �
 � 	��r�r 	 s�� �r
r
 s ��
	
��

This is sometimes called the �elastic wave equation�� although we know it to be only a
high�frequency pretender


Now express s as
s � r� � �r�� �r
 �r
 r�� ��
	
��

where �� �� and � are scalar �elds
 The above expression is a representation for s by
which we mean that we believe that for any s of interest there exist scalar �elds �� ��
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� ful�lling the above
 Further we believe that recasting our problem in terms of these
scalars will do some good


You can verify� if you wish� that with this representation the elastic wave equation becomes

r����
�
t� � �
 � 	��r��� � r
 r����

�
t�� �r��� ��
	
��

� r
r
 r����
�
t � � �r��� � �� ��
	
���

If

���
�
t� � �
 � 	��r�� ��
	
���

���
�
t� � �r�� and ��
	
�	�

���
�
t � � �r�� ��
	
���

then s as gotten from these scalars will be a solution of the elastic wave equation
 However�
as a little thought shows� we have not shown that every s satisfying the elastic wave
equation can be found from scalar �elds satisfying these three relationships
 Fortunately�
however� it is so and we can replace �if� by �if and only if
�

If terms involving the gradients of 
 and � appear� all of this� alas goes down the drain
and we have a much more intractable system
 Qualitatively the gradient terms couple
shear and compressional motions together
 When this coupling is weak we can regard
those terms as small sources� as is done in scattering theory
 If the coupling is strong
enough the notions of distinct shear and compressional waves break down


The three scalar equations are called �scalar wave equations
� This form of equation is
discussed later
 Observe that three perfectly valid classes of solutions can be gotten by
setting two of the scalars to zero and requiring the third to be a non�zero solution of its
respective wave equation
 Let fs�g� fs	g� fs�g denote� in the obvious way� these three
sets of solutions
 Because everything is linear� any general solution to the elastic wave
equation can be expressed as a linear combination of members of these three sets
 Note
that every s� satis�es r
 s� � � and every s	� s� satis�es r 	 s	 � r 	 s� � �
 Also �
and � satisfy exactly the same scalar wave equation


These solutions have certain characteristic properties which we will simply describe� and
not prove� here
 s� is called a �P wave� or �compressional wave
� It is a propagating
dilatation with phase velocity

VP � � �
q

 � 	���� ��
	
���

s	 and s� are called �S waves� or �shear waves
� Particle motions for these waves are at
right angles to the direction of propagation
 These waves have a phase velocity

VS � 	 �
q
��� � VP ��
	
���

There are two classes of shear waves simply because there are two possible orthogonal
polarizations
 Shear waves have no associated dilatation �r 	 s � ��
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Figure �
�� Plane wave propagation

	�� Scalar Wave Equations

����� Plane Waves

We will now consider why equations of the form

��t� � c�r�� ��
�
��

are called �scalar wave equations
� The factor c� which we suppose to be nearly constant�
is called the �wave speed
�

Let r be a position vector to any point in space� let %n be a �xed direction in space and
let f�x� be any twice di�erentiable function of one variable
 If

��r� t� � f�%n 	 r� ct�� ��
�
	�

then

r� � %nf
�

��
�
��

r 	 �r�� � %n 	 %nf
��

� f
��

��
�
��

and

�t� � �cf � ��
�
��

��t� � c�f
��

� ��
�
��

The wave equation becomes
c�f

��

� c�f
��

� ��
�
��

which is true
 Thus any � of the above form satis�es the wave equation
 Such a � is
constant on the planes de�ned by �cf
 Figure �
��

%n 	 r� ct � A� a constant ��
�
��

Also� the plane associated with a �xed A� and therefore a particular value of � moves in
the direction %n with speed c �or to be pedantic� velocity c%n�
 Thus the pattern of � in
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space is propagating with the velocity c%n� which is what we expect of a �wave
� Similarly
f�%n 	 r� ct� represents a disturbance� constant on the plane de�ned by %n 	 r � constant�
which is being propagated with velocity c in the negative %n direction


We generally think in terms of simple harmonic time dependence� and use 
 to denote
angular frequency
 If we de�ne the wave number

k �



c
�

	�



� ��
�
��

which is the number of wavelengths per some unit length� and the wave�number vector

k � k%n �



c
%n� ��
�
���

then

%n 	 r� ct �
c



�k 	 r� 
t�� ��
�
���

a more conventional form


Now if the plane wave f�%n 	 r � ct� is a pressure disturbance propagating through an
acoustic medium� then it is related to the particle velocity v via Newton
s second law�

��tv � �rp � �rf�%n 	 r� ct�� ��
�
�	�

The kinetic and potential energy densities of the plane wave are equal to f��	�c�
 So the
total acoustic energy density is just twice this


����� Spherical Waves

We begin with the scalar wave equation�

��t� � c�r��� ��
�
���

where we assume c is constant
 We have already seen that if f�x� is any bounded�
twice�di�erentiable function of a single variable� then

��r� t� � f�%n 	 r� ct� ��
�
���

satis�es the wave equation for any direction %n


There are other simple wave solutions
 In spherical coordinates� r� �� �� if we assume �
is a function only of r and t �i�e�� spherical symmetry�� then

r�� � ��r� �
	

r
�r�� ��
�
���
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�Remember we are assuming that the wave is spherically symmetric about the origin of
the coordinate system
 We might imagine a purely symmetric� explosion�like source for
such a wave
� The substitution

��r� t� �
�

r
��r� t� ��
�
���

produces

r�� �
�

r
��r�� ��
�
���

and the wave equation reduces to the one�dimensional wave equation

��r� �
�

c�
��t �� ��
�
���

So�
� � f�r � ct� � g�r � ct� ��
�
���

and thus

� �
�

r
ff�r � ct� � g�r � ct�g� ��
�
	��

This solution represents two spherically symmetric waves�one traveling outward and
one traveling inward
 The leading factor of �

r
tells us how the amplitudes of the waves

diminish as they progress


We can see that �
r

is a physically reasonable rate of decay
 Consider just the outward
traveling wave�

�out �
�

r
f�r � ct�� ��
�
	��

� is virtually always proportional to a quantity such as displacement� strain� stress�
electromagnetic �eld strength� etc�� and thus �� is usually a measure of energy density

The energy in the wavefront crossing a sphere of radius r at time t is then

��r����� � ��f��r � ct� ��
�
		�

the size of which is independent of radius �other than as a �phase� argument�
 Thus
energy is conserved by the �

r
dependence


����� The Sommerfeld Radiation Condition

The other spherically symmetric solution�

�in �
�

r
g�R � ct� ��
�
	��

is a wave traveling inward toward the origin
 If the problem we were studying involved a
source at the origin and if the medium was homogeneous and in�nite� we might discard
the inward�bound solution on the grounds that energy must �ow outward from the source
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to in�nity and not the other way around
 This requirement is formally called the �Som�
merfeld radiation condition� and is frequently applied in wave propagation problems


The Sommerfeld condition applies equally in non�spherically symmetric problems� in
those cases the separation into incoming and outgoing radiation may be a little more
complicated
 It is important to remember that the radiation condition only applies to
radiation which is truly coming in from in�nity� we cannot apply it inside of a region
where incoming energy might legitimately appear as a result of distant scattering �unless�
of course� we wish to neglect that scattering�


A rigorous statement of the Sommerfeld condition is this� let p be a solution of the
Helmholtz equation outside of some �nite sphere
 Then it is required for a �nite constant
K that

jRpj � K

R ��R � ik� p � � ��
�
	��

uniformly with respect to direction as R � �� where R is the radius of the sphere
 In
many circumstances it is possible to show a priori that solutions of the Helmholtz equation
automatically satisfy this condition
 So it is not too risky to assume that it applies


����� Harmonic Waves

At a �xed point in space r� a wave disturbance � is a function only of time

��r�� t� � &�t�� ��
�
	��

Because they can be used to synthesize completely general disturbances� an especially
interesting case is when & is periodic�

&�t� � P cos�
t�� ��
�
	��

Here P is the amplitude� and 
t is the phase
 The number of vibrations per second is
the frequency f � 
�	�
 The frequency is also the reciprocal of the period f � ��T � you
can readily verify that & remains unchanged when t� t � T 


The most useful harmonic wave is the harmonic plane wave�

��r� t� � P cos "k 	 r� 
t# ��
�
	��

The set of harmonic plane waves for all frequencies� 
� is complete
 Thus any traveling
wave can be built up out of a sum of plane waves
 For more details on this point see "��#


�If we allow the amplitudeP to be a function of space� then the surfaces of constant amplitude no longer
necessarily coincide with the surfaces of constant phase� In that case the wave is called inhomogeneous�
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Displacement   X 

speed = c 

Figure �
	� A �D pulse propagating towards the origin at speed c


Calculations with plane waves are simpli�ed if we use complex notation
 Instead of
Equation ��
�
	�� we write

��r� t� � Re "P exp �k 	 r� 
t�# � ��
�
	��

As long as all the calculatons involved are linear� we can drop the Re� keeping in mind
that it
s the real part of the �nal expression that we want
 Nonlinear operations do
come up however� for example� when computing the energy density we must square the
displacement
 In such cases one must take the real part �rst before performing the
nonlinear operation


	�	 Re�ection

The imposition of boundary conditions at various surfaces in the medium generally gives
rise to additional re�ected wave �elds
 �In elasticity� boundaries also act� in general�
to convert one type of wave into another upon re�ection
� Re�ected energy plays an
essential role in many important wave propagation phenomena


We will here examine only a simple case
 Suppose we have a semi�in�nite medium ending
at x � �
 At the boundary surface� x � �� we impose the boundary condition � � �

Finally let

�� � f�x � ct� ��
�
��

be an incoming wave �that is� coming from the right� as in Figure �
	�
 What is the
solution to the wave equation which satis�es the boundary conditions�

We know that the general form of the solution of the �D wave equation is

��x� t� � f�x � ct� � g�x� ct�� ��
�
	�

where f is the known incoming wave and g is the �unknown� outgoing
 The boundary
condition has the form

���� t� � � ��
�
��
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Figure �
�� A pulse incoming from the positive x direction and traveling with constant
unit speed strikes a perfectly re�ecting barrier at the origin at t � �


or

f�ct� � g��ct� � � ��
�
��

g��ct� � �f�ct�� ��
�
��

So�

��x� t� � f�x � ct�� f�ct� x� ��
�
��

The �rst term is just energy traveling to the left� the second is energy traveling to the
right
 Notice the re�ected wave has the same form as the incident wave but is of opposite
sign� obviously that is because the boundary condition we have applied requires the two
waves to exactly cancel at x � �
 The argument of f�x� is also reversed in sign in the
re�ected wave� this is because the spatial shape of the re�ected wave is the reverse of that
of the incident wave


We have illustrated these ideas with a simple numerical example in Figure �
�� which
shows an incoming Gaussian pulse bouncing o� a perfectly re�ecting boundary at t � �


	�
 Phase Velocity� Group Velocity� and Dispersion

The next topic is somewhat outside of the subject of simple wave solutions to the scalar
wave equation
 It is� however� one that we must deal with and now is as good a point as
any
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Suppose that we have a system governed by a wave equation which di�ers from the
object of our current fascination in a rather strange way
 We suppose that this system
still supports plane harmonic waves of the form

� � ei��t�k�r� ��
�
��

where k is any vector but now we have


 � f�k� ��
�
	�

where f�k� is some as yet unspeci�ed function
 In our previous case�


 � cjkj� ��
�
��

We want to study the properties of wave motion in this system
 The dependence of 
 on
k is called �dispersion� for reasons that will emerge


This unusual behavior is not at all unusual and is more than just a fanciful assumption

Many types of wave propagation are noticeably dispersive including almost everything of
interest to seismologists except� perhaps� body waves


����� Model A

We will �rst construct a relatively uncomplicated model of the propagation of wave energy
to see if we can infer some of the phenomena associated with dispersion
 Consider the
simultaneous propagation in the �%x direction of two plane waves
 We have

��x� t� � ei���t�k�x� � ei���t�k�x� ��
�
��

where

� � f�k�� 
� � f�k�� ��
�
��

�For simplicity we have assumed 
 depends only upon jkj
� Now take

k� � k � �
k� � k � �

where �� k� ��
�
��

Then

� � 
 � �U

� � 
 � �U

where

�

 � f�k�
U � �kf�

��
�
��

So

� � ei��t�kx�
�
ei
��Ut�x� � ei
�Ut�x�

�
��
�
��

� � 	ei��t�kx� cosf��x� Ut�g ��
�
��
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Figure �
�� Modulated sinusoid


The �rst factor in � is just the mean plane wave wiggling o� to in�nity
 Because of
interference between the two components� however� the amplitude of the wave is multiplied
by a second factor which varies much more slowly in space �since �� k�
 Schematically�
this is shown in Figure �
�� which is a modulated version of the mean plane wave


The zero�crossings of the composite wave travel with the speed

C �



k
��
�
���

whether the wave is modulated or not
 This quantity is called the �phase velocity
� The
modulation peaks and troughs� however� travel with the speed

U �
�


�k
��
�
���

which is called the �group velocity
� The modulation envelope controls the local energy
density �� ��� of the wave� where the bar denotes complex conjugation
 Hence we associate
group velocity with the speed of energy transport
 Notice that both C and U depend only
upon 
�k� and not upon �� the wavenumber separation of the two interfering waves
 The
wavenumber separation� �� does not control the modulation wavelength


Observe that when 
 � c�k then

C � U � c ��
�
�	�

In this case both phase and group velocity are equal to the velocity appearing in the
wave equation
 This condition is true for elastic waves propagating in an unbounded
homogeneous medium


This example serves more as a demonstration than a proof
 The result we derived indic�
ates a sinusoidal modulation envelope which itself extends in�nitely far in both directions�
and we might fairly wonder if our interpretation of the results is unfounded or at least
suspect
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Such suspicion� while commendable� would be in error
 The trouble with this demonstra�
tion lies in our use of only a �nite number of interfering waves� with a �nite set �two in
this case� it is impossible to construct a spatially limited interference product


For a more precise statement� we now present Model B
 If the following is too involved
for you� take heart in the fact that the answers are virtually the same as given above

Model A is all that you really need


����� Model B

Construct a spatially bounded wave using a wavenumber integral over K� the ��space of
wavenumber vectors�

��r� t� �
Z
K
��k�ei��t�k�r�dvk ��
�
���

where 
 � f�k�
 All we are doing is adding up a continuum of plane waves� since each
of these satis�es the wave equation �by hypothesis�� so does the sum


In particular� we take ��k� to be a three�dimensional Gaussian distribution centered about
k��

��k� � �	�a��
�

� e�a
��k�k����� ��
�
���

� Ne�a
��k�k������ for short
 ��
�
���

We have selected a Gaussian distribution because it is band�limited in a practical sense�
and because its inverse transform is spatially limited �the inverse is also Gaussian� in the
same sense
 So�

��r� t� � N
Z
K
e�a

��k�k�����ei��t�k�r�dvk� ��
�
���

Since ��k� is e�ectively constrained to a region around k�� the size of which we control
by selecting a� let us linearize around k��

k � k� � �

�k� � 
� � � 	U where

�

� � 
�k��
U � rk
�k�

��
�
���

��r� t� � N
Z
K
e��a

�������ik��r�i��r�i��t�i��Ut�dv� ��
�
���

��r� t� � Nei���t�k��r�
Z
K
e��a

�������i��r�i��Ut�dv� ��
�
���

��r� t� � Nei���t�k��r�
Z
K
e��a

�������i��P�dv� ��
�
	��

where P � Ut� r ��
�
	��
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Call the integral H�P�
 Convert it to spherical polar coordinates ��� �� �� by taking P as
the pole and let � � cos �


H�P� � 	�
Z �

�
��d�

Z ��

��
e�a

������i�P�d� ��
�
		�

P � jPj� ��
�
	��

Since Z ��

��
ei�P�d� �

	

�P
sin��P � ��
�
	��

H�P� �
��

P

Z �

�
� sin��P �e�a

�����d� ��
�
	��

H�P� �
��

P

Z �

��
�

	i
ei�P e�a

�����d�� ��
�
	��

Substitute

q �
�a

	
�
iP

a
��
�
	��

� �
	

a

�
q � iP

a

�
��
�
	��

to get

H�P� �
��

P

	

a
e�P

��a�
Z �

��

�
q � iP

a

�
e�q

�

dq ��
�
	��

H�P� �
�i��
a�

p
�e�P

��a� ��
�
���

since Z �

��
qe�q

�

dq � � ��
�
���

So�

��r� t� �
���iN

a�
p
�ei���t�k��r�e��Ut�r���a� ��
�
�	�

This is the three�dimensional version of our earlier result
 Note that U � rkf is a vector
quantity and need not be parallel to k�


����� Dispersion on a Lattice

This section may appear at �rst to be a little o� the beaten path� but in fact it holds
the key to a pervasive kind of error which will crop up when we consider �nite di�erence
methods of migration
 When we attempt to solve the wave equation numerically by
�nite di�erences we immediately discover that any �nite approximation to the continuum
equations introduces an arti�cial dispersion identical to the dispersion just discussed
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This is a result of the fact that a �nite dimensional system has only �nitely many degrees
of freedom� and that any attempt to propagate energy of a wavelength smaller than
the grid spacing will result in that energy being dispersed amongst the longer wavelength
components of the solution
 Since it is important to recognize that this intrinsic drawback
to �nite di�erence approximation is indistinguishable from true physical dispersion in a
dynamical system� we introduce the concept here in terms of wave propagation on a �D
lattice� which we use as a �nite dimensional approximation of a continuous string �i
e
�
a �D medium�
 We will see that direct appeal to Newton
s laws of motion gives rise
to precisely the �nite di�erence equations that we will study in detail later and that the
dispersion relation follows readily from these discrete equations of motion
 Further we
will show that as the wavelength of the disturbance propagating on the lattice gets larger
and larger� the disturbance no longer sees the granularity of the medium and propagates
nondispersively


The lattice will be populated with points of mass m� uniformly distributed along the line

The position of the ith particle will be xi� whereas its equilibrium positions will be Xi

The displacement from equilibrium is

ui � xi �Xi� ��
�
���

The �rst step is to consider small displacements from equilibrium
 If we denote the
equilibrium energy of the system by V� � V �X� and expand V in a Taylor series about
X� retaining only terms to second order� we have

V � V� �
�

	

X
l

X
l�
Vll�ulul�� ��
�
���

where the sums are over all lattice elements and where

Vll� �
�

��V

�xl�xl�

	
X

� ��
�
���

We can reference the state of the system to its equilibrium by de�ning the interaction
energy U � V � V�

U �
�

	

X
l

X
l�
Vll�ulul�� ��
�
���

On the other hand� the kinetic energy is

T �
�

	
m
X
l

'u�l � ��
�
���

Since rotations are irrelevant in �D� the only conservation principles that we require
are invariance of the interaction energy under changes of particle numbering and rigid
translations
 The particle numbering re�ects both a choice of origin and a direction of
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increasing particle number� that is l� l�p and l� �l
 Thus we require that the energy
satisfy

Vll� � Vl�l� � Vl��l� ��
�
���

This� together with the requirement that rigid translations ul � � not change the energy
implies that �

�

	

X
l

X
l�

Vl�l�
	

�� � �� ��
�
���

which in turn implies that

X
l�
Vl�l� � V� �

X
l� ��l

Vl�l� � �� ��
�
���

Since we already have convenient expressions for the kinetic and potential energies� the
equations of motion follow directly from the Euler�Lagrange equations

d

dt

�L

� 'ul
� �L

�ul
� � ��
�
���

where L � T �U 
 Substituting in the computed expressions for the kinetic and potential
energies� one readily veri�es that the equations of motion are

m(ul �
X
l�

Vll�ul�� ��
�
�	�

We can put Equation ��
�
�	� in a more transparent form by �rst putting Vll� � Vl�l� in
Equation ��
�
�	�
 Then using Equation ��
�
���� which allows us to add and subtractP

l� Vll�ul� and changing the variable of summation to p we are left with

m(ul �
�X
p��

Vp�ul�p � 	ul � ul�p�� ��
�
���

By a similar argument� one can show that the quadratic potential energy is

U �
�

	

��X
l���

�X
p��

Vp�ul�p � ul�
�� ��
�
���

The interpretation of equation Equation ��
�
��� is very simple� since it represents for
any p� say p � i� the �elastic� force on the lth mass due to mass points symmetrically
placed at l� p and l� p and with spring constants Vp
 It also gives us a very simple way
of quantifying the range of the molecular interactions
 Retaining only terms involving V�
yields a model with nearest neighbor interactions
 Going to p � 	 gives nearest�plus�
next�nearest neighbor interactions� and so on
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The plane wave dispersion relation for the perfect �D lattice is obtained by substituting
the trial�solution

ul � Uei�kal��t� ��
�
���

into Equation ��
�
���� where a is the lattice spacing
 The calculation is straightforward
and Equation ��
�
��� implies that

�m
�ul � �	ul
�X
p��

Vp"�� cos�kap�#� ��
�
���

This equation can be simpli�ed somewhat by using the trigonometric identity cos�	A� �
� � 	 sin��A�� Thus we arrive at the dispersion relation

m
� � �
�X
p��

Vp"sin
��kap�	�#� ��
�
���

The simplest case to handle is that of nearest neighbor interactions Vp � �p��� where �ij
is the Kronecker delta function
 In which case


 � 	

r
�

m
sin�ka�	�� ��
�
���

Owing to periodicity and symmetry� it su�ces to consider the range of wavenumbers
� � k � �

a
� the so�called �rst Brillouin zone
 The group velocity is

vg � d


dk
�

a

	

max cos�ka�	�� ��
�
���

where 
max is simply 	
q



m


 Thus the maximum speed with which information can propag�

ate on the lattice is

vmax � max vg �
a
max

	
� a

r
�

m
� ��
�
���

Finally� for a �nite lattice we must impose boundary conditions at the endpoints
 Suppose
we have N � � oscillators running from l � � to l � N 
 The simplest case is if we �x the
endpoints
 In which case the jth normal mode is

ujl � Cl sin

�
�jl

N � �

�
cos�
jt�j � �� ���� N� ��
�
���

And its eigenfrequency is


j � 	

r
�

m
sin

�
�j

	�N � ��

�
� ��
�
�	�

It is easy to see that the total energy of each eigenmode is independent of time
 A
plot of some of these modes for a homogeneous lattice of �� mass points is given in
Figure �
�
 Notice especially that for the longer wavelengths� the modes are pure sinusoids�
while for shorter wavelengths� the modes become modulated sinusoids
 This is another
manifestation of the dispersive e�ects of the discrete system
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Figure �
�� A sample of the normal modes �free oscillations� of a homogeneous �� point
lattice with �xed ends
 The lower frequency modes are purely sinusoidal� the higher
frequency modes become modulated sinusoids as a result of the dispersive e�ects of this
being a discrete system
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The Continuum Equations

It is always useful to have the contimuum limit of a given set of lattice equations
 To
arrive at the continuum equations for the nearest neighbor problem we simply replace ul
by u�xl� in the equations of motion Equation ��
�
��� �but with Vp � ��p�� and perform
Taylor series expansions of the terms about xl�

ul�� � u�xl � a� ��
�
���

� u�xl� �
�u

�xl
a�

�

	

��u

�x�l
a� � ��� ��
�
���

Keeping only terms of second order or less� the p � � term of Equation ��
�
��� gives

m
��u

�t�
� �a�

��u

�x�l
� ��
�
���

The last step is to approximate a density function by averaging the point mass over
adjacent lattice sites� � � m

a�
� in which case Equation ��
�
��� becomes

�
��u

�t�
�

�

a

��u

�x�l
� ��
�
���

from which we can identify Young
s modulus as E � 

a



The continuum dispersion relation is likewise computed by substituting a plane wave into
Equation ��
�
���� with the result


 � k

s
E

�
� ��
�
���

And the continuum group velocity is simply

d


dk
�

s
E

�
� a

r
�

m
� ��
�
���

which agrees with the lattice theoretic result of Equation ��
�
��� at small wavenumbers

This is precisely what one would expect since at small wavenumbers or large wavelengths
a propagating wave does not see the granularity of the lattice
 The departure of the lattice
dispersion relation from the continuum is shown in Figure �
�


����� Summary of Dispersion

Let us brie�y summarize the new e�ects associated with dispersive wave propagation�
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Figure �
�� Discrepancy between the dispersion�free string and the �nite dimensional
dynamical system used to approximate it on a computer
 The lattice spacing was chosen
to be unity


� If the medium is dispersive� the phase velocity is di�erent for each frequency com�
ponent
 As a result� di�erent components of the wave move at di�erent speeds and
therefore tend to change phase relative to one another


� In a dispersive medium the speed with which energy �ows may di�er greatly from
the phase velocity


� Although we haven
t talked about attenuation� in a dissipative medium� a pulse will
be attenuated as it travels with or without dispersion� depending on whether the
dissipative e�ects are sensitive to frequency


	�� A Quantum Mechanical Slant on Waves

What do we mean when we say that a pulse arrives at a certain time� Following "��#�
let us consider a probabilistic approach to this question inspired by quantum mechanics

The eikonal equation

�r)�r��� � s��r� � � ��
�
��

describes the high frequency propagation of seismic waves� here ) is the wavefront and s
is the slowness
 In seismic applications we almost always treat the depth z as a preferred
coordinate since our media are vertically strati�ed for the most part
 So let
s think of z
as being more of a parameter of motion and rewrite the eikonal equation as

�)

�z
� H�x� y� � px� py� z� � � ��
�
	�

where px � �)��x and py � �)��y and H is given by

H�x� y� � px� py� z� � �
h
s��x� y� z�� p�x � p�y

i���
� ��
�
��
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H is called the Hamiltonian and Equation ��
�
	� is an example of what is known in
physics as a Hamilton�Jacobi equation
 A good reference for this sort of thing is Chapter
� of Goldstein
s book Classical Mechanics "	�#


Since the Hamiltonian has been obtained from the eikonal equation� it is clear that it gives
a representation in terms of rays
 The classical mechanical analog of rays is particles

