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ABSTRACT

Previous work has shown that various flavours of Indepen-
dent Component Analysis, when applied to natural images,
all result in broadly similar localised, oriented band-pass
feature detectors, which have been likened to wavelets or
edge detectors.

In this paper, we present a similar analysis of ‘natural’
sounds drawn from two radio stations: one broadcasting
mainly speech; the other mainly classical music. Many of
the resulting basis vectors are quite wavelet-like, and can
easily be characterised in terms of their position and spread
in the time-frequency plane. Some of them, however, par-
ticularly from the set trained on music, do not fit that inter-
pretation very well. The Wigner-Ville Distribution can be
used to gain a clearer picture of time-frequency localisation
of these basis vectors.

We conclude by suggesting that these results be com-
pared with other widely used auditory representations such
as short-term Fourier transforms, wavelet transforms, and
physiologically derived models based on the auditory filter-
bank.

1. REDUNDANCY REDUCTION AS A GOAL OF
PERCEPTION

It has been suggested [2, 1, 7] that the processing of sensory
data in biological perceptual systems is best understood in
the language of information theory. The wealth of structure
present in natural phenomena means that sensory signals are
highly redundant; characterising this structure in order to
develop efficient, non-redundant representations might be
an effective processing strategy. In a distributed code, a ma-
jor source of redundancy is statistical dependency between
units; independent or factorial coding will be an important
tool in dealing with this.

ICA is Reduncany Reduction via Linear Transforma-
tion. If we restrict ourselves to instantaneous linear meth-
ods, then the best we can do is aim for a matrix operation
�
e-mail: samer.abdallah@kcl.ac.uk�
e-mail: mark.plumbley@kcl.ac.uk

that results in a vector whose elements are as independent
as possible—that is, precisely the ICA problem. If the ob-
served data is represented as an � -element vector � , then
we wish to find the linear transformation

���
	 ��� (1)

that minimises the mutual dependency between the elements
of � . In this paper, we further restrict ourselves to the case
in which the weight matrix 	 is square.

After learning, the structure of the input is usually best
revealed by examining the linear basis which will recon-
struct the input � from the coded version � . These basis
vectors are given by the columns of 
 �
	���� .

2. ICA OF NATURAL SCENES

Field and Olshausen [8] showed that sparse coding (a tech-
nique closely related to ICA) of natural images results in
a decomposition of the image in to a set features localised
both spatially and in spatial frequency (that is, oriented and
band-pass). Other similar experiments with ICA [4, 9] have
produced comparable results.

These features can be interpreted as wavelets or edge
detectors, providing some justification for the use of those
methods as image processing tools, and suggesting that the
learned features may actually be more appropriate in cer-
tain situations. They also show some correspondence with
receptive fields of simple cells in visual cortex (V1), provid-
ing a possible explanation for operation of these cells.

There has been (to the authors’ knowledge) no compa-
rable study of natural sounds. Bell and Sejnowski [3] used
ICA on sound, but this was limited to a very particular tooth-
tapped rendition of Mozart’s Für Elise. Casey [5] also used
ICA, but again, learning was restricted to one auditory event
at a time, not a long exposure to a representative selection
of sounds, what one might call an auditory environment.
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3. EXPERIMENTS WITH SPEECH AND MUSIC

We ran an ICA algorithm on several days’ worth of largely
unbroken radio output from two stations: BBC Radio 3,
broadcasting mainly classical music but with some speech
and other music; and BBC Radio 4, which outputs mainly
speech. The input was presented as 512-sample blocks of
waveform data; the analysis produced two sets of 512 ba-
sis vectors, one for Radio 3 and one for Radio 4, which we
examine in the next section.

The signal was pre-processed to compensate for any DC
offset, and to (very roughly) normalise its amplitude. This
was not done on each block independently, which would re-
sult in every input vector being of zero mean and unit vari-
ance, but rather by maintaining a slowly varying average
of block means and variances, and using these to normalise
each block. The idea was to tame the worst excesses of
loudness variation over medium to long time scales, not to
remove all dynamics. Letting ��� � ��� be the � ’th sample in the�

’th block of raw waveform data, the following steps were
used to compute the elements �	� � ��� of the

�
’th input vector

�
� ���

:


� � ��� �
�
�

�� � � � ��� � ��� � (2)


� � ��� �����
�

�� � � ��� ��� � ���������
��� �
� (3)� � ��� � �"! 
� � ���$# � ��% �"! � � � � %&� � � (4)� � ��� � �"' 
� � ���(# � ��% �"! � � � � %&� � � (5)�)� � ��� � � ��� � ��� % � � �����+* � � ���-, (6)

The adaptation rates �.! and �"' were set to around 0.01,
which, given a sampling rate of 11.025 kHz and blocks of
512 samples, implies a time-constant of about 5 seconds.

