52 Digital Signal Processing Fundamentals Chap. 1

EMBREE, P. and KIMBLE, B. (1991). C Language Algorithms for Digital Signal Processing.
Englewood Cliffs, NJ: Prentice Hall.

HARRIS, F. (1978). On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform. Proceedings of the IEEE., 66, (1), 51-83.

HAYKIN, S. (1986). Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice Hall.

MCCLELLAN, J., PARKS, T. and RABINER, L.R. (1973). A Computer Program for Designing
Optimum FIR Linear Phase Digital Filters. IEEE Transactions on Audio and Electro-acoustics,
AU-21. (6), 506-526.

MOLER, C., LITTLE, J. and BANGERT, S. (1987). PC-MATLAB User’s Guide. Sherbourne, MA: The
Math Works.

OPPENHEIM, A. and SCHAFER, R. (1975). Digital Signal Processing. Englewood Cliffs, NJ:
Prentice Hall.

OPPENHEIM, A. and SCHAFER, R. (1989). Discrete-time Signal Processing. Englewood Cliffs, NJ:
Prentice Hall.

PAPOULIS, A. (1965). Probability, Random Variables and Stochastic Processes. New York:
McGraw-Hill.

RABINER, L. and GoLD, B. (1975). Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice Hall.

STEARNS, S. and DAVID, R. (1988). Signal Processing Algorithms. Englewood Cliffs, NJ: Prentice
Hall.

STEARNS, S. and DAVID, R. (1993). Signal Processing Algorithms in FORTRAN and C. Englewood
Cliffs, NJ: Prentice Hall.

VAIDYANATHAN, P. (1993). Multirate Systems and Filter Banks. Englewood Cliffs, NI: Prentice
Hall.

WIDROW, B. and STEARNS, S. (1985). Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice
Hall.

CHAPTER 2

C PROGRAMMING
FUNDAMENTALS

The purpose of this chapter is to provide the programmer with a complete overview of
the fundamentals of the C programming language that are important in DSP applications.
In particular, text manipulation, bitfields, enumerated data types, and unions are not dis-
cussed, because they have limited utility in the majority of DSP programs. Readers with
C programming experience may wish to skip the bulk of this chapter with the possible
exception of the more advanced concepts related to pointers and structures presented in
sections 2.7 and 2.8. The proper use of pointers and data structures in C can make a DSP
program easier to write and much easier for others to understand. Example DSP programs
in this chapter and those which follow will clarify the importance of pointers and data
structures in DSP programs.

2.1 THE ELEMENTS OF REAL-TIME DSP PROGRAMMING

The purpose of a programming language is to provide a tool so that a programmer can
easily solve a problem involving the manipulation of some type of information. Based on
this definition, the purpose of a DSP program is to manipulate a signal (a special kind of
information) in such a way that the program solves a signal-processing problem. To do
this, a DSP programming language must have five basic elements:

(1) A method of organizing different types of data (variables and data types)

(2) A method of describing the operations to be done (operators)

(3) A method of controlling the operations performed based on the results of operations
(program control)
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1.7.2 LMS Algorithms

The LMS algorithm is the simplest and most used adaptive algorithm in use today. In thig
brief section, the LMS algorithm as it is applied to the adaptation of time-varying FIR fj}.
ters (MA systems) and IR filters (adaptive recursive filters or ARMA systems) is de-
scribed. A detailed derivation, Jjustification and convergence properties can be found jp
the references.

For the adaptive FIR system the transfer function is described by

o-1
Yn)= Y b, (k)x(n~g), (L.115)

9=0

where b(k) indicates the time-varying coefficients of the filter. With an FIR filter the
mean squared error performance surface in the multidimensional space of the filter coef-
ficients is a quadratic function and has a single minimum mean squared error (MMSE).
The coefficient values at the optimal solution is called the MMSE solution. The goal of
the adaptive process is to adjust the filter coefficients in such a way that they move from
their current position toward the MMSE solution. If the input signal changes with time,
the adaptive system must continually adjust the coefficients to follow the MMSE soly-
tion. In practice, the MMSE solution is often never reached.