Now when we make the transition from the classical mechanics of particles to the quantum
mechanics of wave packets� we interpret the generalized momenta px and py in the Hamilto�
nian as operators�

px � �i h
	�

�

�x
��
�
��

py � �i h
	�

�

�y
��
�
��

H � �i h
	�

�

�z
��
�
��

where h is Planck
s constant� except that in the mechanics problem we would be thinking
in terms of time as the parameter� not depth
 These operators are interpreted strictly
in terms of their action of some wave function & so that� for example� when we write a
commutation relation such as

"px� x# � i
h

	�

this is really shorthand for

"px� x#& � fpxx&� xpx&g
� i

h

	�
f&� x&� � x&�g � i

h

	�
&�

In our case� we can identify Planck
s constant with one over the frequency� as the fre�
quency goes to in�nity we must recover classical �i
e
� ray�theoretic� physics
 So we have

px � �i �




�

�x
��
�
��

py � �i �




�

�y
��
�
��

H � �i �




�

�z
� ��
�
��

If we plug these operators into the de�nition of the Hamiltonian we arrive at none other
than the Helmholtz equation�

r�& � k�& � �� k � 
s� ��
�
���

But now we
re in business because we can interpret the solution of the wave equation
probabilistically as in quantum mechanics
 For example� at a �xed point in space we can
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normalize the wave function & as

� �
Z

&�& dt�

Then the function j&j� can be interpreted as the probability density of the arrival of a
wavefront at a time t
 This allows us to make a rigorous� wave�theoretic concept of arrival
time since now we can say that the expectation value of the arrival time is

hti �
Z

&�t& dt� ��
�
���

So naturally� we want to identify the width of a pulse with its �standard deviation�

�� �
Z

&��t� hti��& dt� ��
�
�	�

Let us therefore de�ne the arrival time of a pulse as�

ta � hti � �� ��
�
���

Well� it looks plausible on paper� but does it work� In Figure �
�� we show some synthetic
�wavelets�
 These are just the �rst lobe of a Ricker wavelet� perturbed by uniformly
distributed noise
 On the right of each plot is the average time and arrival time as
de�ned above
 We will leave the plausibility of these numbers to your judgement
 Of
course� there is nothing magical about one standard deviation
 We could use a di�erent
measure� say three standard deviations� on the grounds that this would contain almost all
of the energy of the pulse
 The main point is that Equation ��
�
��� is a quantitative and
easily computed measure


As usual� real data are somewhat more problematic
 In Figure �
�� we show a trace taken
from the Conoco crosshole data
 We looked around for one that looked especially clean

On the right of the �gure you see a zoomed�in view around the ��rst break�
 Hard to tell
from this view so we just squared the trace amplitude
 Figure �
� shows a further zoom
of the squared trace
 Here the rise in amplitude associated with the arrival is relatively
easy to pick out
 The �quantum mechanical� calculation gives an arrival time of around
� in this particular picture
 For more details of this �quantum mechanical� approach see
"��#


Exercises

��� What is the physical signi�cance of the fact that shear waves are dilation�free �r	s �
���

��� Do shear waves ever propagate faster than compressional waves� If not� why not�

��� Derive the wave equation in spherical coordinates �r� �� ��
 Then specialize to the
case of a spherically symmetric medium
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Figure �
�� Synthetic Ricker lobes with noise added
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Figure �
�� Left� A trace taken from the Conoco crosshole data set
 Right� An enlarged
view of the portion containing the �rst arrival
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Figure �
�� Enlarged view of the squared trace
 Don
t pay attention to the x�axis
labeling
 The y�axis represents the normalized amplitude


��� In Chapter 	 you computed the Fourier transform of a Gaussian
 Imagine that this
Gaussian is the initial state of a pulse traveling down the x�axis� u�x� ��
 Compare
the width of ju�x� ��j� �call this $x� with the width of its Fourier transform squared�
jA�k�j� �call this $k�
 What conclusions can you draw about how $x and $k are
related�

��� Show that if
��r� t� � f�%n 	 r� ct�

then

r� � %nf
�

r 	 �r�� � %n 	 %nf
��

� f
��

and

�t� � �cf �
��t � � c�f

��

��� Show that the peaks and troughs of the modulated sinusoid propagate with the speed
U � �
��k




Chapter �

Ray Theory


�� The Eikonal Equation

We will concentrate on the canonical scalar wave equation�

��t� � c�r�� ��
�
��

where � is some potential
 We Fourier�transform from time� t� to angular frequency� 
�
so that

�t � i
 ��
�
	�

and we have

�
�� � c�r��� ��
�
��

Plane�wave solutions for �transformed� � are of the general form

� � Pei� ��
�
��

) � k 	 r ��
�
��

jkj �






c




 ��
�
��

for the case where c� the wave speed� is everywhere constant


Now suppose that c varies with position but slowly enough that we can use the wave
equation

�
�� � c��r�r��� ��
�
��

This is called the Helmholtz equation
 Basically such a supposition amounts to neglecting
the coupling terms �involving things like rc or r
� which most exact wave equations
possess
 In general� as frequency increases we expect this approximation to become

��
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increasingly valid
 De�ne the index of refraction� �� with respect to some �arbitrary�
reference speed c� by

��r� �
c�
c�r�

� ��
�
��

Now we will investigate the possibility that � may have �possibly approximate� solutions
of the form

� � P �r�ei��r� ��
�
��

where P �r� is a real� �slowly�varying� wave amplitude and )�r� is a real generalized
phase
 �Remember that we are in the frequency domain� we regard 
 as �xed� of course
�

We plug our assumed form of � into the wave equation and see what comes out�

r� � �rP �ei� � �ir)��Pei�� ��
�
���

r�� � r 	 r� ��
�
���

� �r�P �ei� � 	i�rP 	 r)�ei� ��
�
�	�

� ir�)�Pei��� �r) 	 r)��Pei�� ��
�
���

so�

�
�Pei� � c��r�P � �r) 	 r)�P �ei� ��
�
���

� ic��	rP 	 r) � Pr�)�ei�� ��
�
���

If P � ) satisfy this equation� then � as speci�ed above satis�es the wave equation �to
be more precise� the approximate wave equation when c is a slowly�varying function of
position�
 Equating real and imaginary parts individually we get

�
�P � c�r�P � c�Pr) 	 r) ��
�
���

or

�r)�� �

�

c�
�
r�P

P
��
�
���

for the real part and
r�) � 	r log P 	 r) � � ��
�
���

for the imaginary


We now suppose that

�r)�� � r�P

P
��
�
���

to such an extent that the second term in Equation ��
�
��� is negligible
 When c is a
constant in space the P is also a constant and r�P is exactly zero while �r)�� is exactly
equal to 
��c�
 When c is no longer constant but still reasonably smooth� neglecting
r�P�P is� of course� an approximation
 We justify this by claiming that at su�ciently
high frequencies the wavenumber of the solution is much� much greater than the rate at
which wave amplitude� or energy� varies in space
 There are two important features of
this approximation�
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�
 The approximation in general improves as frequency increases
 In the limit of un�
bounded frequency it becomes arbitrarily good
 Because of this feature� we some�
times call this approach �asymptotic ray theory
�

	
 At any �nite frequency there are always cases in which ray theory fails
 We must
always be careful in exploiting this technique


The equation

�r)�� �

�

c�
��
�
	��

is called the �eikonal� equation� for the Greek word ���*
� meaning �image
� The solution�
)� is sometimes called the �eikonal
� The solutions� )� to this non�linear partial di�er�
ential equation are the phase surfaces associated with high�frequency wave propagation
through a medium with� at worst� a slowly�varying wave speed


Note that r) is essentially the local wave�number
 To see this� we neglect possible
variation in P and expand

��r� �� � P exp�if)�r� ��g� ��
�
	��

� P exp�if)�r� � � 	 r)�r�g�� ��
�
		�

Basically� the eikonal equation is telling us how the local solution wavenumber is related
to the local �and only the local� material properties


Equation ��
�
��� is called the transport equation� since once we solve the eikonal equation
for the phase� we can compute the slowly varying change in amplitude� which is due to
geometrical spreading
�

It
s worth pointing out that we could have proceeded in an entirely equivalent derivation
of the eikonal equation by de�ning the phase in Equation ��
�
�� relative to the frequency
�i
e
� use use eik�

��r� instead�
 Plugging this ansatz into the Helmholtz equation� we would
have seen several terms with a k in front of them
 Then in the limit that the frequency
goes to in�nity� only these terms would have been non�negligible


�In fact Equation ������� is the 
rst in an in
nite series of transport equations obtained by making
the more general ansatz	

� � ei��r	�p� � p��k� � p��k
�
� � � � ��

It is not obvious that this expression is legitimate either as a convergent or an asymptotic series� Nev�
ertheless� experience is overwhelmingly in its favor� For more details see �����
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�� The Di�erential Equations of Rays

Consider the surfaces associated with constant values of the eikonal
 The normal� %n� to
these surfaces are given by

%n �
r)

jr)j �
r)

k��
where k� �




c�
� ��
	
��

We de�ne a trajectory by the locus of points� r���� where � is arclength� such that

d�r � %n�r�� ��
	
	�

We call this trajectory a �ray
� We will see later why we attach so much signi�cance to
the ray
 Right now� we wish to �nd a way to construct the ray without having to directly
solve the eikonal equation
 We do this as follows�

d��r� � %n �
r)

k��
��
	
��

�d�r �
�

k�
r) ��
	
��

d���d�r� �
�

k�
d��r)�� ��
	
��

Since

d� � %n 	 r ��
	
��

d���d�r� �
�

k�
%n 	 r�r)� ��
	
��

�
�

�k��
r) 	 r�r)� ��
	
��

�
�

�k��

r�r) 	 r)�

	
�why�� ��
	
��

�
�

	�k��
r���k��� ��
	
���

so
d���d�r� � r� ��
	
���

or
d���%n� � r�� ��
	
�	�

This equation describes the precise manner in which a ray� as we have de�ned it� twists
and turns in response to the spatial variation of the wave speed� c
 Imagine starting at
some initial point� r���� and in some initial direction� %n���
 Then in the presence of some
particular ��r�� this equation tells us how to take little local steps along the unique ray
speci�ed by r���� %n���
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From Equation ��
	
�	� it is obvious that if the index of refraction �or velocity� or slowness�
is constant� then the equation of a ray is just d��r � �� which is the equation of a straight
line
 Notice that once the rays have been found� the eikonal can be evaluated since its
values at two points on a ray di�er by

R
�d�
 Finally� we note that the curvature of a

ray is de�ned to be d�r
 But this must point in a direction normal to the ray and in the
direction of increasing curvature
 If we de�ne a new unit normal vector along the ray
path %�� then the radius of curvature is de�ned by the equation

d�r �
�

�
%�� ��
	
���

Using the ray equation� Equation ��
	
�	�� and the eikonal equation it can be shown that

�

�
� %� 	 r log � ��
	
���

which shows that rays bend towards the region of higher slowness �or index of refraction
in optics�
 Also notice that Equation ��
	
�	� is precisely the equation of a particle in
a gravitational potential ��
 So in a deep sense� geometrical optics is equivalent to the
classical mechanics of particles�Fermat
s principle of least time being the exact analog of
Hamilton
s principle of least action� about which more in the next section



�� Fermat�s Principle

We begin with Huygen
s Principle which asserts that as a wave disturbance spreads
through a medium� we may� at each instant� regard the points disturbed by the ray at
that moment as a new set of radiating sources
 To take a very simple example� consider a
pulse from some source which at time t has spread outward to the surface �V � Huygen
s
Principle� as we have already seen� says that at any later time the pulse may be found by
computing the signal from a set of sources appropriately distributed over the disturbed
area contained by �V 
 In this form� Huygen
s Principle is simply a statement of the
obvious fact that we can regard the calculation for times later than some moment� t� as
being the solution of an initial�value problem starting at t having initial displacements
and velocities equal to those they actually had at t


Huygen
s Principle suggests a rather incoherent� jumbled progress of wave energy outward
from the source
 It implies that wave energy traverses every possible path available to it

We� on the other hand� hope to �nd some more orderly scheme of wave propagation


Harmony among these divergent notions comes as follows� Consider a medium in which
the wave speed strictly increases with depth �but �slowly� of course� and in which we
have a source and a receiver� both at some common depth
 In Figure �
� we have drawn
in three trial paths by which radiated energy might reach the receiver� one of them is
somewhat fanciful
 Any continuous piecewise di�erentiable curve is obviously a possible
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Γ
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Figure �
�� Possible ray paths connecting the source and receiver


path
 Because of the multitude of unrelated paths� we might expect� and it is so� that the
signals arriving from the vast majority of them will interfere destructively to produce no
net observable e�ect at the receiver


Now contemplate the path with the distinguishing property that it is the path from source
to receiver having the shortest time�of��ight �travel�time�
 In our particular case this path
will not be a straight line from source to receiver but� because the wave speed increases
downward� the minimum�time path will �dip� down somewhat into the higher velocity
region
 The path is sketched �qualitatively� as the lowermost path on the �gure


Let + symbolically denote this path and let � be a small path�variation which vanishes at
either end
 �We are playing a little fast and loose with algebra here� but it will work out
all right
� Symbolically� the set of paths

+ � �� ��
�
��

for small �� is a group of paths from source to receiver near to� and containing� the
minimum�time path +
 Since + is a minimum�time path� none of the nearby paths can
be any faster than + and most must be slower
 For any particular �� travel�time as a
function of � must look like Figure �
	 because the bottom of this curve is �at� as is
always the case for a minimum� thus there must be a cluster of paths all having the same
travel�time and which will therefore interfere constructively to produce a signal at the
receiver
 One of the most important properties of a minimum�time path� then� is that it
delivers a signi�cant amount of coherent energy at the far end


Notice that this argument only really required that the minimum�time path be a local
minimum
 Between any pair of points in a given medium� there may be a number of
minimum�time �in the local sense� paths and each should contribute an �arrival
�

Fermat
s Principle asserts that a ray is a minimum�time path through the medium
 When
we have shown that this is so� we shall have found out why ray theory is useful


We begin by proving Lagrange
s integral invariant
 Since

�%n �
�

k�
r)� ��
�
	�
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Figure �
	� The minimum time path is �by de�nition� an extremum of the travel time as
a function of ray path
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Figure �
�� Stokes pillbox around an interface between two media
 Since the shape is
arbitrary� we may choose the sides perpendicular to the interface to be in�nitesimally
small


where k� is constant� we must have

r
 ��%n� � �� ��
�
��

and therefore by Stokes
 theorem �using the notation de�ned in Figure �
��

Z
�
r
 ��%n� 	 da �

Z
��

��%n� 	 dl � � ��
�
��

if r) is continuous and where the integral is around any closed path
 This result is called
�Lagrange
s integral invariant
�

We can immediately use this to prove that the ray path connecting two points P� and



�� CHAPTER �� RAY THEORY

Q 

P 

P 
Q 

Q 

Q 

1  

Q’ 

2 

1  

1  
2 

2 

2 _  

_  C 
C 

_  . . . 
. . 

Figure �
�� The travel time along the ray path �C connecting two points P� and P� is less
than for any other path such as C


P� is the minimum time path
� Figure �
� shows a bundle of rays one of which connects
the two points P� and P�
 These rays are intersected at right angles by two surfaces of
constant phase
 To get the general result that the length of C is inevitably greater than
or equal to the length of �C� and hence that the travel time T �C� is greater than or equal
to T � �C�� it su�ces to show that

��dl� �Q�
�Q�
� ��dl�Q�Q�

� ��
�
��

Using Lagrange
s invariant on the in�nitesimal triangle de�ned by Q�Q�Q
�
� we haveZ

Q�Q�Q
�

�

�%n 	 dl � ��%n 	 dl�Q�Q�
� ��%n 	 dl�Q�Q��

� ��dl�Q�Q��
� �� ��
�
��

The last term doesn
t involve any dot product because along the segment Q�Q
�
� the line

element dl and the tangent to the ray �the normal of the isophasal surface� %n are parallel

Similarly� along the path Q�Q

�
� the line element is perpendicular to the ray
 Therefore

��%n 	 dl�Q�
�
Q�

� �
 Thus we have

��%n 	 dl�Q�Q�
� ��dl�Q�Q��

� ��
�
��

Now� for any path
��%n 	 dl�Q�Q�

� ��dl�Q�Q�
� ��
�
��

Therefore
��dl�Q�Q�

� ��dl�Q�Q
�

�

� ��dl� �Q�
�Q�
� ��
�
��

The last equality holds because the phase di�erence between two isophasal surfaces along
any two raypaths must be the same
 Thus we have shown thatZ

C
�dl �

Z
�C
�dl ��
�
���

�This discussion comes straight out of Born and Wolf ���� Nota bene� however the typo in their
Equation ��� of Section ������
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and� assuming constant speed� T �C� � T � �C�� Fermat
s principle


Also note that although the equality strictly holds only when both paths are the same� the
amount of inequality when C is not the same as �C depends upon the amount by which

��%n� 	 �dl�Q�Q�
di�ers from �jdljQ�Q�

�

As you can easily show� when %n and dl di�er in directions by only a small angle 	 �that
is� when C di�ers only slightly in direction from the local ray�� then

��%n� 	 �dl�Q�Q�
� �� � 	� � 	 	 	��jdljQ�Q�

so the inequality is only a�ected to second order in 	
 That is why the set of paths close
to a ray path all have the same travel�time to �rst order in the deviation from the ray
path


����� Boundary Conditions and Snell�s Laws

When we derived Lagrange
s invariant the region , was completely arbitrary
 However�
let
s consider the case in which this region surrounds a boundary separating two di�erent
media
 If we let the sides of the Stokes pillbox perpendicular to the interface go to
zero� then only the parts of the line integral tangential to the interface path contribute

And since they must sum to zero� that means that the tangential components must be
continuous�

���%n� � ��%n��tangential � � ��
�
���

where the subscripts � and 	 refer to a particular side of the boundary
 This is equivalent
to saying that the vector

��%n� � ��%n� ��
�
�	�

must be normal to the boundary


Now imagine a ray piercing the boundary and going through our Stokes pillbox as shown
in Figure �
�
 If �� and �� are the angles of incidence and transmission� measured from
the normal through the boundary� then continuity of the tangential components means
that �� sin �� � �� sin ��� which is called Snell
s law of refraction
 Similarly one can show
that in the case of a re�ected ray� the angle of incidence must equal the angle of re�ection


Strictly speaking the above argument is not legal
 If there are true discontinuities in the
medium� then the conditions under which the ray approximation are valid �slow variation
in material properties relative to the wavelength of the ray� are violated
 To be precise we
need to consider the boundary conditions of the full wave equation
 It turns out that we
will get the same result� so we can wa-e a little bit and say something to the e�ect that
what we are really talking about are plane waves refracting!re�ecting at the boundary
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Figure �
�� Geometry for Snell
s law
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Figure �
�� Plane wave incident on a vertical boundary gives rise to a transmitted and a
re�ected wave which must satisfy boundary conditions


To see that this is true� consider a plane pressure wave of unit amplitude �i in 	D incident
upon a vertical boundary at x � � at some angle of incidence �i

�i � eik��cos �ix�sin�iz� ��
�
���

Similarly for the re�ected and transmitted plane waves we have �cf
 Figure �
� for the
geometry�

�r � C�e
ik��cos �rx�sin�r z� ��
�
���

and
�t � C�e

ik��cos �tx�sin�tz� ��
�
���

Convince yourself that �i and �r must have the same wavenumber and that all three plane
waves must have the same frequency
 Now� in order for the pressure to be continuous
across the boundary�
 we must have

"�i � �r � �t#x�� � ��
�
���

�See ���� Section ��� for discussion of this issue� The other relevant boundary condition is continuity of
displacement for a welded contact� or merely continuity of normal displacement for the contact between
an inviscid �uid and a solid�
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The only way that this can be true for arbitrary z is if� k� sin �i � k� sin �r � k� sin �t
 In
other words� �i � �r and sin �t � �c��c�� sin �i



�	 Fermat Redux

We end this section by showing that Fermat
s principle of least time leads back precisely
to the ray equations which we derived before by making a high�frequency asymptotic
approximation
 This discussion is patterned on the one in "�#
 Let us begin by writing
the travel time between any two points A and B along the ray as

t �
�

c�

Z
ray path

��r���� d���� ��
�
��

where � is a dimensionless parameter that increases monotonically along the ray
 Using
dots to denote di�erentiation with respect to path length we have

d� �
q

'x� � 'y� � 'z� d� � j 'rj d�� ��
�
	�

In terms of � the travel time can be written

t �
�

c�

Z ��B�

��A�
��r� 'r� j 'rj d� ��
�
��

�
�

c�

Z ��B�

��A�
f�r� 'r� d� ��
�
��

where f � � j'rj
 Fermat
s principle� that the ray is �locally� the least time path� implies
that variations in t must be zero�

�t �
�

c�

Z ��B�

��A�
"rrf 	 �r�r �rf 	 � 'r# d� � �� ��
�
��

Integrating this by parts gives

�t �
�

c�

Z ��B�

��A�

�
rrf � d

d�
r �rf

	
	 �r d� � �� ��
�
��

In order that this integral be zero for arbitrary variations �r it is necessary that the part
of the integral within square brackets be identically zero�

rrf � d

d�
r �rf � �� ��
�
��

This is the Euler�Lagrange equation of variational calculus "��#
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Using the de�nition of the function f as � j'rj it follows that

rrf � j 'rjr� ��
�
��

r �rf � �
'r

j 'rj � ��
�
��

Finally we observe that d� � j 'rj d� so that the stationarity of t implies

d

d�

�
�
dr

d�

�
� r� ��
�
���

which is none other than Equation �
	
��
 Thus we have shown that asymptotic ray theory
and Fermat
s principle lead to the same concept of rays


Exercises

��� Using the ray equation
d���d�r� � r�

show that in a homogeneous medium� rays have the form of straight lines


��� Show that in a medium in which � depends only on depth z the quantity

%z
 �
dr

d�

is constant along rays
 This shows that rays are con�ned to vertical planes and that
the ray parameter p � ��z� sin i�z� is constant� where i�z� is the angle between the
ray and the z axis


��� Suppose that a medium has a spherically symmetric index of refraction �or slow�
ness�
 Show that all rays are plane curves situated in a plane through the origin and
that along each ray �r sin� � constant� where � is the angle between the position
vector r and the tangent to the ray at the point r
 You may recognize this result as
the analog of conservation of angular momentum of a particle moving in a central
force


��� What two independent equations must the amplitude P and the phase ) satisfy� in
order that the Helmholtz equation hold�

��� Next� show that if r�P
P

can be neglected in comparison to �r)��� then one of the

two equations you just derived reduces to �r)�� � ��

c�
� the eikonal equation


��� Use Lagrange
s invariant to prove Snell
s law of refraction
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Chapter �

Kirchho� Migration

��� The Wave Equation in Disguise

In this �rst pass through the Kirchho� migration algorithm we will restrict attention to
the constant velocity case and follow� more or less� Schneider
s original derivation "�	#

In later chapters we will discuss generalization to variable velocity media
 The derivation
itself begins with the forward problem for the wave equation
 Although this discussion
will focus on the acoustic wave equation� it applies equally well to the migration of elastic
or even electromagnetic scattering data


Suppose that we wish to solve a boundary value problem for the scalar wave equation
on the interior of some closed volume , in R
� with boundary conditions speci�ed on a
smooth boundary �,
 We
re looking for a function � such that�

r�� � �

c�
��t� � � �r � ,� ��
�
��

The geometry is illustrated in Figure �
�


A complete speci�cation of the problem requires that we specify the initial values of � and
its normal derivative ����n in , and either � or ����n on �,
 Specifying the function
on the boundary is called the Dirichlet problem� specifying the normal derivatives is
called the Neumann problem
 Some di�erential equations allow one to specify both types
of conditions simultaneously �Cauchy problem�� but the wave equation does not "��#
 For
starters� we will imagine our sources lying on the free surface of the Earth� which is going
to be part of �,� so that we can use the homogeneous �source�free� form of the wave
equation


Now when we use Huygen
s principle� we are synthesizing a general solution of the wave
equation from the cumulative e�ects of an in�nite number of point sources
 This can
be made mathematically systematic by de�ning an impulse response function or �Green

��
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W 

dW 

Figure �
�� Volume and surface de�ned in the speci�cation of the wave equation


function�� which is the solution of the wave equation with a point source term
 Irrespective
of the boundary conditions involved� we de�ne a Green function� depending on both source
and observer coordinates� +�r� t� r�� t�� as the solution of�

r�+� �

c�
��t + � �����r� r����t� t�� ��
�
	�

where � is the Dirac delta function and �r�� t�� are the source coordinates


If we multiply this equation by � and the wave equation by + and subtract one equation
from the other we get

����r� r����t� t��� � +r�� � �r�+ �
�

c�

�
+��t � � ���t+

�
��
�
��

or

����r� r����t� t��� � r 	 "+r� � �r+# �
�

c�
�t "+�t� � ��t+# ��
�
��

To get rid of the delta function� we
d like to integrate this equality over some space�time
volume
 , is an obvious choice for the space part� and we
ll integrate over all time�

��r���r� t� �
Z �

��

Z
�
r 	 "+r� � �r+# dv� dt�

�We have decided to swim upsteam and abandon the awkward and singular Green�s function in favor
of Green function�
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�
�

c�

Z �

��

Z
�
�t "+�t� � ��t+# dv� dt� �r � R
� ��
�
��

The left�hand side comes from integrating the delta function
 The value of ��r� is calcu�
lated by a limiting argument and turns out to be �� if r is in the interior of ,� 	� if r is
on the boundary� and � otherwise


The �rst integral on the right of Equation ��
�
�� can be converted to a surface integral
over �, via the divergence theorem
 The second integral can be integrated by parts with
respect to time giving a term of the form

�Z
�

+�t� � ��t+dv
�
���
��

� ��
�
��

Clearly we can assume that � and �t� are zero until sometime after the source is �red
o�� say at t� � �� so the lower limit is zero
 And provided the Green function is causal
or assuming a Sommerfeld radiation condition on �� the upper limit must be zero too
�

