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Preface

Wavelets have been around since the late 1980s, and have found many ap-
plications in signal processing, numerical analysis, operator theory, and other
fields. Classical wavelet theory is based on a refinement equation of the form

φ(x) =
√
2
∑

k

hkφ(2x − k)

which defines the scaling function φ. The scaling function leads to multi-
resolution approximations (MRAs), wavelets, and fast decomposition and
reconstruction algorithms. Generalizations include wavelet packets, multi-
variate wavelets, ridgelets, curvelets, vaguelettes, slantlets, second generation
wavelets, frames, and other constructions.
One such generalization are multiwavelets, which have been around since

the early 1990s. We replace the scaling function φ by a function vector

φ(x) =



φ1(x)
...

φr(x)




called a multiscaling function, and the refinement equation by

φ(x) =
√
m
∑

k

Hkφ(mx− k).

The recursion coefficients Hk are now r × r matrices.
Multiwavelets lead to MRAs and fast algorithms just like scalar wavelets,

but they have some advantages: they can have short support coupled with
high smoothness and high approximation order, and they can be both symmet-
ric and orthogonal. They also have some disadvantages: the discrete multi-
wavelet transform requires preprocessing and postprocessing steps. Also, the
theory becomes more complicated.
Many of the existing wavelet books have a short section discussing multi-

wavelets, but there has never been a full exposition of multiwavelet theory in
book form.
This book is divided into two main parts. The first part deals with scalar

wavelet theory, and can be read by itself. The second part deals with multi-
wavelet theory and can also be read by itself, assuming the reader is already
familiar with scalar wavelets. Most sections of the two parts run in parallel,

© 2004 by Chapman & Hall/CRC 



so it is easy to refer back and forth between the two and check how a scalar
result generalizes to the multiwavelet case. In some cases, the generalization
is straightforward. In other cases, the multiwavelet results are more complex,
in unexpected ways.
I have chosen to use a dilation factor of 2 in the scalar case, the more general

m ≥ 2 in the multiwavelet case. This way, the first part of the book remains
simpler for beginners, and the second part of the book contains more general
results. The change from 2 to m has virtually no effect on the difficulty of the
material; it just requires a slightly more complicated notation.
I have tried to maintain a balance between mathematical rigor and read-

ability to make the book useful to as wide an audience as possible. The most
technical material has been concentrated in two separate chapters that can be
skipped without affecting the readability of the other chapters. Most concepts
are illustrated with examples.
The book as a whole should be accessible to both mathematicians and

engineers, and could be used as the basis for an introductory course or a
seminar. Some Matlab routines for experimenting with multiwavelets are
available from the author (see appendix C).
Both parts of the book contain the following main topics:

• Basic theory. Scaling functions, MRAs, wavelets, moments, approxi-
mation order, wavelet decomposition and reconstruction.

• Practical implementation issues. Fast algorithms for decomposi-
tion and reconstruction, preprocessing, modifications at the boundary,
computing point values and integrals.

• Creating wavelets

• Applications. Signal processing, signal compression, denoising, fast
numerical algorithms.

• Advanced theory. Existence in the distribution, L1, L2, or pointwise
sense, stability, smoothness estimates.

The appendix contains a list of standard wavelets, a section on mathematical
background, and a list of web and software resources.
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Part I

Scalar Wavelets
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1

Basic Theory

There are a number of ways to approach wavelet theory. The classic book by
Daubechies [50] begins with the continuous wavelet transform and the concept
of frames, and does not get to standard wavelet theory until chapter 5. This
is more or less the chronological order in which the theory developed.
My personal preference is to begin with the concept of a refinable function

and multiresolution approximation (MRA).

1.1 Refinable Functions

DEFINITION 1.1 A refinable function is a function φ : R → C which
satisfies a two-scale refinement equation or recursion relation of the form

φ(x) =
√
2

k1∑
k=k0

hk φ(2x− k). (1.1)

The hk ∈ C are called the recursion coefficients.
The refinable function φ is called orthogonal if

〈φ(x), φ(x − k)〉 = δ0k, k ∈ Z.

REMARK 1.2 The number 2 is to wavelet theory what the number 2π is
to Fourier theory: it has to be present somewhere, but there is no consensus
on where to put it.
If you compare the formulas in this book with those in other books, they

may differ by factors of 2 or
√
2.

It is possible to consider refinement equations with an infinite sequence of
recursion coefficients. Most of wavelet theory remains valid in this case, as
long as the coefficients decay rapidly enough. A typical decay condition is∑

k

|hk|1+ε <∞
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for some ε > 0.
Allowing infinite sequences of recursion coefficients requires additional tech-

nical conditions in many theorems, and complicates the proof. We will always
assume that there are only finitely many nonzero recursion coefficients, which
covers most cases of practical interest.

Example 1.1
No book on wavelets is complete without the Haar function, which is the
characteristic function of the interval [0, 1].

−1 0 1

0

1

Haar recursion relation

−1 0 1

0

1

Hat function recursion relation

FIGURE 1.1
Left: The Haar function and its refinement equation. Right: The
hat function and its refinement equation.

It satisfies

φ(x) = φ(2x) + φ(2x− 1) =
√
2
(

1√
2
φ(2x) +

1√
2
φ(2x − 1)

)
,

so it is refinable with h0 = h1 = 1/
√
2 (fig. 1.1).

The Haar function is orthogonal, since for k �= 0 the supports of φ(x) and
φ(x − k) only overlap at a single point.

Example 1.2
The hat function is given by

φ(x) =



1 + x for −1 ≤ x ≤ 0
1− x for 0 < x ≤ 1
0 otherwise.
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It satisfies

φ(x) =
1
2
φ(2x+ 1) + φ(2x) +

1
2
φ(2x− 1)

=
√
2
(

1
2
√
2
φ(2x+ 1) +

1√
2
φ(2x) +

1
2
√
2
φ(2x − 1)

)
,

so it is refinable with h−1 = h1 = 1/(2
√
2), h0 = 1/

√
2. It is not orthogonal,

since 〈φ(x), φ(x − 1)〉 �= 0.

TH E O R E M 1 . 3
A necessary condition for orthogonality is∑

hkh
∗
k−2� = δ0�. (1.2)

The * denotes the complex conjugate transpose, or in the case of a scalar
simply the complex conjugate.

PROOF We calculate

δ0� = 〈φ(x), φ(x − �)〉 = 〈√2
∑

k

hk φ(2x− k),
√
2
∑

n

hn φ(2x− 2�− n)〉

= 2
∑
k,n

hkh
∗
n〈φ(2x− k), φ(2x− 2�− n)〉

=
∑
k,n

hkh
∗
nδk,2�+n =

∑
k

hkh
∗
k−2�.

The orthogonality condition implies that an orthogonal φ has an even
number of recursion coefficients; otherwise one of the conditions would be
hk0h

∗
k1

= 0.
Many refinable functions are well-defined but cannot be written in closed

form. Nevertheless, we can compute values at individual points (or at least ap-
proximate them to arbitrary accuracy), compute integrals, determine smooth-
ness properties, and more.
The details will be presented in later chapters. Right now, we just briefly

mention two of these techniques, to introduce concepts we need in this chapter.

DEFINITION 1.4 The symbol of a refinable function is the trigonometric
polynomial

h(ξ) =
1√
2

k1∑
k=k0

hke
−ikξ.

© 2004 by Chapman & Hall/CRC 



The Fourier transform of the refinement equation is

φ̂(ξ) = h(ξ/2)φ̂(ξ/2). (1.3)

By substituting this relation into itself repeatedly and taking the limit, we
find that formally

φ̂(ξ) =

[ ∞∏
k=1

h(2−kξ)

]
φ̂(0). (1.4)

Assuming that the infinite product converges, this provides a way to compute
φ(x), at least in principle.
We observe that we can choose φ̂(0) to be an arbitrary number. That

is because solutions of refinement equations are only defined up to constant
factors: any multiple of a solution is also a solution. The arbitrary factor
in equation (1.4) is φ̂(0). Choosing φ̂(0) = 0 gives φ = 0, which is not an
interesting solution; we want φ̂(0) �= 0.
The infinite product approach is useful for existence and smoothness esti-

mates (see chapter 5), but it is a practical way of finding φ only in very simple
cases. A better way to get approximate point values of φ(x) is the cascade
algorithm, which is fixed point iteration applied to the refinement equation.
We choose a suitable starting function φ(0), and define

φ(n)(x) =
√
2
∑

k

hkφ
(n−1)(2x− k).

This will converge in many cases.

Example 1.3
The scaling function of the Daubechies wavelet D2 (derived in section 3.6)
has recursion coefficients

h0 =
1 +

√
3

4
√
2

, h1 =
3 +

√
3

4
√
2

, h2 =
3−√3
4
√
2

, h3 =
1−√3
4
√
2

.

It is orthogonal.
Figure 1.2 shows a few iterations of the cascade algorithm for this function.

Orthogonality of a refinable function can be checked from the symbol.

TH E O R E M 1 . 5
The orthogonality conditions in equation (1.2) are equivalent to

|h(ξ)|2 + |h(ξ + π)|2 = 1. (1.5)

These conditions are sufficient to ensure orthogonality if the cascade algorithm
for φ converges.
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0 1 2 3

−1

0

1

2
After 0 steps

0 1 2 3

−1

0

1

2
After 1 step

0 1 2 3

−1

0

1

2
After 4 steps

0 1 2 3

−1

0

1

2
After 7 steps

FIGURE 1.2
Cascade algorithm for the scaling function of the Daubechies
wavelet D2. Shown are the starting guess (top left) and the approx-
imate scaling function after one iteration (top right), four iterations
(bottom left), and seven iterations (bottom right).

PROOF We calculate

|h(ξ)|2 + |h(ξ + π)|2 =
1
2

∑
k,n

hkh
∗
ne

−i(k−n)ξ
[
1 + (−1)k−n

]

=
∑

k−n even

hkh
∗
ne

−i(k−n)ξ =
∑

�

(∑
k

hkh
∗
k−2�

)
e−2i�ξ =

∑
�

δ0,�e
−2i�ξ = 1.

The sufficiency of these conditions is proved in [50]. The basic idea is
simple: we start the cascade algorithm with an orthogonal initial function
φ(0). The orthogonality condition ensures that each φ(n) will be orthogonal.
If the iteration converges, the limit will also be orthogonal.
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The support of a function φ is the closure of the set

{x : φ(x) �= 0}.
Compact support means the same as bounded support.

LEMMA 1.6
If φ is a solution of equation (1.1) with compact support, then

supp φ = [k0, k1].

PROOF Assume supp φ = [a, b]. When we substitute this into the refine-
ment equation, we find that

supp φ =
[
a+ k0

2
,
b+ k1

2

]
.

This implies a = k0, b = k1.

The same argument also shows that if we start the cascade algorithm with
a function φ(0) with support [a(0), b(0)], the support of φ(n) will converge to
[k0, k1] as n→∞.
For practical applications we need φ to have some minimal regularity prop-

erties.

DEFINITION 1.7 A refinable function φ has stable shifts if φ ∈ L2 and
if there exist constants 0 < A ≤ B so that for all sequences {ck} ∈ �2,

A
∑

k

|ck|2 ≤ ‖
∑

k

c∗kφ(x − k)‖22 ≤ B
∑

k

|ck|2.

If φ is orthogonal, it is automatically stable with A = B = 1. This will be
proved in chapter 5 later.

DEFINITION 1.8 A compactly supported refinable function φ has linearly
independent shifts if for all sequences {ck},∑

k

c∗kφ(x − k) = 0⇒ ck = 0 for all k.

There are no conditions on the sequence {ck} in definition 1.8. Compact
support guarantees that for each fixed k the sum only contains finitely many
nonzero terms.
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It can be shown that linear independence implies stability.

REMARK 1.9 You may be wondering at this point why sometimes the
coefficients in front of φ carry a complex conjugate transpose (as in the defini-
tion of stability), and sometimes they do not (as in the refinement equation).
The reason is that I am trying to keep the notation in the scalar wavelet and

multiwavelet parts of the book the same as much as possible. At the moment,
all coefficients are scalars. In some cases they later turn into row vectors, and
in other cases they turn into matrices. It really makes no practical difference
at this point whether you add * or not.

THEOREM 1.10
Assume that φ is a compactly supported L2-solution of the refinement equa-
tions with nonzero integral and linearly independent shifts. This implies the
following conditions:

(i) h(0) = 1.

(ii)
∑

k φ(x − k) = c, c �= 0 constant.

(iii) h(π) = 0.

PROOF If φ ∈ L2 with compact support, it is also in L1; this implies that
φ̂ is continuous and goes to zero at infinity (Riemann–Lebesgue lemma).
Since φ̂ and h are both continuous, equation (1.3) must hold at every point.

For ξ = 0 we get
φ̂(0) = h(0)φ̂(0).

Since φ̂(0) �= 0 by assumption, we must have h(0) = 1.
By periodicity, h(2πk) = 1 for any k ∈ Z. Then

φ̂(4πk) = h(2πk)φ̂(2πk) = φ̂(2πk),

or in general
φ̂(2nπk) = φ̂(2πk), n ≥ 1.

Since |φ̂(ξ)| → 0 as |ξ| → ∞,

φ̂(2πk) = 0 for k ∈ Z, k �= 0.

By the Poisson summation formula,

∑
k

φ(x− k) =
√
2π
∑

k

e2πikxφ̂(2πk) =
√
2π φ̂(0) =

∫
φ(x) dx = c.
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Applying the refinement equation to this:

c =
∑

k

φ(x − k) =
√
2
∑
k,�

h�φ(2x− 2k − �)

=
∑

n

(√
2
∑

k

hn−2k

)
φ(2x− n).

By linear independence, we find that

√
2
∑

k

h2k =
√
2
∑

k

h2k+1 = 1.

Then

h(π) =
1√
2

∑
k

hke
−ikπ =

1√
2

[∑
k

h2k −
∑

k

h2k+1

]
= 0.

We will always assume from now on that φ satisfies the properties listed in
theorem 1.10. We will refer to them as the basic regularity conditions.

1.2 Orthogonal MRAs and Wavelets

DEFINITION 1.11 An multiresolution approximation (MRA) of L2 is
a doubly infinite nested sequence of subspaces of L2

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

with properties

(i)
⋃

n Vn is dense in L2.

(ii)
⋂

n Vn = {0}.
(iii) f(x) ∈ Vn ⇐⇒ f(2x) ∈ Vn+1 for all n ∈ Z.

(iv) f(x) ∈ Vn ⇐⇒ f(x− 2−nk) ∈ Vn for all n, k ∈ Z.

(v) There exists a function φ ∈ L2 so that {φ(x−k) : k ∈ Z} forms a stable
basis of V0.

The basis function φ is called the scaling function. The MRA is called or-
thogonal if φ is orthogonal.
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Condition (v) means that any f ∈ V0 can be written uniquely as

f(x) =
∑
k∈ Z

f∗
k φ(x − k)

with convergence in the L2-sense; and there exist constants 0 < A ≤ B,
independent of f , so that

A
∑

k

|fk|2 ≤ ‖f‖22 ≤ B
∑

k

|fk|2.

This implies that φ has stable shifts.
Condition (iii) expresses the main property of an MRA: each Vn consists of

the functions in V0 compressed by a factor of 2n. Thus, a stable basis of Vn

is given by {φkn : n ∈ Z}, where
φnk(x) = 2n/2φ(2nx− k). (1.6)

The factor 2n/2 preserves the L2-norm.
Since V0 ⊂ V1, φ can be written in terms of the basis of V1 as

φ(x) =
∑

k

hkφ1k(x) =
√
2
∑

k

hkφ(2x− k)

for some coefficients hk. In other words, φ is refinable (with possibly an infinite
sequence of coefficients). We will assume that the refinement equation is in
fact a finite sum.
Let us assume for now that the MRA is orthogonal. The following two

lemmas show that in this case φ is essentially unique.

LEMMA 1.12
If {ak} is a finite sequence with∑

k

aka
∗
k+� = δ0�,

then

ak = αδkn

for some α with |α| = 1, and some n ∈ N.

PROOF Let ak0 and ak1 be the first and last nonzero coefficients. Then

δ0,k1−k0 = ak0a
∗
k1
�= 0,

so we must have k0 = k1 = n for some n, and |an|2 = 1.
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LEMMA 1. 13
If φ1 and φ2 are orthogonal scaling functions with compact support which
generate the same space V0, then

φ2(x) = αφ1(x− n)

for some constant α with |α| = 1, and some n ∈ N.

PROOF (See [50, chapter 8].) Since φ1 and φ2 are both basis functions of
compact support for the same space V0, we must have

φ2(x) =
∑

k

akφ1(x− k)

for some finite sequence {ak}. Orthogonality implies that∑
�

aka
∗
k+� = δ0�,

which by lemma 1.12 means
ak = αδkn

for some |α| = 1, n ∈ N.

The orthogonal projection of an arbitrary function f ∈ L2 onto Vn is given
by

Pnf =
∑

k

〈f, φnk〉φnk.

The basis functions φnk are shifted in steps of 2−n as k varies, so Pnf cannot
represent any detail on a scale smaller than that. We say that the functions
in Vn have resolution 2−n or scale 2−n. Pnf is called an approximation to f
at resolution 2−n.
An MRA provides a sequence of approximations Pnf of increasing accuracy

to a given function f .

LEMMA 1. 14
For any f ∈ L2, Pnf → f in L2 as n→∞.

PROOF Fix f and choose any ε > 0. Since
⋃

n Vn is dense in L2, we can
find an n ∈ N and a function g ∈ Vn so that

‖f − g‖ < ε.

g is automatically in Vk for all k ≥ n; Pkf is the closest function in Vk to f ,
so that

‖f − Pkf‖ ≤ ‖f − g‖ < ε for all k ≥ n.
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FIGURE 1.3
The function f(x) = sinx and its approximations P0f , P1f , P2f at
resolutions 1, 1/2, 1/4, respectively, based on the Haar function.

Example 1.4
The Haar function produces an orthogonal MRA. Properties (i) and (ii) follow
from basic measure theory (step functions are dense in L2).

V0 consists of all L2-functions which are piecewise constant on intervals of
the form [k, k + 1), k ∈ Z. V1 consists of the functions in V0 compressed
by a factor of 2; these are functions piecewise constant on intervals of length
1/2, of the form [k/2, (k + 1)/2). Functions in V2 are piecewise constant on
intervals of length 1/4, and so on (fig. 1.3).

The true power of the multiresolution approach arises from considering the
differences between approximations at different levels.
The difference between the approximations at resolution 2−n and 2−n−1 is

called the fine detail at resolution 2−n:

Qnf(x) = Pn+1f(x)− Pnf(x).

Qn is also an orthogonal projection. Its range Wn is orthogonal to Vn, and

Vn ⊕Wn = Vn+1.
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The symbol ⊕ denotes the direct sum of vector spaces (which in this case is
an orthogonal direct sum).

V
−1

W
−1

V
0

W
0

V
1

FIGURE 1.4
The spaces Vn and Wn.

The two sequences of spaces {Vn} and {Wn} and their relationships can be
graphically represented as in figure 1.4.
The nesting of the spaces Vn implies that for k > 0,

PnPn−k = Pn−kPn = Pn−k,

PnQn = 0,
PnQn−k = Qn−k.

LEMMA 1.15

Vn =
n−1⊕

k=−∞
Wk.

PROOF Wk is a subspace of Vn for all k < n, so

n−1⊕
k=−∞

Wk ⊂ Vn.

Take an arbitrary f ∈ Vn and decompose it into

f = fn + r

with

fn =
n−1∑

k=−∞
Qkf.
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Then

Pn−1fn = Pn−1Qn−1f +
n−2∑

k=−∞
Pn−1Qkf

=
n−2∑

k=−∞
Qkf = fn−1,

and

f = Pnf = Pn−1f +Qn−1f

= Pn−1fn + Pn−1r +Qn−1f

= fn−1 + Pn−1r +Qn−1f

= fn + Pn−1r,

so
Pn−1r = r.

We can prove likewise that Pkr = r for all k < n, so

r ∈
n−1⋂

k=−∞
Vk = {0}.

The sequence of spaces {Wn} satisfies conditions similar to conditions (i)
through (v) of an MRA. The symbol ⊥ stands for “is orthogonal to.”

THEOREM 1.16
For any orthogonal MRA with scaling function φ,

(i)
⊕

n Wn is dense in L2.

(ii) Wk ⊥Wn if k �= n.

(iii) f(x) ∈ Wn ⇐⇒ f(2x) ∈ Wn+1 for all n ∈ Z.

(iv) f(x) ∈ Wn ⇐⇒ f(x− 2−nk) ∈ Wn for all n, k ∈ Z.

(v) There exists a function ψ ∈ L2 so that {ψ(x − k) : k ∈ Z} forms an
orthogonal stable basis of W0, and {ψnk : n, k ∈ Z} forms a stable basis
of L2.

(vi) Since ψ ∈ V1, it can be represented as

ψ(x) =
√
2
∑

k

gkφ(2x− k)
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for some coefficients gk. If hk are the recursion coefficients of φ, then
we can choose

gk = (−1)khN−k, (1.7)

where N is any odd number.

The function ψ is called the wavelet function or mother wavelet. φ and ψ
together form a wavelet.

PROOF Property (i) follows from lemma 1.15 and property (i) of an MRA:

n⋃
k=−∞

Vk = Vn =
n−1⊕

k=−∞
Wk.

Property (ii) is easy to check: without loss of generality we can assume
k < n. Then Wk ⊂ Vk+1 ⊂ Vn, and Vn ⊥Wn.
Properties (iii) and (iv) are inherited from the corresponding properties of

an MRA.
Formula (1.7) for ψ will be derived in section 3.1.1, where we will also show

that this is essentially the only possible choice.
The number N is usually taken to be k0 +k1 (which is always odd). In this

case, φ and ψ have the same support.
Stability of ψ will be shown in chapter 5.

Note that ψ is not a refinable function: it is defined in terms of φ, not in
terms of itself.

Example 1.5
By equation (1.7), the wavelet function for the Haar scaling function (fig. 1.5)
is given by the coefficients

{g0, g1} = {h1,−h0} = { 1√
2
,− 1√

2
}.

Since φ = χ[0,1], we get

ψ = χ[0,1/2] − χ[1/2,1].

Likewise, the wavelet function for the Daubechies wavelet D2 (fig. 1.6) is a
linear combination of four compressed and shifted versions of φ. It is given
by the coefficients

{g0, g1, g2, g3} = {h3,−h2, h1,−h0}

=

{
1−√3
4
√
2

,−3−√3
4
√
2

,
3 +

√
3

4
√
2

,−1 +
√
3

4
√
2

}
.
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FIGURE 1.5
The Haar scaling function (left) and wavelet (right).

We define the symbol of ψ as

g(ξ) =
1√
2

∑
k

gke
−ikξ.

The Fourier transform of the refinement equation for ψ is

ψ̂(ξ) = g(ξ/2)φ̂(ξ/2).

Orthogonality of φ and ψ can be expressed as in theorem 1.3

∑
hkh

∗
k−2� =

∑
gkg

∗
k−2� = δ0�,∑

hkg
∗
k−2� =

∑
gkh

∗
k−2� = 0,

(1.8)

or equivalently

|h(ξ)|2 + |h(ξ + π)|2 = |g(ξ)|2 + |g(ξ + π)|2 = 1,
h(ξ)g(ξ)∗ + h(ξ + π)g(ξ + π)∗ = g(ξ)h(ξ)∗ + g(ξ + π)h(ξ + π)∗ = 0.

(1.9)

In terms of the wavelet function, the projection Qn is given by

Qnf =
∑

k

〈f, ψnk〉ψnk.

We now come to the main concept we seek: the discrete wavelet transform
(DWT).
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FIGURE 1.6
The scaling function (left) and wavelet function (right) of the
Daubechies wavelet D2.

Given a function f ∈ L2, we can represent it as

f =
∞∑

k=−∞
Qkf

(complete decomposition in terms of detail at all levels). Alternatively, we
can start at any level � and use the approximation at resolution 2−� plus all
the detail at finer resolution:

f = P�f +
∞∑

k=�

Qkf.

For practical applications, we need to reduce this to a finite sum. We
assume that f ∈ Vn for some n > �. Then

f = Pnf = P�f +
n−1∑
k=�

Qkf. (1.10)

Equation (1.10) describes the DWT: the original function or signal f gets
decomposed into a coarse approximation P�f , and fine detail at several res-
olutions (fig. 1.7). The decomposition as well as the reconstruction can be
performed very efficiently on a computer. Implementation details are pre-
sented in section 2.1.
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FIGURE 1.7
P0f (top left), Q0f (top right), Q1f (bottom left), and P2f = P0f+
Q0f +Q1f (bottom right) for f(x) = sinx.

1.3 Wavelet Decomposition

We have already explained the basic idea behind the decomposition of a func-
tion in terms of different scales. This section describes a different way of
looking at the same idea. It is more heuristic than mathematical in nature.
The Fourier transform is a frequency transform: if f(t) is a function of time,

f̂(ξ) is interpreted as the frequency content of f at frequency ξ. This works
well for detecting the main frequencies in a signal, but does not give an easy
way to find out when in time the frequencies are present.
For example, given a recording of three notes played on a piano, one could

easily determine from the Fourier transform what the three notes were. How-
ever, it would be hard to determine in which order the notes were played.
Ideally, we would like to have a time-frequency transform F of f where

F (t, ξ) represents the frequency content of f at frequency ξ at time t. Such
an F cannot actually exist: in order to detect a frequency, you have to observe
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the signal for a period of time. That is the uncertainty principle. However, it
is possible to determine approximate local time-frequency averages.
If u is a unit vector, x an arbitrary vector in Rn, the inner product 〈x,u〉

is the size of the component of x in direction u. Likewise if f , w ∈ L2(R)
with ‖w‖2 = 1, we can interpret 〈f, w〉 as the component of f in direction w,
that is, as a measure of how much f “looks like” w. It is simultaneously a
measure of how much f̂ looks like ŵ, since by Parseval’s formula

〈f, w〉 = 〈f̂ , ŵ〉.
Fix a particular function w ∈ L2 with ‖w‖2 = 1. We assume that

µ =
∫

t|w(t)|2 dt,

σ =
{∫

(t− µ)2|w(t)|2 dt
}1/2

exist, along with the corresponding quantities µ̂, σ̂ of ŵ. These are the mean
and standard deviation of the probability distributions |w|2 and |ŵ|2. w is
approximately localized in the time interval µ− σ ≤ t ≤ µ+ σ and frequency
interval µ̂− σ̂ ≤ ξ ≤ µ̂+ σ̂.
The inner product 〈f, w〉 can then be interpreted as the frequency content

of f in the time interval µ−σ ≤ t ≤ µ+σ and frequency interval µ̂− σ̂ ≤ ξ ≤
µ̂+ σ̂, or equivalently as a local average of the (hypothetical) time-frequency
distribution F over the corresponding box in time-frequency space.
The uncertainty principle

σ · σ̂ ≥ 1/2

requires this box to have a minimum area of 2, but the shape and location
can be controlled by choosing a suitable w. We can have good time resolution
(small σ) at the cost of bad frequency resolution (large σ̂), or vice versa. f and
f̂ represent the extremes: f has perfect time resolution, no frequency resolu-
tion; f̂ has perfect frequency resolution, no time resolution. Other methods,
including the wavelet decomposition, are somewhere in between.
One alternative approach to an approximate time-frequency transform is

the short-term Fourier transform (STFT). We fix a window function w, choose
time and frequency steps ∆t, ∆ξ, and compute the coefficients

fnk = 〈f, wnk〉,
where

wnk(t) = eint∆ξw(t− k∆t).

Each wnk corresponds to a box in time-frequency space. All boxes have the
same size (2σ)× (2σ̂), and their centers form a rectangular grid with spacings
∆t, ∆ξ. The spacings should satisfy

∆t ≤ 2σ,
∆ξ ≤ 2σ̂,
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to make sure the entire plane gets covered. The STFT provides the same time
and frequency resolution everywhere.

FIGURE 1.8
Tiling of the time-frequency plane for STFT (left) and DWT (right).
The time axis runs left to right, the frequency axis bottom to top.

The DWT uses an analogous approach with a mother wavelet ψ, and

ψnk(t) = 2n/2ψ(2nt− k).

Here the nk-box has size 2−n(2σ)×2n(2σ̂), with different spacings at different
frequencies (fig 1.8).
The DWT provides different time and frequency resolutions at different

frequencies. For low frequencies, we get good frequency resolution, but bad
time resolution. For high frequencies it is the other way around.
This approach works well in practice. In analyzing a sound recording, the

onset of a sound is often accompanied by high-frequency transients which die
out rapidly, in a time proportional to 1/frequency. Lower frequencies persist
for longer times. That is precisely the scale on which the DWT tries to capture
them.

1.4 Biorthogonal MRAs and Wavelets

Refinable functions that define MRAs are relatively easy to find. Orthogonal
MRAs are harder to find, but the orthogonality requirement can be replaced
by milder biorthogonality conditions.

DEFINITION 1.17 Two refinable functions φ, φ̃ are called biorthogonal
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if
〈φ(x), φ̃(x− k)〉 = δ0k.

We also call φ̃ the dual of φ.

THEOREM 1.18
A necessary condition for biorthogonality is∑

hkh̃
∗
k−2� = δ0�, (1.11)

or equivalently
h(ξ)h̃(ξ)∗ + h(ξ + π)h̃(ξ + π)∗ = 1. (1.12)

These conditions are sufficient to ensure biorthogonality if the cascade al-
gorithm for both φ and φ̃ converges.

The proof is analogous to that of theorem 1.3.

REMARK 1.19 It is possible to orthonormalize an existing scaling func-
tion with stable shifts [109], but the resulting new φ does not usually have
compact support any more. This makes it less desirable for practical applica-
tions.

Assume now that we have two MRAs {Vn} and {Ṽn}, generated by biorthog-
onal scaling functions φ and φ̃. We can complete the construction of wavelets
as follows.
The projections Pn and P̃n from L2 into Vn, Ṽn, respectively, are given by

Pnf =
∑

k

〈f, φ̃nk〉φnk,

P̃nf =
∑

k

〈f, φnk〉φ̃nk,

where φnk, φ̃nk are defined as in equation (1.6). These are now oblique (i.e.,
nonorthogonal) projections.
The projections Qn, Q̃n are defined as before by

Qnf = Pn+1f − Pnf,

Q̃nf = P̃n+1f − P̃nf,

and their ranges are the spaces Wn, W̃n.
The space Wn is orthogonal to Ṽn: if f ∈Wn, then

f = Qnf = Pn+1f − Pnf.
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However, Wn ⊂ Vn+1, so f = Pn+1f and Pnf = 0. This means 〈f, φ̃nk〉 = 0
for all k, or f ⊥ Ṽn.
We still have

Vn ⊕Wn = Vn+1

as a nonorthogonal direct sum.
The question is now whether we can find wavelet functions ψ, ψ̃ which span

the spaces Wn, W̃n. Finding the functions is not hard. The hard part is the
stability.

THEOREM 1.20
Assume that φ, φ̃ ∈ L2 are scaling functions generating biorthogonal MRAs,
and that the cascade algorithm converges for both of them. Then

(i)
⊕

n Wn,
⊕

n W̃n are dense in L2.

(ii) Wk ⊥ W̃n if k �= n.

(iii)

f(x) ∈Wn ⇐⇒ f(2x) ∈ Wn+1 for all n ∈ Z,

f(x) ∈ W̃n ⇐⇒ f(2x) ∈ W̃n+1 for all n ∈ Z.

(iv)

f(x) ∈ Wn ⇐⇒ f(x− 2−nk) ∈ Wn for all n, k ∈ Z,

f(x) ∈ W̃n ⇐⇒ f(x− 2−nk) ∈ W̃n for all n, k ∈ Z.

(v) There exist biorthogonal functions ψ, ψ̃ ∈ L2 so that {ψ(x− k) : k ∈ Z}
forms a stable basis of W0, {ψ̃(x − k) : k ∈ Z} forms a stable basis of
W̃0, and {ψnk : n, k ∈ Z}, {ψ̃nk : n, k ∈ Z} both form a stable basis of
L2.

(vi) Since ψ ∈ V1, ψ̃ ∈ Ṽ1, they can be represented as

ψ(x) =
√
2
∑

k

gkφ(2x − k),

ψ̃(x) =
√
2
∑

k

g̃kφ̃(2x− k)

for some coefficients gk, g̃k.
If hk, h̃k are the recursion coefficients of φ, φ̃, we can choose

ψ(x) =
√
2
∑

k

(−1)kh̃∗
N−kφ(2x− k),

ψ̃(x) =
√
2
∑

k

(−1)kh∗
N−kφ̃(2x− k),

(1.13)

where N is any odd number.
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The functions ψ, ψ̃ are again called the wavelet functions or mother wavelets.

The proof is basically the same as that of theorem 6, except for the stability
part. That will be covered in chapter 5 (theorem 5.27).
As in equations (1.2) and (1.5), we can express the biorthogonality condi-

tions as ∑
hkh̃

∗
k−2� =

∑
gkg̃

∗
k−2� = δ0�,∑

hkg̃
∗
k−2� =

∑
gkh̃

∗
k−2� = 0,

(1.14)

or equivalently

h(ξ)h̃(ξ)∗ + h(ξ + π)h̃(ξ + π)∗ = g(ξ)g̃(ξ)∗ + g(ξ + π)g̃(ξ + π)∗ = 1,

h(ξ)g̃(ξ)∗ + h(ξ + π)g̃(ξ + π)∗ = g(ξ)h̃(ξ)∗ + g(ξ + π)h̃(ξ + π)∗ = 0.
(1.15)

REMARK 1.21 The dual scaling function is not unique. A given scaling
function may not have any dual. If one dual exists, however, dual lifting steps
(section 2.7) will produce an infinite number of others.

Example 1.6

One of many possible scaling functions dual to the hat function is defined by
the recursion coefficients

{h̃−4, . . . , h̃4} =
√
2

128
{3,−6,−16, 38, 90, 38,−16,−6, 3}.

This pair is called the Cohen(2,4) wavelet (fig. 1.9).
The corresponding wavelet functions have coefficients

{g−3, . . . , g5} =
√
2

128
{−3,−6, 16, 38,−90, 38, 16,−6,−3},

{g̃0, g̃1, g̃2} =
√
2
4
{1,−2, 1}.

We can use equations (1.14) to verify that these coefficients work. We will see
in section 3.8 where they come from.

As before, Pnf is interpreted as an approximation to f at resolution 2−n,
and Qnf is the fine detail. If f ∈ Vn, we can do a wavelet decomposition

f = Pnf = P�f +
n−1∑
k=�

Qkf.
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FIGURE 1.9
Scaling functions (left) and wavelet functions (right) for the
Cohen(2,4)-wavelet (top) and its dual (bottom).

However, we can also do these things on the dual side. P̃nf is also an
approximation to f at resolution 2−n, with fine detail Q̃nf . If f ∈ Ṽn, we can
do a dual wavelet decomposition

f = P̃nf = P̃�f +
n−1∑
k=�

Q̃kf.

This is an example of the general symmetry about biorthogonal wavelets:
whenever you have any formula or algorithm, you can put a tilde on everything
that did not have one, and vice versa, and you get a dual formula or algorithm.
That does not mean that both algorithms are equally useful for a particular

application, but they both work.

1.5 Moments

We always assume that φ satisfies the minimal regularity assumptions from
theorem 1.10.
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DEFINITION 1.22 The kth discrete moments of φ, ψ are defined by

mk =
1√
2

∑
�

�kh�,

nk =
1√
2

∑
�

�kg�.

They are related to the symbols by

mk = ikDkh(0),

nk = ikDkg(0).
(1.16)

In particular, m0 = h(0) = 1.
Discrete moments are uniquely defined and easy to calculate.

DEFINITION 1.23 The kth continuous moments of φ, ψ are

µk =
∫

xkφ(x) dx,

νk =
∫

xkψ(x) dx.
(1.17)

They are related to the Fourier transforms of φ, ψ by

µk =
√
2π ikDkφ̂(0),

νk =
√
2π ikDkψ̂(0).

(1.18)

The continuous moment µ0 is not determined by the refinement equation.
It depends on the scaling of φ. For any given φ we can pick µ0 arbitrarily, but
for a biorthogonal pair the normalizations have to match (see lemma 1.25).

LEMMA 1.24
For all x ∈ R, ∑

k

φ(x − k) =
∫

φ(x) dx = µ0.

PROOF From the basic regularity conditions,∑
k

φ(x− k) = c;

thus

c =
∫ 1

0

c dx =
∑

k

∫ 1

0

φ(x − k) dx =
∫ ∞

−∞
φ(x) dx = µ0.
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LEMMA 1.25
If φ, φ̃ ∈ L1 ∩ L2 are biorthogonal, then

µ̃∗
0µ0 = 1.

PROOF We expand the constant 1 in a series

1 =
∑

k

〈1, φ̃(x− k)〉φ(x − k) = µ̃∗
0

∑
k

φ(x− k) = µ̃∗
0µ0.

The normalization µ0 = µ̃0 = 1 is a natural choice. In the orthogonal case,
the normalization |µ0| = 1 is required.

THEOREM 1.26
The continuous and discrete moments are related by

µk = 2−k
k∑

t=0

(
k
t

)
mk−tµt,

νk = 2−k
k∑

t=0

(
k
t

)
nk−tµt.

(1.19)

Once µ0 has been chosen, all other continuous moments are uniquely defined
and can be computed from these relations.

PROOF This is proved in [71].
We start with

φ̂(2ξ) = h(ξ)φ̂(ξ)

and differentiate k times:

2k
(
Dkφ̂

)
(2ξ) =

k∑
t=0

(
k
t

)
Dk−th(ξ)Dtφ̂(ξ).

When we set ξ = 0 and use equations (1.16) and (1.18), we get the first
formula in equation (1.19). The second formula is proved similarly.
For k = 0, we get

µ0 = m0µ0,

which is always satisfied. µ0 is an arbitrary nonzero number.
For k ≥ 1, equation (1.19) leads to

(2k − 1)µk =
k−1∑
s=0

(
k
s

)
mk−sµs.
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We can compute µ1, µ2, . . . successively and uniquely from this. The second
formula in equation (1.19) provides the νk.

Example 1.7
For the scaling function of the Daubechies wavelet D2, the first four discrete
moments are

m0 = 1, m1 =
3−√3

2
, m2 =

6− 3
√
3

2
, m3 =

27− 17
√
3

4
.

If we choose µ0 = 1, we can calculate

µ1 =
3−√3

2
, µ2 =

10− 5
√
3

2
, µ3 =

189− 107
√
3

28
.

For later use, we note the following lemma.

LEMMA 1.27
Assume that µ0 has been chosen to be 1. Then

nk = 0, k = 0, . . . , p− 1 ⇔ νk = 0, k = 0, . . . , p− 1

and

mk = 0, k = 1, . . . , p− 1 ⇔ µk = 0, k = 1, . . . , p− 1.

In other words, all continuous moments up to a certain order vanish if and
only if all discrete moments up to that order vanish. (In the case of φ, the
zeroth moment does not vanish, of course.)
The proof proceeds by induction, based on the formulas (1.19).

1.6 Approximation Order

As pointed out in section 1.2, the projection Pnf of a function f onto the
space Vn represents an approximation to f at resolution 2−n. How good is
this approximation?

DEFINITION 1.28 The scaling function φ provides approximation order
p if

‖f − Pnf‖ = O(2−np)
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whenever f has p continuous derivatives.

If φ provides approximation order p, then for smooth f

‖Qnf‖ = O(2−np),

since ‖Qnf‖ ≤ ‖f − Pnf‖+ ‖f − Pn+1f‖.

DEFINITION 1.29 The scaling function φ has accuracy p if all polyno-
mials up to order p− 1 can be represented as

xn =
∑

k

c∗nkφ(x − k) (1.20)

for some coefficients cnk.

This representation is well-defined even though xn does not lie in the space
L2. Since φ has compact support, the sum on the right is finite for any fixed
x.

LEMMA 1.30

The coefficients cnk in equation (1.20) have the form

cnk =
n∑

t=0

(
n
t

)
kn−tyt, (1.21)

where yt = ct0, and y0 �= 0.

PROOF Replace xn by (x + �)n in equation (1.20) and expand.
y0 is 1/µ0, which is nonzero.

The yk are called the approximation coefficients.
If φ has a dual φ̃, we can multiply equation (1.20) by φ̃(x) and integrate to

obtain
y∗n = 〈xn, φ̃(x)〉 = µ̃∗

n. (1.22)

DEFINITION 1.31 The recursion coefficients {hk} of a refinement equa-
tion satisfy the sum rules of order p if∑

k

(−1)kknhk = 0

for n = 0, . . . , p− 1.
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THEOREM 1.32
Assume φ satisfies the basic regularity conditions. Then the following are
equivalent:

(i) φ has approximation order p.

(ii) φ has accuracy p.

(iii) {hk} satisfy the sum rules of order p.

(iv) The symbol h has a zero of order p at ξ = π, so it factors as

h(ξ) =
(
1 + e−iξ

2

)p

h0(ξ),

where h0 is another trigonometric polynomial.

(v) For k ∈ Z, k �= 0, and n = 0, . . . , p− 1, φ̂ satisfies

φ̂(0) �= 0,

Dnφ̂(2kπ) = 0.

These are called the Strang–Fix conditions.

If φ(x) is part of a biorthogonal wavelet, the following are also equivalent
to the above:

(vi) g̃ has a zero of order p at 0.

(vii) ψ̃ has p vanishing moments. That is, both the continuous and discrete
moments of ψ̃ up to order p− 1 are zero.

PROOF The full proof can be found in a number of places (e.g., in [87],
[140]). We just give a sketch here.
(i) ⇔ (ii): This is proved in [87]. It is the most technical part of the proof.
(ii) ⇒ (iii): We already know that {hk} satisfy the sum rules of order 1

(theorem 1.10).
Assume that φ has approximation order p, and we have already established

the sum rules of order n for some n < p. We expand

xn =
∑

k

c∗nkφ(x− k) =
√
2
∑
k�

c∗nkh�φ(2x− 2k − �)

and compare this to
(2x)n =

∑
k

c∗nkφ(2x− k).
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Using the linear independence of translates of φ and the lower order sum rules,
this gives us some relations for {hk}. These can be reduced to the sum rule
or order n. The details are lengthy and messy, unfortunately, so we will not
present them here.
An alternative proof (also lengthy) can be found in [134].
(iii) ⇒ (iv): This is quite easy:

(Dnh)(π) = (−i)n 1√
2

∑
k

(−1)kknhk.

(iv) ⇒ (v): For ξ = 2kπ, k = 2n�, � odd, we apply equation (1.3) n times
to get

φ̂(ξ) = h(2−n−1ξ)

[
n∏

s=1

h(2−sξ)φ̂(2−n−1ξ)

]
.

h has a zero of order p at 2−n−1ξ = �π by periodicity, so φ̂ has a zero of order
p at ξ = 2kπ.
(v) ⇒ (ii): The Poisson summation formula states∑

k

φ(x − k) =
√
2π
∑

k

e2πikxφ̂(2πk),

so for n ≤ p− 1

∑
k

knφ(x− k) =
√
2πin

∑
k

Dn
[
eixξφ̂(ξ)

]∣∣∣∣∣
ξ=2πk

.

The derivative on the right vanishes for all k �= 0. The term for k = 0 is a
polynomial in x of degree n, with nonzero leading coefficient. By induction,
we can find polynomials cn(x) so that∑

k

cn(k)∗φ(x − k) = xn.

(iv) ⇔ (vi): One of the biorthogonality relations in equation (1.12) is

g(ξ)g̃(ξ)∗ + g(ξ + π)g̃(ξ + π)∗ = 1.

If we assume that g̃(0) = 0, then g̃(π) �= 0. The relation

h(ξ)g̃(ξ)∗ + h(ξ + π)g̃(ξ + π)∗ = 0 (1.23)

for ξ = 0 then implies that h(π) = 0. Conversely, if h(π) = 0, then we must
have g̃(0) = 0.
For higher p, we differentiate equation (1.23) repeatedly and set ξ = 0, with

similar arguments.
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(vi) ⇔ (vii): Condition (vi) is equivalent to vanishing discrete moments.
The equivalence with vanishing continuous moments was lemma 1.27.

In summary: approximation order p, accuracy p, and sum rules of order
p are equivalent for sufficiently regular φ. They are also equivalent to the fact
that the dual wavelet function has p vanishing moments (both discrete and
continuous), and to a particular factorization of the symbol.

Example 1.8
We can now verify that the Daubechies wavelet D2 has approximation order
2. The scaling function symbol factors as

h(ξ) =
(
1 + e−iξ

2

)2
(
1 +

√
3

2
+

1−√3
2

e−iξ

)
.

1.7 Symmetry

DEFINITION 1.33 A function f is symmetric about the point a if

f(a+ x) = f(a− x) for all x.

f is antisymmetric about a if

f(a+ x) = −f(a− x) for all x.

On the Fourier transform side, symmetry and antisymmetry are expressed
as

f̂(ξ) = ±e−2iaξf̂(ξ).

+ corresponds to symmetry; − corresponds to antisymmetry.
A scaling function cannot be antisymmetric, since antisymmetric functions

automatically have integral zero. A scaling function of compact support can
only be symmetric about the midpoint a = (k0+k1)/2 of its support, but such
symmetric scaling functions exist (e.g. , the Haar and hat scaling functions).
A wavelet function can be symmetric or antisymmetric.

LEMMA 1.34
A scaling function φ(x) of compact support which satisfies the refinement equa-
tion

φ(x) =
√
2

k1∑
k=k0

hk φ(2x− k)
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is symmetric about the point a = (k0 + k1)/2 if and only if the recursion
coefficients are symmetric about this point:

ha+k = ha−k,

or equivalently

hk0+k = hk1−k.

A wavelet function which satisfies the refinement equation

ψ(x) =
√
2

�1∑
k=�0

gk φ(2x− k)

has support [(k0 + �0)/2, (k1 + �1)/2]. If we let

b =
�0 + �1

2
,

then ψ is symmetric or antisymmetric about the point

a+ b

2
=

k0 + �0 + k1 + �1
4

if and only if the recursion coefficients are symmetric or antisymmetric about
the point b:

gb+k = gb−k.

PROOF We calculate

φ(a+ x) =
√
2
∑

k

hkφ(2x+ 2a− k)

=
√
2
∑

k

hkφ(a+ [2x+ a− k])

=
√
2
∑

k

hkφ(a− [2x+ a− k])

=
√
2
∑

k

hkφ(−2x+ k),

while

φ(a− x) =
√
2
∑

k

hkφ(−2x+ 2a− k)

=
√
2
∑

k

h2a−kφ(−2x+ k),
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so we get

hk = h2a−k,

which is equivalent to the given conditions.
The second part is proved analogously.

There are many examples of symmetric biorthogonal scaling functions, for
example, the hat function. However, it is not possible for any orthogonal
scaling function or wavelet function with compact support to be symmetric,
except for the Haar wavelet.

TH E O R E M 1 . 3 5
If φ, ψ form an orthogonal wavelet with compact support, and at least one of
φ or ψ is symmetric or antisymmetric, then it must be the Haar wavelet.

PROOF This is a sketch of the proof. The full proof can be found in [50,
chapter 8].
If ψ is either symmetric or antisymmetric, the space Wk is invariant under

the map x→ (−x), so
Vk =

⊕
�<k

W�

is also invariant under this map.
V0 then has two orthogonal basis functions: φ(x) and φ(−x). By lemma 1.13,

φ(−x) = αφ(x + n)

for some α and n ∈ N.
Both functions have the same integral, so α = 1. Looking at the support,

we find that n must be k0 + k1. This is an odd number, since an orthogonal
scaling function has an even number of coefficients. φ is symmetric about the
point n/2, so the recursion coefficients are symmetric:

hk = hn−k.

