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Abstract

Nonlinearities are often encountered in the analysis and processing of real-world signals. In this paper,
we introduce two new structures for nonlinear signal processing. The new structures simplify the analy-
sis, design, and implementation of nonlinear filters and can be applied to obtain more reliable estimates
of higher-order statistics. Both structures are based on a two-step decomposition consisting of a linear
orthogonal signal expansion followed by scalar polynomial transformations of the resulting signal coeffi-
cients. Most existing approaches to nonlinear signal processing characterize the nonlinearity in the time
domain or frequency domain; in our framework any orthogonal signal expansion can be employed. In
fact, there are good reasons for characterizing nonlinearity using more general signal representations like
the wavelet transform. Wavelet expansions often provide very concise signal representation and thereby
can simplify subsequent nonlinear analysis and processing. Wavelets also enable local nonlinear analy-
sis and processing in both time and frequency, which can be advantageous in non-stationary problems.
Moreover, we show that the wavelet domain offers significant theoretical advantages over classical time
or frequency domain approaches to nonlinear signal analysis and processing.
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1 Introduction

Nonlinear signal coupling, mixing, and interaction play an importalg m the analysis and processing of
signals and images. For instance, harmonic distortions and intermodulations indicate nonlinear behavior in
amplifiers and faulty behavior in rotating machinery. Nonlinearities also arise in speech and audio process-
ing, imaging, and communications. Nonlinear signal processing techniques are commonly applied in signal
detection and estimation, image enhancement and restoration, and filtering.

In this paper, we develop a new approach to nonlinear signal processing basedomiitezr signal
transformation (NST) depicted in Figure 1. Here, a lengthsignal vectorx is first expanded onto an

orthonormal signal basigb,, ..., b,,} to produce the vector of coefficienis,, ..., 3,]". These signal
coefficients are then combined in nonlinear processing ngdesich are simple:-th order polynomial
operations, to form the-th order nonlinear coefficients of the signal® = [4,,...,8y]". Concisely, we

denote the NST of Figure 1 by the operafor: x — 6.

The NST framework encompasses two new structures, each corresponding to a different choice for
the scalar processing nodegsn Figure 1. Product nodes compute different-fold products of the signal
coefficients at each node:

n(Brs-eesBrm) = BiBiy - Bin- 1)

Summing nodesraise linear combinations of the coefficients to theéh power:

n(BrseesBm) = (Z%ﬂj) : 2)
7=1

(Although the outputs of the product and summing nodes are not equivalent, we will see that they both
produce similar NSTs.)

We will prove that an NST architecture witt" ™" ~!) processing nodes can generaliepossible n-th
order nonlinear interactions between the various signal components, with the strengths of these interac-
tions reflected in the nonlinear signal coefficie@tsTherefore, these coefficients can be used for efficient
nonlinear filter implementations, robust statistical estimation, and nonlinear signal analysis.

The NST framework is flexible, because it does not rely on a particular choice of{liggisTradition-
ally, nonlinear signal analysis has been carried out in the time or frequency domains. For example, if the
{b;} are the canonical unit vectors, or delta basis, then the componehtepfesent-th order interactions
between different time lags of the signa(see Figure 2(a)). If th¢b;} make up the Fourier basis, thén
represents the-th order frequency intermodulations (see Figure 2(b)). In this paper, we will emphasize the
wavelet basis[6], whose elements are localized in both time and frequency. Wavelet-based NSTs represent
the localn-th order interactions between signal components at different améfrequencies (see Figure
2(c)). From a practical perspective, this can be advantageous in problems involving non-stationary data,
such as machinery monitoring [5] and image processing [19]. From a theoretical perspective, we will show
that the wavelet domain provides an optimal framework for studying nonlinear signals and systems.

We will consider several applications of NSTs in this paper. NSTs provide an elegant structure for the
\olterra filter that simplifies filter analysis, design, and implementation. Applications of \olterra filters
include signal detection and estimation, adaptive filtering, and system identification [14, 24]. The output of
a \Volterra filter applied to a signal consists of a polynomial combination of the samples ofWe will
show that every:-th order Volterra filter can be represented by simple linear combinations of the nonlinear



Figure 1: Nonlinear signal transformation (NST), : x — 6. The front end processing (projection onto the basis
{b;1}) is linear; the back end processing @pyrom (1) or (2)) is nonlinear.
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Figure 2: Comparison of different basd®;} for nonlinear signal processing. The choice of basis employed in the
linear front end of the NST of Figure 1 determines in which domain we represent signal interactions. Consider a
second-order NST, which generates squéfeand cross-products; 3; of the signal coefficients. We illustrate two

basis elements; andb; from three different bases, in both the time domain and the frequency (squared magnitude)
domain. In the delta basis, eabh is a unit pulse, s@; is simply a sample of the signal. The corresponding NST
represents coupling between different time lags of the signal. In the Fourier basi);e@ca sinusoid, s@; is a

Fourier coefficient of the signal. The corresponding NST represents intermodulations between different frequencies.
In the wavelet basis, eat) is localized in both time and frequency simultaneously; smeasures the time-frequency
content of the signal. The corresponding NST represents coupling between different localized wavelet atoms.



signal coefficient®. NSTs are also naturally suited for performinigher-order statistical signal analysis

[16]. For example, in the time or frequency domains, the nonlinear signal coeffi@iantssimply values of

a higher-order moment or higher-order spectrum. The wavelet domain provides an alternative, and optimal,
representation for higher-order statistical analysis.

The paper is organized as follows. In Section 2, we provide a brief introduction to the theory of tensor
spaces, which are central to the NST and its analysis. In Section 3, show that both the product and summing
node NSTs provide a complete representation of all possitieorder nonlinear signal interactions. Using
the theory of tensor norms and Gordon-Lewis spaces, we show in Section 4 that wavelet bases are optimal
for NST signal analysis and processing. Section 5 applies the theory to three nonlinear signal processing
applications. Section 6 offers a discussion and conclusions.

2 Tensor Spaces

In this Section, we provide a brief introduction to the theory of tensor spaces, which provide an elegant
and powerful framework for analyzing NSTs. The theory of tensor spaces will be used to establish the
completeness of NSTs and to assess the merits of different basis transformations.

2.1 Finite-dimensional tensor spaces

First, some notation fdR™ (we will deal exclusively with real-valued signals in this paper). All vectors will
be assumed to be columns and will be denoted using bold lowercase letters; for examgle,, . . ., v,,]" .
Bold uppercase letters will denote matrices. Define the inner prddust) 2 uly.