The result of all this is the Kirchho� Integral Theorem�

��r���r� t� �
Z �

�

Z
��

"+r� � �r+# 	 n da� dt� �r � R
 ��
�
��

where n is the �outward pointing� unit normal of �,


The Kirchho� Integral Theorem gives the solution of the wave equation � everywhere in
space once the values of � and its normal derivative are known on the boundary
 But
since we cannot in general specify both of these consistently �Cauchy conditions�� we need
to solve for one in terms of the other
 This we do by taking the limit of Equation ��
�
��
as the observation point r approaches the surface
 Using the notation�

�j�� � f ��
�
��

��

�n
j�� � g ��
�
��

we then have for the Neumann problem

f�r� t� �
�

	�

Z �

�

Z
��

"+g � f�n+# da� dt� �r � �, ��
�
���

So to recap� since we can
t specify both the function and its normal derivative� we must
specify one and solve for the other
 If we specify� for example� the normal derivative�
i

e� g� then Equation ��
�
��� is an integral equation for f 
 If we then solve for f we
can use the Kirchho� Integral to compute the solution to the wave equation
 There is
a comparable equation such as Equation ��
�
��� for the Dirichlet problem� where we
specify f and solve for g


�This will come back to haunt us later�
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So far we haven
t said anything about what boundary conditions the Green function must
satisfy
 But if you look back over the derivations thus far� we haven
t assumed anything
at all in this regard
 The expressions derived so far are true for any Green function
whatsoever� i
e
� any function satisfying Equation ��
�
	�
 Now in special cases it may be
possible to �nd a Green function which vanishes on part or all of the boundary in question�
or whose normal derivative does
 If the Green function vanishes on �, then we can solve
the Dirichlet problem for the wave �eld directly from Kirchho�
s Integral since the term
in that integral involving the unknown normal derivative of the wave �eld is cancelled

In other words� if the Green function vanishes on the boundary then Equation ��
�
��
reduces to�

��r� t� �
�

��

Z �

�

Z
��

f�r�� t���n+�r� t� r�� t�� da� dt� ��
�
���

which is not an integral equation at all since by assumption we know f 
 Similarly� if the
normal derivative of the Green function vanishes on the boundary then we can immedi�
ately solve the Neumann problem for the wave �eld since the unknown term involving its
boundary values is cancelled
 In either event� having a Green function satisfying appro�
priate boundary conditions eliminates the need to solve an integral equation
 If we don
t
have such a special Green function� we
re stuck with having to solve the integral equation
somehow� either numerically or by using an approximate Green function as we will do
later when we attempt to generalize these results to nonconstant wavespeed media


��� Application to Migration

Consider now the problem of data recorded on the surface z � �
 To begin� we will
consider the case of media with constant wavespeed� so that there are no boundaries in
the problem
 Of course� this is really a contradiction� we
ll see how to get around this
di�culty later
 Then we can take �, to consist of the plane z � � smoothly joined to
an arbitrarily large hemisphere extending into the lower half�space
 If we let the radius
of the hemisphere go to in�nity� then provided the contribution to the integral from
this boundary goes to zero su�ciently rapidly� the total integral over �, reduces to an
integral over the plane z � �
 Showing that the integral over the lower boundary can
really be neglected is actually quite tricky since even if we use a Green function which
satis�es Sommerfeld� the �eld itself may not
 We will discuss this in detail later in Paul
Docherty
s talk on Kirchho� inversion


In the special case of a constant velocity Earth� two Green functions which vanish on the
surface z � � can be calculated by the method of images
 They are�

+r�r� t� r
�� t�� �

��t� t� �R�c�

R
� ��t� t� �R��c�

R� ��
	
��

and

+a�r� t� r
�� t�� �

��t� t� � R�c�

R
� ��t� t� � R��c�

R� ��
	
	�
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Figure �
	� A Green function which vanishes on a planar surface can be calculated by
the method of images


where
R �

q
�x� x��� � �y � y��� � �z � z���

and
R� �

q
�x� x��� � �y � y��� � �z � z����

We won
t derive these Green functions here� that will be left for an exercise
 However
it is obvious from our discussion of spherical waves that these are spherically symmetric
solutions of the wave equation
 The subscripts a and r refer� respectively� to advanced
and retarded
 The retarded Green function is causal� propagating outward from its origin
as t increases
 The advanced Green function is anti�causal
 It represents a converging
spherical wave propagating backwards in time


Now all we have to do is plug one of these Green functions into Equation ��
�
���
 And
since migration involves propagating di�raction hyperbolae back to their origin� it is clear
that we should be using +a
 Notice too that R��z�� � R��z��� so that we can combine
the normal �i
e
� z� derivatives of the two delta functions with the result �for r in the
subsurface��

��r� t� �
��

	�

Z �

�

Z
z���

f�r�� t���z�
��t� t� � R�c�

R
da� dt�� ��
	
��

And since z appears only in the combination z � z�

��r� t� �
�

	�
�z

Z �

�

Z
z���

f�r�� t��
��t� t� � R�c�

R
da� dt�� ��
	
��
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Finally� using the properties of the delta function to collapse the time integration� we have�

��r� t� �
�

	�
�z

Z
z���

f�r�� t� R�c�

R
da�� ��
	
��

This is Schneider
s Kirchho� migration formula "�	#


This has been a rather involved derivation to arrive at so simple looking a formula�
so let
s recap what we
ve done
 We started by converting the wave equation into an
integral equation by introducing an arbitrary Green function
 We observed that if we
were clever� or lucky� enough to �nd a particular Green function which vanished �or
whose normal derivative did� on the surface that we were interested in� then the integral
equation collapsed to an integral relation which simply mapped the �presumed known�
boundary values of the wave �eld into a solution valid at all points in space
 For the
problem of interest to us� data recorded at z � �� it turned out that we were able to write
down two such special Green functions� at least assuming a constant velocity Earth
 The
question now is what boundary values to we use�

We have already observed that CMP stacking produces a function �s�x� y� z � �� t� whose
value at each mid�point location approximates the result of a single� independent zero�
o�set seismic experiment
 So� the boundary data for the migration procedure do not
correspond to the observations of a real physical experiment and the solution to the
initial�boundary value problem that we have worked so hard on is not an observable wave
�eld
 From an abstract point of view we may simply regard the Kirchho� migration
formula� Equation ��
	
��� as a mapping from the space of possible boundary values into
solutions of the wave equation


For post�stack migration� we identify f in Equation ��
	
�� with the CMP stacked data
�s
 Then we set c � c�	 and t � � for the exploding re�ector model
 And �nally we
perform the integration over the recording surface x�� y��

depth section � ��r� �
�

	�
�z

Z
z���

�s�r�� 	R�c�
R

da�� ��
	
��

The normal derivative outside of the integral is responsible for what we called the �obli�
quity factor� in our discussion of the Huygens�Fresnel principle
 Remember� R is the
distance between the output point on the depth section and the particular receiver or
trace location on the surface z� � �
 So as we integrate along the surface z� � � we are
really summing along di�raction hyperbolae in the zero�o�set data
 This is illustrated in
Figure �
�


Equation ��
	
�� can also be viewed as a spatial convolution which downward propagates
the recorded data from one z level to the next
 Mathematically there is nothing special
about z � �� it just happens to be where we recorded the data
 So if we were faced
with a layered medium� one in which the velocity were constant within each layer� we
could use this integral to downward propagate the recorded data one layer at a time
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point scatterer  

 

zero-offset section migrated image 

t=2R/c 

diffraction hyperbola 

Figure �
�� A point scatterer in the Earth gives rise to a di�raction hyperbola on the time
section
 Kirchho� migration amounts to a weighted sum along this hyperbola with the
result going into a particular location on the depth section


Since the Fourier transform of a convolution is just the product of the Fourier transforms�
it makes sense to re�cast this downward propagation operation in the spatial Fourier or
wavenumber domain
 In the appendix to his paper "�	# Schneider shows that the Fourier
transform of Equation ��
	
�� can be written�

��kx� ky� z � $z� 
� � ��kx� ky� z� 
�H�kx� ky�$z� 
� ��
	
��

where

H � e
�i�z

q
��
c �

��k�x�k�y � ��
	
��

This means that for constant velocity media� downward propagation is purely a phase
shift operation


Another commonly seen form of the Kirchho� migration procedure is obtained by per�
forming the z di�erentiation
 Using the chain rule we �nd that�

��r� �
�

	�

Z
z���

cos �

Rc

�
�t��s �

c

R
�s

�
t���R�c

da� ��
	
��

where � is the angle between the z axis and the line joining the ouput point on the depth
section �x� y� z� and the receiver location �x�� y�� ��
 Because of the R in the denominator�
you will often see the second term inside the brackets ignored


All of these formulae for Kirchho� migration can be interpreted as summing along dif�
fraction curves
 We look upon every point in the depth section� say r� as a possible point
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di�ractor
 Since we� presumably� know the velocity above this point� we can �nd the apex
of its hypothetical di�raction hyperbola
 Then we sum along this curve according to an
integral such as Equation ��
	
�� and deposit the value so obtained at the point r
 But
Kirchho� migration is signi�cantly more accurate than simply summing along di�raction
hyperbolae� even in constant velocity media� because of the presence of the obliquity
factor �cos �� and the derivative of the data


When the wavespeed c is not constant� the Kirchho� formulae must be generalized
 Es�
sentially this amounts to replacing the straight ray travel time R�c with a travel time
accurately computed in the particular medium�

t � T �x� y� z�x�� y�� z� � ��� ��
	
���

or� what amounts to the same thing� using a Green function valid for a variable velocity
medium
 We will discuss this later in the section on Kirchho��type inversion formulae


��� Summary of Green Functions

The free�space Green functions for the Helmholtz equation

r�Gk�r� r
�� � k�Gk�r� r

�� � �����r� r�� ��
�
��

are�

Gk�r� r
�� �

eikjr�r
�j

jr� r�j ��
�
	�

� i�H
���
� �k jr� r�j� ��
�
��

�
	�i

k
eikjx�x

�j ��
�
��

in� respectively �� 	� and � dimensions� where H
���
� is the zero�th order Hankel function

of the �rst kind


The free�space Green functions for the wave equaton

r�G�r� t� r�� t��� �

c�
��tG�r� t� r�� t� � �����r� r����t� t�� ��
�
��

are�

G�r� t� r�� t�� �
�

jr� r�j� "jr� r�j �c� �t� t��# ��
�
��

�
	cq

c��t� t��� jr� r�j�
.

�
�t� t��� jr� r�j

c

�
��
�
��

� 	c�.

�
�t� t��� jx� x�j

c

�
��
�
��
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in� respectively �� 	� and � dimensions� where . is the step function� .�x� � � for x � �
and .�x� � � for x � �
 For more details see Chapter � of Morse and Feshbach "��#


Exercises

��� In this extended exercise you will derive� following "��#� the free�space Green func�
tion for both the Helmholtz equation and the wave equation
 First we de�ne
G�r� r�� k� to be a solution to the Helmholtz equation with a point source��

r� � k�
�
G�r� r�� k� � �����r� r���

Now show that if there are no boundaries involved� G must depend only on r� r�

and must in fact be spherically symmetric
 De�ne R � r� r� and R � jRj
 Next�
show that the Helmholtz equation reduces to

�

R

d�

dR�
�RG� � k�G � �����R��

Show that everywhere but R � � the solution of this equation is

RG�R� � AeikR � Be�ikR�

The delta function only has in�uence around R � �
 But as R � � the Helmholtz
equation reduces to Poisson
s equation� which describes the potential due to point
charges or masses
 From this you should deduce the constraint� A � B � �
 The
particular choice of A and B depend on the time boundary conditions that specify
a particular problem
 In any event� you have now shown that the free�space Green
function for the Helmholtz equation is

G�R� � A
eikR

R
� B

e�ikR

R

with A�B � �
 It is convenient to consider the two terms separately� so we de�ne

G��R� �
e�ikR

R
�

Now show that the time�domain Green function obtained from the Fourier transform

G��R� t� t�� � G��R� � � �
�

	�

Z �

��
e�ikR

R
e�i�� d


where � � t� t� is the relative time between the source and observation point
 Now
what is the �nal form in the time domain of the Green functions G��r� t� r�� t�� �
G��r � r�� t � t��� Which one of these is causal and which one is anti�causal and
why�

For more details� the interested reader is urged to consult the chapter on Green
function methods in Volume I of Morse and Feshbach "��#
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��� Go through the same derivation that leads up to Schneider
s constant velocity mi�
gration formula� but use the 	D Green function given above
 You should end up
with a migrated depth section that looks like�

��x� z� � � �

�
�z

Z
dx�

Z
R�c

�s�x� �� t��q
t�� �R��c�

dt��

This result is often written in the following far��eld form

��x� z� �
Z cos �p

	�Rc
�t
����s�x� �� R�c� dx

�

where �t
��� is a fractional derivative
 The derivation of this is simplest in the fre�

quency domain where we can use the far �eld approximation to the Hankel function

H�
� �kr� �

s
	

/kr
di�kr������

When we Fourier transform this back to the time domain� the
p

 that results from

applying this asymptotic expression ca be interpreted as a a half�derivative operator


Fractional derivatives �and integrals� are de�ned in a purely formal fashion using
Cauchy
s theorem for analytic functions
 Let f be analytic everywhere within and
on a simple closed contour C taken in a positive sense
 If s is any point interior to
C� then

f�s� �
�

	�i

Z
C

f�z�

z � s
dz�

By di�erentiating this expression n times we get

f �n��s� �
n 

	�i

Z
C

f�z�

�z � s�n��
dz�

Now the expression on the right is well�de�ned for non�integral values of n provided
we replace the factorial by the Gamma function

 Therefore we identify� again purely
formally� the expression on the left as the fractional derivative �or fractional integral
when n is negative� of the indicated order


�The Gamma function ��z� is de
ned via the integral	

��z� �

Z
�

�
tz��e�t dt�

It can be shown that ���� � � and ��z��� � z��z�� The Gamma function is analytic everywhere except
at the points z � �������� � � � where it has simple poles� For more details� see �����
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��� A point�source in 	D is equivalent to a line�source in �D
 Therefore in an in�nite�
homogeneous medium� the time�domain 	D Green function can be obtained by
integrating the �D Green function along a line as follows�

g�p� t�p�� t�� �
Z �

��
� "�R�c� � �t� t��#

R
dz��

where p and p� are radius vectors in the x� y plane� and

R �
q

�x� x��� � �y � y��� � �z � z����

You should expect that g is a function only of P � jp� p�j and � � t� t�


Show that g�P� � � � 	c�
p
c�� � � P � if P � c� and g�P� � � � � otherwise
 Hint�

introduce the change of variables � � z� � z
 Then

R� � �� � P �� d��dR � R���

These will allow you to do the integration over the R coordinate so that the delta
function can be evaluated


��� In cylindrical coordinates ��� �� z� the Laplacian is

r�f �
�

�

�

��

�
�
�f

��

�
�

�

��
��f

���
�
��f

�z�
�

Assuming an in�nite �i
e
� no boundaries�� constant�velocity medium� Show that
away from the source and at su�ciently low frequency� the frequency�domain �i
e
�
Helmholtz equation� Green function is proportional to log �


��� Schneider
s Kirchho� migration formula is

depth section �
�

	�
�z

Z
z���

�s�r�� t� � 	R�c�

R
da�

where R �
q

�x� x��� � �y � y��� � �z � z���� �s is the stacked data and the integral

is over the recording surface
 Show that in the far �eld �i
e
� when R is large� the
depth section is proportional to

Z
z���

cos �

R
"�t��s#t���R�c da��
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Chapter �

Kirchho� Migration	Inversion�

We will begin by looking at Claerbout
s heuristic imaging condition� and show that this is
equivalent to the formulae derived in the theory of Kirchho� inversion
 Inversion means
that we provide a geometrical image of the re�ectors� as well as quantitative estimates of
the re�ection coe�cients
 A source is excited at some point xs
 Let uI denote the incident
�eld� and uS the scattered �eld
 Suppose we know the scattered �eld at some depth point
r� as illustrated in Figure �
�
 Claerbout
s imaging condition is that the migrated image
at r is given by

m�r� �
�

	�

Z
d
F �
�

uS�r�xS� 
�

uI�r�xS� 
�
��
�
��

where F is a �lter emphasising the band�limited nature of the scattering �eld


This looks as if we are deconvolving the scattered �eld by the incident �eld
 If the medium
is slowly varying �in the WKBJ sense�� then we can approximate

uI � AI�r�xs�e
i��I�r�xs� ��
�
	�

�This chapter is based on talks that Paul Docherty gave before the class in ���� and ����� which were
adapted from his paper �����

S 

r 

x s 

D D D D D D D D 

Figure �
�� The incident �eld re�ects o� a boundary � at some depth
 The generic
observation point is r


���
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where �I is the travel time from the source to the observation point r
 In this case we
have

m�r� �
�

	�AI

Z
d
F �
�uS�r�xS� 
�e�i��I�r�xs�� ��
�
��

This has the form of a Fourier transform and amounts to evaluating the scattered �eld
at a time �I 
 If we continue along these lines and use the WKBJ approximation for the
scattered �eld� then we have

m�r� �
AS

	�AI

Z
d
F �
�e�i���I�r�xs���S�r�xs��� ��
�
��

But this integral is just a delta function� band�limited by the presence of F 
 Denoting this
by �B� and identifying the ratio AS

AI
as the re�ection coe�cient� we have the fundamental

result
m�r� � R�r��B��I � �S�� ��
�
��

The interpretation of this expression is clear� it is non�zero only where the re�ection
coe�cient is non�zero� and then only when �I � �S
 The last � is because of the band�
limited nature of the delta�function
 The peak value certainly occurs when �I � �S and
is given by

mpeak�r� �
�

	�
R�r�

Z
d
F �
� ��
�
��

or

mpeak�r� �
�

	�
R�r� 
Area of �lter F� ��
�
��

Now� we can pretend we know AI and �I � but how do we get the scattered �eld at depth�
The answer is� using Green functions
 We will proceed in much the same way as in the
preceeding chapter� except that now we take explicit account of the fact that the velocity
is not constant
 We will denote the true wavespeed by v�x�� it will be assumed that v
is known above the re�ector
 We will introduce a �background� wavespeed c�x� which
is also nonconstant� but assumed to be known and equal to v above the re�ector
 By
de�ntion� the total �eld u satis�es the wave equation with v�

�
r� �


�

v�

	
u�x�xs� � ���x� xs� ��
�
��

whereas the �incident� �eld satis�es the wave equation with the background wavespeed

�
r� �


�

c�

	
uI�x�xs� � ���x� xs�� ��
�
��

For this hypothetical experiment we can make the source whatever we want� so we
ll make
it a delta�function
 This is without loss of generality since we can synthesize an arbitrary
source by superposition




���

The basic decomposition of the total �eld is�

u�x�xs� � uI�x�xs� � uS�x�xs�� ��
�
���

When we talked about the plane�wave boundary conditions in the chapter on rays� we
decomposed the �eld into an incident and scattered �or re�ected� �eld on one side of the
boundary� and a transmitted �eld on the other side of the boundary
 Here we are using
a di�erent decomposition� neither more nor less valid�just di�erent
 Below the re�ector�
the scattered �eld is de�ned to be the total �eld minus the incident �eld
 We can imagine
the incident �eld being de�ned below the re�ector� just by continuing the background
model c below the re�ector
 This is a mathematically well�de�ned concept� it just doesn
t
correspond to the physical experiment
 As we will see though� it let
s us get to the heart
of the migration problem


Introduce a quantity � which represents� in some sense� the perturbation between the
background model and the true model�

� � c�x��

v�x��
� � ��
�
���

so that
�

c�
� �

v�
� �

c�
� ��
�
�	�

Since c � v above the re�ector� � is zero in this region
 Whereas � is nonzero below the
re�ector
 In terms of �� the equation for the scattered �eld can be written��

r� �

�

c�

	
uS�x�xS� 
� � �
�

c�
�u�x�xS� 
�� ��
�
���

Now let us introduce a Green function for the background model��
r� �


�

c�

	
G�x� r� 
� � ���x� r� ��
�
���

As usual� we convert this into an integral relation via Green
s identity

�uS�r�xS� 
� �
Z
V
G�x� r� 
�


�

c�
�u�x�xS� 
�dV

�
Z
S

�
uS�x�xS� 
�

�G�x� r� 
�

�n
�G�x� r� 
�

�uS�x�xS� 
�

�n

	
dS ��
�
���

At this point we have complete �exibility as to how we choose the volume!surface of
integration
 We also have yet to decide which Green function to use
 For example� it
could be causal or anti�causal
 We have a great variety of legitimate choices� all giving
rise to di�erent formulae
 Some of these formulae will be useful for migration and some
will not
 We have to see� essentially by trial and error which ones are which
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Figure �
	� De�ne the surface S to be the union of the recording surface S� and a surface
joining smoothly with S� but receding to in�nity in the �z direction


��� Case I� Causal G� S � S� � S��

Let S be the union of S�� the data recording surface �z � �� and a surface S�� which is
smoothly joined to S� but which recedes to in�nity in the �z direction �Figure �
	�


First we observe that the surface integral over S� must be zero
 To see this� apply
Green
s identity to the volume enclosed by S � S� � S��� the corresponding surface
going to in�nity in the upper half plane
 Then in the volume enclosed by S� � is zero�
and the scattered �eld is zero too since the Green function has no in support this domain

Therefore the total surface integral

Z
S��S��

�
uS�x�xS� 
�

�G�x� r� 
�

�n
�G�x� r� 
�

�uS�x�xS� 
�

�n

	
dS ��
�
��

is equal to zero


But as S�� goes to in�nity the �elds G and u must go to zero by virtue of the Sommerfeld
radiation condition �since in this case both G and u are causal�
 Therefore the surface
integral over S� must be zero itself
 So now if we use S � S� � S��� since the surface
integral over S�� must be zero by the same Sommerfeld argument� we have that

uS�r�xS� 
� �
Z
V
G�x� r� 
�


�

c�
�u�x�xS� 
�dV� ��
�
	�

This expression requires that we know the total �eld u�x�xS� 
� and � everywhere within
the volume V 
 If we approximate the total �eld by the incident �eld �the so�called Born
approximation� then we have

uS�r�xS� 
� � 
�
Z
V
G�x� r� 
�

�

c�
uI�x�xS� 
�dV� ��
�
��




	�	 CASE II� CAUSAL G� S � S� � � ��


which is a just a linear function of the unknown perturbation �
 In other words we have
us � L��� where L is a linear function
 So by choosing a causal Green function and a
surface extending to in�nity in the �z direction� we end up with a Born inversion formula
for the unknown wavespeed perturbation �


��� Case II� Causal G� S � S� � �

If we now take the volume V to be the area bounded by recording surface and the re�ecting
surface� then the volume integral goes away since � is zero in this region
 This gives

�uS�r�xS� 
� ��
	
��

�
Z
S���

�
uS�r�xS� 
�

�G�x� r� 
�

�n
�G�x� r� 
�

�uS�x�xS� 
�

�n

	
dS�

Now the integral over S� is zero by the same argument we used in Case I
 So in fact�

�uS�r�xS� 
� ��
	
	�

�
Z
�

�
uS�x�xS� 
�

�G�x� r� 
�

�n
�G�x� r� 
�

�uS�x�xS� 
�

�n

	
dS�

But to make use of it we need the scattered �eld at depth
 So we plug in the WKB
expressions for uS�x�xS� 
� � AS�x�xS�ei��S�x�xS� and G � AG�r�xs�e

i��G�r�xs�� then
computing the normal derivatives is straightforward�

�nG � i
%n 	 r�GAGe
i��G ��
	
��

neglecting the gradient of the amplitude �WKBJ again� and

�nuS � i
%n 	 r�SASe
i��S � ��
	
��

Plugging these into the surface integral� we arrive at

�uS�r�xS� 
� �
Z
�
i
ASAG "%n 	 r�G � %n 	 r�S# ei���G��S �� ��
	
��

This gives us a formula for doing WKBJ modeling� we take AS � RAI � where R is
the re�ection coe�cient� and we would have to compute AI � �G and �S�� �I� on � via
raytracing
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��� Case III� G Anticausal� S � S� � �

In this case the volume V is still the region between the recording surface S� and the
re�ecting surface �� so the volume integral goes to zero
 What we would really like to be
able to do is show that the integral over � is negligible� so that we would have a surface
integral just over the recording surface
 This would be perfect for migration!inversion
formulae
 This issue is treated somewhat cavalierly in the literature
 � is sent o� to
in�nity and some argument about Sommerfeld is given
 But for migration!inversion we
want an anticausal Green function so as to propagate the recorded energy backwards in
time
 And� as we will now show� only the causal Green function satis�es the Sommerfeld
condition as r��
As the observation point goes to in�nity� the causal Green function has the form

G� �

��R
eikR ��
�
��

Also� we can approximate �G
�R

by �G
�n


 So as R�� we have

�G

�n
� �

��R

���

R
eikR � ikeikR

�
�

�

��R
eikR

�
ik � �

R

�
��
�
	�

and hence
�G

�n
� i




c
G � K�

R�
��
�
��

as R goes to in�nity
 K� is just some constant factor
 By the same argument

�uS
�n

� i



c
us � K�

R�
��
�
��

with a di�erent constant factor K�


Now the integral whose value at in�nity we need to know is

Z
S

�
uS�x�xS� 
�

�G�x� r� 
�

�n
�G�x� r� 
�

�uS�x�xS� 
�

�n

	
dS� ��
�
��

If we add and subtract the term i
�cGus� we haven
t changed anything� but we end up
with Z

S
uS

�
�G

�R
� i




c
G

	
�G

�
�uS
�R

� i



c
us

	
dS� ��
�
��

The �elds themselves �G and us� decay as one over R for large R
 Therefore the complete
integrand of this surface integral must decay as one over R

 The surface area of S
obviously increases as R�
 So we conclude that the surface integral itself must decay as
one over R as R goes to in�nity
 In other words� if we use the causal Green function� we
can neglect surface integrals of this form as the surface of integration goes to in�nity