Then the orthogonality condition becomes

δ0� =
∑

k

hkh
∗
k−2�

=
∑

k

h2kh
∗
2k−2� +

∑
k

h2k+1h
∗
2k+1−2�

=
∑

k

h2kh
∗
2k−2� +

∑
k

hn−2k−1h
∗
n−2k−1+2�

= 2
∑

k

h2kh
∗
2k−2�.
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By lemma 1.12, this implies h2k = βδkN for some N ∈ N and some β with
β2 = 1/2: precisely one of the even-numbered coefficients is nonzero. By
symmetry, there is also precisely one nonzero odd-numbered coefficient.
It is then easy to check that this produces an orthogonal scaling function if

and only if the nonzero coefficients are adjacent and both equal to 1/
√
2. φ

must be a (shifted) Haar wavelet.

1.8 Point Values and N or maliz at ion

We mentioned the cascade algorithm earlier in this chapter as a practical way
for finding approximate point values of φ(x). There is another approach which
produces exact point values of φ. It usually works for continuous φ, but may
fail in some cases.
For integer �, k0 ≤ � ≤ k1, the refinement equation (1.1) reads

φ(�) =
√
2

k1∑
k=k0

hk φ(2�− k) =
√
2

k1∑
k=k0

h2�−k φ(k).

This is an eigenvalue problem

φ = Tφ, (1.24)

where

φ =




φ(k0)
φ(k0 + 1)

...
φ(k1)


 , T�k =

√
2h2�−k, k0 ≤ �, k ≤ k1.

Note that each column of T contains either all of the h2k or all of the h2k+1.
The basic regularity condition∑

k

h2k =
∑

k

h2k+1 =
1√
2

implies that (1, 1, . . . , 1) is a left eigenvector to eigenvalue 1, so a right eigen-
vector also exists.
However, the eigenvalue 1 may be multiple: for the Haar wavelet, the matrix

T is the 2 × 2 identity matrix. In some cases, a unique continuous solution
can be found even if 1 is a multiple eigenvalue [19].
The first and last conditions in equation (1.24) are

φ(k0) =
√
2hk0φ(k0),

φ(k1) =
√
2hk1φ(k1).

© 2004 by Chapman & Hall/CRC 



Unless hk0 or hk1 are equal to 1/
√
2, the values of φ at the endpoints are zero,

and we can reduce the size of φ and T .
Once the values of φ at the integers have been determined, we can use

the refinement equation to obtain values at the half-integers, then quarter-
integers, and so on to any desired resolution.

Example 1.9
For the scaling function of the Daubechies waveletD2, the eigenvalue problem
in equation (1.24) becomes

Tφ =
√
2



h0 0 0 0
h2 h1 h0 0
0 h3 h2 h1

0 0 0 h3





φ(0)
φ(1)
φ(2)
φ(3)


 =



φ(0)
φ(1)
φ(2)
φ(3)


 .

Since h0, h3 are not 1/
√
2, we know φ(0) = φ(3) = 0, and we can reduce the

problem to √
2
(
h1 h0

h3 h2

)(
φ(1)
φ(2)

)
=
(
φ(1)
φ(2)

)
.

The solution, normalized to φ(1) + φ(2) = 1, is

φ(1) =
1 +

√
3

2
, φ(2) =

1−√3
2

.

Then

φ(1/2) =
√
2 [h0φ(1) + h1φ0] =

2 +
√
3

4
.

We can also use the eigenvalue approach to compute point values of deriva-
tives of φ (assuming they exist).
If φ satisfies the refinement equation

φ(x) =
√
2

k1∑
k=k0

hk φ(2x− k),

then

(Dφ)(x) = 2
√
2

k1∑
k=k0

hk (Dφ)(2x − k).

With the same derivation as above, we obtain

Dφ = 2T (Dφ),

so Dφ is an eigenvector of T to eigenvalue 1/2. This eigenvalue must exist if
φ is continuously differentiable.
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The nth derivative can be likewise computed from the eigenvector to eigen-
value 2−n.

LEMMA 1.36
The correct normalization for the nth derivative is∑

k

knDnφ(k) = (−1)nn!µ0.

PROOF As in the proof of lemma 1.24, we can show that

∑
k

knDnφ(k) =
∫

xnDnφ(x) dx.

After integrating by parts n times, this becomes

∑
k

knDnφ(k) = (−1)nn!
∫

φ(x) dx = (−1)nn!µ0.

Example 1.10
Our standard example D2 is not differentiable.
The scaling function of the Daubechies waveletD3 has recursion coefficients

listed in section A. It is continuously differentiable.
With the normalizations∑

k

φ(k) = 1,
∑

k

kφ(k) = −1

we get 


φ(0)
φ(1)
φ(2)
φ(3)
φ(4)
φ(5)




=




0
1.28633506942570
−0.38583696104588
0.09526754600378
0.00423434561640

0




,




Dφ(0)
Dφ(1)
Dφ(2)
Dφ(3)
Dφ(4)
Dφ(5)




=




0
1.63845234088407
−2.23275819046311
0.55015935827401
0.04414649130504

0




.
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2

Practical Computation

As explained in sections 1.2, 1.4, the discrete wavelet transform (DWT) is
based on the decomposition

Vn = V� ⊕W� ⊕W�+1 ⊕ · · · ⊕Wn−1.

A function s ∈ Vn can be expanded either as

s =
∑

k

s∗nkφnk

or as

s =
∑

k

s∗�kφ�k(x) +
n−1∑
j=�

∑
k

d∗jkψjk,

where
φnk(x) = 2n/2φ(2nx− k)

(and likewise for ψ, φ̃, ψ̃), and

s∗nk = 〈s, φ̃nk〉,
d∗nk = 〈s, ψ̃nk〉.

We put complex conjugates on the coefficients with a view toward the sec-
ond part of the book, where these coefficients will be row vectors.
The notations s and d originally stood for sum and difference, which is

what they are for the Haar wavelet. You can also think of them as standing
for the smooth part and the fine detail of s. The original function s(x) is the
signal.
The DWT and inverse DWT (IDWT) convert the snk into s�k, djk, j =

�, . . . , n− 1, and conversely. The implementation is described in section 2.1.
The DWT algorithm requires the initial expansion coefficients snk. Fre-

quently, the available data consist of equally spaced samples of s of the form
s(2−nk). Converting s(2−nk) to snk is called preprocessing. After an IDWT,
converting snk back to s(2−nk) is called postprocessing. Postprocessing has to
be the inverse of preprocessing if we want to achieve perfect reconstruction.
In many applications of the DWT, the preprocessing step is skipped. We

will discuss the validity of this approach in section 2.2, and mention some
preprocessing approaches that have been proposed.
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A very important question is the handling of boundaries. The DWT is
defined for infinitely long signals. In practice, we can only handle finitely long
signals. What do we do near the ends? Several approaches are covered in
section 2.3.
We will then describe some alternative formulations of the DWT algorithm,

and finally some methods for computing integrals involving scaling or wavelet
functions.

2.1 Discrete Wavelet Transform

Assume that we have a function s ∈ Vn

s(x) =
∑

k

s∗nkφnk(x),

represented by its coefficient vector sn. We decompose s into its components
in Vn−1, Wn−1:

s = Pn−1s+Qn−1s

=
∑

j

〈s, φ̃n−1,j〉φn−1,j +
∑

j

〈s, ψ̃n−1,j〉ψn−1,j

=
∑

j

s∗n−1,jφn−1,j +
∑

j

d∗n−1,jψn−1,j.

LEMMA 2.1

〈φn−1,j , φ̃nk〉 = hk−2j ,

〈φn−1,j , ψ̃nk〉 = gk−2j ,

〈φ̃n−1,j , φnk〉 = h̃k−2j ,

〈ψ̃n−1,j , φnk〉 = g̃k−2j .

PROOF We will just prove the first one:

〈φn−1,j , φ̃nk〉 =
∫

2(n−1)/2φ(2n−1x− j) · 2n/2φ̃(2nx− k) dx

=
∫ ∑

t

2n/2htφ(2nx− 2j − t) · 2n/2φ̃(2nx− k) dx

=
∑

t

htδ2j+t,k = hk−2j .
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Using these formulas, we find that

s∗n−1,j = 〈
∑

k

s∗nkφnk, φ̃n−1,j〉 =
∑

k

s∗nk〈φnk, φ̃n−1,j〉 =
∑

k

s∗nkh̃
∗
k−2j ,

or
sn−1,j =

∑
k

h̃k−2jsnk.

After similar calculations for dn−1,j and for the reconstruction step, we get
the following algorithm.

ALGORITHM 2.2 Discrete Wavelet Transform (Direct Formula-
tion)

The original signal is sn = {snk}.
Decomposition:

sn−1,j =
∑

k

h̃k−2jsnk,

dn−1,j =
∑

k

g̃k−2jsnk.

The decomposed signal consists of two pieces sn−1, dn−1.
Reconstruction:

snk =
∑

j

[
h∗

k−2jsn−1,j + g∗k−2jdn−1,j

]
.

DEFINITION 2.3 The convolution c = a ∗ b of two sequences a, b is
defined by

cj =
∑

k

aj−kbk.

If a is a sequence {. . . , a−1, a0, a1, . . . }, we use the notation a(−) to denote
the reversed sequence

{. . . , a1, a0, a−1, . . . }.
The notation (↓ 2)a denotes the sequence downsampled by 2:

((↓ 2)a)k = a2k.

We throw the odd-numbered coefficients away and renumber the even-numbered
coefficients.
The notation (↑ 2)a denotes the sequence upsampled by 2:

((↑ 2)a)2k = ak,

((↑ 2)a)2k+1 = 0.
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We insert a zero between each pair of adjacent coefficients and renumber.
The decomposition step consists of two discrete convolutions

(h̃(−) ∗ sn)j =
∑

k

h̃−(j−k)snk,

(g̃(−) ∗ sn)j =
∑

k

g̃−(j−k)snk,

followed by downsampling:

sn−1 = (↓ 2)(h̃(−) ∗ sn),
dn−1 = (↓ 2)(g̃(−) ∗ sn).

The reconstruction step consists of upsampling, followed by a two convolu-
tions:

sn = h∗ ∗ (↑ 2)sn−1 + g∗ ∗ (↑ 2)dn−1.

What we have described so far is one step of the DWT. In practice, we do
this over several levels:

sn → sn−1,dn−1

sn−1 → sn−2,dn−2

. . .

s�+1 → s�,d�.

The IDWT works similarly, in reverse.
How many floating point operations does this take?
If the original vector sn has length N , it takes O(N) operations for the

first step. At the next step, sn−1 only has length N/2, so it takes O(N/2)
operations for the second step. Altogether, we have

O(N) +O(N/2) +O(N/4) + · · · = O(N).

The fast Fourier transform (FFT) is implemented in a similar recursive
manner. Each step turns a vector of length N into two new vectors half as
long in O(N) time. The difference is that in the FFT we need to continue
working on both halves. That produces an operation count of

O(N) +O(N) + · · · = O(N logN).

The DWT is asymptotically faster than the Fourier transform, but this
would only be noticeable for very long signals in practice.
The decomposition and reconstruction steps can also be interpreted as in-

finite matrix–vector products. The decomposition step is


...
sn−1,−1

sn−1,0

sn−1,1

...




=



· · · · · · · · ·
· · · h̃−1 h̃0 h̃1 h̃2 · · ·

· · · h̃−1 h̃0 h̃1 h̃2 · · ·
· · · h̃−1 h̃0 h̃1 h̃2 · · ·

· · · · · · · · ·







...
sn,−1

sn,0

sn,1

...




,
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and similarly for the d-coefficients.
The matrix formulation becomes nicer if we interleave the s- and d-coefficients:


...
sn−1,−1

dn−1,−1

sn−1,0

dn−1,0

sn−1,1

dn−1,1

...




=




· · · · · · · · ·
· · · h̃−1 h̃0 h̃1 h̃2 · · ·
· · · g̃−1 g̃0 g̃1 g̃2 · · ·

· · · h̃−1 h̃0 h̃1 h̃2 · · ·
· · · g̃−1 g̃0 g̃1 g̃2 · · ·

· · · h̃−1 h̃0 h̃1 h̃2 · · ·
· · · g̃−1 g̃0 g̃1 g̃2 · · ·

· · · · · · · · ·







...
sn,−1

sn,0

sn,1

...




,

or simply
(sd)n−1 = L̃ sn. (2.1)

L̃ is an infinite banded block Toeplitz matrix

L̃ =



· · · · · · · · ·
· · · L̃0 L̃1 · · ·

· · · L̃0 L̃1 · · ·
· · · · · · · · ·




with

L̃k =
(
h̃2k h̃2k+1

g̃2k g̃2k+1

)
.

The reconstruction step can be similarly written as

sn = L∗(sd)n−1. (2.2)

The perfect reconstruction condition is expressed as

L∗L̃ = I.

Throughout this book, I stands for an identity matrix of appropriate size.

2.2 Pre- and Postprocessing

The DWT algorithm requires the initial expansion coefficients snk. Fre-
quently, the available data consists of equally spaced samples of s of the form
s(2−nk). Converting s(2−nk) to snk is called preprocessing or prefiltering.
After an IDWT, converting snk back to s(2−nk) is called postprocessing or
postfiltering. Postprocessing has to be the inverse of preprocessing if we want
to achieve perfect reconstruction.
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In [134, page 232], the authors call equating the expansion coefficients and
point samples a “wavelet crime.” I would not go quite so far, but a number of
other authors also recommend a prefiltering step. For simplicity, we assume
in this section that s is real.
Strang and Nguyen [134] recommend replacing the exact values

snk =
∫

s(x)φ̃nk(x) dx

by the trapezoidal rule sums

snk ≈ 2−n/2
∑

�

s(2−n�)φ̃(�− k) dx.

Recall that the point values of φ̃ at the integers are known.
Other suggested prefiltering algorithms can be found in [24, section 3.2]

and [64]. If s is given in closed form and the coefficients snk are needed with
high accuracy, they can be computed with the techniques of section 2.8.3.
Contrary to the above, I will now present a heuristic argument why it is

often acceptable to use the expansion coefficients snk and function samples
s(2−nk) interchangeably. We assume that s(x) is given exactly and is at
least twice differentiable. We also assume that φ̃ is real-valued and has been
normalized so that

µ̃0 =
∫

φ̃(x) dx = 1.

Fix the level n. Then

snk = 〈s, φ̃nk〉 =
∫

s(x) φ̃nk(x) dx

=
∫

s(x) 2n/2φ̃(2nx− k) dx

= 2−n/2

∫
s(2−n(k + y))φ̃(y) dy.

(2.3)

We expand s into a Taylor series about the point 2−n(k + µ̃1), where µ̃1 is
the first continuous moment of φ̃:

s(2−n(k + y)) = s(2−n(k + µ̃1)) + s′(2−n(k + µ̃1))2−n(y − µ̃1) +O(2−2n).

When we substitute this into equation (2.3), the derivative term vanishes,
since ∫

(y − µ̃1)φ̃(y)dy = 0,

so

snk = 2−n/2
[
s(2−n(k + µ̃1)) +O(2−2n)

] ≈ 2−n/2s(2−n(k + µ̃1)).
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For smooth s, the truncation error is smaller than the coefficients by a factor
of order 2−2n, which is quite small for larger n. Except for a scaling constant
and a shift of 2−nµ̃1, the expansion coefficients and equally spaced samples
are almost the same.
Postprocessing will provide point samples of the signal s. Point values

in between the sampling points could be found by adding up the scaling
function expansion, but this often gives the reconstructed signal a very ragged
appearance. Many scaling functions are not very smooth.
Better alternatives for finding intermediate points include interpolation, or

the approach described in [99].

2.3 Handling Boundaries

The DWT and IDWT, as described so far, operate on infinite sequences of
coefficients. In real life, we can only work on finite sequences. How should we
handle the boundary?
We want the finite length DWT to be linear, so it should be of the form

(sd)n−1 = L̃nsn

for some matrix L̃n, in analogy with equation (2.1). In order to preserve the
usual definition of the DWT as much as possible, we postulate the form

L̃n =


L̃b

L̃i

L̃e


 ,

so that

• The interior part L̃i is a segment of the infinite block Toeplitz matrix
L̃, and each row contains a complete set of coefficients. This part will
make up most of the matrix. L̃i approximately doubles in size when n
is increased by 1.

• The matrices L̃b at the beginning and L̃e at the end are fairly small and
remain constant at all levels. These matrices will handle the boundaries.

• The entire matrix L̃n has the same block structure as L̃ (each block row
shifted by one compared to its neighbors).

• L̃n is invertible, and its inverse matrix L∗
n has the analogous structure

L∗
n =


L∗

b

L∗
i

L∗
e


 .
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In the orthogonal case, we also would like to preserve L−1
n = L∗

n.

There are a number of ways to find suitable boundary coefficients. An
excellent overview can be found in [134, section 8.5].

2.3.1 Data Extension Approach

This is very easy to implement. We artificially extend the signal across the
boundaries so that each extended coefficient is a linear combination of known
coefficients.
For example, suppose our signal starts with s0,0 and we need to compute

s−1,0 = h̃−1s0,−1 + h̃0s0,0 + h̃1s0,1 + · · · .

If our extension method is

s0,−1 = αs0,0 + βs0,1,

then
s−1,0 = (h̃0 + αh−1)s0,0 + (h̃1 + βh−1)s0,1 + · · · .

The h- and g-coefficients that “stick out over the side” of L̃n are wrapped
back inside.
This gives us L̃n, and its inverse will be L∗

n. There is no guarantee that
L̃n will not be singular, or that Ln = L̃−∗

n will have the correct form, but it
usually works.
Specific data extension methods are:

Periodic Extension
The effect of this is that h- and g-coefficients that disappear on the left

reappear on the right, and vice versa.
This always works and preserves orthogonality and approximation order 1,

but it is not necessarily a good idea unless the data are truly periodic. The
jump at the boundary leads to spurious large d-coefficients.

Zero Extension
We simply truncate the infinite matrix L̃. Zero padding introduces jumps,

like periodic extension. It does not preserve orthogonality or any approxima-
tion orders.

Symmetric Extension
We reflect the data about the endpoints. The effect on L̃ is that coefficients

that disappear at the end get reflected back. This is the recommended method
for symmetric filters.
There are two ways of doing a reflection: if the data are

s0, s1, s2, . . . ,
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we can extend this by either

. . . , s2, s1, s0, s1, s2, . . .

(whole-sample symmetry) or by

. . . , s2, s1, s0, s0, s1, s2, . . .

(half-sample symmetry). We can also do antisymmetric reflection, but in the
whole-sample case this only works if s0 = 0.
This approach is discussed in great detail in [27]. A finite signal can be ex-

tended to a periodic infinite signal through repeated reflections. For example,
if the original signal is

s0, s1, s2, s3

and we use half-sample symmetry at both ends, this becomes

. . . , s1, s0, s0, s1, s2, s3, s3, s2, s1, s0, s0, s1, . . . .

It is shown in [27] that if you match the type of data extension correctly to
the type of symmetry of the scaling function, then a finite DWT based on
symmetric extension will be equivalent to an infinite DWT on the symmetric
extension: the DWT will preserve the symmetry across levels.

Constant or Linear Extrapolation
This is discussed in [150]. Constant extrapolation preserves approximation

order 1; linear extrapolation preserves approximation order 2. They do not
preserve orthogonality.

Example 2.1

For the Daubechies wavelet D2, the decomposition matrix with linear exten-
sion looks like this:

L̃n =




h1 + 2h0 h2 − h0 h3

−h2 + 2h3 h1 − h3 −h0

h0 h1 h2 h3

h3 −h2 h1 −h0

. . . . . .
h0 h1 h2 h3

h3 −h2 h1 −h0

h0 h1 − h3 h2 + 2h3

h3 −h2 + h0 h1 − 2h0




.

The inverse has the correct structure, with slightly larger end blocks.
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2.3.2 Matrix Completion Approach

This is a linear algebra approach described in [108] and [134]. We look for
suitable end blocks which guarantee

L̃nL
∗
n = I.

This can be done in a way that will preserve orthogonality, but it will not
preserve approximation order in general.

Example 2.2
We take the Daubechies wavelet D2. This wavelet is orthogonal, so we can
drop the tildes. We look for Ln of the form



a b c
d e f
h0 h1 h2 h3

h3 −h2 h1 −h0

. . . . . .
h0 h1 h2 h3

h3 −h2 h1 −h0

u v w
x y z




. (2.4)

The solution is not unique. Given any solution, we can multiply Lb by any
2× 2 orthogonal matrix and get another solution; similarly, for Le. Following
the suggestion from [134], we impose the additional conditions

d+ e+ f = 0
x+ y + z = 0.

This will ensure that constant vectors get annihilated by the wavelet coeffi-
cients. It does not give us approximation order 1, though: the scaling function
coefficients do not preserve constant vectors.
We concentrate first on orthogonality: rows 1 and 2 have to be orthogonal

to rows 3 and 4 (they are automatically orthogonal to the other rows). This
is possible since (h0, h1) and (h3,−h2) are linearly dependent. The vector
normal to (h0, h1) and (h3,−h2) is (h2, h3), so we start with

b = e = h2

c = f = h3

d = −e− f = −h2 − h3.

Orthogonality of the first two rows then requires

a =
h2

2 + h2
3

h2 + h3
.
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Then we normalize each row. The result is

Lb =
(

0.93907080158804 0.29767351612730 −0.17186188466672
−0.34372376933344 0.81325917012746 −0.46953540079402

)
.

Similar calculations at the other end give

Le =
(
0.40344911067754 0.69879435796197 0.59069049456887
0.29534524728444 0.51155297407064 −0.80689822135507

)
.

2.3.3 Boundary Function Approach

This approach is the most time-consuming, but it can preserve both orthog-
onality and approximation order.
The idea is to introduce special boundary functions at each end of the inter-

val, and work out the resulting decomposition and reconstruction algorithms.
This approach was pioneered in [42], where it was carried out for the

Daubechies wavelets. A more general description that can also incorporate
boundary conditions can be found in [6].
The notation and explanation necessary for the general description is quite

extensive. We will content ourselves with a detailed worked-out example.

Example 2.3
Consider again the Daubechies wavelet D2. It has support length 3, so on an
interval of length N there are N −2 integer translates of φ that are contained
completely inside the interval. This suggests that we should use one boundary
function at each end.
We only consider the left end, which we take to be 0. We assume the interval

is sufficiently long so that there is no interference between the left and right
boundary functions.
The interior functions are φ(x), φ(x − 1), . . . . We look for a left boundary

function φb that is a linear combination of the two scaling functions that cross
the boundary, restricted to x ≥ 0:

φb(x) = γ [αφ(x + 1) + βφ(x + 2)]χ[0,∞). (2.5)

The parameter setup reflects the order of calculation: we first find α and β
which make φb refinable. Then we adjust γ to make ‖φb‖ = 1.
Since φ(x + 1) and φ(x + 2) are orthogonal to the interior functions, φb

automatically inherits this property.
We want φb to be refinable, which means we want it to satisfy

φb(x) =
√
2 [aφb(2x) + bφ(2x) + cφ(2x− 1)] . (2.6)
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The range of functions to use in the refinement equation follows from con-
sidering the support: φb has support [0, 2]. The functions at level 1 that have
support in [0, 2] are φb(2x), φ(2x), φ(2x− 1).
Not every linear combination of the form in equation (2.5) is refinable. It

is shown in [6] that if the scaling function has approximation order p, then
projecting x0, x1, . . . , xq−1, q ≤ p, onto the span of the boundary-crossing
scaling functions will produce q refinable boundary functions that will preserve
approximation order q.
We use q = 1. Since ∑

k

φ(x − k) = 1,

the projection of the function 1 onto the span of φ(x+ 1), φ(x+ 2) is simply
their sum: α = β = 1.
Finding γ is a bit tricky, but with the methods described in section 2.8 we

calculate
γ =

1√
3 + 1

.

Then we work out the coefficients a, b, c from equation (2.6). They turn out
to be 1/

√
2, γh2, and γh3. Those numbers go directly into the first row of the

decomposition matrix Ln in equation (2.4).
The boundary wavelet function ψb is found by looking for the orthogonal

complement of V0 in V1. It is shown in [42] that it suffices if we take φ1b ∈ V1

and subtract its component in direction φb:

ψb = δ [φ1b − aφ0b(x)] ,

where
a = 〈φ1b, φ0b〉 = 1/

√
2

is the same a as in equation (2.6). δ is chosen to ensure that ‖ψb‖ = 1.
In our example, we find δ =

√
2, and

ψb =
1√
2
φ1b − γh2φ10 − γh3φ11.

These numbers go into the second row of Ln.
We then need to repeat the calculations for the right end of the interval.

Altogether we find that


1/
√
2 γbh2 γbh3

1/
√
2 −γbh2 −γbh3

h0 h1 h2 h3

h3 −h2 h1 −h0

. . . . . .
h0 h1 h2 h3

h3 −h2 h1 −h0

γeh0 γeh1 1/
√
2

−γeh0 −γeh1 1/
√
2




,
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where γb = 1/(
√
3 + 1), γe =

√
3− 1.

This matrix is orthogonal, and it preserves approximation order 1.

The DWT matrix derived in the example only preserves approximation
order 1. To preserve approximation order 2, we need two boundary functions
at each end. To keep the total function count constant, we have to remove
one interior function at each end. We build two boundary functions at the
left end out of different linear combinations of φ(x + 2), φ(x + 1), and φ(x).
The interior functions begin with φ(x − 1).
The calculations get more messy, and we have to include extra orthogonal-

ization steps among the boundary functions, but the basic idea is the same.
Details are given in [42].

2.3.4 Further Comments

Boundary methods usually require some preprocessing near the boundary.

Example 2.4
This is a continuation of the previous example.
We can calculate that ∫

φb(x) dx =
1√
3 + 1

,

∫
φe(x) dx =

√
3 + 1
2

,

so the expansion of the constant 1 in the scaling function basis is

1 =
1√
3 + 1

φb +
∑

k

φ(x − k) +
√
3 + 1
2

φe.

It is vectors of the form

(
1√
3 + 1

, 1, 1, . . . , 1, 1,
√
3 + 1
2

)∗

instead of (1, 1, . . . , 1)∗ which get annihilated by the wavelet functions and
preserved by the scaling functions.
We need to apply the preprocessing step of multiplying the first entry of

the signal by 1/(
√
3+1) and the last entry by (

√
3+1)/2, and corresponding

postprocessing if we do a reconstruction.

Other approaches to the boundary problem can be found in [46] and [113].
The former paper pays close attention to the stability of the boundary func-
tions.
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A Mathematica algorithm to find the coefficients for the boundary function
approach can be found in [5].
Which boundary handling method should you use? Periodic exten-

sion works well for periodic data, but not in general. Symmetric extension
is recommended for symmetric wavelets. The boundary function approach
works well if you can find or derive the coefficients.
If none of that applies, my preference is linear extension. It is easy to use

and does not introduce artificial jumps in the data.

2.4 Putting It All Together

A complete DWT for a one-dimensional signal of finite length goes like this:

• Do preprocessing (optional).

• Decide how to handle the boundaries.

• Apply the algorithm.

If we start with a signal sn of length N , the first step will produce two
signals sn−1 and dn−1, each of length N/2. They can be stored in the place
previously occupied by sn. Then we repeat the process with sn−1, and so on.
The programming is easier if we put the sk at the beginning of the vector.

The output from the DWT routine after several steps is then


s�

d�

d�+1

...
dn−1


 .

We can then extract the components.

Example 2.5
Figure 2.1 shows the decomposition of a signal over three levels, using the
Daubechies(7,9) biorthogonal wavelet. I have used periodic extension, but
the boundary handling method is irrelevant in this example. The chosen
signal has enough zeros near the ends.
The different levels are displayed with different scales on the horizontal axis.

The original signal (top row) had length 1024. The other rows have lengths
128, 128, 256, 512 (top to bottom). Normalizing the horizontal scales ensures
that features appear at corresponding locations at each level.
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FIGURE 2.1
Decomposition of a signal over three levels.

I have also adjusted the vertical scale in each component. Each DWT step
takes a constant vector into another constant vector that is half as long but
multiplied by

√
2. The �2-norm is preserved. The numbers in row P0s are

actually larger than the numbers in row s by a factor of
√
8.

Chapter 4 will discuss how to interpret the DWT. Right now we are just
looking at the mechanics.
For two-dimensional signals (images), we do a DWT on both rows and

columns.
After one level of decomposition, the image splits into four panels

S →
(
SS DS
SD DD

)
.

The first letter represents the filter that was applied in the horizontal di-
rection; the second letter represents the vertical filter.

SS is a lower resolution version of the original. DS emphasizes vertical
edges, since they correspond to jumps in the horizontal direction. SD em-
phasizes horizontal edges, and DD shows both.
For the second level of decomposition, we work on the top half in the vertical

direction, and the left half in the horizontal direction. The image splits into
nine pieces. Alternatively, we could just decompose SS further.
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FIGURE 2.2
DWT of the Barbara image over two levels.

Example 2.6

Figure 2.2 shows the DWT of the Barbara image over two levels. A small
version of the original image can be seen in the top left.
I have scaled each sub-image separately to make it visible. With uniform

scaling, all except the top left subimage would be almost black.

2.5 Modulation Formulation

The modulation formulation is a way of thinking about the DWT algorithm
and verifying the perfect reconstruction conditions. It is not a way to actually
implement it.
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We associate with each sequence a = {ak} (finite or infinite) its symbol

a(ξ) =
∑

k

ake
−ikξ.

If c = a ∗ b, then
c(ξ) = a(ξ)b(ξ).

Downsampling by two is represented as

(↓ 2)a(ξ) = 1
2

[
a(

ξ

2
) + a(

ξ

2
+ π)

]
,

or
(↓ 2)a(2ξ) = 1

2
[a(ξ) + a(ξ + π)] .

Upsampling by two is represented as

(↑ 2)a(ξ) = a(2ξ).

The entire DWT algorithm in terms of the symbols looks like this.

ALGORITHM 2.4 Discrete Wavelet Transform (Modulation For-
mulation)

The original signal is sn(ξ).
Decomposition:

sn−1(2ξ) =
1√
2

[
h̃(ξ)sn(ξ) + h̃(ξ + π)sn(ξ + π)

]
dn−1(2ξ) =

1√
2
[g̃(ξ)sn(ξ) + g̃(ξ + π)sn(ξ + π)] .

The decomposed signal consists of two pieces sn−1(2ξ), dn−1(2ξ).
Reconstruction:

1√
2
sn(ξ) = [h(ξ)∗sn−1(2ξ) + g(ξ)∗dn−1(2ξ)] .

When we add the redundant statement
1√
2
sn(ξ + π) = [h(ξ + π)∗sn−1(2ξ) + g(ξ + π)∗dn−1(2ξ)]

to the reconstruction formula, we can write decomposition and reconstruction
in the matrix form(

sn−1(2ξ)
dn−1(2ξ)

)
=
(
h̃(ξ) h̃(ξ + π)
g̃(ξ) g̃(ξ + π)

)
· 1√

2

(
sn(ξ)

sn(ξ + π)

)
,

1√
2

(
sn(ξ)

sn(ξ + π)

)
=
(

h(ξ)∗ g(ξ)∗

h(ξ + π)∗ g(ξ + π)∗

)(
sn−1(2ξ)
dn−1(2ξ)

)
.
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DEFINITION 2.5 The matrix

M(ξ) =
(
h(ξ) h(ξ + π)
g(ξ) g(ξ + π)

)
(2.7)

is called the modulation matrix.

The biorthogonality conditions become

M(ξ)∗M̃(ξ) = I. (2.8)

DEFINITION 2.6 A trigonometric polynomial matrix with the property

U(ξ)∗U(ξ) = I (2.9)

is called paraunitary.

This generalizes the standard notion of a unitary matrix. The modulation
matrix of an orthogonal refinable function is paraunitary.

REMARK 2.7 You may be wondering at this point where the factors of
1/
√
2 in algorithm 2.4 come from.

One answer is that the symbols h(ξ), g(ξ) are defined differently from the
symbols s(ξ), d(ξ): they carry a factor of 1/

√
2 already. Together with the

factor 1/
√
2 in the decomposition formula, that makes up the factor of 1/2 in

the downsampling.
The matrix formulation makes it more clear why these factors have to be

there. If φ, ψ form an orthogonal wavelet, the modulation matrix is parauni-
tary; it preserves two-norms:

‖sn‖2 = ‖sn−1‖2 + ‖dn−1‖2.

However, at level n we also have the redundant sn(ξ+π). The factor of 1/
√
2

makes the norms of (sn(ξ), sn(ξ + π))/
√
2 and sn(ξ) equal.

2.6 Polyphase Formulation

Convolutions can be implemented very efficiently on a computer, much faster
than random multiplications and additions. There is even special hardware
available. Unfortunately, a direct implementation of the DWT in terms of
convolutions means that half the computed values get thrown away afterward.
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There is a way to arrange the calculations in the algorithm in a form that
uses convolutions with no wasted computations. This is called the polyphase
implementation.

DEFINITION 2.8 The even and odd phases a0, a1 of a sequence a = {ak}
are defined by

a0,k = a2k,

a1,k = a2k+1.

We split both the signal and the recursion coefficients into even and odd
phases. Then

sn−1,j =
∑

k

h̃k−2jsnk

=
∑

k

h̃2k−2jsn,2k +
∑

k

h̃2k+1−2jsn,2k+1

=
∑

k

h̃0,k−jsn0,k +
∑

k

h̃1,k−jsn1,k.

This is now a sum of two convolutions:

sn−1 = h̃0(−) ∗ sn,0 + h̃1(−) ∗ sn,1.

The other parts of the DWT algorithm can be adapted similarly.
Decomposition begins with splitting the input into two phases. Each phase

is filtered (convolved) with two different filters, and the results added. In
the reconstruction step, we compute the even and odd phases separately, and
finally recombine them. The number of floating-point operations is unchanged
from the direct implementation.

DEFINITION 2.9 The polyphase symbols of a sequence a = {ak} are
given by

a0(ξ) =
∑

k

a0,ke
−ikξ =

∑
k

a2ke
−ikξ,

a1(ξ) =
∑

k

a1,ke
−ikξ =

∑
k

a2k+1e
−ikξ.

In symbol notation, the polyphase DWT algorithm can be written as
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Decomposition:
(
sn−1(ξ)
dn−1(ξ)

)
=
(
h̃0(ξ) h̃1(ξ)
g̃0(ξ) g̃1(ξ)

)(
sn,0(ξ)
sn,1(ξ)

)
.

Reconstruction:
(
sn,0(ξ)
sn,1(ξ)

)
=
(
h0(ξ)∗ g0(ξ)∗

h1(ξ)∗ g1(ξ)∗

)(
sn−1(ξ)
dn−1(ξ)

)
.

DEFINITION 2.10 The matrix

P (ξ) =
(
h0(ξ) h1(ξ)
g0(ξ) g1(ξ)

)

is called the polyphase matrix.

The biorthogonality conditions become

P (ξ)∗P̃ (ξ) = I. (2.10)

The polyphase matrix of an orthogonal wavelet is paraunitary.

REMARK 2.11 Note that the polyphase symbols of the recursion coeffi-
cients

h0(ξ) =
∑

k

h2ke
−ikξ

h1(ξ) =
∑

k

h2k+1e
−ikξ

do not get a factor of 1/
√
2 like the regular symbols.

2.7 Lifting

There is a distinct difference between the modulation matrix and the poly-
phase matrix: the modulation matrix has a particular structure. All the
information is already contained in the first column; the second column is
simply the first column with shifted argument.
If we multiply the modulation matrices of different wavelets together, the

result does not have any particular significance. Conversely, if we want to
multiply a modulation matrix by some factor to create another modulation
matrix, that factor has to have a particular structure.
A polyphase matrix, on the other hand, is unstructured. If P1, P̃1 and P2,

P̃2 both satisfy
Pk(ξ)∗P̃k(ξ) = I,

© 2004 by Chapman & Hall/CRC 



then so do P = P1P2 and P̃ = P̃1P̃2.
This makes it possible to create new wavelets from existing ones by mul-

tiplying the polyphase matrix by some appropriate factor, and it opens the
possibility of factoring a given polyphase matrix into elementary steps. One
such factorization is described in this section.
For simplicity, we switch to the z-notation at this point, where

z = e−iξ.

This lets us work with polynomials rather than trigonometric polynomials.
Using the symbolic polyphase notation, we assume that the original signal

sn(z) has already been decomposed into sn−1(z), dn−1(z). We now add an
extra step.

DEFINITION 2.12 A lifting step consists of an operation of the form

snew,n−1(z) = sn−1(z) + a(z)dn−1(z)
dnew,n−1(z) = dn−1,

or in matrix notation(
snew,n−1(z)
dnew,n−1(z)

)
=
(
1 a(z)
0 1

)(
sn−1(z)
dn−1(z)

)
.

A dual lifting step consists of an operation of the form

snew,n−1(z) = sn−1(z),
dnew,n−1(z) = dn−1 + b(z)sn−1(z)

or in matrix notation(
snew,n−1(z)
dnew,n−1(z)

)
=
(

1 0
b(z) 1

)(
sn−1(z)
dn−1(z)

)
.

A decomposition step with some polyphase matrix P̃ , followed by a lifting or
dual lifting step, is equivalent to decomposition step with the single polyphase
matrix

P̃new(z) =
(
1 a(z)
0 1

)
P̃ (z)

or

P̃new(z) =
(

1 0
b(z) 1

)
P̃ (z).
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The inverses are easy to compute:

(
1 a(z)
0 1

)−1

=
(
1 −a(z)
0 1

)
,

(
1 0

b(z) 1

)−1

=
(

1 0
−b(z) 1

)
,

so

Pnew(z) =
(

1 0
−a(z)∗ 1

)
P (z)

or

Pnew(z) =
(
1 −b(z)∗
0 1

)
P (z).

This means that during the reconstruction, we have to add an extra step

snew,n−1(z) = sn−1(z)− a(z)dn−1(z),
dnew,n−1(z) = dn−1

or

snew,n−1(z) = sn−1(z),
dnew,n−1(z) = dn−1 − b(z)sn−1(z)

before the original reconstruction steps. Of course, we can also see that di-
rectly.
Swelden’s idea [138], [139] was to build up DWT algorithms by adding

lifting steps to a very simple initial wavelet. His favorite initial wavelet is the
“lazy wavelet” with P = P̃ = I, which is nothing but a splitting of the signal
into its phases.
It can be shown that every possible wavelet pair of compact support can

be constructed that way.

THEOREM 2.13

The polyphase matrix of any biorthogonal wavelet of compact support can be
factored into a diagonal matrix and several pairs of lifting and dual lifting
steps:

P (z) =
(
h0(z) h1(z)
g0(z) g1(z)

)

=
(
d1(z) 0
0 d2(z)

)(
1 0

bk(z) 1

)(
1 ak(z)
0 1

)
· · ·
(

1 0
b1(z) 1

)(
1 a1(z)
0 1

)
,

where the diagonal terms dk(z) are monomials.
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PROOF This was proved in [53]. The proof is based on the Euclidean
algorithm for determining the greatest common divisor of two polynomials.
As a first step, we divide h1 by h0 to get

h1(z) = h0(z)a(z) + q(z),

so that (
h0(z) h1(z)

)
=
(
h0(z) q(z)

)(1 a(z)
0 1

)
,

where q has a lower degree than h0. We then divide h0 by q and continue in
this manner until we reach z 0 in the top row.
At this point, the diagonal terms have to be monomials, since the determi-

nant is a monomial. One more step will reduce the second row.

The lifting factor decomposition is not unique. Polynomial division with
remainder is unique for standard polynomials, but here we are dealing with
Laurent polynomials. We could start with the highest powers and work down-
ward, or start with the lowest powers and work upward. For example,

z + 2 = (z + 1) · 1 + 1
= (z + 1) · 2− z.

Either way, the quotient has degree 1, and the remainder has degree 0 (as a
Laurent polynomial).
For practical implementation, we are looking for a form that requires as few

multiplications as possible, so we can relax the form of the factors a bit. We
can allow the lifting factors to have monomials on the diagonal, or put the
diagonal matrix on the right.

Example 2.7

For the Daubechies wavelet D2, the polyphase matrix is

P (z) =
(
h0 + h2z h1 + h3z
h3 + h1z −h2 + h0z

)
.

Each pair of outputs sn−1,k, dn−1,k requires eight multiplications and six
additions.
The matrix P factors as

(
1 −√3
0 1

)(
1 0√

3
4 +

√
3−2
4 z 1

)(
1 1
0 z

)(√
6+

√
2

2 0
0

√
6−√

2
2

)
.

In this form, each pair of outputs requires only five multiplications and four
additions.
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There is one additional advantage to the lifting formulation: we can add
additional processing steps to the decomposition and reconstruction, such as
rounding or other forms of quantization.
For example, we could replace

snew,n−1(z) = sn−1(z) + a(z)dn−1(z) (decomposition)
sn−1(z) = snew,n−1(z)− a(z)dn−1(z) (reconstruction)

by

snew,n−1(z) = sn−1(z) + �a(z)dn−1(z)� (decomposition)
sn−1(z) = snew,n−1(z)− �a(z)dn−1(z)� (reconstruction)

where �x� is the largest integer less than or equal to x.
This is a nonlinear operation, but the reconstruction exactly undoes the

effect of the decomposition. We can construct integer-to-integer transforms
this way, for example.

2.8 Calculating Integrals

Scaling and wavelet functions are usually not known in closed form. Neverthe-
less, it is possible to compute many kinds of integrals exactly or approximately.

2.8.1 Integrals with Other Refinable Functions

Assume that φ1(x) and φ2(x) are two refinable functions

φ1(x) =
√
2

k1∑
k=k0

h1kφ1(2x− k),

φ2(x) =
√
2

�1∑
�=�0

h2�φ1(2x− �).

We define
f(y) =

∫
φ1(x)φ2(x− y) dx. (2.11)

When we substitute the refinement equations into the definition of f and sort
things out, we find that

f(y) =
√
2

k1−�0∑
k=k0−�1

ckf(2y − k),
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where
ck =

1√
2

∑
�

h1�h2,�−k.

The function f is again refinable. It is easy to check that∑
k

c2k =
∑

k

c2k+1 =
1√
2

if both the h1k- and h2k-coefficients satisfy this.
An integral of the form ∫

φ1(x)φ2(x− n) dx

is then nothing but f(n), and we already know how to find point values of
refinable functions at the integers.
Since ∫

f(y) dy =
(∫

φ1(x) dx
)(∫

φ2(x) dx
)
,

the correct normalization is

∑
k

f(k) =

(∑
k

φ1(k)

)(∑
k

φ2(k)

)
.

As a by-product, this is also the way to compute ‖φ‖2 for biorthogonal
wavelets. We take φ1 = φ, φ2 = φ∗, normalize the point values of f at the
integers correctly, and then take f(0).

Example 2.8
Take φ1 = φ2 = φ(x) = the hat function. Then the c-coefficients are

{c−2, c−1, c0, c1, c2} = 1
8
√
2
{1, 4, 6, 4, 1}.

We assume that φ has been normalized to
∑

k φ(k) = 1, which is the standard
hat function with a peak of height 1.
The nonzero point values of f at the integers, correctly normalized, are

f(−1) = f(1) = 1/6, f(0) = 2/3.

This means that ∫
φ(x)φ(x ± 1) dx = 1/6,∫
|φ(x)|2 dx = ‖φ‖22 = 2/3,
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which we can also verify directly.

This approach works for any kind of convolution or correlation

f(y) =
∫

φ1(x)φ2(±x± y) dx,

with our without a complex conjugate on the second term. We just get slightly
different formulas for the ck.
There are many generalizations:

• Integrals involving several refinable functions. The counterpart
to equation (2.11) for three functions is

f(y, z) =
∫

φ1(x)φ2(x− y)φ3(x− z) dx.

This is a function of two variables, but it is again refinable. After
substituting the refinement equations, we obtain

f(y, z) =
√
2
∑
jk�

hjhj−khj−�f(2y − k, 2z − l).

If the φj have compact support, so does f ; we can find the point values
of f on the integer grid Z2 by solving an eigenvalue problem.

• Integrals involving refinable functions at different levels, such
as ∫

φ1(x)φ2(2x− k) dx.

Here we would use the refinement equations to reduce all functions to a
common level first.

• Integrals involving scaling and wavelet functions. Again, we
would use the refinement equations to reduce this to an integral in-
volving only scaling functions.

• Integrals involving derivatives of refinable functions, such as∫
φ1(x)φ′

2(x− k) dx.

Here we would define f(y) as above and look for point values of f ′

instead.

• Integrals over subintervals. Here we add a Haar function, as in∫ k+1

k

φ(x) dx =
∫

φ(x)φ2(x− k) dx

with φ2 = Haar function.
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More details can be found in [20] and [48]. Kunoth wrote a program package
for performing these calculations [100]. See appendix C for details.

Example 2.9
Let φ1 be the scaling function of the Daubechies wavelet D2, and φ2 = χ[0,1]

the Haar scaling function.
The c-coefficients are

{c−1, c0, c1, c2, c3} = 1
8
√
2
{1 +

√
3, 4 + 2

√
3, 6, 4− 2

√
3, 1−

√
3}.

The nonzero point values of f at the integers, correctly normalized, are

f(0) =
∫ 1

0

φ1(x) dx =
5 + 3

√
3

12

f(1) =
∫ 2

1

φ1(x) dx =
1
6

f(2) =
∫ 3

2

φ1(x) dx =
5− 3

√
3

12
.

2.8.2 Integrals with Polynomials

We already know how to calculate an integral of the form∫
p(x)φ(x) dx

where p is a polynomial. This is nothing but a linear combination of the
continuous moments defined in equation (1.17)

µk =
∫

xkφ(x) dx, (2.12)

which can be calculated from equation (1.19).

2.8.3 Integrals with General Functions

Here we want to approximate integrals of the form

s0k =
∫

s(x)φ(x − k) dx (2.13)

where s is a general function. This is useful, for example, for generating the
true expansion coefficients of s (see section 2.2), or for Galerkin methods based
on scaling functions as the basis functions.
The idea is to reduce such an integral to one of the cases that we already

know: approximate s by a polynomial, or approximate s by a scaling function
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expansion. In either approach, we want to start at a sufficiently fine level n
by calculating

s∗nk =
∫

s(x)2n/2φ(2nx− k) dx. (2.14)

To estimate this integral, we only have to approximate s on the support of
φnk, which is a very small interval. Getting from the snk to s0k is simply a
DWT through n levels, with d�k = 0 at all levels.
The polynomial or quadrature approach is described in [140]. It begins

by deriving a quadrature formula∫
s(x)φ(x) dx ≈

∑
�

w�s(x�)

following the usual steps. Choose q quadrature points x�, write out the La-
grange interpolating polynomials at these points, and integrate to obtain the
weights.
At level n, this rule has accuracy O(hq), h = 2−n. What is interesting is

that after going back to level 0, the integral still has accuracy O(hq). This is
different from the usual repeated quadrature rules, where the global error has
one order of accuracy less than the local error on each panel. The difference
is that we are not adding the panels; we are applying a DWT.
In principle we could put the quadrature points wherever we want (e.g.,

equally spaced across the support of φ), but for efficiency we want some of
the points to overlap when we shift by integers. We would also like to spread
them out across the support of φ to get better accuracy.
Sweldens and Piessens [140] recommend to choose a starting point τ some-

where near the left end of the support of φ, and to choose a step size h which
is a power of 2 so that the points

x� = τ + �h, � = 0, . . . , q (2.15)

are spread out as far as possible while remaining inside supp φ.