Given a collection ofn-dimensional, real-valued vectofs, ..., v, }, with vy = [vq 4, .. .,vmk]T,
the n-fold tensor or Kronecker product [3, 26] = = )’_; v, produces a vector composed of all possible
n-fold products of the elements vy, ..., v,}. We can also interpret the tenspras an amorphous-
dimensional array with elements, ;. = v;, 1 v, ». Then-fold tensor product of the vectar with
itself is denoted by () and contains alt-fold products of the elements in

The span of alkh-th order tensors generates thh ordertensor space 7" (IR ) [26]. For example, if
n = 2, then

L
T} (R™) £ {Zuj@@vj: uj,vje|Rm,L21}. 3)
7=1
Practically speaking " (IR™) is simply the spac&kR™".
Atensorr € T"(IR™) is symmetric [26] if for every set of indiceg i, ..., i, } and for every permuta-
tion{w(1),...,w(n)} from the sef? of permutations of 1, . . ., n} we have
Tityosin = Tig(1)seosio(n)* (4)

Any tensorr € T"(IR™) can be symmetrized by averaging over all possible permutations of the indeces,
forming |
S(r) = o > Ti(1)sesico(m) - )
wEeN
The subspace df” (IR™) containing allz-th order tensors satisfying (4) is termed théh ordersymmetric
tensor space S”(IR™). The dimension of5™(IR™) is (™*"~!), the number of.-selections from am
element set. Throughout the sequel, we will ¥et= (" +7-1),
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2.2 Continuous-timetensor spaces

In practice, we work with the finite-dimensional tensor spaces associated with finite duration, discrete-time
signals. However, in order to assess the merits of various signal bases (Fourier versus wavelet, for example)
it is useful to consider the situation in continuous-time (infinite-dimensional) signal spaces. We will see that
here the wavelet basis offers a significant advantage over the Fourier basis. Hence, we may infer that these
advantages carry over into high sample rate discrete-time signal spaces.

We now consider the construction of continuous-time tensor spaced’ heta signal space. Theth
order tensor spacg”(t') is the space generated by the span of:&libld tensor products of signals il
[7]. For example, if» = 2, then

i=1

L
T2(X)é {Z$]®y]$]7y]€X7L21} (6)

If z,y € A are one-dimensional functions of a parametghenx & y is canonically identified with the
two-dimensional function(¢;, t3) = z(t1) y(t2).

In order rigorously study continuous-time tensor spaces, we must 2Gui) with atensor norm[7].
First, we assume that the spatés itself equipped with a norm — for exampl&, = L, (R). The norm on
A can induce a norm oi”(.t') in a number of ways. Focusing dn, spaces, consider thmtural tensor
normA,, which is generated by the standard one-dimensibpalorm. We equip the algebraic tensor space
L,(R)® L,(IR) with A, and letZ, (IR) ®a, L, (IR) denote the completion of this space. Roughly speaking,
A, is a tensor norm that acts like the standard two-dimensibpaiorm. In fact, the normed tensor space
L,(R)®a, L,(R) is isometric to the space pfintegrable two-dimensional functiods, (IR x IR). We will
rejoin continuous-time tensor spaces in Section 4, where we study the performance of tensor wavelet bases
from an approximation-theoretic perspective.

3 CompleteNSTs

In this section, we show that the transformatigp : x — 8, pictured in Figure 1, provides a complete
representation of all possibteth order nonlinear signal interactions. More precisely, evetly order mul-
tilinear functional of the samples of the signals expressible as a linear functional of the nonlinear signal
coefficients@. Practical implications of completeness are that:ah order NST is capable of realizing
every possible-th order Volterra filter ok and can capture all possibleth order signal interactions nec-
essary to compute higher-order statistical quantities such as the moments and cumwlaxife ébcus our
attention primarily on sampled, finite duration signals. Using the theory of finite-dimensional tensor spaces,
we equate the completeness of the NSTs to a spanning condition in a tensor space.

3.1 Criterion for completeness

Definition 1 Let F,, : x — 6 befixed. If for every signal x € R™ andtensor h € T (IR™) there existsa
collection of real numbers {a; }2_,, N = (™*+7~1), such that

> Pisrooin Ty - Ty = > g b, (7)
k=1

1<i1 <. <in<m

then the transformation F',, isa complete n-th order NST.
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In words, a complete NST can represent evettyr order multilinear functional of the signal samples using
a linear functional of the nonlinear signal coefficie@its

Using the theory of tensor spaces, the completeness property is easily described. Note that the tensor
x(") contains every product of the form

xil..

* iy 1§21772n§m (8)
In tensorial notation, we can rewrite the multilinear function on the left side of (7) as the inner product

> Piy iy @iy -2y, = <h7X(n)> . 9

1<i1 <. Kin<m

Furthermore, since(™) is a symmetric tensor, we can assume without loss of generalithtaag” (IR™).
We now show that both the product node and summing node NSTs are complete.

3.2 Product node transfor mation

The product node NST is computed as follows. The coefficiénts. ., 3,, of the orthogonal expansion are
simply the inner products of the basis vectéts, . . ., b,, } with the signal vectox; that is,3; = (b;, x).
The coefficient® output at the second, nonlinear stage are given by-&dld products of the{ 3, }7., (see
(1)). The output of the product node NS, is thus

{03z = {8 Bi, 0 1< << <mj (10)

Tensor products simplify the description of the product node NST. First note that products of the form
Bi, - -+ B, in (10) can be expressed, using standard tensor product identities [3], as

ﬁil e ﬁm = <b21 ) X> e <bin7X> = <®b2] ) X(n)> . (11)
7=1
Next, since the ordering of thg, . . ., ¢,, does not affect the product value, we can symmetrize (11)

Bi - By, = <s (é)b) x(”)>. (12)
j=1

Now consider the collection of symmetric tensors

{S(ébij):lgilg...gingm}. (13)
7=1

Applying each of these tensors to the signal tensé? produces theg6; }2_, defined in (10). Hence, the
linear combinatioy"}_, ay, 6 of Definition 1 is given by

> iy, oin <5 (é bij) ; X(n)> ; (14)
i=1

1<ip <. <in<m



where we have used a multi-indexing scheme onf{thg} for notational convenience. Comparing this
expression to (7) and (9), we make the identification

h = > Qyin S (é bij) . (15)
=1

1<i1 <. Kin<m

It follows from (15) and Definition 1 that the product node NST is complete if the following condition
is satisfied:

Span{S(@bij) 1< <. .<i, < m} = S™(R™). (16)
7=1
This is in fact the case.

Theorem 1 [26] Let {b;}"., be a basis (orthonormal basis) for R™. Thenthe N = ("*7.~!) symmetric
tensors (13) form a basis (orthonormal basis) for .S " (IR™).

