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PREFACE

Digital signal processing techniques have become the method of choice in signal process-
ing as digital computers have increased in speed, convenience, and availability. As
microprocessors have become less expensive and more powerful, the number of DSP ap-
plications which have become commonly available has exploded. Thus, some DSP
microprocessors can now be considered commodity products. Perhaps the most visible
high volume DSP applications are the so called “multimedia” applications in digital
audio, speech processing, digital video, and digital communications. In many cases, these
applications contain embedded digital signal processors where a host CPU works in a
loosely coupled way with one or more DSPs to control the signal flow or DSP algorithm
behavior at a real-time rate. Unfortunately, the development of signal processing algo-
rithms for these specialized embedded DSPs is still difficult and often requires special-
ized training in a particular assembly language for the target DSP.

The tools for developing new DSP algorithms are slowly improving as the need to
design new DSP applications more quickly becomes important. The C language is prov-
ing itself to be a valuable programming tool for real-time computationally intensive soft-
ware tasks. C has high-level language capabilities (such as structures, arrays, and func-
tions) as well as low-level assembly language capabilities (such as bit manipulation,
direct hardware input/output, and macros) which makes C an ideal w-
bedded DSP, Most of the manufacturers of digital signal processing devices (such as
Texas Instruments, AT&T, Motorola, and Analog Devices) provide C compilers, simula-
tors, and emulators for their parts. These C compilers offer standard C language with ex-
tensions for DSP to allow for very efficient code to be generated. For example, an inline
assembly language capability is usually provided in order to optimize the performance of
time critical parts of an application. Because the majority of the code is C, an application
can be transferred to another processor much more easily than an all assembly language
program.

This book is constructed in such a way that it will be most useful to the engineer
who is familiar with DSP and the C language, but who is not necessarily an expert in
both. All of the example programs in this book have been tested using standard C compil-

vii



viii Preface

ers in the UNIX and MS-DOS programming environments. In addition, the examples
have been compiled utilizing the real-time programing tools of specific real-time embed-
ded DSP microprocessors (Analog Devices’ ADSP-21020 and ADSP-21062; Texas
Instrument’s TMS320C30 and TMS320C40; and AT&T’s DSP32C) and then tested with
real-time hardware using real world signals. All of the example programs presented in the
text are provided in source code form on the IBM PC floppy disk included with the book.

The text is divided into several sections. Chapters 1 and 2 cover the basic principles
of digital signal processing and C programming. Readers familiar with these topics may
wish to skip one or both chapters. Chapter 3 introduces the basic real-time DSP program-
ming techniques and typical programming environments which are used with DSP micro-
processors. Chapter 4 covers the basic real-time filtering techniques which are the corner-
stone of ope-dimensional real-time digital signal processing. Finally, several real-time
DSP applications are presented in Chapter 5, including speech compression, music signal
processing, radar signal processing, and adaptive signal processing techniques.

The floppy disk included with this text contains C language source code for all of
the DSP programs discussed in this book. The floppy disk has a high density format and
was written by MS-DOS. The appendix and the READ.ME files on the floppy disk pro-
vide more information about how to compile and run the C programs. These programs
have been tested using Borland’s TURBO C (version 3 and greater) as well as Microsoft C
(versions 6 and greater) for the IBM PC. Real-time DSP platforms using the Analog
Devices ADSP-21020 and the ADSP-21062, the Texas Instruments TMS320C30, and the
AT&T DSP32C have been used extensively to test the real-time performance of the
algorithms.
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CHAPTER 1
_—

DIGITAL SIGNAL PROCESSING
FUNDAMENTALS

Digital signal processing begins with a digital signal which appears to the computer as a
sequence of digital values. Figure 1.1 shows an example of a digital signal processing op-
eration or simple DSP system. There is an input sequence x(n), the operator 0f } and an

_output sequence, y(n). A complete digital signal processing system may consist of many

operations on the same sequence as well as operations on the result of operations.
Because digital sequences are processed, all operators in DSP are - discrete time operators
(as opposed to continuous time operators employed by analog systems). Discrete timeT)I)—
erators may be classified as time-varying or time-invariant and linear or nonlinear. Most
of the operators described in this text will be time-invariant with thewexcep-tioh of adap-
tive filters which are discussed in Section 1.7. Linearity will be discussed in Section 1.2
and several nonlinear operators will be introduced in Section 1.5.

(1) Extract parameters or features from the sequence.

(2) Produce a similar sequence with particular features enhanced or eliminated.
&) Restore the sequence to some earlier state. o -
(4) Encode or compress the sequence.

This chapter is divided into several sections. Section 1.1 deals with sequences of
numbers: where and how they originate, their spectra, and their relation to continuous
signals. Section 1.2 describes the common characteristics of linear time-invariant opera-
tors which are the most often used in DSP. Section 1.3 discusses the class of operators
called digital filters. Section 1.4 introduces the discrete Fourier transform (DFTs and
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DPS Operation

x(n) yn)
ox@2,x0),x0 ——l O {} . x2 n)00)

FIGURE 1.1 DSP operation.

FFTs). Section 1.5 describes the properties of commonly used nonlinear operators.

Section 1.6 covers basic probability theory and random processes and discusses their ap-.

plication to signal processing. Finally, Section 1.7 discusses the subject of adaptive digi-
tal filters.

1.1 SEQUENCES

In order for the digital computer to manipulate a signal, the signal must have been sam-
pled at some interval. Figure 1.2 shows an example of a continuous function of time
which has been sampled at intervals of T seconds. The resulting set of numbers is called a
sequence. If the continuous time function was x(z), then the samples would be x(nT) for n,
an integer extending over some finite range of values. It is common practice to normalize
the sample interval to 1 and drop it from the equations. The sequence then becomes x(n).
Care must be taken, however, when calculating power or energy from the sequences. The
sample interval, including units of time, must be reinserted at the appropriate points in the
power or energy calculations.

A sequence as a representation of a continuous time signal has the following impor-
tant characteristics:

X0

0 T 2T 3T 4T 5T 6T 7T 8T 9T
FIGURE 1.2 Sampling.

R %ﬂm

i
@
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£
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(1) The signal is sampled. It has finite value at only discrete points in time.

(2) The signal is truncated outside some finite length representing a finite time interval.

(3) The signal is quantized. It is limited to discrete steps in amplitude, where the step
size and, therefore, the accuracy (or signal fidelity) depends on how many steps are
available in the A/D converter and on the arithmetic precision (number of bits) of
the digital signal processor or computer.

In order to understand the nature of the results that DSP operators produce, these
characteristics must be taken into account. The effect of sampling will be considered in
Section 1.1.1. Truncation will be considered in the section on the discrete Fourier trans-
form (Section 1.4) and quantization will be discussed in Section 1.7 4.

1.1.1 The Sampling Function

The sampling function is the key to traveling between the continuous time and discrete
time worlds. It is called by various names: the Dirac delta function, the sifting function,
the singularity function, and the sampling function among them. It has the following
properties:

Property 1. J'?(t)a(t —T)dt = f(1). 1.1
Property 2. _[3(: _ydi=1. 1.2)

In the equations above, T can be any real number.

To see how this function can be thought of as the ideal sampling function, first con-
sider the realizable sampling function, A(#), illustrated in Figure 1.3. Its pulse width is one
unit of time and its amplitude is one unit of amplitude. It clearly exhibits Property 2 of
the sampling function. When A(#) is multiplied by the function to be sampled, however,
the A(f) sampling function chooses not a single instant in time but a range from —% to
+Y%. As a result, Property 1 of the sampling function is not met. Instead the following in-
tegral would result:

j T FOAG-T)dt = J.:jff(t)dt. (13)

This can be thought of as a kind of smearing of the sampling process across a band which
is related to the pulse width of A(f). A better approximation to the sampling function
would be a function A(z) with a narrower pulse width. As the pulse width is narrowed,
however, the amplitude must be increased. In the limit, the ideal sampling function must
have infinitely narrow pulse width so that it samples at a single instant in time, and infi-
nitely large amplitude so that the sampled signal still contains the same finite energy.

Figure 1.2 illustrates the sampling process at sample intervals of 7. The resulting
time waveform can be written
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Alt)
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FIGURE 1.3 Realizable sampling function.

oo

x,(6) = Z x(1)8(t — nT). (1.4)

N=—o0

The waveform that results from this process is impossible to visualize due to the infinite
amplitude and zero width of the ideal sampling function. It may be easier to picture a
somewhat less than ideal sampling function (one with very small width and very large
amplitude) multiplying the continuous time waveform.

It should be emphasized that xs(¢) is a continuous time waveform made from the su-
perposition of an infinite set of continuous time signals x(£)3(f — nT). It can also be writ-
ten

oo

X, (=Y x(nT)8(t ~nT) (1.5)

P
since the sampling function gives a nonzero multiplier only at the values ¢ = nT. In this
last equation, the sequence x(nT) makes its appearance. This is the set of numbers or sam-
ples on which almost all DSP is based.