Example 2.10
We want to construct a three-point quadrature formula for the scaling function
of the Daubechies wavelet D2. The most regularly spaced points of the form
in equation (2.15) are

x0 = 1/2, x1 = 3/2, x2 = 5/2

for τ = 1/2 and h = 1.
The continuous moments of φ are given in example 1.7.
The first quadrature weight is found by integrating the first Lagrange inter-

polating polynomial

L0(x) =
(x− 3/2)(x− 5/2)

(1/2− 3/2)(1/2− 5/2)
=

x2 − 4x+ 15/4
2

.
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It is

w0 =
µ2 − 4µ1 + (15/4)µ0

2
=

3 + 2
√
3

8
.

The other two weights are found to be

w1 =
1
4
, w2 =

3− 2
√
3

8
.

To get the best accuracy, we let τ be arbitrary, and go through the same
calculations again. The resulting weights wk will be quadratic polynomials in
τ . For example,

w0 =
1
2
τ2 +

1
2

√
3τ +

1
4
.

For any choice of τ , the resulting quadrature rule will integrate quadratic
polynomials correctly. Cubic polynomials will be integrated correctly if(

w0x
2
0 + w1x

3
1 − w2x

3
2

)− µ3 = 0.

This leads to a cubic equation in τ . It has three real solutions, but the only
one inside the support of φ is τ = 0.56517923327320. The corresponding
weights are

w0 = 0.89917335656764
w1 = 0.13285792392236

w2 = −0.03203128049000

A quadrature approach based on Gauss-type formulas is described in [16]
and [17].
The scaling function approach is described in detail in [20] and [48]. We

expand s into a scaling function series

s(x) ≈
∑

k

snkφ2,nk(x),

where the scaling function φ2 could be different from φ. The coefficients snk

are approximated by point values

snk ≈ s(2−n(x+ τ − k)),

where τ is the first continuous moment of φ2. φ2 can be chosen to make this
approximation very accurate. The integral in equation (2.13) can then be
computed by adding up integrals between φ and φ2.
It is shown in [48] that for continuous f this approach converges uniformly

on compact sets to the correct integral.
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3

Creating Wavelets

We have seen some examples of scaling and wavelet functions in earlier chap-
ters. In this chapter we will discuss general ways of modifying existing
wavelets, or creating wavelets with desired properties from scratch. We will
then derive some of the standard types.
Before we do that, we will discuss the two completion problems.

• Given φ, φ̃, find the wavelet functions.

• Given φ, find φ̃.

The first completion problem is easier, and has an essentially unique answer.
The second completion problem has multiple answers.

3.1 Completion Problem

3.1.1 Finding Wavelet Functions

We assume that φ, φ̃ are given biorthogonal scaling functions. We want to
find the wavelet functions.
Recall the definition of the modulation matrix

M(ξ) =
(
h(ξ) h(ξ + π)
g(ξ) g(ξ + π)

)
.

The biorthogonality conditions in equation (1.12) are equivalent to

M(ξ)∗M̃(ξ) = M(ξ)M̃(ξ)∗ = I. (3.1)

Let
∆(ξ) = detM(ξ) = h(ξ)g(ξ + π)− h(ξ + π)g(ξ). (3.2)

Then

M̃(ξ)∗ =
(

h̃(ξ)∗ g̃(ξ)∗

h̃(ξ + π)∗ g̃(ξ + π)∗

)
(3.3)

and also

M̃(ξ)∗ = M(ξ)−1 =
1

∆(ξ)

(
g(ξ + π) −h(ξ + π)
−g(ξ) h(ξ)

)
(3.4)
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by using the well-known formula for the inverse of a 2× 2 matrix.
By assumption, the entries in M̃(ξ) are trigonometric polynomials of finite

degree. This is only possible if ∆(ξ) is a monomial. Since ∆(ξ + π) = −∆(ξ)
by equation (3.2), this monomial must be of odd degree:

∆(ξ) = αei(2n+1)ξ, α �= 0, n ∈ Z.

In the orthogonal case, M(ξ) is paraunitary, and α must satisfy |α| = 1. In
the real case, α = ±1.
Equations (3.3) and (3.4) provide the necessary relations between the re-

cursion coefficients. By comparing entries, we find that

g̃(ξ) = − 1
∆(ξ)∗

h(ξ + π)∗,

or in terms of the recursion coefficients

g̃k = − 1
α∗ (−1)kh∗

2n+1−k. (3.5)

Likewise,
gk = −α(−1)kh̃∗

2n+1−k. (3.6)

With these choices, it can be verified that the biorthogonality relation for h,
h̃

h(ξ)h̃(ξ)∗ + h(ξ + π)h̃(ξ + π)∗ = 1, (3.7)

implies all other biorthogonality relations.

3.1.2 Finding Dual Scaling Functions

Given h(ξ), we want to find h̃(ξ) so that

h(ξ)h̃(ξ)∗ + h(ξ + π)h̃(ξ + π)∗ = 1. (3.8)

This can be converted into something called a Bezout equation, which we will
study in more detail in a few pages. It has a solution if and only if h(ξ) and
h(ξ + π) have no common zeros.
There is also the basic linear algebra approach. Equation (3.8) is a linear

system of equations for h̃k. Given φ, we choose the support of φ̃, making
sure it overlaps the support of φ. We convert equation (3.8) to a system of
linear equations and try to solve it. Bezout’s theorem (theorem 3.1) proves
that a solution always exists if we take a sufficiently long support for φ̃ (again
assuming that h(ξ) and h(ξ + π) have no common zeros).
Additional constraints, such as symmetry or vanishing moments, can be

added as extra equations.
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Example 3.1
The Haar function has recursion coefficients

{h0, h1} = { 1√
2
,
1√
2
}.

Suppose we want to find a dual with coefficients h̃0, . . . , h̃3. The biorthogo-
nality conditions are

h̃0 + h̃1 =
√
2/2

h̃2 + h̃3 = 0.

That leaves two degrees of freedom. We could impose the sum rules of order
0 and 1

h̃0 − h̃1 + h̃2 − h̃3 = 0

−h̃1 + 2h̃2 − 3h̃3 = 0

to get a dual with approximation order 2

{h̃0, h̃1, h̃2, h̃3} = { 3
4
√
2
,

5
4
√
2
,

1
4
√
2
,− 1

4
√
2
}.

These coefficients are similar in magnitude to those of the scaling function of
the Daubechies wavelet D2. The graph of the two functions are also quite
similar.
We cannot impose symmetry with a dual of length 4, but there exists a

symmetric dual scaling function of length 6.

3.2 Projection Factors

This section is needed as background material later in this chapter. We just
state some results without proof at this point. This material will be presented
in greater generality in chapter 9.
It can be shown that the polyphase matrix of every orthogonal wavelet can

be factored in the form

P (z) = QF1(z)F2(z) · · ·Fn(z)zk, (3.9)

where Q is a constant orthogonal matrix and each Fk is a projection factor of
the form

F (z) = (I − uu∗) + uu∗z
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for some unit vector

u =
(
cos θ
sin θ

)
.

Projection factors are paraunitary. The number of factors is the McMillan
degree of P , which is also the polynomial degree of detP (z). The factor zk at
the end only shifts the support of φ and is otherwise unimportant.

Example 3.2
The polyphase matrix of the Daubechies wavelet D2 factors as

P (z) =
1√
2

(
1 1
1 −1

)[
1
4

(
1
√
3√

3 3

)
+

1
4

(
3 −√3

−√3 1

)
z

]
.

The second term is a projection factor based on the vector

u =
1
2

(√
3

−1
)
.

A popular alternative way to write projection factors is to use the parameter
ν = tan θ instead of θ. This works out to

F (z) =
1

1 + ν2

(
ν2 + z ν(z − 1)
ν(z − 1) 1 + ν2z

)
. (3.10)

It can be shown (section 9.1.1) that the scaling function has approximation
order 1 (or higher) if and only if

Q =
1√
2

(
1 1
±1 ∓1

)
. (3.11)

There are also biorthogonal projection factors of the form

F (z) = (I − uv∗) + uv∗z

with u∗v = 1. The dual is

F̃ (z) = (I − vu∗) + vu∗z.

It is not true, however, that every biorthogonal wavelet can be factored into
such pieces. This will be discussed in more detail in chapter 9.

3.3 Techniques for Modifying Wavelets

A technique for modifying wavelets is one which creates new wavelets φnew,
ψnew, φ̃new, ψ̃new by applying some transformation to given φ, ψ, φ̃, ψ̃. Some
examples are
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• Shifting factors between h, h̃. If h, h̃ satisfy the biorthogonality
relations in equation (3.7), and h factors in some manner

h(ξ) = f(ξ)h0(ξ)

with h0(0) = 1, then

hnew(ξ) = h0(ξ),

h̃new(ξ) = f(ξ)∗h̃(ξ)

are again biorthogonal. Examples can be found in sections 3.8 and 3.9.

• Using projection factors. We can add projection factors to an exist-
ing wavelet. This method has the advantage that it preserves orthogo-
nality if F is orthogonal. Unfortunately, it also destroys approximation
order beyond p = 1.

• Using lifting factors. We can add lifting factors or dual lifting factors
to an existing wavelet. Appropriately chosen lifting factors can preserve
approximation order, or even increase it, but they destroy orthogonality.

3.4 Techniques for Building Wavelets

A technique for building wavelets is one which creates wavelets from scratch.
Some examples are

• Solving the biorthogonality relation directly. We look for trigono-
metric polynomial solutions of

h(ξ)h̃(ξ)∗ + h(ξ + π)h̃(ξ + π)∗ = 1.

This is equivalent to a system of quadratic equations. It can be solved
directly for short wavelets, but that quickly becomes unwieldy.

Daubechies has found better ways to solve the orthogonality relation,
based on the Bezout equation. We will see the details later in this
chapter.

• Using projection factors. This is an easy way to create orthogonal
wavelets with approximation order 1 of any size. Higher approximation
orders can be imposed as extra relations among the parameters. For
short wavelets, this can be done in closed form. For longer ones, it can
be done numerically.

Examples are presented in sections 3.6.2 and 3.7.2.
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• Using lifting factors. This is an easy way to create biorthogonal
wavelets of any size. Approximation order is easy to enforce (details
will be presented in the multiwavelet context in the second part of the
book), and symmetry can also be produced this way.

Examples can be found in [11], [138], and [139].

3.5 Bezout Equation

This is necessary background material for the rest of this chapter.

THEOREM 3.1
(Bezout) If p1, p2 are polynomials of degree n1, n2, respectively, with no
common zeros, then there exist unique polynomials q1, q2 of degree n2 − 1,
n1 − 1, respectively, so that

p1(y)q1(y) + p2(y)q2(y) = 1. (3.12)

The proof is given in [50]. It is constructive, based on the Euclidean algo-
rithm for finding the greatest common divisor.
The theorem only says that the solutions of lowest degree are unique. There

may be other solutions of higher degree.
In the special case p1(y) = (1− y)n, p2(y) = ±yn, we can find the solution

explicitly. Solving equation (3.12) for q1 gives

q1(y) = p1(y)−1 [1− p2(y)q2(y)]

= (1− y)−n [1∓ ynq2(y)] .
(3.13)

The shortest solution q1 has degree n− 1; it has to match the Taylor series
expansion of (1 − y)−n up to the yn−1-term. Since

Dk
[
(1 − y)−n

]
= n(n+ 1) · · · (n+ k − 1)(1− x)−n−k,

the coefficient of yk in the Taylor expansion of (1− y)−n is

n(n+ 1) · · · (n+ k − 1)
k!

=
(n+ k − 1)!
k!(n− 1)!

=
(
n+ k − 1

k

)
.

The shortest solution of equation (3.12) is

qn(y) =
n−1∑
k=0

(
n+ k − 1

k

)
yk.
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Bezout’s theorem guarantees that this is actually a solution. This can also be
verified directly.
The same calculation for q2 produces the corresponding result

q2(y) = ±qn(y).

Equation (3.13) shows that the general solution has to have the form

q1(y) = qn(y) + ynr1(y),
q2(y) = ±qn(y) + ynr2(y).

(3.14)

It is easy to verify directly that this solves the Bezout equation if and only if

r1(y) + r2(1 − y) = 0.

LEMMA 3.2
The general solution of the Bezout equation

(1 − y)nq1(y)± ynq2(1− y) = 1

is

q1(y) =
n−1∑
k=0

(
n+ k − 1

k

)
yk + ynr(y),

q2(y) = ±
n−1∑
k=0

(
n+ k − 1

k

)
yk − ynr(1 − y),

(3.15)

where r is an arbitrary polynomial.

One observation that will be used later is that it is not actually necessary
that r is a polynomial: any function will do. Of course, in that case q1 and
q2 will be nonpolynomial solutions of the Bezout equation.

3.6 Daubechies Wavelets

For any p ≥ 1, the Daubechies wavelet Dp has the shortest real orthogonal
scaling function with approximation order p. It is not unique except for p = 1,
but for any p there are only a finite number of solutions.

3.6.1 Bezout Approach

We first give a brief summary of the original derivation of Daubechies in [49]
and [50], which is based on the Bezout equation.
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We want to find all possible real orthogonal wavelets with p vanishing mo-
ments. This means that we need to find h(ξ) of the form

h(ξ) =
(
1 + e−iξ

2

)p

h0(ξ)

which satisfies
|h(ξ)|2 + |h(ξ + π)|2 = 1. (3.16)

Using
1 + e−iξ

2
= e−iξ/2 cos

ξ

2
,

the orthogonality relation becomes(
cos2

ξ

2

)p

|h0(ξ)|2 +
(
sin2 ξ

2

)p

|h0(ξ + π)|2 = 1.

By assumption, h0 has real coefficients. This makes |h0(ξ)|2 an even function,
so we can write it in terms of cosines. Using the substitution

cos ξ = 1− 2 sin2 ξ

2

we find that

|h0(ξ)|2 = q(sin2 ξ

2
) (3.17)

for some real polynomial q. With the further substitution y = sin2 ξ/2, equa-
tion (3.16) becomes

(1− y)pq(y) + ypq(1 − y) = 1. (3.18)

This is a Bezout equation, whose general solution is given in equation (3.15).
The fact that q1 = q2 = q in this case adds the additional constraint

r(y) + r(1 − y) = 0,

so r must have odd symmetry about y = 1/2.
The complete answer is

q(y) =
p−1∑
k=0

(
p− 1 + k

k

)
yk + ypr(

1
2
− y), (3.19)

where r is an arbitrary odd polynomial.
Any q of this form will lead to a solution of equation (3.16) provided we

can find an h0 which satisfies equation (3.17). Solving (3.17) is called spectral
factorization.
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A necessary condition for the existence of a solution to equation (3.17) is
obviously q(y) ≥ 0 for y ∈ [0, 1]. A theorem of Riesz states that this is already
sufficient. The solution itself can be found as follows.
Given q(y), we reverse the substitution:

y = sin2 ξ

2
=

1
2
− 1

2
cos ξ = −1

4
e−iξ +

1
2
− 1

4
eiξ, (3.20)

which turns |h0(ξ)|2 back into a trigonometric polynomial. With the standard
substitution z = e−iξ, it turns into a Laurent polynomial with powers ranging
from −n to n, where n is the degree of q. We multiply |h0(z)|2 by zn to turn
it into a regular polynomial of degree 2n.
It can then be shown that the roots of this polynomial come in groups of

four, of the form zk, 1/zk, z∗k, 1/z
∗
k. If zk is real or lies on the unit circle,

there are only two elements in a group. We select one pair of the form zk,
1/z∗k from each group of four, or one element zk from each group of two.
For simplicity, let zk, k = 1, . . . , n be the chosen roots. Then

h0(z) =
(z − z1) · · · (z − zn)
(1− z1) · · · (1− zn)

(3.21)

will be a solution of equation (3.17).
For a given number p of vanishing moments the shortest possible candidate

for q is found by setting r = 0. These polynomials fortunately satisfy q(y) ≥ 0
for y ∈ [0, 1], so they lead to a family of orthogonal wavelets Dp, p ≥ 1. Dp

contains 2p coefficients; some books use the notation D2p for that reason.
These are the famous Daubechies wavelets.

Example 3.3
These are the calculations for D2, probably the most-pictured wavelet of all.
It was already shown in figure 1.6.
Formula (3.19) for p = 2 produces q(y) = 1 + 2y, which leads to

z|h0(z)|2 = −z2

2
+ 2z − 1

2
.

The roots are 2 ±√3, a real pair of the form z, 1/z. If we take z1 = 2 +
√
3,

we get

h0(z) =
√
3− 1
2

(z − (2 +
√
3)).

This leads to

h0 =
1 +

√
3

4
√
2

, h1 =
3 +

√
3

4
√
2

, h2 =
3−√3
4
√
2

, h3 =
1−√3
4
√
2

.

Choosing z1 to be the other root 2 − √3 leads to the same coefficients in
reverse order.
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One aspect of this derivation sometimes not mentioned is that the Dp are
not unique except for p = 1 (which is the Haar wavelet). Different choices of
roots in the spectral factorization lead to different wavelets.
Consistently choosing 1/zk instead of zk leads to the same recursion coef-

ficients in reverse order. The scaling function is likewise reversed. For p = 2
(one pair of roots) and p = 3 (one quadruple of roots) this is the only non-
uniqueness. For p ≥ 4 there are several distinct solutions.
Daubechies herself produced three sets of Daubechies wavelets: her original

choice (choose zk inside the unit circle, in the upper half plane), the least
asymmetric scaling functions, and the smoothest scaling functions. Other
choices are possible.
The least asymmetric and smoothest functions are found by examining all

possible solutions. The amount of work for doing that increases exponentially
with p, but even for p = 20 it only amounts to a few hundred cases. Computers
have no problem with that.
Incidentally, the coefficients for D2 given in [49] and in the example above

are produced by z1 outside the unit circle, contrary to what the paper says
elsewhere.
For p = 1, 2, 3 there are closed form expressions for the coefficients (see

appendix A.) Exact expressions for the coefficients of D4, D5 in terms of
radicals are given in [128]. The rest are only known numerically.

3.6.2 Projection Factor Approach

An alternative approach for deriving the Daubechies wavelets is based on the
decomposition of the polyphase matrix in terms of projection factors. We use
the factorization in equation (3.9) with Q chosen as in equation (3.11) and the
projection factors parameterized as in equation (3.10). This provides approx-
imation order 1 automatically. We can then impose additional approximation
order conditions via constraints on the νk.

Example 3.4
We take n = 1, so that

P (z) =
1√
2

(
1 1
1 −1

)
1

ν2 + 1

(
ν2 + z ν(z − 1)
ν(z − 1) 1 + ν2z

)
.

This will produce a scaling function with four recursion coefficients. We want
two vanishing wavelet function moments.
The zeroth wavelet function moment is automatically 0. The first moment

is

n1 =
1− 3ν2

2(ν2 + 1)
,

so we must have
ν = ± 1√

3
.
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The choice ν = −1/√3 leads to the standard coefficients for D2. The choice
ν = 1/

√
3 leads to the coefficients in reverse order.

3.7 Coiflets

Coiflets are orthogonal wavelets for which ψ has several vanishing moments,
and for which φ also has several vanishing moments (after the zeroth one).
Coiflets first appeared in [51]. They are named after Ronald Coifman,

who requested such wavelets from Ingrid Daubechies. In Daubechies’ original
approach, the number of vanishing moments for φ and ψ was taken to be
equal. Thus, we want∫

xkψ(x) dx = 0, k = 0, . . . , p− 1,∫
φ(x) dx = 1,∫

xkφ(x) dx = 0, k = 1, . . . , p.

The advantage of coiflets is that for smooth signals s(x), the scaling func-
tion expansion coefficients snk are very close to s(2−nk). The discussion in
section 2.2 showed that in general

|snk − 2−n/2s(2−nk)| = O(2−n),

|snk − 2−n/2s(2−m(k + µ1))| = O(2−2n),

but for coiflets we have

|snk − 2−n/2s(2−nk)| = O(2−(p+1)n).

3.7.1 Bezout Approach

We first look at Daubechies’ original approach to constructing coiflets.
For a given p, we want ψ to have p vanishing moments, which means

h(ξ) =
(
1 + e−iξ

2

)p

h0(ξ) = e−ipξ/2

(
cos

ξ

2

)p

h0(ξ),

and we also want µ1, . . . , µp to vanish, which means

h(ξ) = 1 +
(
1− e−iξ

2

)p

h1(ξ) = 1 +
(
ie−iξ/2

)p
(
sin

ξ

2

)p

h1(ξ).
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For even p = 2n, we assume that we can write

e−inξh0(ξ) = q1(y),

e−inξh1(ξ) = q2(y),

where y = sin2(ξ/2) as in the derivation of the Daubechies wavelets. This
leads to the Bezout equation

(1− y)nq1(z) + (−1)nynq2(1− y) = 1,

whose solution we know:

q1(y) =
n−1∑
k=0

(
n+ k − 1

k

)
yk + ynr(y). (3.22)

A similar construction can be used for odd p.
There are some differences between the Daubechies wavelet construction

and the coiflet construction:

• In the coiflet construction, q1 and q2 are unrelated, so there is no re-
striction on r. In fact, we take r to be arbitrary after we turn q1 back
into a trigonometric polynomial. It does not have to be of the form
r(sin2(ξ/2)). This means that in equation (3.22), q1 is not really a
polynomial.

• In the coiflet construction, the solution of the Bezout equation gives us
h0 directly. There is no need for spectral factorization.

• The Daubechies wavelet construction had the orthogonality relation
built in. The coiflet construction does not. This means we have to
enforce orthogonality by imposing conditions on r.

Example 3.5
We consider the easiest case p = 2. This leads to

q1(z) = 1 + zr(z),

which means
e−iξh0(ξ) = 1 +

1− cos ξ
2

r(ξ).

We assume
r(ξ) = a+ be−iξ

and calculate

1 = |h(ξ)|2 + |h(ξ + π)|2

=
1
256

[
2(a2 + b2 − 4b) cos 4ξ − 8(a2 + b2 + 4a− 4) cos 2ξ

+4(3a2 + 3b2 + 16a+ 8b+ 48)
]
.
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The resulting equations for a and b have six solutions. The two real solutions
are

a =
−1±√7

2
, b = 1− a.

−2 0 2

0

1

2

Coiflet 1 on [−2,3]

−2 0 2

0

1

2

Coiflet 2 on [−2,3]

FIGURE 3.1
The two different coiflets on [−2, 3].

The resulting coefficients are listed in appendix A. These functions have
support in [−2, 3]. The two solutions are quite different (fig. 3.1).
If we use instead the assumption

r(ξ) = ae−iξ + be−2iξ,

we again find two real solutions

a =
−1±√15

2
, b = 1− a.

These functions have support in [−1, 4]. Figure 3.2 shows one of them; the
second one is a highly discontinuous L2-function.
We can likewise find two coiflets with support on [−3, 2] (which are the

reverses of those on [−2, 3]) and on [−4, 1] (which are the reverses of those on
[−1, 4]).

3.7.2 Projection Factor Approach

As in the case of the Daubechies wavelets, we can use the projection factor
decomposition instead.
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0 2 4

0

1

2

Coiflet 1 on [−1,4]

FIGURE 3.2
One of the two coiflets on [−1, 4].

Example 3.6
Assume we are looking for the coiflets with two vanishing moments, of length
6. The general parametrization for the polyphase matrix of an orthogonal
wavelet of length 6 with approximation order 1 is

P (z) =
1√
2

(
1 1
1 −1

)
1

(ν2
1 + 1)(ν2

2 + 1)

×
(

ν2
1 + z ν1(z − 1)

ν1(z − 1) 1 + ν2
1z

)(
ν2
2 + z ν2(z − 1)

ν2(z − 1) 1 + ν2
2z

)
.

(3.23)

We convert this to the symbol, and add a factor of e2iξ to shift the support
to [−2, 3].
We then compute the moments n1 and m1 and set them to zero. This gives

us two quadratic equations in ν1, ν2. The two real solutions are

ν1 =
1
3

(
−2±

√
7
)
, ν2 = −2∓

√
7,

which lead back to the same answers as before.
If we add a factor of eiξ instead, we get the solutions on [−1, 4].
It is not necessary to add the condition m2 = 0. Theorem 3.3 below shows

that it comes for free.

3.7.3 Generalized Coiflets

More generally, we could look for coiflets where φ and ψ have a different
number of vanishing moments. The projection factor approach can handle
this easily. The Bezout approach could probably be adapted as well.
Given that we want p vanishing moments for ψ and q vanishing moments

for φ, what is the minimum length possible for a coiflet?
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At first glance, the answer appears to be 2(p + q): each increase of 2 in
the length of a scaling function gives us two new parameters and one new
orthogonality condition to be satisfied, so there is a net gain of one degree of
freedom.
In fact, a shorter length suffices. For the standard coiflets with p = q, in

particular, length 3p instead of 4p is sufficient.
The reason for that is the following theorem.

THEOREM 3.3
Assume that φ, ψ form a real orthogonal wavelet, and ψ has p vanishing
moments. If

µ2k−1 = 0, k = 0, . . . , p− 1

then also
µ2k = 0, k = 0, . . . , p− 1.

PROOF By lemma 1.27 it is sufficient to prove this theorem for the discrete
moments mk instead of the continuous moments µk.
If φ has p vanishing moments, then h has a zero of order p at π; so |h|2 has

a zero of order 2p at π.
By repeatedly differentiating the orthogonality relation

|h(ξ)|2 + |h(ξ + π)|2 = 1,

we see that
(Dk|h|2)(0) = 0, k = 1, . . . , 2p− 1.

Choose any k ≤ p−1 and assume we already know that µ1 = · · · = µ2k−1 = 0.
Then

0 =
(
D2k|h|2) (0) = 2k∑

�=0

(
2k
�

)
D�h(0)

(
D2k−�h(0)

)∗

= (−1)k
2k∑

�=0

(
2k
�

)
(−1)�m�m

∗
2k−�

= (−1)k2m2k.

An alternative proof is given in [31].
This theorem says that if the wavelet function has p vanishing moments,

then we only need to prescribe the scaling function moments of odd order to
be zero (up to a certain order); the moments of even order will automatically
be zero.
The following table gives an (incomplete) list of the possible patterns of

zeros for coiflets of a certain length L:
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L = 4 6 8 10 12
µk νk µk νk µk νk µk νk µk νk

k = 0 1 0 1 0 1 0 1 0 1 0
1 0 × 0 0 0 0 0 0 0 0
2 × × 0 × 0 0 0 0 0 0
3 × × × × 0 × 0 0
4 0 × 0 ×
5 × × × ×

× indicates a nonzero number. The underlined zeros come for free.
An excellent discussion of the available choices, with many literature ref-

erences, can be found in section 6.9 of [30], which is largely the same as
the paper [31]. The authors distinguish three standard series of coiflets with
approximately equal numbers of vanishing moments for φ and ψ:

length p q prescribed q actual comparison
6n 2n n 2n q = p
6n+ 2 2n+ 1 n 2n q = p− 1
6n+ 4 2n+ 1 n+ 1 2n+ 2 q = p+ 1

Instead of demanding vanishing moments of φ at x = 0, we could choose a
different point τ and demand that

µ0 = 1,

µk = τk, k = 1, . . . , p.

This has the effect that
snk ≈ s(2−m(k + τ))

to high accuracy.
This is just a shift. If we choose support [0, 5] and τ = 2, we get the

two coiflets on [−2, 3], shifted to the right by 2. However, it also opens the
possibility of using noninteger τ . This approach is taken in [118].

Example 3.7
We look at the two-parameter family in equation (3.23), and impose the con-
ditions n2 = 0 and m1 = τ (which automatically implies m2 = τ2).
A pair of real solutions exists for any τ in the range

5−√15
2

≤ τ ≤ 5 +
√
15

2
.

This includes the integers 1 through 4, which correspond to the coiflets with
support [−1, 4] through [−4, 1] derived before.
We can use a root finder to see if there are any τ for which we get µ3 = τ3.

There are two of them: τ1 ≈ 2.1059678, and τ2 = 5− τ1. Each of them leads
to two distinct coiflets. The coiflets for τ1 look pretty similar to the coiflets
with τ = 2. The coiflets for τ2 are the same functions in reverse.
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3.8 Cohen Wavelets

Finding biorthogonal wavelets is much easier than finding orthogonal wavelets.
As outlined in the discussion of the completion problem above, we can start
with almost any refinable function and find a dual by solving a linear system
of equations.
We will just discuss one particular family of biorthogonal wavelets, the

Cohen family derived in [40]. The Cohen(p, p̃) wavelet is characterized by the
following properties:

• The scaling function φ is the B-spline of order p. This is a refinable
function with symbol

h(ξ) =
(
1 + e−iξ

2

)p

.

• The dual scaling function φ̃ has approximation order p̃, is symmetric
about the same point as φ, and is as short as possible.

These wavelets exist for each (p, p̃) with p, p̃ ≥ 1, p and p̃ both even or both
odd.
Cohen wavelets were derived in [40], using a Bezout-type approach, but

they can be constructed more simply by shifting factors in the Daubechies
wavelets around.
To construct the Cohen(p, p̃) wavelet, we begin with the Daubechies wavelet

Dn, n = (p+ p̃)/2:

h(ξ) =
(
1 + e−iξ

2

)n

h0(ξ).

We shift some of the approximation order factors and all of the h0 over to the
other side, and add an exponential term on both sides to center them at 0
(for even p) or 1/2 (for odd p). For even p, we get

hnew(ξ) = eipξ/2

(
1 + e−iξ

2

)p

,

h̃new(ξ) = eip̃ξ/2

(
1 + e−iξ

2

)p̃

|h0(ξ)|2.

For odd p, the factor in front is ei(p−1)ξ/2 instead.
The resulting scaling functions have all the required properties.

Example 3.8
We start with the scaling function of the Daubechies wavelet D3. We do not
actually need to know the symbol; we just need to know |h(ξ)|2, which is
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much easier:

|h(ξ)|2 =
(
cos

ξ

2

)6

|h0(ξ)|2

with
|h0(ξ)|2 =

1
8
[
3e−2iξ − 18e−iξ + 38− 18eiξ + 3e2iξ

]
.

This is the polynomial q(y) for p = 3 from equation (3.19), after applying the
reverse substitution in equation (3.20).
To find the Cohen(1,5) wavelet, we divide this as

h(ξ) =
1 + e−iξ

2
(Haar scaling function),

h̃(ξ) = e2iξ

(
1 + e−iξ

2

)5

|h0(ξ)|2.

For the Cohen(2,4) wavelet, we divide it as

h(ξ) = eiξ

(
1 + e−iξ

2

)2

(hat function),

h̃(ξ) = e2iξ

(
1 + e−iξ

2

)4

|h0(ξ)|2.

The coefficients of this wavelet and graphs of all four functions are given in
example 1.6.
For the Cohen(3,3) wavelet, we divide the factors as

h(ξ) = eiξ

(
1 + e−iξ

3

)3

(quadratic B-spline),

h̃(ξ) = eiξ

(
1 + e−iξ

2

)3

|h0(ξ)|2.

3.9 Other Constructions

Many other kinds of wavelets are possible. Daubechies’ book mentions a
number of them. Other examples are given in [18], [44], [60], [62], [66], [78],
and [119].
We will just mention one more possibility. We go through the construction

of Daubechies wavelets until we get to the part where we sort the roots of the
polynomial into real pairs and complex quadruples. Then we assign some of
the roots to h0, and some to h̃0, and keep the approximation orders even.
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To ensure that the result is real, we cannot do this arbitrarily: we can shift
real roots any way we want, but complex roots have to be shifted in pairs of
the form zk, 1/z∗k.
For p = 2 we get nothing new. There are two real roots. Either we split

them up, and get the standard Daubechies wavelet D2; or we put them both
on one side, and get Cohen(2,2).
For p = 3, we also get nothing new. There is a complex quadruple, and we

either get D3 or Cohen(3,3).

−4 −2 0 2 4

0

1

Daubechies(7,9) φ

−4 −2 0 2 4

0

1

Daubechies(7,9) φ~

FIGURE 3.3
Scaling functions of biorthogonal Daubechies(7,9) pair

The first new kind appears for p = 4. The roots consist of a real pair and
a complex quadruple. To achieve the closest similarity in length, we put the
two real roots on one side, and the four complex roots on the other. This
produces the Daubechies(7,9) wavelet, named for the number of coefficients
(fig. 3.3).
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4

Applications

Wavelet-based algorithms have found many uses in different areas. Most of
them are related to signal processing or numerical analysis. We give a brief
description of some of the main applications in this chapter.

4.1 Signal Processing

The fundamental operation in signal processing is called filtering by the en-
gineers and convolution by the mathematicians. A signal s(x) is converted
to

(f ∗ s)(x) =
∫

f(y − x)s(x) dx,

or in the discrete setting

(f ∗ s)n =
∑

k

fn−ksk.

Since
(f ∗ s)̂(ξ) =

√
2πf̂(ξ)ŝ(ξ),

this corresponds to selecting a segment of the Fourier transform ŝ(ξ) deter-
mined by the cutoff function f̂ . This segment is called a subband.

If f̂ is localized near 0, it is called a low-pass filter. If f̂ is centered elsewhere,
it is a high-pass or band-pass filter.

A basic signal processing algorithm consists of three parts:

• Decompose the original signal into subbands.

• Do some processing on the subbands.

• Recombine the subbands into the processed signal.

The discrete wavelet transform (DWT) represents one particular kind of
decomposition and reconstruction.
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4.1.1 Detection of Frequencies and Discontinuities

The DWT decomposes a signal into its frequency components, just like the
fast Fourier transform (FFT), but it localizes the frequency components in
time. We can easily detect when a particular frequency band is present.

Many features of the signal can be detected in the DWT. For example,
a singularity in the signal leads to large d-coefficients at all levels, sharply
localized in time. White noise produces large d-coefficients at many levels
over longer periods. Smooth frequency content shows up at one or two levels
corresponding to the frequency.

This can be done for one-dimensional or two-dimensional signals. We just
show one-dimensional examples in this section.

Example 4.1
The left part of figure 4.1 shows the wavelet decomposition of a signal over
three levels. The numbers are the same as in figure 2.1, but the d-coefficients
have been magnified to show better.

The signal has a jump near the beginning, followed by a smooth wave of
increasing frequency. The singularity and the frequencies in the smooth part
are visible in the DWT, as described above.

The same signal with added noise is shown in the left part of figure 4.2.
The noise is visible at all levels. The d-coefficients in this picture have not
been magnified. It should be compared to figure 2.1 rather than figure 4.1.

4.1.2 Signal Compression

The DWT concentrates much of the energy of a signal in a few large co-
efficients. A generally smooth signal with localized nonsmooth features is
transformed into relatively few large s-coefficients which describe the overall
shape, a few larger d-coefficients which describe the local features, and a lot
of very small d-coefficients.

If we set small coefficients below some threshold to zero, the reconstructed
signal will be quite close in shape to the original.

For added compression, the larger coefficients could also be quantized.
Quantization basically means that we round each number to one with fewer
decimals or bits.

Wavelet-based compression algorithms have been incorporated into the FBI
WSQ algorithm for fingerprint image compression [28] and into the JPEG-
2000 standard.

Example 4.2
Figure 4.1 shows the decomposition of a signal using the Daubechies(7,9)
wavelet over three levels on the left. The right side shows the d-coefficients
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after thresholding, and the reconstructed approximate signal.
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FIGURE 4.1
Left: Decomposition of a signal over three levels. Right: Subbands
after thresholding, and reconstructed signal.

The d-coefficients are magnified to make the compression effect more visible.
The threshold was selected to result in a compression ratio of about 7:1.

4.1.3 Denoising

Random noise in a signal will show up mostly in the d-coefficients. If we set
the smaller coefficients to zero, much of the noise will disappear (along with
minor features of the signal, but that cannot be avoided). The process is the
same as for compression, but with a different purpose.

Wavelet-based denoising was proposed and analyzed in great detail by
Donoho [55] to [58], and by others. It is often referred to as wavelet shrinkage.
,

A threshold function Tε is applied to each d-coefficient:

dnk → Tε(dnk).
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The most commonly used methods are hard thresholding

Tε(x) =

{
0 if |x| ≤ ε

x otherwise

and soft thresholding

Tε(x) =



x− ε if x > ε

0 if |x| ≤ ε

−x+ ε if x < −ε
.

Example 4.3

White noise with a standard deviation of about 15% of signal amplitude has
been added to the signal. Figure 4.2 shows the wavelet decomposition of the
noisy signal over three levels on the left, and the reconstructed signal and
subbands after hard thresholding on the right.
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FIGURE 4.2
Left: Decomposition of a noisy signal over three levels. Right:
Subbands after thresholding, and reconstructed signal.
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It is observed in the literature that denoising by thresholding works better
if several shifted copies of the signal are denoised and averaged. The denoising
algorithm is not shift invariant because the DWT is not shift invariant.

Consider one DWT step:

original signal sn0 sn1 sn2 sn3 . . .
convolved signal (h ∗ sn)0 (h ∗ sn)1 (h ∗ sn)2 (h ∗ sn)3 . . .
DWT of signal sn−1,0 sn−1,1

DWT of shifted signal sn−1,0 sn−1,1

If we shift the signal by one, we get different coefficients at the next lower
level. If we shift the signal by two, we get the original coefficients again, shifted
by one. After k levels, we need a shift by 2k before the original coefficients at
the lowest level reappear.

Denoising several shifted copies of the signal and averaging them improves
the results. This can be implemented efficiently by doing a decomposition
without downsampling, thresholding the coefficients, and doing an averaged
reconstruction. The amount of work needed for a signal of length N over
k levels is O(kN), instead of O(2kN) when we denoise all possible shifts
separately.

4.2 Numerical Analysis

4.2.1 Fast Matrix–Vector Multiplication

Assume we have a matrix T whose entries tjk vary smoothly with j, k, except
maybe for some locations. Matrices of this type come up, for example, in
evaluating integral operators. The discontinuities are often near the diagonal.

When we do a DWT on the rows and columns of T , the resulting matrix
will have large values in one corner, mostly small values in the rest of the
matrix. This is really the same as image processing. We then set small values
to zero and end up with a sparse matrix. To take advantage of that, we have
to decompose the vector as well.

For simplicity, assume we are using orthogonal wavelets. Decomposing T is
equivalent to multiplying T with the transform matrix L on the left and L∗

on the right. To evaluate
Tx = y,

we do instead
(LTL∗)(Lx) = Ly.

In words, we transform the matrix, transform the vector x, multiply the two,
and do a reconstruction on the result. The final result is not quite correct, of
course, but it will be close.
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A small threshold produces a small error, but the matrix is not very sparse.
For a larger threshold, the matrix is sparser, but the error grows. This is
mostly useful for very large problems where accuracy is not as important as
speed.

Example 4.4

We take a 128× 128 matrix with entries

tjk =
1

(|j − k|+ 1)2
.

The entries are large on the diagonal, and rapidly fall off in a smooth manner.

Threshold 0.001 Threshold 0.01

FIGURE 4.3
Sparsity pattern of a transformed matrix after thresholding.

After three levels of decomposition with the Haar wavelet, we set small
coefficients to zero. The resulting matrix has a distinct sparsity pattern:
bands radiating out from one corner (fig. 4.3.)

This process has been analyzed in detail for certain kinds of matrices in [24].
Other papers on this subject are [7], [77], and [97].

The amount of work for an N × N fast matrix–vector multiplication is
O(N logN), compared to the usual O(N2). Using another trick called non-
standard decomposition the work can be reduced to O(N). (Nonstandard
decomposition involves saving and using the s-coefficients at all levels, not
just the lowest level.)
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4.2.2 Fast Operator Evaluation

Fast operator evaluation involves representing operators directly in terms of
the wavelet coefficients.

Assume T is any kind of linear operator. For simplicity, we assume that the
wavelet is orthogonal, and that we begin at level 0. We are given a function
f , and want to compute Tf .

The function f is expanded in a scaling function series

f ≈
∑

k

f∗
kφk,

where φk(x) = φ(x − k).
We precompute

Tφk ≈
∑

j

a∗kjφj .

The akj are called the connection coefficients. If T is translation invariant,
then akj = ak−j . In general,

a∗kj = 〈Tφk, φj〉.

Then

Tf ≈ T

(∑
k

f∗
kφk

)

≈
∑
kj

f∗
ka

∗
kjφj

=
∑

k


∑

j

f∗
ka

∗
kj


φj ,

so the scaling function expansion coefficients of Tf are given approximately
by

(Tf)∗k ≈
∑

j

f∗
ka

∗
kj .

There are two reasons why this is useful. First, if we have an equation
involving differential or integral operators, we can expand the coefficient func-
tions and the unknown solution in terms of a scaling function series, and dis-
cretize the equation completely in terms of the coefficients. This is a Galerkin
method based on the shifted scaling functions as basis functions.

Second, we now have the multiresolution properties of wavelets at our dis-
posal. The effect of this will be discussed in the next section.

Details of this approach have been worked out for derivative operators, the
Hilbert transform, shifts, and multiplication and powers of functions [21], [22],
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[85], [86], and [112]. Jameson [84] also worked out the connection coefficients
for differentiation for the boundary wavelets of [42].

Example 4.5
If T is the derivative operator, the connection coefficients are

akj = 〈φ′(x− k), φ(x − j)〉 = ak−j ,

which can be evaluated with the methods of section 2.8.1.
For the scaling function of the Daubechies wavelet D2, the result is

(a−2, a−1, a0, a1, a2) = (− 1
12
,
2
3
, 0,−2

3
,
1
12

).

4.2.3 Differential and Integral Equations

Wavelets can be used as basis functions for Galerkin methods, as already
mentioned in the previous section. If we just do this at one level, they have
no particular advantage over other types of functions. Their real power lies
in the multiresolution approach.

The effect is quite different for differential and for integral equations. Inte-
gral equations typically lead to full matrices even if the basis functions are lo-
calized. However, these matrices tend to have smoothly varying entries where
the kernel of the integral operator is smooth, so we can use the techniques for
fast matrix–vector multiplication in section 4.2.1 above.

For differential equations, finite element matrices are already sparse, but
they tend to be ill-conditioned. Wavelet decomposition increases the band-
width of the matrices a bit, but they are still sparse. It has been found
that after decomposition the coefficients at each level can be scaled by an ap-
propriate constant to improve the conditioning of the matrix. This is called
multilevel or hierarchical preconditioning. It will speed up iterative algorithms
such as the conjugate gradient method.

It is hard work, however, to compute the coefficients (often by evaluating
integrals as described in section 2.8) and to handle boundaries, especially in
higher dimensions. For this reason, wavelet methods in partial differential
equations (PDEs) have not become as popular as initially predicted.

It appears that what is important is the multilevel structure, not the wavelets
and the DWT per se. There are other methods to get from level to level which
are easier to implement.

There is an extensive list of articles dealing with wavelet methods in nu-
merical analysis. We content ourselves with mentioning some survey papers
and books.

For wavelets in numerical analysis in general, see [23] and [25], and the book
chapter [37], later expanded into book [38].

For PDEs, see [15], [26], [32], [33], and [83], and the books [47] and [101].
For integral equations, see [35], [102], and [116].
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5

Existence and Regularity

Previous chapters explained the basic ideas behind refinable functions, multi-
resolution approximations (MRAs), and the discrete wavelet transform (DWT),
as well as ways for determining some basic properties of the basis functions:
approximation order, moments, and point values.

These results were all presented under the assumption that the underlying
refinement equation defines a scaling function φ with some minimal regularity
properties, and that this function produces an MRA with a wavelet function
ψ. In the biorthogonal case, we also assumed the existence of φ̃ and ψ̃.

In order for the DWT algorithm to work, it is actually not necessary that
such a φ really exists: if we have sets of recursion coefficients which satisfy the
biorthogonality conditions in equation (1.11), they will give rise to a DWT
algorithm that works on a purely algebraic level. We may not be able to
justify the interpretation of the DWT as a splitting of the original signal into
a coarser approximation and fine detail at different levels; there may also be
numerical stability problems when we decompose and reconstruct over many
levels, but the algorithm will be an invertible transform.

In this chapter, we will give necessary and sufficient conditions for existence,
regularity, and stability of φ and ψ. The material is rather mathematical in
nature.

We note that to establish existence and regularity, it suffices to look at the
scaling function φ. The wavelet function ψ is just a finite linear combination
of scaled translates of φ, so it automatically inherits those properties. We
only need to look at ψ to check its stability.

There are two main approaches: in the time domain (section 5.4) and in the
frequency domain (sections 5.1 to 5.3.) The time domain approach is based
on the refinement equation

φ(x) =
√
2

k1∑
k=k0

hk φ(2x− k); (5.1)

the frequency domain approach is based on the Fourier transform of equa-
tion (5.1), which is

φ̂(ξ) = h(ξ/2)φ̂(ξ/2), (5.2)
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where h(ξ) is the symbol of φ, defined by

h(ξ) =
1√
2

k1∑
k=k0

hke
−ikξ.

5.1 Distribution Theory

Ultimately we are interested in solutions of the refinement equation (5.1),
but at first we will consider solutions of equation (5.2). We want φ̂ to be a
function, but φ itself could be a distribution.

THEOREM 5.1
A necessary condition for the existence of a function φ̂ which is continuous at
0 with φ̂(0) �= 0 and which satisfies equation (5.2) is that h(0) = 1.
This condition is also sufficient: if h(0) = 1, then

Πn(ξ) =
n∏

k=1

h(2−kξ) (5.3)

converges uniformly on compact sets to a continuous limit function Π∞ with
polynomial growth.
For any nonzero choice of φ̂(0),

φ̂(ξ) = Π∞(ξ)φ̂(0)

is the unique continuous solution of equation (5.2) with given value at 0, and
it is the Fourier transform of a distribution φ with compact support in the
interval [k0, k1].

PROOF The necessity is easy. For ξ = 0, equation (5.2) says

φ̂(0) = h(0)φ̂(0).

If φ̂(0) �= 0, this is only possible if h(0) = 1.
Assume now that h(0) = 1. h(ξ) is a trigonometric polynomial, so it is

bounded and differentiable. We choose constants c, d so that

|h(ξ)| ≤ 1 + c|ξ| ≤ ec|ξ|,

|h(ξ)| ≤ 2d.

Then for all n,
|Πn(ξ)| ≤ ec

∑n
k=1 |2−kξ| < ec|ξ|.
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In particular, |Πn(ξ)| is uniformly bounded by ec for |ξ| ≤ 1.
For arbitrary ξ, choose N so that 2N−1 ≤ |ξ| < 2N . For n ≥ N ,

|Πn(ξ)| =
∣∣∣∣∣
N−1∏
k=1

h(2−kξ)

∣∣∣∣∣ ·
∣∣∣∣∣

n∏
k=N

h(2−kξ)

∣∣∣∣∣
≤ 2d(N−1)ec

≤ |ξ|dec.

(5.4)

This establishes polynomial growth.
For m > n ≥ N ,

|Πm(ξ)−Πn(ξ)| = |Πn(ξ)| ·
∣∣∣∣∣1−

m∏
k=n+1

h(2−kξ)

∣∣∣∣∣
≤ |ξ|dec

∣∣∣1− ec·2−n|ξ|
∣∣∣

≤ |ξ|dec c 2−n|ξ|.
This goes to zero uniformly for all ξ in any compact interval, so Πn(ξ) con-
verges uniformly on compact sets as n → ∞. Since each Πn is continuous,
the limit function is continuous.