Thus, the product node structure affords a complete NST, proibgd™ ; is a basis folR™.

3.3 Summing node transformation

Recall that the summing node nonlinearities (2) raise linear combinations ¢fithe. ., 3,,} to then-th
power. For the:-th outputd,, we can write

n

b = (Z%kﬂj) = (Z%Mbm@) v k=1 N (17)
7=1 J=1

We can interpret (17) as weighting the connection between-thebasis element and theth summing
node with the gaim; ; (see Figure 1).

We can also write (17) as

0 = <Z a; b, X> = (fr,x)", (18)
7=1
with .
f. = > ainbs, k=1,...,N (19)
7=1
a linear combination of the original basis vectors. Equivalently, by stacking the basis (column) vectors into
the matrixB = [by, ..., b,,] and defininga; = [a1 4, . . .,amk]T, we can write
f, = Bay, k=1,...,N. (20)

If the basis vectorgb;} are viewed as functions with a single “bump” (for example, the delta basis in the
time domain, the Fourier basis in the frequency domain, or the wavelet basis in either domain — see Figure
2), then the vectorsf;} will be functions with multiple “bumps.” In this alternative representation, the
summing node NST provides an extremely simple structure for generating arbittargrder nonlinear

signal interactions. As we see from Figure 3, this representation consists of two decoupled subsystems:
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Figure 3: Filter bank realization of the summing node NST. By combining the basis vectors(&8)jrwe can
decompose an arbitrary summing node NST into a parallel cascade of a redundant set of linet, filters each
followed by a simple monomial nonlinearigy)™ .

1. an overcomplete set &f = (™+7~1) linear filters{f;.}}_, that control both the system dynamics
and component mixing, followed by

2. a set of trivial monomial nonlineariti¢s) ™.

In Section 5.2, we will apply this powerful representation of the summing node NST to the Volterra filter im-
plementation problem. The filter bank representation not only leads to a simple and effective representation
for the computation of a filter output, but also provides insight into the dynamics of the filter.

We now show that the summing node NST is complete. Using tensorial notation, we can write (18) as
0, = <f,£”)7 x(”)>. Following Definition 1, the linear combinatiom s, ax fr = Yoo, ai <f,£”)7 x(”)> :
Comparing this expression to (9), we make the identification

N
=Y (21)
k=1
and it follows that this NST is complete if
n N n m
span(f,"} = S"(R™). (22)

We will provide three different constructions for complete summing node NSTs. The first is valid for
arbitrary nonlinear ordet. (For the proof, see Appendix A.)

Theorem2 Fixp € R, |[p| # 1,p #0. Sety, = p",r = 0,...,n. Formthecollection of N = (m+7~1)
length-m vectors {ay. }}_, accordingto

{ak}}z:l = {[7117"'77lm]T : Zl] =-n, l] € {Ovvn}} . (23)
7=1

Then, with {ak}{f:l employed in (17) or (20), the condition (22) holds, and the corresponding summing
node NST is complete.

This construction generates a class of flltt{fé }k . sufficiently rich for their tensor products to
generate all possible-th order interactions of the basis vectors. While the definition of the combination
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vectors{a,}1_, in (23) is a notational nightmare, their structure is actually quite simple. Consider an
example withm = 3, n = 2, andp = 2. Sincen = 2, the multi-index/; can take the valuef0, 1, 2},

with correspondingy;, values{1,2,4}. The{/;}7., in eacha; vector must sum te = 2, so the entries

in eachay, will consist of all 1s except for either the single value 4 or a pair of 2s. There are(3) = 6
combinations of3-vectors with these nonzero coefficients:

a;=[11]", a;=[1417, as=[114]"
as =221, a;=[212]T, ag=[122]".

These coefficients can be interpreted eitherSaweightsa; ;. to be employed in (17) and Figure 1 or as the
combination factors in (20) that generate six different filters for use in Figure 3. In either case, a complete
NST results. In Section 5, we consider a cubic example with 3.

Since Theorem 2 generatas vectors with no zero entries, eaghfilter will have m “bumps.” Larger
values of thep parameter, however, lead to a simple interpretation of{thé¢. For example, choosing
p = 10inthem = 3, n = 2 construction above yields

a;=[100 1 117,  ay=[1 100 1]¥, as;=[11 100)7
a,=[10 10 117,  as;=[10 1 10]”, ag=[1 10 10)7.

Thus, thef; channel in Figure 3 will create a quadratic interaction between the signal components lying
primarily in theb; direction, while thef, channel will create a quadratic interaction between signal com-
ponents lying primarily thé; andb, directions. This reasoning cannot be carried on ad infinitum, since

in the limit asp — oo, a numerically ill-conditioned system results. It could also be tempting to simply
subtract 1 from each weight vector above; however, this destroys an important symmetry condition used to
prove Theorem 2.

For quadratic summing node NSTis £ 2), we have a very simple alternative construction that clearly
reveals the underlying dynamical interaction. In this construction, eachfijleeguals either a single basis
vector or a combination two basis vectors, and the squared output of each filter generates all necessary
coupling between different basis elements. The following result is proved in Appendix B.

Theorem 3 Set n = 2 and formthe collection of N = ("3) length-m vectors {a; }_, according to
{apthe, = {[%7 oyl ) i< 2, v e {0, 1}}- (24)
=1

(Each a, isan m-vector with entriesof 1 or 0, and each hasat most 2 non-zero entries.) Then, with {a; }4_,
employedin (17)or (20), the condition (22) holds, and the corresponding second-order summing node NST
iscomplete.

To complete our study of the summing node NST, we provide a direct construction of a complete set of
filters {f; }7_, that bypasses the choice of bais }. Interestingly, randomly generating the filteffs } 7,
produces a complete summing node NST. For the proof, see Appendix C.

Theorem 4 Let {f,}7_, beacollectionof N = (™*+7~1) independent and identically distributed observa-
tionsfroman IR —valued probability density. Then, with probability one, (22) holds and the corresponding
summing node NST is complete.



Finally, note that the above constructions for the filtgfis}2_, do not depend on the signal length
Hence, these constructions can be extended to separable continuous-time spaces.