1.1.2 Sampled Signal Spectra

Using Fourier transform theory, the frequency spectrum of the continuous time wave-
form x(r) can be written

X(f)= f:x(t)e‘”"f’ dt (1.6)

r

Sec. 1.1 Sequences 5

and the time waveform can be expressed in terms of its spectrum as

x(t) = r X(fe'*™df. (1.7

Since this is true for any continuous function of time, x(¢), it is also true for x,(0.

X, ()= J:x (e % dr. (1.8)

Replacing x(#) by the sampling representation

X,(NH= Ji[ z x(Dd(t ~ nT)]e_jz'mdt. (1.9

The order of the summation and integration can be interchanged and Property | of the
sampling function applied to give

X, (f)= Y x(nT)e /25T (1.10)

n=-—oco

This equation is the exact form of a Fourier series representation of X (f), a periodic
function of frequency having period I/T. The coefficients of the Fourier series are x(nT)
and they can be calculated from the following integral:

x(nT) =T | X, (f)e>™ 7 4f. (1.11)

-27

The last two equations are a Fourier series pair which allow calculation of either the time
signal or frequency spectrum in terms of the opposite member of the pair. Notice that the
use of the problematic signal x() is eliminated and the sequence x(nT) can be used instead.

1.1.3 Spectra of Continuous Time
and Discrete Time Signals

By evaluating Equation (1.7) at t = nT and setting the result equal to the right-hand side
of Equation (1.11) the following relationship between the two spectra is obtained:

X(nT) = jw X(f)e™Tgr =T J' T X (el g (1.12)

The right-hand side of Equation (1.7) can be expressed as the infinite sum of a set of inte-
grals with finite limits

oo 2m+t

D) =Y T[,7 X()e* ¥ . (1.13)

m==~oco
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By changing variables to A = f — m/T (substituting f = A + m/T and df = dA)

oo us .
x(nT) = 2 2: X(A+ —’;—)ejzmTejzn

m=—co 2T

nT
T dh. (1.14)

Mgving the summation inside the integral, recognizing that /2™ (for all integers m and
n) is eqlfal to 1, and equating everything inside the integral to the similar part of Equation
(1.11) give the following relation:

X,(NH)= Z X(f+%). (1.15)

m=—oo

Equation (1.15) shows that the sampled time frequency spectrum is equal to an infinite
sum of shifted replicas of the continuous time frequency spectrum overlaid on each
oth.er. The shift of the replicas is equal to the sample frequency, Y. It is interesting to ex-
amine the conditions under which the two spectra are equal to each other, at least for
a limited range of frequencies. In the case where there are no spectral co;nponents of
frequency greater than Y%y in the original continuous time waveform, the two spectra

IG(f)!

(a) Input spectrum

> f

IG(F)!

t

1

1 1 >
.

A
z
(b) Sampled spectrum
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are equal over the frequency range f = —Yy to f = +%7. Of course, the sampled time spec-
trum will repeat this same set of amplitudes periodically for all frequencies, while the
continuous time spectrum is identically zero for all frequencies outside the specified
range.

The Nyquist sampling criterion is based on the derivation just presented and asserts
that a continuous time waveform, when sampled at a frequency greater than twice the
maximum frequency component in its spectrum, can be reconstructed completely from
the sampled waveform. Conversely, if a continuous time waveform is sampled at a
frequency lower than twice its maximum frequency component a phenomenon called
aliasing occurs. If a continuous time signal is reconstructed from an aliased representa-
tion, distortions will be introduced into the result and the degree of distortion is depen-
dent on the degree of aliasing. Figure 1.4 shows the spectra of sampled signals without
aliasing and with aliasing. Figure 1.5 shows the reconstructed waveforms of an aliased

signal.

A

/>t
VIV

(a) Input continuous time signal

at)

(b) Sampled signal

gft)

-~ -

\ [ ’

\

—> |

1GR(F)!
1
1
1
;_ fl — FIGURE 1.4 Aliasing in the fre-
Is s quency domain. {a) Input spectrum.
2 (b} Sampled spectrum.

(c) Reconstructured spectrum

{c) Reconstructed spectrum.

\ ’/
+ L
\l ll
-~

(c) Reconstructed signal

!
\ L
6 § FIGURE 1.5 Aliasing in the time
N -

domain. (a) Input continuous time
signal. (b) Sampled signal.
{c) Reconstructed signal.



8 Digital Signal Processing Fundamentals Chap. 1

1.2 LINEAR TIME-INVARIANT OPERATORS

The most commonly used DSP operators are linear and time-invariant (or LTI). The lin-
earity property is stated as follows:

Given x(n), a finite sequence, and O{ }, an operator in n-space, let
y(n) = O{x(n)}. (1.16)
If
x(n) = ax;(n)+ bx,(n) (1.17)
where a and b are constant with respect to n, then, if O{ } is a linear operator
y(n) = aClx;(n)}+bO{x,(n)}. (1.18)
The time-invariant property means that if
¥(n) = O{x(n)}
then the shifted version gives the same response or
yin—m)=60{x(n—m)}. (1.19)
Another way to state this property is that if x(n) is periodic with period N such that
x(n+ N)=x(n)
then if G{ } is a time-invariant operator in n space
O{x(n+ N)}=0x(n)}.

Next, the LTI properties of the operator G{ } will be used to derive an expression and
methed of calculation for G{x(n)}. First, the impulse sequence can be used to represent
x(n) in a different manner,

x(my= Y x(mug(n—m). (1.20)
This is because
1, n=m
—m)= 1.21
o (n=m) {O, otherwise. ( )

The impulse sequence acts as a sampling or sifting function on the function x(r), using
the dummy variable m to sift through and find the single desired value x(n). Now this
somewhat devious representation of x(n) is substituted into the operator Equation (1.16):

Sec. 1.2 Linear Time-Invariant Operators 9

yin)=0 { x(m)uy(n — m)}. (1.22)

m=
Recalling that 6{ } operates only on functions of » and using the linearity property

oo

Ymy= Y x(m)O{ug(n—m). (123)

m=—oco

EYery operator has a set of outputs that are its response when an impulse sequence is ap-
plied to its input. The impulse response is represented by A(n) so that

h(n) = G{uy(n)). (1.24)

This impulse response is a sequence that has special significance for ©{ }, since it is the
sequence that occurs at the output of the block labeled O{ } in Figure 1.1 when an im-
pulse sequence is applied at the input. By time invariance it must be true that

h(n—m) = Ofuy(n—m)) (1.25)
so that
y(n) = 2 x(m)h(n — m). (1.26)

Equation (1.26) states that y(n) is equal to the convolution of x(n) with the impulse re-
sponse h(n). By substituting m = n — p into Equation (1.26) an equivalent form is derived

Xm= " h(p)x(n-p). (1.27)

p=—co

It must be remembered that m and p are dummy variables and are used for purposes of
the summation only. From the equations just derived it is clear that the impulse response
completely characterizes the operator G{ } and can be used to label the block representing
the operator as in Figure 1.6.

X (N) ——p h{n) —— -y (n)
FIGURE 1.6 Impulse response repre-
sentation of an operator.
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1.2.1 Causality

In the mathematical descriptions of sequences and operators thus far, it was assumed that
the impulse responses of operators may include values that occur before any applied
input stimulus. This is the most general form of the equations and has been suitable for
the development of the theory to this point. However, it is clear that no physical system
can produce an output in response to an input that has not yet been applied. Since DSP
operators and sequences have their basis in physical systems, it is more useful to consider
that subset of operators and sequences that can exist in the real world.

The first step in representing realizable sequences is to acknowledge that any se-
quence must have started at some time. Thus, it is assumed that any element of a se-
quence in a realizable system whose time index is less than zero has a value of zero.
Sequences which start at times later than this can still be represented, since an arbitrary
number of their beginning values can also be zero. However, the earliest true value of any
sequence must be at a value of n that is greater than or equal to zero. This attribute of se-
quences and operators is called causality, since it allows all attributes of the sequence to
be caused by some physical phenomenon. Clearly, a sequence that has already existed for
infinite time lacks a cause, as the term is generally defined.

Thus, the convolution relation for causal operators becomes:

W)=Y hm) x(n—m). (1.28)

m=0

This form follows naturally since the impulse response is a sequence and can have no
values for m less than zero.

1.2.2 Difference Equations

All discrete time, linear, causal, time-invariant operators can be described in theory by
the Nth order difference equation

N-1 N-1
Zamy(n—m)= prx(n—p) (1.29)
m=0 =0

where x(n) is the stimulus for the operator and y(n) is the results or output of the operator.
The equation remains completely general if all coefficients are normalized by the value
of a, giving

N-1 N-1
Y+ Y a,yn-my="Y b,x(n-p) (130)
m=1

=0

and the equivalent form

N1 N-1
Ym=Y bx(n=p)= Y ayyn—m) (1.31)
m=1

p=0

Sec. 1.2 Linear Time-Invariant Operators 11

or

y(n) = byx(n)+ byx(n—-1)+ byx(n-2)...
+by_x(n=-N+1)—ay(n—-1)—ayy(n—-2) (1.32)
—...~ay_1y(n—N+1).

To represent an operator properly may require a very high value of N, and for some com-
plex operators N may have to be infinite. In practice, the value of N is kept within limits
manageable by a computer; there are often approximations made of a particular operator
to make N an acceptable size.

