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Abstract

Nonlinearities are often encountered in the analysis and processing of real-world signals. In this paper,
we introduce two new structures for nonlinear signal processing. The new structures simplify the analy-
sis, design, and implementation of nonlinear filters and can be applied to obtain more reliable estimates
of higher-order statistics. Both structures are based on a two-step decomposition consisting of a linear
orthogonal signal expansion followed by scalar polynomial transformations of the resulting signal coeffi-
cients. Most existing approaches to nonlinear signal processing characterize the nonlinearity in the time
domain or frequency domain; in our framework any orthogonal signal expansion can be employed. In
fact, there are good reasons for characterizing nonlinearity using more general signal representations like
the wavelet transform. Wavelet expansions often provide very concise signal representation and thereby
can simplify subsequent nonlinear analysis and processing. Wavelets also enable local nonlinear analy-
sis and processing in both time and frequency, which can be advantageous in non-stationary problems.
Moreover, we show that the wavelet domain offers significant theoretical advantages over classical time
or frequency domain approaches to nonlinear signal analysis and processing.

�This work was supported by the National Science Foundation, grant no. MIP–9457438, and the Office of Naval Research, grant
no. N00014–95–1–0849.
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1 Introduction

Nonlinear signal coupling, mixing, and interaction play an important rˆole in the analysis and processing of
signals and images. For instance, harmonic distortions and intermodulations indicate nonlinear behavior in
amplifiers and faulty behavior in rotating machinery. Nonlinearities also arise in speech and audio process-
ing, imaging, and communications. Nonlinear signal processing techniques are commonly applied in signal
detection and estimation, image enhancement and restoration, and filtering.

In this paper, we develop a new approach to nonlinear signal processing based on thenonlinear signal
transformation (NST) depicted in Figure 1. Here, a length-m signal vectorx is first expanded onto an
orthonormal signal basisfb�� � � � �bmg to produce the vector of coefficients���� � � � � �m�T . These signal
coefficients are then combined in nonlinear processing nodes�, which are simplen-th order polynomial
operations, to form then-th order nonlinear coefficients of the signal� � ���� � � � � �N �T . Concisely, we
denote the NST of Figure 1 by the operatorFn � x �� �.

The NST framework encompasses two new structures, each corresponding to a different choice for
the scalar processing nodes� in Figure 1. Product nodes compute differentn-fold products of the signal
coefficients at each node:

� ���� � � � � �m� � �i��i� � � ��in � (1)

Summing nodes raise linear combinations of the coefficients to then-th power:

� ���� � � � � �m� �

�� mX
j��

aj �j

�An � (2)

(Although the outputs of the product and summing nodes are not equivalent, we will see that they both
produce similar NSTs.)

We will prove that an NST architecture with�m�n��
n � processing nodes can generateall possible n-th

order nonlinear interactions between the various signal components, with the strengths of these interac-
tions reflected in the nonlinear signal coefficients�. Therefore, these coefficients can be used for efficient
nonlinear filter implementations, robust statistical estimation, and nonlinear signal analysis.

The NST framework is flexible, because it does not rely on a particular choice of basisfbjg. Tradition-
ally, nonlinear signal analysis has been carried out in the time or frequency domains. For example, if the
fbjg are the canonical unit vectors, or delta basis, then the components of� representn-th order interactions
between different time lags of the signalx (see Figure 2(a)). If thefbjg make up the Fourier basis, then�
represents then-th order frequency intermodulations (see Figure 2(b)). In this paper, we will emphasize the
wavelet basis [6], whose elements are localized in both time and frequency. Wavelet-based NSTs represent
the localn-th order interactions between signal components at different timesand frequencies (see Figure
2(c)). From a practical perspective, this can be advantageous in problems involving non-stationary data,
such as machinery monitoring [5] and image processing [19]. From a theoretical perspective, we will show
that the wavelet domain provides an optimal framework for studying nonlinear signals and systems.

We will consider several applications of NSTs in this paper. NSTs provide an elegant structure for the
Volterra filter that simplifies filter analysis, design, and implementation. Applications of Volterra filters
include signal detection and estimation, adaptive filtering, and system identification [14, 24]. The output of
a Volterra filter applied to a signalx consists of a polynomial combination of the samples ofx. We will
show that everyn-th order Volterra filter can be represented by simple linear combinations of the nonlinear

1



b

b

b

x . . .

η

η

η

. . .

β

β

β

θ

θ

θ

1

1

1

2
2

2

m
m

N

Figure 1:Nonlinear signal transformation (NST)Fn � x �� �. The front end processing (projection onto the basis
fbjg) is linear; the back end processing (by� from (1) or (2)) is nonlinear.
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Figure 2:Comparison of different basesfbjg for nonlinear signal processing. The choice of basis employed in the
linear front end of the NST of Figure 1 determines in which domain we represent signal interactions. Consider a
second-order NST, which generates squares��j and cross-products�i�j of the signal coefficients. We illustrate two
basis elementsbi andbj from three different bases, in both the time domain and the frequency (squared magnitude)
domain. In the delta basis, eachbj is a unit pulse, so�j is simply a sample of the signal. The corresponding NST
represents coupling between different time lags of the signal. In the Fourier basis, eachbj is a sinusoid, so�j is a
Fourier coefficient of the signal. The corresponding NST represents intermodulations between different frequencies.
In the wavelet basis, eachbj is localized in both time and frequency simultaneously, so�j measures the time-frequency
content of the signal. The corresponding NST represents coupling between different localized wavelet atoms.
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signal coefficients�. NSTs are also naturally suited for performinghigher-order statistical signal analysis
[16]. For example, in the time or frequency domains, the nonlinear signal coefficients� are simply values of
a higher-order moment or higher-order spectrum. The wavelet domain provides an alternative, and optimal,
representation for higher-order statistical analysis.

The paper is organized as follows. In Section 2, we provide a brief introduction to the theory of tensor
spaces, which are central to the NST and its analysis. In Section 3, show that both the product and summing
node NSTs provide a complete representation of all possiblen-th order nonlinear signal interactions. Using
the theory of tensor norms and Gordon-Lewis spaces, we show in Section 4 that wavelet bases are optimal
for NST signal analysis and processing. Section 5 applies the theory to three nonlinear signal processing
applications. Section 6 offers a discussion and conclusions.

2 Tensor Spaces

In this Section, we provide a brief introduction to the theory of tensor spaces, which provide an elegant
and powerful framework for analyzing NSTs. The theory of tensor spaces will be used to establish the
completeness of NSTs and to assess the merits of different basis transformations.

2.1 Finite-dimensional tensor spaces

First, some notation forIRm (we will deal exclusively with real-valued signals in this paper). All vectors will
be assumed to be columns and will be denoted using bold lowercase letters; for example,v � �v�� � � � � vm�

T .
Bold uppercase letters will denote matrices. Define the inner producthu�vi

�

� uTv.