	
	 CASE III� G ANTICAUSAL� S � S� � � ���

But for migration we want an anti�causal Green function
 And for the anti�causal Green
function �G goes as e�ikR�R� we have

�G

�R
� i




c
G � K�

R�
��
�
��

where the � sign is especially important
 Because of it �G
�R
� i�

c
G must decay as one over

R not R�
 The point is that we are stuck with using a causal expression for the scattered
�eld since that is the result of a real physical experiment
 But for the Green function we
have a choice
 Choosing the causal Green function results in an integrand which decays
as one over R
� making the surface integral go to zero as R goes to in�nity
 But choosing
the anti�causal Green function results in an integrand which decays only as one over R�


In Schneider
s original paper "�	#� he �rst did the argument with the causal Green fucntion�
took the surface o� to in�nity and argued� quite properly� that this contribution from the
surface at in�nity was zero
 But then when it came time to do migration� he slipped
in an anti�causal Green function As we have just seen this argument is false
 So there
is more to the question than this
 Somehow we must show that the contribution to the
scattered �eld from the integration over � is negligible compared to the integration over
the recording surface S�
 The details of the argument are given in "��#� but the upshot is
that by using a stationary phase argument� one can indeed show that the integral over �
is negligible
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Chapter 


The Method of Stationary Phase

We have various occasions in this course to consider approximating integrals of the form

I �
Z b

a
f�x�ei�g�x� dx ��
�
��

where � is a large parameter
 Such integrals arise� for example� in the Green function
integral representation of solutions of the wave equation in slowly varying media
 Slowly
varying material properties imply large relative wavenumbers
 And in the chapter on
phase�shift methods we saw that high�frequency solutions of the c�z� wave equation can
be written in the form

� �
�p
kz
e
R
kz dz �

There is a well�known method for treating integrals of this form� known as the method
of stationary phase
� The basic idea is that as the parameter � gets large� the integrand
becomes highly oscillatory� e�ectively summing to zero� except where the phase function
has a stationary point
 We can illustrate this with a simple example shown in Figure �
�

The top �gure shows a Gaussian which we take to be the phase function g�x�
 Clearly
this has a stationary point at the origin
 In the middle �gure we show the real part of
the hypothetical integrand at a relatively small value of � 
 In the bottom �gure� � has
been increased to ����
 You can see that only in the neighborhood of the origin is the
integrand not highly oscillatory


Stationary phase methods have been around since the ��th century
 The name derives
from the fact that the most signi�cant contribution to I comes from those points where
g��x� � �� i
e
� the phase is stationary
 We want an approximation that gets better as the
parameter � gets larger
 If we integrate I by parts we get�

I �
f�x�ei�g�x�

i�g��x�







b

a

� �

i�

Z b

a
�x

�
f�x�

g��x�

�
ei�g�x� dx� ��
�
	�

�This discussion follows that of Jones �����

���
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Figure �
�� Hypothetical phase function �top�� real part of the integrand ei�g�x� for � � ��
�middle�� real part of the integrand for � � ����




��


The �rst term is clearly O���� �
 The second term will be O���� �� once we integrate by
parts again�provided g� doesn
t vanish in the interval "a� b#


If g� is nonzero in "a� b#� we
re done since as � �� we have the estimate

I � ei�g�x�

i�g��x�







b

a

� ��
�
��

But suppose g��x� � � at some point x� in "a� b#
 We can break op the integral I into
three parts�

Z x���

a
f�x�ei�g�x� dx �

Z x���

x���
f�x�ei�g�x� dx �

Z b

x���
f�x�ei�g�x� dx ��
�
��

where � is a small number
 In the �rst and last of these integrals we can use the previous
result since� by assumption� g is nonstationary in these intervals
 The only question that
remains is how the integral over the interval "x� � �� x� � �# compares to these other
contributions
 Let
s try approximating g by a Taylor series in the neighborhood of x��

g�x� � g�x�� � g��x���x� x�� �
�

	
g���x���x� x��

� � 	 	 	 ��
�
��

The second term in the Taylor series is zero by assumption
 If we introduce the new
variable t � x� x� then we haveZ x���

x���
f�x�ei�g�x� dx � f�x��

Z �

��
ei� �g�x������g

���x��t
�� dt� ��
�
��

We can pull the f�x�� out of the integral since � can be assumed to be as small as we
like� this works provided f is not singular in the neighborhood of x�
 If it is� then we
must resort to stronger remedies
 Now if the functions f and g are well�behaved� then
we can make the terms due to the integration by parts as small as we like since they
are all at least O���� �
 There are many complications lurking in the shadows and whole
books are written on the subject �for example� "�#�� but we will assume that we only
have to worry about the contribution to I from the integral around the stationary point�
Equation ��
�
��
 In other words� we are making the approximation that we can write I
as

I � f�x��
Z �

��
ei� �g�x������g

���x��t�� dt� ��
�
��

But this integral can be done analytically since

H �
Z �

��
e�x

�

dx

H� �
�Z �

��
e�x

�

dx
� �Z �

��
e�y

�

dy
�

�
Z �

��

Z �

��
ex

��y� dx dy�

Therefore

H� �
Z �

�

Z ��

�
e�r

�

r dr d� �
�

	

Z �

�

Z ��

�
e�� d� d� � �
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So H �
p
� and Z �

��
eiat

�

dt �

r
�

a
ei���� ��
�
��

So we
re left with

I �
s

	�

�g���x��
f�x��e

i��g�x�������� ��
�
��

If g�� turns out to be negative� we can just replace g�� in this equation with jg��j ei�


If we
re unlucky and g�� turns out to be zero at or very near to x� then we need to take
more terms in the Taylor series
 All these more sophistacated cases are treated in detail
in Asymptotic Expansions of Integrals by Bleistein and Handelsman "�#
 But this cursory
excursion into asymptotics will su�ce for our discussion of Kircho� and WKBJ migration
results


Exercises

��� Consider the integral

I �
Z b

a
f�x�ei�g�x� dx�

Assuming that the phase g�x� is nowhere stationary in the interval "a� b#� then I is
O���p� for large � 
 Compute p


��� If x� is a stationary point of g in the interval "a� b# then

I �
s

	�

�g���x��
f�x��e

i��g�x��������

Show that this term dominates the end�point contribution� computed above� for
large � 


��� Use the method of stationary phase to approximate the integral

Z �

��
ei�g�x� dx

where g�x� � e�t
�






Chapter �

Downward Continuation of the Seismic
Wave�eld

��� A Little Fourier Theory of Waves

Just to repeat our sign conventions on Fourier transforms� we write

��r� t� �
Z Z

ei�k�r��t���k� 
� d
k d
� ��
�
��

The di�erential volume in wavenumber space d
k � dkx dky dkz � is used for convenience

We
re not going to use any special notation to distinguish functions from their Fourier
transforms
 It should be obvious from the context by simply looking at the arguments of
the functions


Now if the wavespeed in a medium is constant� then as with any constant coe�cient
di�erential equation� we assume a solution of exponential form
 Plugging the plane wave
ei�k�r��t� into the wave equation� r�� � ��c���t�� we see that our trial form does indeed
satisfy this equation provided the wavenumber and frequency are connected by the dis�
persion relation� k� � k 	 k � 
��c�
 Or� if you prefer to think of it in these terms� we
have Fourier transformed the wave equation by replacing r with ik


We can always simplify the analysis of the wave equation by Fourier transforming away
one or more of the coordinates� namely any coordinates upon which the coe�cients �in
this case just c� do not depend
 In exploration geophysics it
s safe to assume the time�
independence of c� so we can always make the replacement �t � i

 When it comes to
the spatial variation of c we have to be more careful
 After a constant velocity medium�
the next simplest case to treat is a velocity which depends only on the depth z coordinate

If velocity �and hence the wavenumber� depends only on z� we can Fourier transform the

���
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Figure �
�� A medium which is piecewise constant with depth


x� y dependence of the Helmholtz equation r�� � k�� � � to get

d��

dz�
�
h
k� � �k�x � k�y�

i
� � �� ��
�
	�

Here we �nd that the trial solution

� � ��e
�ikzz ��
�
��

works� provided that k� � k�z � k�x � k�y as it must and dkz�dz � �
 So how can we use
this result in a c�z� medium� There are two possibilities
 The �rst �and most common in
practice� assumption is that the velocity is actually piecewise constant� i
e
� the medium
is made up of a stack of horizontal layers� within each of which c is constant as shown
in Figure �
�
 Or� put another way� if we let �� denote the value of the wave�eld at
any depth z� then provided the velocity is constant in the strip �z� z � $z�� the depth
extrapolated wave�eld at z � $z is

� � ��e
ikzj�zj� ��
�
��

Choice of the plus sign means that the plane wave

� � ��e
i�kzz��t� ��
�
��

will be a downgoing wave� because the phase stays constant if z is increased as t increases

To �nd the vertical wavenumber kz we must Fourier transform the data and extract the
horizontal wavenumbers kx and ky� kz is then given by kz � �

q
k� � k�x � k�y 




�	�	 WKBJ APPROXIMATION ��


The other possibility for using the plane wave�like solutions in a c�z� medium is within
the WKBJ approximation
�

��� WKBJ Approximation

In fact we
ve already encountered the WKBJ approximation in another guise in the de�
rivation of the eikonal equation� where we argued that the solution of the wave equation
in a slowly varying medium could be represented in terms of slowly varying plane waves

Now we apply this idea to the c�z� wave equation
 The zero�th order approximation would
be for kz to be constant� in which case the solution to

d��

dz�
� k�z� � � ��
	
��

is just � � eikzz


Higher orders of approximation are achieved by making the slowly varying plane wave
assumption� � � e��z�
 �It doesn
t matter whether we put an i in the exponent or not� it
all works out in the end
� Then� in order for � to be a solution of Equation ��
	
�� it is
necessary that

����� � ��� � k�z � � ��
	
	�

where primes denote di�erentiation with respect to z
 The �rst order of approximation
is to neglect the ��� term
 Then we can integrate the ODE exactly to get

�� � ikz ��
	
��

and hence
� � ei

R
kz�z� dz� ��
	
��

The second order approximation is a little harder to get
 Using �� � ikz we can write
��� � ik�z
 So the nonlinear ODE for � is now

����� � ik�z � k�z � � ��
	
��

and therefore

�� � ikz

s
� � i

k�z
k�z
� ��
	
��

If we make the slowly�varying�media approximation again� then the second term in the
square root is small compared to the �rst and we can simplify the square root using a
�rst order Taylor approximation�

� � i
Z
kz � �

	

k�z
kz

dz

� i
Z
kz dz � �

	
ln kz� ��
	
��

�The letters stand for G� Wentzel� H� Kramers� L� Brillouin� and H� Je�reys
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So the second order WKBJ solution is

� �
�p
kz
ei
R
kz dz� ��
	
��

The singularity at kz � � is just a re�ection of the breakdown of the approximation that
we made to achieve the result
 Putting this all together� we have the plane wave like
WKBJ solution in the space�time domain�

�p
kz
ei�k�r��t� ��
	
��

where k � %xkx � %yky � %z
R
kz dz
 As usual� we choose the � sign for downgoing waves

and the � sign for upgoing waves
 The fact that these two waves propagate through
the medium independently� as if there were no re�ections is the crux of the WKBJ or
geometrical optics approximation
 Physically� the WKBJ wave corresponds to the primary
arrival� and is not the result of any internal re�ections within the model
 In exploration
geophysics� amplitude corrections are usually made on other grounds than WKBJ theory�
so you will often see the square root term neglected
 The WKBJ solution is then just a
pure phase�shift


��� Phase�Shift Migration

We have already seen that for piecewise constant c�z� media� downward continuation of
the wave�eld is achieved by applying a series of phase�shifts to the Fourier transformed
data
 This is the essence of Gazdag
s phase�shift method "	�#� perhaps the most popular
c�z� method
 But let
s formally introduce the method in its most common guise� 	D time
migration
 Once again we introduce the migrated or vertical travel time � � z�v
 Instead
of downward extrapolating the wave�eld a depth increment $z we use a vertical time
increment $� � $z�c
 Then the downward extrapolation operator we derived in the last
section becomes

exp



���i
$�

vuut��
�
ckx



����� � ��
�
��

To �nd the migrated image at a �nite � � n$� � we apply this operator n times in
succession
 But unlike Kirchho� migration� where we applied the imaging condition once
and for all� when we downward extrapolate the wave�eld we must image at every depth

Fortunately� selecting the exploding re�ector imaging condition t � � can be done by
summing over all frequencies
�

For time migration� the migration depth step $� is usually taken to be the same as the
sampling interval
 So it will usually be the case that the complex exponential which does

�If f�t� �
R
ei�tf���d �� then putting t � � gives f��� �

R
f��� d��
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Phase�Shift Migration �a la Claerbout

�s�kx� 
� � Fourier Transform��s�x� t��
for�� � �� � � �max� � � � � $� � f

for all kx f
initialize� Image�kx� � � � �
for all 
 f

C � exp"�i
$�

r
��

�
ckx
�

��
#

Image�kx� � � � Image�kx� � � � C 
 �s�kx� 
�
g
Image�x� � � � FourierTransform�Image�kx� � ��

g
g

Figure �
	� Claerbout
s version of Gazdag
s c�z� phase�shift algorithm

the downward extrapolation need not be recomputed for each $� 
 Pseudo�code for the
phase�shift algorithm is given in Figure �
	


The main drawback to the phase�shift migration would appear to be the improper way
in which amplitudes are treated at boundaries
 Rather than account for the partitioning
of energy into re�ected and transmitted waves at each boundary �as must surely be
important if we have a layered model� we simply pass all the energy as if the transmission
coe�cient were unity
 Presumably if the velocity is indeed slowly varying we would be
better using a migration method based more explicitly on WKBJ approximations
 The
other possibility is to keep both the upgoing and downgoing solutions to the c�z� wave
equation� say with coe�cients A� and A�� and then apply the proper boundary conditions
so that new A� and A� are determined at each layer to conserve total energy
 Classic
phase�shift would then be the limiting case of setting the upgoing A coe�cient to zero


��	 One�Way Wave Equations

When we can Fourier transform the wave equation� it is easy to select only downgoing
wave propagation�we choose the positive square root in the dispersion relation
 Unfortu�
nately the Fourier transform approach is limited to homogeneous media
 A technique to
sort of reverse�engineer one�way wave propagation �suggested by Claerbout and described
in "��#� section 	
�� is to take an approximate dispersion equation� containing only down�
going wavenumbers� and see what sort of �wave equation� it gives rise to upon making
the substitution� ikx � �x� iky � �y� and so on
 For example� start with the dispersion



��� CHAPTER �� DOWNWARD CONTINUATION OF THE SEISMIC WAVEFIELD

relation k�z � k�x � k�y � ��

c�

 Then solve for kz and select downgoing wavenumbers by

choosing the positive square root�

kz �



c

s
�� c�k�x


�
��
�
��

and making the replacement ikz � �z we get the following downward continuation oper�
ator�

�z� � i



c

s
� � c�k�x


�
� ��
�
	�

valid for depth�dependent media


The problem with extending this to laterally varying media is the presence of the square
root
 One could imagine making the replacement ikx � �x� but how do we take the square
root of this operator� It is possible to take the square root of certain kinds of operators�
but the approach most often taken in exploration geophysics is to approximate the square
root operator� either by a truncated Taylor series or by a continued fraction expansion

The latter goes as follows



Write the dispersion relation

kz �



c

s
�� c�k�x


�
��
�
��

as
kz �




c

p
� �X� �




c
R� ��
�
��

The n�th order continued fraction approximation will be written Rn and is given by

Rn�� � �� X�

� � Rn
� ��
�
��

You can readily verify that this is the correct form of the approximation by noting that if
it converges� it must converge to a number� say R� which satis�es

R� � �� X�

� � R�
��
�
��

which means that R� � � �X�


The �rst few approximate dispersion relations using continued fraction approximations
to the square root are given by�

kz �



c
n�� ��
�
��

kz �



c
� ck�x

	

n�� ��
�
��

kz �



c
� k�x

	�
c
� ck�x

��

n�	� ��
�
��

�For slightly more on continued fractions� see the section at the end of this chapter�
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Figure �
�� The continued fraction approximation to the square root dispersion formula
gives an approximate dispersion formula whose accuracy�re�ected in the steepest angles
at which waves can propagate�increases with the order of the approximation


It is clear from the n � � term that these approximations rely to a greater �small n� or
lesser �larger n� extent on the approximation that waves are propagating close to vertically

In fact it can be shown that the n � � term is accurate for propagation directions of within
� degrees of vertical
 The n � � term is accurate out to �� degrees and the n � 	 term
is accurate to �� degrees
 For more details on this aspect� see Claerbout �"��#� Chapter
	
��
 The di�erent accuries of these dispersion relations are shown in Figure �
�� which
was computed with the following Mathematica code�

r���x�� � 	� r�n��x�� �� 	 � x 
!�	" r�n�	�x�
�

where I have taken k� � � for convenience
 For example�

r"�� x# � �� x�

	 � x�

��x�

�

��
�
���

To make use of these various approximations to the square root for c�z� x� media� we
proceed in two steps
 First� since we are always going to be extrapolating downward in
depth� so that we can assume that the velocity is constant in a thin strip $z� we replace
the vertical wavenumber kz with i�z
 This gives us the following downward extrapolators
according to Equations ��
�
�� � ��
�
���

�i��
�z

�



c
� n�� ��
�
���

�i��
�z

�

�



c
� ck�x

	


	
� n�� ��
�
�	�

�i��
�z

�



�

c
� k�x

	�
c
� ck�x

��

�
�� n�	� ��
�
���

Next� to account for the c�x� variation� we replace kx with i�x
 For example� using the
n � � or �� degree approximation we have�

�z� � i



c

�
� �

�

	

�
c




��
��x

	
�� ��
�
���
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��
 Paraxial Wave Equations

Yet another approach to achieving one�way propagation in laterally varying media is
closely related to the WKBJ methods
 In this approach we make the� by now standard�
near�plane wave guess� but allow a laterally varying amplitude�

� � ��z� x�ei��t�z�c�� ��
�
��

If we plug this form into the wave equation� what we discover is that in order for � to
satisfy the wave equation it is necessary that � satisfy

r��� i
	


c
�z� � �� ��
�
	�

So all we
ve done is rewrite the wave equation in terms of the new variable �
 The near�
plane wave approximation comes in dropping the term ��z� in comparison to ��x�
 This
results in a parabolic equation for ��

�z� � i
c

	

��x�� ��
�
��

This is called a paraxial approximation since we are assuming that wave propagation
occurs approximately along some axis� in this case the z axis
 The paraxial approximation
is very popular in ray tracing since by making it we can generate a whole family of rays
in the neighborhood of a given ray for almost no extra cost
 In other words� we begin by
tracing a ray accurately
 Then� we generate a family of paraxial rays in a neighborhood
of this ray
 How big this family can be made depends on the extent to which we can drop
the transverse Laplacian in comparison with the axial Laplacian


��� The Factored Two�Way Wave Equation

Another trick well�known from quantum mechanics is to factor the c�z� wave equation
into an upgoing and a downgoing part
 Clearly we can write

d��

dz�
�
h
k� � �k�x � k�y�

i
� �

�
d

dz
� ik�

	 �
d

dz
� ik�

	
� ��
�
��

where � �
q

�� �k�x � k�y��k
��

If we denote the �rst di�erential operator in square brackets as L and the second as L��
then the c�z� wave equation� Equation ��
�
	�� which is LL�� � �� can be written as a
coupled �rst order system

downgoing L�� � � ��
�
	�

upgoing L� � � ��
�
��
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As usual� for migration we neglect the coupling of upgoing and downgoing waves and just
consider the �rst order system describing downgoing waves


If you
re having trouble keeping straight which is the upgoing and which is the downgoing
equation� just remember what the two plane wave solutions of the wave equation look like
in the space�time domain� ei�kz��t� and ei��kz��t�
 These both satisfy the wave equation
provided k� � �
�c��
 In the �rst of these� z must increase as t increases in order to keep
the phase constant
 In the second� z must decrease as t increases in order to keep the
phase constant
 Therefore� ei�kz��t� must be a downgoing wave and ei��kz��t� must be an
upgoing wave


��� Downward Continuation of Sources and Receivers

In this section we consider the non�zero�o�set generalization of phase�shift migration

This is discussed in Section �
� of Claerbout
s book "��#� we follow the simpler notation
of "		# however


Generally for 	D problems we have written the recorded data as� ��x� z � �� t�
 For
slightly greater generality we can write this as ��r� zr� t� where zr is the depth coordinate
of the receiver
 Implicitly the data also depend on the source coordinates� so we should
really write ��s� zs� r� zr�� where zs is the depth coordinate of the source
 For a �xed
source the wave equation is just

��t� � c�
h
��r� � ��zr�

i
� ��
�
��

The principle of reciprocity states that we should be able to interchange source and receiver
coordinates and leave the observed wave�eld unchanged
 This is intuitively obvious on
ray theoretic grounds� in practice it is very di�cult to verify with �eld data since sources
and receivers have di�erent antenna characteristics
 For example� it would seem that a
weight drop should be reciprocal to a vertical geophone� a marine airgun reciprocal to a
hydrophone
 Claerbout says that reciprocity is veri�ed in the lab to within the precision of
the measurements and that in the �eld� small errors in positioning the sources and receivers
can create discrepancies larger than the apparent discrepancies due to nonreciprocity
 In
any event� we will assume that reciprocity holds
 That being the case we can write

��t� � c�
h
��s� � ��zs�

i
� ��
�
	�

Assuming that the velocity depends only on depth� so that we can Fourier transform away
the lateral coordinates� we end up with the two equations

��zr� � �
�



c

�� 
���
�
krc




����� ��
�
��
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and

��zs� � �
�



c

�� 
���
�
ksc




����� ��
�
��

where kr and ks are the horizontal wavenumbers in receiver and source coordinates


Now these are the same c�z� wave equations that we have dealt with many times before�
just expressed in new coordinates
 So we already know that both of these equations
have upgoing and downgoing solutions
 With zero�o�set data the source and receiver
coordinates are the same� so when we downward continued in the exploding re�ector
model we only needed a single wave equation
 But now we want to allow for a greater
degree of generality in order that we might be able to apply the methods we
ve already
discussed to far�o�set data
 So let us imagine downward continuing both the sources and
receivers simultaneously
 At the re�ector location the source and receiver coordinates
must coincide
 Coincident sources and receivers imply that t � �
 This means that we
can still use the exploding re�ector imaging condition
 All we have to do is come up
with one�way versions of the two equations above
 Clearly then we can use the one�way
wave equations that we
ve already derived
 The choice of which one to use is ours
 It
is common� however� to use the factored version of the wave equation� Equation ��
�
	�

Then we end up with

�zr� �
i


c

h
�� ��r

i���
� ��
�
��

and

�zs� �
i


c

h
�� ��s

i���
� ��
�
��

where �r � ckr�
 and �s � cks�



When the source and receiver coordinates are coincident at the re�ector� then zr � zs � z

Or� put another way� we can imagine lowering the sources and receivers simultaneously

In either case

�z� � �zr� � �zs��

The way to think about this equation is that at a �xed receiver location� a small change in
the vertical location of a source or receiver is equivalent to a small change in the observed
travel times in the data
 Therefore

�z� � ��zt�t�

and so the total change in travel time associated with a perturbation dz of both sources
and receivers is given by

dt � "�zr t � �zst# dz�

This allows us to write

�z� �
i


c

�h
� � ��s

i���
�
h
�� ��r

i����
� ��
�
��
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which e�ects the simultaneous downward continuation of the sources and receivers referred
to by Claerbout as survey sinking
 Equation ��
�
�� is called the double�square�root
equation


The double�square�root equation is easily solved for c�z� media�this is just our old friend
the phase shift
 Thus we can do nonzero�o�set phase�shift migration since just as for the
zero�o�set case we can say that the data at any depth z � $z can be obtained from the
data at z by

��z � $z� � ��z�e
i�
c

h
���
�s�

���
����
�r�

���
i
�z
� ��
�
��

We
re almost �nished now
 All we have to do is apply the imaging condition
 Part of this
is just the usual exploding re�ector t � �� which we accomplish in the frequency domain
by reintroducing 
 and summing
 The other part of the imaging condition is that r � s

This is conveniently expressed in terms of the half o�set via h � �r � s��	 � �
 So the
fully migrated section is

��x� h � �� t � �� z� �
X
kx

X
kh

X
�

��kx� kh� 
� z�eikxx ��
�
��

where x is the midpoint �r � s��	� �r � �kx � kh�c�	
 and �s � �kx � kh�c�	

 The
summations over kh and 
 are the imaging conditions
 The summation over kx inverse
Fourier transforms the wave�eld back into midpoint space


This downward continuation of sources and receivers� together with the zero�o�set imaging
condition� gives a prestack migration algorithm
 Unfortunately it is of little utility as it
stands because it requires that the velocity be laterally invariant� there
s not much point
in doing prestack migration if the velocity is really c�z�
 One possible generalization
would be to use a di�erent velocity function for sources and receivers in Equation ��
�
��
and Equation ��
�
��
 We can do this by downward continuing sources and receivers in
alternating steps with the di�erent velocity functions
 The algorithm we end up with is�

� Sort data into common�source gathers ��r� s�� t� z� and extrapolate downward a
distance $z using Equation ��
�
��


� Re�sort data into common�receiver gathers ��r�� s� t� z� and extrapolate downward
a distance $z using Equation ��
�
��


� Compute the imaged CMP section by m�x� z� � ��r � x� s � x� t � �� z�


Clearly this method puts a tremendous burden on computer I!O if we
re going to be con�
tinually transposing data back and forth between common�source and common�receiver
domains
 It might make more sense to simply migrate the individual common�source
records
 We can certainly downward continue a common source record using any of the
one�way way equations that we
ve developed already
 The only problem is what imaging
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condition do we use� The �eld scattered from any subsurface point �r�� z�� will image
coherently at a time t� which equals the travel time from that point to the source point�
t��s�� r�� s��� where s� is a �xed source location
 Here is the complete algorithm