The LMS algorithm updates the filter coefficients based on the method of steepest
descent. This can be described in vector notation as follows:

B, =B, -pv, (1.116)

where B, is the coefficient column vector, 1 is a parameter that controls the rate of con-
vergence and the gradient is approximated as

aE[e,%]
Vi = =-2¢,X (1.117)
k aBk kN k

where X, is the input signal column vector and g, is the error signal as shown on Figure
1.27. Thus, the basic LMS algorithm can be written as

B, =B, +2ue,X, (1.118)

The selection of the convergence parameter must be done carefully, because if it is
too small the coefficient vector will adapt very slowly and may not react to changes in the
input signal. If the convergence parameter is too large, the system will adapt to noise in
the signal and may never converge to the MMSE solution.

For the adaptive IIR system the transfer function is described by

o-1 P-1
Y=Y b (0x(n=)~ Y a,()y(n~ p), (1.119)
=0

q p=l1
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where b(k) and a(k) indicate the time-varying coefficients of the filter. With an IIR filter,
the mean squared error performance surface in the multidimensional space of the filter
coefficients is not a quadratic function and can have multiple minimums that may cause
the adaptive algorithm to never reach the MMSE solution. Because the IIR system has
poles, the system can become unstable if the poles ever move outside the unit circle dur-
ing the adaptive process. These two potential problems are serious disadvantages of adap-
tive recursive filters that limit their application and complexity. For this reason, most ap-
plications are limited to a small number of poles. The LMS algorithm can again be used
to update the filter coefficients based on the method of steepest descent. This can be de-
scribed in vector notation as follows:

W =W, —MV,, (1.120)

where W, is the coefficient column vector containing the a and b coefficients, M is a di-
agonal matrix containing convergence parameters U for the a coefficients and Vv through
Vp_ that controls the rate of convergence of the b coefficients. In this case, the gradient
is approximated as

Vi=-2¢og.ap BB, (1.121)

where €, is the error signal as shown in Figure 1.27, and

-1
(x,,(k):x(k—n)+2bq(k)a,,(k—q) (1.122)
q=0
P-1
Ba(ky=y(k~m)+ Y b, (k)P (k- p). (1.123)
p=0

The selection of the convergence parameters must be done carefully because if they
are too small the coefficient vector will adapt very slowly and may not react to changes in
the input signal. If the convergence parameters are too large the system will adapt to
noise in the signal or may become unstable. The proposed new location of the poles
should also be tested before each update to determine if an unstable adaptive filter is
about to be used. If an unstable pole location is found the update should not take place
and the next update value may lead to a better solution.
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(4) A method of organizing the data and the operations so that a sequence of program
steps can be executed from anywhere in the program (functions and data structures)
and

(5) A method to move data back and forth between the outside world and the program
(input/output)

These five elements are required for efficient programming of DSP algorithms. Their im-
plementation in C is described in the remainder of this chapter.

As a preview of the C programming language, a simple real-time DSP program is
shown in Listing 2.1. It illustrates each of the five elements of DSP programming. The
listing is divided into six sections as indicated by the comments in the program. This sim-
ple DSP program gets a series of numbers from an input source such as an A/D converter
(the function getinput () is not shown, since it would be hardware specific) and deter-
mines the average and variance of the numbers which were sampled. In signal-processing
terms, the output of the program is the DC level and total AC power of the signal.