Given a collection ofm-dimensional, real-valued vectorsfv�� � � � �vng, with vk � �v��k� � � � � vm�k�T ,
then-fold tensor or Kronecker product [3, 26] � �

Nn
j�� vj produces a vector composed of all possible

n-fold products of the elements infv�� � � � �vng. We can also interpret the tensor� as an amorphousn-
dimensional array with elements�i������in � vi��� � � �vin�n. Then-fold tensor product of the vectorv with
itself is denoted byv�n� and contains alln-fold products of the elements inv.

The span of alln-th order tensors generates then-th ordertensor space T n�IRm� [26]. For example, if
n � �, then

T ��IRm�
�

�

���
LX

j��

uj � vj � uj �vj � IRm� L � �

��	 � (3)

Practically speaking,Tn�IRm� is simply the spaceIRmn

.

A tensor� � T n�IRm� is symmetric [26] if for every set of indicesfi�� � � � � ing and for every permuta-
tion f����� � � � � ��n�g from the set	 of permutations off�� � � � � ng we have

�i������in � �i���� �����i��n� � (4)

Any tensor� � T n�IRm� can be symmetrized by averaging over all possible permutations of the indeces,
forming

S�� �
�

�
�

n


X
���

�i���������i��n� � (5)

The subspace ofT n�IRm� containing alln-th order tensors satisfying (4) is termed then-th ordersymmetric
tensor space Sn�IRm�. The dimension ofSn�IRm� is �m�n��

n �, the number ofn-selections from anm
element set. Throughout the sequel, we will setN � �m�n��

n �.
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2.2 Continuous-time tensor spaces

In practice, we work with the finite-dimensional tensor spaces associated with finite duration, discrete-time
signals. However, in order to assess the merits of various signal bases (Fourier versus wavelet, for example)
it is useful to consider the situation in continuous-time (infinite-dimensional) signal spaces. We will see that
here the wavelet basis offers a significant advantage over the Fourier basis. Hence, we may infer that these
advantages carry over into high sample rate discrete-time signal spaces.

We now consider the construction of continuous-time tensor spaces. LetX be a signal space. Then-th
order tensor spaceTn�X � is the space generated by the span of alln-fold tensor products of signals inX
[7]. For example, ifn � �, then

T ��X �
�

�

���
LX
j��

xj � yj � xj � yj � X � L � �

��	 � (6)

If x� y � X are one-dimensional functions of a parametert, thenx � y is canonically identified with the
two-dimensional functionz�t�� t�� � x�t�� y�t��.

In order rigorously study continuous-time tensor spaces, we must equipT n�X � with a tensor norm [7].
First, we assume that the spaceX is itself equipped with a norm — for example,X � Lp�IR�. The norm on
X can induce a norm onTn�X � in a number of ways. Focusing onLp spaces, consider thenatural tensor
norm�p, which is generated by the standard one-dimensionalLp norm. We equip the algebraic tensor space
Lp�IR��Lp�IR� with �p and letLp�IR���pLp�IR� denote the completion of this space. Roughly speaking,
�p is a tensor norm that acts like the standard two-dimensionalLp norm. In fact, the normed tensor space
Lp�IR���p Lp�IR� is isometric to the space ofp-integrable two-dimensional functionsLp�IR� IR�. We will
rejoin continuous-time tensor spaces in Section 4, where we study the performance of tensor wavelet bases
from an approximation-theoretic perspective.

3 Complete NSTs

In this section, we show that the transformationFn � x �� �, pictured in Figure 1, provides a complete
representation of all possiblen-th order nonlinear signal interactions. More precisely, everyn-th order mul-
tilinear functional of the samples of the signalx is expressible as a linear functional of the nonlinear signal
coefficients�. Practical implications of completeness are that ann-th order NST is capable of realizing
every possiblen-th order Volterra filter ofx and can capture all possiblen-th order signal interactions nec-
essary to compute higher-order statistical quantities such as the moments and cumulants ofx. We focus our
attention primarily on sampled, finite duration signals. Using the theory of finite-dimensional tensor spaces,
we equate the completeness of the NSTs to a spanning condition in a tensor space.

3.1 Criterion for completeness

Definition 1 Let Fn � x �� � be fixed. If for every signal x � IRm and tensor h � T n�IRm� there exists a
collection of real numbers f�kgNk��, N � �m�n��

n �, such that

X
��i������in�m

hi������in xi� � � �xin �
nX

k��

�k �k � (7)

then the transformationFn is a complete n-th order NST.
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In words, a complete NST can represent everyn-th order multilinear functional of the signal samples using
a linear functional of the nonlinear signal coefficients�.

Using the theory of tensor spaces, the completeness property is easily described. Note that the tensor
x�n� contains every product of the form

xi� � � �xin � � � i�� � � � � in � m� (8)

In tensorial notation, we can rewrite the multilinear function on the left side of (7) as the inner productX
��i������in�m

hi������in xi� � � �xin �
D
h�x�n�

E
� (9)

Furthermore, sincex�n� is a symmetric tensor, we can assume without loss of generality thath � Sn�IRm�.
We now show that both the product node and summing node NSTs are complete.

3.2 Product node transformation

The product node NST is computed as follows. The coefficients��� � � � � �m of the orthogonal expansion are
simply the inner products of the basis vectorsfb�� � � � �bmg with the signal vectorx; that is,�j � hbj �xi.
The coefficients� output at the second, nonlinear stage are given by alln-fold products of thef� jg

m
j�� (see

(1)). The output of the product node NSTFn is thus

f�kg
N
k�� � f�i� � � ��in � � � i� � � � � � in � mg � (10)

Tensor products simplify the description of the product node NST. First note that products of the form
�i� � � ��in in (10) can be expressed, using standard tensor product identities [3], as

�i� � � ��in � hbi� �xi � � � hbin �xi �



nO

j��

bij �x
�n�

�
� (11)

Next, since the ordering of thei�� � � � � in does not affect the product value, we can symmetrize (11)

�i� � � ��in �



S

�� nO
j��

bij

�A� x�n�� � (12)

Now consider the collection of symmetric tensors���S
�� nO
j��

bij

�A � � � i� � � � � � in � m

��	 � (13)

Applying each of these tensors to the signal tensorx �n� produces thef�kgNk�� defined in (10). Hence, the
linear combination

PN
k�� �k �k of Definition 1 is given by

X
��i������in�m

�i������in



S

�� nO
j��

bij

�A� x�n�� � (14)
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where we have used a multi-indexing scheme on thef�kg for notational convenience. Comparing this
expression to (7) and (9), we make the identification

h �
X

��i������in�m

�i������in S

�� nO
j��

bij

�A � (15)

It follows from (15) and Definition 1 that the product node NST is complete if the following condition
is satisfied:

Span

���S
�� nO
j��

bij

�A � � � i� � � � � � in � m

��	 � Sn�IRm�� (16)

This is in fact the case.