� Calculate the travel time t��s�� r�� s�� from a given source location to all points in
the subsurface


� Downward continue �using Equation ��
�
��� for example� the shot record ��r� s�� t� z �
��
 This results in the scattered �eld at each point in the subsurface ��r� s�� t� z�


� Apply the imaging condition m�r�� z�� s�� � ��r�� s�� t��s�� r�� s��� z��


If we used the correct velocity model to downward continue each shot record� then we
should be able to sum all of the migrated common�source gathers and produce a coherent
image of the subsurface
 So we might write the �nal migrated image as

m�r�� z�� �
X
s

m�r�� z�� s��

The main theoretical drawback of this approach to prestack shot migration is that it
presupposes the existence of a single�valued travel time function
 If� however� there is
more than one ray between a source and any point in the subsurface� then there is no
longer a well�de�ned imaging time
 In this case we must resort to Claerbout
s imaging
condition� described by Paul Docherty in his lecture on Kirchho� migration!inversion
formulae


��
 Time Domain Methods

In the discussion of Kirchho� migration methods we found that provided we had a Green
function satisfying certain boundary conditions on the recording boundary z � �� we
could generate a solution of a boundary value problem for the wave equation anywhere
in the subsurface and at all times
 The boundary values that we use are the stacked
seismic records
 Therefore if we use an anticausal Green function� the solution of the wave
equation that we get corresponds to the propagation of the zero�o�set data backwards in
time
 Choosing t � � and c � c�	 yields an image of the subsurface re�ector geometry

Further� the Green function solution is computed by integrating over the recording surface

Now since the time and the spatial coordinates are coupled via the travel time equation�
this integration amounts to summing along di�raction hyperbolae
 Nevertheless the form
of the integration is that of a spatial convolution
 We then saw that in the Fourier domain�
this spatial convolution could be shown to be a phase�shift operation
 And under the
assumptions usually associated with time migration� we could think of this convolution
as being a downward propagation of the recorded data
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Clearly there is a fundamental equivalence between propagating the recorded data back�
ward in time and propagating it downward in depth
 If the velocity model is constant
or only depth dependent� then this equivalence is easily demonstrated by replacing time
increments with migrated time or depth increments� suitably scaled by the velocity
 In
laterally heterogeneous media� the connection between the two is more complicated� in
essence it
s the wave equation itself which connects the two approaches


When we discussed phase�shift migration methods� everything was done in the frequency
domain� where it
s di�cult to see clearly how back�propagation in time is related
 Down�
ward propagation �at least for v�z� media�� is still a phase�shifting operation� however

So as we downward propagate the stacked seismic data from depth to depth� we have to
inverse Fourier transform the results at each depth in order to apply the imaging con�
dition
 Fortunately� plucking o� just the t � � value of the inverse transformed data is
easy� just sum over frequencies
 The point here is that we downward propagate the entire
wave�eld from depth to depth� at any given depth� applying the imaging condition results
in a coherent image of that part of the wave�eld which was re�ected at that depth


This all begs the question of why we can
t simply use the time domain wave equation to
backward propagate the stacked seismic data to t � �� performing the imaging once and
for all
 We can
 This sort of migration is called �reverse�time migration
� But remember�
in a fundamental sense all migration methods are reverse time
 Certainly Kirchho� is
a reverse�time method� and as we have seen� by properly tracing the rays from source
to receiver� we can apply Kirchho� methods to complicated velocity models�certainly
models where time migration is inappropriate
 So the distinctions that are made in the
exploration seismic literature about the various kinds of migration methods have little
to do with the fundamental concepts involved and are primarily concerned with how the
methods are implemented


It appears that the �rst published account of what we now call reverse�time migration
was given by Hemon "	�#
 His idea was to use the full wave equation� with zero �initial�
values for � and �t� speci�ed at some time T 
 The recorded data �s�x� t� z � �� are then
take as boundary values for a boundary value problem for the full wave equation� but in
reverse time
 This should cause no di�culty since the wave equation is invariant under a
shift and reversal of the time coordinate �t� T � t�


The early papers on reverse time migration approximated the wave equation by an ex�
plicit �nite di�erence scheme that was accurate to second order in both space and time

We will discuss such approximations in detail later� for now we simply exhibit such an
approximation�

��xk� zj� ti� � 	�� � 	A����xk� zj� ti���� ��xk� zj� ti���

� A� "��xk��� zj� ti��� � ��xk���zj� ti���

� ��xk� zj��� ti��� � ��xk� zj��� ti���# �

where A � c�xk� zj�$t�h� where h is the grid spacing in the x and z directions
 This sort
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of approximation is called explicit because it gives the �eld at each grid�point at a given
time�step in terms of the �eld at nearby gridpoints at the previous time�step� at each
time�step ti� everything to the right of the equal sign is known
 Explicit �nite di�erence
methods are very easy to code and the above scheme can be used for both modeling and
migration
 In the latter case we simply run time backwards


Initially� at the greatest time tmax recorded in the data� the �eld and its time derivative
are set to zero in the entire subsurface
 Then data at tmax provide values for the �eld
at z � � and data at three times ending at tmax provide second order estimates of the
time derivative of the �eld
 The �nite di�erence equation propagates these values into
the subsurface for a single backward time�step �$t as data at tmax �$t are introduced
at z � �
 We continue this procedure until t � �
 This has the e�ect of propagating the
recorded data into the subsurface


There are two extremely serious drawbacks with the �nite di�erence approximation that
we
ve introduced
 The �rst is that low order schemes such as this require around �	 �nite
di�erence gridpoints per the shortest wavelength present in the data in order to avoid
numerical dispersion
 We can get around this problem by using a higher order scheme

A scheme which is accurate to fourth order in space and time requires only about � grid�
points per wavelength
 The second problem is that using the full wave equation gives rise
to spurious re�ections at internal boundaries
 These internal re�ections are considered
spurious because even if the model boundaries have been correctly located� the stacked
data is presumed to have had multiples attenuated through the stacking procedure
 The
solution to this problem proposed by Baysal et al
 "�# was to use a wave equation in
which the density was �fudged� in order to make the normal�incidence impedance con�
stant across boundaries
 The idea being that since density is not something we normally
measure in re�ection seismology� we can make it whatever we want without a�ecting the
velocities


��� A Surfer�s Guide to Continued Fractions

We illustrate here a few properties of continued fractions� adapted from the fascinating
book History of Continued Fraction and Pad�e Approximants by Claude Brezinski "�#


Continued fractions represent optimal �in a sense to be described shortly� rational approx�
imations to irrational numbers
 Of course� we can also use this method to approximate
rational numbers� but in that case the continued fraction expansion terminates after a
�nite number of terms
 To get a feel for how these approximations work let
s start with
one of the oldest continued fractions� one which we can sum analytically
 The �rst few
terms are

S� � � ��
�
��
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S� �
�

x
��
�
	�

S� �
�

x � �
x

��
�
��

S
 �
�

x � �
x� �

x

��
�
��

S� �
�

x � �
x� �

x� �
x

� ��
�
��

The modern notation for this continued fraction expansion is

S �
�j
jx �

�j
jx �

�j
jx 	 	 	 ��
�
��

Each successive term Sn in this development is called a convergent
 Clearly each conver�
gent can� by appropriate simpli�cation� be written as a rational number
 For example�

S� �
x

x� � �

and

S
 �
� � x�

	x � x


It is easy to see that the following recursion holds�

S� �
�

x � S�
� S
 �

�

x� S�
� S� �

�

x � S

	 	 	 ��
�
��

If this sequence converges then it must be that

S �
�

x � S
��
�
��

which implies that

S� � xS � � � � ��
�
��

It is important to understand that we haven
t actually proved that this continued fraction
converges� we
ve simply shown that if it converges� it must converge to the quadratic in
Equation ��
�
��
 More generally� we can write the solution of the quadratic form

S� � bS � a � � ��
�
���

as

S �
aj
jb �

aj
jb �

aj
jb 	 	 	 ��
�
���
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Some examples
 Let a � � and b � � in ��
�
���
 The �rst few convergents are

S� � �� S� � �� S� �
�

	
� S
 �

	

�
� S� �

�

�
	 	 	 ��
�
�	�

This sequence converges to the positive root of the quadratic ��
�
���� namely
p
���
�

� which
was known as the golden number to the Greeks
� In fact the even and odd convergents
provide� respectively� upper and lower bounds to this irrational number�

S� � S� � S� � 	 	 	
p

�� �

	
	 	 	 � S� � S
 � S� ��
�
���

Similarly� for a � � and b � 	� the even and odd convergents of �
�
�� provide upper and
lower bounds for the positive root of ��
�
���� namely

p
	� �� to which they converge


This turns out to be a general result in fact� the even�odd convergents of the continued
fraction expansion of a number � always provide upper�lower bounds to �� Also� one can
show that the rational approximations to � generated by the convergents are optimal in
the sense that the only rational numbers closer to � than a given convergent must have
larger denominators


Since continued fractions are rational approximations we can give a nice geometrical illus�
tration of what
s going on in the approximation
 Figure �
� shows the positive quadrant
with a large dot at each integer
 Each convergent� being a rational number� can be thought
of as a line segment joining the dots
 The asymptote of these successive line segments will
be a line from the origin whose slope is the number we
re approximating
 If that number
happens to be rational� the continued fraction series terminates� otherwise not
 There are
in�nitely more irrational numbers than rational ones since the rationals are denumerable
�can be put into one�to�one correspondence with the integers� while the irrationals are
not
 Therefore if we choose a number �or slope� at random� it is very unlikely that it will
intersect one of the dots since that would imply that its slope were rational
 This may
appear counterintuitive� however� since it looks like there are an awful lot of dots 

In this particular example� the polygonal segments represent the convergents of the con�
tinued fraction for the Golden mean
 The left and right vertices are given by the even
and odd convergents

left� p� � �� q� � �� p� � �� q� � 	� p� � �� q� � � � � �

right� p� � �� q� � �� p
 � 	� q
 � �� p� � �� q� � � 	 	 	

There is a simple way to construct the continued fraction representation of any number


 Begin by separating out the integral and decimal part of the number


 � n� � r� where � � r� � ��

�Mathematica uses the golden number� or golden mean� as the default aspect ratio for all plots� To
the Greeks� this number represented the most pleasing aspect� or proportion� for buildings and paintings�
This view held sway well into the Renaissance�
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Figure �
�� An arbitrary number can be thought of as the slope of a line from the origin

The continued fraction approximation for the number �in this case the golden mean�
consists of left and right polygons which approach an irrational number asymptotically
and a rational number after a �nite number of steps


If the remainder r� is nonzero we repeat this procedure for ��r�

��r� � n� � r� where � � r� � ��

We repeat this procedure until either it terminates with a zero remainder or we get tired

The result is


 � n� �
�

n� � �
n��

�

n��





�

As an example� for � we get

� � � �
�

� � �
��� �

��






�

����� Fibonacci

The numbers appearing in the continued fraction expansion of the golden ratio might look
familiar
 They are also known as the Fibonacci numbers and they satisfy the recursion

F ��� � F ��� � �� F �j� � F �j � �� � F �j � 	��
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The Fibonacci numbers are named after Leonardo of Pisa� also known as Fibonacci �a
contraction of �lius Bonacci� son of Bonacci�
 Leonardo was born and died in Pisa�
Italy� �ourishing in the �rst part of the ��th century
 He was a merchant who traveled
widely in the Near East and became well acquainted with Arabic mathematical work
 The
Fibonacci numbers were introduced in his study of the breeding habits of rabbits "�#
 His
Liber abaci was written in �	�	 but not published until ����


As well as Fibonacci numbers� there are Fibonacci sequences
 For example

S��� � A�S��� � B� S�j� � S�j � ��� S�j � 	��

So instead of adding the previous two iterates� we simply concatenate the previous two
sequences
 Fibonacci layered media are widely used to study disordered media� since
although deterministic� they are very complex as the order of the sequence becomes large


Exercises

	�� Make the substitution kx � i�x and derive the �� degree downward extrapolation
equation
 Hint� multiply both sides of the equation by the denominator of the
continued fraction approximation so none of the derivatives are in the denominator


	�� Write your downward extrapolator as

�z� � i



c
� � another term�

In optics these separate parts are known as� respectively� the thin lens term and
the di�raction term
 In practice� the downward extrapolation for c�z� media might
proceed in two phases for each $z step� �rst we extrapolate using the thin lens
term� then we apply the di�raction term


	�� Derive the time�domain version of your �� degree equation by making the substitu�
tion 
 � i�t

	�� Starting with the wave equation derive Gazdag
s phase�shift migration method for
c�z� media


	�� Give a pseudo�code algorithm for phase�shift depth migration
 What changes are
necessary to make this a time migration algorithm� Under what circumstances
would such a time migration algorithm be accurate


	�� The ���degree approximate dispersion relation is

kz �



c
� k�x

	�
c
� ck�x

��

�

What is the �frequency�domain� wave equation associated with this dispersion re�
lation
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	�� If ��r� s�� t� z� is the downward continuation of the shot�record ��r� s�� t� ��� what is
the migrated image associated with this shot record�

���� Computer Exercise� IV

Below is reproduced a complete migration code from the SU library written by John
Stockwell and Dave Hale
 Study the layout of this code and start thinking about how you
will implement a straight�ray version of Kirchho� migration
 You should try to copy the
outlines of this code �or other SU migration codes such as sumigtk
c and sustolt
c� insofar
as the way parameters are read in� memory allocated� trace headers processed� and the
�nal migrated section output
 Do not reinvent these wheels� both because it would be a
waste of time and also because the person who writes the best code will have the pleasure
of seeing it added to the SU library
 Try to be as modular in your writing as possible so
that in a few weeks after we
ve talked about numerical methods for tracing rays you will
be able to replace your straight ray calculation of travel times with a more sophisticated
one
 For this exercise� stick within the zero�o�set approximation� but keep in mind how
you might implement Claerbout
s prestack imaging condition


As a �rst step� write a Kirchho� migration code that will use a completely general c�x� z�
velocity model� but don
t worry about tracing rays to compute travel times
 For this
exercise you may either compute travel times along straight rays� or simply use the travel
time associated with the rms velocity between the source and receiver
 It would probably
be best to assume the velocity model is de�ned on a grid
 That should smoothly pave
the way for the next exercise� which will involve accurate travel time calculations in
moderately complex structures


!� SUGAZMIG� �Revision� 	�����Date� �
!	�!
� 	������	 � �!

!���������������������������������������������������������

� Copyright �c
 Colorado School of Mines� 	����

� All rights reserved�

�

� This code is part of SU� SU stands for Seismic Unix� a

� processing line developed at the Colorado School of

� Mines� partially based on Stanford Exploration Project

� �SEP
 software� Inquiries should be addressed to�

�

� Jack K� Cohen� Center for Wave Phenomena�

� Colorado School of Mines�

� Golden� CO ����	

� �jkc#dix�mines�colorado�edu
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���������������������������������������������������������

�!

�include �su�h�

�include �segy�h�

�include �header�h�

!�������������� self documentation ����������������������!

char �sdoc�� � $

� ��

� SUGAZMIG � SU version of GAZDAG�s phase�shift migration��

� for zero�offset data� ��

� ��

� sugazmig �infile �outfile vfile� �optional parameters���

� ��

� Optional Parameters� ��

� dt�from header�dt
 or ���� time sampling interval ��

� dx�from header�d

 or 	�� midpoint sampling interval��

� ft���� first time sample ��

� ntau�nt�from data
 number of migrated time samples ��

� dtau�dt�from header
 migrated time sampling interval ��

� ftau�ft first migrated time sample ��

� tmig���� times corresponding to interval velocities ��

in vmig��

� vmig�	����� interval velocities corresponding to times ��

in tmig��

� vfile� name of file containing velocities ��

� ��

� Note� ray bending effects not accounted for in this ��

version� ��

� ��

� The tmig and vmig arrays specify an interval velocity ��

� function of time� Linear interpolation and constant ��

� extrapolation is used to determine interval velocities ��

� at times not specified� Values specified in tmig must ��

� increase monotonically���

� ��

� Alternatively� interval velocities may be stored in��

� a binary file containing one velocity for every time��

� sample in the data that is to be migrated� If vfile��

� is specified� then the tmig and vmig arrays are ��

� ignored���

� ��
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NULL%�

!���������� end self doc ��������������������������������!

!�

� Credits� CWP John Stockwell 	
 Oct 	��


� Based on a constant v version by Dave Hale�

�

�!

segy tr�

!� prototypes for functions defined and used below �!

void gazdagvt �float k�

int nt� float dt� float ft�

int ntau� float dtau� float ftau�

float �vt� complex �p� complex �q
�

!� the main program �!

main �int argc� char ��argv


$

int nt� !� number of time samples �!

int ntau� !� number of migrated time samples �!

int nx� !� number of midpoints �!

int ik�ix�it�itau�itmig�!� loop counters �!

int nxfft� !� fft size �!

int nk� !� number of wave numbers �!

int np� !� number of data values �!

int ntmig�nvmig�

float dt� !� time sampling interval �!

float ft� !� first time sample �!

float dtau� !� migrated time sampling interval �!

float ftau� !� first migrated time value �!

float dk� !� wave number sampling interval �!

float fk� !� first wave number �!

float t�k� !� time�wave number �!

float �tmig� �vmig� !� arrays of time� int� velocities �!

float dx� !� spatial sampling interval �!

float �vt� !� velocity v�t
 �!

float ��p���q� !� input� output data �!

complex ��cp���cq� !� complex input�output �!
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char �vfile���� !� name of file containing velocities �!

FILE �vfp� !� velocity file pointer �!

FILE �tracefp� !� fp for trace storage �!

FILE �headerfp� !� fp for header storage file �!

!� hook up getpar to handle the parameters �!

initargs�argc�argv
�

requestdoc�	
�

!� get info from first trace �!

if �&gettr��tr

 err��can�t get first trace�
�

nt � tr�ns�

!� let user give dt and!or dx from command line �!

if �&getparfloat��dt�� �dt

 $

if �tr�dt
 $ !� is dt field set' �!

dt � �float
 tr�dt ! 	���������

% else $ !� dt not set� assume � ms �!

dt � ������

warn��tr�dt not set� assuming dt�������
�

%

%

if �&getparfloat��dx���dx

 $

if �tr�d

 $ !� is d
 field set' �!

dx � tr�d
�

% else $

dx � 	���

warn��tr�d
 not set� assuming d
�	���
�

%

%

!� get optional parameters �!

if �&getparfloat��ft���ft

 ft � ����

if �&getparint��ntau���ntau

 ntau � nt�

if �&getparfloat��dtau���dtau

 dtau � dt�

if �&getparfloat��ftau���ftau

 ftau � ft�

!� store traces and headers in tempfiles while

getting a count �!
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tracefp � etmpfile�
�

headerfp � etmpfile�
�

nx � ��

do $

""nx�

efwrite��tr�HDRBYTES�	�headerfp
�

efwrite�tr�data� FSIZE� nt� tracefp
�

% while �gettr��tr

�

erewind�tracefp
�

erewind�headerfp
�

!� determine wavenumber sampling �for real

to complex FFT
 �!

nxfft � npfar�nx
�

nk � nxfft!
"	�

dk � 
���PI!�nxfft�dx
�

fk � ����

!� allocate space �!

p � alloc
float�nt�nxfft
�

q � alloc
float�ntau�nxfft
�

cp � alloc
complex�nt�nk
�

cq � alloc
complex�ntau�nk
�

!� load traces into the zero�offset array

and close tmpfile �!

efread��p� FSIZE� nt�nx� tracefp
�

efclose�tracefp
�

!� determine velocity function v�t
 �!

vt � ealloc	float�ntau
�

if �&getparstring��vfile���vfile

 $

ntmig � countparval��tmig�
�

if �ntmig���
 ntmig � 	�

tmig � ealloc	float�ntmig
�

if �&getparfloat��tmig��tmig

 tmig��� � ����

nvmig � countparval��vmig�
�

if �nvmig���
 nvmig � 	�

if �nvmig&�ntmig
 err��number tmig and vmig must be equal�
�

vmig � ealloc	float�nvmig
�

if �&getparfloat��vmig��vmig

 vmig��� � 	������

for �itmig�	� itmig�ntmig� ""itmig


if �tmig�itmig���tmig�itmig�	�
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err��tmig must increase monotonically�
�

for �it���t����� it�ntau� ""it�t"�dt


intlin�ntmig�tmig�vmig�vmig����vmig�ntmig�	��

	��t��vt�it�
�

% else $

if �fread�vt�sizeof�float
�nt�fopen�vfile��r�

&�nt


err��cannot read (d velocities from file (s��nt�vfile
�

%

!� pad with zeros and Fourier transform x to k �!

for �ix�nx� ix�nxfft� ix""


for �it��� it�nt� it""


p�ix��it� � ����

pfa
rc��	�
�nt�nxfft�p����cp���
�

!� migrate each wavenumber �!

for �ik���k�fk� ik�nk� ik""�k"�dk


gazdagvt�k�nt�dt�ft�ntau�dtau�ftau�vt�cp�ik��cq�ik�
�

!� Fourier transform k to x �including FFT scaling
 �!

pfa
cr�	�
�ntau�nxfft�cq����q���
�

for �ix��� ix�nx� ix""


for �itau��� itau�ntau� itau""


q�ix��itau� !� nxfft�

!� restore header fields and write output �!

for �ix��� ix�nx� ""ix
 $

efread��tr�HDRBYTES�	�headerfp
�

tr�ns � ntau �

tr�dt � dtau � 	�������� �

tr�delrt � ftau � 	����� �

memcpy�tr�data�q�ix��ntau�FSIZE
�

puttr��tr
�

%

%

void gazdagvt �float k�

int nt� float dt� float ft�

int ntau� float dtau� float ftau�

float �vt� complex �p� complex �q


!�����������������������������������������������������
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Gazdag�s phase�shift zero�offset migration for one

wavenumber adapted to v�tau
 velocity profile

������������������������������������������������������

Input�

k wavenumber

nt number of time samples

dt time sampling interval

ft first time sample

ntau number of migrated time samples

dtau migrated time sampling interval

ftau first migrated time sample

vt velocity v�tau�

p array�nt� containing data to be migrated

Output�

q array�ntau� containing migrated data

������������������������������������������������������

$

int ntfft�nw�it�itau�iw�

float dw�fw�tmax�w�tau�phase�coss�

complex cshift��pp�

!� determine frequency sampling �!

ntfft � npfa�nt
�

nw � ntfft�

dw � 
���PI!�ntfft�dt
�

fw � �PI!dt�

!� determine maximum time �!

tmax � ft"�nt�	
�dt�

!� allocate workspace �!

pp � alloc	complex�nw
�

!� pad with zeros and Fourier transform t to w�

with w centered �!

for �it��� it�nt� it""


pp�it� � �it(
 ' cneg�p�it�
 � p�it�
�

for �it�nt� it�ntfft� it""


pp�it� � cmplx��������
�

pfacc�	�ntfft�pp
�

!� account for non�zero ft and non�zero ftau �!
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for �itau�� � itau � ftau � itau""
$

for �iw���w�fw� iw�nw� iw""�w"�dw
 $

if �w�����
 w � 	e�	�!dt�

coss � 	���pow���� � vt�itau� � k!w�
��
�

if �coss��pow�ftau!tmax�
��

 $

phase � w��ft�ftau�sqrt�coss

�

cshift � cmplx�cos�phase
�sin�phase

�

pp�iw� � cmul�pp�iw��cshift
�

% else $

pp�iw� � cmplx��������
�

%

%

%

!� loop over migrated times tau �!

for �itau���tau�ftau� itau�ntau� itau""�tau"�dtau
 $

!� initialize migrated sample �!

q�itau� � cmplx��������
�

!� loop over frequencies w �!

for �iw���w�fw� iw�nw� iw""�w"�dw
 $

!� accumulate image �summed over frequency
 �!

q�itau� � cadd�q�itau��pp�iw�
�

!� compute cosine squared of propagation angle �!

if �w�����
 w � 	e�	�!dt�

coss � 	���pow���� � vt�itau� � k!w�
��
�

!� if wave could have been recorded in time �!

if �coss��pow�tau!tmax�
��

 $

!� extrapolate down one migrated time step �!

phase � �w�dtau�sqrt�coss
�

cshift � cmplx�cos�phase
�sin�phase

�

pp�iw� � cmul�pp�iw��cshift
�

!� else� if wave couldn�t have been recorded in time �!