The first line of Listing 2.1, main (), declares that the program called main, which
has no arguments, will be defined after the next left brace ({ on the next line). The main
program (called main because it is executed first and is responsible for the main control
of the program) is declared in the same way as the functions. Between the left brace on
the second line and the right brace half way down the page (before the line that starts
float awerage ...) are the statements that form the main program. As shown in this
example, all statements in C end in a semicolon (;) and may be placed anywhere on the
input line. In fact, all spaces and carriage control characters are ignored by most C com-
pilers. Listing 2.1 is shown in a format intended to make it easier to follow and modify.
The third and fourth lines of Listing 2.1 are statements declaring the functions
(average, variance, sqrt) that will be used in the rest of the main program (the
function sqrt () is defined in the standard C library as discussed in the Appendix. This
first section of Listing 2.1 relates to program organization (element four of the above
list). The beginning of each section of the program is indicated by comments in the pro-
gram source code (i. e., /* section 1 */). Most C compilers allow any sequence of
characters (including multiple lines and, in some cases, nested comments) between the
/* and */ delimiters.

Section two of the program declares the variables to be used. Some variables are
declared as single floating-point numbers (such as ave and var); some variables are de-
clared as single integers (such as i, count, and number); and some variables are ar-
rays (such as signal[100]). This program section relates to element one, data organi-
zation.

Section three reads 100 floating-point values into an array called signal using a for
loop (similar to a DO loop in FORTRAN). This loop is inside an infinite while loop
that is common in real-time programs. For every 100 samples, the program will display
the results and then get another 100 samples. Thus, the resulis are displayed in real-time.
This section relates to element five (input/output) and element three (program control).

Section four of the example program uses the functions average and variance
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main () /* section 1 */
{
float average(),variance(),sqgrt(); /* declare functions */
float signal[100], ave,var; /*section 2 */
int count,i; /* declare variables */
while(1l) {
for(count = 0 ; count < 100 ; count++) { /* section 3 */
signal [count] = getinput(); /* read input signal */
}
ave = average(signal,count}; /* section 4 */
var = variance(signal,count); /* calculate results */
printf ("\n\nAverage = %f", ave); /* section 5 */
printf(" Variance = %f",var); /* print results */
}
}
float average(float array([],int size) /* section 6 */
{ /* function calculates average */
int ij;
float sum = 0.0; /* intialize and declare sum */
for(i = 0 ; i < size ; i++)
sum = sum + arrayl[il; /* calculate sum */
return(sum/size); /* return average */

}

float variance(float array([],int size) /* function calculates variance */

{

int i; /* declare local variables */
float ave;

float sum = 0.0; /* intialize sum of signal */
float sum2 = 0.0; /* sum of signal squared */

for{(i = 0 ; i < size ; i++) {

sum = sum + arrayl[il;

sum2 = sum2 + arrayli]*arrayi{il}; /* calculate both sums */
}
ave = sum/size; /* calculate average */
return{ {sum2 - sum*ave)/(size-1)); /* return variance */

Listing 2.1 Example C program that calculates the average and variance of
a sequence of numbers.

to calculate the statistics to be printed. The variables ave and var are used to store the
results and the library function print€ is used to display the results. This part of the
program relates to element four (functions and data structures) because the operations de-
fined in functions average and variance are executed and stored.
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Section five uses the library function printf to display the results ave, vay
and also calls the function sgrt in order to display the standard deviation. This par;
of the program relates to element four (functions) and element five (input/output), be.
cause the operations defined in function 8sqrt are executed and the results are also’ dis
played. )

The two functions, average and variance, are defined in the remaining part of
Listing 2.1. This last section relates primarily to element two (operators), since the de.
tailed operation of each function is defined in the same way that the main program wag
defined. The function and argument types are defined and the local variables to be used in
each function are declared. The operations required by each function are then defined fo}-
lowed by a return statement that passes the result back to the main program.

2.2 VARIABLES AND DATA TYPES

All programs work by manipulating some kind of information. A variable in C is defined
by declaring that a sequence of characters (the variable identifier or name) are to be
treated as a particular predefined type of data. An identifier may be any sequence of char-
acters (usually with some length restrictions) that obeys the following three rules:

(1) All identifiers start with a letter or an underscore ().
(2) The rest of the identifier can consist of letters, underscores, and/or digits.