If φ̂ is any solution of equation (5.2) which is continuous at 0, then

φ̂(ξ) = Πn(ξ)φ̂(2−nξ)

= Πn(ξ)
[
φ̂(2−nξ)− φ̂(0)

]
+Πn(ξ)φ̂(0).

As n → ∞ for ξ in any compact interval, the first term on the right goes to
zero, and the second term converges to the continuous function with polyno-
mial growth

φ̂(ξ) = Π∞(ξ)φ̂(0).

This establishes uniqueness.
To show compact support, we use a technique from [79].

φ̂n(ξ) = Πn(ξ)φ̂(0)

is a linear combination of terms of the form e−i2−nkξ with k0 ≤ 2−nk ≤ k1.
Its inverse Fourier transform φn is a linear combination of δ-distributions

at the points 2−nk. Since φ̂n converges to φ̂ uniformly on compact sets, φn

converges weakly to φ. Each φn has support in [k0, k1], so φ must have its
support in the same interval.

REMARK 5.2 The preceding proof shows that the given solution φ is the
only one whose Fourier transform is a function continuous at 0 with φ̂(0) �= 0.
The uniqueness disappears if we drop any of these assumptions.

© 2004 by Chapman & Hall/CRC 



There may be other distribution solutions with φ̂(0) = 0, there may be
solutions with discontinuous φ̂, and there may even be distribution solutions
which have no Fourier transform. For example, the Hilbert transform of any
tempered distribution solution is also a solution.

Theorem 5.1 can be generalized by removing the requirement that φ̂(0) �= 0.

THEOREM 5.3
A necessary condition for the existence of a compactly supported distribution
solution of the refinement equation is that h(0) = 2n for some integer n ≥ 0.
If n > 0, then φ̂(0) = 0, and φ is the nth derivative of a distribution solution

Φ of

Φ(x) = 2−n
√
2

b∑
k=a

hkΦ(2x− k).

A proof can be found in [79].

5.2 L1-Theory

In this section we will look for sufficient conditions for the existence of an
L1-solution of the refinement equation. As a by-product, we will also get
smoothness estimates for the solution.

We already know that the condition h(0) = 1 is enough to guarantee the
existence of φ̂. To show that this function has an inverse Fourier transform
which is a function, we need to impose decay conditions on |φ̂(ξ)| as |ξ| → ∞.

DEFINITION 5.4 Let α = n + β with n ∈ N0, 0 ≤ β < 1. The space
Cα consists of the n times continuously differentiable functions f whose nth
derivative Dnf is Hölder continuous of order β, that is,

|Dnf(x) −Dnf(y)| ≤ c|x− y|β

for some constant c.

It is known that if ∫
(1 + |ξ|)α |φ̂(ξ)| dξ <∞,

then φ ∈ Cα. If we can show that

|φ̂(ξ)| ≤ c|ξ|d
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for any d < −1, then φ ∈ Cα for 0 < α < −d− 1. φ will be continuous, and
compact support makes it an L1-function.

Theorem 5.1 shows that |φ̂(ξ)| grows no faster than |ξ|d for d = log2 sup |h(ξ)|,
but that is not sufficient: since h(0) = 1, d cannot be negative. To ensure
decay of φ̂, we need approximation order conditions.

THEOREM 5.5
Assume that h(0) = 1 and that h satisfies the sum rules of order p, so that

h(ξ) =
(
1 + e−iξ

2

)p

h0(ξ)

with h0(0) = 1. If
sup

ξ
|h0(ξ)| < 2p−α−1,

then φ ∈ Cα. In particular, φ is n times continuously differentiable, where n
is the largest integer ≤ α.

PROOF It suffices to show that

|φ̂(ξ)| ≤ c(1 + |ξ|)−α−1−ε (5.5)

for some ε > 0.
We define

Π0,n(ξ) =
n∏

k=1

h0(2−kξ) (5.6)

in analogy with equation (5.3).
As before,

φ̂(ξ) =
∞∏

k=1

h(2−kξ) φ̂(0)

=
∞∏

k=1

(
1 + e−i2−kξ

2

)p

Π0,∞(ξ) φ̂(0).

The first product can be evaluated in closed form as

∞∏
k=1

(
1 + e−i2−kξ

2

)p

=
(
1− e−iξ

iξ

)p

≤ c1(1 + |ξ|)−p.

The second product can be estimated as in equation (5.4). If

sup
ξ
|h0(ξ)| = 2p−α−1−ε,
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then for large enough n,

|Π0,n(ξ)| ≤ |ξ|p−α−1−εec ≤ c2 · (1 + |ξ|)p−α−1−ε.

Together, this gives equation (5.5).

As a minor extension one can replace the bound on |h0| in theorem 5.5 by

sup
ξ
|Π0,�(ξ)|1/n < 2p−α−1

for some n.

Example 5.1
For the scaling function of the Daubechies wavelet D2, the symbol factors as

h(ξ) =
(
1 + e−iξ

2

)2
(
1 +

√
3

2
+

1−√3
2

e−iξ

)
.

Thus, p = 2 and

h0(ξ) =
1 +

√
3

2
+

1−√3
2

e−iξ.

|h0(ξ)| has a maximum of
√
3. Theorem 5.5 shows that φ ∈ Cα for α <

1− log2

√
3 ≈ 0.2075. This implies that φ(x) is continuous.

5.3 L2-Theory

In this section we will look for sufficient conditions for the existence of an
L2-solution of the refinement equation. This will lead to further smoothness
estimates for the solution, generally better than the L1-estimates.

5.3.1 Transition Operator

DEFINITION 5.6 The transition operator or transfer operator for the
symbol h(ξ) is defined by

Tf(ξ) = |h(ξ
2
)|2f(ξ

2
) + |h(ξ

2
+ π)|2f(ξ

2
+ π). (5.7)

The transition operator maps 2π-periodic functions into 2π-periodic func-
tions, but it also maps some smaller spaces into themselves.
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Let En be the space of trigonometric polynomials of the form

f(ξ) =
n∑

k=−n

fke
−ikξ,

and let Fn be the subspace of those f ∈ En with f(0) = 0.

LEMMA 5.7
If h(ξ) has degree N , the transition operator T maps En into itself for any
n ≥ N − 1.
If h(π) = 0, then T also maps Fn into itself for any n ≥ N − 1.

PROOF For trigonometric polynomials, the operation

f(ξ)→ f(
ξ

2
) + f(

ξ

2
+ π)

corresponds to downsampling:∑
k

fke
−ikξ → 2

∑
k

f2ke
−ikξ.

The transition operator is a multiplication by |h(ξ)|2, followed by down-
sampling.
|h(ξ)|2 has exponents ranging from −N to N . For f ∈ En, |h(ξ)|2f(ξ)

will have exponents ranging from −N − n to N + n. The downsampling will
remove the odd numbers in that range, and cut the even numbers in half; Tf
lies in Er, where r is the largest integer ≤ (N + n)/2. If n ≥ N − 1, then
r ≤ n.

If h(π) = 0 and f ∈ Fn, n ≥ N − 1, then Tf lies in En and

Tf(0) = |h(0)|2f(0) + |h(π)|2f(π) = 0;

thus, Tf lies in Fn.

We denote the restriction of T to En by Tn.
The following lemma is the main trick which will allow us to get better

decay estimates for |φ̂(ξ)|.

LEMMA 5.8
If T is the transition operator for h(ξ), then for any f ∈ L2[−π, π]

∫ 2kπ

−2kπ

f(2−kξ)|Πk(ξ)|2 dξ =
∫ π

−π

T kf(ξ) dξ.
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This is proved in [39, lemma 3.2], using induction on k.
Where does the transition operator come from? If φ ∈ L2, we can

define the function

a(x) = 〈φ(y), φ(y − x)〉 =
∫

φ(y)φ(y − x)∗ dy.

Its Fourier transform is given by

â(ξ) =
√
2π |φ̂(ξ)|2,

which makes it useful for studying the L2-properties of φ. However, this is
not quite the function we want to use.

DEFINITION 5.9 The autocorrelation function of φ ∈ L2 is defined as

ω(ξ) =
∑

k

a(k)e−ikξ. (5.8)

If φ has compact support, only finitely many of the a(k) will be nonzero,
so ω is a trigonometric polynomial. It is easier to compute and easier to work
with than â(ξ).

By using the Poisson summation formula, we can verify that

ω(ξ) =
√
2π

∑
k

|φ̂(ξ + 2πk)|2;

thus, ∫ 2π

0

ω(ξ) dξ =
√
2π

∫
R

|φ̂(ξ)|2 dξ.

In the cascade algorithm, let ω(n) be the autocorrelation function of φ(n).
We can then verify that

ω(n+1) = Tω(n),

so the properties of the transition operator are intimately related to the con-
vergence of ω(n), which in turn is related to the L2-convergence of φ(n).

For starters, we see that T must have an eigenvalue of 1, with the autocor-
relation function as the corresponding eigenfunction.

For practical computations, we can work with matrices instead of operators.

DEFINITION 5.10 The transition matrix or transfer matrix Tn is de-
fined by

Tk� =
∑

s

hsh
∗
s+�−2k, −n ≤ k, ( ≤ n. (5.9)
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There is a close relationship between the transition matrix and the transi-
tion operator, which is why we use the same notation for both.

We identify the function f =
∑

k fke
−ikξ ∈ En with the vector f ∈ C2n+1

with the same coefficients. The vector and the function have equivalent norms:∫ π

−π

|f(ξ)|2 dξ = 2π‖f‖22.

For n ≥ N − 1, the function Tnf ∈ En (where Tn is the transition operator)
then corresponds to the vector Tnf ∈ C2n+1 (where Tn is the transition
matrix). We can switch back and forth between the two viewpoints. In
particular, this gives us an easy way to compute eigenvalues and eigenvectors
of Tn.

5.3.2 Sobolev Space Estimates

DEFINITION 5.11 The function f lies in the Sobolev space Hs if∫
(1 + |ξ|)2s |f̂(ξ)|2 dξ <∞.

Sobolev spaces are nested: Hs ⊃ Ht if s ≤ t. H0 is L2. If f ∈ Hs for any
s ≥ 0, then f ∈ L2.

Also, f ∈ Hs implies f ∈ Cα for any α < s− 1/2, as the following estimate
shows:∫

(1 + |ξ|)α |f̂(ξ)| dξ =
∫
(1 + |ξ|)−1/2−ε(1 + |ξ|)α+1/2+ε |f̂(ξ)| dξ

≤
(∫

(1 + |ξ|)−1−2ε dξ

)1/2 (∫
(1 + |ξ|)2α+1+2ε|f̂(ξ)|2 dξ

)1/2

.

THEOREM 5.12
Assume that h(0) = 1 and that h satisfies the sum rules of order p, so that

h(ξ) =
(
1 + e−iξ

2

)p

h0(ξ)

with h0(0) = 1.
Choose a trigonometric polynomial γ with the following properties:

• γ(ξ) ≥ 0 for all ξ.

• γ(ξ) ≥ c > 0 for π/2 ≤ |ξ| ≤ π.
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Let ρ be the spectral radius of the transition operator T for h0, restricted to
the smallest invariant subspace that contains the functions T kγ, k ≥ 0. Then
φ ∈ Hs for any s < p− log4 ρ.

PROOF The proof given here is based on [41]. A similar approach is used
in [65].

We begin the same way as in theorem 5.5. For |ξ| ≤ 2Nπ,

|φ̂(ξ)|2 =

∣∣∣∣∣
∞∏

k=1

1 + e−i2−kξ

2

∣∣∣∣∣
2p ∣∣∣∣∣

N∏
k=1

h0(2−kξ)

∣∣∣∣∣
2 ∣∣∣∣∣

∞∏
k=N+1

h0(2−kξ)

∣∣∣∣∣
2

≤ c1(1 + |ξ|)−2p |Π0,N (ξ)|2 e2c2 .

At this point, we could estimate the remaining product as in theorem 5.5.
This would prove that φ ∈ Hs for any s < α+1/2 (same α as in theorem 5.5),
but we can do better than that. The key is lemma 5.8.

We find that(∫ −2N−1π

−2N π

+
∫ 2N π

2N−1π

)
|Π0,N (ξ)| dξ

≤ 1
c

(∫ −2N−1π

−2N π

+
∫ 2N π

2N−1π

)
γ(2−Nξ)|Π0,N (ξ)| dξ

≤ 1
c

∫ 2N π

−2N π

γ(2−Nξ)|Π0,N (ξ)| dξ

=
1
c

∫ π

−π

TNγ(ξ) dξ

≤ c2(ρ+ ε)N

for any ε > 0. The constant c2 depends on γ and ε, but not on N . In the last
step, we have used the fact that if ρ is the spectral radius of T , then for any
ε > 0 we can find a norm so that

‖Tf‖ ≤ (ρ+ ε)‖f‖.

Then(∫ −2N−1π

−2N π

+
∫ 2N π

2N−1π

)
(1 + |ξ|)2s|φ̂(ξ)|2 dξ

≤ c3 22Ns

(∫ −2N−1π

−2N π

+
∫ 2N π

2N−1π

)
|φ̂(ξ)|2 dξ

≤ c4 22Ns2−2Np(ρ+ ε)N = c4
[
4s−p(ρ+ ε)

]N
.

(5.10)
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We already know that φ̂(ξ) is bounded on [−π, π]. Adding the pieces for
N ≥ 1, we obtain a finite integral on (−∞,∞) if

|4s−p(ρ+ ε)| < 1,

or s < p− log4 ρ.

REMARK 5.13 The function γ should be chosen so that the subspace
generated by its iterates is as small as possible.

The usual choices are γ(ξ) = 1, which lies in E0, and γ(ξ) = 1 − cos ξ,
which lies in F1. Results from [92] imply that the optimal choice is γ(ξ) =
(1− cos ξ)2p.

I do not know of any example where the choice of γ makes a difference in
practice.

Example 5.2
For the scaling function of the Daubechies wavelet D2, the approximation
order is p = 2 and

h0(ξ) =
1 +

√
3

2
+

1−√3
2

e−iξ.

Its transition operator leaves the space E0 invariant. If we use γ(ξ) = 1,
we get T0 = 4 (a 1 × 1 matrix), which leads to s = 1; this in turn implies
that φ ∈ Cα for any α < 1/2. That is a better result than the L1-estimate in
example 5.1.

Both theorem 5.5 and theorem 5.12 rely on pulling out a factor related to
the approximation order. However, the effect of this differs.

In the L1-theory, the factorization is crucial. Since h0(0) = 1, the supremum
of |h0| is always at least 1. We would never get a useful estimate without the
contribution of approximation order. We could do a partial factorization of the
symbol, but the best result comes from taking p to be the full approximation
order.

In the L2-theory, the factorization lets us work with a smaller transition
matrix, which makes life easier, but it has no effect on the final result. That
is a consequence of the following theorem.

THEOREM 5.14
Assume h(ξ) is a scaling function symbol of degree n, and

h1(ξ) =
(
1 + e−iξ

2

)
h(ξ).

Let Tn−1 be the transition matrix of h on En−1, and Tn the transition matrix
of h1 on En.
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If the eigenvalues of Tn−1 are λk, k = 1, . . . , 2n − 1, then the eigenvalues
of Tn are 1, 1/2, and λk/4, k = 1, . . . , 2n− 1.

The proof can be found in [134].
This theorem says the following: if φ has approximation order p, its transi-

tion matrix will automatically have eigenvalues 1, 1/2, 1/4, . . . , (1/2)2p−1. Let
λ be the magnitude of the largest of the remaining eigenvalues.

If we compute the spectral radius of T for the full symbol with a suitable
γ, the invariant subspace generated by iterates of γ will not include the eigen-
vectors to the power-of-two eigenvalues. We will find ρ = λ (or possibly an
even smaller number).

If we factor out the approximation orders first, the power-of-two eigenvalues
will disappear. We will find ρ = 4pλ, but s = p− log4 ρ will be unchanged.

This gives us a very easy L2-estimate: determine the approximation order
and the eigenvalues of the transition matrix. Remove the known power-of-two
eigenvalues. The largest remaining eigenvalue is an upper bound on ρ, which
leads to a lower bound on s. The bound may not be optimal, but it is easy
to find.

DEFINITION 5.15 A matrix A satisfies Condition E if it has a single
eigenvalue of 1, and all other eigenvalues are smaller than 1 in absolute value.

More generally, A satisfies Condition E(p) if it has a p-fold nondegenerate
eigenvalue of 1, and all other eigenvalues are smaller than 1 in absolute value.

A p-fold eigenvalue is nondegenerate if it has p linearly independent eigen-
vectors.

THEOREM 5.16

Let n be the degree of h(ξ).
A sufficient condition for φ ∈ L2 is that h(π) = 0 and that the transition

matrix Tn−1 satisfies condition E.

PROOF From the definition of the transition matrix Tn we see that every
column sums to either∑

k

hk

∑
k

h∗2k or
∑

k

hk

∑
k

h∗2k+1.

If h(π) = 0, all the column sums are 1. This means that e∗ = (1, 1, . . . , 1)
is a left eigenvector of Tn−1 to eigenvalue 1. The space Fn−1 is the orthogonal
complement of e, so it consists precisely of the eigenspaces for all the other
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eigenvalues of Tn−1. By condition E, the spectral radius of T restricted to
Fn−1 is less than 1.

Now we use theorem 5.12 without factoring out the approximation orders:
p = 0, ρ < 1, so φ ∈ Hs for some s > 0.

5.3.3 Cascade Algorithm

One way of obtaining a solution to the refinement equation is to use fixed
point iteration on it. If the iteration converges in L2, this presents a practical
way of approximating the function φ(x), as well as an existence proof for the
solution. This was already mentioned in chapter 1.

DEFINITION 5.17 Assume we are given h(ξ) with h(0) = 1. The cas-
cade algorithm consists of selecting a suitable starting function φ(0)(x) ∈ L2,
and then producing a sequence of functions

φ(n+1)(x) =
√
2

k1∑
k=k0

hkφ
(n)(2x− k),

or equivalently

φ̂(n+1)(ξ) = h(ξ/2)φ̂(n)(ξ/2) = Πn(ξ)φ̂(0)(2−n−1ξ).

THEOREM 5.18
Assume that h(ξ) satisfies h(0) = 1 and h(π) = 0. If the transition operator
T satisfies condition E and the starting function φ(0) satisfies∑

k

φ(0)(x− k) = c �= 0,

then the cascade algorithm converges in L2.

PROOF This is shown for

φ(0)(x) =
√
2π

sinπx
πx

in [39], and for φ(0) = Haar function in [134]. The general proof is given
in [131].

The following theorem was already quoted in theorems 1.3 and 1.18.

THEOREM 5.19
If the cascade algorithm converges for both φ and φ̃, and the symbols h(ξ) and
h̃(ξ) satisfy the biorthogonality conditions in equation (1.15), then φ and ψ
are biorthogonal.
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The proof can be found in [39]. The basic idea is this: we start with φ(0),
φ̃(0) which are biorthogonal. Conditions in equation (1.15) will ensure that
biorthogonality is preserved for all pairs φ(n), φ̃(n), and convergence of the
cascade algorithm will ensure that it is preserved in the limit.

5.4 Pointwise Theory

In section 1.8, we already explained how to compute point values of φ at the
integers, and via repeated application of the refinement relation at all dyadic
points.

A dyadic point is a rational number of the form

x =
k

2n
, n ∈ N, k ∈ Z.

The following describes a more formalized way of doing this, which can then
be used to obtain smoothness estimates.

To keep the notation simpler, assume that supp φ = [0, n]. We define

φ(x) =




φ(x)
φ(x + 1)

...
φ(x+ n− 1)


 , x ∈ [0, 1]. (5.11)

This is related to the constant vector φ in section 1.8, but it is not quite the
same: φ(0) consists of the first n values of the previous φ, φ(1) of the last n
values.

The recursion relation states that

φ(x + k) =
√
2
∑

�

h�φ(2x+ 2k − () =
√
2
∑

�

h2k−�φ(2x+ ().

Obviously,
φ(x + k) = [φ(x)]k

(the kth entry in the vector φ(x)), while

φ(2x+ () =

{
[φ(2x)]� if 0 ≤ x ≤ 1/2,
[φ(2x− 1)]�+1 if 1/2 ≤ x ≤ 1.

If 0 ≤ x ≤ 1/2, then

[φ(x)]k =
√
2
∑

�

h2k−�[φ(2x)]�,
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or
φ(x) = T0φ(2x), (5.12)

where
(T0)k� =

√
2h2k−�, 0 ≤ k, ( ≤ n− 1.

If 1/2 ≤ x ≤ 1, then

[φ(x)]k =
√
2
∑

�

h2k−�+1[φ(2x− 1)]�,

or
φ(x) = T1φ(2x− 1), (5.13)

where
(T1)k� =

√
2h2k−�+1 0 ≤ k, ( ≤ n− 1.

The matrices T0 and T1 are related to the matrix T from section 1.8: T (0) is
T with the last row and column deleted. T1 is T with the first row and column
deleted, and the indices renumbered. If h(π) = 0, then e∗ = (1, 1, . . . , 1)∗ is a
common left eigenvector of T0 and T1 to eigenvalue 1.

Choose a dyadic number x. In binary notation, we can express x as

x = (0.d1d2 · · ·dk)2, di = 0 or 1.

Define the shift operator τ by

τx = (0.d2d3 · · · dk)2;

then

τx =

{
2x if 0 ≤ x ≤ 1/2,
2x− 1 if 1/2 ≤ x ≤ 1.

Equations (5.12) and (5.13) together are equivalent to

φ(x) = Td1φ(τx),

or after repeated application

φ(x) = Td1 · · ·Tdk
φ(0). (5.14)

Example 5.3
Suppose we are interested in the value of the scaling function of the Daubechies
wavelet D2 at the point 3/4.
T0 and T1 are the top left and bottom right 3×3 submatrices of the matrix

T from example 1.9, so

T0 =
√
2


h0 0 0
h2 h1 h0

0 h3 h2


 , T1 =

√
2


h1 h0 0
h3 h2 h1

0 0 h3


 .
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The vector φ(0) is

φ(0) =


 0
(1 +

√
3)/2

(1−√3)/2


 .

For x = 3/4 = (0.11)2,

φ(3/4) =


 φ(3/4)

φ(7/4)
φ(11/4)


 = T1T1φ(0) =


(9 + 5

√
3)/16

(2− 2
√
3)/16

(5− 3
√
3)/16


 .

The same approach can be used to find point values of the wavelet function.
We define matrices S0, S1 analogous to T0, T1

(S0)k� =
√
2g2k−�, (S1)k� =

√
2g2k−�+1, 0 ≤ k, ( ≤ n− 1,

and replace the leftmost matrix in equation (5.14):

ψ(x) = Sd1Td2 · · ·Tdk
φ(0).

Example 5.4
We take again the scaling function of the Daubechies wavelet D2. The refine-
ment matrices for the wavelet function are

S0 =
√
2


g0 0 0
g2 g1 g0

0 g3 g2


 =

√
2


h3 0 0
h1 −h2 h3

0 −h0 h1


 ,

and similarly for S1.
For x = 0,

ψ(0) =


ψ(0)
ψ(1)
ψ(2)


 = S0φ(0) =


 0

(1−√3)/2
(−1−√3)/2


 .

For x = 3/4 = (0.11)2,

ψ(3/4) =


 ψ(3/4)
ψ(7/4)
ψ(11/4)


 = S1T1φ(0) =


 (−3−√3)/16
(−14 + 2

√
3)/16

(1−√3)/16


 .

This approach can be extended to find exact point values of refinable func-
tions at any rational point, but we are interested in smoothness estimates.

DEFINITION 5.20 The (uniform) joint spectral radius of T0, T1 is de-
fined as

ρ(T0, T1) = lim sup
�→∞

max
dk=0 or 1

‖Td1 · · ·Td�
‖1/�.
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THEOREM 5.21
Assume h(π) = 0 and that

ρ(T0|F1, T1|F1) = λ < 1,

where F1 is the orthogonal complement of the common left eigenvector e of
T0, T1.
Then the refinement equation has a unique solution φ which is Hölder con-

tinuous of order α for any
α < − log2 λ.

PROOF First, we show that φ exists and is continuous.
Fix some α with 0 < α < − log2 λ and choose ε > 0 so that λ+ε = 2−α < 1.
From the definition of the joint spectral radius, we can find an N ∈ N so

that on F1,
‖Td1Td2 · · ·Td�

‖ ≤ (λ+ ε)�

for ( > N and all choices of dk.
Determine the values of φ at the integers, normalized so that

∑
k φ(k) = 1,

as in section 1.8. Let φ(0) be the piecewise linear function which interpolates
at these points, and let φ(0) be defined as in equation (5.11). Then

eTφ(0)(x) = 1 for all x.

Let
φ(n+1)(x) = Td1φ

(n)(τx).

(This is the cascade algorithm starting with φ(0).) Since e is a left eigenvector
of both T0 and T1, we have e∗φ(n)(x) = 1 for all n and x. The difference
between any two φ(n)(x) and φ(m)(x) lies in F1.

Then for n > N ,

‖φ(n+1)(x) − φ(n)(x)‖ = ‖Td1Td2 · · ·Tdn(φ
(1)(τnx)− φ(0)(τnx))‖

≤ c(λ+ ε)n,
(5.15)

where
c = sup

x∈[0,1]

‖φ(1)(x)− φ(0)(x)‖.

For ( > n > N , we find

‖φ(�)(x) − φ(n)(x)‖ ≤
�−1∑
k=n

‖φ(k+1)(x) − φ(k)(x)‖ < c
(λ+ ε)n

1− (λ+ ε)
.

This shows that {φ(n)(x)} is a Cauchy sequence uniformly in x; it converges
to a continuous limit function φ(x), which gives us φ.
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The Hölder continuity is proved in a similar manner. Assume x, y ∈ [0, 1]
match in the first n binary digits but not in digit n+1, so 2−n−1 < |x− y| ≤
2−n. Then

|φ(x) − φ(y)| ≤ ‖φ(x)− φ(y)‖ = ‖Td1Td2 · · ·Tdn(φ(τ
nx)− φ(τny))‖

≤ c(λ+ ε)n = c2−αn ≤ 2αc|x− y|α.

There is still a bit more to do here: if |x − y| ≤ 2−n, they do not necessarily
have to match in the first n digits. Details can be found in [52].

It is shown in [43] that this estimate cannot be improved: φ is not Hölder
continuous of any order larger than − log2 λ. The estimate may or may not
hold for α = − log2 λ.

Generalizations of theorem 5.21 can be used to guarantee higher orders of
smoothness, both globally and on certain subsets of the support of φ.

THEOREM 5.22
Assume that φ(x) has approximation order p. Let Fp be the orthogonal com-
plement of span{e0, . . . , ep−1}, where

e∗
k = (0k, 1k, 2k, . . . ),

and
ρ(T0|Fp, T1|Fp) = λ < 1.

Then φ ∈ Cα for any α < − log2 λ.

Example 5.5
For the scaling function of the Daubechies wavelet D2, T0 and T1 are of size
3 × 3. Since p = 2, F2 is one-dimensional. In fact, T0|F2 = (1 +

√
3)/4,

T1|F2 = (1−√3)/4. We can calculate the exact λ = (1+
√
3)/4, so φ ∈ C0.55.

This is a better estimate than in examples 5.1 and 5.2, and it is the best
possible.

This was a very easy example. In general, a joint spectral radius can be
quite hard to compute. With some effort, it is possible to get reasonably good
estimates.

From the definition we get the estimate

ρ(T0, T1) ≤ max(‖T0‖, ‖T1‖)

or more generally

ρ(T0, T1) ≤ max
dk=0 or 1

‖Td1 · · ·Td�
‖1/�
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for any fixed (. Moderately large ( give good bounds in practice, but the
number of norms we have to examine grows like 2�.

We can also get lower bounds on ρ this way, which puts upper bounds on
the smoothness. For any specific choice of dk,

ρ(T0, T1) ≥ ‖Td1 · · ·Td�
‖1/�.

The frequency domain methods can only give lower bounds on the smoothness
estimates. The pointwise method can give both upper and lower bounds.

As with the L1- and L2-estimates, it is a good idea to take advantage of
the approximation order p. This improves the pointwise estimates by taking
the joint spectral radius on a smaller subspace Fp.

5.5 Smoothness and Approximation Order

We saw in the preceding sections that approximation order is important for
smoothness estimates.

A high approximation order does not directly guarantee smoothness, but
the two tend to be correlated. For some families of scaling functions with
increasing approximation order, a corresponding increase in smoothness can
be proved.

For example, the Sobolev exponent of the Daubechies wavelet Dp increases
by approximately 1− log4 3 ≈ 0.2075 for every increase in p (see [49] and [65].)
The Sobolev exponent of the smoothest possible orthogonal scaling function
of given length increases asymptotically at a slightly faster rate [147].

It can also be shown that smoothness implies a certain minimum approxi-
mation order.

THEOREM 5.23

If φ, ψ and φ̃, ψ̃ form biorthogonal wavelets of compact support, and if φ
is p times continuously differentiable, then ψ̃ has at least (p + 1) vanishing
moments.

PROOF This is a brief explanation of the basic idea of the proof. The
complete proof (with more general conditions that do not require compact
support) can be found in [50, section 5.5].
ψ(x) and ψ̃(x) are biorthogonal, which means

〈ψmk(x), ψ̃n�(x)〉 = δmnδk�.
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We do induction on p. Assume we have already shown that∫
xkψ̃(x) dx = 0 for k = 0, . . . , p− 1.

Since φ(x) is p times continuously differentiable, so is ψ(x). Find a dyadic
point x0 = k/2m somewhere where Dpψ(x0) �= 0; then ψmk will have a
nonzero pth derivative at 0.

If we approximate ψmk by its Taylor polynomial tp of order p around zero,
tp will have a nonzero leading coefficient.

For large n, ψ̃n0 is concentrated in a very small interval around 0, and

0 = 〈ψmk, ψ̃n0〉 ≈ 〈tp, φ̃n0〉 ≈ c〈xp, φ̃n0〉.

5.6 Stability

The previous sections discussed the existence of φ(x) and its smoothness prop-
erties. In order to ensure that φ produces an MRA we need to also verify that

• φ has stable shifts.

• ⋂
k Vk = {0}.

• ⋃
k Vk = L2.

We will now give sufficient conditions for these properties.
Recall that φ has stable shifts if φ ∈ L2 and if there exist constants 0 <

A ≤ B so that for all sequences {ck} ∈ (2,

A
∑

k

|ck|2 ≤ ‖
∑

k

c∗kφ(x − k)‖22 ≤ B
∑

k

|ck|2.

LEMMA 5.24
φ ∈ L2 has stable shifts if and only if there exist constants 0 < A ≤ B so that

A ≤
∑

k

|φ̂(ξ + 2kπ)|2 ≤ B.

PROOF The “if” part is easy. For given {ck} ∈ (2, let

c(ξ) =
∑

k

cke
−ikξ;
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then

‖c‖22 =
∫ 2π

0

|c(ξ)|2 dξ = 2π
∑

k

|ck|2.

The Fourier transform of
∑

k c
∗
kφ(x − k) is c(ξ)∗φ̂(ξ), so

‖
∑

k

c∗kφ(x − k)‖22 = ‖c(ξ)∗φ̂(ξ)‖22

=
∫
|c(ξ)|2|φ̂(ξ)|2 dξ

=
∫ 2π

0

|c(ξ)|2
∑

k

|φ̂(ξ + 2πk)|2 dξ.

If
A ≤

∑
k

|φ̂(ξ + 2kπ)|2 ≤ B,

then
2πA

∑
k

|ck|2 ≤ ‖
∑

k

c∗kφ(x − k)‖22 ≤ 2πB
∑

k

|ck|2.

For the “only if” part we have to work a little harder. The 2π-periodic
function

∑
k |φ̂(ξ+2kπ)|2 is continuous, since it is a trigonometric polynomial

with coefficients 〈φ(x), φ(x−k)〉. If it vanishes for some ξ0, then for any ε > 0
we can choose a neighborhood of ξ0 where |φ(ξ) < ε, and a c(ξ) with support
inside this neighborhood. Then

‖
∑

k

c∗kφ(x− k)‖22 ≤ ε
∑

k

|ck|2,

which contradicts the existence of a lower bound A.

LEMMA 5.25
If φ, φ̃ ∈ L2 are biorthogonal, they have stable shifts.

PROOF This proof comes from [39, page 319].
We define the correlation function the same way as the autocorrelation

function (definition 5.9), but with

a(x) = 〈φ(y), φ̃(y − x)〉 =
∫

φ(y)φ̃(y − x)∗ dy.

Then
ω(ξ) =

√
2π

∑
k

φ̂(ξ + 2πk)̂̃φ(ξ + 2πk)∗.
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Biorthogonality implies that ω(ξ) ≡ 1, which leads to(∑
k

|φ̂(ξ + 2πk)|2
)(∑

k

|̂̃φ(ξ + 2πk)|2
)
≥ 1√

2π
.

This implies nonzero lower bounds A, Ã in lemma 5.24. The upper bounds
are simply

B = 2π‖φ‖22, B̃ = 2π‖φ̃‖22.

A concept related to stability is linear independence. A compactly sup-
ported scaling function φ has linearly independent shifts if∑

j

a∗
jφ(x− j) = 0⇒ a = 0 (5.16)

for all sequences a.
It is shown in [88] and [89] that φ has linearly independent shifts if and

only if the sequences
{φ̂(ξ + 2πk)}k∈Z (5.17)

are linearly independent for all ξ ∈ C. φ has stable shifts if and only if the
sequences in equation (5.17) are linearly independent for all ξ ∈ R.

Thus, linear independence implies stability.

THEOREM 5.26

(i) If φ is a refinable L2-function with stable shifts, then⋂
k

Vk = {0}.

(ii) If φ is a refinable L2-function with stable shifts, φ̂ bounded, continuous
at 0 and with φ̂(0) �= 0, then ⋃

k

Vk = L2.

The proof is given in [50], section 5.3.2.
All the conditions for a pair of biorthogonal MRAs are satisfied if φ, φ̃ are

compactly supported, biorthogonal L2-functions.
For a full justification of decomposition and reconstruction, we need to show

that the wavelet functions are also stable.
There are actually two definitions of stability that we need to consider.

Stability at a single level means that there exist constants 0 < A ≤ B so that

A
∑

k

|ck|2 ≤ ‖
∑

k

c∗kψ(x − k)‖22 ≤ B
∑

k

|ck|2.
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This condition is automatically satisfied if there exists a pair of biorthogonal
wavelet functions. That is lemma 5.25. Stability at level 0 implies stability
at any other fixed level n, which is already enough to justify a decomposition
and reconstruction over a finite number of levels.

Stability over all levels means

A
∑
nk

|cnk|2 ≤ ‖
∑
nk

c∗nk2
n/2ψ(2nx− k)‖22 ≤ B

∑
nk

|cnk|2.

This is required if we want to decompose an L2-function f in terms of wavelet
functions over all levels.

THEOREM 5.27
A pair of biorthogonal symbols h, h̃ with h(0) = h̃(0) = 1, h(π) = h̃(π) = 0
generates biorthogonal bases of compactly supported wavelet functions, stable
over all levels, if and only if the transition operators T and T̃ both satisfy
condition E.

The proof is rather lengthy. It can be found in [39, theorem 5.1].
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Part II

Multiwavelets
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6

Basic Theory

This chapter introduces the basic concepts of multiwavelet theory. It runs in
parallel with the classical (scalar) wavelet theory in chapter 2. Readers with
sufficient background in scalar wavelets can skip the first part of the book and
begin here.

The multiwavelet theory presented in part II of this book is more general
than the scalar wavelet theory in part I in two respects.

First, the main difference is of course the switch from scalar wavelets to
multiwavelets. The recursion coefficients are now matrices, the symbols are
trigonometric matrix polynomials, and so on. This change is responsible for
most of the extra complication.

Second, we now consider a dilation factor of m rather than 2. This can also
be done for scalar wavelets. It adds a little bit of complexity, but not much,
and results can be stated in greater generality. Mostly, it complicates the
notation. With a dilation factor of m > 2 we still have one scaling function,
but we get m− 1 wavelets instead of one.

The standard notation for the case m = 2 is to use φ, ψ for the scaling and
wavelet function, hk and gk for their recursion coefficients, etc. For general
m, it is common to use φ(0) for the scaling function, φ(1), . . . , φ(m−1) for the
wavelets, and similarly for the symbols and other quantities.

This notation has the advantage that results can be stated more concisely,
but that same conciseness also makes it harder on the reader. It is easier to
read and understand two formulas, one for the scaling function and one for
the wavelet functions, than a single formula that covers both, usually with a
Kronecker delta somewhere.

I have chosen to continue using different letters. The multiscaling function
is still φ (now in boldface), the multiwavelets are ψ(1), . . . ,ψ(m−1). Likewise,
the recursion coefficients are Hk and G

(1)
k , . . . , G

(m−1)
k (now in uppercase),

and so on.
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6.1 Refinable Function Vectors

DEFINITION 6.1 A refinable function vector is a vector-valued function

φ(x) =



φ1(x)
...

φr(x)


 , φn : R → C,

which satisfies a two-scale matrix refinement equation of the form

φ(x) =
√
m

k1∑
k=k0

Hk φ(mx− k), k ∈ Z. (6.1)

r is called the multiplicity of φ; the integer m ≥ 2 is the dilation factor. The
recursion coefficients Hk are r × r matrices.
The refinable function vector φ is called orthogonal if

〈φ(x),φ(x− k)〉 =
∫
φ(x)φ(x− k)∗ dx = δ0kI.

This inner product is an r × r matrix. Throughout this book, I always
stands for an identity matrix of the appropriate size.

It is possible to consider matrix refinement equations with an infinite se-
quence of recursion coefficients. Most of multiwavelet theory remains valid
in this case, as long as the coefficients decay rapidly enough. Still, allowing
infinite sequences of recursion coefficients requires additional technical condi-
tions in many theorems, and complicates the proof. We will always assume
that there are only finitely many nonzero recursion coefficients, which covers
most cases of practical interest.

Example 6.1

A simple example with multiplicity 2 and dilation factor 2 is the con-
stant/linear refinable function vector (fig. 6.1)

φ(x) =
(

1√
3(2x− 1)

)
, x ∈ [0, 1]. (6.2)

It satisfies

φ1(x) = φ1(2x) + φ1(2x+ 1),

φ2(x) =

[
−
√
3
2
φ1(2x) +

1
2
φ2(2x)

]
+

[√
3
2
φ1(2x+ 1) +

1
2
φ2(2x+ 1)

]
.
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0

1

Constant/Linear φ
1

0 1 2

−1

0

1

Constant/Linear φ
2

FIGURE 6.1
Two components of constant/linear refinable function vector.

This function vector is refinable with

H0 =
1

2
√
2

(
2 0

−√3 1

)
, H1 =

1
2
√
2

(
2 0√
3 1

)
.

It is orthogonal, which is easy to check directly from equation (6.2).

One can generalize this example to multiplicity r by using the powers of
x up to xr−1, orthonormalized on [0, 1]. In fact, that leads to the original
construction of Alpert [2].

Example 6.2

Another common example, also with multiplicity 2 and dilation factor 2, is
the Hermite cubic refinable function vector (fig. 6.2)

φ1(x) =

{
3x2 − 2x3 for x ∈ [0, 1],
3(2− x)2 − 2(2− x)3 for x ∈ [1, 2],

φ2(x) =

{
x3 − x2 for x ∈ [0, 1],
(2− x)2 − (2 − x)3 for x ∈ [1, 2].

(6.3)

These functions are cubic splines with one continuous derivative and sup-
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0
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Hermite Cubics φ
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0

1

Hermite Cubics φ
2

FIGURE 6.2
The two components of the Hermite cubic refinable function vector.

port [0, 2] which satisfy

φ1(1) = 1, φ′
1(1) = 0,

φ2(1) = 0, φ′
2(1) = 1.

This function vector is refinable with

H0 =
1

8
√
2

(
4 6
−1 −1

)
, H1 =

1
8
√
2

(
8 0
0 4

)
, H2 =

1
8
√
2

(
4 −6
1 −1

)
.

It is not orthogonal.

Example 6.3
The Donovan–Geronimo–Hardin–Massopust (DGHM) multiscaling function
[59] is commonly considered to be the first nontrivial example of a multiscaling
function (fig. 6.3. It has recursion coefficients

H0 =
1

20
√
2

(
12 16

√
2

−√2 −6
)
, H1 =

1
20
√
2

(
12 0
9
√
2 20

)
,

H2 =
1

20
√
2

(
0 0

9
√
2 −6

)
, H3 =

1
20
√
2

(
0 0

−√2 0

)
.

It is orthogonal.

Many refinable functions are well-defined but cannot be written in closed
form; the DGHM function is one example. Nevertheless, we can compute val-
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FIGURE 6.3
The two components of the DGHM refinable function vector.

ues at individual points (or at least approximate them to arbitrary accuracy),
compute integrals, determine smoothness properties, and more.

The details will be presented in later chapters. Right now, we just briefly
mention two of these techniques, to introduce concepts we need in this chapter.

DEFINITION 6.2 The symbol of a refinable function vector is the trigono-
metric matrix polynomial

H(ξ) =
1√
m

k1∑
k=k0

Hke
−ikξ.

The Fourier transform of the refinement equation is

φ̂(ξ) = H(ξ/m)φ̂(ξ/m). (6.4)

By substituting this relation into itself repeatedly and taking the limit, we
find that formally

φ̂(ξ) =

[ ∞∏
k=1

H(m−kξ)

]
φ̂(0). (6.5)

The infinite product is a product of matrices, so we have to be careful about
the order. In the expanded product, k increases from left to right.

Assuming that the infinite product converges, this provides a way to com-
pute φ(x), at least in principle.

Choosing φ̂(0) = 0 gives φ = 0, which is not an interesting solution, so we
want φ̂(0) �= 0.
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The vector φ̂(0) is not arbitrary: assuming that φ̂ is continuous at 0, equa-
tion (6.4) implies that a nontrivial solution can only exist if H(0) has an
eigenvalue of 1, and φ̂(0) is a corresponding eigenvector.

The length of this eigenvector is still arbitrary. Solutions of refinement
equations are only defined up to constant factors: any multiple of a solution
is also a solution.

The infinite product approach is useful for existence and smoothness esti-
mates (see chapter 11), but it is not a practical way of finding φ. A way to
get approximate point values of φ(x) is the cascade algorithm, which is fixed
point iteration applied to the refinement equation.

We choose a suitable starting function φ(0), and define

φ(n)(x) =
√
m
∑

k

Hkφ
(n−1)(mx− k).

This will converge in many cases.
Orthogonality of a refinable function can be checked directly from the re-

cursion coefficients or the symbol.

THEOREM 6.3

A necessary condition for orthogonality is

∑
k

HkH
∗
k−m� = δ0�I, (6.6)

or equivalently
m−1∑
n=0

|H(ξ +
2πn
m

)|2 = I. (6.7)

These conditions are sufficient to ensure orthogonality if the cascade algo-
rithm for φ converges.

PROOF Substitute the refinement equation into the definition of orthog-
onality:

δ0� I = 〈φ(x),φ(x − ()〉
= m

∑
k,n

HkH
∗
n〈φ(mx− k),φ(mx−m(− n)〉

=
∑
k,n

HkH
∗
n〈φ(y),φ(y + k −m(− n)〉

=
∑
k,n

HkH
∗
nδ0,k−m�−n =

∑
k

HkH
∗
k−m�.
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In terms of the symbol,

m−1∑
n=0

|H(ξ +
2πn
m

)|2 =
1
m

m−1∑
n=0

∑
k,s

HkH
∗
s e

−i(k−s)ξe−in(k−s)2π/m

=
∑
k,�

HkH
∗
k−m�e

−im�ξ = I,

(6.8)

where we have used

m−1∑
n=0

e−in(k−s)2π/m =

{
m if k − s = m(, ( ∈ N,

0 otherwise.

The sufficiency can be proved with the same argument as in the scalar
case: we start the cascade algorithm with an orthogonal function φ(0). The
orthogonality relations make sure that orthogonality is preserved at every step.
If the cascade algorithm converges, the limit function must be orthogonal.

As an example, we can use equation (6.6) to verify that the DGHM multi-
scaling function is orthogonal.

In the scalar case, the orthogonality relations imply that an orthogonal
refinable function has to have an even number of recursion coefficients, since
otherwise one of the orthogonality relations is hk0h

∗
k1

= 0.
In the multiwavelet case, there is no restriction: a product of two nonzero

matrices can be zero.

DEFINITION 6.4 The support of a function φ is defined as the closure
of the set

{x : φ(x) �= 0}.

The support of a function vector φ is defined as

supp φ =
⋃
k

supp φk.

“Compact support” means the same as “bounded support.”

THEOREM 6.5

If φ is a solution of equation (6.1) with compact support, then

supp φ ⊂
[

k0

m− 1
,

k1

m− 1

]
.
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PROOF Assume supp φ = [a, b]. When we substitute this into the refine-
ment equation, we find that

supp φ ⊂
[
a+ k0

m
,
b + k1

m

]
.

This implies that

a ≥ a+ k0

m
, b ≤ b + k1

m
,

or
a ≥ k0

m− 1
, b ≤ k1

m− 1
.

The same argument also shows that if we start the cascade algorithm with
a function φ(0) with support [a(0), b(0)], the support of φ(n) will converge to
some subset of [k0/(m− 1), k1/(m− 1)] as n→∞.

In the scalar case, the support of φ was precisely equal to the bounds. This
is not necessarily the case for multiwavelets.

Some components of φ could have a smaller support than φ as a whole.
If those components are the only ones used near the endpoints in the refine-
ment equation, then φ could have a support strictly contained in the interval
[k0/(m− 1), k0/(m− 1)]. For example, the DGHM refinable function vector
has support [0, 2] instead of the expected [0, 3].

It is shown in [111] that under some minor technical conditions the support
of φ is precisely [k0/(m− 1), k1/(m− 1)] provided that the first and last re-
cursion coefficients Hk0 , Hk1 are not nilpotent. A matrix A is called nilpotent
if An = 0 for some n. In the DGHM example, H3 is nilpotent, which is why
the support is shorter on the right.

For practical applications we need φ to have some minimal regularity prop-
erties.

DEFINITION 6.6 The refinable function vector φ has stable shifts if
φ ∈ L2 and if there exist constants 0 < A ≤ B so that for all sequences of
vectors {ck} ∈ ((2)r,

A
∑

k

‖ck‖22 ≤ ‖
∑

k

c∗kφ(x− k)‖22 ≤ B
∑

k

‖ck‖22.

If φ is orthogonal, it is automatically stable with A = B = 1. This follows
from lemma 11.21.

DEFINITION 6.7 A compactly supported refinable function vector φ has
linearly independent shifts if for all sequences of vectors {ck},∑

k

c∗kφ(x− k) = 0⇒ ck = 0 for all k.
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There are no conditions on the sequence {ck}. Compact support guarantees
that for each fixed k the sum only contains finitely many nonzero terms.

It can be shown that linear independence implies stability.

DEFINITION 6.8 A matrix A satisfies Condition E if it has a simple
eigenvalue of 1, and all other eigenvalues are smaller than 1 in absolute value.

More generally, A satisfies Condition E(p) if it has a p-fold nondegenerate
eigenvalue of 1, and all other eigenvalues are smaller than 1 in absolute value.

A p-fold eigenvalue is nondegenerate if it has p linearly independent eigen-
vectors.

THEOREM 6.9

Assume that φ is a compactly supported L2-solution of the refinement equa-
tions with nonzero integral and linearly independent shifts. This implies the
following conditions:

(i) H(0) satisfies condition E.

(ii) There exists a vector y0 �= 0 so that

∑
k

y∗
0φ(x− k) = c, c constant.