Theorem 1 [26] Let fbjgmj�� be a basis (orthonormal basis) for IRm. Then the N � �m�n��
n � symmetric

tensors (13) form a basis (orthonormal basis) for S n�IRm�.

Thus, the product node structure affords a complete NST, providedfbjg
m
j�� is a basis forIRm.

3.3 Summing node transformation

Recall that the summing node nonlinearities (2) raise linear combinations of thef��� � � � � �mg to then-th
power. For thek-th output�k, we can write

�k
�

�

�� mX
j��

aj�k �j

�An �

�� mX
j��

aj�k hbj �xi

�An � k � �� � � � � N� (17)

We can interpret (17) as weighting the connection between thej-th basis element and thek-th summing
node with the gainaj�k (see Figure 1).

We can also write (17) as

�k �



mX
j��

ai�k bi � x

�n

� hfk �xi
n � (18)

with

fk
�

�
mX
j��

ai�k bi� k � �� � � � � N (19)

a linear combination of the original basis vectors. Equivalently, by stacking the basis (column) vectors into
the matrixB � �b�� � � � �bm� and definingak � �a��k� � � � � am�k�T , we can write

fk � Bak � k � �� � � � � N� (20)

If the basis vectorsfbig are viewed as functions with a single “bump” (for example, the delta basis in the
time domain, the Fourier basis in the frequency domain, or the wavelet basis in either domain — see Figure
2), then the vectorsffkg will be functions with multiple “bumps.” In this alternative representation, the
summing node NST provides an extremely simple structure for generating arbitraryn-th order nonlinear
signal interactions. As we see from Figure 3, this representation consists of two decoupled subsystems:
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Figure 3: Filter bank realization of the summing node NST. By combining the basis vectors as in(19), we can
decompose an arbitrary summing node NST into a parallel cascade of a redundant set of linear filtersffkg

N
k��, each

followed by a simple monomial nonlinearity���n.

1. an overcomplete set ofN � �m�n��
n � linear filtersffkgNk�� that control both the system dynamics

and component mixing, followed by

2. a set of trivial monomial nonlinearities���n.

In Section 5.2, we will apply this powerful representation of the summing node NST to the Volterra filter im-
plementation problem. The filter bank representation not only leads to a simple and effective representation
for the computation of a filter output, but also provides insight into the dynamics of the filter.

We now show that the summing node NST is complete. Using tensorial notation, we can write (18) as
�k �

D
f
�n�
k �x�n�

E
. Following Definition 1, the linear combination

PN
k�� �k �k �

PN
k�� �k

D
f
�n�
k �x�n�

E
�

Comparing this expression to (9), we make the identification

h �
NX
k��

�k f
�n�
k � (21)

and it follows that this NST is complete if

Span
n
f
�n�
k

oN
k��

� Sn�IRm�� (22)

We will provide three different constructions for complete summing node NSTs. The first is valid for
arbitrary nonlinear ordern. (For the proof, see Appendix A.)

Theorem 2 Fix 	 � IR, j	j 	� �, 	 	� �. Set 
r � 	r, r � �� � � � � n. Form the collection of N � �m�n��
n �

length-m vectors fakgNk�� according to

fakg
n
k�� �

����
l�� � � � � 
lm�
T �

mX
j��

lj � n� lj � f�� � � � � ng

��	 � (23)

Then, with fakgNk�� employed in (17) or (20), the condition (22) holds, and the corresponding summing
node NST is complete.

This construction generates a class of filters
n
f
�n�
k

oN
k��

sufficiently rich for their tensor products to
generate all possiblen-th order interactions of the basis vectors. While the definition of the combination
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vectorsfakgNk�� in (23) is a notational nightmare, their structure is actually quite simple. Consider an
example withm � , n � �, and	 � �. Sincen � �, the multi-indexlj can take the valuesf�� �� �g,
with corresponding
lj valuesf�� �� �g. Thefljgmj�� in eachak vector must sum ton � �, so the entries
in eachak will consist of all 1s except for either the single value 4 or a pair of 2s. There aren � �	�� � �

combinations of-vectors with these nonzero coefficients:

a� � �� � ��T � a� � �� � ��T � a
 � �� � ��T

a	 � �� � ��T � a� � �� � ��T � a� � �� � ��T �

These coefficients can be interpreted either as�� weightsaj�k to be employed in (17) and Figure 1 or as the
combination factors in (20) that generate six different filters for use in Figure 3. In either case, a complete
NST results. In Section 5, we consider a cubic example withn � .

Since Theorem 2 generatesak vectors with no zero entries, eachfk filter will havem “bumps.” Larger
values of the	 parameter, however, lead to a simple interpretation of theffkg. For example, choosing
	 � �� in them � , n � � construction above yields

a� � ���� � ��T � a� � �� ��� ��T � a
 � �� � ����T

a	 � ��� �� ��T � a� � ��� � ���T � a� � �� �� ���T �

Thus, thef� channel in Figure 3 will create a quadratic interaction between the signal components lying
primarily in theb� direction, while thef	 channel will create a quadratic interaction between signal com-
ponents lying primarily theb� andb� directions. This reasoning cannot be carried on ad infinitum, since
in the limit as	 � 
, a numerically ill-conditioned system results. It could also be tempting to simply
subtract 1 from each weight vector above; however, this destroys an important symmetry condition used to
prove Theorem 2.

For quadratic summing node NSTs (n � �), we have a very simple alternative construction that clearly
reveals the underlying dynamical interaction. In this construction, each filterfk equals either a single basis
vector or a combination two basis vectors, and the squared output of each filter generates all necessary
coupling between different basis elements. The following result is proved in Appendix B.

Theorem 3 Set n � � and form the collection of N � �m��
� � length-m vectors fakgNk�� according to

fakg
N
k�� �

�
�
�� � � � � 
m�

T �
mX
i��


i � �� 
i � f�� �g


� (24)

(Each ak is anm-vector with entries of � or �, and each has at most � non-zero entries.) Then, with fa kgNk��
employed in (17)or (20), the condition (22)holds, and the corresponding second-order summing node NST
is complete.

To complete our study of the summing node NST, we provide a direct construction of a complete set of
filtersffkgNk�� that bypasses the choice of basisfbig. Interestingly, randomly generating the filtersffkgNk��
produces a complete summing node NST. For the proof, see Appendix C.

Theorem 4 Let ffkgNk�� be a collection of N � �m�n��
n � independent and identically distributed observa-

tions from an IRm–valued probability density. Then, with probability one, (22)holds and the corresponding
summing node NST is complete.

8



Finally, note that the above constructions for the filtersffkg
N
k�� do not depend on the signal lengthm.

Hence, these constructions can be extended to separable continuous-time spaces.