(3) The rest of the identifier does not match any of the C keywords. (Check compiler
implementation for a list of these.)

In particular, C is case sensitive; making the variables Average, AVERAGE, and
AVeRagGe all different.

The C language supports several different data types that represent integers
(declared int), floating-point numbers (declared £1oat or double), and text data (de-
clared char). Also, arrays of each variable type and pointers of each type may be de-
c.lared. The first two types of numbers will be covered first followed by a brief introduc-
tion to arrays (covered in more detail with pointers in section 2.7). The special treatment
of text using character arrays and strings will be discussed in Section 223.

2.2.1 Types of Numbers

A C program must declare the variable before it is used in the program. There are several
pres of numbers used depending on the format in which the numbers are stored (float-
ing-point format or integer format) and the accuracy of the numbers (single-precision ver-
sus double-precision floating-point, for example). The following example program illus-
trates the use of five different types of numbers:
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main()
{
int i; /* size dependent on implementation */
short j; /* 16 bit integer */
long k; /* 32 bit integer */
float a; /* single precision floating-point */
double b; /* double precision floating-point */
k = 72000;
J=k;
i=k;
b =0.1;
a = b;

printf({"\n%1d %d $d\n%20.15f\n%20.15f" ,k,3,i,b,a);

Three types of integer numbers (int, short int, and long int) and two types of
floating-point numbers (f1loat and double) are illustrated in this example. The actual
sizes (in terms of the number of bytes used to store the variable) of these five types de-
pends upon the implementation; all that is guaranteed is that 2 short int variable will
not be larger than a long int and a double will be twice as large as a £loat. The
size of a variable declared as just int depends on the compiler implementation. It is nor-
mally the size most conveniently manipulated by the target computer, thereby making
programs using ints the most efficient on a particular machine. However, if the size of
the integer representation is important in a program (as it often is) then declaring vari-
ables as int could make the program behave differently on different machines. For ex-
ample, on a 16-bit machine, the above program would produce the following results:

72000 6464 6464
0.100000000000000
0.100000001490116

But on a 32-bit machine (using 32-bit ints), the output would be as follows:

72000 6464 72000
0.1000000000006000
0.100000001490116

Note that in both cases the short and long variables, k and 3, (the first two numbers dis-
played) are the same, while the third number, indicating the int i, differs. In both cases,
the value 6464 is obtained by masking the lower 16 bits of the 32-bit k value. Also, in both
cases, the floating-point representation of 0.1 with 32 bits (fLloat) is accurate to eight dec-
imal places (seven places is typical). With 64 bits it is accurate to at least 15 places.

Thus, to make a program truly portable, the program should contain only short
int and long int declarations (these may be abbreviated short and long). In addi-
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tion to the five types illustrated above, the three ints can be declared as unsigned by
preceding the declaration with unsigned. Also, as will be discussed in more detail in the
next section concerning text data, a variable may be declared to be only one byte long by
declaring it a char (signed or unsigned). The following table gives the typical sizes
and ranges of the different variable types for a 32-bit machine (such as a VAX) and a 16.
bit machine (such as the IBM PC).

16-bit 16-bit 32-bit 32-bit
Variable Machine Machine Machine Machine
Declaration Size (bits) Range Size (bits) Range
char 8 ~128 to 127 8 -128 t0 127
unsiged char 8 010255 8 0to 255
int 16 —32768 to 32767 32 +2.1e9
unsigned int 16 0to 65535 32 0to 4.3¢9
short 16 —32768 to 32767 16 —~32768 to 32767
unsigned short 16 0 to 65535 16 0 to 65535
long 32 +2.1e9 32 +2.1e9
unsigned long 32 010 4.3¢9 32 010 4.3¢9
float 32 +1.0e+38 32 +le+38
double 64 +1.0e+306 64 +1e+308
2.2.2 Arrays