(iii) The same vector y0 satisfies

y∗
0H(

2πk
m

) = δ0ky∗
0 , k = 0, . . . ,m− 1.

(iv) The same vector y0 satisfies

y∗
0

∑
�

Hm�+k =
1√
m

y∗
0 , k = 0, . . . ,m− 1.

The proof can be found in [122].
We will always assume from now on that φ satisfies the properties listed in

theorem 6.9. We will refer to them as the basic regularity conditions.
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6.2 MRAs and Multiwavelets

The definitions and explanations in this section are essentially the same as in
sections 1.2 and 1.4, with suitable minor modifications. It is expected that the
reader is already familiar with the concept of multiresolution approximations
(MRAs) and wavelets, so the discussion here is briefer than in the first part
of the book. If necessary, refer back to the earlier sections.

6.2.1 Orthogonal MRAs and Multiwavelets

DEFINITION 6.10 An MRA of L2 is a doubly infinite nested sequence
of subspaces of L2

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·
with properties

(i)
⋃

n Vn is dense in L2.

(ii)
⋂

n Vn = {0}.
(iii) f(x) ∈ Vn ⇐⇒ f(mx) ∈ Vn+1 for all n ∈ Z.

(iv) f(x) ∈ Vn ⇐⇒ f(x−m−nk) ∈ Vn for all n, k ∈ Z.

(v) There exists a function vector φ ∈ L2 so that

{φ�(x − k) : ( = 1, . . . , r, k ∈ Z} (6.9)

forms a stable basis of V0.

The vector of basis functions φ is called the multiscaling function.
The MRA is called orthogonal if φ is orthogonal.

Condition (v) means that any f ∈ V0 can be written uniquely as

f(x) =
∑
k∈ Z

f∗k φ(x− k)

with convergence in the L2-sense; and there exist constants 0 < A ≤ B,
independent of f , so that

A
∑

k

‖fk‖22 ≤ ‖f‖22 ≤ B
∑

k

‖fk‖22.

This implies that φ has stable shifts.
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Condition (iii) expresses the main property of an MRA: each Vn consists of
the functions in V0 compressed by a factor of mn. Thus, a stable basis of Vn

is given by {φnk : k ∈ Z}, where

φnk(x) = mn/2φ(mnx− k). (6.10)

The factor mn/2 preserves the L2-norm.
Since V0 ⊂ V1, φ can be written in terms of the basis of V1 as

φ(x) =
∑

k

Hkφ1k(x) =
√
m
∑

k

Hkφ(mx− k)

for some coefficient matrices Hk. In other words, φ is refinable (with possi-
bly an infinite sequence of coefficients). We will assume that the refinement
equation is in fact a finite sum.

Let us assume for now that the MRA is orthogonal. In the scalar case,
this implies that φ is unique (modulo a shift and scaling by a constant of
magnitude 1). This is not true in the multiwavelet case.

DEFINITION 6.11 A trigonometric matrix polynomial A(ξ) is parauni-
tary if

A(ξ)A(ξ)∗ = A(ξ)∗A(ξ) = I.

This generalizes the definition of a unitary matrix

AA∗ = A∗A = I.

THEOREM 6.12
Assume that φ1 and φ2 are orthogonal multiscaling functions with compact
support. They span the same space V0 if and only if

φ2(x) =
∑

k

Akφ1(x− k), (6.11)

where
A(ξ) =

∑
k

Ake
−ikξ

is a paraunitary matrix polynomial.

PROOF If φ2 spans the same space as φ1, the two function vectors must
be related by equation (6.11) for some finite sequence Ak. The orthogonality
relations for φ1 and φ2 imply that∑

k

AkA
∗
k−� = δ0�I,
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which is equivalent to the fact that A(ξ) is paraunitary.
Conversely, if A(ξ) is paraunitary and we define φ2 by equation (6.11), then

also
φ1(x) =

∑
k

A∗
kφ2(x+ k),

and they span the same space.

As a special case, if
φ2 = Qφ1

for refinable φ1 and unitary Q, then φ1 and φ2 span the same space V0, and
their recursion coefficients are related by conjugation with Q. If

φ1(ξ) =
√
m
∑

k

Hkφ1(mx− k),

then
φ2(ξ) =

√
m
∑

k

(QHkQ
∗)φ2(mx− k).

This is a special case of a regular two-scale similarity transform (TST), defined
in chapter 8.

REMARK 6.13 For biorthogonal multiwavelets, A just needs to be in-
vertible, rather than paraunitary. You may find that some multiwavelets are
listed with different recursion coefficients in other papers. That is usually
due to a simple transformation with diagonal A, that is, a rescaling of the
functions.

The orthogonal projection of an arbitrary function f ∈ L2 onto Vn is given
by

Pnf(x) =
∑

k

〈f,φnk〉φnk(x).

As in the scalar case, the basis functions φnk are shifted in steps of m−n; so
Pnf is interpreted as an approximation to f at resolution m−n or scale m−n.
As n→∞, Pnf converges to f in the L2-sense. This can be shown as in the
scalar case.

The difference between the approximations at resolution m−n and m−n−1

is the fine detail at resolution m−n:

Qnf(x) = Pn+1f(x)− Pnf(x).

Qn is also an orthogonal projection. Its range Wn is orthogonal to Vn, and

Vn ⊕Wn = Vn+1.
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The two sequences of spaces {Vn} and {Wn} and their relationships can be
graphically represented as in figure 1.4.

As in the scalar case,

Vn =
n−1⊕

k=−∞
Wk,

and the projections Pnf converge to f in L2 as n→∞.
The sequence of spaces {Wn} satisfies conditions similar to those of an

MRA. The symbol ⊥ stands for “is orthogonal to.”

THEOREM 6.14
For any orthogonal MRA with multiscaling function φ,

(i)
⊕

n Wn is dense in L2.

(ii) Wk ⊥Wn if k �= n.

(iii) f(x) ∈ Wn ⇐⇒ f(mx) ∈ Wn+1 for all n ∈ Z.

(iv) f(x) ∈ Wn ⇐⇒ f(x−m−nk) ∈Wn for all n, k ∈ Z.

(v) There exist function vectors ψ(s) ∈ L2, s = 1, . . . ,m− 1, orthogonal to
φ and to each other, so that

{ψ(s)(x− k) : s = 1, . . . ,m− 1, k ∈ Z}
forms a stable basis of W0, and

{ψ(s)
nk : s = 1, . . . ,m− 1, n, k ∈ Z}

forms a stable basis of L2.

(vi) Since each ψ(s) ∈ V1, it can be represented as

ψ(s)(x) =
√
m
∑

k

G
(s)
k φ(mx − k)

for some coefficients G(s)
k .

The function vectors ψ(s) are called the multiwavelet functions. φ and ψ(s)

together form a multiwavelet.

The proof is essentially the same as in the scalar case (theorem 6), except
that we do not have an explicit formula for the recursion coefficients of ψ. We
will explain in chapter 10 how to find them. There is no simple formula like
in the scalar case, and the multiwavelet functions are not unique. The con-
struction will show that it is always possible to find ψ(s) of compact support
if φ has compact support.

© 2004 by Chapman & Hall/CRC 



The fact that we havem−1 multiwavelet functions instead of 1 has nothing
to do with multiwavelets. It comes from using a dilation factor m instead of
2.

We define the symbol of ψ(s) as

G(s)(ξ) =
1√
m

∑
k

G
(s)
k e−ikξ.

The Fourier transform of the refinement equation for ψ(s) is

ψ̂
(s)

(ξ) = G(s)(
ξ

m
)φ̂(

ξ

m
).

The orthogonality of φ and ψ(s) can be expressed as in theorem 6.3:∑
HkH

∗
k−m� = I,∑

G
(s)
k G

(t)∗
k−m� = δ0�δstI,∑

HkG
(s)∗
k−m� =

∑
G

(s)
k H∗

k−m� = 0,

(6.12)

or equivalently

|H(ξ)|2 + |H(ξ + π)|2 = I,

G(s)(ξ)G(t)(ξ)∗ +G(s)(ξ + π)G(t)(ξ + π)∗ = δstI,

H(ξ)G(s)(ξ)∗ +H(ξ + π)G(s)(ξ + π)∗ = 0,

G(s)(ξ)H(ξ)∗ +G(s)(ξ + π)H(ξ + π)∗ = 0

(6.13)

for s = 1, . . . ,m− 1.
In terms of the multiwavelet functions, the projection Qn is given by

Qnf =
m−1∑
s=1

∑
k

〈f,ψ(s)
nk 〉ψ(s)

nk .

We now come to the main concept we seek: the discrete multiwavelet trans-
form (DMWT).

Given a function f ∈ L2, we can represent it as

f =
∞∑

k=−∞
Qkf

(complete decomposition in terms of detail at all levels), or we can start at
any level ( and use the approximation at resolution m−� plus all the detail at
finer resolution:

f = P�f +
∞∑

k=�

Qkf.
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For practical applications, we need to reduce this to a finite sum. We
assume that f ∈ Vn for some n > (. Then

f = Pnf = P�f +
n−1∑
k=�

Qkf. (6.14)

Equation (6.14) describes the DMWT: the original function or signal f gets
decomposed into a coarse approximation P�f , and fine detail at several resolu-
tions. The decomposition as well as the reconstruction can be performed very
efficiently on a computer. Implementation details are presented in section 7.1.

6.2.2 Biorthogonal MRAs and Multiwavelets

As in the scalar case, we can drop the orthogonality requirement.

DEFINITION 6.15 Two refinable function vectors φ, φ̃ are called biorthog-
onal if

〈φ(x− k), φ̃(x− ()〉 = δk�I.

We also call φ̃ the dual of φ.

THEOREM 6.16
A necessary condition for biorthogonality is∑

HkH̃
∗
k−m� = δ0�I, (6.15)

or equivalently
H(ξ)H̃(ξ)∗ +H(ξ + π)H(ξ + π)∗ = I. (6.16)

These conditions are sufficient to ensure biorthogonality if the cascade al-
gorithm for both φ and φ̃ converges.

The proof is analogous to that of theorem 6.3.
As in the scalar case, it is possible to orthonormalize an existing multi-

scaling function with stable shifts, but the resulting new φ does not usually
have compact support any more. This makes it less desirable for practical
applications.

Assume now that we have two MRAs {Vn} and {Ṽn}, generated by biorthog-
onal multiscaling functions φ and φ̃. We can complete the construction of
multiwavelets as follows.

The projections Pn and P̃n from L2 into Vn, Ṽn, respectively, are given by

Pnf =
∑

k

〈f, φ̃nk〉φnk,

P̃nf =
∑

k

〈f,φnk〉φ̃nk,
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where φnk, φ̃nk are defined as in equation (6.10). These are now oblique (i.e.,
nonorthogonal) projections.

The projections Qn, Q̃n are defined as before by

Qnf = Pn+1f − Pnf,

Q̃nf = P̃n+1f − P̃nf,

and their ranges are the spaces Wn, W̃n.
The space Wn is orthogonal to Ṽn. This is proved as in the scalar case.
We still have

Vn ⊕Wn = Vn+1

as a nonorthogonal direct sum.

THEOREM 6.17
Assume that φ, φ̃ ∈ L2 are multiscaling functions generating biorthogonal
MRAs, and that the cascade algorithm converges for both of them. Then

(i)
⊕

n Wn,
⊕

n W̃n are dense in L2.

(ii) Wk ⊥ W̃n if k �= n.

(iii)

f(x) ∈Wn ⇐⇒ f(mx) ∈Wn+1 for all n ∈ Z,

f(x) ∈ W̃n ⇐⇒ f(mx) ∈ W̃n+1 for all n ∈ Z.

(iv)

f(x) ∈ Wn ⇐⇒ f(x−m−nk) ∈Wn for all n, k ∈ Z,

f(x) ∈ W̃n ⇐⇒ f(x−m−nk) ∈ W̃n for all n, k ∈ Z.

(v) There exist biorthogonal functions ψ(s), ψ̃
(s) ∈ L2 so that

{ψ(x − k)(s) : s = 1, . . . ,m− 1, k ∈ Z}
forms a stable basis of W0,

{ψ̃(s)
(x− k) : s = 1, . . . ,m− 1, k ∈ Z}

forms a stable basis of W̃0, and

{ψ(s)
nk : s = 1, . . . ,m− 1, n, k ∈ Z},

{ψ̃(s)

nk : s = 1, . . . ,m− 1, n, k ∈ Z}
both form a stable basis of L2.
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(vi) Since ψ(s) ∈ V1, ψ̃
(s) ∈ Ṽ1, they can be represented as

ψ(s)(x) =
√
m
∑

k

G
(s)
k φ(mx− k),

ψ̃
(s)

(x) =
√
m
∑

k

G̃
(s)
k φ̃(mx− k)

for some coefficients G(s)
k , G̃

(s)
k .

The functions ψ(s), ψ̃
(s)
are again called the multiwavelet functions or mother

multiwavelets.

The proof is the same as that of theorem 6.14, except for the stability
part. That will be covered in chapter 11 (lemma 11.21). Methods for finding
the recursion coefficients for the multiwavelet functions will be covered in
chapter 10.

As in equations (6.6) and (6.7), we can express the biorthogonality condi-
tions as ∑

HkH̃
∗
k−m� = δ0�I∑

G
(s)
k G̃

(t)∗
k−m� = δ0�δstI,∑

HkG
(s)∗
k−m� =

∑
G

(s)
k H∗

k−m� = 0,

(6.17)

or equivalently

m−1∑
k=0

H(ξ +
2πk
m

)H̃(ξ +
2πk
m

)∗ = I,

m−1∑
k=0

G(s)(ξ +
2πk
m

)G̃(t)(ξ +
2πk
m

)∗ = δstI,

m−1∑
k=0

H(ξ +
2πk
m

)G̃(s)∗(ξ +
2πk
m

) = 0,

m−1∑
k=0

G(s)(ξ +
2πk
m

)H̃(ξ +
2πk
m

)∗ = 0.

(6.18)

As before, Pnf is interpreted as an approximation to f at resolution m−n,
and Qnf is the fine detail. If f ∈ Vn, we can do a multiwavelet decomposition

f = Pnf = P�f +
n−1∑
k=�

Qkf.

However, we can also do these things on the dual side. P̃nf is also an
approximation to f at resolution m−n, with fine detail Q̃nf . If f ∈ Ṽn, we
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can do a dual multiwavelet decomposition

f = P̃nf = P̃�f +
n−1∑
k=�

Q̃kf.

As in the scalar case, formulas for biorthogonal multiwavelets are sym-
metric: whenever we have any formula or algorithm, we can put a tilde on
everything that did not have one, and vice versa, and we get a dual formula
or algorithm.

That does not mean that both algorithms are equally useful for a particular
application, but they both work.

6.3 Moments

We assume in this section that φ satisfies the minimal regularity assumptions
from theorem 6.9. In particular, H(0) satisfies condition E.

DEFINITION 6.18 The kth discrete moments of φ, ψ(s) are defined by

Mk =
1√
m

∑
�

(nH�,

N
(s)
k =

1√
m

∑
�

(nG
(s)
� , s = 1, . . . ,m− 1.

Discrete moments are r × r matrices. They are related to the symbols by

Mk = ikDkH(0),

N
(s)
k = ikDkG(s)(0).

(6.19)

In particular, M0 = H(0).
Discrete moments are uniquely defined and easy to calculate.

DEFINITION 6.19 The kth continuous moments of φ, ψ(s) are

µk =
∫

xkφ(x) dx,

ν
(s)
k =

∫
xkψ(s)(x) dx.

(6.20)
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Continuous moments are r-vectors. They are related to the Fourier trans-
forms of φ, ψ(s) by

µk =
√
2π ikDkφ̂(0),

ν
(s)
k =

√
2π ikDkψ̂

(s)
(0).

(6.21)

The continuous moment µ0 is only defined up to a constant multiple by the
refinement equation, depending on the scaling of φ. For a single φ we could
pick the factor arbitrarily, but for a biorthogonal pair the normalizations have
to match.

LEMMA 6.20
If φ, φ̃ ∈ L1 ∩ L2 are biorthogonal and satisfy the basic regularity conditions
from theorem 6.9, then

µ̃∗
0µ0 = 1.

The proof is identical to the scalar case (lemma 1.25).
In the biorthogonal case, we cannot in general achieve both ‖µ0‖ = 1 and

‖µ̃0‖ = 1. In the orthogonal case the normalization ‖µ0‖ = 1 is mandatory.

THEOREM 6.21
The continuous and discrete moments are related by

µk = m−k
k∑

t=0

(
k
t

)
Mk−tµt,

ν
(s)
k = m−k

k∑
t=0

(
k
t

)
N

(s)
k−tµt.

(6.22)

In particular,
µ0 = M0µ0 = H(0)µ0.

Once µ0 has been chosen, all other continuous moments are uniquely defined
and can be computed from these relations.

PROOF We start with

φ̂(mξ) = H(ξ)φ̂(ξ)

and differentiate k times:

mk
(
Dkφ̂

)
(mξ) =

k∑
t=0

(
k
t

)
Dk−tH(ξ)Dtφ̂(ξ).
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When we set ξ = 0 and use equations (6.19) and (6.21), we get the first
formula in equation (6.22). The second formula is proved similarly.

For k = 0 we get
µ0 = M0µ0.

µ0 is uniquely defined up to scaling, by condition E.
For n ≥ 1, equation (6.22) leads to

(mnI −M0)µn =
n−1∑
t=0

(
n
t

)
Mn−tµt.

Condition E implies that the matrix on the left is nonsingular, so we can
compute µ1, µ2, . . . successively and uniquely from this. The second formula
in equation (6.22) provides the ν(s)

n .

Example 6.4
The first three discrete moments of the DGHM multiscaling function are

M0 =
1
5

(
3 2

√
2

2
√
2 1

)
, M1 =

1
10

(
3 0

6
√
2 2

)
, M2 =

1
10

(
3 0

9
√
2 −1

)
.

With the correct normalization ‖µ0‖ = 1, the first three continuous mo-
ments are

µ0 =
1
3

(√
6√
3

)
, µ1 =

1
3

(
3
√
6√
3

)
, µ2 =

1
42

(
4
√
6

13
√
3

)
.

6.4 Approximation Order

As pointed out in section 6.2, the projection Pnf of a function f onto the
space Vn represents an approximation to f at resolution m−n. How good is
this approximation?

DEFINITION 6.22 The multiscaling function φ provides approximation
order p if

‖f(x)− Pnf(x)‖ = O(m−np)

whenever f has p continuous derivatives.

If φ provides approximation order p, then for smooth f

‖Qnf‖ = O(m−np),
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since ‖Qnf‖ ≤ ‖f − Pnf‖+ ‖f − Pn+1f‖.

DEFINITION 6.23 The multiscaling function φ has accuracy p if all
polynomials up to order p− 1 can be represented as

xn =
∑

k

c∗nkφ(x− k) (6.23)

for some coefficient vectors cnk.

This representation is well-defined even though xn does not lie in the space
L2: Since φ has compact support, the sum on the right is finite for any fixed
x.

LEMMA 6.24

The coefficients cnk in equation (6.23) have the form

cnk =
n∑

t=0

(
n
t

)
kn−tyt,

where yt = ct0 and y0 �= 0.

Here y0 is the same vector as in theorem 6.9.

PROOF Replace xn by (x + k)n in equation (6.23) and expand.

If φ has a dual φ̃, we can multiply equation (6.23) by φ̃(x) and integrate
to obtain

y∗
n = 〈xn, φ̃(x)〉 = µ̃∗

n. (6.24)

DEFINITION 6.25 The recursion coefficients {Hk} of a matrix refine-
ment equation satisfy the sum rules of order p if there exist vectors y0, . . . ,yp−1

with y0 �= 0, which satisfy

n∑
t=0

(
n
t

)
mt(−i)n−ty∗

tD
n−tH(

2πs
m

) =

{
y∗

n for s = 0,
0∗ for s = 1, . . . ,m− 1.

(6.25)

for n = 0, . . . , p− 1.
The vectors yt are called the approximation vectors.

The yn in lemma 6.24 are the same as the approximation vectors.
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Example 6.5
The DGHM multiscaling function satisfies the sum rules of order 2, with
approximation vectors

y0 =
1
3

(√
6√
3

)
, y1 =

(
1
6

√
6

2
√
3

)
.

LEMMA 6.26
If φ satisfies the basic regularity conditions 6.9, then

y∗
0φ̂(2πk) = 0, k ∈ Z, k �= 0.

PROOF Let k = mn(, ( not divisible by m. Then

φ̂(2πk) = H(2πmn−1()φ̂(2πmn−1() = . . .

= H(2πmn−1() · · ·H(2π()H(
2π(
m

)φ̂(
2π(
m

).
(6.26)

y0 is a left eigenvector to eigenvalue 1 of H(0); by periodicity of H(2πn),
n ∈ Z. y0 is a left eigenvector of H(2π(/m) to eigenvalue 0. Thus, if we
multiply equation (6.26) from the left by y∗

0 , we get 0.

THEOREM 6.27
Assume φ is a compactly supported, integrable solution of the matrix refine-
ment equation with linearly independent shifts. Then the following are equiv-
alent:

(i) φ has approximation order p.

(ii) φ has accuracy p.

(iii) {Hk} satisfy the sum rules of order p.
(iv) There exists a trigonometric vector polynomial a(ξ) with a(0) �= 0 which

satisfies

Dn

[
a∗(mξ)H(ξ +

2π
m
k)
]∣∣∣∣

ξ=0

= δ0kD
na∗(0) (6.27)

for n = 0, . . . , p− 1.

The approximation vectors yn and the function a(ξ) are related by

yn = inDna(0). (6.28)
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(v) There exists a scalar superfunction f which is a finite linear combination
of translates of φ

f(x) =
∑

k

a∗
kφ(x − k)

and which satisfies the Strang–Fix conditions of order p, that is

f̂(0) �= 0,

f̂ (n)(2πk) = 0, k ∈ Z, k �= 0, n = 0, . . . , p− 1.

If φ is part of a biorthogonal multiwavelet, the following condition is also
equivalent to the above.

(vi) The dual multiwavelet functions have p vanishing continuous moments:

ν̃(t)
n = 0, t = 1, . . . ,m− 1, n = 0, . . . , p− 1.

PROOF (i) ⇔ (ii): This is proved in [87]. It is the most technical part of
the proof.

(ii) ⇔ (iii): We already know that {Hk} satisfy the sum rules of order 1
(theorem 6.9).

Assume that φ has approximation order p, and we have already established
the sum rules of order n for some n < p. We write

xn =
∑

k

c∗nkφ(x− k) =
√
m
∑
k�

c∗nkH�φ(mx−mk − ()

and compare this to

(mx)n =
∑

k

c∗nkφ(mx− k).

Using the linear independence of translates of φ and the lower order sum
rules, this gives us some relations for {Hk}. These can be reduced to the sum
rule of order n. The details are lengthy and messy, unfortunately, so we will
not present them here.

The details were first published in [80], and independently in [120].
(iii) ⇔ (iv): We make sure that equation (6.28) holds, by either defining

a(ξ) in terms of yn or vice versa.
After that, we just have to expand equation (6.27) using the Leibniz formula

(repeated product rule), apply equation (6.28), and we get the sum rules.
(iv) ⇔ (v): This is shown in [120]. Here is a sketch of the idea: we define

f using the coefficients of the same

a(ξ) =
∑

k

ake
ikξ,
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as in (iv). Then
f̂(ξ) = a∗(ξ)φ̂(ξ).

This gives us

f̂(mξ) = a(mξ)∗φ̂(mξ) = a(mξ)∗H(ξ)φ̂(ξ),

or if we replace ξ by (ξ + 2πk/m),

f̂(mξ + 2πk) =
[
a(mξ)∗H(ξ +

2π
m
k)
]
φ̂(ξ +

2π
m
k).

Differentiate n times and evaluate at ξ = 0 to get

mnDnf̂(2πk) =
n∑

s=0

(
n
s

)
Ds

[
a(mξ)∗H(ξ +

2π
m
k)
]∣∣∣∣

ξ=0

Dn−sφ̂(
2π
m
k)

= δ0k

n∑
s=0

(
n
s

)
Dsa(0)∗Dn−sφ̂(

2π
m
k).

For k �= 0 everything vanishes. For k = 0, s = 0 we get

f̂(0) = y∗
0φ̂(0)

=
∑

k

y∗
0φ̂(2πk)

=
1
2π

∑
k

y∗
0φ(k) =

1
2π
�= 0

(6.29)

by using lemma 6.26 and the Poisson summation formula.
(iv) ⇔ (vi): We use the biorthogonality relations in equation (6.18). Mul-

tiply the relation

m−1∑
k=0

H(ξ +
2π
m
k)G̃(s)(ξ +

2π
m
k)∗ = 0

from the left by a(mξ)∗, differentiate n times, and evaluate at ξ = 0. The
left-hand side becomes

m−1∑
k=0

n∑
s=0

(
n
s

)
Ds

[
a(mξ)∗H(ξ +

2π
m
k)
]∣∣∣∣

ξ=0

Dn−sG̃(s)(ξ +
2π
m
k)∗

=
n∑

s=0

(
n
s

)
Dsa(0)∗Dn−sG̃(s)(0)∗

=
n∑

s=0

(
n
s

)
isµ̃∗

si
n−sÑ∗

n−s = inmnν̃(s)∗
n
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by equation (6.22).

The reverse direction requires induction on n.

In summary, as in the scalar case, approximation order p, accuracy p,
and the sum rules of order p are equivalent for sufficiently regular φ. They
are also equivalent to the fact that all the dual multiwavelet functions have
p vanishing moments, except that we need to specify vanishing continuous
moments. In the scalar case, vanishing continuous moments are equivalent to
vanishing discrete moments, but in the multiwavelet case the discrete moments
are matrices. They have to annihilate certain vectors, but they do not have
to be zero matrices.

Approximation order p is also equivalent to a certain factorization of the
symbol, but not as simple as in the scalar case. This factorization requires a
lot of machinery, and will be presented in chapter 8.

REMARK 6.28 At this point in chapter 1, there is a section on symme-
try. Symmetry for multiwavelets requires more background, and we delay the
discussion until chapter 8.

We just note at this point that there is no restriction against symmetry
for multiwavelets. That is one of the properties that make them attractive,
compared to scalar wavelets.

6.5 Point Values and Normalization

We mentioned the cascade algorithm earlier in this chapter as a practical way
for finding approximate point values of φ(x). There is another approach but
which produces exact point values of φ. It usually works, but may fail in
some cases.

Recall that the support of φ is contained in [k0/(m− 1), k1/(m− 1)]. Let
a and b be the smallest and largest integers in this interval.

For integer (, a ≤ ( ≤ b, the refinement equation (6.1) reads

φ(() =
√
m

k1∑
k=k0

Hk φ(m(− k) =
√
m

k1∑
k=k0

Hm�−k φ(k).

This is an eigenvalue problem

Φ = TΦ, (6.30)
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where

Φ =




φ(a)
φ(a+ 1)

...
φ(b)


 , T�k =

√
mHm�−k, a ≤ (, k ≤ b.

Note that each column of T contains all of the Hmk+� for some fixed (. The
basic regularity condition (iv) in theorem 6.9 implies that (y∗

0 ,y
∗
0 , . . . ,y

∗
0) is

a left eigenvector to eigenvalue 1, so a right eigenvector also exists.
We assume that this eigenvalue is simple, so that the solution is unique.

(This is the place where the algorithm could fail.)
In the case of dilation factor m = 2, the support of φ is contained in

[a, b] = [k0, k1]. The first and last rows of matrix equation (6.30) are

φ(k0) =
√
2Hk0φ(k0),

φ(k1) =
√
2Hk1φ(k1).

UnlessHk0 orHk1 have an eigenvalue of 1/
√
2, the values of φ at the endpoints

are zero, and we can reduce the size of Φ and T .
Once the values of φ at the integers have been determined, we can use the

refinement equation to obtain values at points of the form k/m, k ∈ Z, then
k/m2, and so on to any desired resolution.

All calculations of norms, point values, and moments only give the answer
up to an arbitrary constant. This reflects the fact that the refinement equation
only defines φ up to an arbitrary factor. When we calculate several quantities,
how do we make consistent choices? This is called normalization.

We already showed that if φ satisfies the basic regularity conditions, then

y∗
0

(∑
k

φ(k)

)
= y∗

0

(∫
φ(x) dx

)
= y∗

0µ0 = 1.

Unlike the scalar case, the sum of point values at the integers and the
integral do not have to be the same. They just have to have the same inner
product with y0.

For orthogonal φ, we had in the scalar case

‖φ‖2 = |µ0| = 1.

In the multiwavelet case, the corresponding normalization is

‖φ‖2 =
r∑

k=1

‖φk‖2 = r,

‖µ0‖ = 1.
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The L2-normalization for biorthogonal multiwavelets will be given in sec-
tion 7.8.1.

Example 6.6
The Chui–Lian multiwavelet CL2 has three coefficients and dilation factor
2. Its coefficients are given in appendix A. It has support on [0, 2] and is
symmetric/antisymmetric about x = 1 (fig. 6.4).

0 1 2
−2

−1

0

1

2

CL2 scaling function φ
1

0 1 2
−2

−1

0

1

2

CL2 scaling function φ
2

FIGURE 6.4
Two components of CL2 multiscaling function.

The matrix T has the form

T =
√
2


H0 0 0
H2 H1 H0

0 0 H2


 .

H0 and H2 both have eigenvalues (2−√7)/8 and 0, so φ(0) = φ(2) = 0; we
can reduce the eigenvalue problem to

H1φ(1) =
√
2φ(1).

The eigenvector is

φ(1) =
(
1
0

)
.

Since the zeroth moment, normalized to ‖µ0‖ = 1, is also (1, 0)∗, φ(1) is
correctly normalized.

Then

φ(1/2) =
√
2H0φ(1) =

(
1/2

−√7/4

)
.
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We can use the eigenvalue approach to compute point values of derivatives
of φ (assuming they exist).

If φ satisfies the refinement equation

φ(x) =
√
m

k1∑
k=k0

hk φ(mx− k),

then

(Dφ)(x) = m
√
m

k1∑
k=k0

hk (Dφ)(mx − k).

With the same derivation as above, we end up with

Dφ = mTDφ;

so Dφ is an eigenvector of T to eigenvalue 1/m. This eigenvalue must exist
if φ is differentiable.

The nth derivative can be likewise computed from the eigenvector to eigen-
value m−n.

LEMMA 6.29
The correct normalization for the nth derivative is given by

n! =
n∑

t=0

(
n
t

)
y∗

t

(∑
k

Dnφ(k)

)
.

PROOF If φ has n continuous derivatives, it has approximation order at
least n+ 1 (theorem 11.19), so

xn =
∑

k

c∗nkφ(x − k)

=
n∑

t=0

∑
k

(
n
t

)
y∗

tφ(x− k).

Then we just differentiate n times and set x = 0.

REMARK 6.30 The counterpart to lemma 1.36 is also true:

y∗
0

(∑
k

knDnφ(k)

)
= (−1)nn!y∗

0

(∫
xnDnφ(x) dx

)
.

This may give the correct normalization, but it could reduce to 0 = 0. The
normalization given in lemma 6.29 always works.
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Example 6.7
For the CL2 multiscaling function, the eigenvalue problem for the derivative
becomes

H1φ
′(1) = 2

√
2φ′(1).

The eigenvector is (0, 1)∗. The first two approximation vectors are

y0 =
(
1
0

)
, y1 =

1
1 +

√
7

(
1 +

√
7

1

)
.

The correct normalization for φ′(1) is

φ′(1) =
(

0
1 +

√
7

)
.

© 2004 by Chapman & Hall/CRC 



7

Practical Computation

As explained in section 6.2, the discrete multiwavelet transform (DMWT) is
based on the decomposition

Vn = V� ⊕W� ⊕W�+1 ⊕ · · · ⊕Wn−1.

A function s ∈ Vn can be expanded either as

s =
∑

k

s∗nkφnk

or as

s =
∑

k

s∗�kφ�k(x) +
n−1∑
j=�

∑
k

m−1∑
t=1

d(t)∗
jk ψ

(t)
jk ,

where
φnk(x) = mn/2φ(mnx− k)

(and likewise for ψ(t), φ̃, ψ̃
(t)
), and

s∗nk = 〈s, φ̃nk〉,
d∗

nk = 〈s, ψ̃(t)

nk〉.

The multiscaling and multiwavelet functions are column vectors. The coeffi-
cients are row vectors.

The notation s, d originally stood for sum and difference, which is what
they are for the Haar wavelet. You can also think of them as standing for the
smooth part and the fine detail of s. The original function s(x) is the signal.

The DMWT and IDMWT (inverse DMWT) convert the snk into s�k, d(t)
jk ,

j = (, . . . , n − 1, t = 1, . . . ,m − 1, and conversely. The implementation is
described in section 7.1.

The DMWT algorithm requires the initial expansion coefficients snk. Fre-
quently, the available data consists of equally spaced samples of s of the form
s(2−n(). Converting s(2−n() to snk is called preprocessing. After an IDMWT,
converting snk back to s(2−n() is called postprocessing. Postprocessing has to
be the inverse of preprocessing if we want to achieve perfect reconstruction.

In the scalar wavelet case, the difference between function samples and
expansion coefficients is not that great. Preprocessing can often be skipped
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without any dire consequences. In the multiwavelet case preprocessing is a
necessity, not an option. We will discuss various approaches in section 7.2.

There are multiwavelets that have been specially constructed to not require
a preprocessing step. We will discuss them in section 7.3.

A very important question is the handling of boundaries. The DMWT is
defined for infinitely long signals. In practice, we can only handle finitely long
signals. What do we do near the ends? Several approaches are covered in
section 7.4.

We will then describe some alternative formulations of the DMWT algo-
rithm, and finally some methods for computing integrals involving multi-
scaling or multiwavelet functions.

7.1 Discrete Multiwavelet Transform

Assume that we have a function s ∈ Vn

s(x) =
∑

k

s∗nkφnk(x),

represented by its coefficient sequence sn = {snk}. We decompose s into its
components in Vn−1, Wn−1:

s = Pn−1s+Qn−1s

=
∑

j

s∗n−1,jφn−1,j +
∑

j

m−1∑
t=1

d(t)∗
n−1,jψ

(t)
n−1,j ,

where

s∗n−1,j = 〈s, φ̃n−1,j〉,
d(t)∗

n−1,j = 〈s, ψ̃(t)

n−1,j〉.

LEMMA 7.1

〈φn−1,j , φ̃nk〉 = Hk−mj ,

〈φn−1,j , ψ̃
(t)

nk〉 = G
(t)
k−mj ,

〈φ̃n−1,j ,φnk〉 = H̃k−mj ,

〈ψ̃(t)

n−1,j ,φnk〉 = G̃
(t)
k−mj .
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PROOF We will just prove the first one:

〈φn−1,j , φ̃nk〉 =
∫

m(n−1)/2φ(mn−1x− j) ·mn/2φ̃(mnx− k) dx

=
∫ ∑

�

mn/2H�φ(mnx−mj − () ·mn/2φ̃(mnx− k) dx

=
∑

�

H�δmj+�,kI = Hk−mj .

Using these formulas, we find that

s∗n−1,j = 〈
∑

k

s∗nkφnk, φ̃n−1,j〉

=
∑

k

s∗nk〈φnk, φ̃n−1,j〉

=
∑

k

s∗nkH̃
∗
k−mj ,

or
sn−1,j =

∑
k

H̃k−mjsnk.

After similar calculations for d(t)
n−1,j and for the reconstruction step, we get

ALGORITHM 7.2 Discrete Multiwavelet Transform (Direct For-
mulation)
The original signal is sn.

Decomposition:

sn−1,j =
∑

k

H̃k−mjsnk,

d(t)
n−1,j =

∑
k

G̃
(t)
k−mjsnk.

The decomposed signal consists of m pieces sn−1, d(t)
n−1, t = 1, . . . ,m− 1.

Reconstruction:

snk =
∑

j

H∗
k−mjsn−1,j +

∑
j

m−1∑
t=1

G
(t)∗
k−mjd

(t)
n−1,j .

The formulas look identical to those in the scalar wavelet case, except for
the changes due to arbitrary m, but we have to be a bit careful.

The signal sn is not an infinite sequence, it is an infinite sequence of vectors.
Each coefficient snk is a vector of length r, and each recursion coefficient is
an r × r matrix.

© 2004 by Chapman & Hall/CRC 



We can interpret the multiwavelet algorithm in terms of convolutions and
down- and upsampling as in the scalar case, but they are block convolutions
and block down- and upsampling.

What we have described above is one step of the DMWT. In practice, we
do this over several levels:

sn → sn−1,d
(t)
n−1,

sn−1 → sn−2,d
(t)
n−2,

. . .

s�+1 → s�,d
(t)
� .

The IDMWT works similarly, in reverse.
The floating point count for the complete algorithm is O(N), as in the

scalar case.
The decomposition and reconstruction steps can be interpreted as infinite

matrix–vector products. The decomposition step is




...
sn−1,−1

sn−1,0

sn−1,1

...




=



· · · · · ·
· · · H̃m−2 H̃m−1 H̃m · · ·

· · · H̃−1 H̃0 H̃1 H̃2 · · ·
· · · H̃m+1 H̃m+2 H̃m+3 · · ·

· · · · · ·







...
sn,−1

sn,0

sn,1

...



,

and similarly for the d-coefficients.
The matrix formulation becomes nicer if we interleave the s- and d-coefficients:



...
(sd)n−1,−1

(sd)n−1,0

(sd)n−1,1

...




=



· · · · · · · · ·
· · · L̃−1 L̃0 L̃1 · · ·

· · · L̃−1 L̃0 L̃1 · · ·
· · · L̃−1 L̃0 L̃1 · · ·

· · · · · · · · ·







...
sn,−1

sn,0

sn,1

...



,

or simply

(sd)n−1 = L̃ sn. (7.1)

Here

(sd)n−1,j =




sn−1,j

d(1)
n−1,j
...

d(m−1)
n−1,j


 ,
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and

L̃k =




H̃mk H̃mk+1 · · · H̃mk+m−1

G̃
(1)
mk G̃

(1)
mk+1 · · · G̃(1)

mk+m−1
...

...
G̃

(m−1)
mk G̃

(m−1)
mk+1 · · · G̃(m−1)

mk+m−1


 .

L̃ is an infinite banded block Toeplitz matrix with blocks of size mr ×mr.
Each block is an m×m array of r × r matrices.

The reconstruction step can be similarly written as




...
sn,−1

sn,0

sn,1

...




=




...
...

... L∗−1

...
... L∗

0 L∗
−1

...
L∗

1 L∗
0 L∗

−1
... L∗

1 L∗
0

...
... L∗

1

...
...

...







...
(sd)n−1,−1

(sd)n−1,0

(sd)n−1,1

...



,

or
sn = L∗(sd)n−1. (7.2)

The perfect reconstruction condition is expressed as

L∗L̃ = I.

7.2 Pre- and Postprocessing

The DMWT algorithm requires the initial expansion coefficients snk. Fre-
quently, the available data consists of equally spaced samples of s. Converting
the function samples to snk is called preprocessing or prefiltering. After an
IDMWT, converting snk back to function values is called postprocessing or
postfiltering. Postprocessing has to be the inverse of preprocessing if we want
to achieve perfect reconstruction.

For scalar wavelets,

2−n/2s(2−nk) ≈ s∗nk = 〈s,φnk〉.

This is not true in general for multiwavelets, with some exceptions discussed
in section 7.3. Preprocessing and postprocessing steps are necessary.
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A number of approaches have been proposed, and we give a short summary
here.

In all the examples, we assume for simplicity that we are at level n = 0, and
that the signal has been sampled at the points xkj = k+(j/r), j = 0, . . . , r−1,
divided into r-vectors and normalized. Thus, the data are

σk =
1√
r




s(k)
s(k + 1

r )
...

s(k + r−1
r )


 .

The reason for the normalization is the following. The expansion of the con-
stant function 1 is ∑

k

y∗
0φ(x− k) = 1.

For orthogonal multiwavelets, ‖y0‖ = 1. The normalization ensures that we
also have ‖σk‖ = 1.

7.2.1 Interpolating Prefilters

We try to determine multiscaling function coefficients sk so that the multi-
scaling function series matches the function values at the points xkj :∑

�

s∗�φ(mxkj − () = s(xkj).

This may or may not be possible for a given multiwavelet. This approach
preserves the approximation order but not orthogonality. It is described in
more detail in [153].

Example 7.1
For the DGHM multiscaling function, the only nonzero function values at the
integers and half-integers are

φ1(1/2) = 4
√
6/5,

φ2(1/2) = φ2(3/2) = −3
√
3/10,

φ2(1) =
√
3.

This means that for integer k

s(k) =
√
3sk−1,2

s(k +
1
2
) =

4
√
6

5
sk,1 − 3

√
3

10
sk,2 − 3

√
3

10
sk−1,2

=
4
√
6

5
sk,1 − 3

√
3

10
s(k + 1)− 3

√
3

10
s(k),
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or conversely

sk,1 =
5

4
√
6

(
3
√
3

10
s(k) + s(k +

1
2
) +

3
√
3

10
s(k + 1)

)
,

sk,2 = s(k + 1).

Here sk,1 and sk,2 are the first and second component of the 2-vector sk.

[154] describes the construction of totally interpolating biorthogonal multi-
wavelets, which means that

φj(
k

r
) = δjk,

and likewise for the dual and all the multiwavelet functions. Totally inter-
polating multiwavelets do not require a preprocessing step.

7.2.2 Quadrature-Based Prefilters

We approximate the integral defining the true coefficients by a quadrature
rule. For any choice of quadrature points, we can get the weights by integrat-
ing the Lagrange interpolating polynomials at these points, as in section 2.8.3.
This is explained in more detail in [94].

Example 7.2
For the DGHM multiwavelet, two cases are worked out in [94].

For one quadrature point, the weights are
√
6/3 for φ1 and 1/

√
3 for φ2.

These are just the components of the first moment µ1. The choice of quadra-
ture point is irrelevant.

For three quadrature points 0, 1, 2 equally spaced across the support of φ,
we get

(w11, w12, w13) = (11, 20,−3)/(14
√
6),

(w21, w22, w23) = (−1, 30,−1)/(28√3).

Quadrature-based prefilters can always be found. They preserve approxi-
mation order as long as the accuracy of the quadrature rule is at least as high
as the approximation order. They do not usually preserve orthogonality.

7.2.3 Hardin–Roach Prefilters

These prefilters are designed to preserve orthogonality and approximation
order.

Preprocessing is assumed to be linear filtering

sk =
∑

�

Qk−�σ�,
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or
s(ξ) = Q(ξ)σ(ξ). (7.3)

This is an orthogonal transform if Q(ξ) is paraunitary.
A quasi-interpolating prefilter of order p produces the correct expansion

coefficients for all polynomials up to degree p− 1.
For the signal xn, the point samples have the form

σk =
n∑

�=0

(
n
(

)
kn−�e�,

where

e� =
1√
r

(
(
0
r
)�, (

1
r
)�, . . . , (

r − 1
r

)�
)∗

.

The true expansion coefficients have the form

sk =
n∑

�=0

(
n
(

)
kn−�y�,

where the y� are the approximation vectors.
We can substitute this into equation (7.3) and get conditions on Q(ξ).
For p = 1 we get

Q(0)e0 = y0. (7.4)

This can always be achieved by a constant orthogonal matrix.
For p = 2 we get

Q(0)e1 − iQ′(0)e0 = y1. (7.5)

It is proved in [76] that arbitrarily high approximation orders can be achieved
if we allow a Q(ξ) of sufficiently high degree.

Example 7.3
For the DGHM multiscaling function there are precisely two constant matrices
Q which satisfy equation (7.4) and preserve approximation order 1:

1√
6

(
1 +

√
2 1−√2

−1 +√2 1 +
√
2

)
and

1√
6

(
1−√2 1 +

√
2

1 +
√
2 −1 +√2

)
.

Approximation order 2 (equation (7.5)) can be preserved by a Q(ξ) with
three coefficients. There are six solutions, listed in [76].

An approximation order preserving prefilter of order p converts the point
samples of any polynomial up to degree p − 1 into the true expansion coef-
ficients of a polynomial of the same degree with the same leading term, but
not necessarily the same polynomial. This is sufficient to achieve good results
in practice.
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For p = 2, equation (7.5) is replaced by

Q(0)e1 − iQ′(0)e0 = y1 + αy0

for some α. Equation (7.4) remains the same.
Approximation order preserving prefilters can be shorter than quasi-inter-

polating prefilters.

Example 7.4
There are four orthogonal prefilters with two coefficients which preserve ap-
proximation order 2 for the DGHM multiwavelet. Details are given in [76].

The Hardin–Roach approach was introduced in [76]. The details for the
DGHM multiwavelet are given in that paper. Further examples are covered
in [8]. Overall, only approximation order 2 has been worked out so far.

7.2.4 Other Prefilters

Other approaches to prefiltering can be found in [117], [137], [149], and [152].
We just briefly mention two other kinds of prefilters. Both of them increase

the length of the input signal by a factor of r.
One method replaces the input {. . . , s0, s1, s2, . . . } by {. . . , s0y∗

0 , s1y
∗
0 , . . . }.

The other method is described in [152]. We look for a function f of the
form

f(x) =
∑

k

a∗
kφ(x− k)

which is orthogonal to its translates, satisfies f(0) = 1, is low-pass, and maybe
has some additional vanishing moments, so that

s(x) ≈
∑

k

s(k)f(x− k)

to high accuracy. Then

s(x) ≈
∑

k

s(k)f(x − k) =
∑
nk

s(k)a∗
nφ(x− k − n).

7.3 Balanced Multiwavelets

Balanced multiwavelets are specifically constructed to not require preprocess-
ing.
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DEFINITION 7.3 A multiwavelet is balanced of order k if the decompo-
sition matrix L defined in equation (7.1) maps polynomial sequences of degree
j into polynomial sequences of degree j for j = 0, . . . , k − 1.

The following theorems are shown in [105].

THEOREM 7.4
A multiwavelet is balanced of order p if and only if there exist constants r0 = 1,
r1, . . . , rp−1 so that φ has approximation order p with approximation vectors
of the form

y∗
k = (ρk(

0
r
), ρk(

1
r
), . . . , ρk(

r − 1
r

)),

where

ρk(x) =
k∑

j=0

(
k
j

)
rk−jx

j .

THEOREM 7.5

A multiwavelet is balanced of order p if and only if the symbol factors as

H(ξ) =
1
mp

C(mξ)pH0(ξ)C(ξ)−p (7.6)

with

C(ξ) = I − e0e∗
0, e∗

0 =
1√
r
(1, 1, . . . , 1).

This is the two-scale similarity (TST) factorization of corollary 8.18, with
C(ξ) of a particular form.

Other conditions are derived in [125].
Any multiwavelet with approximation order 1 can be balanced of order 1.

We replace φ, φ̃ by

φnew(x) = Qφ(x),

φ̃new(x) = Q−∗φ̃(x).

This leaves the spaces V0, Ṽ0 invariant. If we choose Q so that

y∗
0Q = e∗

0,

ỹ∗
0Q

−∗ = e∗
0,

the new zeroth approximation vectors will both be e0. Such a choice of Q
is always possible. In the orthogonal case, this Q is the same Q as in the
Hardin–Roach prefilter for approximation order 1.
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Balancing of higher order is harder to enforce. In [13] it is shown how
balancing conditions can be imposed via lifting steps. (Lifting is explained in
chapter 9.)

Example 7.5

It is observed in [104] and other places that scalar orthogonal wavelets, such
as the Daubechies wavelets, can be turned into balanced multiwavelets by
defining

H0 =
(
h0 h1

0 0

)
, H1 =

(
h2 h3

h0 h1

)
, . . . Hp =

(
0 0

h2p−2 h2p−1

)
.