The version of ICA used was MacKay’s covariant maximum-
likelihood algorithm [10], which assumes a known prior dis-
tribution / ��0 � for the independent components (i.e. the ele-
ments of � ). The weight update rule is1 	 � 2 � 3 %54 �76 � 	 � (7)

where 2 is a learning rate parameter, and 4 is an element-
wise nonlinear function of � given by8 � � %:99 0<; =?> / ��0 �

�
� (8)

We experimented with both a Laplacian prior—/ ��0 � �A@ �.B CDB—and a Cauchy prior—/ ��0 � � � � # 0 � � ��� —producing broadly
similar results; due to lack of space, we present only the
Cauchy-derived results here.
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Fig. 1. A few of the Radio 4 basis vectors. The lower plot
shows Fourier magnitude spectra of the (time domain) vec-
tors in the upper plot.
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Basis vector distribution: Radio 4

Fig. 2. Postion and spread in time and frequency of all 512
Radio 4 basis vectors. The grey scale encodes the over-
all energy of each basis vector relative to the one with the
highest energy.
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Fig. 3. Frequency domain bandwidth v. centre frequency
for Radio 4 basis vectors.

4. PRELIMINARY ANALYSIS OF RESULTING
BASES

We start by looking at the (speech dominated) Radio 4 basis
as the results are easier to interpret than the Radio 3 basis.

4.1. Radio 4 Basis

The basis can be visualised in various ways: in the time
domain, in the frequency domain, or in the time-frequency
plane. Figure 1 illustrates time domain plots of some of the
Radio 4 basis vectors, and their corresponding magnitude
spectra. They are, on the whole, quite well localised in both
domains, suggesting that it might be useful to characterise
them by their position and spread in the time and frequency
plane. This we did by squaring each element of a basis vec-
tor or its fourier transform and treating the resulting vector
like a probability distribution, measuring the median and
mean absolute deviation from that median 1.

Figure 2 is a combined plot of all 512 basis vectors—
each one is represented by an ellipse indicating its position
and spread in time and frequency. Figure 3 illustrates more
clearly the relationship between centre frequency and band-
width.

Several observations can be made from the plots:

� The basis vectors are fairly evenly distributed in time
and frequency.

� The spectral widths are not exactly proportional to
the centre frequencies, but there is a general increase
bandwidths at higher frequnecies. The very lowest
frequencies are not localised in time at all.

� There are edge effects, with short-time, wide-band
features at the beginning and end of the block.

1This produced better results than the more obvious procedure of mea-
suring means and variances, because the ‘distributions’ did not fit a Gaus-
sian model especially well. In particular, the variance consistently over-
estimated the spread of the distributions as judged by eye.
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Fig. 4. Some of the Radio 3 basis vectors and their magni-
tude spectra.

relative energy of basis vector (dB)

−35 −30 −25 −20 −15 −10 −5

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

time/ms

fr
eq

ue
nc

y/
kH

z

Basis vector distribution: Radio 3

Fig. 5. Postion and spread in time and frequency of all 512
Radio 3 basis vectors.
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Fig. 6. Frequency domain bandwidth v. centre frequency
for Radio 3 basis vectors.
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Fig. 7. Wigner Distribution of one of the Radio 4 basis vec-
tors (left). The right-hand image is the WD of the Hilbert
transform of the basis vector. The Hilbert transform filters
out the negative frequency components and with them the
oscilliatory cross term in the middle. (The middle grey rep-
resents zero, going to black for more positive values.)

� There is a reversal of the bandwidth trend between 1
and 1.5kHz. There are also a few anomalous features
at around 2.5kHz near 17ms and 37ms.

It is not clear what significance the bandwidth behaviour
between 1 and 2kHz has, though it may be an adaptation to
the formant structure of speech.

4.2. Radio 3 Basis

When we examine the Radio 3 (music derived) basis in the
same way, the interpretation is not so clear. In figure 5,
there appear to be many poorly localised basis vectors. Re-
ferring to figure 4, we can see that some of the vectors have
multimodal spectra, and a ’pulsating’ envelope in the time
domain. The centre/spread model is not appropriate for the
description of these forms.

5. FURTHER ANALYSIS USING
THE WIGNER DISTRIBUTION

In an effort to gain a clearer picture of the time-frequency
behaviour of the basis vectors, especially the poorly localised
ones, we analysed them with the Wigner-Ville distribution
(WD) [6], which is a type of time-frequency representation,
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Wigner Distribution Contours: Radio 4 basis

Fig. 8. Combined contour plots of all the Radio 4 basis
vector Wigner distributions. Each one is represented by a
contour at 0.6 times its peak value. The grey scale repre-
sents the total energy of each basis vector—not the value of
the Wigner distribution.

similar to a spectrogram, but without the time and frequency
resolution limits of a spectrogram. It is defined for a contin-
uous time complex-valued signal � � � � as

� � � ��� � � �����
� � � � � # ��
	 � ��� � � % ��
	 � @ � � � 
�� 9 � (9)

There are some subtleties involved in defining the discrete
time analogue of this; suffice it to say that what we actually
used was a Type II quasi-Wigner distribution as defined in
[11].