Almost all high-level languages allow the definition of indexed lists of a given data type,
commonly referred to as arrays. In C, all data types can be declared as an array simply by
placing the number of elements to be assigned to the array in brackets after the array
name. Multidimensional arrays can be defined simply by appending more brackets con-
taining the array size in each dimension. Any N-dimensional array is defined as follows:

type name[sizel] [size2] [sizeN];

For example, each of the following statements are valid array definitions:

unsigned int 1list[10];

double input[5};

short int x{2000];

char input_buffer{20];
unsigned char imagel256][256];
int matrix{41[31[2]};
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Note that the array definition unsigned char image[256][256] could define an
8-bit, 256 by 256 image plane where a grey scale image is represented by values from 0
to 255. The last definition defines a three-dimensional matrix in a similar fashion. One
difference between C and other languages is that arrays are referenced using brackets to
enclose each index. Thus, the image array, as defined above, would be referenced as
image{i] [j] where 4 and j are row and column indices, respectively. Also, the first
element in all array indices is zero and the last element is N-1, where N is the size of the
array in a particular dimension. Thus, an assignment of the first element of the five ele-
ment, one-dimensional array input (as defined above) such as input[01=1.3; is
legal while input [51=1.3; is not.

Arrays may be initialized when they are declared. The values to initialize the array are
enclosed in one or more sets of braces ({}) and the values are separated by commas. For
example, a one-dimensional array called vector can be declared and initialized as follows:

int vector([6] = { 1, 2, 3, 5, 8, 13 };

A two-dimensional array of six double-precision floating-point numbers can be declared
and initialized using the following statement:

double af33[2] = {
{ 1.5, 2.5},
{1.1le-5, 1.7e5 },
{ 1.765 , 12.678 }
};

Note that commas separate the three sets of inner braces that designate each of the three rows
of the matrix a, and that each array initialization is a statement that must end in a semicolon.

2.3 OPERATORS

Once variables are defined to be a given size and type, some sort of manipulation must be
performed using the variables. This is done by using operators. The C language has more
operators than most languages; in addition to the usual assignment and arithmetic opera-
tors, C also has bitwise operators and a full set of logical operators. Some of these opera-
tors (such as bitwise operators) are especially important in order to write DSP programs
that utilize the target processor efficiently.

2.3.1 Assignment Operators

The most basic operator is the assignment operator which, in C, is the single equal sign
(=). The value on the right of the equal sign is assigned to the variable on the left.
Assignment statements can also be stacked, as in the statement a=b=1; . In this case, the
statement is evaluated right to left so that 1 is assigned to b and b is assigned to a. In C,
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a=ave (x) is an expression, while a=ave(x); is a statement. The addition of the
semicolon tells the compiler that this is all that will be done with the result from the func.
tion ave (x). An expression always has a value that can be used in other expressions,
Thus, a=b+(c=ave (x)); is a legal statement. The result of this statement would be
that the result returned by ave (x) is assigned to ¢ and b+c is assigned to a. C also al-
lows multiple expressions to be placed within one statement by separating them with the
commas. Each expression is evaluated left to right, and the entire expression (comprised
of more than one expression) assumes the value of the last expression which is evaluateq,
For example, a=(olda=a,ave(x)); assigns the current value of a to olda, calls the
function ave (x) and then assigns the value returned by ave (x) to a.

2.3.2 Arithmetic and Bitwise Operators

The usual set of binary arithmetic operators (operators which perform arithmetic on two
operands) are supported in C using the following symbols:

* multiplication

/ division

+ addition

- subtraction

% modulus (integer remainder after division)

The first four operators listed are defined for all types of variables (char, int, £loat,
and double). The modulus operator is only defined for integer operands. Also, there is
no exponent operator in C; this floating-point operation is supported using a simple func-
tion call (see the Appendix for a description of the pow function).