In Equations (1.30) and (1.31) the terms y(n — m) and x(n — p) are shifted or de-
layed versions of the functions y(n) and x(n), respectively. For instance, Figure 1.7 shows
a sequence x(n) and x(n — 3), which is the same sequence delayed by three sample peri-
ods. Using this delaying property and Equation (1.32), a structure or flow graph can be
constructed for the general form of a discrete time LTI operator. This structure is shown
in Figure 1.8. Each of the boxes is a delay element with unity gain. The coefficients are
shown next to the legs of the flow graph to which they apply. The circles enclosing the
summation symbol (2) are adder elements.

1.2.3 The z-Transform Description of Linear Operators

There is a linear transform—called the z-transform—which is as useful to discrete time
analysis as the Laplace transform is to continuous time analysis. Its definition is

xm) =Y x(mz ™ (1.33)

n=0

where the symbol Z{ } stands for “z-transform of,” and the z in the equation is a complex
number. One of the most important properties of the z-transform is its relationship to time

x(n)
1 L.
0 1 2 3 4 5
x{(n-23)

S [ .

1 2 3 4 5 6 7 8

O

FIGURE 1.7 Shifting of a sequence.
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by
x(n) z z T > y(n)
VN
b, \ ! —a
D \ Ny | D
b, -a,
D D
b, -a,
D D

FIGURE 1.8 Fiow graph structure of linear operators.

delay in sequences. To show this property take a sequence, x(n), with a z-transform as
follows:

xm}=X@)=Y x(m)c™. (1.34)

n=0

A shifted version of this sequence has a z-transform:

Xix(n=p)}= Y x(n-p)z™. (1.35)

n=0

By letting m = n — p substitution gives:

Xlx(n=p)}="Y x(m)g P (1.36)

m=0

Sec. 1.2 Linear Time-Invariant Operators 13

=z* Zx(m)z"". 1.37)
m=0

But comparing the summation in this last equation to Equation (1.33) for the z-transform
of x(n), it can be seen that

Lfx(n~p)} =277 {x(n)} = 272 X(z). (1.38)

This property of the z-transform can be applied to the general equation for LTI operators
as follows:

p=1 q=0

z{y(n)+za,,y(n—p)} =77 z{z qu(n~q)}. (139)

Since the z-transform is a linear transform, it possesses the distributive and associative
properties. Equation (1.39) can be simplified as follows:

Zym1+ Y a,20(n=p)}= Y b, ix(n - p)). (1.40)
p=1 g=0

Using the shift property of the z-transform (Equation (1.38))

Y@+ Y 4,0 PY(@) =Y b X(2) (1.41)

p=1 9=0

Y(Z)’:l + Zal’z—p} = X(z)l:z qu_q:l. (1.42)
p=1 q=0

Finally, Equation (1.42) can be rearranged to give the transfer function in the z-transform
domain:

i b,z™?

H(zy=Y@ a0 . (1.43)
X(2) -
1+ Zapz
p=1

Using Equation (1.41), Figure 1.8 can be redrawn in the z-transform domain and this
structure is shown in Figure 1.9. The flow graphs are identical if it is understood that a
multiplication by z7! in the transform domain is equivalent to a delay of one sampling
time interval in the time domain.



14 Digital Signal Processing Fundamentals Chap. 1

FIGURE 1.9 Flow graph structure for the z-transform of an operator.

1.2.4 Frequency Domain Transfer Function of an Operator

Taking the Fourier transform of both sides of Equation (1.28) (which describes any LTI
causal operator) results in the following:

Fom =Y mF xn-m)). (1.44)
m=0
Using one of the properties of the Fourier transform

Flx(n—m)}=e ™ F(x(n)}. (1.45)

From Equation (1.45) it follows that

Y(f)= 3 hme 2 X(f), (1.46)

m=0
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or dividing both sides by X(f)

Y_(f_)_ = Zw ~j2nfm ' 147
X(f) =0h(m)e ’ (147
which is easily recognized as the Fourier transform of the series h(m). Rewriting this equation
(&)
——==H(f)=F{h . 1.48)
) (f)= Fla(m}} (

Figure 1.10 shows the time domain block diagram of Equation (1.48) and Figure 1.11
shows the Fourier transform (or frequency domain) block diagram and equation. The fre-
quency domain description of a linear operator is often used to describe the operator.
Most often it is shown as an amplitude and a phase angle plot as a function of the variable
f (sometimes normalized with respect to the sampling rate, 1/7).

1.2.5 Frequency Response
from the z-Transform Description

Recall the Fourier transform pair

X,(f)= zx(nT)e‘f“f"T (1.49)
and
X(nT) = j X (el g (1.50)
Linear Time Invariant
X(n) ———— Hm)  —— ()
_ % FIGURE 1.10 Time domain block dia-
nn) = mz=:0 Am) x(n - m) gram of LTI system.
Linear Time Invariant
X(f ) ———f H(f) ——» Y{f)

FIGURE 1.11 Frequency block dia-
Y(£) = H(f) X{(f) gram of LTI system.
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In order to simplify the notation, the value of T, the period of the sampling waveform, is
normalized to be equal to one.

Now compare Equation (1.49) to the equation for the z-transform of x(n) as fol-
lows:

X@)=Y x(mz™". (1.51)
n=0

Equations (1.49) and (1.51) are equal for sequences x(rn) which are causal (i.e., x(n) = 0
for all n < 0) if z is set as follows:

7=e/*¥, (1.52)

A plot of the locus of values for z in the complex plane described by Equation (1.52) is
shown in Figure 1.12. The plot is a circle of unit radius. Thus, the z-transform of a causal
sequence, x(n), when evaluated on the unit circle in the complex plane, is equivalent to
the frequency domain representation of the sequence. This is one of the properties of the
z-transform which make it very useful for discrete signal analysis.

B
A
Z=a +jB
2 e
1
Izt =1
[ i | | o
1 1 1 | v *
-3 -2 - 1 2 3
-1
B, N .

FIGURE 1.12 The unit circle in the zplane.
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Summarizing the last few paragraphs, the impulse response of an operator is simply
a sequence, h(m), and the Fourier transform of this sequence is the frequency response of
the operator. The z-transform of the sequence h(m), called H(z), can be evaluated on the
unit circle to yield the frequency domain representation of the sequence. This can be writ-
ten as follows:

H@)| _ jons = H(). (1.53)

1.3 DIGITAL FILTERS

The linear operators that have been presented and analyzed in the previous sections can
be thought of as digital filters. The concept of filtering is an analogy between the action
of a physical strainer or sifter and the action of a linear operator on sequences when the
operator is viewed in the frequency domain. Such a filter might allow certain frequency
components of the input to pass unchanged to the output while blocking other compo-
nents. Naturally, any such action will have its corresponding result in the time domain.
This view of linear operators opens a wide area of theoretical analysis and provides in-
creased understanding of the action of digital systems.

There are two broad classes of digital filters. Recall the difference equation for a
general operator:

Q-1 P-1
Y= bx(n-g)- Y a,y(n—p). (1.54)
g=0 1

p=

Notice that the infinite sums have been replaced with finite sums. This is necessary in
order that the filters can be physically realizable.

The first class of digital filters have a, equal to O for all p. The common name for
filters of this type is finite impulse response (FIR) filters, since their response to an im-
pulse dies away in a finite number of samples. These filters are also called moving aver-
age (or MA) filters, since the output is simply a weighted average of the input values.

-1
Y=Y bx(n-g). (1.55)

q=0

There is a window of these weights (bq) that takes exactly the Q most recent values of
x(n) and combines them to produce the output.

The second class of digital filters are infinite impulse response (IIR) filters. This
class includes both autoregressive (AR) filters and the most general form, autoregressive
moving average (ARMA) filters. In the AR case all bq forg=1to Q—1aresettoO.

P-1
Ym)=x(n)~ Y a,y(n~p) (1.56)

p=1
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For ARMA filters, the more general Equation (1.54) applies. In either type of IIR filter, a
single-impulse response at the input can continue to provide output of infinite duration
with a given set of coefficients. Stability can be a problem for IIR filters, since with
poorly chosen coefficients, the output can grow without bound for some inputs.

1.3.1 Finite Impulse Response (FIR) Filters

Restating the general equation for FIR filters

Q0-1
Ym =Y byxin-g). (1.57)

q=0

Comparing this equation with the convolution relation for linear operators

Y=Y hm)x(n—m),
m=0

one can see that the coefficients in an FIR filter are identical to the elements in the im-
pulse response sequence if this impulse response is finite in length.

b, =h(q) forg=0,1,2,3,...,0-1.

This means that if one is given the impulse response sequence for a linear operator with a
finite impulse response one can immediately write down the FIR filter coefficients.
However, as was mentioned at the start of this section, filter theory looks at linear opera-
tors primarily from the frequency domain point of view. Therefore, one is most often
given the desired frequency domain response and asked to determine the FIR filter coeffi-
cients.

There are a number of methods for determining the coefficients for FIR filters
given the frequency domain response. The two most popular FIR filter design methods
are listed and described briefly below.