3.4 Relatingthe product and summing node structures

It should be noted that the summing node transformation is different from the product node transformation.
While both transformations are complete, under the conditions stated previously in this Section, the non-
linear signal coefficient@ are, in general, different for the two structures. However, the coefficients of the
two structures can be related by a simple linear transformation. Fdrma= [fl(”), e ](V”)} and letP”

be a matrix whose columns are the= ("+7~1) tensors{S( - bij) 1< <<, < m} The
summing node nonlinear signal coefficients are given by

Osum - FX(n)7 (25)
while the product node coefficients are given by
Oproa = Px. (26)

Since both of these representations are complete, there exist métrmedP’ satisfyingx(®) = F/ 0, =
P’ 8,,.q4. Thus, the vector8,,,, andé,,.q are related by

0pr0d — PF/Osum7 (27)
Oum = FP' 0,04 (28)

One advantage of the product node structure is that it produces an orthogonal transformation in the
symmetric tensor space, whereas the summing node transformation is never orthogonal. While the product
node structure may provide a more efficient representation, the summing node structure has a much simpler
and elegant implementation in terms of a redundant filter bank. In Section 5, we will see that this is useful
in certain problems.

4 NSTsintheWavelet Domain

The previous Section has shown that complete NSTs can be derived from any orthonormal signal basis
B = {b;}"_,. For exampleB may be a delta, Fourier, or wavelet basis [6]. In order to assess the merits

of different NST bases, we will investigate their behavior in continuous-time (infinite-dimensional) signal
spaces. We will show that the wavelet basis offers significant advantages over the classical signal bases for
nonlinear signal processing. Hence, we may infer that these advantages carry over into high sample rate
discrete-time signal spaces.

41 Thewavedet transform

Thewavelet transformis an atomic decomposition that represents a real-valued continuous-time:gignal
in terms of shifted and dilated versions of a prototype bandpass wavelet fugi¢tipand lowpass scaling
function¢(t) [6, 15]. For special choices of the wavelet and scaling function, the atoms

Git) £ 27y(27—k),  jkeZ, j<J (29)
banlt) 2 2270 k) (30)
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form an orthonormal basis, and we have the signal representation [6, 15]

7
e(t) = > updsp(t) + D> > wirtr(t), (31)
k

j=—00 k

with w;x = [ () ;.(t) dt anduy = [x(t) ¢ (t) dt. The wavelet coefficients {w;,} and scaling
coefficients {uy } comprise the wavelet transform. For a wavelet centered at time zero and fregigency
w; x measures the content of the signal around the tirdeand frequency~ f, (equivalently, scalg).
Wavelet transforms of sampled signals can be computed extremely efficiently using multirate filter bank
structures [6, 15].

Recently, it has been shown that noise removal, compression, and signal recovery methods based on
wavelet coefficient shrinkage or wavelet series truncation enjoy asymptotic minimax performance charac-
teristics and, moreover, do not introduce excessive artifacts in the signal reconstruction [9]. The explanation
for this exceptional performance lies in the fact that wavelet basasaoaditional bases for many signal
spaces.

A basis{z;} for a Banach spac# is unconditional if there exists a const@nt co such that

L L
izl < CI> ez o, (32)
=1 X =1 X
for every finite set of coefficient§ay, . .., ar,} and every set of multiplier§ey, . .., ez} of £1. It follows
that we can process evety= 3", ¢;z; € X" according to
I = Z (my ¢;) zi, |m;| <1 (33)
and bound the norm of the processed signal by
17l < Cllellx (34)

The unconditional nature of the wavelet basis is crucial to wavelet-domain processing, because it guar-
antees that the norm of the processed signal will not “blow up” when wavelet coefficients are discarded or
reduced in magnitude. Because the wavelet basis is an unconditional basis for many signal spaces, includ-
ing the L,,, Sobolev, Bounded Variation, Besov, and Triebel spaces [15], this guarantee holds under a wide
variety of different signal norms. (The same guarantee does not hold for the Fourier basis, for example.)
Ohbviously, this result has significant implications for signal processing.

The attractive properties of the continuous-time wavelet basis carry over to high-dimensional sampled
signal spaces as well. Even though all bases for finite-dimensional signal spaces are unconditional, including
Fourier and wavelet bases, and all finite-dimensional norms are equivalent, the constants that relate different
finite-dimensional norms are extremely dependent on the dimension. These constants can, in general, grow
in an unwieldy manner as we move to higher and higher sample rates (dimensions). The fact that the
underlying infinite-dimensional basis is unconditional limits how large the constants grow and consequently
guarantees that practical, finite-dimensional wavelet domain processing algorithms will be well behaved
under a wide variety of performance measures (all finite-dimensipnarms,1 < p < oo, for example).

As mentioned above, wavelets form unconditional bases for a diverse variety of signal spaces. However,
for NSTs, tensor spaces are the natural framework to consider. Hence, we wish to establish the uncondi-
tionality of tensor product wavelet bases. Using the theory of tensor norms and a result from the theory of
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Gordon-Lewis spaces, we will show that the tensor product of an unconditional basis is again an uncon-
ditional basis for a tensor space equipped with an appropfiateorm. This result proves that the tensor
product of a wavelet basis is an unconditional basis for many tensor spaces of interest. Hence, wavelet-
based NSTs inherit the remarkable properties associated with wavelet domain processing. To the authors’
knowledge, this is a new result.

It should be noted that the tensor wavelet basis is quite different from the multidimensional wavelet
basis obtained via multiresolution analysis [6, 13, 15]. To illustrate the differences, consider the case for
functionsz (¢4, t,) of two dimensions. Given a one-dimensional wavelet bgsis; () }r U {151 (t) } i<k,
the two-dimensional tensor wavelet basis consists of products of all possible pairs of wavelets and scaling
functions:

Biensor = ({0t bs ULt} jean) © ({0un(t2)be U {5(t2)} ) (35)

= {(bJ,kl (tl) ¢J,k2 (tQ)}liw U ( U {¢j17k1 (tl) (bJ,kz (tQ)}kh]Q)

n<J

U ( U {(bJ,kl (tl) ¢j27k2 (tQ)}kh]Q) U ( U {¢j17k1 (tl) ¢j27k2 (tQ)}kl,kz) . (36)
J2<J J1,52<J
The tensor basis contains, for example, elements measuring coarse scale (low frequency) information in one
direction and fine scale (high frequency) information in the other. To compute the tensor wavelet expansion
of a multidimensional function, we simply operate on each axis separately using a one-dimensional wavelet
transform. Neumann and von Sachs have shown that tensor wavelet bases are natural for multidimensional
signal estimation applications in signal spaces having differing degrees of smoothness in different directions
[17]. In contrast, a multiresolution wavelet basis consists of products of all possible pairs of wavelet and
scaling functionst the same scale:

Buuti = {00k, (t1) Gup, (t2) T oy ko
U U {50 (1) @3 (B2)s D (1) B (t2), iy (1) g0 (02)} - (B7)

i<J

In Figure 4 we illustrate the differences between these bases graphically.