In C, there are three unary arithmetic operators which require only one operand.
First is the unary minus operator (for example, -i, where 1 is an int) that performs a
two’s-complement change of sign of the integer operand. The unary minus is often useful
when the exact hardware implementation of a digital-signal processing algorithm must be
simulated. The other two unary arithmetic operators are increment and decrement, repre-
sented by the symbols ++ and ~-, respectively. These operators add or subtract one from
any integer variable or pointer. The operand is often used in the middle of an expression,
and the increment or decrement can be done before or after the variable is used in the ex-
pression (depending on whether the operator is before or after the variable). Although the
use of ++ and -~ is often associated with pointers (see section 2.7), the following exam-
ple illustrates these two powerful operators with the ints i,j,and k:

i=4;

=17

k = i++ + j; /* i is incremented to 5, k = 11 */
k =k + —-——j; /* 3 is decremented to 6, k = 17 */
k = k + i++; /* i is incremented to 6, k = 22 */

Binary bitwise operations are performed on integer operands using the following symbols:
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& bitwise AND
| bitwise OR
A bitwise exclusive OR
<< arithmetic shift left (number of bits is operand)
>> arithmetic shift right (number of bits is operand)

The unary bitwise NOT operator, which inverts all the bits in the operand, is imple-
mented with the ~ symbol. For example, if 4 is declared as an unsigned int, then
i = ~0; sets i to the maximum integer value for an unsigned int.

2.3.3 Combined Operators

C allows operators to be combined with the assignment operator (=) so that almost any
statement of the form

<variable> = <variable> <operator> <expression>
can be replaced with
<variable> <operator> = <expression>

where <variable> represents the same variable name in all cases. For example, the
following pairs of expressions involving x and ¥ perform the same function:

X =X +y; X += y;
X =X -y X -=y;
X =x*y; X *= vy;
X =x/y; x /=y;
X =x%Yy; X 3= y;
X=X &Yy; X &= y;
X =X :Yy; X = y;
X=x"y; X °=y;
X = X << y; X <<= y;
X =X > vy; X >>= y;

In many cases, the left-hand column of statements will result in a more readable and eas-
ier to understand program. For this reason, use of combined operators is often avoided.
Unfortunately, some compiler implementations may generate more efficient code if the
combined operator is used.

2.3.4 Logical Operators

Like all C expressions, an expression involving a logical operator also has a value. A log-
ical operator is any operator that gives a result of true or false. This could be a compari-
son between two values, or the result of a series of ANDs and ORs. If the result of a logi-
cal operation is true, it has a nonzero value; if it is false, it has the value 0. Loops and if
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statements (covered in section 2.4) check the result of logical operations and change pro.

gram flow accordingly. The nine logical operators are as follows:

< less than

<= less than or equal to
== equal to

>= greater than or equal to
> greater than

1= not equal to

&& logical AND
H] logical OR
L] logical NOT (unary operator)

Note that == can easily be confused with the assignment operator (=) and will result in a
valid expression because the assignment also has a value, which is then interpreted as
true or false. Also, && and | | should not be confused with their bitwise counterparts (&
and |) as this may result in hard to find logic problems, because the bitwise results may
not give true or false when expected.

2.3.5 Operator Precedence and Type Conversion

Like all computer languages, C has an operator precedence that defines which operators in
an expression are evaluated first. If this order is not desired, then parentheses can be used
to change the order. Thus, things in parentheses are evaluated first and items of equal
precedence are evaluated from left to right. The operators contained in the parentheses or
expression are evaluated in the following order (listed by decreasing precedence):

4, —— increment, decrement

- unary minus

*,/,% multiplication, division, modulus
+,- addition, subtraction

<<, >> shift left, shift right
<,<=,>=,> relational with less than or greater than
==,1= equal, not equal

& bitwise AND

A bitwise exclusive OR

| bitwise OR

&& logical AND

i1 logical OR

Staternents and expressions using the operators just described should normally use vari-
ables and constants of the same type. If, however, you mix types, C doesn’t stop dead
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(like Pascal) or produce a strange unexpected result (like FORTRAN). Instead, C uses a
set of rules to make type conversions automatically. The two basic rules are:

(1) If an operation involves two types, the value with a lower rank is converted to the
type of higher rank. This process is called promotion and the ranking from highest
to lowest type is double, float, long, int, short, and char. Unsigned of each of the
types outranks the individual signed type.