1. Use of the DFT on the sampled frequency response. In this method the required
frequency response of the filter is sampled at a frequency interval of 1/T where T is the
time between samples in the DSP system. The inverse discrete Fourier transform (see
section 1.4) is then applied to this sampled response to produce the impulse response of
the filter. Best results are usually achieved if a smoothing window is applied to the fre-
quency response before the inverse DFT is performed. A simple method to obtain FIR fil-
ter coefficients based on the Kaiser window is described in section 4.1.2 in chapter 4.

2. Optimal mini-max approximation using linear programming techniques. There is
a well-known program written by Parks and McClellan (1973) that uses the REMEZ ex-
change algorithm to produce an optimal set of FIR filter coefficients, given the required
frequency response of the filter. The Parks-McClellan program is available on the IEEE
digital signal processing tape or as part of many of the filter design packages available for
personal computers. The program is also printed in several DSP texts (see Elliot 1987 or
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Rabiner and Gold 1975). The program REMEZ.C is a C language implementation of the
Parks-McClellan program and is included on the enclosed disk. An example of a filter de-
signed using the REMEZ program is shown at the end of section 4.1.2 in chapter 4.

The design of digital filters will not be considered in detail here. Interested readers
may wish to consult references listed at the end of this chapter giving complete descrip-
tions of all the popular techniques.

The frequency response of FIR filters can be investigated by using the transfer
function developed for a general linear operator:

Q-1
Z b,z

Y() _
X z P-1 M
@ 1+2apz_”
p=1

H(z)= (1.58)

Notice that the sums have been made finite to make the filter realizable. Since for FIR fil-
ters the a,are all equal to 0, the equation becomes:

-1

H@=TE - Y bz (1.59)

X@ &

The Fourier transform or frequency response of the transfer function is obtained by let-
ting z = e/2™, which gives
0-1 )
H(N)=H@ _ jog = Y, bye ™. (1.60)
q=0
This is a polynomial in powers of 7~} or a sum of products of the form
H@)=by+bz ™ +byz 2 + bz +...+ by 279D,

There is an important class of FIR filters for which this polynomial can be factored into a
product of sums from

M-1 N-1
H =[] +on +B [ [ +70)- (1.61)
m=0 n=0

This expression for the transfer function makes explicit the values of the variable z~! which
cause H(z) to become zero. These points are simply the roots of the quadratic equation

0=z2+ o,z +8,,

which in general provides complex conjugate zero pairs, and the values vy, which provide
single zeros.
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In many communication and image processing applications it is essential to have
filters whose transfer functions exhibit a phase characteristic that changes linearly with a
change in frequency. This characteristic is important because it is the phase transfer rela-
tionship that gives minimum distortion to a signal passing through the filter. A very use-
ful feature of FIR filters is that for a simple relationship of the coefficients, bq, the result-
ing filter is guaranteed to have a linear phase response. The derivation of the relationship
which provides a linear phase filter follows.

A linear phase relationship to frequency means that

H(f) = H(f)| P,
where o and B are constants. If the transfer function of a filter can be separated into a real
function of f multiplied by a phase factor e/1%+ Bl then this transfer function will exhibit
linear phase.
Taking the FIR filter transfer function:
H@)=by+bz +byz72 + by 4. + by_z@
and replacing z by /2% g give the frequency response
H(f)=by +be™¥ +bye 7PN 4 4 p, o2@-D]

Factoring out the factor e 72MQ-12 and letting { equal (Q — 1)/2 gives

H(f) = e /2% {boejzncf + by ENS g i2mC-D)f

+...+ bQ_Ze“jZ"(g_l)f + bQ_le_ﬂ"U}.

Combining the coefficients with complex conjugate phases and placing them together in
brackets

H(f) = e/ {[boeﬂ”; + bQ_le_jZ"U]
+ [ bye/2"GDf by e—j2n(C—l)f]
+ [b2 22 bQ_3e—jzn<c—2>f]

+..}

If each pair of coefficients inside the brackets is set equal as follows:

bo = bQ—l
bl = bQ_2
b, =bg_3, etc.

Each term in brackets becomes a cosine function and the linear phase relationship is
achieved. This is a common characteristic of FIR filter coefficients.
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1.3.2 Infinite Impulse Response (lIR) Filters

Repeating the general equation for IIR filters

Q-1 P-1
wn)= Zb,,x(n -9 —Z a,y(n—p).

q=0 p=l

The z-transform of the transfer function of an IIR filter is

o-1
Yo quz_q
Z g=0
Hi = =
@ X(2) -
1+ ) ay?
p=1

No simple relationship exists between the coefficients of the IIR filter and the im-
pulse response sequence such as that which exists in the FIR case. Also, obtaining linear
phase IIR filters is not a straightforward coefficient relationship as is the case for FIR fil-
ters. However, TIR filters have an important advantage over FIR structures: In general,
IIR filters require fewer coefficients to approximate a given filter frequency response
than do FIR filters. This means that results can be computed faster on a general purpose
computer or with less hardware in a special purpose design. In other words, IIR filters are
computationally efficient. The disadvantage of the recursive realization is that TIR filters
are much more difficult to design and implement. Stability, roundoff noise, and some-
times phase nonlinearity must be considered carefully in all but the most trivial IIR filter
designs.

The direct form IIR filter realization shown in Figure 1.9, though simple in appear-
ance, can have severe response sensitivity problems because of coefficient quantization,
especially as the order of the filter increases. To reduce these effects, the transfer function
is usually decomposed into second order sections and then realized as cascade sections.
The C language implementation given in section 4.1.3 uses single precision floating-point
numbers in order to avoid coefficient quantization effects associated with fixed-point im-
plementations that can cause instability and significant changes in the transfer function.

IIR digital filters can be designed in many ways, but by far the most common IIR
design method is the bilinear transform. This method relies on the existence of a known
s-domain transfer function (or Laplace transform) of the filter to be designed. The
s-domain filter coefficients are transformed into equivalent z-domain coefficients for use
in an [IR digital filter. This might seem like a problem, since s-domain transfer functions
are just as hard to determine as z-domain transfer functions. Fortunately, Laplace trans-
form methods and s-domain transfer functions were developed many years ago for de-
signing analog filters as well as for modeling mechanical and even biological systems.
Thus, many tables of s-domain filter coefficients are available for almost any type of fil-
ter function (see the references for a few examples). Also, computer programs are avail-
able to generate coefficients for many of the common filter types (see the books by Jong,
Anoutino, Stearns (1993), Embree (1991), or one of the many filter design packages
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available for personal computers). Because of the vast array of available filter tables, the
large number of filter types, and because the design and selection of a filter requires care-
ful examination of all the requirements (passband ripple, stopband attenuation as well as
phase response in some cases), the subject of s-domain IIR filter design will not be cov-
ered in this book. However, several IIR filter designs with exact z-domain coefficients
are given in the examples in section 4.1 and on the enclosed disk.

1.3.3 Examiples of Filter Responses

As an example of the frequency response of an FIR filter with very simple coefficients,
take the following moving average difference equation:

¥(n)=0.11x(n)+0.22 x(n—1)+0.34 x(n—2)
+022 x(n-3)+0.11 x(n—4).

One would suspect that this filter would be a lowpass type by inspection of the coefficients,
since a constant (DC) value at the input will produce that same value at the output. Also,
since all coefficients are positive, it will tend to average adjacent values of the signal.

FIR Filter Frequency Response
0 T Y T T T 7 T T T

-15+

Magnitude (dB)

i 1 '

0 005 0.1 0.15 02 025 0.3 0.35 04 0.45 05

Frequency (f/fs)

FIGURE 1.13 FIR low pass response.
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The response of this FIR filter is shown in Figure 1.13. It is indeed lowpass and the
nulls in the stop band are characteristic of discrete time filters in general.
As an example of the simplest IIR filter, take the following difference equation:

y(m) = x(n)+y(n—1).

Some contemplation of this filter’s response to some simple inputs (like constant values,
0, 1, and so on) will lead to the conclusion that it is an integrator. For zero input, the out-
put holds at a constant value forever. For any constant positive input greater than zero,
the output grows linearly with time. For any constant negative input, the output decreases
linearly with time. The frequency response of this filter is shown in Figure 1.14.

1.3.4 Filter Specifications

As mentioned previously, filters are generally specified by their performance in the fre-
quency domain, both amplitude and phase response as a function of frequency. Fig-
ure 1.15 shows a lowpass filter magnitude response characteristic. The filter gain has

IIR Filter Frequency Response
20 . r T r r T r .
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L 1

Frequency (f/fs)
FIGURE 1.14 IR integrator response.
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been normalized to be roughly 1.0 at low frequencies and the sampling rate is normalized
to unity. The figure illustrates the most important terms associated with filter specifica-
tions.