4.2 Unconditional basesfor L, tensor spaces

Let {z;} be a basis for,(T), with T C R. It follows from the classical result of Gelbaum and Gil de
Lamadrid [12] that the tensor basis; @ z;} is a basis for the tensor spaég(T) @a, L,(T), with A,

the natural norm. However, this does not guarantee that the tensor product of an unconditional basis is
an unconditional basis for the tensor space. We now show that this is indeed the case. (We will work
only with second-order tensor spaces for notational convenience; the extensidtim ¢oder tensor spaces

L,(T) @a, ---@a, L,(T) is straightforward.)

First we state a result due to Pisier [23]. Détand Z be Banach spaces with unconditional baggg
and{z; } respectively. Letv be a norm on the tensor spa¥ex Z such that given any two linear operators
U:Y—YandV : Z — Z, thetensor produdt ® V is a bounded linear operator ¢h Z equipped
with norme. If this condition holds, thern is called auniformnorm. Let) ® ., Z denote the completion of
Y ® Z with respect tav.
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() (b)

Figure 4:Graphical depiction of the elements of the two-dimensional multiresolution and tensor wavelet bases. The
aspect ratios of the tiles correspond roughly to the size of the “regions of support” of the basis elements. (a) The
multiresolution wavelet basis consists only of products of pairs of wavelets and scaling functions from the same scale;
hence all tiles have the same aspect ratio. (b) The tensor wavelet basis consists of products of pairs of wavelets and
scaling functions from all possible scales; hence many different aspect ratios result. (Strictly speaking, these mosaics
illustrate the organization of thmefficientsobtained upon expanding onto these bases. Nevertheless, there is a direct
correspondence between the size of a coefficient tile and the size of the region of support of the associated basis
elements: Basis functions broad in one direction result in fewer expansion coefficients in that direction and hence a
narrower tile.)

Theorem 5 [23] Let {y;} and {z;} be unconditional bases for the Banach spaces ) and Z, respectively.
Let o be a uniformnormfor the tensor space Y @, Z. Then {y; @ z; } isan unconditional basisfor Y @, 2
ifandonlyif Y @, Z isa Gordon-Lewis (GL) space.

Before we can apply this result 1o,(T) @, L,(T), we must ensure thaX,, is a uniform tensor nown.
To this end, we employ a result due to Beckner.

Theorem 6 [2] Let U @ V be a linear mapping from [L,(T) @a, Ly(T)] to [L,(T) @4, L,(T)]. If
1< g <p<oo then||Ua V] =|U|[V].

It remains only to verify thal. ,(T) @4, L,(T) is a GL space. For our purposes it suffices to note the
following [8]:
L,(T xT)isaGL space, fot < p < oc. (38)

It follows thatL,(T) @, L,(T) is also a GL space. Combining these results, we have shown the following:

Theorem 7 Let {z;} bean unconditional basisfor L ,(T), 1 < p < co. Then {z; @ z; } isan unconditional
basisfor L,(T) @a, L,(T).

We have excluded the cage= 1, sincel;(T) does not admit unconditional bases [15]. However,
more can be said for the subspace@fT) having unconditional wavelet expansions — the Hardy space
H,(T). It follows easily from Theorem 7 that the tensor product of an unconditional basig f0F) is
an unconditional basis for the product spafe(T x T). This fact is well-known [15]. (Also, recall that
H,(T) = L,(T), 1 < p < o). There are many other tensor spaces of interest, including tensor spaces
constructed from Sobolev, Besov, and Triebel spaces. Ongoing work is aimed at assessing the performance
of tensor wavelet bases in such spaces.
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5 Applications

In this section, we study three applications of NSTs. We first investigate NST-based estimation of correlation
functions using the product node architecture and the wavelet basis. Wavelet domain representations of
higher-order correlations can be much more efficient than Fourier or time domain representations. In the
second application, we demonstrate that the summing node NST is capable of realizing arbitrary \olterra
filters. Finally, we examine the potential of truncated wavelet expansions for nonlinear system identification.

5.1 Correlation analysis

The product node NST is well-suited for correlation and higher-order statistical analysis:-thherder
correlation of a random vectarare given by %x(”)} [1]. If x is zero-mean, then the second-order correla-

tion E[x@)} is simply a vectorized version of the covariance matrixpfvhile the third-order correlation
E[x(?’)] is a vectorized version of the third-order cumulaniof

It is often advantageous to study the higher-order signal correlations in domains other than time. For
example, then-th order spectrum results from applying the Fourier transform, denotdd, lig x and
computing E{(Fx)(”)} . Then-th order spectrum measuredold correlations between different sinusoidal
components of the signal.

If W denotes the wavelet transform, thelﬁ(Wx)(”)] represents the-th order correlations in the
wavelet domain. Because wavelets better match many real-world signals, wavelet domain representations
of higher order correlations can be much more efficient — concentrating the dominant correlations in fewer
coefficients — than Fourier or time domain representations. This claim is supported by the fact that tensor
products of wavelet bases provide unconditional bases for a wide variety of tensor spaces (as shown in
Section 4.2).

Now let us examine the product node NST. Betlenote the orthonormal basis used in the first stage of
the structure. The outp@t of the product node transformation of a random vest@roduces all possible
n-th order interactions of this vector in tf domain. If follows that the expected value of the nonlinear
signal coefficient® produces the:-th order correlations of the processn the B domain. In fact, 8]

contains every unique correlation ir{(EBx)(”)} :

Now suppose we are givelW > 1 independent and identically distributed (iid) vector observations
x1,...,Xa. We wish to estimate the-th order correlations of the underlying process. We can estimate
these correlations in thB domain by computing the product node NST of each observatjonx; — 6,
and then averaging the resulting nonlinear signal coefficients. We estifitateyEs ij‘il 0;.

We have applied this technique to the problem of acoustic emission signal processing, which is compli-
cated by the complex emission patterns generated by irregularities in the acoustic medium. Such problems
arise, for example, in laser optoacoustic tomography for cancer diagnostics. Correlation analyses can aid
in illuminating the nature of optoacoustic irregularities in human organs, such as the breast [21]. In the
following experiment A/ = 20 independent acoustic emission trials were performed in the same medium.
Emission data for the trials is plotted in Figure 5.