3.4 Relating the product and summing node structures

It should be noted that the summing node transformation is different from the product node transformation.
While both transformations are complete, under the conditions stated previously in this Section, the non-
linear signal coefficients� are, in general, different for the two structures. However, the coefficients of the
two structures can be related by a simple linear transformation. FormFT �

h
f
�n�
� � � � � � f

�n�
N

i
and letPT

be a matrix whose columns are theN � �m�n��
n � tensors

n
S
�Nn

j�� bij

�
� � � i� � � � �� in � m

o
. The

summing node nonlinear signal coefficients are given by

�sum � Fx�n�� (25)

while the product node coefficients are given by

�prod � Px�n�� (26)

Since both of these representations are complete, there exist matricesF� andP� satisfyingx�n� � F� �sum �

P� �prod. Thus, the vectors�sum and�prod are related by

�prod � PF� �sum� (27)

�sum � FP� �prod� (28)

One advantage of the product node structure is that it produces an orthogonal transformation in the
symmetric tensor space, whereas the summing node transformation is never orthogonal. While the product
node structure may provide a more efficient representation, the summing node structure has a much simpler
and elegant implementation in terms of a redundant filter bank. In Section 5, we will see that this is useful
in certain problems.

4 NSTs in the Wavelet Domain

The previous Section has shown that complete NSTs can be derived from any orthonormal signal basis
B � fbjg

m
j��. For example,B may be a delta, Fourier, or wavelet basis [6]. In order to assess the merits

of different NST bases, we will investigate their behavior in continuous-time (infinite-dimensional) signal
spaces. We will show that the wavelet basis offers significant advantages over the classical signal bases for
nonlinear signal processing. Hence, we may infer that these advantages carry over into high sample rate
discrete-time signal spaces.

4.1 The wavelet transform

Thewavelet transform is an atomic decomposition that represents a real-valued continuous-time signalx�t�

in terms of shifted and dilated versions of a prototype bandpass wavelet function��t� and lowpass scaling
function��t� [6, 15]. For special choices of the wavelet and scaling function, the atoms

�j�k�t�
�

� ��j���
�
��jt � k

�
� j� k � ZZ� j � J (29)

�J�k�t�
�

� ��J�� �
�
��J t� k

�
(30)
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form an orthonormal basis, and we have the signal representation [6, 15]

x�t� �
X
k

uk �J�k�t� �
JX

j���

X
k

wj�k �j�k�t�� (31)

with wj�k
�

�
R
x�t��j�k�t� dt anduk

�

�
R
x�t��J�k�t� dt. The wavelet coefficients fwj�kg and scaling

coefficients fukg comprise the wavelet transform. For a wavelet centered at time zero and frequencyf,
wj�k measures the content of the signal around the time�jk and frequency��jf (equivalently, scalej).
Wavelet transforms of sampled signals can be computed extremely efficiently using multirate filter bank
structures [6, 15].

Recently, it has been shown that noise removal, compression, and signal recovery methods based on
wavelet coefficient shrinkage or wavelet series truncation enjoy asymptotic minimax performance charac-
teristics and, moreover, do not introduce excessive artifacts in the signal reconstruction [9]. The explanation
for this exceptional performance lies in the fact that wavelet bases areunconditional bases for many signal
spaces.

A basisfzig for a Banach spaceX is unconditional if there exists a constantC 
 such that�����
LX
i��

�i ci zi

�����
X

� C

�����
LX
i��

�i ci zi

�����
X

� (32)

for every finite set of coefficientsfa�� � � � � aLg and every set of multipliersf��� � � � � �Lg of ��. It follows
that we can process everyx �

P
i cizi � X according to

ex �
X
i

�mi ci� zi� jmij � � (33)

and bound the norm of the processed signal by

kexkX � C kxkX � (34)

The unconditional nature of the wavelet basis is crucial to wavelet-domain processing, because it guar-
antees that the norm of the processed signal will not “blow up” when wavelet coefficients are discarded or
reduced in magnitude. Because the wavelet basis is an unconditional basis for many signal spaces, includ-
ing theLp, Sobolev, Bounded Variation, Besov, and Triebel spaces [15], this guarantee holds under a wide
variety of different signal norms. (The same guarantee does not hold for the Fourier basis, for example.)
Obviously, this result has significant implications for signal processing.

The attractive properties of the continuous-time wavelet basis carry over to high-dimensional sampled
signal spaces as well. Even though all bases for finite-dimensional signal spaces are unconditional, including
Fourier and wavelet bases, and all finite-dimensional norms are equivalent, the constants that relate different
finite-dimensional norms are extremely dependent on the dimension. These constants can, in general, grow
in an unwieldy manner as we move to higher and higher sample rates (dimensions). The fact that the
underlying infinite-dimensional basis is unconditional limits how large the constants grow and consequently
guarantees that practical, finite-dimensional wavelet domain processing algorithms will be well behaved
under a wide variety of performance measures (all finite-dimensionallp norms,�  p 
, for example).

As mentioned above, wavelets form unconditional bases for a diverse variety of signal spaces. However,
for NSTs, tensor spaces are the natural framework to consider. Hence, we wish to establish the uncondi-
tionality of tensor product wavelet bases. Using the theory of tensor norms and a result from the theory of
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Gordon-Lewis spaces, we will show that the tensor product of an unconditional basis is again an uncon-
ditional basis for a tensor space equipped with an appropriateLp norm. This result proves that the tensor
product of a wavelet basis is an unconditional basis for many tensor spaces of interest. Hence, wavelet-
based NSTs inherit the remarkable properties associated with wavelet domain processing. To the authors’
knowledge, this is a new result.

It should be noted that the tensor wavelet basis is quite different from the multidimensional wavelet
basis obtained via multiresolution analysis [6, 13, 15]. To illustrate the differences, consider the case for
functionsx�t�� t�� of two dimensions. Given a one-dimensional wavelet basisf�J�k�t�gk  f�j�k�t�gj�J�k ,
the two-dimensional tensor wavelet basis consists of products of all possible pairs of wavelets and scaling
functions:

Btensor �
�
f�J�k�t��gk  f�j�k�t��gj�J�k

�
�
�
f�J�k�t��gk  f�j�k�t��gj�J�k

�
(35)

� f�J�k��t���J�k��t��gk��k� 

�� �
j��J

f�j��k��t���J�k��t��gk��k�

�A



�� �
j��J

f�J�k��t���j��k��t��gk��k�

�A 

�� �
j��j��J

f�j��k��t���j��k��t��gk��k�

�A� (36)

The tensor basis contains, for example, elements measuring coarse scale (low frequency) information in one
direction and fine scale (high frequency) information in the other. To compute the tensor wavelet expansion
of a multidimensional function, we simply operate on each axis separately using a one-dimensional wavelet
transform. Neumann and von Sachs have shown that tensor wavelet bases are natural for multidimensional
signal estimation applications in signal spaces having differing degrees of smoothness in different directions
[17]. In contrast, a multiresolution wavelet basis consists of products of all possible pairs of wavelet and
scaling functionsat the same scale:

Bmulti � f�J�k��t���J�k��t��gk��k�


�
j�J

f�j�k��t���j�k��t��� �j�k��t���j�k��t��� �j�k��t���j�k��t��gk��k� � (37)

In Figure 4 we illustrate the differences between these bases graphically.