% else $

!� zero the wave �!

pp�iw� � cmplx��������
�
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%

%

!� scale accumulated image just as we would

for an FFT �!

q�itau� � crmul�q�itau��	��!nw
�

%

!� free workspace �!

free	complex�pp
�

%
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Chapter �


Plane Wave Decomposition of
Seismograms

As we have seen throughout this course� wave equation calculations are greatly simpli�ed
if we can assume plane�wave solutions
 This is especially true in exploration seismo�
logy since� to �rst order� the Earth is vertically strati�ed
 Horizontal boundaries make
Cartesian coordinates the natural choice for specifying boundary conditions
 And if we
apply separation of variables to the wave equation in Cartesian coordinates� we naturally
get solutions which are represented as sums or integrals of plane waves


One problem we face� however� is that plane waves are not physically realizable except
asymptotically
 If we are far enough away from a point source to be able to neglect the
curvature of the wavefront� then the wavefront is approximately planar
 The sources of
energy used in exploration seismology are essentially point sources� but it is not clear
when we can be considered to be in the far �eld


On the other hand� plane waves� spherical waves� cylindrical waves� all represent �basis
functions� in the space of solutions of the wave equation
 This means that we can represent
any solution of the wave equation as a summation or integral of these elementary wave
types
 In particular we can represent a spherical wave as a summation over plane waves

This means that we can take the results of a seismic experiment and numerically synthesize
a plane wave response
 We will begin this chapter by deriving the Weyl and Sommerfeld
representations for an outgoing spherical wave
 These are� respectively� the plane wave
and cylindrical wave representations
 Then� following the paper by Treitel� Gutowski
and Wagner "��#� we will examine the practical consequences of these integral relations

In particular we will examine the connection between plane wave decomposition and the
slant�stack or � � p transformation of seismology


Migrating plane wave sections is no more di�cult than migrating common�source records

The imaging condition is essentially the same� but expressed in terms of the plane wave

���
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propagation angle �
 The comparison between shot migration and plane wave migration
are nicely described in the paper by Temme "��#
 Once we have the plane wave decompos�
ition� we can migrate individual plane wave components
 One reason this turns out to be
important is that it seems that we can achieve high quality pre�stack migrations by mi�
grating a relatively small number of plane wave components
 In other words� plane wave
migration appears to be more e�cient than shot record migration since we can achieve
good results with relatively few plane wave components
 Common�source records� on the
other hand� have a very limited spatial aperture


���� The Weyl and Sommerfeld Integrals

The starting point for the plane wave decomposition is the Fourier transform of the
spherical wave emanating from a point source at the origin�

e�ikr

r
�
Z �

��

Z �

��

Z �

��
A�kx� ky� kz�e

i�kxx�kyy�kzz�dkxdkydkz� ���
�
��

This equation looks like a plane wave decomposition already
 It would appear that if we
can invert the transform for the coe�cients A� in other words� solve the integral

��
A�kx� ky� kz� �
Z �

��

Z �

��

Z �

��
e�ikr

r
e�i�kxx�kyy�kzz�dx dy dz ���
�
	�

then we will be done
 But look again
 The integral for A involves all possible wave
numbers kx� ky and kz� not just those satisfying the plane wave dispersion relation
 So
in fact� Equation ���
�
	� is not a plane wave decomposition
 We need to impose the
dispersion relation as a constraint by eliminating one of the integrals over wave number

This is the approach taken in Chapter � of Aki and Richards "�#� who evaluate the z

integral using residue calculus and make the identi�cation kz �
q
k� � k�x � k�y 
 If you are

comfortable with residue calculus� then you should have a look at this derivation
 Here we
will follow a slightly simpler approach from "�#
 We will �rst evaluate Equation ���
�
	�
in the x�y plane� then appeal to the uniqueness of solutions to the Helmholtz equation to
extend the result to nonzero values of z
 Many excellent textbooks exist which cover the
use of complex variables in the evaluation of integrals� for example� Chapter � of Morse
and Feshbach "��#


Let
s begin by considering the special case z � �
 Then the problem is to evaluate

A�kx� ky� �
�

�

	�

�� Z �

��

Z �

��
e�ikr

r
e�i�kxx�kyy�dxdy� ���
�
��

We can evaluate this integral in polar coordinates
 We need one set of angles for the
wavevector k and another for the position vector r� kx � q cos ��� ky � q sin ��� where
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k�x � k�y � q�� and x � r cos ��� y � r sin ��
 The element of area dxdy � rdrd��
 So we
have

kxx � kyy � rq"cos �� cos �� � sin �� sin ��# � rq cos��� � ����

Therefore

A�kx� ky� �
�

�

	�

�� Z ��

�

Z �

�
e�ir�k�q cos��������drd�� ���
�
��

The radial integral can be done by inspection

Z �

�
e�ir�k�q cos��������dr �

Z �

�
e�irBdr �

�
irB

iB

��
�

���
�
��

provided we can treat the contribution at in�nity
 Many books treat this sort of integral
in an ad hoc way by supposing that there is a small amount of attenuation
 This makes
the wave number complex and guarantees the exponential decay of the anti�derivative at
in�nity �k ��ik� with k� � ��
 If you want to look at it this way� �ne
 A more satisfying
solution is to use the theory of analytic continuation
 The integral in Equation ���
�
�� is
the real part of the integral Z �

�
e�irB

�

dr ���
�
��

where B� is a complex variable B � i	
 The integral clearly converges to �
iB�

provided
	 � �
 And this result is analytic everywhere in the complex plane except B� � �
 This
means that we can extend� by analytic continuation� the integral in Equation ���
�
�� to
the real B axis
 In fact� we can extend it to the entire complex plane� except B� � �
 We
can even extend it to zero values of B� by observing that this integral is really the Fourier
transform of a step function
 The result is that at the origin this integral is just pi times
a delta function
 The proof of this will be left as an exercise


So we have

���A�kx� ky� � i
Z ��

�

d��
�"k � q cos��� � ���#

�
i

k

Z ��

�

d�

� � q
k

cos �
���
�
��

where � � �� � ��� The integral is now in a standard form�

Z ��

�

dx

� � a cosx
�

	�p
�� a�

if a� � �
 Putting this all together� we end up with

A�kx� ky� �
i

	�
q
k� � k�x � k�y

and hence
eikr

r
�

i

	�

Z �

��

Z �

��
ei�kxx�kyy�q
k� � k�x � k�y

dkxdky � ���
�
��
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Figure ��
�� Spherical coordinates representation of the wave vector


This is the plane wave decomposition for z � � propagation
 We can extend it to nonzero
values of z in the following way
 By inspection the general expression for this integral
must have the form

eikr

r
�

i

	�

Z �

��

Z �

��

Z �

��
ei�kxx�kyy�kz jzj�

kz
dkxdkydkz ���
�
��

where we have made the identi�cation kz �
q
k� � k�x � k�y 


The spherical wave eikr�r satis�es the Helmholtz equation for all z� the Sommerfeld radi�
ation condition� and has certain boundary values at z � � given by Equation ���
�
��
 You
can readily verify that the integral representation� Equation ���
�
��� that we speculate is
the continued version of Equation ���
�
��� also satis�es Helmholtz� Sommerfeld� and has
the same boundary values on z � �
 It turns out that solutions of the Helmholtz equation
which satisfy the Sommerfeld condition are unique
 This means that Equation ���
�
��
must be the valid representation of eikr�r for nonzero values of z


Equation ���
�
�� is know as the Weyl integral
 We would now like to recast it as an
integration over angles� to arrive at an angular spectrum of plane waves
 In spherical
coordinates� one has �cf
 Figure ��
��

kx � k cos �� sin��� ky � k sin �� sin��� kz � k cos���

We have no problem letting �� run from � to 	�
 But a moment
s re�ection will convince
you that we can
t restrict �� to real angles
 The reason for this is that as kx or ky go
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to in�nity� as they surely must since we are integrating over the whole kx � ky plane� kz
must become complex
 But

cos �� �
kz
k
�

Thus we see that complex kz values imply complex plane wave angles
 And if the
angle of propagation of a plane wave is complex� it must decay �or grow� exponentially
with distance
 These sorts of waves are called evanescent or inhomogeneous waves
 This
is an extremely important point
 The physical explanation given in Treitel et al
 "��#
is that these evanescent waves are source generated and that provided we are well away
from the source we can ignore them
 Thus in "��#� the evanescent �waves� are ignored and
the resulting integration over the angle �� is restricted to the real axis
 But remember�
plane waves are nonphysical�they do not exist in nature They are purely mathematical
abstractions
 Plane waves can be approximated in nature by various procedures
 For
example we could place a large number of point sources along a line and set them o�
together
 This would generate a downgoing plane wave
 Or we could apply a slight time
delay between each source to simulate a plane wave incident at some angle
 Another
possibility is to be so far removed from a point source that the wavefront curvature is
negligible


A point source on the other hand is easily realizable� drop a pebble into a pond if you
want to see one
 So it should come as no surprise that we will have di�culty interpreting
the results of a decomposition of a physical wave into non�physical waves
 We have
already seen that essentially any transient pulse can be synthesized from elementary
Fourier components� but these don
t exist in nature either
 Any real signal must have a
beginning
 Remember also� that evanescent plane waves are not really waves at all
 They
do not su�er any phase shift upon translation and therefore have no travel time delay
associated with them
 This causes no practical problem so long as the origin of these
terms is far enough away from any boundary that the exponential decay will have killed
o� any energy associated with them


As to the direction of decay of these evanescent plane waves� that is completely arbitrary

In order to apply the dispersion relation as a constraint we needed to integrate out one of
the wavevector components
 We chose kz because we like to think in terms of vertically
layered media� where z is the naturally favored coordinate
 The result of this was expo�
nential decay of the inhomogeneous components in the z direction
 But clearly we could
have chosen any direction in k space and ended up with an analogous result


The net result of all of this is that when kx or ky go to in�nity� kz � i� which implies
that cos�� � i�
 Now� using the fact that

cos�
�

	
� ix� � sin�ix� � i sinh�x� �

i

	
�ex � e�x�

it follows that when cos�� � i�� �� � ��	� i�
 So that in spherical coordinates

eikr

r
�

ik

	�

Z ����i�

�

Z ��

�
ei�kxx�kyy�kz jzj� sin��d��d��� ���
�
���
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This �rst integral above is now taken to be a contour integral in the complex �� plane
 We
integrate along the Re���� axis from � to 	�� then we integrate to in�nity in the direction
of negative Im����


Finally� there is one other very useful form for the Weyl integral
 It is achieved by
introducing the radial wave number kr � k cos�� where � is the angle of emergence
shown in Figure ��
�
 Then� using an integral representation of the cylindrical Bessel
function �cf
 "��#� the Weyl integral becomes

eikr

r
�

�

	�

Z �

�

Z ��

�
ei�rkr cos��������e�z

p
k�r�k� krdkrd��q

k�r � k�
���
�
���

�
Z �

�

J��krr�e
�z
p

k�r�k�krdkrq
k�r � k�

� ���
�
�	�

In this form� the integral is known as the Sommerfeld integral and represents a sum over
cylindrical waves
 The cylindrical Bessel functions arise from the separation of variables
of the wave equation in either cylindrical or spherical coordinates


�	���� A Few Words on Bessel Functions

In any of the standard books on special functions� or what used to be called the functions
of mathematical physics� you will see the following solutions of Bessel
s equation�

J��x� �
�
x

	

�� �X
j��

����j

j +�j � � � ��

�
x

	

��j

J���x� �
�
x

	

��� �X
j��

����j

j +�j � � � ��

�
x

	

��j
�

The limiting forms of these functions are�

x �� � J��x� � �

+�� � ��

�
x

	

��

x �� � J��x� �
s

	

�x
cos�x� ���	 � �����

The transition from the small argument behavior to the large argument behavior occurs
in the region of x � �
 Also notice that the large�argument asymptotic form demonstrates
the existence of an in�nite number of roots of the Bessel function
 These are approximated
asymptotically by the formula

x�n � n� � �� � ��	���	
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where x�n is the n�th root of J� 
 You will �nd more than you ever wanted to know about
Bessel Functions in Watson
s A Treatise on the Theory of Bessel Functions "��#
 Any of
the classic textbooks on analysis from the early part of this century will have chapters on
the various special functions
 Morse and Feshbach "��# is another standard reference


���� Re�ection of a Spherical Wave from a Plane

Boundary

The reason for going to all this trouble is so that we can treat the problem of the re�ection
of a pulse from a planar boundary
 Clearly this is the crucial problem in re�ection
seismology
 We can write the total potential as the incident plus re�ected �eld

� �
eikr

r
� �re��

This is illustrated in Figure ��
	
 A plane wave re�ecting from a boundary produces
a re�ected plane wave
 Therefore � must be representable as a superposition of plane
waves since the incident pulse is
 All we need do is to take into account the phase change
associated with the travel time from the source location and the boundary and to scale
the amplitude of the re�ected plane waves by the angle�dependent re�ection coe�cient

Denoting the angle of incidence by � we have from the Sommerfeld integral

�re� �
Z �

�

J��krr�e
��h�z�

p
k�r�k�R���krdkrq

k�r � k�

�
Z �

�

J��krr�e�i�h�z�kzR���

ikz
krdkr ���
	
��

where R is the re�ection coe�cient and h is the distance of the source above the re�ecting
layer


The plane wave incidence angle � is a function of both kr and 

 In fact�

kr �



c
cos��

So we can write R��� � )�
� kr�
 Further� so far we
ve neglected the frequency content of
our point source� so if we want to interpret Equation ���
	
�� as� for example� the vertical
p�wave displacement potential or pressure of a source plus re�ected compressional wave�
say ��
� r� z�� then we need to scale the integral by the Fourier transform of the source
excitation function F �
�
 This leads us to the �rst equation of Treitel et al
 "��# and is the
real jumping o� point for the practical implementation of the plane wave decomposition
of seismograms�

��
� r� z� � F �
�
Z �

�
)�
� kr�

J��krr�e
�i�h�z�kz

ikz
krdkr� ���
	
	�
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Figure ��
	� Re�ection of a pulse from a planar surface


Treitel et al
 interpret )�
� kr� as the Fourier transform of the velocity potential of the
plane wave component with angular frequency 
 and horizontal wave number kr
 For a
single layer we know that in fact the re�ection coe�cient is independent of frequency
 For
a stack of layers it turns out that the e�ective re�ection coe�cient does indeed depend
on the frequency
 And in that case� we end up with a sum of phase shift terms associated
with transmission of the plane wave through the layers above the re�ecting layers
 This is
the basis of the well�known re�ectivity method for synthetic seismogram generation "	�#

Let
s not worry about the source spectrum F �
�� for now let us assume that the source
has a broad�band spectrum so that we can assume F �
� � �
 Then Equation ���
	
	� has
the form of a Fourier�Bessel transform pair �"��#� p
 ����
 For any function g�r�� we can
de�ne a Fourier�Bessel transform G�kr� via the invertible transformation pair

g�r� �
Z �

�
G�kr�J��krr�krdkr

G�kr� �
Z �

�
g�r�J��krr�rdr�

This works just like a Fourier transform and with it we can invert the integral in Equa�
tion ���
	
	� analytically to achieve

)�
� kr�
e�i�h�z�kz

ikz
�
Z �

�
��
� r� z�J��


r

c
sin��r dr� ���
	
��

For the moment let
s not worry about the interpretation of )
 If the medium is de�ned by
a stack of horizontal layers� then we can calculate ) straightforwardly using the methods
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Figure ��
�� A curve can be speci�ed either as the locus of all points such that t � t�x�
or the envelope of all tangents with slope p and intercept � 


in "	�#
 That
s not the main goal of "��#� their main goal is to illuminate the connection
between slant�stacks and plane wave decomposition
 It will turn out that the slant�
stacking procedure is essentially equivalent to plane wave decomposition
 That means
that instead of attempting to evaluate the Sommerfeld integral numerically� we can apply
the slant�stacking procedure� which is widely used already in the exploration seismology
community


�	���� A Minor Digression on Slant
Stacks

Suppose we have some curve t�x�
 For now� t�x� is a purely geometrical object� we
ll worry
about the seismic implications later
 Now� t�x� represents an object� the curve
 There is
another� completely equivalent representation of this object� namely� as the envelope of
all tangents to the curve �Figure ��
��
 This equivalent geometry of slopes and intercepts
is known as Pluecker line geometry
 The conventional representation is known as point
geometry� Line geometry forms the basis of the Legendre transformation� which is widely
used in physics to switch between the Lagrangian and Hamiltonian pictures and from
intensive to extensive variables
 An excellent discussion of the Legendre transformation
can be found in Callen
s book Thermodynamics "��#


If we know the analytic form of a curve� it is straightforward to calculate its Legendre
transformation into slope�intercept space
 Let
s consider a few examples
 Since a straight
line has only one slope and one intercept� the Legendre transformation of a line is a point

In other words� the line t � px � � gets mapped into the point ��� p�
� Next� consider
the quadratic t � x�
 The family of tangents to this curve must satisfy t � px � � where
p � 	x
 In order that the lines t � 	x� � � intersect the curve t � x� it is necessary that
� � �x�
 Eliminating x between the expressions for � and p we see that the quadratic
t � x� gets mapped into the curve � � ��p�	��� Finally� consider the family of hyperbolae

�The reason for using p to represent the slope is that in seismology the slope is just the ray parameter�
or horizontal phase slowness�
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given by t� � �x��	
 The family of tangents to these curves are given by t � px�� where
p � �x�

p
�x� � 	
 In order for these lines to intersect the hyperbolae it is necessary and

su�cient that � � 	�
p
�x� � 	
 Eliminating x between the expressions for � and p we

obtain the result that the Legendre transformation of a t� x hyperbola is a � � p ellipse

p�

�
�
� �

	
� ��

In the case of seismic data� we don
t have an explicit relationship between the travel time
t and the horizontal coordinate x or r
 Of course� to the extent that we believe that
di�raction signatures are hyperbolic� we should expect these to be mapped into � � p
ellipses
 But we really need a numerical way to compute the � � p transformation of
seismic data
 This is accomplished with the slant�stack� we sum along straight lines�
each parameterized with a slope p and an intercept � � and deposit the resulting value in
the � � p section
 The reason this works is that unless the line we are summing along
is approximately tangent to the curve� the summation results in a zero contribution
 In
other words� the intersection of the line of integration and the curve we wish to slant�stack
is a set of measure zero and therefore contributes nothing to the slant�stack
 On the other
hand� a tangent has a �higher order contact� with a curve�


If we were simply dealing with plane curves which could be parameterized by t�x�� then
we would have a complete picture� slant�stack equals Legendre transformation
 With
seismic data� the curve we are slant�stacking has some amplitude associated with it
 So
it sounds as if we should make the slant�stack a summation of amplitudes along lines
 In
the limiting case of an in�nite frequency wavelet we just recover the kinematical slant	
stack already discussed
 In the more general case we have what is known as a dynamical
slant	stack


���� Slant�stacks and the Plane Wave Decomposition

To show the connection between slant�stacks and the plane wave decomposition �following
Treitel et al
 "��#� we begin with an example of a slant�stack operator�

s�t� cx� �
Z �

��

Z �

��
u�x� y� t� x�cx�dx dy ���
�
��

where cx is the horizontal phase velocity and u is our seismic data� it could be pressure or
one component of displacement
 We are clearly summing along lines of constant horizontal
phase velocity and parameterizing the result by that phase velocity
 Introducing polar

�For the theory behind this� check out a book on di�erential geometry such as Struik�s ����� where the
result we need is on page ���
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coordinates

x � r cos ��

y � r sin ��

dx dy � r dr d��

we have
s�t� �� �

Z �

��

Z �

�
u�r� t� r cos �� sin��cr�r dr d��� ���
�
	�

or� since we are summing along a line� we can equivalently write this as a convolution
with a delta function

s�t� �� �
Z �

��

Z �

�
u�r� t� 
 ��t� t� cos ���r dr d�� ���
�
��

where t� � r sin��c


We can do the angular integral easily
 De�ne the intermediate function h�t� by

h�t� �
Z �

��
��t� t� cos ���d�� � 	

Z �

�
��t� t� cos ���d���

Letting w � t� cos �� we have

h�t� �
Z t�

�t�
�t�� � w��������t�w� dw�

The result is that

h�t� �

�
	�t�� � t������ if t � t�
� otherwise

���
�
��

Thus� the slant�stack reduces to

s�t� �� �
Z �

�
"u�t� r� 
 h�t� r� ��# r dr� ���
�
��

Believe it or not� the function we
re convolving the data with� h�t� r� ��� is a known
Fourier transform pair of the ��th order cylindrical Bessel function
 One hesitates to say
well�known� but in Oberhettinger
s table of integrals ����� edition� p
 ��� we �nd that

h�t� r� �� � Fourier Transform



�	

��
r sin�

c

��
� t�

	������ ���
�
��

� J�

�

r

c
sin�

�
� ���
�
��

We can now write the slant�stack in a form which is almost identical to the version of the
plane wave decomposition we had in Equation ���
	
���

s�
� �� �
Z �

�
u�
� r�J�

�

r

c
sin�

�
r dr� ���
�
��
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For comparison� we had for the plane wave decomposition of a pulse re�ected from a
horizontal boundary

)�
� kr�
e�i�h�z�kz

ikz
�
Z �

�
��
� r� z�J�

�

r

c
sin�

�
r dr ���
�
��

where ��
� r� z� is the vertical p�wave displacement potential or pressure �i
e
� eikr�r� and
) was the angle�dependent re�ection coe�cient
 The di�erences between the right sides
of these two equations are a� that in the slant�stack we only know the �eld at the surface
z � �� whereas for the plane wave decomposition� the potential or pressure is assumed
known everywhere is space� and b� if we interpret � as a potential� say the vertical p�wave
displacement potential� then we have to di�erentiate it with respect to z in order to get
the observed data u
 Di�erentiation with respect to z just cancels the factor of ikz in the
denominator leaving

)�
� kr�e
�i�h�z�kz �

Z �

�
u�
� r� z�J�

�

r

c
sin�

�
r dr� ���
�
���

We can interpret the phase�shift on the left side of this equation as an upward continuation
operator
 Once again� following the notation of "��#� we suppose that the point source is
buried at �r � �� z � h� and rede�ne the vertical distance between the point source and
the receiver to be z
 Then we have

)�
� kr�e
�ikzz � )�
� ��e�iz��c cos� ���
�
���

�
Z �

�
u�
� r� z�J�

�

r

c
sin�

�
r dr� ���
�
�	�

We
ll simply de�ne this to be )�
� �� z�
 Then the plane wave component at z � ��
)�
� �� �� is given exactly by the slant�stack of the data�

)�
� �� �� �
Z �

�
u�
� r� ��J�

�

r

c
sin�

�
r dr� ���
�
���

Alternatively� starting with Equation ���
	
��

)�
� kr�
e�i�h�z�kz

ikz
�
Z �

�
��
� r� z�J��


r

c
sin��r dr� ���
�
���

we can di�erentiate with respect to z to get

)�
� kr�e
�i�h�z�kz �

Z �

�
u�
� r� z�J��


r

c
sin��r dr� ���
�
���

From this we infer that at the surface z � � we have

)�
� kr�e
�ihkz �

Z �

�
u�
� r� ��J��


r

c
sin��r dr� ���
�
���
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Or we could start directly with

��
� r� z� �
Z �

�

J��krr�

ikz
e�i�h�z�kzR���kr dkr� ���
�
���

di�erentiate this with respect to z to get rid of the ikz� and convert the potential into a
displacement
 Then� inverting the Fourier�Bessel transform we end up with

R���e�ihkz
Z �

�
u�
� r� ��J��krr�r dr� ���
�
���

We
ve only just scratched the surface of plane�wave decompositions� re�ectivity methods�
and slant�stacks
 In addition to the paper by Fuchs and M(uller already cited "	�#� Chris
Chapman has written a whole series of really outstanding papers on these subjects
 Of
special note are his papers on Generalized Radon transforms and slant stacks "��# and A
new method for computing synthetic seismograms "�	#
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Chapter ��

Numerical Methods for Tracing Rays

On page �� we showed that the eikonal equation� which is a nonlinear partial di�eren�
tial equation� could be reduced to an ordinary di�erential equation by introducing new
coordinates de�ned in terms of the surfaces of constant phase
 The normals to these
isophasal surfaces were called rays
 Later we saw that the same ray equations followed
automatically from Fermat
s principle
 Now we need to address the issue of how to solve
these ray equations for realistic media


There are essentially two classes of numerical methods for the ray equations
 In the �rst�
a heterogeneous medium �slowness as a function of space� is approximated by many pieces
within each of which the ray equations are exactly solvable
 For example� in a piece�wise
constant slowness medium the exact solution of the ray equation must consist of a piece�
wise linear ray� with Snell
s law pertaining at the boundary between constant�slowness
segments
 One can show that in a medium in which the slowness has constant gradients�
the ray equations have arcs of circles as solutions
 So if we approximate our medium by
one in which the slowness has constant gradients� then the raypath must be make up of
lots of arcs of circles joined via Snell
s law
 For lack of a better term� let
s call these
methods algebraic methods
 On the other hand� if we apply �nite di�erence methods to
the ray equations� we can simply regard the slowness as being speci�ed on a grid and
numerically determine the raypaths
 Let
s call these methods of solving the ray equations
�nite di�erence methods


In practice� both algebraic and �nite di�erence methods are applied to tomography� where
raypaths must be known� and to migration� where we only need to know travel times

However� it is probably true that algebraic methods are more popular for tomography
and �nite di�erence methods are more popular for migration
 One reason for this is that
�nite di�erence methods are easier to write� and since Fermat
s principle guarantees that
perturbations with respect to raypath are of higher order than perturbations with respect
to the slowness� the inaccuracies in raypaths due to not applying Snell
s law exactly at
boundaries have a relatively minor e�ect on the quality of a migration
 On the other hand�

���
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in travel time tomography� having accurate raypaths is sometimes vital for resolution


���� Finite Di�erence Methods for Tracing Rays

We will now describe methods for solving the ray equations� Equation ���
�
��� when the
slowness s is an arbitrary� di�erentiable function of x and z
 The generalization to ray
tracing in three dimensions is completely straight�forward
 The methods to be discussed
are classic and are described in much greater detail in the works of Stoer and Bulirsch "��#
and Gear "	�#
 We will consider rays de�ned parametrically as a function of arc�length
�or time or any other parameter which increases monotonically along the ray�
 In other
words� a ray will be the locus of points �x���� z���� as � ranges over some interval
 If we
were to write the rays as simple functions z�x� where x is the horizontal coordinate� then
numerical di�culties would inevitably arise when the rays became very steep or turned
back on themselves� if the ray becomes very steep� then �nite di�erences $z�$x may
become unstable� forcing us to switch to a x�z� representation� and if the ray turns back
on itself� there will not be a single�valued representation of the ray at all
� Arc�length
parameterization avoids all this di�culty� allowing one� for example� to decide on a step�
size depending only on the intrinsic properties of the medium and not on the direction
the ray happens to be propagating