We computed the second-order correlatioms= 2) of this data using product node NSTs based in
the time, frequency, and wavelet domains. The Daubechies-6 wavelet basis was used in this study [6].
Histograms of the correlation magnitudes were computed for each case and are shown in Figure 6. To
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Figure 5: Data from an acoustic emission experiment. (a) Emission from a typical trial. (b) Overlay of data from
twenty trials.
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Figure 6:Histograms of the second-order£ 2) correlations of the acoustic emission signals from Figure 5 in three
different basis representations. (a) Histogram of time-domain correlation magnitude, ekitrepg.44. (b) His-
togram of frequency-domain correlation magnitude, entiépy 2.39. (c) Histogram of wavelet-domain correlation,
entropyH = 1.82. To better illustrate both the peakiness and rapid decay of the wavelet-domain correlation, we plot
only the first few bins of the histograms on a logarithmic vertical scale.

guantitatively assess the efficiency of the time, frequency, and wavelet domain representations, the entropy
of each histogram was computed. The wavelet-domain histogram has a much lower entropy than the time-
and frequency-domain histograms, which indicates that the wavelet-domain analysis is more efficient at
representing the second-order correlations of the acoustic emission data. Hence, this experiment corrobo-
rates theoretical results showing that unconditional bases are optimal for signal compression [9]. Efficient
wavelet-based representations can provide more robust and reliable estimates of the higher-order statistics
and could provide better insight into the complicated non-stationary correlation structure of the data.

5.2 Volterrafiltering

In this Section, we consider Volterra filter realizations based on the NST. We show that a covtplereler
NST is capable of realizing everyth order Volterra filter. In particular, the summing node transformation
leads to an elegant filter bank representation.

The output of a homogeneousth order Volterra filter applied to a signal= [z 1,...,z,]" is given

by [14]
y = > iy oosin Tyt Ty (39)
1<, <. <in<m

The filter outputy is simply ann-th order multilinear combination of the samples, . . ., z,,,. The set of
weightsh is called then-th orderVolterrakernel. Note that while (39) computes only a single output value
givenm input values, the extension to online processing of infinite-length signals is straightforward. To
treat the input signat;, we simply sek; = [z, ..., 21—n+1]", with m thememory length of the filter. The
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Figure 7:\olterra filter realization using a summing node NST.

output of (39) is themy;, a nonlinearly filtered version of;.

Since is identical to the multilinear functional (7) appearing in Definition 1, it follows that ewety
order \olterra filter can be computed as a linear combination of the nonlinear signal coefficierts (x).
As shown in Section 3, both the product node and summing node structures are capable of computing a
completen-th order signal transformation. The summing node structure is particularly interesting in this
application, because it allows us to represent ewetly order Volterra filter using the simple filter bank of
Figure 7. Key to this scheme is thte overcomplete linear transformation, rather than the nonlinearities,
manage the signal coupling prescribed by the overall Volterra filter. Therefore, this new representation
greatly simplifies the analysis, synthesis, and implementation of Volterra fiiters.

\olterrafilter realizations of this type are often referred tpasllel-cascaderealizations[22]. Previous
work on parallel-cascade designs has relied on complicated numerical optimizations to construct kernel-
specific sets of linear filters and hence a separate parallel-cascade structure for each distinct Volterra filter
[4, 22]. In contrast, the summing node NST can represent exéimorder Volterra filter simply by adjusting
the output weight§a, 12, . The linear filters{f;, }4_, of the summing node structure remain the same for
every Volterra kernel. Hence, the summing node structureinwvar sal structure for homogeneous Volterra
filtering. Nonhomogeneous Volterra filters can also be implemented with the summing node structure by
following each linear filter with am-th degree polynomial nonlinearity instead of the homogenegiins
order monomial. Moreover, if the Volterra kernfelis low-rank, then it can be represented exactly with a
smaller subset(< m) of orthonormal basis vectors [20]. Therefore, low-rank systems can be implemented
with a far smaller filter bank.

The weights{«y } corresponding to a specific Volterra filter with kerietan be computed by solving
a system of linear equations. Lbtbe a vectorized version df ordered to correspond to the Kronecker
product in (9). According to (21), the Volterra kernel generated by the summing node NST is given by
SN akf,gn). Therefore, to represent the Volterra filter with kerhelve chose the weightsy;} so that

SN akf,gn) = h. The proper weights are readily obtained by solving this system of linear equations.

As an example, consider the implementation of a homogeneous third-arges) \Volterra filter using
the summing node NST. Lé8 = {b;}”., be an orthonormal basis fdR™. For exampleB could be
the delta, Fourier, or wavelet basis. We design the filfgrs. ., fy, N = ("4?), for the summing node

The canonical representation of the Volterra filter (39) is of limited utility, due to the inherent difficulty in interpreting the
multidimensional kernégt (particularly whem > 2).

2Using thetensor product basis approximationto the low-rank kernel [20], we can represent the kernel exactly with a filter bank
consisting of ", ~1) < N filters, withr < m the rank of the kernet. This is particularly useful if the kernel is known to satisfy
certain constraints (for example, smoothness, bandlimitedness).
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transformation using the construction of Theorem 2. Referring to the Theorem, we takeand hence

~o = 1,71 = 2,72 = 4,73 = 8. Eachfilterf,, £ = 1,..., N, is a linear combination of the basis vectors:

f; = Bay, with a;, a vector with elements in the sgt, 2,4, 8}. Eachay, consists of all 1s except for either

a singles, a 2 paired with a 4, or three 2s. Raising the output of each filter to the third power generates third-
order interactions between the different distinct components of the input signal represented by the basis
vectors. Taken together, these filters collaborate to generate all possible third-order nonlinear interactions of
the signal.

Different types of interactions are produced depending on the choice of basis. The delta basis produces
interactions between different time samples of the signal. The Fourier basis yields frequency intermodu-
lations, whereas the wavelet basis produces interactions between wavelet atoms localized in both time and
frequency. The fact that wavelet tensor bases are unconditional bases for many tensor spaces suggests that
wavelets may provide a more parsimonious representation for Volterra filters than time- or frequency-domain
representations.

5.3 Nonlinear System Identification

One common application of Volterra filters is nonlinear system identification [11, 14, 20]. To illustrate the
use of the tensor wavelet basis in this context, consider the following problem. Assume that we observe the
input and output of a nonlinear system defined by the bilinear operator

y(t) = //t1 ., h(ty,to) x(t —ty) 2 (t — to) dty dts. (40)

This type of quadratic nonlinearity arises in the analysis of audio loudspeakers, for example [11]. We assume
that both the input and output signals are sampled, resulting in the following discrete-time Volterra system

yk = > hijre_ivi. (41)
1,5=1
The discretized kernél; ; can be estimated from the input and output samples using correlation techniques.
However, in real applications only a finite number of samples are available and often additive noise is present
in the observations. Consequently, the kernel estimates obtained from short data records are noisy.