φ1 is a copy of the scalar function, compressed by two, and φ2 is φ1 shifted
right by 1/2.

Other examples of balanced multiwavelets are given in [13], [105], [125] to
[127], and [129]. The coefficients for one of them (the BAT O1 multiwavelet
from [105]) are given in appendix A.

REMARK 7.6 There are other kinds of multiwavelets which do not require
preprocessing. In section 7.2.1 we already mentioned totally interpolating
multiwavelets. Another example are the full rank multiwavelets from [14].

7.4 Handling Boundaries

The DMWT and IDMWT, as described so far, operate on infinite sequences
of coefficients. In real life, we can only work on finite sequences. How should
we handle the boundary?

Section 2.3 described the standard approach to handling boundaries in the
scalar case, and three ways to look for boundary coefficients: the data exten-
sion approach, the matrix completion approach, and the boundary function
approach. If you are not familiar with this material, you should go back to
section 2.3 and review it first.

All of the scalar methods carry over to the multiwavelet case.

7.4.1 Data Extension Approach

The only references to the data extension approach I could find in the litera-
ture deal with symmetric extension.
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We assume that there exists a point a and a matrix S with S2 = I so that

φ(a+ x) = Sφ(a− x), (7.7)

and that ψ(t), φ̃, ψ̃
(t)

all satisfy the same relation.
For standard symmetry/antisymmetry, S is a diagonal matrix with ±1 on

the diagonal, but other choices of S are possible. For example, if r = 2 and

S =
(
0 1
1 0

)
,

then φ2 is the reflection of φ1 about the point a, and vice versa.
We center the functions so that a = 0 (whole-sample symmetry) or a = 1/2

(half-sample symmetry).
It is shown in [151] that in this case we can extend the signal using the

same formula as in equation (7.7):

s−k = Ssk (whole-sample),
s−k = Ssk−1 (half-sample).

The finite DMWT based on symmetric extension will then preserve the sym-
metry across scales, as in the scalar case.

For consistency we need the additional condition

Ss0 = s0

in the case of whole-sample symmetry.
In [137], the authors use an ad hoc symmetric extension for the DGHM

multiwavelet. Since φ1 has whole-sample symmetry and φ2 has half-sample
symmetry, the authors used corresponding extensions for the first and second
components of sk. It seems to work in practice.

The periodic extension approach will work for multiwavelets, and will pre-
serve orthogonality.

The other approaches (zero, constant, linear extension) given in section 2.3
appear to work in practice, based on personal numerical experimentation. I
am not aware of any publications describing them.

7.4.2 Matrix Completion Approach

Personal numerical experimentation indicates that this works in the multi-
wavelet case. I am not aware of any publications describing it for the multi-
wavelet case.

7.4.3 Boundary Function Approach

As far as I know, this has only been worked out in detail for the case of the
cubic Hermite multiscaling function with one particular dual. The details are
given in [45], and they are quite lengthy.
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There is one variation on the boundary function approach that is easy
to do and has no counterpart for scalar wavelets. If we have multiwavelets
with support on [−1, 1], there is exactly one boundary-crossing multiscaling
function at each end, and it is already orthogonal to everything inside. We
can simply restrict the boundary function vector to the inside of the interval,
and orthonormalize the components among themselves.

Examples for this approach are given in [72] and [75].
This would also work for scalar wavelets, of course, except there are no

wavelet pairs with support in [−1, 1] except the Haar wavelet. For multi-
wavelets, it is possible to achieve arbitrarily high approximation order, plus
symmetry, on [−1, 1] by taking the multiplicity high enough.

7.5 Putting It All Together

A complete DMWT for a finite one-dimensional signal goes like this:

• Do preprocessing (required except for certain types of multiwavelets).

• Decide how to handle the boundaries.

• Apply the algorithm.

• Do postprocessing.

If we start with a signal sn of length N , the first decomposition step will
produce m signals sn−1 and d(t)

n−1, t = 1, . . . ,m − 1, each of length N/m.
They can be stored in the place previously occupied by sn. Then we repeat
the process with sn−1, and so on.

The programming is easier if we put the sk at the beginning of the vector.
The output from the DMWT routine after several steps is




s�

d(1)
�
...

d(m−1)
�

d(1)
�+1
...

d(m−1)
n−1



.

We can then extract the components.
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Example 7.6

Figure 7.1 shows the decomposition of a signal over three levels using the
DGHM multiwavelet. Only the first component of each coefficient 2-vectors
is shown; a plot of the second component looks very similar. As in the scalar
case, the horizontal axis has been adjusted, and the levels have been suitably
scaled.

s

without preprocessing

P
0
s

Q
0
s

Q
1
s

Q
2
s

s

with preprocessing

P
0
s

Q
0
s

Q
1
s

Q
2
s

FIGURE 7.1
DWT decomposition of a signal. Left: without preprocessing.
Right: with preprocessing.

The left-hand side shows the decomposition without preprocessing. On the
right, the orthogonal prefilter preserving approximation order 1 was applied
first. Preprocessing greatly reduces the size of the d-coefficients, and makes
the result more comparable to figure 2.1.

A DMWT of a two-dimensional signal (image) works the same way as for
scalar wavelets: we apply the one-dimensional algorithm to the rows and to
the columns. The results look similar to what is shown in chapter 2.

However, there is one extra caveat for multiwavelets. The authors of [137]
determined experimentally that it is not a good idea to prefilter once and go
through the entire algorithm.
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What works much better is to prefilter, process, and postfilter all the rows
first, and then do the same to all the columns (or vice versa).

7.6 Modulation Formulation

The modulation formulation is a way of thinking about the algorithm and
verifying the perfect reconstruction conditions. It is not a way to actually
implement it.

We associate with each sequence a = {ak} (finite or infinite) its symbol

a(ξ) =
∑

k

ake
−ikξ.

If c = A ∗ b (convolution of a matrix and a vector sequence), then

c(ξ) = A(ξ)b(ξ).

Downsampling by m is represented as

(↓ m)c(ξ) =
1
m

m−1∑
t=0

c(
ξ + 2πt

m
)

or

(↓ m)c(mξ) =
1
m

m−1∑
t=0

c(ξ +
2πt
m

).

Upsampling by m is represented by

(↑ m)c(ξ) = c(mξ).

The entire DMWT algorithm in terms of the symbols is shown next.

ALGORITHM 7.7 Discrete Multiwavelet Transform (Modulation
Formulation)

The original signal is sn(ξ).
Decomposition:

sn−1(mξ) =
1√
m

m−1∑
t=0

H̃(ξ +
2πt
m

)sn(ξ +
2πt
m

),

d(t)
n−1(mξ) =

1√
m

m−1∑
t=0

G̃(t)(ξ +
2πt
m

)sn(ξ +
2πt
m

).
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The decomposed signal consists of m pieces sn−1(mξ), d(t)
n−1(mξ), t =

1, . . . ,m− 1.
Reconstruction:

1√
m

sn(ξ) = H(ξ)∗sn−1(mξ) +
m−1∑
t=1

G(t)(ξ)∗d(t)
n−1(mξ).

When we add the redundant statements

1√
m

sn(ξ +
2π(
m

) = H(ξ +
2π(
m

)∗sn−1(mξ) +
m−1∑
t=1

G(t)(ξ +
2π(
m

)∗d(t)
n−1(mξ)

for ( = 1, . . . ,m−1 to the reconstruction formula, we can write decomposition
and reconstruction in the matrix form


sn−1(mξ)
d
(1)
n−1(mξ)

...
d
(m−1)
n−1 (mξ)


 = M̃(ξ) · 1√

m




sn(ξ)
sn(ξ + 2π

m )
...

sn(ξ +
(m−1)2π

m )


 ,

1√
m




sn(ξ)
sn(ξ + 2π

m )
...

sn(ξ +
(m−1)2π

m )


 = M(ξ)∗




sn−1(mξ)
d
(1)
n−1(mξ)

...
d
(m−1)
n−1 (mξ)


 .

(7.8)

DEFINITION 7.8 The matrix

M(ξ) =




H(ξ) H(ξ + 2π
m ) · · · H(ξ + (m−1)π

m )
G(1)(ξ) G(1)(ξ + 2π

m ) · · · G(1)(ξ + (m−1)2π
m )

...
...

G(m−1)(ξ) G(m−1)(ξ + 2π
m ) · · · G(m−1)(ξ + (m−1)2π

m )


 (7.9)

is called the modulation matrix.

The biorthogonality conditions become

M(ξ)∗M̃(ξ) = I. (7.10)

The modulation matrix of an orthogonal multiwavelet is paraunitary.

REMARK 7.9 You may be wondering at this point where the factors of
1/
√
m come from.
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One answer is that the symbols H(ξ), G(t)(ξ) are defined differently from
the symbols s(ξ), d(ξ): they carry a factor of 1/

√
m already. Together with

the factor 1/
√
m in the decomposition formula, that makes up the factor of

1/m in the downsampling.
The matrix formulation makes it more clear why these factors have to be

there. If φ, ψ(t) form an orthogonal multiwavelet, the modulation matrix is
paraunitary; it preserves 2-norms:

‖sn‖2 = ‖sn−1‖2 +
m−1∑
t=1

‖d(t)
n−1‖2.

However, at level n we also have the redundant sn(ξ+2(π/m), ( = 1, . . . ,m−1.
The factor of 1/

√
m makes the two-norms of (sn(ξ), sn(ξ + 2π/m), . . . ) and

sn(ξ) equal.

7.7 Polyphase Formulation

There is a way to arrange the calculations in the DMWT algorithm in a form
that uses block convolutions without downsampling. This is called the poly-
phase implementation. The resulting polyphase matrix is of great importance
in the construction of multiwavelets.

DEFINITION 7.10 The m-phases of a sequence a = {ak} are defined by

at,k = amk+t, t = 0, . . . ,m− 1.

We split both the signal and the recursion coefficients into m-phases. Then

sn−1,j =
∑

k

H̃k−mjsnk

=
∑

k

H̃mk−mjsn,mk +
∑

k

H̃mk+1−mjsn,mk+1 + · · ·

=
m−1∑
�=0

∑
k

H̃�,k−jsn�,k.

This is now a sum of m block convolutions:

sn−1 =
m−1∑
t=0

H̃(−)t ∗ snt.

The other parts of the DMWT algorithm can be adapted similarly.
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Decomposition begins with splitting the input into m-phases. Each phase
is block filtered (convolved) with m different filters, and the results added. In
the reconstruction step, we compute the phases of the result separately, and
finally recombine them.

ALGORITHM 7.11 Discrete Multiwavelet Transform (Polyphase
Implementation)

The original signal is sn.
Decomposition:
Split sn into its phases sn,�, ( = 0, . . . ,m− 1.

sn−1,j =
m−1∑
�=0

∑
k

H̃�,k−jsn�,k

d
(t)
n−1,j =

m−1∑
�=0

∑
k

G̃
(t)
�,k−jsn�,k, t = 0, . . . ,m− 1.

Reconstruction:

sn�,k =
∑

j

H∗
�,k−jsn−1,j +

∑
t

∑
j

G
(t)∗
�,k−jsn−1,j.

Recombine the phases sn� into sn.

DEFINITION 7.12 The polyphase symbols of a sequence a = {ak} are
given by

at(ξ) =
∑

k

at,ke
−ikξ =

∑
k

amk+te
−ikξ,

or in z-notation

at(z) =
∑

k

at,kz
k =

∑
k

amk+tz
k.

In matrix notation, the polyphase DMWT algorithm can be written as
Decomposition:




sn−1(z)
d(1)

n−1(z)
...

d(m−1)
n−1 (z)


 = P̃ (z)




sn,0(z)
...

sn,m−1(z)


 .
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Reconstruction:




sn,0(z)
...

sn,m−1(z)


 = P (z)∗




sn−1(z)
d(1)

n−1(z)
...

d(m−1)
n−1 (z)


 .

DEFINITION 7.13 The matrix

P (z) =




H0(z) H1(z) · · · Hm−1(z)
G

(1)
0 (z) G

(1)
1 (z) · · · G

(1)
m−1(z)

...
...

G
(m−1)
0 (z) G(m−1)

1 (z) · · · G(m−1)
m−1 (z)




is called the polyphase matrix.

The biorthogonality conditions become

P (z)∗P̃ (z) = I. (7.11)

REMARK 7.14 Note that the polyphase symbols of the recursion coeffi-
cients

Ht(ξ) =
∑

k

Hmk+te
−ikξ

do not get a factor of 1/
√
m like the regular symbols. This way, the polyphase

matrix of on an orthogonal multiwavelet is paraunitary, like the modulation
matrix.

7.8 Calculating Integrals

Multiscaling and multiwavelet functions are usually not known in closed form.
Nevertheless it is possible to compute many kinds of integrals exactly or ap-
proximately.
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7.8.1 Integrals with Other Refinable Functions

Assume that φ1(x) and φ2(x) are two refinable function vectors

φ1(x) =
√
m

k1∑
k=k0

H1kφ1(mx− k),

φ2(x) =
√
m

�1∑
�=�0

H2�φ2(mx− ().

Define

F (y) =
∫
φ1(x)φ2(x − y)∗ dx. (7.12)

When we substitute the refinement equations into the definition of F and sort
things out, we find that

F (y) =
∑
k,�

H1�+kF (my − k)H∗
2�.

In terms of F = vec(F ), this becomes

F(y) =
√
m
∑

k

CkF(my − k),

where

Ck =
1√
m

∑
�

H2� ⊗H1,�+k.

HereH2� is the element-by-element complex conjugate ofH2�, not the complex
conjugate transpose. The Kronecker product and the vec operation are defined
in appendix B.7.

The function vector F is again refinable. If {H1k} and {H2�} both satisfy
the sum rules of order 1 with approximation vectors y10 and y20, then so does
{Ck}, with approximation vector y20 ⊗ y10.

An integral of the form

∫
φ1(x)φ2(x − n)∗ dx,

is then nothing but F(n), and we already know how to find point values of
refinable functions.
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For the normalization, we convert the vector F back into the matrix F and
multiply with the zeroth approximation vectors from left and right:

y∗
10

(∑
k

F (k)

)
y20 = y∗

10

(∫ ∑
k

φ1(x + k)φ2(x)
∗ dx

)
y20

=

(∫
y∗

10

∑
k

φ1(x + k)φ2(x)
∗ dx

)
y20

=
(∫

φ2(x)
∗ dx

)
y20

= 1.

As a by-product, this is also the way to compute ‖φ‖2 for biorthogonal
multiwavelets. We simply take φ1 = φ2 = φ, normalize the point values of F
at the integers correctly, and then look at F (0).

Example 7.7

For the Hermit cubic multiscaling function, the nonzero recursion coefficients
for F are

C−2 =
1

128
√
2




16 24 −24 −36
−4 −4 6 6
4 6 −4 −6
−1 −1 1 1


 ,

C−1 =
1

128
√
2




64 48 −48 0
−8 8 0 −24
8 0 8 24
0 4 −4 −8


 ,

C0 =
1

128
√
2



96 0 0 72
0 24 −12 0
0 −12 24 0
2 0 0 18


 ,

C1 =
1

128
√
2




64 −48 48 0
8 8 0 24
−8 0 8 −24
0 −4 4 −8


 ,

C2 =
1

128
√
2




16 −24 24 −36
4 −4 6 −6
−4 6 −4 6
−1 1 −1 1


 .
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Matlab computes the eigenvector to eigenvalue 1 as

(0, 0, 0, 0,−18, 13/3,−13/3, 1,−104, 0, 0,−8/3,−18,−13/3, 13/3, 1, 0, 0, 0, 0)∗.

This corresponds to

F (−2) = F (2) =
(
0 0
0 0

)
, F (−1) =

(−18 −13/3
13/3 1

)
,

F (0) =
(−104 0

0 −8/3
)
, F (1) =

( −18 13/3
−13/3 1

)
,

so ∑
k

F (k) =
(−140 0

0 −2/3
)
.

Since y0 = (1, 0)∗, we get y∗
0

∑
k F (k)y0 = −140. We need to divide by

(−140). The correctly normalized values of F are

F (−1) =
(

9/70 13/420
−13/420 −1/140

)
, F (0) =

(
26/35 0
0 2/105

)
,

F (1) =
(

9/70 −13/420
13/420 −1/140

)
.

In particular,

〈φ,φ〉 = F (0) =
(
26/35 0
0 2/105

)
.

This can be checked independently from equation (6.3).

This approach can be generalized in many different ways. Everything listed
in section 2.8.1 extends to the multiwavelet case. However, the details get
very messy, so we will not pursue this any further.

7.8.2 Integrals with Polynomials

We already know how to calculate an integral of the form∫
p(x)φ(x) dx

where p is a polynomial. This is nothing but a linear combination of the
continuous moments defined in equation (6.20)

µk =
∫

xkφ(x) dx, (7.13)

which can be calculated from equation (6.22).
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7.8.3 Integrals with General Functions

Here we want to approximate integrals of the form

s∗0k =
∫

s(x)φ(x− k)∗ dx (7.14)

where s is a general function. This is useful, for example, in generating the
true expansion coefficients of s (see section 7.2).

The quadrature approach from section 2.8.3 carries over with little effort.
This was already discussed in section 7.2.2.

The scaling function approach from section 2.8.3 also carries over in prin-
ciple. In practice, I think it would be a lot more work than the quadrature
approach.

7.9 Applications

This is a fairly short section. This may be a disappointment to some readers,
but the fact is that most of the multiwavelet literature so far has concentrated
on studying the properties of these functions. There are relatively few articles
that report on actual implementations and performance.

The basic types of applications for multiwavelets are the same as for scalar
wavelets. Refer to chapter 4 for an overview.

7.9.1 Signal Processing

A few studies have compared the performance of scalar wavelets and multi-
wavelets in image denoising and compression, including [29], [61], [63], [137],
[143], and [151].

It appears that multiwavelets can do as well or better than scalar wavelets,
but careful attention must be paid to preconditioning and handling of bound-
aries.

The authors of [137] report that filters with short support produce fewer
artifacts in the reconstruction of compressed images. Multiwavelets have a
definite advantage over scalar wavelets in this respect.

The use of multiwavelets for video compression is reported in the thesis of
Tham [142].

7.9.2 Numerical Analysis

The main advantage of multiwavelets over scalar wavelets in numerical analy-
sis lies in their short support, which makes boundaries much easier to handle.
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For integral equations, in particular, multiwavelets with support [0, 1] can
be used. At least some of the basis functions necessarily must be discontinu-
ous, but for integral equations that is not a big problem.

Indeed, the first appearance of such multiwavelets was in the thesis and
papers of Alpert (see [2] to [4]), before the concept of multiwavelets was
invented.

Multiwavelet methods for integral equations are also discussed in [34], [114],
[115], [141], and [148].

For differential equations, multiwavelets with support [−1, 1] can be used.
Regularity and approximation order can be raised to arbitrary levels by taking
the multiplicity high enough.

There is only one multiscaling function that crosses each boundary. It is
already orthogonal to all the interior functions, so constructing the bound-
ary multiscaling function is an easy matter: orthonormalize the truncated
boundary-crossing multiscaling function. This automatically preserves ap-
proximation order. Finding the boundary multiwavelet function still takes a
little effort.

If symmetric/antisymmetric multiwavelets are used, it is even possible to
use only the antisymmetric components of the boundary function vector for
problems with zero boundary conditions. Examples of suitable multiwavelets
can be found in [45] and [75].

Other papers about adapting multiwavelets to the solution of differential
equation include [1], [9], [10], [106], and [110].
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8

Two-Scale Similarity Transforms

The two-scale similarity transform (TST) is a new, nonobvious construction
for multiwavelets that has no counterpart for scalar wavelets (or rather, the
concept is so trivial there that it did not need a name).

One main application is a characterization of approximation order which is
useful for both theoretical and practical purposes. It leads to the counterpart
of the statement “a symbol satisfies the sum rules of order p if and only if it
contains a factor of (1 + e−iξ)p.”

A second application is in the characterization of symmetry.
The material in this chapter is based mostly on the Ph.D. thesis of Strela [135],

as well as the subsequent papers [121] and [136]. Some of the material in sec-
tion 8.3 is previously unpublished.

8.1 Regular TSTs

Assume that φ is a refinable function vector, and let

φnew(x) =
∑

k

Ckφ(x− k)

for some coefficient matrices Ck. Then

φ̂new(ξ) = C(ξ)φ̂(ξ), (8.1)

where
C(ξ) =

∑
k

Cke
−ikξ.

If C(ξ) is nonsingular for all ξ, then

φ̂new(mξ) = C(mξ)φ̂(mξ) = C(mξ)H(ξ)φ̂(ξ)

= C(mξ)H(ξ)C(ξ)−1φ̂new(ξ).

This means that φnew is again refinable with symbol

Hnew(ξ) = C(mξ)H(ξ)C(ξ)−1 .
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This is a basis change which leaves all the spaces Vn invariant. We will mostly
be interested in the case where there are only finitely many nonzero Ck.

If φ has a dual φ̃, φnew has the dual φ̃new given by the symbol

H̃new(ξ) = C(mξ)−∗H̃(ξ)C(ξ).

This is easy to verify.

DEFINITION 8.1 Assume C(ξ) is a trigonometric matrix polynomial
which is nonsingular for all ξ.

Hnew(ξ) is a regular TST of H(ξ) if

Hnew(ξ) = C(mξ)H(ξ)C(ξ)−1 .

Hnew(ξ) is a regular inverse TST (regular ITST) of H(ξ) if

Hnew(ξ) = C(mξ)−1H(ξ)C(ξ).

Since
Hnew(0) = C(0)H(0)C(0)−1

or
Hnew(0) = C(0)−1H(0)C(0),

Hnew(0) and H(0) share the same eigenvalues. If H(0) satisfies condition E,
so does Hnew(0). However, the eigenvectors are generally different.

It is intuitively obvious that φ and φnew have the same approximation
order. The following theorem verifies this, and also provides formulas for
computing the new approximation vectors.

THEOREM 8.2
If Hnew is a regular TST of H, they have the same approximation order.

If yk are the approximation vectors of H(ξ), the corresponding approxima-
tion vectors of Hnew(ξ) are given by

y∗
new,k =

k∑
�=0

(
k
�

)
i�−ky∗

�

(
Dk−�C−1

)
(0), k = 0, . . . , p− 1. (8.2)

Likewise, if Hnew(ξ) is a regular ITST of H(ξ), they have the same approx-
imation order.

If yk are the approximation vectors of H(ξ), the corresponding approxima-
tion vectors of Hnew(ξ) are given by

y∗
new,k =

k∑
�=0

(
k
�

)
i�−ky∗

�

(
Dk−�C

)
(0), k = 0, . . . , p− 1. (8.3)

© 2004 by Chapman & Hall/CRC 



PROOF We need to verify that Hnew with the given new approximation
vectors satisfies the sum rules. This is a long, tedious calculation. The details
are given in [135].

Regular TSTs have applications in verifying and imposing symmetry con-
ditions. We will do that in section 8.5.

8.2 Singular TSTs

The definition of TST and ITST makes sense in the regular case, where C(ξ)
is invertible for all ξ. We can also allow noninvertible C(ξ) of a special type,
and this is actually the more interesting application of this idea.

DEFINITION 8.3 A TST matrix is a 2π-periodic, continuously differen-
tiable matrix-valued function C(ξ) which satisfies

• C(ξ) is invertible for ξ �= 2πk, k ∈ Z.

• C(0) has a simple eigenvalue 0 with left and right eigenvectors l and r.

• This eigenvalue satisfies λ′(0) �= 0.

The last statement requires a brief explanation: as ξ varies, the eigenvalues
of C(ξ) vary continuously with ξ. Simple eigenvalues vary in a differentiable
manner. λ(ξ) is the eigenvalue for which λ(0) = 0. In some neighborhood of
the origin, λ(ξ) is uniquely defined and differentiable. This derivative must
be nonzero at 0.

Example 8.1
The standard example is

C(ξ) = I − rl∗e−iξ = (I − rl∗) + rl∗(1− e−iξ),

where l and r are normalized to l∗r = 1. The inverse is

C(ξ)−1 = (I − rl∗) +
rl∗

1− e−iξ
, ξ �= 2πk.

Here r(ξ) = r, λ(ξ) = 1− e−iξ, so λ′(0) = i �= 0.

THEOREM 8.4
Assume C(ξ) is a TST matrix with eigenvectors l, r. Then the TST

Hnew(ξ) = C(mξ)H(ξ)C(ξ)−1
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is well-defined if and only if r is a right eigenvector of H(0) to some eigenvalue
λH .

If this is the case, Hnew(0) has the eigenvalue mλH with left eigenvector l,
and the other eigenvalues of Hnew(0) are the remaining eigenvalues of H(0).

Remarks:
1. All the eigenvectors of Hnew(0), both left and right, will in general be

different from those of H(0).
2. The eigenvalue λH of H(0) may be multiple, even degenerate. For

example, if λH is a double eigenvalue of H(0) with a single eigenvector r,
Hnew(0) will have eigenvalues mλH and λH , each with an eigenvector.

PROOF We only need to consider a neighborhood of ξ = 0, since otherwise
the TST is well-defined.

The assumptions on C(ξ) imply that in a neighborhood of ξ = 0, C(ξ) has
a simple eigenvalue λ(ξ). λ(ξ) and the right and left eigenvectors r(ξ), l(ξ)
are continuously differentiable, normalized by l(ξ)∗r(ξ) = 1, and λ(0) = 0,
r(0) = r, l(0) = l.

Let V (ξ) be a 2π-periodic, continuously differentiable matrix whose columns
are formed by r(ξ) and a basis for l(ξ)⊥. Then

C(ξ) = V (ξ)J(ξ)V (ξ)−1,

where

J(ξ) =




λ(ξ) 0 · · · 0
0
... J0(ξ)
0


 (8.4)

with J0(ξ) invertible for all ξ. This is a partial Jordan normal form.
Let

A(ξ) = V (mξ)−1H(ξ)V (ξ),

B(ξ) = J(mξ)A(ξ)J(ξ)−1;

then

Hnew(ξ) = C(mξ)H(ξ)C(ξ)−1

= V (mξ)J(mξ)V (mξ)−1H(ξ)V (ξ)J(ξ)−1V (ξ)−1

= V (mξ)B(ξ)V (ξ)−1.

A(ξ) is well-defined everywhere and continuously differentiable. We split
off the first row and column

A(ξ) =


 a(ξ) ρ(ξ)∗

γ(ξ) A0(ξ)


 ;
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then

B(ξ) =


 λ(mξ)a(ξ)λ(ξ)−1 λ(mξ)ρ(ξ)∗J0(ξ)−1

J0(mξ)γ(ξ)λ(ξ)−1 J0(mξ)A0(ξ)J0(ξ)−1


 .

As ξ → 0, the top left entry becomes

lim
ξ→0

λ(mξ)
λ(ξ)

a(ξ) = ma(0)

by l’Hôpital’s rule. The remainder of the first row goes to zero.
Since λ(0) = 0, the the remainder of the first column remains bounded as

ξ → 0 if and only if J0(0)γ(0) = 0, which is equivalent to γ(0) = 0. The
limits can again be calculated by l’Hôpital’s rule, but the values are irrelevant.

B (and therefore also Hnew) is well-defined if and only if γ(0) = 0. If this
is the case, A(0) and B(0) have the form

A(0) = V (0)−1H(0)V (0) =
(
a(0) ρ(0)∗

0 A0(0)

)
,

B(0) =
(
ma(0) 0∗

β(ξ) J0(0)A0(0)J0(0)−1

)
.

This means that

H(0)r = V (0)A(0)V (0)−1r = a(0)r,

so r is an eigenvector of H(0) to eigenvalue λH = a(0). Conversely, H(0)r =
λHr implies that γ(0) = 0, which makes the TST well-defined.

B(0) has the left eigenvector e1 = (1, 0, . . . , 0)∗ to eigenvalue mλH , which
implies that

l∗Hnew(0) = mλH l∗.

The remaining eigenvalues of Hnew(0) are the same as the remaining eigen-
values of J0(0)A0(0)J−1

0 (0), which are the eigenvalues of A0(0), which are the
remaining eigenvalues of H(0).

The next theorem is proved analogously.

THEOREM 8.5
Assume C(ξ) is a TST matrix with eigenvectors l, r. Then the ITST

Hnew(ξ) = C(mξ)−1H(ξ)C(ξ)

is well-defined if and only if l is a left eigenvector of H(2πk/m), k =
0, . . . ,m− 1, to some eigenvalue λk (possibly different for every k).
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If this is the case, Hnew(2πk/m) has the eigenvalue λk/m with right eigen-
vector r, and the other eigenvalues of Hnew(2πk/m) are the remaining eigen-
values of H(2πk/m).

DEFINITION 8.6 Hnew is a singular TST of H if

Hnew(ξ) =
1
m

C(mξ)H(ξ)C(ξ)−1 (8.5)

for a TST matrix C(ξ) for which C(0) and H(0) share a common right eigen-
vector r.

Hnew is a singular ITST of H if

H̃new(ξ) = mC(mξ)−1H̃(ξ)C(ξ)

for a TST matrix C(ξ) for which C(0) and H(2πk/m), k = 0, . . . ,m − 1,
share a common left eigenvector l.

Usually, we apply TSTs using the eigenvectors to eigenvalue 1 of H(0). The
factors of m and 1/m are chosen to preserve this eigenvalue. Theorems 8.4
and 8.5 show that a singular TST preserves condition E, but a singular ITST
in general does not.

COROLLARY 8.7
Assume that φ, φ̃ are a biorthogonal pair, φ̃ has approximation order at least
1, and C(ξ) is a TST matrix with right eigenvector r = µ0. Then the singular
TST and ITST

Hnew(ξ) =
1
m

C(mξ)H(ξ)C(ξ)−1,

H̃new(ξ) = mC(mξ)−∗H̃(ξ)C(ξ)∗

are both well-defined, and the new symbols again satisfy the biorthogonality
conditions.

PROOF The TST is well-defined by theorem 8.4.
The sum rules in equation (6.25) for H̃(ξ) for k = 0 imply that

µ∗
0H̃(0) = µ∗

0,

µ∗
0H̃(2πk/m) = 0∗, k = 1, . . . ,m− 1.

µ0 is a simultaneous left eigenvector of H̃(2πk/m) for all k, and also the left
eigenvector for C(ξ)∗, on which the ITST is based. That is precisely what
theorem 8.5 requires to make the ITST well-defined.

The fact that the new multiscaling functions form another biorthogonal pair
is easy to verify.

An example will be given at the end of the next section.

© 2004 by Chapman & Hall/CRC 



8.3 Multiwavelet TSTs

At this point, we have only defined TSTs for the multiscaling functions. If
we also have multiwavelet functions, how are they affected by a TST? This
section will describe a natural way to extend TSTs to multiwavelet functions.
Some of the lemmas that we prove along the way are also needed for other
proofs later.

Some of the material in this section is previously unpublished.

LEMMA 8.8
If C(ξ) is a TST matrix with left and right eigenvectors l, r, then

C0(ξ) = (1 − e−iξ)C(ξ)−1 (8.6)

is well-defined for all ξ.
The eigenstructure of C0(0) is described by

C0(0)r =
i

λ′(0)
r,

C0(0)v = 0 for v ∈ l⊥ = {x : l∗x = 0}.
This implies that for any vector a,

C0(0)a =
i

λ′(0)
(l∗a)r.

PROOF We only need to check near ξ = 0.
Choose a basis matrix V (ξ) as in the proof of theorem 8.4. From the

decomposition given in equation (8.4) we get

C0(ξ) = V (ξ)




(1 − e−iξ)λ(ξ)−1 0 · · · 0
0
... (1− e−iξ)J0(ξ)−1

0


V (ξ)−1.

As ξ → 0, we get

C0(0) = V (0)




i/λ′(0) 0 · · · 0
0
... 0
0


V (0)−1,

from which everything else follows.
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We note that if C has the standard form from example 8.1, then

C0(ξ) = rl∗ + (I − rl∗)(1 − e−iξ). (8.7)

LEMMA 8.9
If the TST matrix C(ξ) is a trigonometric polynomial with

detC(ξ) = c (1− e−iξ) for some constant c,

then C0(ξ) is again a trigonometric polynomial.

PROOF ∆(ξ) = detC(ξ) is a scalar trigonometric polynomial. It is the
product of the eigenvalues, so it has a simple zero at ξ = 0. Therefore,

∆(ξ) = (1− e−iξ)∆0(ξ)

with ∆0(ξ) �= 0 for all ξ. C(ξ)−1 can be written in explicit form as

C(ξ)−1 =
1

∆(ξ)
K(ξ),

where K(ξ) is the cofactor matrix. That is, the jk-entry of K(ξ) is (−1)j+k

times the determinant of the matrix C(ξ) with row k and column j re-
moved [133].

If ∆(ξ) = c · (1− e−iξ), then

C0(ξ) =
1
c
K(ξ),

which is a trigonometric matrix polynomial.

LEMMA 8.10
A trigonometric matrix polynomial

A(ξ) = A0 +A1e
−iξ + · · · +Ane

−inξ

is evenly divisible by 1− e−iξ if and only if

A(0) =
∑

k

Ak = 0.

PROOF Long division produces

(1 − e−iξ)−1A(ξ) = A0 + (A0 +A1)e−iξ + (A0 +A1 +A2)e−2iξ + · · · .
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This expansion terminates if and only if
∑

Ak = 0.

COROLLARY 8.11
Let C(ξ) be a TST matrix with eigenvectors l, r, and let A(ξ) be an arbitrary
trigonometric matrix polynomial. Then A(ξ)C(ξ)−1 is well-defined if and only
if

A(0)r = 0.

PROOF We have

A(ξ)C(ξ)−1 = (1− e−iξ)−1A(ξ)C0(ξ).

By lemma 8.10 this is well-defined if and only if

A(0)C0(0) = 0.

By the eigenstructure of C0(0) (lemma 8.8), this is equivalent to

A(0)r = 0.

THEOREM 8.12

Assume that φ, ψ(s) and φ̃, ψ̃
(s)

are biorthogonal multiwavelets, that φ̃ has
approximation order at least one, and that C(ξ) is a TST matrix with right
eigenvector r = µ0.

Then the extended singular TST

Hnew(ξ) =
1
m

C(mξ)H(ξ)C(ξ)−1,

G
(s)
new(ξ) = G(s)(ξ)C(ξ)−1

and ITST

H̃new(ξ) = mC(mξ)−∗H̃(ξ)C(ξ)∗,

G̃
(s)
new(ξ) = G̃(s)(ξ)C(ξ)∗

are well-defined and form another biorthogonal pair.

PROOF We already know that Hnew(ξ), H̃new(ξ) are well-defined, and
biorthogonality of the new functions is easy to verify. There is no problem
with G̃

(s)
new. It remains to show that G

(s)
new(ξ) are well-defined.

Since φ̃ has approximation order at least one, the zeroth continuous moment
ofψ(s) vanishes for all s. By equation (6.22) this meansN (s)

0 µ0 = G(s)(0)µ0 =
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G(s)(0)r = 0. By corollary 8.11 this is enough to ensure that G(s)
new(ξ) are well-

defined.

Example 8.2
For the DGHM multiwavelet, H(0) has eigenvectors l = r = (

√
2, 1)∗ to

eigenvalue 1. If we use the standard choice for C, we have

C(ξ) = I − 1
3

(
2

√
2√

2 1

)
z.

We get new H-coefficients

Hnew,0 =
1

360
√
2

(
108 144

√
2

−9
√
2 −54

)
, Hnew,1 =

1
360

√
2

(
276 84

√
2

57
√
2 156

)

Hnew,2 =
1

360
√
2

(
174 42

√
2

138
√
2 −42

)
, Hnew,3 =

1
360

√
2

(
18 12

√
2

6
√
2 18

)

Hnew,4 =
1

360
√
2

( −34 28
√
2

−17
√
2 28

)
, Hnew,5 =

1
360

√
2

(
2 −2

√
2√

2 −2

)
.

The new G-coefficients are

Gnew,0 =
1

60
√
2

(−3
√
2 −18

6 18
√
2

)
, Gnew,1 =

1
60

√
2

(
19

√
2 −68

−38 8
√
2

)

Gnew,2 =
1

60
√
2

(
17

√
2 −28

34 −28
√
2

)
, Gnew,3 =

1
60

√
2

(−√
2 2

−2 2
√
2

)
.

Here is one more lemma we will need later.

THEOREM 8.13
Assume that φ is continuously differentiable with compact support and ap-
proximation order ≥ 1, and that H(0) has a simple eigenvalue 1 with all
other eigenvalues smaller than 1/m in absolute value.

If φnew is obtained from φ by a singular TST

Hnew(ξ) =
1
m

C(mξ)H(ξ)C(ξ)−1, (8.8)

then
φ̂new(ξ) =

c

iξ
C(ξ)φ̂(ξ) (8.9)

for some constant c.

Note the difference between equations (8.1) and (8.9).

© 2004 by Chapman & Hall/CRC 



It will be obvious from the proof that the constant c is not related to C(ξ)
or H(ξ). The TST operates on symbols, not on functions. The constant c
reflects the fact that the symbol only defines the multiscaling function up to
an arbitrary factor; it depends on the normalizations chosen for φ and φnew.

PROOF Equation (8.5) can be written as

C(mξ)−1Hnew(ξ) =
1
m

H(ξ)C(ξ)−1

or

C0(mξ)Hnew(ξ) =
1− e−imξ

m(1− e−iξ)
H(ξ)C0(ξ).

If we take the limit as ξ → 0, we get

C0(0)Hnew(0) = H(0)C0(0).

We recall that

Hnew(0)φ̂new(0) = φ̂new(0),

H(0)φ̂(0) = φ̂(0),

with φ̂, φ̂new unique up to a scalar multiple. Since

H(0)
[
C0(0)φ̂new(0)

]
= C0(0)Hnew(0)φ̂new(0) = C0(0)φ̂new(0),

we must have

C0φ̂new(0) = c φ̂(0)

for some constant c.

We verify

n∏
k=1

Hnew(m−kξ) = m−nC(ξ)

(
n∏

k=1

H(m−kξ)

)
C(m−nξ)−1.

This is a telescoping product: the inner C-terms cancel.
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Formally,

φ̂new(ξ) = lim
n→∞

(
n∏

k=1

Hnew(m−kξ)

)
φ̂new(0)

= lim
n→∞m−nC(ξ)

n∏
k=1

H(m−kξ)C(m−nξ)−1φ̂new(0)

= C(ξ) lim
n→∞

m−n

1− e−im−nξ

n∏
k=1

H(m−kξ)C0(m−nξ)φ̂new(0)

= C(ξ)
1
iξ

∞∏
k=1

H(m−kξ)C0(0)φ̂new(0)

=
c

iξ
C(ξ)

∞∏
k=1

H(m−kξ)φ̂(0)

=
c

iξ
C(ξ)φ̂(ξ).

The technical conditions given in the theorem are sufficient to ensure that
these manipulations are legal. It is not clear that all of them are actually
necessary. The full proof can be found in [121].

8.4 TSTs and Approximation Order

THEOREM 8.14

Assume H(ξ) has approximation order p ≥ 1 with approximation vectors
y0, . . . ,yp−1. If C(ξ) is a TST matrix with l = y0, then the singular ITST

Hnew(ξ) = mC(mξ)−1H(ξ)C(ξ)

is well-defined, and Hnew(ξ) satisfies the sum rules of order p − 1 with ap-
proximation vectors

y∗
new,n =

1
n+ 1

n+1∑
k=0

(
n+ 1
k

)
ij−n−1y∗

k(D
n+1−kH)(0) (8.10)

for n = 0, . . . , p− 2, with ynew,0 �= 0.

PROOF We already know that the ITST is well-defined.

© 2004 by Chapman & Hall/CRC 



It remains to be verified that the new approximation vectors given in equa-
tion (8.10) satisfy the sum rules of order p−1 forHnew(ξ), and that ynew,0 �= 0.

This is a lengthy calculation. The details are given in [135].

THEOREM 8.15
Assume that H(ξ) has approximation order p ≥ 1 with approximation vectors
y0, . . . ,yp−1, and that r is a right eigenvector of H(0) to eigenvalue 1.

If C(ξ) is a TST matrix with right eigenvector r, then

Hnew(ξ) =
1
m

C(mξ)H(ξ)C(ξ)−1

is well-defined, and Hnew(ξ) satisfies the sum rules of order p+ 1.

CONJECTURE 8.16
The new approximation vectors for Hnew(ξ) in theorem 8.4 are given by

y∗
new,k = ky∗

k−1 [C0(0)− i(DC0)(0)] +
k∑

�=0

(
k
�

)
Bk−�y∗

�C0(0),

k = 0, . . . , p− 1

y∗
new,p = py∗

p−1 [C0(0)− (DC0)(0)] +
p−1∑
�=0

(
p
�

)
Bp−�y∗

�C0(0)

− mp

mp − 1

p−1∑
�=0

(
p
�

)
(mi)�−py∗

� (D
p−�H)(0)C0(0).

(8.11)

Here C0 is defined as in equation (8.6), and Bk are the Bernoulli numbers,
given by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

Remarks about theorem 8.15 and conjecture 8.16.
The theorem is valid even in the case p = 0. In that case we require that

H(ξ) has an eigenvalue of 1 with left eigenvector y0 and right eigenvector r.
TSTs in their full generality were developed in [135]. A special case which

required H(0) to have eigenvectors to eigenvalue 1 of a particular structure
was developed independently in [120]. The two approaches were reconciled in
the joint paper [121].

Among the various papers on TSTs, theorem 8.15 as well as conjecture 8.16
are proved only in [121], and only for the special case. It is the single most
complicated calculation that I am aware of in all of multiwavelet theory, so it
is not reproduced here.
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It is shown in [121] that a general H(ξ) can always be converted to one
with the required eigenvector structure via a regular TST. The proof of
theorem 8.15 for the special case, together with the fact that a regular TST
preserves approximation order, proves that a TST raises the approximation
order. It also provides formulas for the new approximation vectors which are
a composition of equation (8.2) with the special case of equation (8.11). These
formulas are very messy, and not particularly practical.

I have chosen to present the formulas from the special case as a conjecture
for the general case.

COROLLARY 8.17

A singular TST raises the approximation order by precisely 1. A singular
ITST lowers the approximation order by precisely one.

PROOF Assume that φ has approximation order p, but not higher. The-
orem 8.15 proves that if φnew is a singular TST of φ, it has approximation
order at least p + 1. If the approximation order of φnew were higher than
p + 1, then by theorem 8.14 φ as the singular ITST of φnew would have
approximation order higher than p, which is a contradiction.

The other assertion is proved analogously.

TSTs can be used to transfer approximation orders back and forth between
a multiscaling function and its dual, similar to moving factors of (1 + e−iξ)/2
in the scalar case.

The following corollary is the main result of this chapter.

COROLLARY 8.18

If H(ξ) has approximation order p ≥ 1, it can be factored as

H(ξ) = Hp(ξ) =
1
m

Cp(mξ)Hp−1(ξ)Cp(ξ)−1 = · · ·
= m−pCp(mξ) · · ·C1(mξ)H0(ξ)C1(ξ)−1 · · ·Cp(ξ)−1,

(8.12)

where each Ck(ξ) is a TST matrix.

A natural choice is to use Ck(ξ) = I − rkl∗ke
−iξ. In the scalar case r = 1,

this reduces to Ck(ξ) = 1− e−iξ for all k, so

H(ξ) = m−p

(
1− e−imξ

1− e−iξ

)p

H0(ξ).

This is a known formula for scalar scaling functions with dilation factor m. It
is derived, for example, in [81].
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In the case m = 2, this reduces further to the well-known factorization

H(ξ) =
(
1 + e−iξ

2

)p

H0(ξ). (8.13)

Corollary 8.18 is the multiwavelet counterpart to equation (8.13).
Using lemma 8.8 and corollary 8.18 it is easy to show that detH(ξ) contains

a factor of

m−p

(
1− e−imξ

1− e−iξ

)p

,

but in general H(ξ) does not contain this scalar factor.
One can also show that

Hnew(ξ) =
1− e−imξ

m(1 − e−iξ)
H(ξ)

produces a new refinable function vector with approximation order one higher
than φ. However, φnew does not have a dual in general.

Example 8.3
The Chui–Lian multiwavelet CL2 has approximation order 2. For the first
step, we have l = r = (1, 0)∗. For the second step, we have l = (1 +

√
7, 1)∗,

r = (1, 0)∗. After factoring out two approximation orders, we are left with

H0(ξ) =
1
2

(
2 2

−√
7 −√

7

)
+

1
2(1 +

√
7)

(
0 −2

14 + 2
√
7 2 + 3

√
7

)
e−iξ

+
1

2(1 +
√
7)

(−√
7

√
7

0 −7− 2
√
7

)
e−2iξ

+
1

2(1 +
√
7)2

(
14 + 2

√
7

√
7

−28− 16
√
7 −7−√

7

)
e−3iξ

+
1

2(1 +
√
7)2

(−7−√
7 −√

7
14 + 8

√
7 7 +

√
7

)
e−4iξ.

In the scalar case, h0 is shorter than h. In the multiwavelet case, H0 is often
longer than H .

8.5 Symmetry

DEFINITION 8.19 A function f is symmetric about the point a if

f(a+ x) = f(a− x) for all x.
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f is antisymmetric about a if

f(a+ x) = −f(a− x) for all x.

On the Fourier transform side, symmetry and antisymmetry are expressed
by

f̂(ξ) = ±e−2iaξf̂(ξ).

(In this formula and others, + corresponds to symmetry; − corresponds to to
antisymmetry).

For a symmetric multiscaling function, each component could be symmetric
or antisymmetric about a different point. In general, let

A(ξ) =



±e−2ia1ξ 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 ±e−2iarξ


 . (8.14)

If
φ̂(ξ) = A(ξ)φ̂(−ξ),

we will call φ “symmetric about the points ak.”
In the special case aj = a for all j,

A(ξ) = e−2iaξS, S =



±1

. . .
±1


 ,

and the symmetry conditions are equivalent to

Hk = SH2a(m−1)−kS.

LEMMA 8.20

If the symbol H(ξ) satisfies

H(ξ) = A(mξ)H(−ξ)A(ξ)−1,

then φ is symmetric about the points ak.
If in addition

G(s)(ξ) = B(s)(mξ)G(s)(−ξ)A(ξ)−1,

where B(s) has the same structure as A, then ψ(s) is symmetric about the
points b

(s)
k .
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PROOF

φ̂(mξ) = H(ξ)φ̂(ξ)

= A(mξ)H(−ξ)A(ξ)−1φ̂(ξ)

= A(mξ)H(−ξ)φ̂(−ξ)

= A(mξ)φ̂(−mξ).

The second part is proved analogously.

These relations can be used to test a given symbol for symmetry. In some
situations they can also be used to impose desired symmetries, but there is
no general algorithm.

Example 8.4
Suppose that φ is symmetric about the points ak, so that

φ̂(ξ) = A(ξ)φ̂(−ξ).

We want to find a regular TST of H

Hnew(ξ) = C(mξ)H(ξ)C(ξ)−1

so that φnew is symmetric about some other points bk.
Recall that φ̂new(ξ) = C(ξ)φ̂(ξ). Then

φ̂new(ξ) = B(ξ)φ̂new(−ξ) = B(ξ)C(−ξ)φ̂(−ξ)

= B(ξ)C(−ξ)A(ξ)−1φ̂new(−ξ) = C(ξ)φ̂new(−ξ),

so we want
C(ξ) = B(ξ)C(−ξ)A(ξ)−1, (8.15)

or
ck�(ξ) = ±e−2i(bk−a�)ck�(−ξ).