The region where the filter allows the input signal to pass to the output with litde or
no attenuation is called the passband. In a lowpass filter, the passband extends from fre-
quency f = 0 to the start of the transition band, marked as frequency fpm in Figure 145.
The transition band is that region where the filter smoothly changes from passing the sig-
nal to stopping the signal. The end of the transition band occurs at the §topbapd fre-
quency, fmp. The stopband is the range of frequencies over which tlfe filter is spec1ﬁec! to
attenuate the signal by a given factor. Typically, a filter will be specified by the following
parameters:

(1) Passband ripple—23 in the figure.
(2) Stopband attenuation—1/A.
(3) Transition start and stop frequencies— fpa_ng and fsmp.

(4) Cutoff frequency— fp ass 10€ frequency at which the filter gain is some given faf:-
tor Jower than the nominal passband gain. This may be —1 dB, —3 dB or other gain
value close to the passband gain.

Computer programs that calculate filter coefficients from frequency domain magni-
tude response parameters use the above list or some variation as the program input.

lIIllllllI'IlllllllllllII|IIllllllllllllllllllllll'
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FIGURE 1.15 Magnitude response of normalized lowpass filter.
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1.4 DISCRETE FOURIER TRANSFORMS

So far, the Fourier transform has been used several times to develop the characteristics of
sequences and linear operators. The Fourier transform of a causal sequence is:

Fixm)=X(f)= Y x(n)e™ 25" (1.62)
n=0

where the sample time period has been normalized to 1 (T = 1). If the sequence is of lim-
ited duration (as must be true to be of use in a computer) then

N-1
X(f) = Zx(n)e‘ﬂ"f" (1.63)
n=0

where the sampled time domain waveform is N samples long. The inverse Fourier trans-
form is

1/2 -
FXN=xm=[ | X(pe Ty (1.64)

since X(f) is periodic with period 1/T = 1, the integral can be taken over any full period.
Therefore,

x(n) = J'Ol X(f)e gy, (1.65)
1.4.1 Form

These representations for the Fourier transform are accurate but they have a major drawback
for digital applications—the frequency variable is continuous, not discrete. To overcome this
problem, both the time and frequency representations of the signal must be approximated.

To create a discrete Fourier transform (DFT) a sampled version of the frequency
waveform is used. This sampling in the frequency domain is equivalent to convolution in
the time domain with the following time waveform:

b= Y 8(t—rT).
This creates duplicates of the sampled time domain waveform that repeats with period T.
This T'is equal to the T used above in the time domain sequence. Next, by using the same
number of samples in one period of the repeating frequency domain waveform as in one pe-
riod of the time domain waveform, a DFT pair is obtained that is a good approximation to
the continuous variable Fourier transform pair. The forward discrete Fourier transform is

N-1

X(k) = Zx(n)e‘f""’" N (1.66)
n=0
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and the inverse discrete Fourier transform is

N-1
1 —j2mkni N (1.67)
x(n)=— E X(kye™ .
NS

For a complete development of the DFT by both graphical and theoretical means, see the
text by Brigham (chapter 6).

1.4.2 Properties

This section describes some of the properties of the DFT. The corresponding paragraph
numbers in the book The Fast Fourier Transform by Brigham (1974) are indicated. Due to
the sampling theorem it is clear that no frequency higher than Y7 can be represented by
X(k). However, the values of k extend to N—1, which corresponds to a frequency nearly
equal to the sampling frequency Y. This means that for a real sequence, the values of k
from N/2 to N~1 are aliased and, in fact, the amplitudes of these values of X(k) are

1 X(k)|=| X(N-k)|, fork=Nf2to N~-1. (1.68)

This corresponds to Properties 8-11 and 8-14 in Brigham. . .
The DFT is a linear transform as is the z-transform so that the following relation-

ships hold:
If

x(n) = o a(n)+ B b(n),
where o, and [ are constants, then

X(k) = o0 A(k)+ B B(k),

where A(k) and B(k) are the DFTs of the time functions a(n) and b(n), respectively. This
corresponds to Property 8-1 in Brigham.
The DFT also displays a similar attribate under time shifting as the z-transform. If

X(k) is the DFT of x(n) then

N-1
DFT{x(n—p)}= Y x(n—pe />N
n=0

Now define a new variable m = r — p so that n = m + p. This gives

m=N-l-p )
DFT(x(n—p)}= Y x(m)e ™mNe /2mo,
m==p
which is equivalent to the following:
DFT{x(n— p)} = e /"™ X (k). (1.69)
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This corresponds to Property 8-5 in Brigham. Remember that for the DFT it is assumed
that the sequence x(mm) goes on forever repeating its values based on the period n = 0 to
N — 1. So the meaning of the negative time arguments is simply that

x(=p)=x(N-p), forp=0toN—1.
1.4.3 Power Spectrum

The DFT is often used as an analysis tool for determining the spectra of input sequences.
Most often the amplitude of a particular frequency component in the input signal is de-
sired. The DFT can be broken into amplitude and phase components as follows:

X(f) = Xieat () + J Xigpag (f) (1.70)

X(f) =1 X(f)le*D (1.71)
where | X(f)] = /X2, + Xiag

and 6(f) = tan'l[ﬁ}
Xreal
The power spectrum of the signal can be determined using the signal spectrum times its
conjugate as follows:
XR)X*(k) = | X = Xy + Xy 1.72)
There are some problems with using the DFT as a spectrum analysis tool, however. The
problem of interest here concerns the assumption made in deriving the DFT that the se-
quence was a single period of a periodically repeating waveform. For almost all se-
quences there will be a discontinuity in the time waveform at the boundaries between
these pseudo periods. This discontinuity will result in very high-frequency components in
the resulting waveform. Since these components can be much higher than the sampling
theorem limit of Y% (or half the sampling frequency) they may be aliased into the middle
of the spectrum developed by the DFT.

The technique used to overcome this difficulty is called windowing. The problem to
be overcome is the possible discontinuity at the edges of each period of the waveform.
Since for a general purpose DFT algorithm there is no way to know the degree of discon-
tinuity at the boundaries, the windowing technique simply reduces the sequence ampli-
tude at the boundaries. It does this in a gradual and smooth manner so that no new dis-
continuities are produced, and the result is a substantial reduction in the aliased frequency
components. This improvement does not come without a cost. Because the window is
modifying the sequence before a DFT is performed, some reduction in the fidelity of the
spectral representation must be expected. The result is somewhat reduced resolution of
closely spaced frequency components. The best windows achieve the maximum reduc-
tion of spurious (or aliased) signals with the minimum degradation of spectral resolution.

There are a variety of windows, but they all work essentially the same way:
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Attenuate the sequence elements near the boundaries (nearn =0 and n = N — 1) and com-
pensate by increasing the values that are far away from the boundaries. Each window ha.s
its own individual transition from the center region to the outer elements. For a compari-
son of window performance see the references listed at the end of this chapter. (For ex-
ample, see Harris (1983)).

1.4.4 Averaged Periodograms

Because signals are always associated with noise—either due to some physical attribute of
the signal generator or external noise picked up by the signal source—the DFT of a single
sequence from a continuous time process is often not a good indication of the true spec-
trum of the signal. The solution to this dilemma is to take multiple DFTs from successive
sequences from the same signal source and take the time average of the power spectrum.
If a new DFT is taken each NT seconds and successive DFTs are labeled with superscripts:

M-1
Power Spectrum = 3" [ Xry)” + (Xingg)?| (1.73)
i=0

Clearly, the spectrum of the signal cannot be allowed to change significantly during the
interval =0to r=M (NT).

1.4.5 The Fast Fourier Transform (FFT)

The fast Fourier transform (or FFT) is a very efficient algorithm for computing the DFT
of a sequence. It takes advantage of the fact that many computations are repeated in the
DFT due to the periodic nature of the discrete Fourier kernel: e 721/ N_ The form of the
DFT is

Z

-1
X(k)= Y x(n)e 72N, (1.74)

X
Il
<

By letting Wk = ¢92mn /N Equation (1.74) becomes

N-1
X(k)= Y x(mWw"™. (1.75)
n=0
Now, W+ aV)(k + V) = Wk for all g, r that are integers due to the periodicity of the

Fourier kernel.
Next break the DFT into two parts as follows:

Ni2-1 NR2-1
X(k) = zx(zn)w,?,"" + zx(2n+1)w,§,2"“)", (1.76)
n=0 a=0

where the subscript N on the Fourier kernel represents the size of the sequence.
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By representing the even elements of the sequence x(n) by x,, and the odd elements
by x4, the equation can be rewritten

N2-1 Ni2—-1
XY= Y xo Wity + Wi, 3 x, (W (1.77)
n=0 n=0

Now there are two expressions in the form of DFTs so Equation (1.77) can be simplified
as follows:

X(k) = X, (n)+ Wi, X, (n). (1.78)

Notice that only DFTs of N2 points need be calculated to find the value of X(k). Since
the index k must go to N — 1, however, the periodic property of the even and odd DFTs is
used. In other words,

X\ ()=X,, (k=) for T<k<N-1. (1.79)

The process of dividing the resulting DFTs into even and odd halves can be repeated until
one is left with only two point DFTs to evaluate

AGK) = A(0) + A(1)e /22 for all k
=A(0) + A1) for k even
=A(0)- A1) for k odd.