4.2 Unconditional bases for Lp tensor spaces

Let fzig be a basis forLp�TT�, with TT � IR. It follows from the classical result of Gelbaum and Gil de
Lamadrid [12] that the tensor basisfzi � zjg is a basis for the tensor spaceLp�TT� ��p Lp�TT�, with �p

the natural norm. However, this does not guarantee that the tensor product of an unconditional basis is
an unconditional basis for the tensor space. We now show that this is indeed the case. (We will work
only with second-order tensor spaces for notational convenience; the extension ton-th order tensor spaces
Lp�TT���p � � � ��p Lp�TT� is straightforward.)

First we state a result due to Pisier [23]. LetY andZ be Banach spaces with unconditional basesfyig

andfzig respectively. Let� be a norm on the tensor spaceY � Z such that given any two linear operators
U � Y � Y andV � Z � Z , the tensor productU � V is a bounded linear operator onY � Z equipped
with norm�. If this condition holds, then� is called auniform norm. LetY �� Z denote the completion of
Y � Z with respect to�.

11



(a) (b)

Figure 4:Graphical depiction of the elements of the two-dimensional multiresolution and tensor wavelet bases. The
aspect ratios of the tiles correspond roughly to the size of the “regions of support” of the basis elements. (a) The
multiresolution wavelet basis consists only of products of pairs of wavelets and scaling functions from the same scale;
hence all tiles have the same aspect ratio. (b) The tensor wavelet basis consists of products of pairs of wavelets and
scaling functions from all possible scales; hence many different aspect ratios result. (Strictly speaking, these mosaics
illustrate the organization of thecoefficientsobtained upon expanding onto these bases. Nevertheless, there is a direct
correspondence between the size of a coefficient tile and the size of the region of support of the associated basis
elements: Basis functions broad in one direction result in fewer expansion coefficients in that direction and hence a
narrower tile.)

Theorem 5 [23] Let fyig and fzig be unconditional bases for the Banach spaces Y and Z , respectively.
Let � be a uniform norm for the tensor space Y �� Z . Then fyi� zjg is an unconditional basis for Y ��Z

if and only if Y �� Z is a Gordon-Lewis (GL) space.

Before we can apply this result toLp�TT���p Lp�TT�, we must ensure that�p is a uniform tensor nown.
To this end, we employ a result due to Beckner.

Theorem 6 [2] Let U � V be a linear mapping from
�
Lq�TT���q Lq�TT�

�
to
�
Lp�TT���p Lp�TT�

�
. If

� � q � p � 
, then kU � V k � kUk kV k.

It remains only to verify thatLp�TT���p Lp�TT� is a GL space. For our purposes it suffices to note the
following [8]:

Lp�TT� TT� is a GL space, for� � p � 
� (38)

It follows thatLp�TT���p Lp�TT� is also a GL space. Combining these results, we have shown the following:

Theorem 7 Let fzig be an unconditional basis for Lp�TT�, �  p 
. Then fzi� zjg is an unconditional
basis for Lp�TT���p Lp�TT�.

We have excluded the casep � �, sinceL��TT� does not admit unconditional bases [15]. However,
more can be said for the subspace ofL��TT� having unconditional wavelet expansions — the Hardy space
H��TT�. It follows easily from Theorem 7 that the tensor product of an unconditional basis forH��TT� is
an unconditional basis for the product spaceH��TT � TT�. This fact is well-known [15]. (Also, recall that
Hp�TT� � Lp�TT�, �  p  
). There are many other tensor spaces of interest, including tensor spaces
constructed from Sobolev, Besov, and Triebel spaces. Ongoing work is aimed at assessing the performance
of tensor wavelet bases in such spaces.
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5 Applications

In this section, we study three applications of NSTs. We first investigate NST-based estimation of correlation
functions using the product node architecture and the wavelet basis. Wavelet domain representations of
higher-order correlations can be much more efficient than Fourier or time domain representations. In the
second application, we demonstrate that the summing node NST is capable of realizing arbitrary Volterra
filters. Finally, we examine the potential of truncated wavelet expansions for nonlinear system identification.

5.1 Correlation analysis

The product node NST is well-suited for correlation and higher-order statistical analysis. Then-th order
correlation of a random vectorx are given by E

h
x�n�

i
[1]. If x is zero-mean, then the second-order correla-

tion E
h
x���

i
is simply a vectorized version of the covariance matrix ofx, while the third-order correlation

E
h
x�
�

i
is a vectorized version of the third-order cumulant ofx.

It is often advantageous to study the higher-order signal correlations in domains other than time. For
example, then-th order spectrum results from applying the Fourier transform, denoted byF, to x and
computing E

h
�Fx��n�

i
. Then-th order spectrum measuresn-fold correlations between different sinusoidal

components of the signal.

If W denotes the wavelet transform, then E
h
�Wx��n�

i
represents then-th order correlations in the

wavelet domain. Because wavelets better match many real-world signals, wavelet domain representations
of higher order correlations can be much more efficient — concentrating the dominant correlations in fewer
coefficients — than Fourier or time domain representations. This claim is supported by the fact that tensor
products of wavelet bases provide unconditional bases for a wide variety of tensor spaces (as shown in
Section 4.2).

Now let us examine the product node NST. LetB denote the orthonormal basis used in the first stage of
the structure. The output� of the product node transformation of a random vectorx produces all possible
n-th order interactions of this vector in theB domain. If follows that the expected value of the nonlinear
signal coefficients� produces then-th order correlations of the processx in theB domain. In fact, E���

contains every unique correlation in E
h
�Bx��n�

i
.

Now suppose we are givenM � � independent and identically distributed (iid) vector observations
x�� � � � �xM . We wish to estimate then-th order correlations of the underlying process. We can estimate
these correlations in theB domain by computing the product node NST of each observationFn � xj �� �j

and then averaging the resulting nonlinear signal coefficients. We estimate E��� by �
M

PM
j�� �j �

We have applied this technique to the problem of acoustic emission signal processing, which is compli-
cated by the complex emission patterns generated by irregularities in the acoustic medium. Such problems
arise, for example, in laser optoacoustic tomography for cancer diagnostics. Correlation analyses can aid
in illuminating the nature of optoacoustic irregularities in human organs, such as the breast [21]. In the
following experiment,M � �� independent acoustic emission trials were performed in the same medium.
Emission data for the trials is plotted in Figure 5.