Noise can be removed from a kernel estimate by processing the estimate in the Fourier or wavelet do-
main. Because the Fourier and wavelet bases often provide a concise representation of the kernel, in many
cases the separation of the true kernel from the noise can be carried out very easily in these domains. Specif-
ically, the noise in a “raw” kernel estimate can be removed by truncating a Fourier or wavelet expansion of
the estimate. In the following example, we will show that wavelet-domain noise removal can outperform
Fourier-domain processing.

To illustrate this point, we simulate the identification of the nonlinear system (41) with the quadratic
kernelh depicted in Figure 8(a). This kernel was obtained from actual measurements on an audio loud-
speaker [11]. In our simulation, we treat this kernel as an “unknown” model we wish to identify. Using an
iid zero-mean, unit-variance Gaussian input sequentee‘probe” the system, we computed the outputs
according to (41) (with no additive observation noise). In total, we gened@@dinput and output mea-
surements and, from these two sequences, identified the kernel using the following correlation estimator.

Note that
2hi i+ 3k ik, 1=
E[YX; X;] = 2k (42)
2Ny ;, i £ j.
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Letting s; ; denote the sample average estimate ¢f K; X;], we have the following estimator for the
\Volterra kernet

1(.. . _ _1 .
?Li,j _ i (SM ma2 Dk Sk,k) ) Z = ] (43)
5 Si7j7 2 # ]

While the simple correlation estimator (43) converges to the true kernel, with only a finite number of
data the resulting estimate is typically very noisy due to the variability of the sample correlation estimator
about the true correlation values. A simple noise removal procedure is based on expanding this “raw” kernel
estimate in an orthonormal basis and then discarding the small terms of this expansion (which presumably
correspond to noise and not signal). L{e@} denote the coefficients of the raw estimatén the basis

expansion. Then the coefficienﬁgl} of the truncated series kernel estimatean be expressed in terms of
a hard threshold applied to the coeffielﬁt%}

o, 0>
7, = (44)
0. |a]<n

with 7 the threshold level. Many choices for the threshold value are possible; ustigslghosen based on

some estimate of the noise level in the data. The better the basis “matches” the true kernel, the more efficient
this procedure will be at noise removal. In our experiment, we expanded the raw estimate in the wavelet
and Fourier tensor bases and then discarded the terms in the expansions whose coefficient magnitudes fell
below the threshold value= /2 log(m?) o, with o the standard deviation of the noise and = 1024 the
dimension of the discretized kernel. This threshold choice is suggestedin [10] as a probabilistic upper bound
on the noise level. In practice,must be estimated from the raw kernel estimatéiowever, since we had

access to the true kernel in this simulation, we computelirectly from the difference between the true

kernel and the raw estimate. Figure 8(c) and (d) show the estimates that result from hard thresholding in the
wavelet domain and Fourier domain, respectively. Wavelet-based truncation provides a much better kernel
estimate than both the original raw estimate (b) and the truncated Fourier expansion estimate (d). In fact,
the Fourier-based method oversmooths the estimate and results in a worse mean-squared-error (MSE) than
that of the original raw estimate. While simple, this simulation demonstrates the utility of wavelet-based
representations for the analysis of real-world nonlinear systems.

6 Conclusions

In this paper, we have developed two new structures for computitigorder NSTs. The product and
summing node NSTs, while simple, can represent-dh order nonlinear signal interactions. Both transfor-
mations have an elegantinterpretation in terms of tensor spaces. The product node NST yields an orthogonal
transformation in the tensor space appropriate for estimation problems. The summing node NST results in
a redundant filter bank structure natural both for analyzing and interpreting nonlinear interactions and for
designing efficient implementations. Not only does the summing node architecture suggest new, efficient

3The estimatof: is derived as follows. Let: i = E[Y X7]. Settingu: i = 2 hii + Y, hxx and re-arranging givesh; ; =
Mii — ), hix. Summing overi produce® ) hii = Y pii —m ), hixyk and henceiz > i = ), hii. Asimple

substitution then yields; ; = (u,, — m+r2 > Hk,k) /2. The estimatoﬁm is obtained by substituting the sample cross-moments
s;,; for the true momentg; ;. The estimatoﬁm, ¢ # j, is obtained in a similar fashion.
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Figure 8: Nonlinear system identification using tensor bases. Estimates of the quadratic Volterra kernel of an audio
loudspeaker obtained using thresholding in a tensor basis expansion. (a) Truehkfrhe! (b) Raw estimaté,
obtained using43), MSE=0.20. (c) Estimatk obtained through a truncated Daubechies-8 wavelet expansiAan of
MSE=0.15. (d) Estimaté obtained through truncated Fourier expansiorﬁpMSE:OAO. The wavelet estimator
provides a more faithful estimate than the Fourier estimator, which oversmooths.
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algorithms for nonlinear processing, it also decouples the processing into linear dynamics and static nonlin-
earities. Hence, this new framework for nonlinear analysis and processing may provide new insights into
the inner workings of nonlinear systems.

NSTs are not constrained to a fixed choice of basis. However, we have shown that wavelet bases provide
an optimal framework for NSTs in the sense that wavelet tensor bases are unconditional for many important
tensor spaces. Because the wavelet basis provides a more concise representation of many real-world signals,
more robust estimates of higher-order statistical quantities and Volterra kerels can be obtained via the wavelet
representation as compared to time- or frequency-domain approaches.

Finally, we have focused on the classi¢altensor spaces in our theoretical analysis of wavelet-domain
nonlinear processing. However, new results in the statistical literature suggest that more general spaces such
as Besov and Triebel spaces are extremely useful for characterizing real-world signals [9]. Therefore, an
important avenue for future work will be to extend the results of this paper to these more general settings,
possibly using the results of [25]. Another issue currently under investigation is the relationship between
polynomial-based processing (higher-order statistics, Volterra filters) and other important types of nonlinear
processing that use sigmoidal (neural networks), threshold (wavelet shrinkage) [9], or weighted highpass
nonlinearities [19]. We believe that the results of this paper could serve as a link between these important
areas of nonlinear signal processing.

A Proof of Theorem 2

To prove the Theorem, we must show that the{§g}_, generated by (20) and (23) satisfies (22). That s,

we must show that the tenso{f,i”)} span the symmetric tensor spag®(IR™). Recall that each filtef;,
has the form

f, = Za]‘7k b]‘7 (45)
7=1
withag = [ay g, - .., @ k]’ . Now consider
- (n)
57 = | Y aub,
7=1
= Z Qi v iy Dy, @@ by, (46)

1< <. <in<m
With €2 denoting the set of permutations of the §&t. . ., n}, we can write
flgn) = Z iy kv Qi k ( Z biw(l) Q- ® biw(n)) : (47)
1< <. <t <m wEe

According to Theorem 2.6 in [26], the collection of tensors

wEeN
is a basis folS™ (R™). Let {s;}_,, N = (m*7~1) denote these basis vectors, andet [s, .. .,s,]’.