Therefore, for 2 point DFTs no multiplication is required, only additions and subtrac-
tions. To compute the complete DFT still requires multiplication of the individual 2-point
DFTs by appropriate factors of W ranging from W0 to W/2-1, Figure 1.16 shows a flow
graph of a complete 32-point FFT. The savings in computation due to the FFT algorithm
is as follows.

For the original DFT, N complex multiplications are required for each of N values
of k. Also, N — 1 additions are required for each k.

In an FFT each function of the form

A0+ WEALD)

(called a butterfly due to its flow graph shape) requires one multiplication and two addi-
tions. From the flow graph in Figure 1.16 the number of butterflies is

Number of butterflies = -12!10g2 (N).

This is because there are N/2 rows of butterflies (since each butterfly has two inputs) and
there are log,(N) columns of butterflies.

Table 1.1 gives a listing of additions and multiplications for various sizes of FFTs
and DFTs. The dramatic savings in time for larger DFTs provided in the FFT has made
this method of spectral analysis practical in many cases where a straight DFT computa-
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FIGURE 1.16 32-Point, radix 2, in-place FFT. (From Rabiner and Gold, 1975, p. 380.)

tion would be much too time consuming. Also, the FFT can be used for performing oper-
ations in the frequency domain that would require much more time consuming computa-
tions in the time domain.

1.4.6 An Example of the FFT

In order to help the reader gain more understanding of spectrum analysis with the FFT, a
simple example is presented here. An input signal to a 16-point FFT processor is as fol-
lows:

x(n) = cos|27 (4n/16))

The argument of the cosine has been written in an unusual way to emphasize the fre-
quency of the waveform when processed by a 16-point FFT. The amplitude of this signal
is 1.0 and it is clearly a real signal, the imaginary component having zero amplitude.
Figure 1.17 shows the 16 samples that comprise x(0) to x(15).
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TABLE 1.1 Comparison of Number of Butterfly Operations in the DFT and FFT,

(each operation is one complex multiply/accumulate calculation).

Transform Length DFT Operations FFT Operations
w (%) NLOG, (V)
8 64 24
16 256 64
32 1024 160
64 4096 384
128 16384 896
256 65536 1024
512 262144 4608
1024 1048576 10240
2048 4194304 22528

With this input a 16-point FFT will produce a very simple output. This output is
shown in Figure 1.18. It is a spike at k = 4 of amplitude 0.5 and a spike at k = 12 of am-
plitude —0.5. The spike nature in the FFT output in this example occurs because for a co-

sine waveform of arbitrary frequency the Fourier transform is
e 2
X(f) = j cos(2mfyr)e ¥ dr.

Representing the cosine by exponentials

X(f)= -;—‘[mef“‘ff"f dt - % _[ g anto s gy,

—o0

Cos (2n4 % )
A

NWANYANYAY

V.V VLV

s 2 4

FIGURE 1.17 Input to 16 point FFT.

> N
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FIGURE 1.18 Output of 16-point FFT.

It can be shown that the integrand in the two integrals above integrate.s to O unless the ar-
gument of the exponential is 0. If the argument of the exponential is zero, tl}e res'ult is
two infinite spikes, one at f'= f, and the other at f = —f;. These are delta functions in the
frequency domain. . ) .

Based on these results, and remembering that the impulse sequence is th‘e digital
analog of the delta function, the results for the FFT seem more plausible. It is still left to
explain why k = 12 should be equivalent to f = —f,,. Referring back to the developmept 9f
the DFT, it was necessary at one point for the frequency spectrum.t(.) become periodic
with period f;. Also, in the DFT only positive indices are used. Combining these two facts
one can obtain the results shown in Figure 1.18.

1.5 NONLINEAR OPERATORS

Most of this book is devoted to linear operators and linear-signal processing becaqse
these are the most commonly used techniques in DSP. However, there are s.everal nonlin-
ear operators that are very useful in one-dimensional' DSP.’ This secn(?n introduces the
simple class of nonlinear operators that compress or clip the input to derive the output se-
quence. o o '

There is often a need to reduce the number of significant bits in a qpantlzed se-
quence. This is sometimes done by truncation of the least signiﬁcant bits: This process is
advantageous because it is linear: The quantization error is {ncr?ased uniformly over the
entire range of values of the sequence. There are many apphcagons, however, where the
need for accuracy in quantization is considerably less at' high~s1gnal values than at lov,/-
signal values. This is true in telephone voice communications where the human ear’s
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ability to differentiate between amplitudes of sound waves decreases with the amplitude
of the sound. In these cases, a nonlinear function is applied to the signal and the resulting
output range of values is quantized uniformly with the available bits.

This process is illustrated in Figure 1.19. First, the input signal is shown in Figure
1.19(a). The accuracy is 12 bits and the range is 0 to 4.095 volts, so each quantization
level represents 1 mV. It is necessary because of some system consideration (such as
transmission bandwidth) to reduce the number bits in each word to 8. Figure 1.19(b)
shows that the resulting quantization levels are 16 times as coarse. Figure 1.19(c) shows
the result of applying a linear-logarithmic compression to the input signal. In this type of
compression the low-level signals (out to some specified value) are unchanged from the
input values. Beginning at a selected level, say f, = a, a logarithmic function is applied.
The form of the function might be

Jow = a+Alog,,(1+ f,, —a)

so that at £, = a the output also equals 2 and A is chosen to place the maximum value of
Joue @t the desired point.

A simpler version of the same process is shown in Figure 1.20. Instead of applying
a logarithmic function from the point f = a onward, the output values for [ aare all the
same. This is an example of clipping. A region of interest is defined and any values out-
side the region are given a constant output.

1.5.1 p-Law and A-Law Compression

There are two other compression laws worth listing because of their use in telephony—
the y-law and A-law conversions. The p-law conversion is defined as follows:

In(L+ pifD (1.80

Jow = s fp) D,

where sgn() is a function that takes the sign of its argument, and p is the compression pa-
rameter (255 for North American telephone transmission). The input value f;y must be
normalized to lie between —1 and +1. The A-law conversion equations are as follows:

_ - __ Alfl
f;)ut - sgn(fm) 1+ ln(A)

for |f;,| between 0 and 1/4 and (w81
1+1In(Alf, D :
-ﬁ)ut = sgn(ﬁn)rln/zlle;

for |f,,} between 1/4 and 1.

In these equations, A is the compression parameter (87.6 for European telephone trans-
mission).

An extreme version of clipping is used in some applications of image processing to
produce binary pictures. In this technique a threshold is chosen (usually based on a his-
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» Input FIGURE 1.19 ({a) Linear 12-bit ADC.
0.128 4.096 {b} Linear 8-bit ADC. {c) Nonlinear
conversion.

togram of the picture elements) and any image element with a value higher than threshold
is set to 1 and any element with a value lower than threshold is set to zero. In this way the
significant bits are reduced to only one. Pictures properly thresholded can produce excel-
lent outlines of the most interesting objects in the image, which simplifies further pro-
cessing considerably.
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FIGURE 1.20 Clipping to 8 bits.

1.6 PROBABILITY AND RANDOM PROCESSES

The signals of interest in most signal-processing problems are embedded in an environ-
ment of noise and interference. The noise may be due to spurious signals picked up dur-
ing transmission (interference), or due to the noise characteristics of the electronics that
receives the signal or a number of other sources. To deal effectively with noise in a sig-
nal, some model of the noise or of the signal plus noise must be used. Most often a proba-
bilistic model is used, since the noise is, by nature, unpredictable. This section introduces
the concepts of probability and randomness that are basic to digital signal processing and
gives some examples of the way a composite signal of interest plus noise is modeled.

1.6.1 Basic Probability

Probability begins by defining the probability of an event labeled A as P(A). Event A can
be the result of a coin toss, the outcome of a horse race, or any other result of an activity
that is not completely predictable. There are three attributes of this probability P(A):

(1) P(A) > = 0. This simply means that any result will either have a positive chance of
occurrence or no chance of occurrence.

(2) P (All possible outcomes) = 1. This indicates that some result among those possible
is bound to occur, a probability of 1 being certainty.

(3) For {A;}, where (A; " A)) =0, P(UA) = £; P(A). For a set of events, {A;}, where
the events are mutually disjoint (no two can occur as the result of a single trial of
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the activity), the probability of any one of the events occurring is equal to the sum
of their individual probabilities.

With probability defined in this way, the discussion can be extended to joint and
conditional probabilities. Joint probability is defined as the probability of occurrence of 3
specific set of two or more events as the result of a single trial of an activity. For instance,
the probability that horse A will finish third and horse B will finish first in a particular
horse race is a joint probability. This is written:

P(AN B) = P(A and B) = P(AB). (1.82)

Conditional probability is defined as the probability of occurrence of an event A given
that B has occurred. The probability assigned to event A is conditioned by some knowl-
edge of event B. This is written

P(A given B) = P(A|B). (1.83)

If this conditional probability, P(A]B), and the probability of B are both known, the proba-
bility of both of these events occurring (joint probability) is

P(AB) = P(A|B)P(B). (1.84)

So the conditional probability is multiplied by the probability of the condition (event B)
to get the joint probability. Another way to write this equation is

P(A|B) = P}%’?

This is another way to define conditional probability once joint probability is understood.