We computed the second-order correlations (n � �) of this data using product node NSTs based in
the time, frequency, and wavelet domains. The Daubechies-6 wavelet basis was used in this study [6].
Histograms of the correlation magnitudes were computed for each case and are shown in Figure 6. To

13



(a) (b)

Figure 5: Data from an acoustic emission experiment. (a) Emission from a typical trial. (b) Overlay of data from
twenty trials.
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Figure 6:Histograms of the second-order (n � �) correlations of the acoustic emission signals from Figure 5 in three
different basis representations. (a) Histogram of time-domain correlation magnitude, entropyH � ����. (b) His-
togram of frequency-domain correlation magnitude, entropyH � ���	. (c) Histogram of wavelet-domain correlation,
entropyH � 
���. To better illustrate both the peakiness and rapid decay of the wavelet-domain correlation, we plot
only the first few bins of the histograms on a logarithmic vertical scale.

quantitatively assess the efficiency of the time, frequency, and wavelet domain representations, the entropy
of each histogram was computed. The wavelet-domain histogram has a much lower entropy than the time-
and frequency-domain histograms, which indicates that the wavelet-domain analysis is more efficient at
representing the second-order correlations of the acoustic emission data. Hence, this experiment corrobo-
rates theoretical results showing that unconditional bases are optimal for signal compression [9]. Efficient
wavelet-based representations can provide more robust and reliable estimates of the higher-order statistics
and could provide better insight into the complicated non-stationary correlation structure of the data.

5.2 Volterra filtering

In this Section, we consider Volterra filter realizations based on the NST. We show that a completen-th order
NST is capable of realizing everyn-th order Volterra filter. In particular, the summing node transformation
leads to an elegant filter bank representation.

The output of a homogeneousn-th order Volterra filter applied to a signalx � �x�� � � � � xm�
T is given

by [14]
y �

X
��i������in�m

hi������in xi� � � �xin � (39)

The filter outputy is simply ann-th order multilinear combination of the samplesx�� � � � � xm. The set of
weightsh is called then-th orderVolterra kernel. Note that while (39) computes only a single output value
givenm input values, the extension to online processing of infinite-length signals is straightforward. To
treat the input signalxl, we simply setxl � �xl� � � � � xl�m���

T , withm thememory length of the filter. The
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Figure 7:Volterra filter realization using a summing node NST.

output of (39) is thenyl, a nonlinearly filtered version ofxl.

Since is identical to the multilinear functional (7) appearing in Definition 1, it follows that everyn-th
order Volterra filter can be computed as a linear combination of the nonlinear signal coefficients� � Fn�x�.
As shown in Section 3, both the product node and summing node structures are capable of computing a
completen-th order signal transformation. The summing node structure is particularly interesting in this
application, because it allows us to represent everyn-th order Volterra filter using the simple filter bank of
Figure 7. Key to this scheme is thatthe overcomplete linear transformation, rather than the nonlinearities,
manage the signal coupling prescribed by the overall Volterra filter. Therefore, this new representation
greatly simplifies the analysis, synthesis, and implementation of Volterra filters.1

Volterra filter realizations of this type are often referred to asparallel-cascade realizations [22]. Previous
work on parallel-cascade designs has relied on complicated numerical optimizations to construct kernel-
specific sets of linear filters and hence a separate parallel-cascade structure for each distinct Volterra filter
[4, 22]. In contrast, the summing node NST can represent everyn-th order Volterra filter simply by adjusting
the output weightsf�kg

N
k��. The linear filtersffkgNk�� of the summing node structure remain the same for

every Volterra kernel. Hence, the summing node structure is auniversal structure for homogeneous Volterra
filtering. Nonhomogeneous Volterra filters can also be implemented with the summing node structure by
following each linear filter with ann-th degree polynomial nonlinearity instead of the homogeneousn-th
order monomial. Moreover, if the Volterra kernelh is low-rank, then it can be represented exactly with a
smaller subset (r  m) of orthonormal basis vectors [20]. Therefore, low-rank systems can be implemented
with a far smaller filter bank.2

The weightsf�kg corresponding to a specific Volterra filter with kernelh can be computed by solving
a system of linear equations. Leth be a vectorized version ofh ordered to correspond to the Kronecker
product in (9). According to (21), the Volterra kernel generated by the summing node NST is given byPN

k�� �kf
�n�
k . Therefore, to represent the Volterra filter with kernelh we chose the weightsf�kg so thatPN

k�� �kf
�n�
k � h. The proper weights are readily obtained by solving this system of linear equations.

As an example, consider the implementation of a homogeneous third-order (n � ) Volterra filter using
the summing node NST. LetB � fbjgmj�� be an orthonormal basis forIRm. For example,B could be

the delta, Fourier, or wavelet basis. We design the filtersf�� � � � � fN , N � �m��

 �, for the summing node

1The canonical representation of the Volterra filter (39) is of limited utility, due to the inherent difficulty in interpreting the
multidimensional kernelh (particularly whenn � �).

2Using thetensor product basis approximation to the low-rank kernel [20], we can represent the kernel exactly with a filter bank
consisting of�n�r��r � � N filters, withr � m the rank of the kernelh. This is particularly useful if the kernel is known to satisfy
certain constraints (for example, smoothness, bandlimitedness).
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transformation using the construction of Theorem 2. Referring to the Theorem, we take	 � � and hence

 � �� 
� � �� 
� � �� 

 � �. Each filterfk, k � �� � � � � N , is a linear combination of the basis vectors:
fk � Bak , with ak a vector with elements in the setf�� �� �� �g. Eachak consists of all 1s except for either
a single�, a 2 paired with a 4, or three 2s. Raising the output of each filter to the third power generates third-
order interactions between the different distinct components of the input signal represented by the basis
vectors. Taken together, these filters collaborate to generate all possible third-order nonlinear interactions of
the signal.

Different types of interactions are produced depending on the choice of basis. The delta basis produces
interactions between different time samples of the signal. The Fourier basis yields frequency intermodu-
lations, whereas the wavelet basis produces interactions between wavelet atoms localized in both time and
frequency. The fact that wavelet tensor bases are unconditional bases for many tensor spaces suggests that
wavelets may provide a more parsimonious representation for Volterra filters than time- or frequency-domain
representations.

5.3 Nonlinear System Identification

One common application of Volterra filters is nonlinear system identification [11, 14, 20]. To illustrate the
use of the tensor wavelet basis in this context, consider the following problem. Assume that we observe the
input and output of a nonlinear system defined by the bilinear operator

y�t� �

ZZ
t��t�

h�t�� t�� x�t� t�� x�t� t�� dt� dt�� (40)

This type of quadratic nonlinearity arises in the analysis of audio loudspeakers, for example [11]. We assume
that both the input and output signals are sampled, resulting in the following discrete-time Volterra system

yk �
mX

i�j��

hi�j xk�i xk�j � (41)

The discretized kernelhi�j can be estimated from the input and output samples using correlation techniques.
However, in real applications only a finite number of samples are available and often additive noise is present
in the observations. Consequently, the kernel estimates obtained from short data records are noisy.

Noise can be removed from a kernel estimate by processing the estimate in the Fourier or wavelet do-
main. Because the Fourier and wavelet bases often provide a concise representation of the kernel, in many
cases the separation of the true kernel from the noise can be carried out very easily in these domains. Specif-
ically, the noise in a “raw” kernel estimate can be removed by truncating a Fourier or wavelet expansion of
the estimate. In the following example, we will show that wavelet-domain noise removal can outperform
Fourier-domain processing.