In other words, the entry ck�(ξ) must be symmetric or antisymmetric about
the point bk − a�.

In addition, C(ξ) must be a nonsingular matrix for all ξ. It may or may
not be possible to fulfill these constraints in a given case.

Example 8.5
If we make the same assumptions as in the previous example, but for a singular
TST, then

φ̂new(ξ) =
c

iξ
C(ξ)φ̂(ξ).
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The analogous derivation leads to

C(ξ) = −B(ξ)C(−ξ)A(ξ)−1, (8.16)

which differs by a minus sign from equation (8.15).

There is a general theorem that places limits on what is possible.

THEOREM 8.21
Assume that φnew is a TST of φ, that φ is symmetric about the points ak,
and φnew is symmetric about the points bk.

If φnew is a regular TST of φ, then the difference between the number of
antisymmetric components in φ and in φnew is odd.

If φnew is a singular TST of φ, then the difference between the number of
antisymmetric components in φ and in φnew is odd if the multiplicity r is
even, and even if r is odd.

PROOF We know that

detC(ξ) = (1 − e−iξ)∆0(ξ) (8.17)

with ∆0(ξ) �= 0 (see proof of 7.24). For the regular TST case, equation (8.15)
gives

detC(ξ) = detB(ξ) detA(ξ)−1 detC(−ξ)

= e−2i
∑

(bk−ak)ξ(−1)N detC(−ξ),

where N is the difference between the number of antisymmetric components.
Using equation (8.17), this leads to

∆0(ξ) = (−1)N+1e−(2
∑

(bk−ak)−1)iξ∆0(−ξ),

which says

∆0(0) = (−1)N+1∆0(0) �= 0.

This is only possible if N + 1 is even.
The second part is proved the same way, except that the minus sign in

equation (8.16) adds an additional factor of (−1)r; thus, the conclusion is
that N + r + 1 must be even.

Example 8.6
The multiscaling function components of the DGHM multiwavelet are sym-
metric about the points 1/2 and 1. We want to apply a TST step which makes
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the new multiscaling functions symmetric about the point 1. By theorem 8.21,
one of them will be symmetric, and one will be antisymmetric.

A TST matrix which satisfies the symmetry conditions and has the correct
eigenvector r is

C(ξ) =
(
1 + e−iξ −2

√
2

1− e−iξ 0

)
.

This was found by trial and error.
The new symbol is

Hnew(ξ) =
1
40

(−7 + 10e−iξ − 7e−2iξ 15− 15e−2iξ

−4 + 4e−2iξ 10 + 20e−iξ + 10e−2iξ

)
,

which is actually shorter than H .

REMARK 8.22 More general types of symmetry are possible. In [151]
the authors only require S2 = I instead of S = diag(±1,±1, . . . ),

For example, if

A = e−2iaξI, S =
(
0 1
1 0

)
,

then φ2 is the reflection of φ1 about x = a, and vice versa.
The constructions in this chapter carry over to the more general case.
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9

Factorizations of Polyphase Matrices

There is a distinct difference between the modulation matrix and the poly-
phase matrix: the modulation matrix has a particular structure. All the
information is already contained in the first column; the other columns are
simply the first column with shifted argument.

If we multiply the modulation matrices of different multiwavelets together,
the result does not have any particular significance. Conversely, if we want to
multiply a modulation matrix by some factor to create another modulation
matrix, that factor has to have a particular structure.

A polyphase matrix, on the other hand, is unstructured. If P1, P̃1 and P2,
P̃2 both satisfy

Pk(ξ)∗P̃k(ξ) = I,

then so do P = P1P2 and P̃ = P̃1P̃2.
This makes it possible to create new multiwavelets from existing ones by

multiplying the polyphase matrix by some appropriate factor, and it opens
the possibility of factoring a given polyphase matrix into elementary steps.
Two such factorizations are described in this chapter: one based on projection
factors, and one based on lifting steps.

For simplicity, we switch to the z-notation at this point, where

z = e−iξ.

This lets us work with polynomials rather than trigonometric polynomials.

9.1 Projection Factors

9.1.1 Orthogonal Case

We begin with the orthogonal case. At the algebraic level, the polyphase ma-
trix of an orthogonal multiwavelet is just a paraunitary matrix P (z). If we
multiply it by any other paraunitary matrix F (z), then P (z)F (z) is again pa-
raunitary and can be interpreted as the polyphase matrix of a new orthogonal
multiwavelet.

This approach will always lead to new filterbanks. Whether the new poly-
phase matrix actually defines a new multiscaling function which exists as a
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function or generates an MRA needs to be checked after the fact. I am not
aware of any conditions on F (z) that will guarantee this automatically.

We could also consider multiplication on the left: F (z)P (z). That works
equally well, but multiplication on the right has the advantage that it can be
applied when only the first row of P (z) is known (i.e., we know φ, but not
ψ(s)).

The simplest choice for a factor is F (z) = Q, a constant unitary matrix,
but that will not get us very far. We consider the next simplest case, where
F (z) is linear.

If we assume F (z) = A+Bz, then Q = F (1) = A+B must be unitary. We
pull out the constant factor Q and assume A+B = I, so

F (z) = (I −B) +Bz.

We want F (z) to be paraunitary. This requires B∗ = B and

I = F (z)F (z)∗ = [(I −B) +Bz]
[
(I −B) +Bz−1

]
= (I − 2B + 2B2) + (B −B2)(z + z−1).

This is satisfied if and only if B2 = B, which means B must be an orthogonal
projection onto some subspace.

DEFINITION 9.1 An orthogonal projection factor of rank k is a linear
paraunitary matrix of the form

F (z) = (I − UU∗) + UU∗z,

where the columns of U form an orthonormal basis of some k-dimensional
subspace.

We list some properties that are easy to verify:

• detF (z) = zk.

• If k ≥ 2, we can split U into two matrices U1 = (u1, . . . ,u�), U2 =
(u�+1, . . . ,uk), and

[(I − UU∗) + UU∗z] = [(I − U1U
∗
1 ) + U1U

∗
1 z] [(I − U2U

∗
2 ) + U2U

∗
2 z] .

In particular, any orthogonal projection factor of rank k can be written
as a product of k projection factors of rank 1.

• F (z) depends only on the subspace spanned by the columns of U , not
on the choice of basis.
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THEOREM 9.2
Assume that P (z) is the polyphase matrix of an orthogonal multiwavelet, nor-
malized so that the subscripts start at 0:

P (z) = P0 + P1z + · · ·+ Pnz
n,

with P0 �= 0, Pn �= 0.
Then P (z) can be factored in the form

P (z) = QF1(z) · · ·Fn(z),

where Q is a constant unitary matrix, and each Fj(z) is a projection factor.
The number of factors n equals the degree of P (z).

REMARK 9.3 This theorem has been rediscovered multiple times, and
still seems to be relatively unknown. It appeared in [146]; later, it was pub-
lished again in [95], [124], [132], [144], and probably other places.

Vaidyanathan [146] uses only rank 1 projection factors. In that case, the
number of projection factors equals the degree of detP (z), which is also called
the McMillan degree.

PROOF We denote the range of a matrix A by R(A), its nullspace by
N(A). A well-known identity from linear algebra states that

R(A∗) = N(A)⊥.

We will use that frequently in this section.
For n > 0, we consider

(P0 + P1z + · · ·+ Pnz
n)((I − UU∗) + UU∗z−1).

We want to choose U so that the product is a matrix polynomial of degree
n− 1. This requires

P0UU∗ = 0,
Pn(I − UU∗) = 0.

(9.1)

The fact that P (z) is paraunitary implies P0P
∗
n = 0, so

R(P ∗
n) ⊂ N(P0).

Choose any matrix U with orthonormal columns so that

R(P ∗
n) ⊂ R(U) ⊂ N(P0).

Then P0U = 0 and UU∗P ∗
n = P ∗

n , so equation (9.1) is satisfied. We choose

Fn(z) = ((I − UU∗) + UU∗z)
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and repeat the process, until we get to

P (z)F ∗
n(z) · · ·F ∗

1 (z) = Q.

Theorem 9.2 was already used in chapter 3 for alternative constructions of
Daubechies wavelets and coiflets. We will see another use for it in chapter 10,
where it will be used for the orthogonal completion problem (given φ, find
the multiwavelet functions).

REMARK 9.4 Approximation order 1 (or higher) can be enforced by a
proper choice of Q.

Refer to theorem 6.9 (iv): approximation order 1 means that the approxi-
mation vector y0 is a left eigenvector of Hk(0) (the kth polyphase symbol) to
eigenvalue 1/

√
m, for all k. Since the projection factors all satisfy F (0) = I, it

is up to Q to satisfy the first approximation order condition. All r× r blocks
in the top row of Q must have a common left eigenvector to eigenvalue 1/

√
m.

In the scalar case, this reduces to

Q =
1√
2

(
1 1
±1 ∓1

)
.

9.1.2 Biorthogonal Case

In the biorthogonal case, we again look for factors of the form F (z) = A+Bz
with a dual of the form F̃ (z) = Ã+B̃z. With the same normalization A+B =
I, we find that we still need B2 = B, but not B∗ = B. B is a nonorthogonal
projection.

DEFINITION 9.5 A biorthogonal projection factor is a linear matrix
polynomial of the form

F (z) = (I − UV ∗) + UV ∗z, (9.2)

where the columns of U , V form biorthogonal bases of two k-dimensional
subspaces. This means that

V ∗U = U∗V = I.

The dual of F (z) is given by

F̃ (z) = (I − V U∗) + V U∗z.

We get similar properties as in the orthogonal case:
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• detF (z) = czk for some nonzero constant c.

• If k ≥ 2, we can split U into two matrices U1 = (u1, . . . ,u�), U2 =
(u�+1, . . . ,uk), and similarly for V , and

[(I − UV ∗) + UV ∗z] = [(I − U1V
∗
1 ) + U1V

∗
1 z] [(I − U2V

∗
2 ) + U2V

∗
2 z] .

In particular, any biorthogonal projection factor of rank k can be written
as a product of k projection factors of rank 1.

• F (z) depends only on the subspaces spanned by the columns of U , V ,
not on the individual basis vectors.

Can we use the same approach as in theorem 9.2 to factor biorthogonal
polyphase matrices? Unfortunately, we cannot.

THEOREM 9.6
Assume that P , P̃ are the polyphase matrices of a biorthogonal multiwavelet
pair, normalized so that the subscripts of P start at 0:

P (z) = P0 + P1z + · · ·+ Pnz
n,

P̃ (z) = P̃kz
k + · · ·+ P̃�z

�,

with P0, Pn, P̃k, P̃� nonzero.
There exists a biorthogonal projection factor F (z) so that multiplication by

F (z)−1 and F̃ (z)−1, respectively, lowers the degree of both P (z) and P̃ (z), if
and only if

R(P̃ ∗
� ) ⊂R(U) ⊂ N(P0),

R(P̃ ∗
k ) ⊂R(V )⊥ ⊂ N(Pn).

(9.3)

The proof is analogous to that of theorem 9.2.
The condition in equation (9.3) is rather specialized. A sufficient condition

for the existence of suitable U , V is

R(P0)⊕R(Pn) = C
mr.

In that case we can use R(U) = R(P0)⊥, R(V ) = R(Pn).
We cannot expect to decompose a biorthogonal polyphase matrix entirely

into projection factors. A more useful approach is based on the following
lemma.

LEMMA 9.7

Let P (z), P̃ (z) satisfy the same conditions as in theorem 9.6.
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If � ≥ 1, we can find an orthogonal projection factor F (z) so that P (z)F (z)−1

has the same range of subscripts as before, but the range of subscripts of
P̃ (z)F (z)−1 is k − 1, . . . , �− 1.

PROOF Expand the biorthogonality relation P (z)P̃ (z)∗ = I. The term
with lowest exponent is P0P̃

∗
� z

−�. This implies that � ≥ 0; if � > 0, then
P0P̃

∗
� = 0.

With the same type of arguments as in the proof of theorem 9.2 we verify
that if we choose U to satisfy

R(P̃ ∗
� ) ⊂ R(U) ⊂ N(P0), (9.4)

then the resulting F (z) has the desired effect.

We could equally well use a biorthogonal projection factor in the preceding
theorem. The choice of V is irrelevant.

Lemma 9.7 says that as long as � > 0, we can apply an orthogonal projection
factor and shift P̃ to the left. What happens once we get to � = 0?

At that point it is easier to consider P (z)−1 = P̃ (z)∗ rather than P̃ (z).
Since P0P̃

∗
0 = I, we can factor out the constant terms and assume

P (z) = I + P1z + · · ·+ Pnz
n,

P (z)−1 = I + P̃ ∗
1 z + · · ·+ P̃ ∗

k z
k.

The determinants of both P (z), P (z)−1 are monomials in z whose product is
1, so they are constants. By letting z → 0, we see that the constants have to
be 1. Both P (z) and P (z)−1 are unimodular and co-monic.

In linear algebra terms, “unimodular” means “having determinant 1.” “Co-
monic” means that the coefficient of z0 is I. (Monic means that the highest
power has coefficient I.)

DEFINITION 9.8 A unimodular, co-monic pair of matrix polynomials
P (z), P (z)−1 is called an atom.

This name is taken from [95]. In [123], atoms are called pseudo-identity
matrix pairs.

We have proved the following theorem.

THEOREM 9.9
Let P (z), P̃ (z) satisfy the same conditions as in theorem 9.6.

Then P (z) can be factored in the form

P (z) = CA(z)F1(z) · · ·F�(z),

© 2004 by Chapman & Hall/CRC 



where each Fj(z) is an orthogonal projection factor, A(z) is part of an atom,
and C is a constant matrix.

Example 9.1
The Cohen(2,2) scalar wavelet has the polyphase matrices

P (z) =
1

4
√
2

[(
0 2
0 −1

)
z−1 +

(
4 2
−2 6

)
+
(

0 0
−2 −1

)
z

]
,

P̃ (z) =
1

4
√
2

[(−1 2
0 0

)
z−1 +

(
6 2
−2 4

)
+
(−1 0
−2 0

)
z

]
.

We apply a shift so that both of them start with a z0-term. We can then
factor out two orthogonal projection factors, based on the vectors

u1 =
(
1
0

)
, u2 =

1√
5

(
1
2

)
.

At this point, P has indices 0, 1, 2, and P̃ has indices −2, −1, 0: we have
reached an atom.

After we pull out the constant matrix C, what remains is

A(z) = I +
1
80

(
14 −4
9 −14

)
z +

1
80

(
0 0
−7 2

)
z2,

Ã(z)∗ = I +
1
80

(−14 4
−9 14

)
z +

1
80

(
2 0
7 0

)
z2.

Theorem 9.9 says that any biorthogonal multiwavelet can be constructed
from an atom and several orthogonal projection factors. A complete descrip-
tion of the structure of atoms, and a method for constructing all possible atoms
of given type from scratch, are given in [96]. Together with the projection fac-
tors, which are easy to construct, we can build biorthogonal multiwavelets of
any size.

9.2 Lifting Steps

In the scalar case with dilation factor m = 2, a lifting step was defined as

Pnew(z) =
(
1 a(z)
0 1

)(
H0(z) H1(z)
G0(z) G1(z)

)
,

a dual lifting step as

Pnew(z) =
(

1 0
b(z) 1

)(
H0(z) H1(z)
G0(z) G1(z)

)
.
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The lifting matrices are upper or lower unit triangular, and preserve either the
multiscaling function or dual multiscaling function while changing everything
else.

There are various ways to generalize this to the multiwavelet setting. The
most general approach defines a lifting step as

Pnew(z) =
(
S(z) L(z)
0 T (z)

)
P (z),

where S(z) and T (z) are invertible matrices. S(z) is of size r× r and acts on
the multiscaling function alone; T (z) is of size (m−1)r× (m−1)r and jointly
acts on all the multiwavelet functions.

Such general lifting matrices can always be factored into simpler pieces:(
S 0
L T

)
=
(
S 0
0 T

)(
I 0

T−1L I

)
,(

S L
0 T

)
=
(
S 0
0 T

)(
I S−1L
0 I

)
.

The relations (
I 0
L I

)(
S 0
0 T

)
=
(
S 0
0 T

)(
I 0

T−1LS I

)
,(

I L∗

0 I

)(
S 0
0 T

)
=
(
S 0
0 T

)(
I S−1L∗T
0 I

)

allow us to collect all the diagonal terms at the beginning or end of a sequence
of lifting steps.

THEOREM 9.10
The polyphase matrix of any biorthogonal multiwavelet can be factored in the
form

P (z) =
(
S(z) 0
0 T (z)

) N∏
k=0

(
I 0

L2k−1(z) I

)(
I L2k(z)∗

0 I

)
,

where S(z), T (z) are invertible matrices. S(z) and T (z) can be further fac-
tored into a product of a diagonal matrix with monomial entries, and several
upper and lower unit triangular matrices

S(z) = DS(z)
∏
k

LS,k(z)US,k(z),

T (z) = DT (z)
∏
k

LT,k(z)UT,k(z).

This is proved in [54] and [67].
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In this chapter, we will use a narrower definition of a lifting step.

DEFINITION 9.11 A multiwavelet lifting step is defined as

Pnew(z) =




I L(1)(z) · · · · · · L(m−1)(z)
0 I 0 · · · 0
... 0

. . . . . .
...

...
...

. . . I 0
0 0 · · · 0 I




P (z).

A multiwavelet dual lifting step is defined as

Pnew(z) =




I 0 · · · · · · 0
L(1)(z) I 0 · · · 0

... 0
. . . . . .

...
...

...
. . . I 0

L(m−1)(z) 0 · · · 0 I




P (z).

There is no consensus on this in the literature, however. The example in [54]
uses a dual lifting step of the form

Pnew(z) =
(

I 0
L(z) T (z)

)
P (z)

with unit upper triangular T (z).
Definition 9.11 achieves the mixing of multiscaling and multiwavelet func-

tions, which is the most important aspect of lifting, and it has the advantage
that the inverse is easy to write in closed form.

Written in detail, the effect of a lifting step on the polyphase symbols is

Hnew,k(z) = Hk(z) +
m−1∑
j=1

L(j)(z)G(j)
k (z),

G
(j)
new,k(z) = G

(j)
k (z)

H̃new,k(z) = H̃k(z)

G̃
(j)
new,k(z) = G̃

(j)
k (z)−

m−1∑
j=1

L(j)(z)∗G̃(j)
k (z),
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or in terms of the symbols

Hnew(z) = H(z) +
m−1∑
j=1

L(j)(zm)G(j)(z),

G
(j)
new(z) = G(j)(z),

H̃new(z) = H̃(z),

G̃
(j)
new(z) = G̃(j)(z)−

m−1∑
j=1

L(j)(zm)G̃(j)(z).

REMARK 9.12 1. Lifting does not preserve orthogonality. If φ is or-
thogonal, the new pair φ, φ̃ will never be orthogonal.

2. Lifting mixes φ, ψ(s), so it requires the full multiwavelet. Lifting cannot
be done on φ alone.

3. Lifting can be used to raise the approximation order. More precisely,
lifting can raise the approximation order of φ, and a dual lifting step can
raise the approximation order of φ̃. This will be described in more detail
next.

Papers on multiwavelet lifting include [12], [54], and [67].
A lifting procedure which imposes symmetry conditions is described in [145].

A lifting procedure which imposes balancing conditions is described in [13].

9.3 Raising Approximation Order by Lifting

The material in this subsection is based on [98].
Our goal is to raise the approximation order of a given multiwavelet pair

φ, φ̃ by lifting. This requires two steps, one for φ and one for φ̃.
We describe the dual step, since it is easier. The primary lifting step is

done by reversing the roles of φ, φ̃, and applying another dual lifting step.

THEOREM 9.13
Assume φ, φ̃ form a biorthogonal multiwavelet pair, and that H(0) satisfies
condition E. For any given p̃ ≥ 1 it is possible to use a single dual lifting step
to raise the approximation order of φ̃ to p̃.

The lifting factors L(k)(z) can always be chosen to have degree at most p̃−1,
but in most cases degree �p̃/r� − 1 will suffice.

The symbol �x� denotes the smallest integer greater than or equal to x.
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PROOF This is a sketch of the proof. The full proof, along with an efficient
implementation, can be found in [98].

In this section we use the ξ notation, since we need to take derivatives.
By theorem 6.27 (vi), we need to make sure that the new multiwavelet

functions have p̃ vanishing continuous moments:

ν
(t)
new,k = 0, k = 0, . . . , p̃− 1, t = 1, . . . ,m− 1.

By equation (6.22), these moments are expressed as

ν
(t)
new,k = m−k

k∑
s=0

(
k
s

)
N

(t)
new,sµk−s. (9.5)

If
L(t)(ξ) =

∑
k

L
(t)
k e−ikξ,

the discrete moments of L(t) are

Λ(t)
� =

∑
j

j�L
(t)
j .

The new multiscaling function symbols are

G
(t)
new(ξ) = G(t)(ξ) + L(t)(mξ)H(ξ).

This leads to

N
(t)
new,s = N (t)

s +
s∑

�=0

(
s
�

)
m�Λ(t)

� Ms−�.

Putting all these things together, we get

0 =
k∑

s=0

(
k
s

)N (t)
s +

s∑
�=0

(
s
�

)
m�


∑

j

j�L
(t)
j


Ms−�


µk−s

=
k∑

s=0

(
k
s

)
N (t)

s µk−s +
k∑

s=0

s∑
�=0

∑
j

(
k
s

)(
s
�

)
m�j�L

(t)
j Ms−�µk−s.

After collecting terms, this turns into a set of equations∑
j

j�L
(t)
j ak = bk, k = 0, . . . , p̃− 1, (9.6)

where ak and bk are known vectors.
These equations can always be solved by using p̃ different coefficients L

(t)
j ,

j = 0, . . . , p̃− 1. In most cases, fewer coefficients suffice.
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Equations (9.6) are vector equations, and each L
(t)
j is a matrix of size r× r.

In general, we can hope to satisfy r equations with each L
(t)
j , so we can try

to get by with only �p̃/r� nonzero coefficient matrices. (This is not always
possible.)

Example 9.2
A basic completion of the cubic Hermite splines to a biorthogonal multiwavelet
has the symbols

(
H(z)
G(z)

)
=

1
16



4 + 8z + 4z2 6− 6z2

−1 + z2 −1 + 4z − z2

8 0
0 8


 ,

(
H̃(z)
G̃(z)

)
=

1
4z




4z2 0
0 8z2

−2 + 4− 2z2 −1 + z2

3− 3z2 1 + 4z + z2


 .

H has approximation order 4, H̃ has approximation order 0.
We can raise the dual approximation order from 0 to 2 with a dual lifting

step with constant matrix

L(z) =
1
4

(−2 15
0 −1

)
. (9.7)

This produces

(
Hnew(z)
Gnew

)
=

1
64



16 + 32z + 16z2 24− 24z2

−4 + 4z2 −4 + 16z − 4z2

9− 16z + 7z2 −27 + 60z − 3z2

1− z2 33− 4z + z2


 ,

(
H̃new(z)
G̃new

)
=

1
16z



−4 + 8z + 12z2 −2 + 2z2

33− 60z + 27z2 16 + 4z + 18z2

−8 + 16z − 8z2 −4 + 4z2

12− 12z2 4 + 16z + 4z2


 .

More examples can be found in [98].
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10

Creating Multiwavelets

We have seen some examples of multiscaling and multiwavelet functions in
earlier chapters. In this chapter we will discuss general ways of modifying
existing multiwavelets, or creating multiwavelets with desired properties from
scratch.

Before that, we will discuss the completion problem. Given a multiscaling
function φ, how do we find its dual φ̃ and the multiwavelet functions?

10.1 Orthogonal Completion

Given an orthogonal multiscaling function, how do we find the multiwavelet
functions? In the multiwavelet case it is not as easy as in the scalar case, but
it is still not hard to do. We will present two different methods. In addition
to providing algorithms, this shows that the completion problem can always
be solved, and that the multiwavelets have compact support if φ has compact
support.

The multiwavelets will not be unique. However, we have this theorem.

THEOREM 10.1

If P1(z) and P2(z) are two paraunitary polyphase matrices with the same
multiscaling functions, then they are related by

P1(z) =
(
I 0
0 T (z)

)
P2(z),

where T (z) is paraunitary.

This is proved, for example, in [54].

10.1.1 Using Projection Factors

One way to solve the completion problem is based on projection factors. As
noted before, it is not necessary to have the complete polyphase matrix P (z)
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to do a decomposition into projection factors. The following is a corollary of
theorem 9.2.

COROLLARY 10.2
If

PH(z) = (H0(z)H1(z) · · ·Hm−1(z))

are the polyphase symbols of an orthogonal multiscaling function, we can find
orthogonal projection factors Fk(z) so that

PH(z) = QHF1(z) · · ·Fn(z),

where QH is an r ×mr constant matrix with orthonormal rows:

QHQ∗
H = I.

The rest is easy: extend QH to a square unitary matrix Q (or even a square
paraunitary matrix Q(z)); then

P (z) = QF1(z) · · ·Fn(z)

will be the desired extension to a full paraunitary polyphase matrix.
To find the projection factors, we need to choose

R(P ∗
H,n) ⊂ R(U) ⊂ N(PH,0)

like before. Since dimR(P ∗
H,n) ≤ r, dimN(PH,0) ≥ (m − 1)r, there may be

a wide range of choices for U . The choice R(U) = R(P ∗
H,n) will keep the

McMillan degree of the completion as low as possible.

Example 10.1
The polyphase symbols of the DGHM multiscaling function factor as(

H0(z) H1(z)
)
= QF (z),

where

Q =
1
10

(
3
√
2 8 3

√
2 0

4 −3
√
2 4 5

√
2

)
,

and the projection factor F is based on

u =
1
10




9
−3

√
2

−1
0


 .

We can complete Q in any orthogonal fashion, and obtain the multiwavelet
functions.
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10.1.2 Householder-Type Approach

An ingenious method is described in [103]. I think of the following theorem
as a matrix polynomial version of the construction of Householder matrices.

THEOREM 10.3
Assume a(z) is an orthonormal trigonometric vector polynomial; that is,

a∗(z)a(z) = 1.

Then there exists a paraunitary matrix U(z) so that

U(z)a(z) = (1, 0, . . . , 0)∗.

PROOF We will construct U(z) as a product of several paraunitary ma-
trices: Householder matrices and diagonal matrices of the form

D(z) =



z−d1

z−d2

z−d3

. . .


 . (10.1)

Given a(0) = a, we choose a diagonal matrix D1(z) so that each nonva-
nishing entry in D1(z)a(0)(z) begins with a nonzero constant term. That
is,

D1(z)a(0)(z) = a(1)
0 + a(1)

1 z + · · ·+ a(1)
n zn,

with all entries in a(1)
0 nonzero (unless the corresponding entry in a(0)(z) is

identically zero).
If n ≥ 1, the orthonormality of a implies that

a(1)∗
0 a(1)

n = 0. (10.2)

We choose a Householder matrix U1 so that

U1a
(1)
0 =



a
(2)
0,1

0
...
0


 .

Multiplication by U1 preserves equation (10.2), so

U1a(1)
n =




0
a
(2)
n,2

a
(2)
n,3
...


 .
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We can apply another diagonal matrix D2(z) to reduce the polynomial degree
of each component except the first, and find that

a(2) = D2(z)U1a(1)

is still orthonormal and has degree at most n− 1. Eventually, we get to

UnDn(z)Un−1 · · ·U1D1(z)a(z) = (1, 0, 0, . . .)∗.

COROLLARY 10.4
If A(z) is a trigonometric matrix polynomial with orthonormal columns, we
can find a paraunitary matrix U(z) so that

U(z)A(z) =
(
I
0

)
.

This is just a recursive application of theorem 10.3.

Example 10.2
For the DGHM multiwavelet, the multiscaling function part of the polyphase
matrix can be reduced by

Q(z) =



0 0.4500 −0.7124 −0.3265
0 −0.2121 0.1399 0.4852
0 −0.0500 0.4487 −0.5884
0 0 −0.2939 0.4969


 z−1+



0.4243 −0.0500 −0.0248 −0.0147
0.8000 −0.2121 −0.1054 −0.0624
0.4243 0.4500 0.2236 0.1323

0 0.7071 0.3514 0.2078




to the form (
H0(z) H1(z)

)
Q(z) =

(
1 0 0 0
0 1 0 0

)
.

We can then complete the matrix on the right, for example, to the identity,
and multiply by Q∗ to obtain a full P (z).

10.2 Biorthogonal Completion

The paper [103] cited above contains a second algorithm useful for biorthog-
onal multiwavelets. I think of the following theorem as a polynomial version
of QR-factorization.

THEOREM 10.5
Assume a(z) is a trigonometric vector polynomial. Then there exists an in-
vertible trigonometric matrix polynomial T (z) so that

T (z)a(z) = (p(z), 0, . . . , 0)∗,

© 2004 by Chapman & Hall/CRC 



where p(z) is a scalar polynomial.

PROOF The construction is similar to the orthogonal case, but it requires
elementary matrices as building blocks, in addition to Householder and diag-
onal matrices. (An elementary matrix is an identity matrix with off-diagonal
terms only in a single row or column.)

REMARK 10.6 The relationships

T (z)a(z) = (p(z), 0, . . . , 0)∗,

a(z) = T (z)−1(p(z), 0, . . . , 0)∗,

show that a(z) vanishes if and only if p(z) vanishes; thus, p(z) is the greatest
common divisor (gcd) of the elements of a(z).

By using theorem 10.5 recursively, we obtain the following corollary.

COROLLARY 10.7

If A(z) is a trigonometric matrix polynomial of size s × t, we can find an
invertible matrix polynomial T (z) and a permutation matrix E so that

T (z)A(z)E =
(
B11(z) B12(z)

0 0

)
,

where

B11(z) =



b11(z) b12(z) · · · b1s(z)

0 b22(z)
. . .

...
...

. . . . . .
...

0 · · · 0 bss(z)


 , (10.3)

with s = rank(A(z)), and each bkk(z) not identically zero.
Alternatively, we could find an invertible matrix polynomial T (z) so that

T (z)A(z) =
(
B11(z) B12(z)

)
if s ≤ t

or

T (z)A(z) =
(
B11(z)

0

)
if s ≥ t,

where B11(z) has the form in equation (10.3), but possibly with some zero
elements on the diagonal.

This approach can solve the completion problem in the biorthogonal case.

© 2004 by Chapman & Hall/CRC 



COROLLARY 10.8
If

PH(z) = (H0(z)H1(z) · · ·Hm−1(z))
are the polyphase symbols of a biorthogonal multiscaling function, we can find
an invertible matrix T (z) so that

PH(z)T (z) =
(
B0(z) 0 · · · 0) (10.4)

where B0(z) has the form in equation (10.3).
φ has a dual if and only if the diagonal terms of B(z) are nonzero mono-

mials. If this is the case, the complete polyphase matrix must be of the form

P (z) =




B0(z) 0
C1(z)

... D(z)
Cm−1(z)


T (z)−1

where D(z) is any invertible matrix polynomial, and Ck(z) are arbitrary.

Example 10.3
For the cubic Hermite multiscaling function, the polyphase matrix can be
reduced to(

H0(z) H1(z)
)
T (z) =

(
1.2051 0 0 0

−0.0079z−1 − 0.1084 + 0.0277z 0.4228 0 0

)
,

by

T (z) =



0 0.0269 −0.8988 0
0 −0.0157 0.5228 0
0 −0.0017 0.0573 0
0 0.0028 −0.0940 0


 z−2 +




0.2144 2.6345 −0.1384 −0.5596
−0.1247 −1.5265 −0.1198 0.3256
−0.0137 −0.1976 1.0006 0.0357

0 0.2664 0.2909 −0.0585


 z−1

+



0.9393 0.1872 0.0056 0.2663
0.6262 0.1872 0.0056 0.2663
0.5643 −2.6962 −0.0276 0.1911

0 0.2492 0.0075 0.3545


+



0 0 0 0
0 0 0 0
0 0.0468 0.0014 0.0666
0 0 0 0


 z

We can complete the 2× 4 matrix on the right to any invertible matrix, and
then multiply on the right by T−1.

10.3 Other Approaches

The cofactor method is described in [135]. It can be used to find the dual
multiscaling functions. In the case m = 2, it can also be adapted to find the
multiwavelet functions.
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Let K(z) be the cofactor matrix of the symbol H(z). Then

H(z)K(z) = ∆(z) · I, ∆(z) = det(H(z)).

If we can find a scalar polynomial ∆̃(z) so that
m−1∑
k=0

∆(wkz)∆̃(wkz)∗ = 1, w = e2π/m, (10.5)

then

H̃(z) = ∆̃(z)K(z)∗

will satisfy the biorthogonality conditions. ∆̃ can be found using the method
of theorem 10.5.

The paper [68] describes an algorithm for finding the multiwavelet functions
if φ, φ̃ are already known. It is similar to the QR-type approach.

10.4 Techniques for Modifying Multiwavelets

A technique for modifying multiwavelets is one which creates new multi-
wavelets φnew, ψ

(t)
new, φ̃new, ψ̃

(t)

new by applying some transformation to given

φ, ψ(t), φ̃, ψ̃
(t)
.

Some examples are

• Applying a TST. This has the effect of shifting approximation orders
from one side to the other, similar to moving a factor of (1 + e−iξ)/2 in
the scalar case.
Symmetry can be preserved or even created. Orthogonality is destroyed.
In general, both φ and φ̃ get longer, but adding symmetry conditions
helps to keep the length increase under control.
Examples for this technique are found in chapter 8 and in [121], [135],
and [136].

• Using projection factors. We can add a projection factor to an ex-
isting multiwavelet. This method has the advantage that it preserves
orthogonality if F is orthogonal. Unfortunately, it also destroys approx-
imation order beyond p = 1.

• Using lifting factors. We can apply a lifting factor or dual lifting
factor to an existing multiwavelet. Appropriately chosen lifting factors
can preserve or increase approximation order, but they destroy orthog-
onality.
Examples are found in chapter 9 and in [54] and [98].
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10.5 Techniques for Building Multiwavelets

A technique for building multiwavelets is one which creates multiwavelets from
scratch. The standard way to go about this is to begin with one of the known
factorizations of the symbol or polyphase matrix with some free parameters in
the factors, add other desired conditions, and try to solve it using a computer
algebra system, or by a numerical method.

• Using the TST factorization. We set up

H(ξ) = m−pCp(mξ) · · ·C1(mξ)H0(ξ)C1(ξ)−1 · · ·Cp(ξ)−1.

This TST factorization will automatically provide approximation order,
even balanced approximation order p, but orthogonality must be added
as a constraint. This approach is similar in spirit to the original con-
struction of the Daubechies wavelets.

The TST method is not seen very often, but Lebrun and Vetterli [104]
have constructed orthogonal symmetric balanced multiwavelets of or-
der 1, 2, and 3 this way. The resulting multiwavelets are called BAT
O1, BAT O2, and BAT O3. The coefficients for BAT O1 are listed in
appendix A.

• Using projection factors. We set up

P (ξ) = QF1(ξ) · · ·Fk(ξ).

This is an easy way to create orthogonal multiwavelets with approxi-
mation order 1 of any size. Higher approximation orders and symmetry
need to be imposed as extra constraints.

Examples of this approach for scalar wavelets are presented in sec-
tions 3.6.2 and 3.7.2.

Hardin and Roach used this method to construct their prefilters [76].
The Shen–Tan–Tam multiwavelets [130] were also constructed from pro-
jection factors.

• Using lifting factors. We set up

P (z) = Lk(z) · · ·L1(z)P0(z),

where the Lj are lifting factors or dual lifting factors, and P0 is a simple
initial polyphase matrix. P0 could be an identity matrix.

This is an easy way to create biorthogonal multiwavelets of any size.
Approximation order is easy to enforce, even balanced approximation
order, and it is possible to create symmetric multiwavelet this way.

Examples can be found in [12], [13], [54], [67], and [145].
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• Other approaches. The DGHM multiwavelet [59] was constructed by
a completely different procedure, using fractal interpolation functions.
The Hardin–Marasovich multiwavelets [75] are also based on this idea.

The Chui–Lian multiwavelets [36] were derived by solving the orthogo-
nality conditions directly, after adding symmetry and interpolation con-
straints. I believe it would be hard to push this brute force approach
beyond what was done in the original paper.

A new type of multiwavelet construction method is described in [73] and
[74].
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11

Existence and Regularity

Previous chapters explained the basic ideas behind refinable function vectors,
multiresolution approximations (MRAs) and the discrete multiwavelet trans-
form (DMWT), as well as ways for determining some basic properties of the
basis functions: approximation order, moments, and point values.

These results were all presented under the assumption that the underlying
refinement equation defines a multiscaling function φ with some minimal reg-
ularity properties, and that this function produces an MRA with multiwavelet
functions ψ(t). In the biorthogonal case, we also assumed the existence of φ̃
and ψ̃

(t)
.

In order for the DMWT algorithm to work, it is actually not necessary
that such functions really exist: if we have sets of recursion coefficients which
satisfy the biorthogonality conditions in equation (6.15), they will give rise to
a DMWT algorithm that works on a purely algebraic level. We may not be
able to justify the interpretation of the DMWT as a splitting of the original
signal into a coarser approximation and fine detail at different levels; there
may also be numerical stability problems when we decompose and reconstruct
over many levels, but the algorithm will be an invertible transform.

In this chapter, we will give necessary and sufficient conditions for existence,
regularity, and stability of φ and ψ(t). The material is rather mathematical.

We note that to establish existence and regularity, it suffices to look at the
multiscaling function φ. The multiwavelet functions ψ(t) are just finite linear
combinations of scaled translates of φ, so they automatically inherit those
properties. We only need to look at ψ(t) to check their stability.

There are two main approaches: in the time domain (section 11.4) and in
the frequency domain (sections 11.1 to 11.3.) The time domain approach is
based on the refinement equation

φ(x) =
√
m

k1∑
k=k0

Hk φ(mx− k); (11.1)

the frequency domain approach is based on the Fourier transform of equa-
tion (11.1), which is

φ̂(ξ) = H(ξ/m)φ̂(ξ/m), (11.2)
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where H(ξ) is the symbol of φ, defined by

H(ξ) =
1√
m

k1∑
k=k0

Hke
−ikξ.

11.1 Distribution Theory

Ultimately we are interested in solutions of the refinement equation (11.1), but
at first we will consider solutions of the Fourier-transformed equation (11.2).
We are looking for solutions for which φ̂ is a function vector, but φ itself
could be a vector of distributions.

Recall the definition of condition E(p) (definition 6.8).

THEOREM 11.1
A necessary condition for the existence of a function vector φ̂(ξ) which is
continuous at 0 with φ̂(0) �= 0 and which satisfies equation (11.2) is that
H(0) has an eigenvalue of 1 with eigenvector φ̂(0).

A sufficient condition is that H(0) satisfies condition E(p) for some p. If
it does, then

• The product

Πn(ξ) =
n∏

k=1

H(2−kξ) (11.3)

converges uniformly on compact sets to a continuous matrix-valued limit
function Π∞ with polynomial growth.

• For any nonzero choice of φ̂(0) with H(0)φ̂(0) = φ̂(0),

φ̂(ξ) = Π∞(ξ)φ̂(0)

satisfies equation (11.2), and is the Fourier transform of a tempered
distribution vector φ with compact support in the interval [k0/(m −
1), k1/(m− 1)].

• There are exactly p linearly independent solutions φ̂1, . . . , φ̂p, corre-
sponding to p linearly independent eigenvectors φ̂1(0), . . . , φ̂p(0) of H(0)
to eigenvalue 1 .

PROOF (See [79].) The necessity is easy. For ξ = 0, equation (11.2) says

φ̂(0) = H(0)φ̂(0).
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If φ̂(0) �= 0, it must be an eigenvector to eigenvalue 1 of H(0).
Assume now that H(0) satisfies condition E(p). This implies that we can

choose a matrix norm for which

‖H(0)‖ = 1.

Here is where we need the fact that the eigenvalue 1 is nondegenerate.
The rest of the proof is identical to the proof in the scalar case (theorem 5.1),

except that now we have multiple solutions.

REMARK 11.2 The preceding proof shows that the given solutions φk,
k = 1, . . . , p are the only ones whose Fourier transforms are function vectors
continuous at 0 with φ̂k(0) �= 0. The uniqueness disappears if you drop any
of these assumptions.

There may be other distribution solutions with φ̂(0) = 0, there may be
solutions with discontinuous φ̂, and there may even be distribution solutions
which have no Fourier transform. For example, the Hilbert transform of any
tempered distribution solution is also a solution.

Theorem 11.1 can be generalized.

THEOREM 11.3

A necessary and sufficient condition for the existence of a compactly supported
distribution solution of the refinement equation is that H(0) has an eigenvalue
of the form mn for some integer n ≥ 0.

If n > 0, then φ̂(0) = 0, and φ is the nth derivative of a distribution
solution Φ(ξ) of

Φ(x) = mn
√
m

b∑
k=a

HkΦ(mx− k)

with Φ̂(0) �= 0.

The necessity is proved in [79]. Sufficiency is proved in [93]
Let

ρ = ρ(H(0))

be the spectral radius of H(0), that is, the magnitude of the largest eigenvalue
of H(0).

It seems reasonable to assume that we need ρ = 1 if we expect solutions
with continuous φ̂, but that is not the case.

The following theorem says that we still get solutions if 1 < ρ < m, and
there are examples that show that even for ρ ≥ m continuous solutions some-
times exist. (Always assuming that H(0) has an eigenvalue of 1, of course.)
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THEOREM 11.4
If ρ = ρ(H(0)) < m, then for any vector φ̂(0) with H(0)φ̂(0) = φ̂(0), the
product

φn(ξ) = Πn(ξ)φ̂(0)

converges uniformly on compact sets to a continuous limit function

φ̂(ξ) = Π∞φ̂(0)

which satisfies equation (11.2).

PROOF Choose ε > 0 and a matrix norm so that

‖H(0)‖ = ρ+ ε < m.

Let

q =
‖H(0)‖

m
< 1.

H(ξ) is 2π-periodic and differentiable, so we can find constants c and α so
that for all ξ

‖H(ξ)−H(0)‖ ≤ c ‖H(0)‖ |ξ|
‖H(ξ)‖ ≤ mα.

The first of these inequalities implies

‖H(ξ)‖ ≤ ‖H(ξ)−H(0)‖+ ‖H(0)‖ ≤ ‖H(0)‖(1 + c|ξ|) ≤ ‖H(0)‖ec|ξ|.

Then

‖Πn(ξ)‖ ≤ ‖H(0)‖nec|ξ|(m−1+···m−n)

< ‖H(0)‖nec|ξ|/(m−1) ≤ ‖H(0)‖nec|ξ|.
(11.4)

For any ξ,∥∥∥(Πn(ξ)−Πn−1(ξ)) φ̂(0)
∥∥∥ = ∥∥∥Πn−1(ξ)

[
H(m−nξ)−H(0)

]
φ̂(0)

∥∥∥
≤ ‖H(0)‖n−1ec|ξ| · c ‖H(0)‖m−n|ξ| · ‖φ̂(0)‖

=
(‖H(0)‖

m

)n

c|ξ|ec|ξ|‖φ̂(0)‖

= qn ·
(
c|ξ|ec|ξ|‖φ̂(0)‖

)
.

For any m > n, by a telescoping series argument∥∥∥(Πm(ξ)−Πn(ξ)) φ̂(0)
∥∥∥ ≤ qn

1− q

(
c|ξ|ec|ξ|‖φ̂(0)‖

)
.
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This shows that Πn(ξ)φ̂(0) converges uniformly as n → ∞ for ξ in any com-
pact set.

This proof does not show that φ̂ has polynomial growth. In [79], this
theorem is proved by a different method under the additional assumption
that H(0) has a single nondegenerate eigenvalue λ with 1 < |λ| < m. In
that case you do get polynomial growth, so φ is a distribution solution with
compact support. The authors call this a constrained solution.

A constrained solution has the property that Πn(ξ)φ̂(0) converges, even
though Πn(ξ) does not. There may also be solutions where not even Πn(ξ)φ̂(0)
converges. These are called superconstrained solutions in [79].

Example 11.1
If we multiply the coefficients of the DGHM multiscaling function example
by −5, we find that H(0) has eigenvalues 1 and −5, but a superconstrained
solution exists:

φ =
(√

2χ[0,1)

−χ[0,2)

)
.

11.2 L1-Theory

In this section we will look for sufficient conditions for the existence of an
L1-solution of the refinement equation.

We already have some sufficient conditions that guarantee the existence of
a continuous φ̂. To show that this function has an inverse Fourier transform
which is a function, we need to impose decay conditions on |φ̂(ξ)| as |ξ| → ∞.
As in the scalar case, this requires approximation order conditions.

Recall the definition of Cα (definition 5.4).

THEOREM 11.5
Assume the symbol H(ξ) satisfies the sum rules of order p for some p ≥ 1,

so it factors as

H(ξ) = m−pCp(mξ) · · ·C1(mξ)H0(ξ)C1(ξ)−1 · · ·Cp(ξ)−1.

If ρ(H0(0)) < m and
sup

ξ
‖H0(ξ)‖ < mp−α−1,

then φ ∈ Cα.
More generally, we can replace the bound by

sup
ξ

‖Π0,n(ξ)‖1/n < mp−α−1
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for some n, where

Π0,n(ξ) =
n∏

k=1

H0(2−kξ)

PROOF We will just mention some of the key steps. The full proof is given
in [41] and [122]. It is quite technical, and the theorem does not give very
useful estimates in practice. The L2-estimates below are much more practical.

We want to show that

‖Π∞(ξ)‖ ≤ c(1 + |ξ|)−α−1−ε (11.5)

for some ε > 0. For |ξ| < 1, everything is bounded, so we can assume |ξ| ≥ 1.
Πn(ξ) is a telescoping product: when we expand it, all Ck-terms on the

inside cancel, so

Πn(ξ) =
1

mnp
Cp(mξ) · · ·C1(mξ)Π0,n(ξ)C1(m−nξ)−1 · · ·Cp(m−nξ)−1.

Using the definition of C0 from lemma 8.8, we get

Πn(ξ) =
(

1
mn(1 − e−im−nξ)

)p

Cp(mξ) · · ·C1(mξ)

×Π0,n(ξ)C1,0(m−nξ) · · ·Cp,0(m−nξ).

The first term becomes

lim
n→∞

(
1

mn(1− e−im−nξ)

)p

= |ξ|−p ≤ 2(1 + |ξ|)−p.

The product of Ck(mξ) is uniformly bounded.
For the remaining terms, we make the simplifying assumption that the two-

scale similarity transform (TST) matrices Ck have the standard form given
in example 8.1

Ck(ξ) = I − rkl∗ke
−iξ.

Next, we establish that we can replaceCk,0(m−nξ) by Ck,0(0) (see [41] and [122]
for details) . This sets the stage for the main trick: for any vector a,

Ck,0(0)a = rkl∗ka

is a multiple of rk. Thus,

Π0,nC1,0(0) · · ·Cp,0(0)a = (l∗1r2) · · · (l∗p−1rp)(l∗pa)Π0,nr1
‖Π0,n(ξ)C1,0(0) · · ·Cp,0(0)a‖ ≤ c ‖Π0,n(ξ)r1‖ ‖a‖,

‖Π0,n(ξ)C1,0(0) · · ·Cp,0(0)‖ ≤ c ‖Π0,n(ξ)r1‖.
r1 an eigenvector of H(0) to eigenvalue 1 by theorem 8.4, so we can use the
constrained convergence estimates from theorem 11.4 to show that

‖Π0,n(ξ)C1,0(0) · · ·Cp,0(0)‖ ≤ c(1 + |ξ|)p−α−1−ε.
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11.3 L2-Theory

11.3.1 Transition Operator

DEFINITION 11.6 The transition operator or transfer operator for the
symbol H(ξ) is defined by

TF (ξ) =
m−1∑
k=0

H(ξ +
2π
m

k)F (ξ +
2π
m

k)H(ξ +
2π
m

k)∗. (11.6)

The transition operator maps 2π-periodic matrix-valued functions into 2π-
periodic matrix-valued functions, but it also maps some smaller spaces into
themselves.