(1.85)

1.6.2 Random Variables

‘In signal processing, the probability of a signal taking on a certain value or lying in a cer-
tain range of values is often desired. The signal in this case can be thought of as a random
variable (an element whose set of possible values is the set of outcomes of the activity).
For instance, for the random variable X, the following set of events, which could occur,
may exist:

Event A X takes on the value of 5 (X = 5)

EventBX =19
Event CX=1.66
etc.

This is a useful set of events for discrete variables that can only take on certain specified
values. A more practical set of events for continuous variables associates each event with
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the variable lying within a range of values. A cumulative distribution function (or CDF)
for a random variable can be defined as follows:

F(x)=P(X<x). (1.86)

This cumulative distribution, function, then, is a monotonically increasing function of the
independent variable x and is valid only for the particular random variable, X. Figure 1.21
shows an example of a distribution function for a random variable. If F(x) is differenti-
ated with respect to x the probability density function (or PDF) for X is obtained, repre-
sented as follows:

dF(x)
=27 1.87
p(x) p (1.87)
Integrating p(x) gives the distribution function back again as follows:
F(x) = J' P, (1.88)

Since F(x) is always monotonically increasing, p(x) must be always positive or zero.
Figure 1.22 shows the density function for the distribution of Figure 1.21. The utility of
these functions can be illustrated by determining the probability that the random variable
X lies between a and b. By using probability Property 3 from above

P(X<b)=Pla<X<b)+P(X<a) (1.89)
This is true because the two conditions on the right-hand side are independent (mutually

exclusive) and X must meet one or the other if it meets the condition on the left-hand
side. This equation can be expressed using the definition of the distribution:

Pla< X <b)=F(b)- F(a)

J-b (o)dx (1.90)

In this way, knowing the distribution or the density function allows the calculation of the
probability that X lies within any given range.

1.6.3 Mean, Variance, and Gaussian Random Variables

There is an operator in random variable theory called the expectation operator usually
written E[x]. This expression is pronounced “the expected value of x.”” The expectation
operator extracts from a random variable the value that the variable is most likely to take
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FIGURE 1.21 An example of cumulative distribution function (CDF).
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FIGURE 1.22 Density function.
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on. The expected value is sometimes called the mean, average, or first moment of the
variable and is calculated from the density function as follows:

Hx1= [ xp(odx. (1.91)

A typical density function for a random variable is shown in Figure 1.23. The most likely
value of variable x is also indicated in the figure. The expected value can be thought of as
a “center of gravity” or first moment of the random variable x.

The variance of a random variable is defined as

62 = Var{x} = E[(x - E[x])zl, (1.92)

where ¢ is the root mean square value of the variable’s difference from the mean. The
variance is sometimes called the mean square value of x.

By extending the use of the expectation operator to joint probability densities, a
variable Y can be a function of two random variables, s and # such that

Y=6{s,1}.
Then the expected value of Y will be
EY]= Jm j°°0[s, t} p(s, t)dsdt (1.93)

where the joint probability density of s and ¢ (p(s,?)), is required in the equation. The cor-
relation of two random variables is defined to be the expected value of their product

Elst) = j - _[ st pls, D)dsd. (1.94)
px)
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FIGURE 1.23 Continuous PDF showing E[x].
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This definition will be used in the development of autocorrelation in section 1.6.5,

There is a set of random variables called Gaussian random variables whose density
functions have special characteristics that make them particularly easy to analyze. Also,
many physical processes give rise to approximately this sort of density function, A
Gaussian density function has the following form:

Y]
plx)= —J;?-exP[~ (sztl)] (1.95)

where W is the mean value of x and 62 is the variance,

1.6.4 Quantization of Sequences

Quantization is to the amplitude domain of a continuous analog signal as sampling is to
the time domain. It is the step that allows a continuous amplitude signal to be represented
in the discrete amplitude increments available in a digital computer. To analyze the
process of quantization, it is useful to diagram a system as shown in Figure 1.24. The il-
lustration shows a continuous amplitude input signal, £, which is sampled and quantized,
then reconstructed in the continuous amplitude domain. The output signal is f. By com-
paring the input and output of this process the effect of quantization can be illustrated.

The action of the box marked quantization in Figure 1.24 is illustrated in Figure
1.25. A set of decision levels is applied to each input signal, and the two levels which
bracket the signal above and below are determined. A digital code is assigned to the re-
gion between each levels. In Figure 1.25, the digital code consists of 6 bits and runs from
binary O to binary 63. The application of these decision levels and the assignment of a
code to the input signal sample is the complete process of quantization. Reconstruction of
the signal is accomplished by assigning a reconstruction level to each digital code.

The task that remains is to assign actual values to the decision levels and the recon-
struction levels. Referring to Figure 1.25, the minimum value of the input signal is la-
beled a, and the maximum value is labeled ay;. If the signal f has a probability density of
p(f), then the mean squared error due to the quantization and reconstruction process is

~y
\
~yY

FIGURE 1.24 Quantization and reconstruction of a signal.
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FIGURE 1.25 Quantization operation showing decision and reconstruction levels.

e={r-P}=[" - e,

and if the signal range is broken up into the segments between decision levels dj and dj”,
then

=g
e=E{(/-PP}= 3 [ (- pindr.
j=0"%

Numerical solutions can be determined that minimize € for several common probability
densities. The most common assumption is a uniform density (p(f) equals 1/N for all val-
ues of f, where N is the number of decision intervals). In this case, the decision levels are
uniformly spaced throughout the interval and the reconstruction levels are centered tze—
tween decision levels. This method of quantization is almost universal in commercial
analog-to-digital converters. For this case the error in the analog-to-digital convene_r o.ut—
put is uniformly distributed from —Y, of the least significant bit to +!% of the least signifi-
cant bit. If it is assumed that the value of the least significant bit is unity, then the mean
squared error due to this uniform quantization is given by:

+3 . oa +3 1
vl = [ Jr -7 o= [ P =
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since p(f) = 1 from - to +Y%. This mean squared error gives the equivalent variance, or
noise power, added to the original continuous analog samples as a result of the uniform
quantization. If it is further assumed that the quantization error can be modeled as a sta-
tionary, uncorrelated white noise process (which is a good approximation when the number
of quantization levels is greater than 16), then a maximum signal-to-noise ratio (SNR)
can be defined for a quantization process of B bits (2B quantization levels) as follows:

SNR = 10log;o(V? / var{e}) = 101og)o (12V?),
10 0

where V2 is the total signal power. For example, if a sinusoid is sampled with a peak am-
plitude of 281, then V2 = 228/8 giving the signal to noise ratio for a full scale sinusoid as

SNR =101log,,((1.5)(2*%)) = 6.02B+1.76.

This value of SNR is often referred to as the theoretical signal-to-noise ratio for a B bit
analog-to-digital converter. Because the analog circuits in a practical analog-to-digital
converter always add some additional noise, the SNR of a real-world converter is always
less than this value.

1.6.5 Random Processes, Autocorrelation,
and Spectral Density

A random process is a function composed of random variables. An example is the ran-
dom process f(#). For each value of ¢, the process f(#) can be considered a random vari-
able. For ¢ = a there is a random variable f(a) that has a probability density, an expected
value (or mean), and a variance as defined in section 1.6.3. In a two-dimensional image,
the function would be f(x,y), where x and y are spatial variables. A two-dimensional ran-
dom process is usually called a random field. Each f(a,b) is a random variable.

One of the important aspects of a random process is the way in which the random
variables at different points in the process are related to each other. The concept of joint
probability is extended to distribution and density functions. A joint probability distribu-
tion is defined as

F(s,t)= P(S <5, T <t) (where S and T are some constants),

and the corresponding density function is defined as

*F(s, 1)
)= —. 1.96)
R ¢
The integral relationship between distribution and density in this case is
$ t
Fis,1)= J' j (e, B)do dB. 1.97)

In section 1.6.3 it was shown that the correlation of two random variables is the expected
value of their product. The autocorrelation of a random process is the expected value of
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the products of the random variables which make up the process. The symbol for autocor-
relation is Rﬁ« (t;. t,) for the function f(r) and the definition is

Ry(t). 1) = E[ft))F ()] (1.98)
=J:E|3pf(°" Bi 1y, 1 )do d, (1.99)

where ps(ct, B; ¢, ,) is the joint probability density fit;) and f{ty). By including o and
in the parentheses the dependence of pson these variables is made explicit.

In the general case, the autocorrelation can have different values for each value of
t, and t,. However, there is an important special class of random processes called station-
ary processes for which the form of the autocorrelation is somewhat simpler. In station-
ary random processes, the autocorrelation is only a function of the difference between the
two time variables. For stationary processes

Ry(t, - 1) = Rz(&) = E{fe - ©) f(D] (1.100)

In section 1.6.6 the continuous variable theory presented here is extended to discrete vari-
ables and the concept of modeling real world signals is introduced.