(2) In an assignment statement, the final result is converted to the type of the variable
that is being assigned. This may result in promotion or demotion where the value is
truncated to a lower ranking type.

Usually these rules work quite well, but sometimes the conversions must be stated
explicitly in order to demand that a conversion be done in a certain way. This is accom-
plished by type casting the quantity by placing the name of the desired type in parenthe-
ses before the variable or expression. Thus, if i is an int, then the statement
i=10*(1.55+1.67); would set i to 32 (the truncation of 32.2), while the statement
i=10*((int)1.55+1.67); would set i to 26 (the truncation of 26.7 since
(int)1.55 is truncated to 1).

2.4 PROGRAM CONTROL

The large set of operators in C allows a great deal of programming flexibility for DSP ap-
plications. Programs that must perform fast binary or logical operations can do so without
using special functions to do the bitwise operations. C also has a complete set of program
control features that allow conditional execution or repetition of statements based on the
result of an expression. Proper use of these control structures is discussed in section
2.11.2, where structured programming techniques are considered.

2.4.1 Conditional Execution: if-else

In C, as in many languages, the i £ statement is used to conditionally execute a series of
statements based on the result of an expression. The if statement has the following
generic format:

if (value)
statementl;

else
statement?2;

where value is any expression that results in (or can be converted to) an integer value.
If value is nonzero (indicating a true result), then statement1 is executed; otherwise,
statement2 is executed. Note that the result of an expression used for value need
not be the result of a logical operation—all that is required is that the expression results in
a zero value when statement2 should be executed instead of statement1. Also, the
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else statement2; portion of the above form is optional, allowing statement to
be skipped if value is false.

When more than one statement needs to be executed if a particular value is true, 3
compound statement is used. A compound statement consists of a left brace ({), some
number of statements (each ending with a semicolon), and a right brace (}). Note that the
body of the main () program and functions in Listing 2.1 are compound statements. In
fact, a single statement can be replaced by a compound statement in any of the contrg]
structures described in this section. By using compound statements, the if-else cop.
trol structure can be nested as in the following example, which converts a floating-point
number (result) to a 2-bit twos complement number (out):

if(result > 0) { /* positive outputs */
if (result > sigma)
out = 1; /* biggest output */
else
out = 0; /* 0 < result <= sigma */
}
else { /* negative outputs */
if(result < sigma)
out = 2; /* smallest output */
else
out = 1; /* sigma <= result <= 0 */

Note that the inner if-else statements are compound statements (each consisting of two
statements), which make the braces necessary in the outer i f-else control structure (with-
out the braces there would be too many else statements, resulting in a compilation error).

2.4.2 The switch Statement

When a program must choose between several alternatives, the if-else statement be-
comes inconvenient and sometimes inefficient. When more than four alternatives from a
single expression are chosen, the switch statement is very useful. The basic form of the
switch statement is as follows:

switch(integer expression) {
case constantl:

statements; (optional)

break; (optional)
case constant2:

statements; (optional)

break; (optional)

e e (more optional statements)
default: (optional)

statements; (optional)
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Program control jumps to the statement after the case label with the constant (an integer
or single character in quotes) that matches the result of the integer expression in the
switch statement. If no constant matches the expression value, control goes to the state-
ment following the default label. If the default label is not present and no matching case
labels are found, then control proceeds with the next statement following the switch
statement. When a matching constant is found, the remaining statements after the corre-
sponding case label are executed until the end of the switch statement is reached, or a
break statement is reached that redirects control to the next statement after the switch
statement. A simple example is as follows:

switch(i) {

case 0:
printf("\nError: I is zero");
break;

case 1:
J = k*k;
break;

default:
j = k*k/i;

The use of the break statement after the first two case statements is required in order to
prevent the next statements from being executed (a break is not required after the last
case or default statement). Thus, the above code segment sets j equal to k*k/i,
unless i is zero, in which case it will indicate an error and leave J unchanged. Note that
since the divide operation usually takes more time than the case statement branch, some

execution time will be saved whenever i equals 1.