The �rst step is to reduce the second order Equation ���
�
��

d

d�

�
s�r�

d

d�
r

	
�rs � � ���
�
��

to a coupled system of �rst order equations
 The position vector r in Cartesian coordinates
is simply x%x� z%z
 Denoting di�erentiation with respect to the arc�length parameter � by
a dot one has

dr

d�
� 'x%x� 'z%z�

Carrying out the di�erentiations indicated in Equation ���
�
�� and equating the x and z
components to zero we get

s(x � sx 'x� � sz 'z 'x� sx � �� ���
�
	�

�On the other hand� a z�x� or x�z� representation is certainly a little simpler� and results in a lower
order system of equations to solve� To get the ray equations in this form� replace d� withp

dx� � dz� �
p
� � �x��z��� dz or

p
� � �z��x��� dx

in the travel time integral

t �

Z
ray

s�x� z�d�

and proceed with the derivation of the Euler�Lagrange equations as we did at the end of the chapter on
ray theory�
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and

s(z � sz 'z� � sx 'z 'x� sz � �� ���
�
��

Now� to reduce a second order equation� say y�� � f � to two �rst order equations� it is
necessary to introduce an auxiliary function� say z
 Letting y� � z� the equation y�� � f
is completely equivalent to the two coupled equations

y� � z

z� � f�

Carrying out this procedure with Equation ���
�
��� we arrive at the four coupled� �rst
order� ordinary di�erential equations �ODE��

'z� � z�

'z� � �sxz� � szz�
s

z� �
sx
s

'z
 � z�

'z� � �szz� � sxz�
s

z� �
sz
s
� ���
�
��

where� z� � x� 'z� � 'x � z�� and so on


These are the coupled� nonlinear� ray equations in arc�length parameterization
 We can
simplify the notation by considering the four functions zi� i � �� 	� �� �� as being compon�
ents of a vector z� and the right hand side of Equation ���
�
�� as being the components
of a vector f 
 Then Equation ���
�
�� reduces to the single �rst order� vector ODE

dz

d�
� f�z� s� sx� sz� ���

Thus� we can dispense with vector notation and� without loss of generality� restrict atten�
tion to the general� �rst order ODE

dz

dx
� f�x� z�� ���
�
��

where we will now use x as the independent variable� to conform with standard notation�
and use primes to denote di�erentiation
 The remainder of this chapter will be devoted
to numerically solving initial value problems �IVP� and boundary value problems �BVP�
for Equation ���
�
��
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���� Initial Value Problems

The initial value problem for Equation ���
�
�� consists in �nding a function z�x�� which
satis�es Equation ���
�
�� and also satis�es

z�x�� � z�� ���
	
��

It can be shown that Equations ���
�
�� and ��
	
� have a unique solution provided that
�a� f satis�es the Lipschitz
 condition on the closed� �nite interval "a� b#� �b� z�x� is
continuously di�erentiable for all x in "a� b#� �c� z��x� � f�x� z�x�� for all x in "a� b#� and
�d� z�x�� � z�
 It follows from the mean value theorem of calculus that a su�cient
condition for f to be Lipschitz is that all the partial derivatives of f with respect to z
exist and be bounded and continuous


In addition to being much easier to solve than boundary value problems� initial value
problems have the important property that the solution always depends continuously on
the initial value
 In other words� initial value problems are �well posed
� �For a complete
discussion see "��#
� The potential for ill�posedness will turn out to be a very serious
problem for two�point boundary value problems


The simplest solution method for an IVP is to approximate the derivative with a �rst�order
forward di�erence� so that Equation ���
�
�� becomes

z�x � h�� z�x�

h
�� f�x� z�x��

where h is the step size
 This gives z�x � h� �� z�x� � hf�x� z�x��� which in turn gives
Euler
s method

�� � z�

�i�� � �i � hf�xi� �i� i � �� �� 	� � � �

xi�� � xi � h� ���
	
	�

Thus� the approximate solution � consists of polygonal� or piece�wise linear� approximation
to the curve z�x�
 We start with an initial value of x and integrate using the recursion
formula above for � until we reach the desired ending value of x
 Euler
s method is a

�Remember� x and z no longer refer to the Cartesian coordinates� They are simply the independent
and dependent variables of an abstract ODE�

�f is said to satisfy the Lipschitz condition if there exists a number N such that for all x� jf�x� z���
f�x� z��j � N jz� � z�j�
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special case of the general one�step method

�� � z�

�i�� � �i � h��xi� �i� f� h� i � �� �� 	� � � �

xi�� � xi � h�

� is the iteration function� in other words� � is simply a rule which governs how the
approximation at any given step depends on the approximations at previous steps
 It can
be determined in various ways� via quadrature rules� truncation of Taylor series� etc
 For
the Euler method � is simply the right�hand�side of the ODE
 The global discretization
error of the method is err�x� h� � ��x� h� � z�x�
 The method is convergent if the limit
of err�x� hn� �where hn � �x� x���n� is zero as n goes to in�nity
 If err�x� hn� is ��hpn�
�p � �� the method is said to be of order p


Perhaps the most widely used one�step methods are of the Runge�Kutta type
 An example
of a fourth order Runge�Kutta scheme is obtained by using the iteration function

��x� z� h� � ���"k� � 	k� � 	k
 � k�#

where

k� � f�x� z�

k� � f�x � h�	� z � k�h�	�

k
 � f�x � h�	� z � k�h�	�

k� � f�x � h� z � k
h�� ���
	
��

One way to organize the myriad of one step methods is as numerical integration formulae

For example� the solution of the IVP

z��x� � f�x� z�x�� � z� ���
	
��

has the solution
z�x� � z�x�� �

Z x

x�
f�t�dt� ���
	
��

The Runge�Kutta method in Equation ���
	
�� is simply Simpson
s rule applied to Equa�
tion ���
	
��


Thus far� we have given examples of single�step integration methods� the approximate
solution at any given step depends only on the approximate solution at the previous step

The natural generalization of this is to allow the solution at the� say� kth step to depend
on the solution at the previous r steps� where r � 	
 To get the method started one
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must somehow compute r starting values �� ��� � � � � �r��
 We will not consider multi�step
methods in any further detail� the interested reader is referred to "��# and "	�# and the
references cited therein


We have now developed su�cient machinery to attack the initial value problem of raytra�
cing
 By applying one of the single�step solvers such as the Runge�Kutta method� Equa�
tion ���
	
��� to the ray equations� Equation ���
�
��� we can compute the raypath for an
arbitrarily complex medium
 We can think of �shooting� a ray o� from a given point in
the medium� at a given takeo� angle with one of the axes� and tracking its progress with
the ODE integrator
 This turns out to be all we really need to do migration
 We don
t
really care where a ray goes� we just want to know what travel time curves look like so
we can do migration
 On the other hand� if we are doing travel time tomography� then we
need to know not where a given ray goes� but which ray �or rays� connects a �xed source
and receiver
 Thus we need to be able to solve the boundary value problem �BVP� for
Equation ���
�
��


���� Boundary Value Problems

The numerical solution of two�point BVP
s for ordinary di�erential equations continues
to be an active area of research
 The classic reference in the �eld is by Keller "��#
 The
development given here will only scratch the surface� it is intended merely to get the
interested reader started in tracing rays


We now consider boundary value problems for the ray equations
 The problem is to
compute a �ray� z�x� such that

dz

dx
� f�x� z� subject to z�a� � za and z�b� � zb� ���
�
��

The simplest solution to the BVP for rays is to shoot a ray and see where it ends up�
i
e
� evaluate z�b�
 If it is not close enough to the desired receiver location� correct the
take�o� angle of the ray and shoot again
 One may continue in this way until the ray ends
up su�ciently close to the receiver
 Not surprisingly this is called the shooting method

This idea is illustrated in Figure ��
�� which shows the geometry for a re�ection seismic
experiment


The method of correcting the take�o� angle of subsequent rays can be made more rigorous
as follows
 By shooting� we replace the BVP Equation ���
	
�� with an IVP

dz

dx
� f�x� z� z�a� � za and z��a� � ��

and adjust �
 Thus we can view a solution of this IVP as depending implicitly on ��
z � z�x� ��
 The BVP then is reduced to the problem of �nding roots of the function
z�b� ��� zb
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s r 

Figure ��
�� Simple shooting involves solving the initial value problem repeatedly with
di�erent take�o� angles� iteratively correcting the initial conditions until a satisfactory
solution of the boundary value problem is achieved


Having now reduced the problem to one of �nding roots� we can apply the many powerful
techniques available for this purpose� among which Newton
s method is certainly one of
the best
 Newton
s method is so important� underlying as it does virtually all methods
for nonlinear inversion� that it merits a brief digression


������ Newton�s Method

Suppose you want to �nd roots of the function f�x� �i
e
� those points at which f is zero�

If f is the derivative of some other function� say g� then the roots of f correspond to
minima of g� so root �nding and minimization are equivalent


Let � denote the root of f to be computed
 Expanding the function f about � in a Taylor
series

f��� � � � f�x� � f ��x��� � x� � � � � �

we see that� neglecting higher order terms�

� �� x� f�x�

f ��x�
�

To see intuitively what this expression means� consider the parabolic function shown in
Figure ��
	
 The tangent to the curve at �x�� f�x��� satis�es the equation

y � f ��x��x� � *y

where *y is the intercept with the y�axis
 Eliminating *y from the following two simultaneous
equations

f�x�� � f ��x��x� � *y

� � f ��x��x� � *y
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x x 

 

1 0 

Figure ��
	� Newton
s method for �nding roots


gives

x� � x� � f�x��

f ��x��
�

So we can interpret Newton
s method as sliding down to the x�axis along a tangent to
the curve associated with the initial point x�
 Thus� � will be closer to one of the two
roots for any starting point we choose� save one
 At the mid�way point between the two
roots� the slope is zero and our approximation fails
 Having computed � �call it ��� we
can insert it back into the above expression to arrive at the next approximation for the
root

�� �� �� � f����

f �����
�

Continuing in this way we have the general �rst order Newton
s method for �nding the
roots of an arbitrary di�erentiable function

�n�� �� �n � f��n�

f ���n�
�

Newton
s method can be shown to be quadratically convergent� for suitably well�behaved
functions f � provided the initial guess is close enough to the root �"��#� p
 	�� �
�


Higher order Newton�type methods can be obtained by retaining more terms in the trun�
cated Taylor series for f 
 For example� retaining only the linear terms amounts to ap�
proximating the function f with a straight line
 Retaining the second order term amounts
to approximating f with a quadratic� and so on
 It is easy to see that the second order
Newton method is just

�n�� �� �n � f ���n�� "f ���n�� � 	f��n�f ����n�#
���

f ����n�
�
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Newton
s method has a very natural generalization to functions of more than one variable�
but for this we need the de�nition of the derivative in Rn �n�dimensional Euclidean space�

Writing the function f�x�� which maps from Rn into Rm� in terms of components as

f�x� �



���������

f��x�� x�� � � � xn�

f��x�� x�� � � � xn�






fm�x�� x�� � � � xn�

�
���������
�

the derivative of f is de�ned as the linear mapping D which satis�es

f��� � f�x� � Df�x��� � x��

in the limit as x� �
 De�ned in this way D is none other than the Jacobian of f

Df�x� �



�������

�f�
�x�

	 	 	 �f�
�xn





�fm
�x�

	 	 	 �fm
�xn

�
�������
�

So instead of the iteration

�n�� �� �n � f��n�

f ���n�
�

we have

�n�� � �n �
�
Df��n�

���
f��n��

provided� of course� that the Jacobian is invertible


Example

Let
s consider an example of Newton
s method applied to a �D function

q�x� � � � �x� � x�� ���
�
	�

We have
q��x� � ��	x � �x
 ���
�
��

and therefore
q�x�

q��x�
�

� � �x� � x�

��	x � �x

� ���
�
��

Newton
s iteration is then

xi�� � xi � � � �x�i � x�i
��	xi � �x
i

���
�
��
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The function q has four roots� at �� and �p�
 If we choose a starting point equal to� say�
�� we converge to

p
� to an accuracty of one part in a million within � iterations
 Now

the point Newton
s method converges to� if it converges at all� is not always obvious
 To
illustrate this� we show in Figure ��
� a plot of the function q above a plot of the points to
which each starting value �uniformly distributed along the abscissa� converged
 In other
words� in the bottom plot� there ��� tick�marks representing starting values distributed
uniformly between �� and � along the x�axis
 The ordinate is the root to which each of
these starting values converged after 	� iterations of Newton
s method
 Every starting
point clearly converged to one of the four roots �zero is carefully excluded since q� is zero
there�
 But the behavior is rather complicated
 It
s all easy enough to understand by
looking at the tangent to the quadratic at each of these points� the important thing to
keep in mind is that near critical points of the function� the tangent will be very nearly
horizontal� and therefore a single Newton step can result in quite a large change in the
approximation to the root
 One solution to this dilemma is to use step�length relaxation

In other words� do not use a full Newton step for the early iterations
 See "��# for details


������ Variations on a Theme� Relaxed Newton Methods

The archetypal problem is to �nd the roots of the equation

g�x� � �� ���
�
��

The most general case we will consider is a function g mapping from Rm to Rn
 Such a
function has n components gi�x�� x�� � � � � � xm�


Newton
s method can be written in the general case as the iteration

xk�� � xk �Hkg�xk� ���
�
��

where Hk is the inverse of the Jacobian matrix J�xk�
 Now let us relax the strict de�nition
of H and require that

lim
k��

kI �HkJ�x��k � �� ���
�
��

Such an algorithm will have similar convergence properties as the full Newton
s method

The details of this theory can be found in books on optimization� such as "��#
 We give a
few important examples here


� Hk � J���x��
 An example of this would be step length relaxation
 An example
of step length relaxation on the function shown in Figure ��
� is given in "��#
 Here
Hk � akJ

���x�� where ak � �
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Figure ��
�� Newton
s method applied to a function with four roots� �� and �����
 The
bottom �gure shows the roots to which each of ��� starting values� uniformly distributed
between �� and �� converged
 The behavior is complex in the vicinity of a critical point
of the function� since the tangent is nearly horizontal
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� Use divided di�erences to approximate the derivatives
 For example� with n � � we
have�

xk�� � xk � �xk � xk���g�xk�

g�xk�� g�xk���
�

� Adjoint approximation
 Take Hk � akJ
T �xx�
 This approximation is extremely

important in seismic inversion where it corresponds essentially to performing a
prestack migration� given that g is a waveform mis�t function
 See "��# for more
details


������ Well
Posed Methods For Boundary Value Problems

Conceptually� the simplest method for solving two�point boundary value problems for the
ray equations is shooting� we solve a sequence of initial value problems which come closer
and closer to the solution of the boundary value problem
 Unfortunately shooting can
be ill�posed in the sense that for some models� minute changes in the takeo� angles of
rays will cause large changes in the endpoints of those rays
 This is especially true near
�shadow zones�
 In fact� one is tempted to say that in practice� whenever a shooting code
runs into trouble� it
s likely to be due to the breakdown in geometrical optics in shadow
zones
 Put another way� the rays which cause shooting codes to break down almost always
seem to be associated with very weak events


On the other hand� there are many techniques for solving boundary value problems for
rays which are not ill�posed and which will generate stable solutions even for very weak
events in shadow zones
 We will now brie�y mention several of them
 First there is
multiple�shooting
 This is an extension of ordinary shooting� but we choose n points
along the x�axis and shoot a ray at each one�joining the individual rays continuously at
the interior shooting points as illustrated in Figure ��
�


Bending is an iterative approach to solving the ray equations based on starting with some
initial approximation to the two�point raypath�perhaps a straight line�then perturbing
the interior segments of the path according to some prescription
 This prescription might
be a minimization principle such as Fermat or it might employ the ray equation directly

One especially attractive idea along these lines is to apply a �nite di�erence scheme to
the ray equations
 This will give a coupled set of nonlinear algebraic equations in place of
the ODE
 The boundary conditions can then be used to eliminate two of the unknowns

Then we can apply Newton
s method to this nonlinear set of equations� the initial guess
to the solution being a straight line joining the source and receiver
 For more details see
"��#
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Figure ��
�� Multiple�shooting involves shooting a number of rays and joining them con�
tinuously


���	 Algebraic Methods for Tracing Rays

If the slowness or velocity assume certain functional forms� then we can write down
analytic solutions to the ray equation
 Cerveny "��# gives analytic solutions for various
media� including those with a constant gradient of velocity c� constant gradient of c�n and
ln c� and constant gradient of slowness squared s�
 For example� if the squared slowness
has constant gradient

s� � a� � a�x � a�z � a
y

then the raypaths are quadratic polynomials in arclength
 This is probably the simplest
analytic solution for an inhomogeneous medium
 Similarly� if the velocity has a constant
gradient� then the raypath is an arc of a circle
 However� the coe�cients of this circu�
lar representation are much more cumbersome than in the constant gradient of squared
slowness model


We can readily extend this sort of approach to media that satisfy these special properties
in a piecewise fashion
 For example� if the model is composed of blocks or cells within
each of which the velocity has a constant gradient and across which continuity of velocity
is maintained� then the analytic raypath will consist of smoothly joined arcs of circles

For more details of this approach see the paper by Langan� Lerche and Cutler "��# which
in�uenced many people doing seismic tomography


���
 Distilled Wisdom

We have presented all of the theoretical tools necessary to write an e�cient and accurate
raytracer for heterogeneous media
 However� there are many practical considerations
which arise only from years of experience in attempting to apply these methods
 There
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is probably no better source of this distilled wisdom than the short paper by Sam Gray
entitled E
cient traveltime calculations for Kirchho� migration "	�#
 Gray shows how
interpolation of traveltime curves and downward continuation of rays can signi�cantly
reduce the computational costs of traveltime based migration methods


���� Eikonal Equation Methods

During the past � or � years� there has been an explosion of interest in computing travel
times by solving the eikonal equation directly
 The main reason for this is that �nite dif�
ference methods for the eikonal equation are well suited for both vector oriented machines
such as the Cray 	!Cray XMP and massively parallel machines such as the CM�	��!CM�
�
 In this brief discussion we will content ourselves to look at just one aspect of this
problem� as described in the work of Vidale and Houston "�	#


Suppose we want to solve the eikonal equation krtk� � s� on a square 	D grid of size h

Consider a single unit of this grid bounded by four points whose travel times are �going
counter clockwise starting at the lower left� t�� t�� t
� t�
 So points � and � are diagonally
opposite
 Approximating the travel times at grid points �� 	� and � as �rst�order Taylor
series about the point �� we have

t� � t� � h
�t

�y

t� � t� � h
�t

�x

and

t
 � t� � h

�
�t

�x
�

�t

�y

�
�

Putting these together we have

	h
�t

�y
� t
 � t� � t� � t�

and

	h
�t

�x
� t
 � t� � t� � t�

which gives

�h�

��
�
�
�t

�x

��
�

�
�t

�y

����
� � �t
 � t� � t� � t��

� � �t
 � t� � t� � t��
�
�

This is our �nite di�erence approximation to the right hand side of the eikonal equation

If you carry though the algebra you will see that most of the cross terms cancel� so that
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we are left with just �t
 � t��� � �t� � t���
 Now� the squared slowness we approximate
by its average value at the � grid points

s � �s �
�

�
�s� � s� � s� � s
� �

The result is Vidale
s approximation for the eikonal equation

�t
 � t��
� � �t� � t��

� � 	�s�h�

or
t
 � t� �

q
	�s�h� � �t� � t����

For recent work on the use of the eikonal equation in Kirchho� migration� see "	�# and
"��#
 Also� see "��# for a massively parallel implementation


���� Computer Exercises� V

Now extend your Kirchho� code from Exercise IV by accurately calculating travel times
in a general c�x� z� medium
 Whether you do this by tracing rays or by solving the eikonal
equation is up to you
 At this point you should not be concerned about e�ciency
 Try
to get something that works� then worry about making it fast
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Chapter ��

Finite Di�erence Methods for Wave
Propagation and Migration

The most widely used technique for modeling and migration in completely heterogeneous
media is the method of �nite di�erences
 We will consider �nite di�erences applied to
two generic equations� the parabolic equation

�u

�t
� K

��u

�x�

which arises in this context from Claerbout
s paraxial approximation to the wave equation�
and the hyperbolic wave equation

��u

�t�
� c�

��u

�x�

where K and c are functions of space but not of time or u
 Our treatment of �nite
di�erences will be extremely terse
 For more details� the reader is urged to consult the
standard references� including Smith
s Numerical solution of partial di�erential equa	
tions� �nite di�erence methods "��# �from which much of the �rst part of this chapter is
directly drawn�� Mitchell
s Computational methods in partial di�erential equations "��#�
and Richtmyer and Morton
s Di�erence methods for initial value problems
 There are
countless �ne references to the theory of partial di�erential equations� but an especially
useful one �by virtue of its brevity� readability and rigor� is John
s Partial Di�erential
Equations "�	#
 In particular we have relied on John
s discussion of characteristics and
the domain of dependence of PDE
s and their associated �nite di�erence representations


First a little notation and nomenclature
 We use U to denote the exact solution of some
PDE� u to denote the exact solution of the resulting di�erence equation and N to denote
the numerical solution of the di�erence equation
 Therefore the total error at a grid point
i� j is

Ui�j �Ni�j � �Ui�j � ui�j� � �ui�j �Ni�j� ��	
�
��

���
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which is just the sum of the discretization error Ui�j � ui�j and the global rounding error
ui�j �Ni�j

Let Fi�j�u� denote the di�erence equation at the i� j mesh point
 The local truncation
error is then just Fi�j�U�
 If the local truncation error goes to zero as the mesh spacing
goes to zero� the di�erence equation is said to be consistent


Probably the most important result in numerical PDE
s is called Lax
s Theorem� If a
linear �nite di�erence equation is consistent with a well�posed linear initial value problem�
then stability guarantees convergence
 A problem is said to be well�posed if it admits a
unique solution which depends continuously on the data
 For more details see "��#


Ultimately all �nite di�erence methods are based on Taylor series approximations of the
solutions to the PDE
 For example� let U be an arbitrarily di�erentiable function of one
real variable� then including terms up to order three we have�

U�x � h� � U�x� � hU ��x� � ��	h�U ���x� � ���h
U ����x� ��	
�
	�

and

U�x� h� � U�x�� hU ��x� � ��	h�U ���x�� ���h
U ����x�� ��	
�
��

First adding� then subtracting these two equations we get� respectively

U�x � h� � U�x� h� � 	U�x� � h�U ���x� ��	
�
��

and

U�x � h� � U�x� h� � 	hU ��x�� ��	
�
��

Thus we have the following approximations for the �rst and second derivative of the
function U �

U ���x� � U�x � h�� 	U�x� � U�x� h�

h�
��	
�
��

and

U ��x� � U�x � h�� U�x� h�

	h
� ��	
�
��

Both of these approximations are second�order accurate in the discretization� i
e
� O�h��

This means that the error will be reduced by one�fourth if the discretization is reduced by
one�half
 Similarly� if in Equations ��	
�
	��	
�
�� we ignore terms which are O�h�� and
higher we end up with the following �rst�order forward and backward approximations to
U ��x��

U ��x� � U�x � h�� U�x�

h
��	
�
��

and

U ��x� � U�x�� U�x� h�

h
� ��	
�
��
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���� Parabolic Equations

In the �rst part of this chapter we will consider functions of one space and one time
variable
 This is purely a notational convenience
 Where appropriate� we will give the
more general formulae and stability conditions
 The discretization of the space and time
axes is� x � i�x � ih� t � j�t � jk� for integers i and j
 Then we have U�ih� jk� � Ui�j

The simplest �nite di�erence approximation to the nondimensional �constant coe�cient�
heat equation

�u

�t
�

��u

�x�

is thus
ui�j�� � ui�j

k
�

ui���j � 	ui�j � ui���j
h�

� ��	
�
��

������ Explicit Time
Integration Schemes

Now suppose that we wish to solve an initial�boundary value problem for the heat equa�
tion
 In other words we will specify U�x� t� for x at the endpoints of an interval� say "�� �#�
and U�x� �� for all x
 Physically� this corresponds to specifying an initial heat pro�le
along a rod� and requiring the endpoints of the rod have �xed temperature� as if they
were connected to a heat bath at constant temperature


We can re�write Equation ��	
�
�� so that everything involving the current time step j is
on the right side of the equation and everything involving the new time step j � � is on
the left�

ui�j�� � ui�j � r"ui���j � 	ui�j � ui���j# ��	
�
	�

where r � k
h�

� �t
�x�

�

As an illustration of this �nite di�erence scheme� consider the following initial�boundary
value problem for the heat equation�

�U

�t
�

��U

�x�

U�x � �� t� � U�x � �� t� � �

U�x� �� �

�
	x if � � x � ��	
	��� x� if ��	 � x � �

Figure �	
� shows the solution computed for �� time steps using an x discretization �x � ��
and a t discretization �t � ����� thus giving r � ��
 The errors are negligible� except at
the point x � ��	 where the derivative of the initial data are discontinuous
 On the other
hand� if we increase �t to 
���� so that r � ��� the errors become substantial and actually



�
� CHAPTER ��� FINITE DIFFERENCE METHODS FOR WAVE PROPAGATION AND MIGRATION

FD r=.1 

Analytic 

RMS difference 

2
4

6

8

10
2

4

6

8

10

0

0.25

0.5

0.75

1

2
4

6

8

10
2

4

6

8

10

0

25

.5

75

1

0
0.2

0.4
0.6

0.8

1 0

0.002

0.004

0.006

0.008

0.01

0
0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8

1 0

0.002

0.004

0.006

0.00

0.