1.6.6 Modeling Real-World Signals with AR Processes

By its nature, a noise process cannot be specified as a function of time in the way a deter-
ministic signal can. Usually a noise process can be described with a probability function
and the first and second moments of the process. Although this is only a partial character-
ization, a considerable amount of analysis can be performed using moment parameters
alone. The first moment of a process is simply its average or mean value. In this section,
all processes will have zero mean, simplifying the algebra and derivations but providing
results for the most common set of processes.
The second moment is the autocorrelation of the process

r(n,n—k)= Elu(nyX(n—-k)},  fork=0,tL£2,..

The processes considered here are stationary to second order. This means that the first
and second order statistics do not change with time. This allows the autocorrelation to be
represented by

r(n, n—k) = r(k), fork=0,+1,1£2,...

since it is a function only of the time difference between samples and not the time vari-
able itself. In any process, an important member of the set of autocorrelation values is
r(0), which is

r(0) = E{u(ny(n)} = Effu(mi }, (1.101)
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which is the mean square value of the process. For a zero mean process this is equal to
the variance of the signal

r(0) = var{u}. (1.102)

The process can be represented by a vector u(n) where

u(n)
u(n—-1)
u(n)={u(n-2) (1.103)

u(n~-M+1)

Then the autocorrelation can be represented in matrix form

R= E{u(n)u” (n)} (1.104)

) r(1) r(2)... r(m-1) |
r(=1) r(0) r(1)... :
r(-2) NG )) r(0)... :
: : : r-1)
: : : r(0)
| r(-M+1) r(-M~+2) ... ) |

The second moment of a noise process is important because it is directly related to
the power spectrum of the process. The relationship is

M-1

SU)= Y rkye i, (1.105)

k=—M+1

which is the discrete Fourier transform (DFT) of the autocorrelation of the process (r(k)).
Thus, the autocorrelation is the time domain description of the second order statistics, and
the power spectral density, S(f), is the frequency domain representation. This power
spectral density can be modified by discrete time filters.

Discrete time filters may be classified as autoregressive (AR), moving average
(MA), or a combination of the mwo (ARMA). Examples of these filter structures and the
z-transforms of each of their impulse responses are shown in Figure 1.26. It is theoreti-
cally possible to create any arbitrary output stochastic process from an input white noise
Gaussian process using a filter of sufficiently high (possibly infinite) order.

Referring again to the three filter structures in Figure 1.26, it is possible to create
any arbitrary transfer function H(z) with any one of the three structures. However, the or-
ders of the realizations will be very different for one structure as compared to another.
For instance, an infinite order MA filter may be required to duplicate an M™ order AR
filter.

One of the most basic theorems of adaptive and optimal filter theory is the Wold
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decomposition. This theorem states that any real-world process can be decomposed into a
deterministic component (such as a sum of sine waves at specified amplitudes, phases,
and frequencies) and a noise process. In addition, the theorem states that the noise
process can be modeled as the output of a linear filter excited at its input by a white noise
signal.

\DAPTIVE FILTERS AND SYSTEMS

The problem of determining the optimum linear filter was solved by Norbert Wiener and
others. The solution is referred to as the Wiener filter and is discussed in section 1.7.1.
Adaptive filters and adaptive systems attempt to find an optimum set of filter parameters
(often by approximating the Wiener optimum filter) based on the time varying input and
output signals. In this section, adaptive filters and their application in closed loop adap-
tive systems are discussed briefly. Closed-loop adaptive systems are distinguished from
open-loop systems by the fact that in a closed-loop system the adaptive processor is con-
trolled based on information obtained from the input signal and the output signal of the
processor. Figure 1.27 illustrates a basic adaptive system consisting of a processor that is
controlled by an adaptive algorithm, which is in turn controlled by a performance calcula-
tion algorithm that has direct knowledge of the input and output signals.

Closed-loop adaptive systems have the advantage that the performance calculation
algorithm can continuously monitor the input signal (d) and the output signal (y) and de-
termine if the performance of the system is within acceptable limits. However, because
several feedback loops may exist in this adaptive structure, the automatic optimization al-
gorithm may be difficult to design, the system may become unstable or may result in
nonunique and/or nonoptimum solutions. In other situations, the adaptation process may
not converge and lead to a system with grossly poor performance. In spite of these possi-
ble drawbacks, closed-loop adaptive systems are widely used in communications, digital
storage systems, radar, sonar, and biomedical systems.

The general adaptive system shown in Figure 1.27(a) can be applied in several
ways. The most common application is prediction, where the desired signal (d) is the ap-
plication provided input signal and a delayed version of the input signal is provided to the
input of the adaptive processor (x) as shown in Figure 1.27(b). The adaptive processor
miust then try to predict the current input signal in order to reduce the error signal (€) to-
ward a mean squared value of zero. Prediction is often used in signal encoding (for exam-
ple, speech compression), because if the next values of a signal can be accurately pre-
dicted, then these samples need not be transmitted or stored. Prediction can also be used
to reduce noise or interference and therefore enhance the signal quality if the adaptive
processor is designed to only predict the signal and ignore random noise elements or
known interference patterns.

As shown in Figure 1.27(c), another application of adaptive systems is system
modeling of an unknown or difficult to characterize system. The desired signal (d) is the
unknown system’s output and the input to the unknown system and the adaptive proces-
sor (x) is a broadband test signal (perhaps white Gaussian noise). After adaptation, the
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unknown system is modeled by the final transfer function of the adaptive processor, By
using an AR, MA, or ARMA adaptive processor, different system models can be ob.
tained. The magnitude of the error (€) can be used to Jjudge the relative success of each
model.

1.7.1 Wiener Filter Theory

The problem of determining the optimum linear filter given the structure shown in Figure
1.28 was solved by Norbert Wiener and others. The solution is referred to as the Wiener
filter. The statement of the problem is as follows:
Determine a set of coefficients, Wy, that minimize the mean of the squared error of
the filtered output as compared to some desired output. The error is written

M
e(n)=d(n)—zw;u(n—k+l), (1.106)

k=1

or in vector form

e(n)=d(n)— wa(n). (1.107)

The mean squared error is a function of the tap weight vector w chosen and is written

J(w) = E{e(n)eX(n)}. (1.108)

wn)

e(n)

FIGURE 1.28 Wiener filter problem.
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Substituting in the expression for e(n) gives

J(w)= E{d(n)d*(n) —d(nyu? (myw
(1.109)
-wHu(n)d¥(n) + wHu(nyn? (n)w}

J(w) = var{d} - pw— wip + wRw, (1.110)

where p = E{u(n)d*(n)}, the vector that is the product of the cross correlation between
the desired signal and each element of the input vector.

In order to minimize J(w) with respect to w, the tap weight vector, one must set the de-
rivative of J(w) with respect to w equal to zero. This will give an equation which, when
solved for w, gives W), the optimum value of w. Setting the total derivative equal to zero gives

~2p+2Rw, =0 111
or
Rw, =p. (1.112)

If the matrix R is invertible (nonsingular) then W, can be solved as

w, =R7p. (1.113)

So the optimum tap weight vector depends on the autocorrelation of the input
process and the cross correlation between the input process and the desired output,
Equation (1.113) is called the normal equation because a filter derived from this equation
will produce an error that is orthogonal (or normal) to each element of the input vector.
This can be written

E{u(n)ey¥(n)} = 0. (L114)

It is helpful at this point to consider what must be known to solve the Wiener filter
problem:

(1) The M x M autocorrelation matrix of u(n), the input vector
(2) The cross correlation vector between u(n) and d(n) the desired response.

It is clear that knowledge of any individual u(n) will not be sufficient to calculate
these statistics. One must take the ensemble average, E{ }, to form both the autocorrela-
tion and the cross correlation. In practice, a model is developed for the input process and
from this model the second order statistics are derived.

A legitimate question at this point is: What is d(n)? It depends on the problem. One ex-
ample of the use of Wiener filter theory is in linear predictive filtering. In this case, the de-
sired signal is the next value of u(r), the input. The actual u(n) is always available one sam-
ple after the prediction is made and this gives the ideal check on the quality of the prediction.
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CHAPTER 2

C PROGRAMMING
FUNDAMENTALS

The purpose of this chapter is to provide the programmer with a complete overview of
the fundamentals of the C programming language that are important in DSP applications.
In particular, text manipulation, bitfields, enumerated data types, and unions are not dis-
cussed, because they have limited utility in the majority of DSP programs. Readers with
C programming experience may wish to skip the bulk of this chapter with the possible
exception of the more advanced concepts related to pointers and structures presented in
sections 2.7 and 2.8. The proper use of pointers and data structures in C can make a DSP
program easier to write and much easier for others to understand. Example DSP programs
in this chapter and those which follow will clarify the importance of pointers and data
structures in DSP programs.

2.1 THE ELEMENTS OF REAL-TIME DSP PROGRAMMING

The purpose of a programming language is to provide a tool so that a programmer can
easily solve a problem involving the manipulation of some type of information. Based on
this definition, the purpose of a DSP program is to manipulate a signal (a special kind of
information) in such a way that the program solves a signal-processing problem. To do
this, a DSP programming language must have five basic elements:

(1) A method of organizing different types of data (variables and data types)

(2) A method of describing the operations to be done (operators)

(3) A method of controlling the operations performed based on the results of operations
(program control)
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