Being essentially a quadratic function of the signal, the
WD of the sum of two signals is not equal to the sum of the
individual WDs. So-called cross-terms appear halfway be-
tween the individual WDs (also called auto-terms). These
cross-terms are often larger then the auto-terms, and gen-
erally a distraction as far as visualisation goes—this is the

537



relative energy of basis vector (dB)

−35 −30 −25 −20 −15 −10 −5

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time/ms

fr
eq

ue
nc

y/
kH

z

Wigner Distribution Contours: Radio 3 basis

Fig. 9. Contour plots of the Radio 3 basis vector Wigner
distributions, produced the same way as in figure 8.

price we pay for the improved resolution of the WD. The
usual approach to removing them is some sort of smooth-
ing in the time-frequency plane, which inevitably leads to
some loss of resolution. However, in the case of real-valued,
wavelet-like signals, the main source of cross-terms is inter-
ference between the positive and negative frequency com-
ponents. Thus, we removed the negative frequency parts
using a discrete Hilbert transform. This proved to be quite
effective for many of the basis vectors. (See figure 7.)

The Radio 4 basis vectors all produce well-localised Wigner
Distributions, as illustrated in figure 8, which is a compila-
tion of all 512 distributions, each represented by one con-
tour. The Radio 3 vectors however, seem to fall in to three
groups: many narrow-band features covering most of the
width of the window (these are basically pure sinusoids);
a number of compact wide-band features towards the top
of the spectrum; and a few features with very fragmented
Wigner distributions. These are the basis vectors which ap-

peared as large ellipses in figure 5.
Looking at their spectra jointly with their Wigner Dis-

tributions (see figure 10), it is possible to discern that in
many cases, the fragmentation is due to large cross-terms
between the components of a multi-harmonic basis vector—
the spectra of these features have two or more clear peaks.
Some of these have components whos frequencies are in
small integer ratios, which is what one would expect from
the spectrum a low musical note with multiple harmonics
or overtones. Since the cross-terms oscillate at a frequency
equal to the difference between the frequencies of the com-
ponents, they actually illustrate the frequency of the implied
low note.

This still leaves a few basis vectors that defy explana-
tion: some have multiple components which are not in small
integer ratios, and some are so irregular that it leads us to
suspect that the algorithm has either not converged prop-
erly, or has not learned an optimal solution, but fallen into a
local minumum.

6. DISCUSSION AND CONCLUSIONS

This experiment has shown that ICA can learn interesting
representations of audio signals that, under certain circum-
stances, correspond closely with a wavelet basis. In particu-
lar, the basis trained on speech shows a very clear and regu-
lar time-frequency structure. The features are well localised
in time and frequency, with bandwidths that generally in-
crease with the centre frequency.

Similar experiments with visual scenes have produced
results the compare favourably with what is thought to occur
in the early stages of the human visual system— the com-
parison ought to be made between these results and the hu-
man auditory system, in particular, the auditory filter-bank
[12]. This will be the subect of further work, but a cursory
investigation suggests that the bandwidths are a little too
narrow. One possible explanation for this is that the contin-
uous speech on which our system was trained may not be the
sort of auditory environment for which the human auditory
system is best adapted. We might get a closer match if we
train on an environment including more non-speech sounds,
such as mechanical noises, animal calls, rustling bushes etc.
In this respect, the television may a better source of training
data than radio!

Another interesting avenue of investigation into the speech
derived basis is to discover how well adapted (if at all) it
is to representing speech. Is the shape of the bandwidth
vs. centre frequency plot (see figure 3) significant? Does it
yeild a more efficient coding of speech than a wavelet basis,
or other methods?

The Radio 3, music derived results are less conclusive.
The basis did include many narrow-band sinusoids covering
the whole width of the analysis window, suggesting that a

538



Radio 3 basis vector 256

0 5 10 15 20 25 30 35 40 45
−5

0
5

x 10
−3

time / ms

0 0.20.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

fr
eq

ue
nc

y 
/ k

H
z

Radio 3 basis vector 328

0 5 10 15 20 25 30 35 40 45
−0.01

0
0.01

time / ms

0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

fr
eq

ue
nc

y 
/ k

H
z

Radio 3 basis vector 448
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Fig. 10. Some of the multi-component Radio 3 basis vec-
tors in time, frequency, and time-frequency. The crosses on
the spectral plots are regularly spaced, showing how some
of the components are in small integer ratios. Note that in
bottom Wigner plot, the two components are consecutive
rather than simultaneous, corresponding, in musical terms,
to a drop of a Major Third.

Fourier basis is not wholey inappropriate for analysis mu-
sic, at least at a time scale of 50ms. There were also some
wavelet-like features at higher centre frequencies. However
there are a significant number of features that are difficult to
characterise. Though some consist of harmonically related
components, others seem to be very irregular. We suspect
that this may be the result of poor learning on the part of
the ICA algorithm, especially when we consider the large
amount of rather varied training data.

On a more encouraging note, preliminary tests involving
listening to the basis vectors has revealed some interesting
pitch structure, and we are currently investigating just how
much musical structure has been encoded within them.
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