Let En be the space of trigonometric matrix polynomials of the form

A(ξ) =
n∑

k=−n

Ake
−ikξ;

and let Fn be the subspace of those A ∈ En with y∗
0A(0) = 0, where y0 �= 0

is the zeroth approximation vector of H .

LEMMA 11.7

If H(ξ) has degree N , the transition operator T maps En into itself for any
n > (N −m)/(m− 1).

If H satisfies the sum rules of order 1, then T also maps Fn into itself for
any n > (N −m)/(m− 1).

The proof is the same as that in the scalar case.
We denote the restriction of T to En by Tn.
The following lemma from [107] is the main trick which will allow us to get

better decay estimates for |φ̂(ξ)|.

LEMMA 11.8

If T is the transition operator for H(ξ), then for any 2π-periodic L2-matrix
function A(ξ)

∫ mkπ

−mkπ

Πk(ξ)A(m−kξ)Πk(ξ)∗ dξ =
∫ π

−π

T kA(ξ) dξ.
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Where does the transition operator come from? If φ ∈ L2, we can
define the function

A(x) = 〈φ(y),φ(y − x)〉 =
∫
φ(y)φ(y − x)∗ dy.

Its Fourier transform is given by

Â(ξ) =
√
2πφ̂(ξ)φ̂(ξ)∗,

which makes it useful for studying the L2-properties of φ. However, this is
not quite the function we want to use.

DEFINITION 11.9 The autocorrelation matrix of φ ∈ L2 is defined as

Ω(ξ) =
∑

k

A(k)e−ikξ . (11.7)

If φ has compact support, only finitely many of the A(k) will be nonzero,
so Ω is a trigonometric matrix polynomial. It is easier to compute and easier
to work with than Â(ξ).

By using the Poisson summation formula, we can verify that

Ω(ξ) =
√
2π
∑

k

φ̂(ξ + 2πk)φ̂(ξ + 2πk)∗,

so ∫ 2π

0

Ω(ξ) dξ =
√
2π
∫

R

|φ̂(ξ)|2 dξ.

In the cascade algorithm, let Ω(n) be the autocorrelation function of φ(n).
We can then verify that

Ω(n+1) = TΩ(n),

so the properties of the transition operator are intimately related with the
convergence of Ω(n), which in turn is related to the L2-convergence of φ(n).

For starters, we see that T must have an eigenvalue of 1, with the autocor-
relation matrix as the corresponding eigenmatrix.

For practical computations, we can work with matrices instead of operators.

DEFINITION 11.10 The transition matrix or transfer matrix Tn is de-
fined by

(Tn)k� =
∑

s

Hs+�−2k ⊗Hs, −n ≤ k, � ≤ n. (11.8)

Here ⊗ stands for the Kronecker product, and Hk is the element-wise com-
plex conjugate of the matrix Hk (not the complex conjugate transpose).
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Where does this matrix come from?
The matrix-valued function A(x) is refinable. When we substitute the re-

cursion relation for φ into the definition of A(x), we get

A(x) =
∑
nk

HkA(mx− n)H∗
k−n.

We string the matrix A out into a vector vec(A), column by column.
The relationship

vec(ABC) = (CT ⊗A)vec(B)

then produces

vec(A(x)) =
√
m
∑

n

Hnvec(A(mx− n)),

where

Hn =
1√
m

∑
k

Hk−n ⊗Hk.

The matrix Tn is the matrix T from section 6.5, for determining the point
values of A(x) at the integers.

There is a close relationship between the transition matrix and the transi-
tion operator, which is why we use the same notation for both.

We identify the matrix trigonometric polynomial A(ξ) =
∑

k Ake
−ikξ ∈ En

with the vector

A =


vec(A−n)

· · ·
vec(An)


 ∈ C

(2n+1)r2
.

The vector and the function have equivalent norms∫ π

−π

‖A(ξ)‖2
F dξ = 2π‖A‖2

2,

where ‖ · ‖F is the Frobenius norm.
For n ≥ N − 1, the matrix trigonometric polynomial TnA ∈ En (where Tn

is the transition operator) then corresponds to the vector TnA ∈ C(2n+1)r2

(where Tn is the transition matrix). We can switch back and forth between
the two viewpoints. In particular, this gives us an easy way to compute
eigenvalues and eigenvectors of Tn.

11.3.2 Sobolev Space Estimates

Recall the definition of the Sobolev space Hs (definition 5.11).
In the scalar setting we were able to show that the Sobolev norm estimates

did not depend on whether we factored out the approximation orders. I
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am not completely sure that this is true in the multiwavelet case, but it
makes no practical difference. We will prove the counterpart to theorem 5.12
without factoring out the approximation orders, and still get useful results by
restricting the transition operator to a suitably small subspace.

In the following, we need to use some properties of positive semidefinite
matrices. They are listed in appendix B.7. The notation Γ(ξ) ≥ 0 means that
Γ(ξ) is positive semidefinite for all ξ, not that it has nonnegative entries.

THEOREM 11.11

Assume that H(0) satisfies condition E(p) for some p.
Choose a trigonometric matrix polynomial Γ with the following properties:

• Γ(ξ) is Hermitian for all ξ.

• Γ(ξ) ≥ 0 for all ξ.

• Γ(ξ) ≥ c I, c > 0, for π/2 ≤ |ξ| ≤ π.

Let ρ be the spectral radius of the transition operator T for H0, restricted
to the smallest T -invariant subspace that contains the function Γ(ξ). Then
φ ∈ Hs for any s < − log4 ρ.

PROOF The proof given here is based on [92]. It is quite similar to the
proof in the scalar case.

Condition E(p) implies that φ̂(ξ) is bounded on [−π, π].
Assume that we have chosen Γ and determined the smallest T -invariant

subspace F that contains Γ. We choose ε > 0 and a matrix norm so that

‖T nA‖ ≤ (ρ+ ε)n‖A‖

for all A ∈ F .
Let Ωn = [−mnπ,−mn−1π] ∪ [mn−1π,mnπ]. Then∫

Ωn

φ̂(ξ)φ̂(ξ)∗ dξ =
∫

Ωn

Πn(ξ)φ̂(m−nξ)φ̂(m−nξ)∗Πn(ξ)∗

≤ c1

∫
Ωn

Πn(ξ)Πn(ξ)∗ dξ

≤ c2

∫
Ωn

Πn(ξ)Γ(m−nξ)Πn(ξ)∗ dξ

≤ c2

∫ mn

−mn

Πn(ξ)Γ(m−nξ)Πn(ξ)∗ dξ

= c2

∫ π

−π

T nΓ(ξ) dξ.
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Then ∫
Ωn

r∑
k=1

|φ̂k(ξ)|2 dξ =
∫

Ωn

trace(φ̂(ξ)φ̂(ξ)∗) dξ

≤
∫ π

−π

trace(T nΓ(ξ)) dξ

≤ c3 ‖T nΓ‖ ≤ c4(ρ+ ε)n‖Γ‖.

The rest is the same as before:∫ ∞

−∞
(1 + |ξ|)2s

r∑
k=1

|φ̂k(ξ)|2 dξ

=

(∫ π

−π

+
∞∑

n=1

∫
Ωn

)
(1 + |ξ|)2s

r∑
k=1

|φ̂k(ξ)|2 dξ

≤ c+ c

∞∑
n=1

22ns(ρ+ ε)n,

which is finite if
22s(ρ+ ε) < 1,

or s < log4 ρ.

Most of the content of [92] deals with constructing a subspace Fp which is
as small as possible and contains the iterates of a suitable Γ(ξ).

The following lemma is a partial counterpart to theorem 5.14.

LEMMA 11.12
If H satisfies the sum rules of order p, and H(0) does not have an eigenvalue
of the form m−k, k = p, . . . , 2p−1, then the transition matrix has eigenvalues
m−k, k = 0, . . . , 2p− 1.

PROOF This is shown in [92], by explicitly constructing the left eigenvec-
tors. The details are quite lengthy.

Where is the condition on the eigenvalues of H(0) used in the proof of this
lemma?

The sum rules of order p are conditions involving the approximation vectors
yk, k = 0, . . . , p− 1, and values of H and its derivatives at the points 2πs/m,
s = 0, . . . ,m − 1. If H(0) does not have eigenvalues of the form m−k, k =
p, . . . , 2p− 1, we can find further vectors yk, k = p, . . . , 2p− 1 which satisfy
the sum rules of corresponding order only at the point 0, but not at the other
2πs/m, s = 1, . . . ,m− 1.
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In all examples considered in [92] these vectors exist, but it is conceivable
that in some cases they do not. A counterexample would show that theo-
rem 5.14 cannot be generalized to the multiwavelet case.

We note that in the scalar wavelet case H(0) is a scalar; thus, the eigenvalue
condition is trivially satisfied.

Based on the vectors yk, Jiang [92] now defines three sets of vectors: the
vectors y(j), j = 0, . . . , 2p−1, are the left eigenvectors of the transition matrix
to eigenvalue m−j; the vectors l(j)s and r(j)s , j = 0, . . . , p− 1, s = 1, . . . , r are
not eigenvectors, and are not necessarily linearly independent, but their span
is an invariant subspace. For the precise definitions of these vectors, consult
the original paper.

Let Fp be the orthogonal complement of the span of the y(j), l(j)s , r(j)s .
Then Jiang proves

• Fp is an invariant subspace.

• Γ(ξ) = (1− cos ξ)2pI lies in Fp.

p should be chosen as large as possible, for a smaller space Fp.
Jiang’s results give us an easy L2-estimate, just as in the scalar case: de-

termine the approximation order and check the eigenvalue condition for H(0)
from lemma 11.12; determine the eigenvalues of the transition matrix; remove
the known power-of-m eigenvalues. The largest remaining eigenvalue is an
upper bound on ρ, which leads to a lower bound on s.

It may not be the best possible estimate, but it is a lower bound for the
actual Sobolev exponent.

Example 11.2
The DGHM multiwavelet has approximation order 2, and the transition ma-
trix has size 28× 28. Its eigenvalues include the known 1, 1/2, 1/4, 1/8. The
rest (sorted by size) are −1/5 (twice), 1/8 (again), −1/10 (twice), −1/20 (four
times), 1/25, 1/50 (twice), and 0 (twelve times).

ρ is at most 0.2. An explicit calculation of Fp shows that the eigenvectors
to eigenvalue −1/5 are in fact not in Fp. The true ρ is no larger than 1/8, so
s ≥ 1.5.

It can be established by other means that this φ is Lipschitz continuous
but not differentiable, so this estimate is the best possible.

THEOREM 11.13
Let n be the degree of H(ξ).

A sufficient condition for φ ∈ L2 is that H satisfies the sum rules of order
1, and the transition matrix Tk satisfies condition E. Here k is the smallest
integer larger than (N −m)/(m− 1).

The proof is identical to the scalar case.
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11.3.3 Cascade Algorithm

One way of obtaining a solution to the refinement equation is to use fixed
point iteration on it. If the iteration converges in L2, this presents a practical
way of approximating the function φ(x) as well as an existence proof for the
solution.

DEFINITION 11.14 Assume we are given H(ξ) with H(0) = 1. The
cascade algorithm consists of selecting a suitable starting function φ(0)(x) ∈
L2, and then producing a sequence of functions

φ(n+1)(x) =
√
m

k1∑
k=k0

Hkφ
(n)(mx − k),

or equivalently

φ̂
(n+1)

(ξ) = H(ξ/m)φ̂
(n)

(ξ/m) = Πn(ξ)φ̂
(0)

(m−n−1ξ).

THEOREM 11.15

Assume that H satisfies condition E and the sum rules of order 1 with ap-
proximation vector y0. Then the cascade algorithm converges for any starting
function φ(0) which satisfies

y∗
0

∑
k

φ(0)(k) = c �= 0

if and only if the transition operator satisfies condition E.

The proof is given in [131].

11.4 Pointwise Theory

In section 6.5, we already explained how to compute point values of φ at the
integers, and via repeated application of the refinement relation at all m-adic
points. An m-adic point is a rational number of the form

x =
k

mn
, n ∈ N, k ∈ Z.

The following describes a more formalized way of doing this, which can then
be used to obtain smoothness estimates.
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To keep the notation simpler, assume that supp φ ⊂ [0, n]. We define

Φ(x) =




φ(x)
φ(x+ 1)

...
φ(x+ n− 1)


 , x ∈ [0, 1]. (11.9)

This is related to the Φ in section 6.5, but not quite the same: Φ(0) consists
of the first n subvectors of the previous Φ, Φ(1) of the last n subvectors.

The recursion relation states that

φ(x+ k) =
√
m
∑

�

H�φ(mx+mk − �) =
√
m
∑

�

Hmk−�φ(mx+ �).

Obviously,
φ(x+ k) = [Φ(x)]k

(the kth subvector in Φ(x)), while

φ(mx+ �) =



[Φ(mx)]� if 0 ≤ x ≤ 1/m,

[Φ(mx− 1)]�+1 if 1/m ≤ x ≤ 2/m,

. . .

[Φ(mx−m+ 1)]�+1 if (m− 1)/m ≤ x ≤ 1.

If 0 ≤ x ≤ 1/m, then

[Φ(x)]k =
√
m
∑

�

Hmk−�[Φ(mx)]�,

or
Φ(x) = T0Φ(mx), (11.10)

where
(T0)k� =

√
mHmk−�, 0 ≤ k, � ≤ n− 1.

If 1/m ≤ x ≤ 2/m, then

[Φ(x)]k =
√
m
∑

�

Hmk−�+1[Φ(mx − 1)]�,

or
Φ(x) = T1Φ(mx− 1), (11.11)

where
(T1)k� =

√
mHmk−�+1, 0 ≤ k, � ≤ n− 1,

and so on.
The matrices T0, . . . , Tm−1 are related to the matrix T from section 6.5. T0

is the n×n submatrix of T at the top left. Tk is the submatrix k steps to the
left, where we extend the rows of T by periodicity.
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If H satisfies the sum rules of order 1, then

e∗ = (µ∗
0,µ

∗
0, . . . ,µ

∗
0)

is a common left eigenvector to eigenvalue 1 of all Tk.
Choose an m-adic number x. In m-adic notation, we can express x as

x = (0.d1d2 . . . dk)m, di ∈ {0, . . . ,m− 1}.
Define the shift operator τ by

τx = (0.d2d3 . . . dk)m;

then

τx =



mx if 0 ≤ x ≤ 1/m,

. . .

mx−m+ 1 if (m− 1)/m ≤ x ≤ 1.

Equations (11.10) and (11.11), etc. together are equivalent to

Φ(x) = Td1Φ(τx),

or after repeated application

Φ(x) = Td1 · · ·Tdk
Φ(0). (11.12)

Example 11.3
For the Chui–Lian multiwavelet CL2, the refinement matrices have the form

T0 =
√
2
(
H0 0
H2 H1

)
, T1 =

√
2
(
H1 H0

0 H2

)
.

The vector Φ(0) is (0, 0, 1, 0)∗.
Then

Φ(1/4) = Φ((0.01)2) = T0T1Φ(0) =
1
16




4− 2
√
7

7− 2
√
7

12 + 2
√
7

7 + 4
√
7


 .

The same approach can be used to find point values of the multiwavelet
function. We simply define matrices S0, S1, . . . analogous to T0, T1, . . .

(Sj)k� =
√
mGmk−�+j , 0 ≤ k, � ≤ n− 1

and replace the leftmost matrix in equation (11.12):

Ψ(x) = Sd1Td2 · · ·Tdk
Φ(0).
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This approach can also be used to find exact point values of refinable func-
tions at any rational point, but we are interested in smoothness estimates.

DEFINITION 11.16 The (uniform) joint spectral radius of T0, . . . , Tm−1

is defined as

ρ(T0, . . . , Tm−1) = lim sup
�→∞

max
dj ∈ {0, . . . , m − 1}

‖Td1 · · ·Td�
‖1/�.

THEOREM 11.17
Assume H(ξ) satisfies the sum rules of order 1, and that

ρ(T0|F1, . . . , Tm−1|F1) = λ < 1.

where F1 is the orthogonal complement of the common left eigenvector e∗ =
(µ∗

0, . . . ,µ
∗
0) of T0, . . . , Tm−1.

Then the recursion relation has a unique solution φ which is Hölder con-
tinuous of order α for any

α < − logm λ.

The proof is completely analogous to that of theorem 5.21.
As in the scalar case, generalizations of theorem 11.17 can be used to guar-

antee higher orders of smoothness.

THEOREM 11.18
Assume that φ(x) has approximation order p. Let Fp be the orthogonal com-
plement of span{e0, . . . , ep−1}, where

ek = (e∗k0, e
∗
k1, . . . , e

∗
k,m−1),

e∗kl =
∫
(x+ j)kφ(x)∗ dx =

k∑
s=0

(
k
s

)
jsµ∗

k−s,

and assume that
ρ(T0|Fp, . . . , Tm−1|Fp) = λ < 1.

Then φ ∈ Cα for any α < − logm λ.

This is proved in [90].
In general, a joint spectral radius can be quite hard to compute. With some

effort, you can get reasonably good estimates. From the definition we get the
estimate

ρ(T0, . . . , Tm−1) ≤ max
k

‖Tk‖,
or more generally

ρ(T0, . . . , Tm−1) ≤ max
dj ∈ {0, . . . , m − 1}

‖Td1 · · ·Td�
‖1/�
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for any fixed �. Moderately large � give good bounds in practice, but the
number of norms you have to examine grows like m�.

You can also get lower bounds on ρ this way, which puts upper bounds on
the smoothness. For any specific choice of dj ,

ρ(T0, . . . , Tm−1) ≥ ‖Td1 · · ·Td�
‖1/�.

The frequency domain methods can only give lower bounds on the smoothness
estimates. The pointwise method can give both upper and lower bounds.

11.5 Smoothness and Approximation Order

We saw in the preceding sections that approximation order is important for
smoothness estimates. A high approximation order does not directly guaran-
tee smoothness, but the two tend to be correlated.

As in the scalar case, smoothness implies a certain minimum approximation
order.

THEOREM 11.19

Assume that φ is a stable refinable function vector. If φ is p times continu-
ously differentiable, then φ has approximation order p+ 1.

The proof is similar to the scalar case. It can be found in [41].

11.6 Stability

The previous sections discussed the existence of φ(x) and its smoothness
properties. In order to ensure that φ produces an MRA we need to also verify
that

• φ has stable shifts.

• ⋂k Vk = {0}.

• ⋃k Vk = L2.

We will now give sufficient conditions for these properties.
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Recall that φ has stable shifts if φ ∈ L2 and if there exist constants 0 <
A ≤ B so that for all sequences {ck} ∈ �2,

A
∑

k

‖ck‖2 ≤ ‖
∑

k

c∗kφ(x− k)‖2
2 ≤ B

∑
k

‖ck‖2.

LEMMA 11.20
φ has stable shifts if and only if there exist constants 0 < A ≤ B so that

A‖c‖2
2 ≤

∑
k

‖c∗φ̂(ξ + 2kπ)‖2 ≤ B‖c‖2
2

for any vector c.

This lemma is often phrased as “φ has stable shifts if and only if the auto-
correlation matrix is strictly positive definite.”

PROOF The proof proceeds as in the scalar case (lemma 5.24). Details
can be found in [70] and [88].

LEMMA 11.21
If φ, φ̃ ∈ L2 are biorthogonal, they have stable shifts.

The proof is identical to the scalar case (lemma 5.25).
A concept related to stability is linear independence. A compactly sup-

ported multiscaling function φ has linearly independent shifts if∑
j

a∗jφ(x− j) = 0 ⇒ a = 0 (11.13)

for all sequences a.
It is shown in [88] and [89] that φ has linearly independent shifts if and

only if the sequences
{φ̂j(ξ + 2πk)}k∈ Z (11.14)

are linearly independent for all ξ ∈ C. φ has stable shifts if and only if the
sequences in equation (11.14) are linearly independent for all ξ ∈ R.

Thus, linear independence implies stability.
Further stability conditions are given in [82] and [122]. Paper [93] discusses

stability for the case where the refinement equation has multiple linearly in-
dependent solutions.

THEOREM 11.22
Assume φ ∈ L2. Then ⋃

k

Vk = L2
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if and only if ⋂
k,n

mnZ(φ̂k)

is a set of measure 0, where Z(f) = set of zeros of f , or equivalently if⋃
k

supp φ̂k = R

up to a set of measure zero.

This is proved in [91].
The conditions of the theorem are satisfied if φ has compact support.

THEOREM 11.23
Assume φ ∈ L2. If ∑

k

|φ̂k(ξ)| > 0

in some neighborhood of 0, then⋂
n

Vn = {0}.

This is shown in [69]. The conditions of this theorem are satisfied if φ is
refinable and stable.

All the conditions for the existence of a pair of biorthogonal MRAs are
satisfied if φ, φ̃ are compactly supported, biorthogonal L2-functions.

For a full justification of the decomposition and reconstruction, we need to
show that the multiwavelet functions are also stable.

There are actually two definitions of stability that we need to consider.
Stability at a single level means that there exist constants 0 < A ≤ B so that

A
∑

k

‖ck‖2 ≤ ‖
∑
kt

c∗kψ
(t)(x− k)‖2

2 ≤ B
∑

k

‖ck‖2.

This condition is automatically satisfied if the multiwavelet functions are
biorthogonal. The proof is the same as that in lemma 11.21. Stability at
level 0 implies stability at any other fixed level n, which is already enough to
justify a decomposition and reconstruction over a finite number of levels.

Stability over all levels means

A
∑
nk

‖cnk‖2 ≤ ‖
∑
nkt

c∗nkm
n/2ψ(t)(mnx− k)‖2

2 ≤ B
∑
nk

‖cnk‖2.

This is required if you want to decompose an L2-function f in multiwavelet
functions over all levels.

There ought to be a counterpart to theorem 5.27 for the multiwavelet case,
but I have not been able to find an explicit statement of it.
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A

Standard Wavelets

In all listings, p = approximation order, s = Sobolev exponent, and α =
Hölder exponent. If α is not listed, s− 1/2 is a lower bound for α. In many
cases, a common factor for all coefficients in its column is listed separately,
for easier readability.

For scalar wavelets, we only list hk and h̃k. The coefficients gk and g̃k can
be found by reversing h̃k and hk with alternating sign.

All multiwavelets listed here have m = 2, r = 2.

A.1 Scalar Orthogonal Wavelets

Daubechies Wavelets Dp

Restrictions: p ≥ 1 integer.

Support [0, 2p− 1], approximation order p; values of s, α are given in the
tables below (see [49] and [50].)

hk hk hk

p 1 2 3
k = 0 1 1 +

√
3 1 +

√
10 +

√
5 + 2

√
10

1 1 3 +
√
3 5 +

√
10 + 3

√
5 + 2

√
10

2 3−√
3 10− 2

√
10 + 2

√
5 + 2

√
10

3 1−√
3 10− 2

√
10−

√
5 + 2

√
10

4 5 +
√
10− 3

√
5 + 2

√
10

5 1 +
√
10−

√
5 + 2

√
10

factor 1/
√
2 1/(4

√
2) 1/(16

√
2)

s 0.500 1.000 1.415
α 0.550 1.088
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hk hk hk

p 4 5 6
k = 0 0.23037781330890 0.16010239797419 0.11154074335011

1 0.71484657055291 0.60382926979719 0.49462389039846
2 0.63088076792986 0.72430852843777 0.75113390802110
3 −0.02798376941686 0.13842814590132 0.31525035170919
4 −0.18703481171909 −0.24229488706638 −0.22626469396544
5 0.03522629188571 −0.03224486958464 −0.12976686756726
6 0.03288301166689 0.07757149384005 0.09750160558733
7 −0.01059740178507 −0.00624149021280 0.02752286553031
8 −0.01258075199908 −0.03158203931749
9 0.00333572528547 0.00055384220116
10 0.00477725751095
11 −0.00107730108531
s 1.775 2.096 2.388
α 1.618 1.596 1.888

Coiflets
We only list the coiflets of length 6 with support [−2, 3] (two different

coiflets) or [−1, 4] (another two). Coiflets on [−3, 2] and [−4, 1] can be found
by reversing coefficients.

p = 2, µ1 = µ2 = 0; values of s are given in the table below (see [30], [50],
and [51].)

support [−2, 3] support [−1, 4]
hk hk hk hk

k = −2 1 +
√
7 1−√

7
−1 5−√

7 5 +
√
7 9−√

15 9 +
√
15

0 14− 2
√
7 14 + 2

√
7 13 +

√
15 13−√

15
1 14 + 2

√
7 14− 2

√
7 6 + 2

√
15 6− 2

√
15

2 1 +
√
7 1−√

7 6− 2
√
15 6 + 2

√
15

3 −3−√
7 −3 +

√
7 1−√

15 1 +
√
15

4 −3 +
√
15 −3−√

15
factor 1/(16

√
2) 1/(16

√
2) 1/(16

√
2) 1/(16

√
2)

s 0.5896 1.0217 1.2321 0.0413

A.2 Scalar Biorthogonal Wavelets

Cohen(p,p̃) (Cohen–Daubechies–Feauveau)
Restrictions: p, p̃ integers ≥ 1, p+ p̃ even.
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φ is the B-spline of order p. φ, φ̃ are symmetric about 0 (p even) or 1/2 (p
odd). Approximation orders p and p̃ (see [40] and [50].)

There are too many of them to list here. A table of some of them is in [50,
page 277]. Cohen(1,1) = Haar wavelet; Cohen(2,4) is given in example 1.6.

Daubechies(7,9)
Symmetric about 0, p = p̃ = 4, s = 2.1226, s̃ = 1.4100 (see [50].)

hk h̃k

k = −4 0.03782845550700
−3 −0.06453888262894 −0.02384946501938
−2 −0.04068941760956 −0.11062440441842
−1 0.41809227322221 0.37740285561265
0 0.78848561640566 0.85269867900940
1 0.41809227322221 0.37740285561265
2 −0.04068941760956 −0.11062440441842
3 −0.06453888262894 −0.02384946501938
4 0.03782845550700

A.3 Orthogonal Multiwavelets

BAT O1 (Lebrun–Vetterli)
Support [0, 2]. φ2 is reflection of φ1 about x = 1 and vice versa; wavelet

functions are symmetric/antisymmetric about x = 1. p = 2, balanced of order
1, s = 0.6406.

There are also BAT O2 and BAT O3, which are balanced of order 2 and 3
(see [105] for a list of coefficients.)

Hk Gk

k = 0
(
0 2 +

√
7

0 2−√
7

) (
0 −2
0 1

)

1
(
3 1
1 3

) (
2 2

−√
7

√
7

)

2
(
2−√

7 0
2 +

√
7 0

) (−2 0
−1 0

)
factor 1/(4

√
2) 1/4

CL2(t) (Chui–Lian)
Restriction: −1/

√
2 ≤ t < −1/2.

Support [0, 2], symmetric/antisymmetric about x = 1, α = − log2 |1/2+2t|,
p = 1.

This is a special case of JRZB(s,t,λ,µ).
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Special case: CL2 = CL2(−√
7/4) is the standard Chui–Lian multiwavelet.

p = 2, s = 1.0545, α = − log2(
√
7/4) ≈ 0.59632 (see [36] and [90].)

Hk Gk

k = 0
(
1 1
2t 2t

) (−1 −1
µ µ

)

1
(
2 0
0 2µ

) (
2 0
0 −4t

)

2
(

1 −1
−2t 2t

) (−1 1
−µ µ

)
factor 1/(2

√
2) 1/(2

√
2)

where

µ =
√
2− 4t2.

CL3 (Chui–Lian)
Support [0, 3], symmetric/antisymmetric about x = 3/2, p = 3, s = 1.4408

(see [36].)

Hk Gk

k = 0
(

10− 3
√
10 5

√
6− 2

√
15

5
√
6− 3

√
15 5− 3

√
10

) (
5
√
6− 2

√
15 −10 + 3

√
10

−5 + 3
√
10 5

√
6− 3

√
15

)

1
(

30 + 3
√
10 5

√
6− 2

√
15

−5
√
6− 7

√
15 15− 3

√
10

) (−5
√
6 + 2

√
15 30 + 3

√
10

15− 3
√
10 5

√
6 + 7

√
15

)

2
(

30 + 3
√
10 −5

√
6 + 2

√
15

5
√
6 + 7

√
15 15− 3

√
10

) (−5
√
6 + 2

√
15 −30− 3

√
10

−15 + 3
√
10 5

√
6 + 7

√
15

)

3
(

10− 3
√
10 −5

√
6 + 2

√
15

−5
√
6 + 3

√
15 5− 3

√
10

) (
5
√
6− 2

√
15 10− 3

√
10

5− 3
√
10 5

√
6− 3

√
15

)
factor 1/(40

√
2) 1/(40

√
2)

Balanced Daubechies Dp

Restriction: p ≥ 1 integer.
Support [0, 2p], balanced of order p, same smoothness properties as scalar

Daubechies wavelets Dp.
These multiwavelets use the same coefficients as the scalar Daubechies

wavelets, sorted into two rows. φ1 is the Daubechies φ compressed by a
factor of 2. φ2 is φ1 shifted right by 1/2. The same holds for ψ1, ψ2 (see
[105].)
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Hk Gk

k = 0
(
h0 h1

0 0

) (
g0 g1

0 0

)

1
(
h2 h3

h0 h1

) (
g2 g3

g0 g1

)

2
(
h4 h5

h2 h3

) (
g4 g5

g2 g3

)
...

p

(
0 0

h2p−2 h2p−1

) (
0 0

g2p−2 g2p−1

)

DGHM (Donovan–Geronimo–Hardin–Massopust)
Support [0, 2], p = 2, α = 1, s = 1.5. φ1 is symmetric about x = 1/2, φ2 is

symmetric about x = 1 (see [59].)

Hk Gk

k = 0
(

12 16
√
2

−√
2 −6

) (−√
2 −6

2 6
√
2

)

1
(

12 0
9
√
2 20

) (
9
√
2 −20

−18 0

)

2
(

0 0
9
√
2 −6

) (
9
√
2 −6

18 −6
√
2

)

3
(

0 0
−√

2 0

) (−√
2 0

−2 0

)
factor 1/(20

√
2) 1/(20

√
2)

STT (Shen–Tan–Tam)
Support [0, 3], symmetric/antisymmetric about x = 3/2, p = 1, s = 0.9919

(see [130].)

Hk Gk

k = 0
(
1 4 +

√
15

1 −4−√
15

) (−4−√
15 1

−4−√
15 −1

)

1
(

31 + 8
√
15 4 +

√
15

−31− 8
√
15 4 +

√
15

) (
4 +

√
15 −31− 8

√
15

−4−√
15 −31− 8

√
15

)

2
(
31 + 8

√
15 −4−√

15
31 + 8

√
15 4 +

√
15

) (
4 +

√
15 31 + 8

√
15

4 +
√
15 −31− 8

√
15

)

3
(

1 −4−√
15

−1 −4−√
15

) (−4−√
15 −1

4 +
√
15 −1

)
factor 1/(8(4 +

√
15)) 1/(8(4 +

√
15))
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A.4 Biorthogonal Multiwavelets

HM(s) (Hardin–Marasovich)
Restriction: −1 < s < 1/7.
Support [−1, 1]; φ1, φ̃1 are symmetric about x = 0; φ2, φ̃2 are symmetric

about x = 1/2; p = p̃ = 2 (see [75].)

Hk Gk

k = −2
(
0 a
0 0

) (
0 a

0
√
2a

)

−1
(
b c
0 0

) (
b c√
2b

√
2c

)

0
(
1 c
0 d

) (−1 c

0 −√
2c

)

1
(
b a
e d

) (
b a

−√
2b −√

2a

)
factor 1/

√
2 1/

√
2

where

s̃ = (1 + 2s)/(−2 + 5s) ⇔ s = (1 + 2s̃)/(−2 + 5s̃)
α = 3(1− s)(1− ss̃)/(4− s− s̃− 2ss̃)

γ =
√
6(4− s− s̃− 2ss̃)/(7− 4s− 4s̃+ ss̃)

δ =
√
12(−1 + s̃)(−1 + s)(−1 + ss̃)/(−4 + s+ s̃+ 2ss̃)

a = αγ(1− 2α− 2s)/(2δ)
b = 1/2− α

c = αγ(3− 2α− 2s)/(2δ)
d = α+ s

e = δ/γ

The dual functions have the same form. Exchange tilde and nontilde in all
formulas.

Special case: for s = 0, V0 = continuous piecewise linear splines with half-
integer knots.

Special case: for s = 1/4, V0 = continuous, piecewise quadratic splines with
integer knots.

JRZB(s,t,λ,µ) (Jia–Riemenschneider–Zhou biorthogonal)
Restriction: |2λ+ µ| < 2.
Support [0, 2], symmetric/antisymmetric about x = 1, p = 1, α = 2 if

|st+ 1/4| ≤ 1/8, α = − log2 |2st+ 1/2| if 1/8 < |st+ 1/4| < 1/2 (see [90].)
Special case: p = 3 if t �= 0, µ = 1/2, λ = 2st+ 1/4.
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Special case: p = 4 if λ = −1/8, µ = 1/2, st = −3/16. For s = 3/2,
t = −1/8 we get the cubic Hermite multiwavelet.

Special case: s = 1, λ = t, µ =
√
2− 4t2 is CL2(t).

Hk

k = 0
(
1 s
2t 2λ

)

1
(
2 0
0 2µ

)

2
(

1 −s
−2t 2λ

)
factor 1/(2

√
2)

I could not find multiwavelet or dual multiscaling function coefficients for
this multiscaling function published anywhere.

HC (Hermite cubic)
This is a special case of JRZB(s,t,λ,µ).
There are many completions. The one listed here is the smoothest symmet-

ric completion with support length 4 (see [80].)
Support of φ is [−1, 1], support of φ̃ is [−2, 2]; all functions are symmet-

ric/antisymmetric about x = 0; p = 4, p̃ = 2, α = 2, s = 2.5, s̃ = 0.8279.

Hk Gk H̃k G̃k

k = −2
(−2190 −1540
13914 9687

)

−1
(

4 6
−1 −1

) (
5427 567
−1900 −120

) (
9720 3560

−60588 −21840

)

0
(
8 0
0 4

) (−19440 −60588
7120 21840

) (
23820 0
0 36546

) (−2 −1
3 1

)

1
(
4 −6
1 −1

) (
28026 0
0 56160

) (
9720 −3560
60588 −21840

) (
4 0
0 4

)

2
(−19440 60588
−7120 21840

) ( −2190 1540
−13914 9687

) (−2 1
−3 1

)

3
(
5427 −567
1900 −120

)
factor 1/(8

√
2) 1/(19440

√
2) 1/(19440

√
2) 1/(8

√
2)
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B

Mathematical Background

B.1 Notational Conventions

This book uses the following notational convention: scalars are usually writ-
ten as lowercase letters (Roman or Greek). Vectors are written as boldface
lowercase letters. Matrices are written as uppercase letters.

Vectors are always column vectors; row vectors are written as transposes of
column vectors.

The notation a∗ denotes the complex conjugate of a. For vectors and ma-
trices, a∗ or A∗ is the complex conjugate transpose of a or A.

B.2 Derivatives

The derivative operator is usually written as D. We will often need the
following formula (repeated product rule):

LEMMA B.1 Leibniz Rule
If f(x), g(x) are n times continuously differentiable, then

Dn [f(x)g(x)] =
n∑

k=0

(
n
k

)
Dkf(x)Dn−kg(x).

B.3 Functions and Sequences

All functions in this book are considered to be complex-valued functions of a
real argument. This way, all the formulas will contain complex conjugates in
the right places. In most applications the functions are in fact real-valued, so
the complex conjugate transpose can be ignored in the scalar case, or read as
a real transpose in the vector or matrix case.
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The natural setting for wavelet theory is the space L2 = L2(R) of square-
integrable functions. These are functions whose L2-norm

‖f‖2 =
(∫ ∞

−∞
|f(x)|2 dx

)1/2

is finite. The inner product on L2 is

〈f, g〉 =
∫ ∞

−∞
f(x)g(x)∗ dx.

For vectors f , g, the inner product is defined analogously as

〈f ,g〉 =
∫ ∞

−∞
f(x)g(x)∗ dx.

This inner product is a matrix

〈f ,g〉 =



〈f1, g1〉 · · · 〈f1, gn〉

...
...

〈fn, g1〉 · · · 〈fn, gn〉


 .

We also use the space L1 = L1(R) of integrable functions. These are
functions with finite L1-norm:

‖f‖1 =
∫ ∞

−∞
|f(x)| dx < ∞.

The function χ[a,b] is the characteristic function of the interval [a, b]. It is
defined by

χ[a,b](x) =

{
1 if x ∈ [a, b],
0 otherwise.

The space �2 consists of doubly infinite sequences of complex numbers {ck},
k ∈ Z, with

‖{ck}‖2 =

(∑
k

|ck|2
)1/2

< ∞.

The space (�2)r consists of doubly infinite sequences of r-vectors {ck}, with

‖{ck}‖2 =

(∑
k

‖ck‖2

)1/2

=


∑

k,j

|ckj |2



1/2

< ∞.

The Kronecker delta sequence δk is defined by

δk� =

{
1 if k = �,
0 otherwise.
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B.4 Fourier Transform

The Fourier transform is defined by

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x)e−ixξ dx.

The Fourier transform of an L1-function is a continuous function which
goes to zero at infinity. The Fourier transform of an L2-function is another
L2-function.

Some of the standard properties of the Fourier transform are listed here for
easier reference. Different authors use slightly different definitions, so these
formulas may differ by factors of

√
2π or in other minor ways from formulas

in other books.

Parseval’s formula:
〈f, g〉 = 〈f̂ , ĝ〉.

Convolution and correlation: If h is the convolution of f and g

h(x) =
∫

f(y)g(x− y) dy,

then
ĥ(ξ) =

√
2πf̂(ξ)ĝ(ξ).

We mostly use L2-inner products, where the second term carries a com-
plex conjugate transpose, so we need a slightly different statement: if h
is the correlation of f and g

h(x) = 〈f(y), g(y − x)〉 =
∫

f(y)g(y − x)∗ dy,

then
ĥ(ξ) =

√
2πf̂(ξ)ĝ(ξ)∗.

Differentiation:
(Df )̂(ξ) = iξf̂(ξ).

Multiplication by x:
(xf(x))̂(ξ) = iDf̂(ξ).

Translation:
(f(x− a))̂(ξ) = e−iξ f̂(ξ).

Poisson summation formula:∑
k

f(hk) =
√
2π
h

∑
k

f̂(
2π
h

k).
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B.5 Laurent Polynomials

A Laurent polynomial in a formal variable z has the form

f(z) =
k1∑

k=k0

fkz
k. (B.1)

Laurent polynomials differ from regular polynomials in that negative powers
are allowed. In all important aspects they behave like regular polynomials.

The degree of the Laurent polynomial (B.1) is k1 − k0.
Vector or matrix Laurent polynomials are Laurent polynomials whose co-

efficients are vectors or matrices

f(z) =
k1∑

k=k0

fkzk,

F (z) =
k1∑

k=k0

Fkz
k.

Equivalently, we could consider them to be vectors or matrices with polyno-
mial entries.

B.6 Trigonometric Polynomials

Trigonometric polynomials play a large role in wavelet theory. A trigonometric
polynomial has the form

f(ξ) =
k1∑

k=k0

fke
−ikξ (B.2)

where k0, k1 may be positive or negative. All trigonometric polynomials are
2π-periodic and infinitely often differentiable. The degree of the trigonometric
polynomial (B.2) is k1 − k0.

We often use the z-notation

f(z) =
k1∑

k=k0

fkz
k, z = e−iξ,
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which is easier to work with in many situations. In z-notation, the complex
conjugate is

f(z)∗ =
k1∑

k=k0

f∗
k z

−k.

There is a one-to-one correspondence between trigonometric polynomials
and Laurent polynomials. We will freely switch back and forth between the
two notations.

Trigonometric vector or matrix polynomials are trigonometric polynomials
whose coefficients are vectors or matrices

f(ξ) =
∑

k

fke−ikξ,

F (ξ) =
∑

k

Fke
−ikξ.

Equivalently, we could consider them to be vectors or matrices with trigono-
metric polynomial entries.

By using the z-notation, it is easy to see that many properties of regular
polynomials carry over to trigonometric polynomials. Specifically,

• If f(ξ) is nonzero for all ξ, then 1/f(ξ) is well-defined. 1/f(ξ) is a
trigonometric polynomial if and only if f(ξ) is a monomial; that is,

f(ξ) = fne
−inξ

for some n, with fn �= 0.

• f has a zero of order p at a point ξ0 if and only if it contains a factor
of (e−iξ0 − e−iξ)p. In particular, f has a zero of order p at ξ = 0 if and
only if it can be written as

f(ξ) =
(
1− e−iξ

2

)p

f0(ξ)

for some trigonometric polynomial f0. The factor 2 is introduced to
ensure that f(0) = f0(0). Likewise, f has a zero of order p at ξ = π if
and only if it can be written as

f(ξ) =
(
1 + e−iξ

2

)p

f0(ξ).
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B.7 Linear Algebra

DEFINITION B.2 The Frobenius norm of a matrix A is defined as

‖A‖2
F =

∑
jk

|ajk|2.

All vector and matrix norms in finite dimensions are equivalent.

DEFINITION B.3 A Householder matrix is of the form

H = I − 2uu∗

for some unit vector u.

It satisfies H = H∗ = H−1. For any vector a it is possible to construct a
Householder matrix so that

Ha =



±‖a‖
0
...
0


 .

DEFINITION B.4 The vectorization of an m×n matrix A is defined as
the vector of length mn

vec(A) =




a11

...
am1

a21

...
am2

a31

...
amn




.

That is, vec(A) consists of the columns of A stacked on top of one another.

DEFINITION B.5 The Kronecker product of two matrices A, B is de-
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fined as

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

am1B am2B · · · amnB


 .

LEMMA B.6
For any matrices A, B, C

vec(ABC) = (CT ⊗A)vec(B).

DEFINITION B.7 A matrix A is positive semidefinite if

x∗Ax ≥ 0 for all x. (B.3)

We use the notation A ≥ 0 for this. For two matrices A, B, A ≥ B means
A−B ≥ 0.

If A(ξ) is any matrix trigonometric polynomial, then A(ξ)A(ξ)∗ is positive
semidefinite for all ξ.

DEFINITION B.8 The trace of a square matrix A is the sum of its
diagonal terms:

trace(A) =
∑

k

akk.

LEMMA B.9
If A ≤ B, then

trace(A) ≤ trace(B)

and
CAC∗ ≤ CBC∗

for any matrix C.
If A(ξ) ≤ B(ξ) for all ξ, then∫

A(ξ) dξ ≤
∫

B(ξ) dξ.

LEMMA B.10
Let En be the space of trigonometric matrix polynomials of the form

A(ξ) =
n∑

k=−n

Ake
−ikξ, Ak real.
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Then there exists a constant c so that∫ π

−π

trace(A(ξ)) dξ ≤ c‖A‖
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C

Computer Resources

C.1 Wavelet Internet Resources

The Wavelet Digest is a free electronic newsletter for the wavelet community.
It was originally started by Wim Sweldens, and is now managed by Michael
Unser. You can find back issues and subscription information at:

www.wavelet.org

There are many web sites devoted to wavelets. Some of them come and
go, some are more stable. The three sites listed here are meta-sites contain-
ing many links to other wavelet-related sites with tutorials, bibliographies,
software and more, and they have all been around for many years.

• Amara Graps maintains a wavelet site at:

www.amara.com/current/wavelet.html

• The Wavelet Net Care site at Washington University, Saint Louis, can
be found at at:

www.math.wustl.edu/wavelet

• Andreas Uhl is in charge of the wavelet site in Salzburg, Austria, at:

www.cosy.sbg.ac.at/~uhl/wav.html

I am not aware of any web site specifically for multiwavelets. The listed
sites all include multiwavelet material.

C.2 Wavelet Software

There are many wavelet toolboxes available. Most of them are for Matlab
or are stand-alone programs, but there are tools for Mathematica, MathCAD
and other systems as well.
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Free packages

• WaveLab (for Matlab) was developed at Stanford University; you can
find it at:

www-stat.stanford.edu/~wavelab

• LastWave (written in C) was developed by Emmanuel Bacry; you can
find it at:

www.cmap.polytechnique.fr/~bacry/LastWave/index.html

• The Rice Wavelet Toolbox (for Matlab, with some parts in C) was de-
veloped at Rice University; it is available at:

www-dsp.rice.edu/software/rwt.shtml

• LiftPack (written in C) was developed by Gabriel Fernández, Senthil
Periaswamy and Wim Sweldens; it is available at:

www.cs.dartmouth.edu/~sp/liftpack/lift.html

• WAILI (Wavelets with Integer Lifting) (written in C++) was developed
by Geert Uytterhoeven, Filip Van Wulpen, Maarten Jansen in Leuven,
Belgium; it is available at:

www.cs.kuleuven.ac.be/~wavelets

• Angela Kunoth wrote a program package to compute integrals of refin-
able functions. The programs are available at:

www.igpm.rwth-aachen.de/kunoth/prog/bw

The documentation is available at:

ftp://elc2.igpm.rwth-aachen.de/pub/kunoth/papers/inn.ps.Z

• The AWFD software package (Adaptivity, Wavelets and Finite Differ-
ences) (Matlab and C++) for wavelet solution of partial differential and
integral equations was developed at the University of Bonn; it is avail-
able at:

wissrech.iam.uni-bonn.de/research/projects/AWFD/index.html
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Commercial packages

• MathWorks it the maker of Matlab, so the MathWorks wavelet toolbox
is the “official” Matlab wavelet toolbox. Their home page is:

www.mathworks.com

• WavBox (for Matlab) was developed by Carl Taswell; you can find in-
formation at:

www.wavbox.com.

Early versions of this software were free. There may still be some copies
archived somewhere.

• Wavelet Packet Lab (stand-alone for Microsoft Windows machines) was
written by Victor Wickerhauser at Washington University, Saint Louis;
you can find information at:

www.ibuki-trading-post.com/dir_akp/akp_wavpac.html

Free earlier versions for NeXT machines can be found at:

www.math.wustl.edu/~victor/software/WPLab/index.html

None of these programs can handle multiwavelets, as far as I know.
A longer list of wavelet software can be found at:

www.amara.com/current/wavesoft.html

C.3 Multiwavelet Software

This list is very short:

• MWMP (the Multiwavelet Matlab Package) was written by Vasily Strela;
you can find it at:

www.mcs.drexel.edu/~vstrela/MWMP

• My own set of Matlab routines will be available via my personal home
page at:

http://www.math.iastate.edu/keinert
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and via the CRC Press download page at:

www.crcpress.com/e_products/downloads/default.asp

My routines include a new Matlab data type @mpoly which represents Lau-
rent matrix polynomials, plus routines for multiwavelet transforms, plotting
multiwavelets, determining their properties, performing TSTs, lifting steps,
and so on. Documentation is provided with the package.

This is a work in progress, so new features will probably be added periodi-
cally. Send bug reports or other suggestions to:

keinert@iastate.edu.

An errata listing for this book will be available at the same two locations.
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