To illustrate this point, we simulate the identification of the nonlinear system (41) with the quadratic
kernelh depicted in Figure 8(a). This kernel was obtained from actual measurements on an audio loud-
speaker [11]. In our simulation, we treat this kernel as an “unknown” model we wish to identify. Using an
iid zero-mean, unit-variance Gaussian input sequencex to “probe” the system, we computed the outputsy

according to (41) (with no additive observation noise). In total, we generated���� input and output mea-
surements and, from these two sequences, identified the kernel using the following correlation estimator.
Note that

E �Y XiXj � �

�
� hi�i �

P
k hk�k � i � j

� hi�j� i 	� j�
(42)
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Letting si�j denote the sample average estimate of E�Y XiXj �, we have the following estimator for the
Volterra kernel3

bhi�j �

���
�
�

�
si�i �

�
m��

P
k sk�k

�
� i � j

�
� si�j � i 	� j�

(43)

While the simple correlation estimator (43) converges to the true kernel, with only a finite number of
data the resulting estimate is typically very noisy due to the variability of the sample correlation estimator
about the true correlation values. A simple noise removal procedure is based on expanding this “raw” kernel
estimate in an orthonormal basis and then discarding the small terms of this expansion (which presumably
correspond to noise and not signal). Let

nb�lo denote the coefficients of the raw estimatebh in the basis

expansion. Then the coefficients
ne�lo of the truncated series kernel estimateeh can be expressed in terms of

a hard threshold applied to the coeffients
nb�lo

e�l �
�����
b�l� ��� b�l ��� � �

��
��� b�l ���  ��

(44)

with � the threshold level. Many choices for the threshold value are possible; usually� is chosen based on
some estimate of the noise level in the data. The better the basis “matches” the true kernel, the more efficient
this procedure will be at noise removal. In our experiment, we expanded the raw estimate in the wavelet
and Fourier tensor bases and then discarded the terms in the expansions whose coefficient magnitudes fell
below the threshold value� �

p
� log�m���, with� the standard deviation of the noise andm� � ���� the

dimension of the discretized kernel. This threshold choice is suggested in [10] as a probabilisticupper bound
on the noise level. In practice,� must be estimated from the raw kernel estimatebh. However, since we had
access to the true kernel in this simulation, we computed� directly from the difference between the true
kernel and the raw estimate. Figure 8(c) and (d) show the estimates that result from hard thresholding in the
wavelet domain and Fourier domain, respectively. Wavelet-based truncation provides a much better kernel
estimate than both the original raw estimate (b) and the truncated Fourier expansion estimate (d). In fact,
the Fourier-based method oversmooths the estimate and results in a worse mean-squared-error (MSE) than
that of the original raw estimate. While simple, this simulation demonstrates the utility of wavelet-based
representations for the analysis of real-world nonlinear systems.

6 Conclusions

In this paper, we have developed two new structures for computingn-th order NSTs. The product and
summing node NSTs, while simple, can represent alln-th order nonlinear signal interactions. Both transfor-
mations have an elegant interpretation in terms of tensor spaces. The product node NST yields an orthogonal
transformation in the tensor space appropriate for estimation problems. The summing node NST results in
a redundant filter bank structure natural both for analyzing and interpreting nonlinear interactions and for
designing efficient implementations. Not only does the summing node architecture suggest new, efficient

3The estimatorbh is derived as follows. Let�i�i � E�Y X�
i �. Setting�i�i � � hi�i �

P
k
hk�k and re-arranging gives�hi�i �

�i�i �
P

k
hk�k . Summing overi produces�

P
i
hi�i �

P
i
�i�i �m

P
k
hk�k and hence �

m��

P
i
�i�i �

P
i
hi�i. A simple

substitution then yieldshi�i �
�
�i�i �

�
m��

P
k
�k�k

�
��. The estimatorbhi�i is obtained by substituting the sample cross-moments

si�i for the true moments�i�i. The estimatorbhi�j , i �� j, is obtained in a similar fashion.
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(a) (b)

(c) (d)

Figure 8:Nonlinear system identification using tensor bases. Estimates of the quadratic Volterra kernel of an audio
loudspeaker obtained using thresholding in a tensor basis expansion. (a) True kernelh [11]. (b) Raw estimatebh
obtained using(43), MSE=0.20. (c) Estimateeh obtained through a truncated Daubechies-8 wavelet expansion ofbh,
MSE=0.15. (d) Estimateeh obtained through truncated Fourier expansion ofbh, MSE=0.40. The wavelet estimator
provides a more faithful estimate than the Fourier estimator, which oversmooths.
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algorithms for nonlinear processing, it also decouples the processing into linear dynamics and static nonlin-
earities. Hence, this new framework for nonlinear analysis and processing may provide new insights into
the inner workings of nonlinear systems.

NSTs are not constrained to a fixed choice of basis. However, we have shown that wavelet bases provide
an optimal framework for NSTs in the sense that wavelet tensor bases are unconditional for many important
tensor spaces. Because the wavelet basis provides a more concise representation of many real-world signals,
more robust estimates of higher-order statisticalquantities and Volterra kerels can be obtained via the wavelet
representation as compared to time- or frequency-domain approaches.

Finally, we have focused on the classicalLp tensor spaces in our theoretical analysis of wavelet-domain
nonlinear processing. However, new results in the statistical literature suggest that more general spaces such
as Besov and Triebel spaces are extremely useful for characterizing real-world signals [9]. Therefore, an
important avenue for future work will be to extend the results of this paper to these more general settings,
possibly using the results of [25]. Another issue currently under investigation is the relationship between
polynomial-based processing (higher-order statistics, Volterra filters) and other important types of nonlinear
processing that use sigmoidal (neural networks), threshold (wavelet shrinkage) [9], or weighted highpass
nonlinearities [19]. We believe that the results of this paper could serve as a link between these important
areas of nonlinear signal processing.

A Proof of Theorem 2

To prove the Theorem, we must show that the setffkg
N
k�� generated by (20) and (23) satisfies (22). That is,

we must show that the tensors
n
f
�n�
k

o
span the symmetric tensor spaceSn�IRm�. Recall that each filterfk

has the form

fk �
mX
j��

aj�k bj � (45)

with ak � �a��k� � � � � am�k�
T . Now consider

f
�n�
k �

�� mX
j��

aj�kbj

�A�n�

�
X

��i������in�m

ai��k � � �ain�k bi� � � � � � bin � (46)

With 	 denoting the set of permutations of the setf�� � � � � ng, we can write

f
�n�
k �

X
��i������in�m

ai��k � � �ain�k

� X
���

bi���� � � � � � bi��n�

�
� (47)

According to Theorem 2.6 in [26], the collection of tensors�X
���

bi���� � � � � � bi��n� � � � i� � � � � � in � m


(48)

is a basis forSn�IRm�. Let fskgNk��, N � �m�n��
n �, denote these basis vectors, and setS � �s�� � � � � sn�

T .
Then, from (47), we can write

f
�n�
k � Suk� (49)
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with uk anN�� column vector containing all degree-n monomials in thea��k� � � � � am�k coefficients. Next,
define

F �
h
f
�n�
� � � � � � f �n�n

i
� SU� (50)

with U � �u�� � � � �un�. U is an n � n matrix and, sinceS is a basis forSn�IRm�, it follows that

Span
n
f
�n�
k

oN
k��

� Sn�IRm� if and only ifU is invertible.