Then, from (47), we can write
£ = Suy, (49)
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with u; anV x 1 column vector containing all degreemonomials in the; , . . ., a,, » coefficients. Next,
define
F=[f" .. "] =suU, (50)

with U = [uy,...,u,]. U is ann x n matrix and, sinceS is a basis forS™(IR™), it follows that
N
span{f;"”} _ = S"(R™)ifand onlyif Uis invertible.

The remainder of the proof shows that the invertibilityldiis guaranteed if the Vandermonde matrix

1 1 1
L % - 7

V=1, . (51)
L vy Yn

is invertible.

First, we show thatl = Q7 V(™) Q, with Q a full rank matrix defined as follows. Consider the weights

ar, - -, a, k. Form avector of products of these weights using the Kronecker product:
1 1 1
a .k a3k U, ke
2
qr = “ik ® “%,k @@ | Yk | (52)
“?,k ag,k anm,k

Note that every monomial iny, is included in the vectaq ;. Define the matrixQ as the ma®” : q; — uy.
Note thatQ is full rank and does not depend én

Now considerV (™), the m-fold tensor product of the Vandermonde matkix Each row of V(™)
corresponds to a particular monomial formﬁlg -alm mi» for example). Each column af(m )corresponds
to a particular set of weight$y(, , . . ., v,,]” = a; from (23), for example). Now consid€’ V(™) Q. The
action ofQ” on the left extracts the rows &f ™) corresponding to degreemonomials. ApplyingQ on
the right extracts the columnsm( ™) corresponding to the specific weights in tNevectors defined in (23).
Therefore,U = Q7V(™ Q. The special construction of the vectdes, } 7, in (23) should now be clear:
The valuesy, = [v,,...,v,,]* correspond to the powers in one of the mononwéll;g calm mp» @nd hence
by applyingQ to both sides oV (™) we select the:-th order monomials with the values corresponding to
the weights in the vectora }1*_, .

We now claim that taking, = p", r = 0,...,n, |p| # 1, p # 0, in (51) implies thafU is invertible.
Note that with this choicd/ is real-symmetric and invertible. It follows th&t (™) is also real-symmetric
and invertible. Therefore, sind@ has full rank,U = Q”V(™)Q is also real-symmetric and invertibfe.
This completes the proof. O

4If U is not invertible, then there exists a vectoisuch thatx” Ux = 0. This implies the existence ¢f = Qx such that
yTVvU™y = 0 and hencd& (™ has a zero eigenvalue, contradicting the assumptiorMH&? is invertible.
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B Proof of Theorem 3
N
We must show that Spa{rf,f)}k_1 = S2(IR™). Following the proof of Theorem 2, we have

£2) = su, (53)
with ug anN x 1 column vector containing all degreenonomials in the elements af = [a1 %, . . ., amk]T
and

[fl(?), . .,fm — SU, (54)

with U = [uy, ..., un]. It follows that Spar{ff)}jj_l = S%(IR™) if and only if U is invertible.

To show thatU~! exists in this case, let us take a closer look at the columis.oRecall that each
column ofU is denoted by and is generated by computing all cross-products between the elemapts of
(Eachay, is anm-vector with entries of or 0, and each has at maadnon-zero entries). Consider first the
columnsuy, that correspond ta;, vectors with a single non-zero entry. These columns also contain a single
non-zero entry. For example,df , = 1 anda;; = 0 (@ # 7), thenu; has a single non-zero entry in the
position corresponding to the monom@k = 1. There are a total of: such columns, each with a single
1 in a unique location corresponding to such an product. Clearly, these columns are linearly independent of
one another, as each has a single non-zero entry in a different location. Now consider the agluhats
correspond tay, vectors with a two non-zero entries.df, = 1, a;, x = 1, anda; ;, = 0 (j # 1, 72), then
the columnu; has non-zero entries in the location corresponding the cross-proguct;, ». Note that
since no othea; (I # k) will have non-zero values in both the and:; position, the corresponding, will
be zero in the associated cross-product location. Therefone, alte linearly independent. This completes
the proof. O

One might wonder whether this construction using binary weights can be extended to higher orders
n > 2. Unfortunately, the answer is negative. As we move to higher orders, we require more diversity in
the weights used to form the linear filtef, }. Hence, we require a more complicated construction such as
that of Theorem 2.

C Proof of Theorem 4

Recall that the summing node decomposition is complete if and only if for dveryS™(IR™) there exist
{ax}2_, such that

N
h =Y apfl”. (55)
k=1

Here, h is symmetric and hence contains repeated elements. Also, vectors sti@l)] esntain repeated

products. To avoid such redundancies, define the ve&md{f,i”)} from which repeated elements in
the original vectord and{f,ﬁ”)} have been discarded. For example; i 2 andf, = [/, f»]7, then both

f1fo andf, fi occur inf,iQ). In this casef,f) = [f2, fif2, f2]7. In general, for nonlinear orderand signal

lengthim, the vectorsh and {f,ﬁ”)} each contain exactliyv = (™*7~!) elements. With this notation in
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place, (55) can be rewritten as

N
b= apfl”. (56)
k=1

To guarantee that the summing node structure can represent keveryS™(IR™), we must have that

—\ N
span{f,in)}k_1 - RY.

To determine a set of spanning vectors, consider the following argument. Suppose that we randomly
choose the vectordf;. } as independent realizations from a common probability distribution. Furthermore,
assume that this distribution has a density (that is, the distribution is absolutely continuous with respect

— N
to Lebesgue measure dR™). Then Spar{f,ﬁ”)} = R" with probability one. This follows from
k=1

the following result regarding the invertibility of the-th order moment matrix of alR " —valued random
vectors.

— =T
Lemmal [18] If f isan R”-valued random vector having a density, then E[f(n) f(n) ] isinvertible.

To see how this result relates to the problem at handg let [fl(”), e, ](V”)} and note that the matrix

FF can be viewed as the sampleh order moment matrix of the density fof, }~_, . Theorem 1 implies
that the sample moment matdF7 is invertible with probability one if the number of samples is greater

— N
thanNV (see Remark 5.2 in [18]). This in turn implies titais full rank and that Spaxﬁfén)} =RY.O
k=1
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