0
25

.5

5

1

2

4

6

8

10

2

4

6

8

10

0

0.02

0.04

2

4

6

8

10

2

4

6

8

10

0

02

4

Figure �	
�� Finite di�erence and analytic solution to the initial�boundary value problem
for the heat equation described in the text
 The discretization factor r � ��
 The errors
are negligible� except at the point x � ��	 where the derivative of the initial data is
discontinuous
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Figure �	
	� Finite di�erence and analytic solution to the initial�boundary value problem
for the heat equation described in the text
 The discretization factor r � ��
 The errors
are substantial and growing with time
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grow with time �Figure �	
	�
 To see just what is happening� let us write this explicit
time integration as a linear operator
 Equation ��	
�
	� can be expressed as



��������

u��j��
u��j��
u
�j��




uN���j��

�
��������

� ��	
�
��



��������

��� 	r� r � � � � �
r �� � 	r� r � � � �
� r ��� 	r� r � � �






 
 


� � � � � r ��� 	r�

�
��������



��������

u��j
u��j
u
�j




uN���j

�
��������

or as

uj�� � A 	 uj
where we use a bold�face u to denote a vector associated with the spatial grid
 The single
subscript now denotes the time discretization
 We have by induction

uj � Aj 	 u��

To investigate the potential growth of errors� let
s suppose that instead of specifying u�
exactly� we specify some v� which di�ers slightly from the exact initial data
 The error
is then e� � u� � v�
 Or� at the j�th time step

ej � Aj 	 e��

A �nite di�erence scheme will remain stable if the error ej remains bounded as j ��

This� in turn� requires that the eigenvalues of A be less than �� since ej results from the
repeated application of the matrix to an arbitrary vector
�

Let us rewrite the tridiagonal matrixA as the identity matrix plus r times the tridiagonal

�Suppose xs is the s�th eigenvector of A and �s is the s�th eigenvalue� Any vector� in particular the
initial error vector� can be written as a summation of eigenvectors �assuming the matrix is full rank� with
coe�cients cs	

e� �
X

csxs�

Therefore

ej �
X

cs�
j
sxs�
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matrix Tn�� where

Tn�� �



��������

�	 � � � � � �
� �	 � � � � �
� � �	 � � � �






 
 


� � � � � � �	

�
��������
�

The matrix Tn�� has been well�studied and its eigenvalues and eigenvectors are known

exactly �"��#� p
 ����
 In particular its eigenvalues are �� sin�
�
s�
�N

�

 The more general

result is that the eigenvalues of the N 
N tridiagonal

��������

a b � � � � �
c a b � � � �
� c a b � � �






 
 


� � � � � c a

�
��������

are


s � a� 	
p
bc cos

�
s�

N � �

�
�

This means that 
s� the eigenvalues of A� are given by


s � � � r
�
�� sin�

�
s�

	N

��
�

So the question is� for what values of r is this expression less than or equal to one� It
is not di�cult to show that we must have �r sin�

�
s�
�N

�
� 	� and hence if r � ��	 then


s � �


This feature of the explicit time�integration scheme� that the stepsize must be strictly
controlled in order to maintain stability� is common of all explicit schemes� whether for
the parabolic heat equation or the hyperbolic wave equation
 It is possible� however� to
derive �nite di�erence schemes which are unconditionally stable
 I
e
� stable for all �nite
values of r
 It is important to keep in mind however� that just because a method might be
stable for a large value of r� does not mean that it will be accurate But� as we will now
show� it is possible to derive �nite di�erence methods where the constraints on r depend
only on the desired accuracy of the scheme and not its stability


������ Implicit Time
Integration Schemes

The method of Crank and Nicolson involves replacing the second derivative term in the
heat equation with its �nite di�erence representation at the j�th and j � ��st time steps

In other words� instead of Equation ��	
�
	�� we have�

ui�j�� � ui�j
k

� ��	
�
��
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�

	

�
ui���j�� � 	ui�j�� � ui���j��

h�
�
ui���j � 	ui�j � ui���j

h�

�

This is an example of an implicit time�integration scheme
 It is said to be implicit because
the �nite di�erence equations de�ne the solution at any given stage implicitly in terms of
the solution of a linear system of equations such as Equation ��	
�
��


Using the same notation as for the explicit case� we can write the Crank�Nicolson time�
integration as

�	I� rTn���uj�� � �	I� rTn���uj �

Formally the solution of this set of equations is given by

uj�� � �	I� rTn���
�� �	I� rTn���uj�

We don
t need to calculate the inverse of the indicated matrix explicitly
 For purposes of
the stability analysis it su�ces to observe that the eigenvalues of the matrix

A � �	I� rTn���
�� �	I � rTn���

will have modulus less than one if and only if

	� �r sin�
�
s�
�N

�
	 � �r sin�

�
s�
�N

� � �� ��	
�
��

And this is clearly true for any value of r whatsoever


The fact that these eigenvalues have modulus less than � for all values of r implies un	
conditional stability of the Crank�Nicolson scheme
 However� do not confuse this stability
with accuracy
 We may very well be able to choose a large value of r and maintain stabil�
ity� but that does not mean the �nite di�erence solution that we compute will accurately
represent the solution of the PDE
 Now� clearly �x and �t must be controlled by the
smallest wavelengths present in the solution
 So it stands to reason that if the solution
of the PDE varies rapidly with space or time� then we may need to choose so small a
value of the grid size that we might as well use an explicit method
 The tradeo� here is
that with Crank�Nicolson� we must solve a tridiagonal system of equations to advance the
solution each time step


But solving a tridiagonal� especially a symmetric one� can be done very e�ciently
 Al�
gorithms for the e�cient application of Gaussian elimination can be found in Numerical
Recipes or the Linpack Users� Guide
 The latter implementation is highly e�cient
 How
can we judge this tradeo�� If we count the �oating point operations ��op� implied by the
explicit time�integration scheme Equation ��	
�
	�� we arrive at �N �oating point opera�
tions per time step� where N is the number of x gridpoints
� Now �x and hence N can
be taken to be the same for both the explicit and the implicit methods
 The di�erence

�We count a multiply as one �op and an add as one �op� So the expression ax� y implies � �ops�
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Floating point operations per divide 

Explicit/Implicit ratio of work 

12 14 16 18 20

1.4

1.6

1.8

Figure �	
�� Assuming r � �� for the explicit method and r � � for the implicit� here is
a plot showing the ratio of work between the two methods as a function of the number of
�oating point operations per divide on a particular computer
 With a typical value of ��
or �� �oating point operations per divide� we can see that the work required for the two
methods is very similar notwithstanding the fact that we need to use ten times as many
time steps in the explicit case


will come in �t
 The number of �oating point operations required to perform Gaussian
elimination on a symmetric tridiagonal is approximately ��� � �F �N��

�
where F is the

number of �oating point operations required to do a divide
 This will vary from machine
to machine but is likely to be in the range of ���	�
 Now N will be large� so we can ignore
the di�erence between N �� and N 
 Therefore the ratio of work between the explicit and
the implicit methods will be approximately

�N

��� � �F �N�
�

��

�� � �F
��	
�
��

per time step
 But the whole point is that we may be able to use a much larger time
step for the implicit method
 Suppose� for example� that we need to use an r of 
� for the
explicit methods� but that we can use an r of � for the implicit approach
 That means
that we
ll need ten times as many time steps for the former as the latter
 Therefore the
ratio of work between the two methods to integrate out to a �xed value of time is

���

�� � �F
��	
�
��

or more generally
���

�� � �F
��	
�
��

where � is the ratio of the number of explicit time steps to the number of implicit time
steps
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������ Weighted Average Schemes

A class of �nite di�erence approximations that includes both the fully explicit and the
Crank�Nicolson methods as special cases is based upon a weighted average of the spatial
derivative terms

ui�j�� � ui�j
k

� ��	
�
��

�
�
ui���j�� � 	ui�j�� � ui���j��

h�

�
� �� � ��

�
ui���j � 	ui�j � ui���j

h�

�
�

If � � � we are left with the usual explicit scheme� while for � � �� we have Crank�
Nicolson
 For � � � we have a so�called fully implicit method
 For � � �� the method is
unconditionally stable� while for � � � � ��� stability requires that

r � �t

��x��
� �

	��� 	��
�

������ Separation of Variables for Di�erence Equations

It is possible to give an analytic solution to the explicit �nite di�erence approximation
of the heat equation in the case that the solution to the PDE is periodic on the unit
interval
 Just as in the case of classical separation of variables� we assume a solution of
the di�erence equation

ui�j�� � rui���j � �� � 	r�ui�j � rui���j ��	
�
���

of the form
ui�j � figj

so that
gj��
gj

�
rfi�� � ��� 	r�fi � rfi��

fi
�

As in the standard approach to separation of variables� we observe at this point that
the left side of this equation depends only on j while the right side depends only on i

Therefore� both terms must actually be constant


gj��
gj

�
rfi�� � ��� 	r�fi � rfi��

fi
� C

where C is the separation constant
 The solution to

gj�� � Cgj � �

is
gj � ACj�
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The other equation

fi�� �
�� 	r � C

r
fi � fi�� � �

presumably must have a periodic solution since the original PDE is periodic in space

Therefore a reasonable guess as to the solution of this equation would be

fi � B cos�i�� � D sin�i���

We won
t go through all the details� but it can be shown using the known eigenvalues of
the tridiagonal that

C � � � �r sin�
�
s�

	N

�

and� hence� a particular solution of the di�erence equation is

ui�j � E
�

�� �r sin�
�
s�

	N

��j
sin

�
si�

N

�
�

We can generalize this to a particular solution for given initial data by taking the coe��
cients Es to be the Fourier coe�cients of the initial data
 Then we have

ui�j �
�X
s��

Es

�
� � �r sin�

�
s�

	N

��j
sin

�
si�

N

�
�

���� Hyperbolic Equations

Now let us consider the �rst�order hyperbolic equation

Ut � cUx � � ��	
	
��

where� for the time being� c is a constant
 Later we will generalize the discussion to allow
for arbitrarily heterogeneous wave speed


Along the line de�ned by x� ct � � � constant� we have

dU

dt
�

d

dt
"U�ct � �� t�# � cUx � Ut � �� ��	
	
	�

Therefore U is constant along such lines
 Di�erent values of � give di�erent such lines

As a result� the general solution of Equation ��	
	
�� can be written

U�x� t� � f�x� ct� � f��� ��	
	
��

where the function f de�nes the initial data� since U�x� �� � f�x�
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x - ct =  

(x,t) 
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x 

Figure �	
�� Domain of dependence of the �rst�order hyperbolic equation


The lines x� ct de�ne what are known as characteristics
 The value of the solution U at
an arbitrary point �x� t� depends only on the value of f at the single argument �
 In other
words� the domain of dependence of U on its initial values is given by the single point �

This is illustrated in Figure �	
�


Following John "�	#� we now show that a simple �rst�order forward�di�erence scheme of
the type employed for the heat equation leads to an unstable algorithm when applied
to a hyperbolic equation
 This leads to the notion that the domain of dependence of a
di�erence equation must be the same as that of the underlying PDE� this is the Courant�
Friedrichs�Lewy condition


Proceeding in the same fashion as for the heat equation� let us consider the following
�rst�order �nite�di�erence approximation of Equation ��	
	
��

ui�j�� � ui�j � rc"ui���j � ui�j# ��	
	
��

where r � k�h � �t��x
 De�ning the shift operator E via Eui�j � ui���j we have

ui�j � ��� � rc�� rcE� ui�j�� ��	
	
��

and hence by induction
ui�N � ��� � rc�� rcE�N ui�� ��	
	
��

or
u�x� t� � u�x�Nk� � ��� � rc�� rcE�N f�x�� ��	
	
��

Using the binomial theorem we have

u�x� t� �
NX

m��

�
N
m

�
�� � rc�m��rcE�N�mf�x� ��	
	
��
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and hence

u�x� t� �
NX

m��

�
N
m

�
�� � rc�m��rc�N�mf�x � �N �m�h�� ��	
	
��

The �rst indication that something is wrong with this scheme comes from the observation
that the domain of dependence of the di�erence equation appears to be

x� x� h� x � 	h� 	 	 	 � x � Nh

whereas the domain of dependence of the PDE is � � x�ct� which in this case is x�cNk

Since this is not even in the set x� ih� it is clear that in the limit as k � � the di�erence
scheme cannot converge to the solution of the PDE
 Further� the errors associated with
some perturbed value � of the initial data grow exponentially
 according to

�
NX

m��

�
N
m

�
�� � rc�m��rc�N�m � �� � 	rc�N��

On the other hand� if we use a backward di�erence approximation in space then we have

u�x� t� � u�x�Nk� �
�
��� rc� � rcE���N f�x� ��	
	
���

and

u�x� t� �
NX

m��

�
N
m

�
��� rc�m�rc�N�mf�x� �N �m�h�� ��	
	
���

Now the domain of dependence of the di�erence equation is

x� x� h� x� 	h� 	 	 	 � x�Nh � x� t�r�

This set has the interval "x � t�r� x# as its limit as the mesh size goes to zero� provided
the ratio r is �xed
 Therefore the point � � x� ct will be in this interval if

rc � �� ��	
	
�	�

This is referred to variously as the Courant�Friedrichs�Lewy condition� the CFL condi�
tion� or simply the Courant condition


Using the backward di�erence scheme� Equation ��	
	
���� we see that the error growth
is governed by

�
NX

m��

�
N
m

�
��� rc�m�rc�N�m � �� � rc � rc�N� � �

which gives us con�dence in the stability of the method� provided the CFL criterion is
satis�ed


�This is a worst�case scenario in which the error has been cleverly chosen with alternating sign to
cancel out the alternating sign in the binomial result�
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���� The Full Two�Way Wave Equation

By this point it should be clear how we will solve the full wave equation by �nite dif�
ferences
 First we show a �nite di�erence formula for the wave equation in two space
dimensions which is second�order accurate in both space and time
 Then we show a
scheme which is fourth�order accurate in space and second in time
 In both cases we take
the grid spacing to be the same in the x and z directions� �x � �z


ui�j�k�� � 	�� � 	Ci�j�ui�j�k

� Ci�j "ui���j�k � ui���j�k � ui�j���k � ui�j���k#

� ui�j�k�� ��	
�
��

where
Ci�j � �ci�jdt�dx���

ci�j is the spatially varying wavespeed� and where the �rst two indices in u refer to space
and the third refers to time
 The CFL condition for this method is

�t � �x

cmax
p

	

where cmax is the maximum wavespeed in the model


A scheme which is fourth�order accurate in space and second�order accurate in time is

ui�j�k�� � �	� �Ci�j�ui�j�k

� Ci�j��	 f�� "ui���j�k � ui���j�k � ui�j���k � ui�j���k#

� "ui���j�k � ui���j�k � ui�j���k � ui�j���k#g
� ui�j�k��� ��	
�
	�

The CFL condition for this method is

�t � �x

cmax

q
���

For more details� see "	#
 A straightforward extension of these explicit �nite di�erence
schemes to elastic wave propagation is contained in the paper by Kelly et al� "��#
 This
paper exerted a profound in�uence on the exploration geophysics community� appearing�
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Figure �	
�� Hypothetical normalized source power spectrum
 The number of grid points
per wavelength may be measured in terms of the wavelength at the upper half�power
frequency


as it did� at a time when a new generation of digital computers was making the systematic
use of sophisticated �nite di�erence modeling feasible


Strictly speaking� the boxed �nite di�erence equations above are derived assuming a
homogeneous wavespeed
 Nevertheless� they work well for heterogeneous models in some
cases� especially if the heterogeneities are aligned along the computational grid
 More
general heterogeneous formulations require that we start with a wave equation which still
has the gradients of the material properties
 Although this generalization is conceptually
straightforward� the resulting �nite di�erence equations are a lot more complicated
 For
details� see "��#
 In particular� this paper gives a �nite di�erence scheme valid for P�SV
wave propagation in arbitrarily heterogeneous 	D media
 �It requires more than a full
page just to write it down
�

������ Grid Dispersion

The question remains as to how �ne the spatial grid should be in order to avoid numerical
dispersion of the sort we �rst studied in the section on the �D lattice �page �� �
�

This measure of the grid size for dispersion purposes is given in terms of the number
of gridpoints per wavelength contained in the source wavelet
 But which wavelength�
that associated with Nyquist� with the peak frequency� or some other� Alford et al�
introduced the convention of de�ning the number of grid points per wavelength in terms
of the wavelength at the upper half�power frequency
 This is illustrated in Figure �	
� for
a hypothetical source wavelet
 Measured in these terms� it is found that for best results at
least ����� grid points per wavelength are required for the second�order accurate scheme
shown in the �rst box above
 Whereas� using the fourth�order scheme� this could be
relaxed to around � grid points per wavelength
 This means that using the fourth�order
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scheme reduces the number of grid points by a factor of �� whereas the number of �oating
point operations per time step goes up by only ��0


���	 Absorbing Boundary Conditions

We won
t go into much detail on the problem of absorbing boundary conditions
 The
idea is quite simple
 Whereas the real Earth is essentially unbounded� except at the free�
surface� our computational grid needs to be as small as possible to save storage
 If we
didn
t do anything special at the sides and bottom of the model� the wave propagating
through this grid would think it was seeing a free surface when it reached one of these
three sides
 Clayton and Engquist "��# proposed replacing the full wave equation with its
paraxial approximation near the non�free�surface edges of the model
 Using a paraxial
equation ensures one�way propagation at the edges of the model
 Since the paraxial
approximations they use are �rst order in the spatial extrapolation direction� only the
nearest interior row of grid points is needed for each absorbing boundary


Making paraxial approximations de�nes a preferred direction of propagation� typically
along one of the spatial axes
 This means that waves incident normally upon one of the
absorbing sides of the model can be attenuated quite nicely
 But wave incident at an
angle will only be approximately attenuated
 If one knew the direction of propagation of
the waves which were to be attenuated� it would be possible to rotate coordinates in such
a way that waves propagating in that direction were preferentially attenuated
 Similarly�
Clayton and Engquist show how a rotation can be used to take special account of the
corners of the model
 The detailed formulae for the Clayton�Engquist scheme are given
in "��# and implemented in an example in the next section
 The key idea� however� is that
we use a standard explicit time integration scheme for all the interior points except for
those immediately next to one of the sides we wish to be absorbing


���
 Finite Di�erence Code for the Wave Equation

In this appendix we give an extremely simple� but nonetheless functioning� code for solving
the acoustic wave equation via �nite di�erences
 This code is for 	D and is second�order
accurate in both space and time
 It is written in Fortran �� for use on the Connection
Machine
 It runs at around � Giga�ops on a full CM�	�� and was written by Jacek
Myzskowski of Thinking Machines Inc


c Fortran �� implementation of a second order

c �space�time
 explicit finite difference scheme�
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Figure �	
�� Waves on a discrete string
 The two columns of �gures are snapshots in time
of waves propagating in a �D medium
 The only di�erence between the two is the initial
conditions� shown at the top of each column
 On the right� we are trying to propagate a
discrete delta function �one grid point in space and time�
 On the left� we are propagating a
band�limited version of this
 The medium is homogeneous except for an isolated re�ecting
layer in the middle
 The dispersion seen in the right side simulation is explained by looking
at the dispersion relation for discrete media
 Waves whose wavelengths are comparable
to the grid spacing sense the granularity of the medium
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c In this version the boundary conditions are

c ignored� The ony reason for using Fortran ��

c in this case is that it runs fast on a

c Connection Machine�

parameter �f�����


parameter �nx��	
�ny��	
�nt�����nrate�	�nsnap��


real p	�nx�ny
�p
�nx�ny
�p��nx�ny
�c�nx�ny
�pmax

logical mask�nx�ny


pi � ���atan�	�


print���make a simple layered model�

c�	�nx�	�ny!�
 � 
�

c�	�nx�ny!�"	�ny!

 � ��

c�	�nx�ny!
"	���ny!�
 � ��

c�	�nx���ny!�"	�ny
 � ��

print���finish model generation�

cmin � minval�c


cmax � maxval�c


print��cmin�cmax��cmin�cmax�

c

c 		 grid points per wavelength� max frequency � 
�f�

c

dx � cmin!�		��
��f�


dt � dx!�cmax�sqrt�
�



dtbydx�dt!dx

c � c�dtbydx

c � c�c

c put a point source in the middle of the grid

ix� � nx!


iy� � ny!


c Start time iterations

c

c Make the ricker wavlet

c

t� � 	��!f�

w� � 
�pi�f�

c

mask � �false�

mask�ix��iy�
 � �true�
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c begin time integration

do 	�� it�	�nt

c

c Calculate the source amplitude

c

t � �it � 	
�dt � t�

arg	 � min�	����w��t!
�
��



arg
 � min�	����w���t " pi!w�
!
�
��



arg� � min�	����w���t � pi!w�
!
�
��



amp � �	 � 
�arg	
�exp��arg	


amp � amp � ����	 � 
�arg

�exp��arg



amp � amp � ����	 � 
�arg�
�exp��arg�


c

c Loop over space

c

p� � �
���c
�p


� " c��cshift�p
�
��	
"cshift�p
�
�	


� " cshift�p
�	��	
"cshift�p
�	�	
 


� � p	

where�mask
 p� � p� " amp

p	�p


p
�p�

	�� continue

stop

end

In a more sophisticated version� we de�ne auxilliary arrays of weights in order to e�ect
Clayton�Engquist absorbing boundary conditions on three of the four sides of the com�
putational grid
 So �rst we de�ne the weights� then we put them into the �nite di�erence
stencil


�����

c

c Precompute this to save run time
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c Inside weights

c

p��c�c

c
 � 
���p�

c	 � p�

c� � p�

c� � p�

c� � p�

c� � �	

p� � ��

if�itype�eq�

 then

c Top side weights

mask � �false�

mask�	���ny�

 � �true�

where�mask


c	 � �

c
 � �

c� � �

c� � �

c� � �

c� � �

end where

c Bottom side weights

mask � cshift�mask�	�	


where�mask


c
 � 	�c

c	 � �

c� � �

c� � c

c� � �

c� � �

end where

c Left side weights

mask � �false�

mask���nx�
�	
 � �true�

where�mask


c
 � 	�c

c	 � �

c� � c
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c� � �

c� � �

c� � �

end where

c Right side weights

mask � cshift�mask�
�	


where�mask


c
 � 	�c

c	 � c

c� � �

c� � �

c� � �

c� � �

end where

c Right lower corner weights

mask � �false�

mask�nx�ny
 � �true�

mask�nx�	�ny
 � �true�

mask�nx�ny�	
 � �true�

where�mask


c
 � 	�
�c

c	 � c

c� � �

c� � c

c� � �

c� � �

end where

c Right upper corner weights

mask�nx�	�ny
 � �false�

mask � cshift�mask�	��	


mask�
�ny
 � �true�

where�mask


c
 � 	�
�c

c	 � c

c� � �

c� � �

c� � c

c� � �

end where
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c Left upper corner weights

mask�	�ny�	
 � �false�

mask � cshift�mask�
��	


mask�	�

 � �true�

where�mask


c
 � 	�
�c

c	 � �

c� � c

c� � �

c� � c

c� � �

end where

c Left lower corner weights

mask�
�	
 � �false�

mask � cshift�mask�	�	


mask�nx�	�	
 � �true�

where�mask


c
 � 	�
�c

c	 � �

c� � c

c� � c

c� � �

c� � �

end where

end if

����� stuff deleted

c

c Loop over space

c

p� � c
�p


� "c	�cshift�p
�
��	
"c��cshift�p
�
�	


� "c��cshift�p
�	��	
"c��cshift�p
�	�	


� "c��p	

where�mask
 p� � p� " amp

p	�p


p
�p�
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Figure �	
�� The �rst of �� common source gathers that comprise the �nal computer
exercise
 Figure out the model and produce a migrated image
 Drilling is optional


	�� continue

����etc

���� Computer Exercises� VI

Figure �	
� shows the �rst common source gather from a synthetic data set containing ��
such gathers
� Each gather has ��� traces whose receiver locations are �xed throughout
the experiment
 The source moves across the model from left to right
 The receiver
spacing is ���
 The source spacing is 	��
 The traces were recorded at � ms sampling�
���� samples per trace
 Your job is to discover the model and produce a migrated image
using your now�fancy Kirchho� migration codes


�These data are available via ftp from hilbert�mines�colorado�edu in the directory pub�data�
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���� Computer Exercises� VI � Solution

Figure �	
� shows the model that was used to produce the data in Figure �	
�
 In the
next two �gures� we see the results obtained by Wences Gouveia and Tariq Alkhalifah

The recording aperature was limited strictly to the � km shown� so no re�ections from
the outside of the structure were recorded
 Because of the ray bending and the dip of
the syncline� it is very di�cult to get a good image of the sides of the syncline and the
dipping re�ectors below the syncline
 These are both extremely good images under the
circumstances
 Further� no information was given on the velocity model� all this had to
be deduced from the data


Here is the processing sequence that Gouveia applied to achieve the result shown in
Figure �	
�


�
 NMO correction with a constant velocity �the velocity of the �rst layer�
estimated by a sequence of Stolt migrations�� as a pre�processing for
DMO


	
 Constant velocity DMO in the frequency domain� to remove the e�ect of
dip on the stacking velocities


�
 Inverse NMO with the velocity used in step �


�
 Velocity analysis� via the standard semblance methods


�
 Conversion of the stacking velocities to interval velocities using the Dix
equation as a �rst approximation


�
 Post stack depth migration �using modi�ed Kirchho� for handling lateral
velocity variations� with the velocities estimated in the previous item

Re�nements on this velocity pro�le was accomplished by repeating the
post stack migration for slightly di�erent velocity models


And here is Alkhalifah
s account of his e�orts to achieve the results shown in Figure �	
��


Because the synthetic data containing only three layers seemed at �rst to be
reasonably easy� I went through a normal sequence
 This sequence is based
on applying constant velocity NMO� constant velocity DMO �this step is in�
dependent of velocity�� inverse NMO� velocity analysis� NMO with velocities
obtained from velocity analysis� stack� and �nally Kirchho� post�stack mi�
gration
 Caustics were apparent in the data and only with a multi�arrival
traveltime computed migration� such as a Kirchho� migration based on ray
tracing� that we can handle the caustics
 The model also had large lateral
velocity variations in which the velocity analysis and NMO parts of the above
mentioned sequence can not handle
 Such limitations caused clear amplitude
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Figure �	
�� The model that was used to produce the data shown in the previous �gure


degradations on the data especially for the deeper events �these events are
mostly e�ected by the lateral velocity variations�
 The velocities used in the
migration were obtained from velocity analysis and a lot of guessing
 Also
running the migration with di�erent velocities helped in �guring out which
velocities gave the best �nal image
 After all is said and done� the model did
not seem easy at all
 It might have been straightforward when one uses a
prestack migration with a migration velocity analysis� however with the tools
I used it was basically a nightmare
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Figure �	
�� Wences Gouveia
s migrated depth section
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Figure �	
��� Tariq Alkhalifah
s migrated depth section
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