The remainder of the proof shows that the invertibility ofU is guaranteed if the Vandermonde matrix

V �

������
� � � � � �
� 
 � � � 
n
...

... � � �
...

� 
n � � � 
nn

������ (51)

is invertible.

First, we show thatU � QTV�m�Q, withQ a full rank matrix defined as follows. Consider the weights
a��k� � � � � am�k. Form a vector of products of these weights using the Kronecker product:

qk �

��������

�
a��k
a���k

...
an��k

���������
��������

�
a��k
a���k

...
an��k

��������� � � � �

��������

�
am�k

a�m�k
...

anm�k

�������� � (52)

Note that every monomial inuk is included in the vectorqk. Define the matrixQ as the mapQT � qk �� uk .
Note thatQ is full rank and does not depend onk.

Now considerV�m�, them-fold tensor product of the Vandermonde matrixV. Each row ofV�m�

corresponds to a particular monomial form (al���k � � �a
lm
m�k , for example). Each column ofV�m� corresponds

to a particular set of weights (�
l�� � � � � 
lm�
T � ak from (23), for example). Now considerQTV�m�Q. The

action ofQT on the left extracts the rows ofV�m� corresponding to degree-n monomials. ApplyingQ on
the right extracts the columns ofV�m� corresponding to the specific weights in theN vectors defined in (23).
Therefore,U � QTV�m�Q. The special construction of the vectorsfakgNk�� in (23) should now be clear:
The valuesak � �
l�� � � � � 
lm�

T correspond to the powers in one of the monomialsal���k � � �a
lm
m�k, and hence

by applyingQ to both sides ofV �m� we select then-th order monomials with the values corresponding to
the weights in the vectorsfakgNk��.

We now claim that taking
r � 	r, r � �� � � � � n, j	j 	� �, 	 	� �, in (51) implies thatU is invertible.
Note that with this choiceV is real-symmetric and invertible. It follows thatV �m� is also real-symmetric
and invertible. Therefore, sinceQ has full rank,U � QTV�m�Q is also real-symmetric and invertible.4

This completes the proof. �

4If U is not invertible, then there exists a vectorx such thatxTUx � �. This implies the existence ofy � Qx such that
yTV�m�y � � and henceV�m� has a zero eigenvalue, contradicting the assumption thatV �m� is invertible.
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B Proof of Theorem 3

We must show that Span
n
f
���
k

oN
k��

� S��IRm�� Following the proof of Theorem 2, we have

f
���
k � Suk� (53)

withuk anN�� column vector containing all degree�monomials in the elements ofak � �a��k� � � � � am�k�
T

and h
f
���
� � � � � � f

���
N

i
� SU� (54)

withU � �u�� � � � �uN �. It follows that Span
n
f
���
k

oN
k��

� S��IRm� if and only ifU is invertible.

To show thatU�� exists in this case, let us take a closer look at the columns ofU. Recall that each
column ofU is denoted byuk and is generated by computing all cross-products between the elements ofak

(Eachak is anm-vector with entries of� or �, and each has at most� non-zero entries). Consider first the
columnsuk that correspond toak vectors with a single non-zero entry. These columns also contain a single
non-zero entry. For example, ifai�k � � andaj�k � � (i 	� j), thenuk has a single non-zero entry in the
position corresponding to the monomiala�i�k � �. There are a total ofm such columns, each with a single
� in a unique location corresponding to such an product. Clearly, these columns are linearly independent of
one another, as each has a single non-zero entry in a different location. Now consider the columnsuk that
correspond toak vectors with a two non-zero entries. Ifai��k � �, ai��k � �, andaj�k � � �j 	� i�� i�), then
the columnuk has non-zero entries in the location corresponding the cross-producta i��k ai��k. Note that
since no otheral (l 	� k) will have non-zero values in both thei� andi� position, the correspondingul will
be zero in the associated cross-product location. Therefore, alluk are linearly independent. This completes
the proof. �

One might wonder whether this construction using binary weights can be extended to higher orders
n � �. Unfortunately, the answer is negative. As we move to higher orders, we require more diversity in
the weights used to form the linear filtersffkg. Hence, we require a more complicated construction such as
that of Theorem 2.

C Proof of Theorem 4

Recall that the summing node decomposition is complete if and only if for everyh � Sn�IRm� there exist
f�kgNk�� such that

h �
NX
k��

�k f
�n�
k � (55)

Here,h is symmetric and hence contains repeated elements. Also, vectors such asf
�n�
k contain repeated

products. To avoid such redundancies, define the vectorseh and
 g
f
�n�
k

!
from which repeated elements in

the original vectorsh and
n
f
�n�
k

o
have been discarded. For example, ifn � � andfk � �f�� f��

T , then both

f�f� andf�f� occur inf ���k . In this case
g
f
���
k � �f�� � f�f�� f

�
� �

T . In general, for nonlinear ordern and signal

lengthm, the vectorseh and
 g
f
�n�
k

!
each contain exactlyN � �m�n��

n � elements. With this notation in
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place, (55) can be rewritten as

eh �
NX
k��

�k
g
f
�n�
k � (56)

To guarantee that the summing node structure can represent everyh � Sn�IRm�, we must have that

Span
 g
f
�n�
k

!N

k��
� IRN .

To determine a set of spanning vectors, consider the following argument. Suppose that we randomly
choose the vectorsffkg as independent realizations from a common probability distribution. Furthermore,
assume that this distribution has a density (that is, the distribution is absolutely continuous with respect

to Lebesgue measure onIRm). Then Span
 g
f
�n�
k

!N
k��

� IRN with probability one. This follows from

the following result regarding the invertibility of then-th order moment matrix of anIRm–valued random
vectors.

Lemma 1 [18] If f is an IRm–valued random vector having a density, then E
"gf �n� gf �n�T# is invertible.

To see how this result relates to the problem at hand, leteF �
h
f
�n�
� � � � � � f

�n�
N

i
, and note that the matrixeFeFT can be viewed as the samplen-th order moment matrix of the density forffkgNk��. Theorem 1 implies

that the sample moment matrixeFeFT is invertible with probability one if the number of samples is greater

thanN (see Remark 5.2 in [18]). This in turn implies thateF is full rank and that Span
 g
f
�n�
k

!N
k��

� IRN . �
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