2.4.3 Single-Line Conditional Expressions
C offers a way to express one if-else control structure in a single line. It is called a

conditional expression, because it uses the conditional operator, ? z, which is the only tri-
nary operator in C. The general form of the conditional expression is:

expressionl ? expression2 : expression3

If expressionl is true (nonzero), then the whole conditional expression has the value
of expression2. If expressionl is false (0), the whole expression has the value of
expresgsion3. One simple example is finding the maximum of two expressions:

maxdif = (a0 > a2) ? a0-al : a2-al;

Conditional expressions are not necessary, since if-else statements can provide the
same function. Conditional expressions are more compact and sometimes lead to more
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efficient machine code. On the other hand, they are often more confusing than the fami.
iar 1 f£-else control structure.

2.4.4 Loops: while, do-while, and for

C has three control structures that allow a statement or group of statements to be repeated a
fixed or variable number of times. The while loop repeats the statements until a test ex-
pression becomes false, or zero. The decision to go through the loop is made before the
loop is ever started. Thus, it is possible that the loop is never traversed. The general form is;

while (expression)
statement

where statement can be a single statement or a compound statement enclosed in
braces. An example of the latter that counts the number of spaces in a null-terminated
string (an array of characters) follows:

space_count = 0; /* space_count is an int */
i=0; /* array index, i = 0 */
while(stringfi])} {

if (string[i] == ' ') space_count++;.

144 /* next char */

Note that if the string is zero length, then the value of stxring{i] will initially point to
the null terminator (which has a zero or false value) and the while loop will not be exe-
cuted. Normally, the while loop will continue counting the spaces in the string until the
null terminator is reached.

The do-while loop is used when a group of statements need to be repeated and
the exit condition should be tested at the end of the loop. The decision to go through the
loop one more time is made after the loop is traversed so that the loop is always executed
at least once. The format of do-while is similar to the while loop, except that the do
keyword starts the statement and while (expression) ends the statement. A single
or compound statement may appear between the do and the while keywords. A common
use for this loop is in testing the bounds on an input variable as the following example il-
lustrates:

do {
printf("\nEnter FFT length (less than 1025) :");
scanf ("%d",&fft_length);

} while(fft_length > 1024);

In this code segment, if the integer ££t_1length entered by the user is larger than 1024,
the user is prompted again until the ££t_length entered is 1024 or less.
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The for loop combines an initialization statement, an end condition statement, and
an action statement (executed at the end of the loop) into one very powerful control struc-
ture. The standard form is:

for(initialize ; test condition ; end update)
statement; i

The three expressions are all optional (fox (; ; ) ; is an infinite loop) and the statement may
be a single statement, a compound statement or just a semicolon (a null statement). The most
frequent use of the £or loop is indexing an array through its elements. For example,

for(i = 0 ; i < length ; i++) a[i]l = 0;

sets the elements of the array a to zero from a[0] up to and including a[length-1].
This £or statement sets i to zero, checks to see if i is less than length, if so it exe-
cutes the statement a [1]=0;, increments i, and then repeats the loop until i is equal to
length. The integer i is incremented or updated at the end of the loop and then the test
condition statement is executed. Thus, the statement after a £or loop is only executed if
the test condition in the £ox loop is true. For loops can be much more complicated, be-
cause each statement can be multiple expressions as the following example illustrates:

for(i =0, i3 =1 ; i <25 ; i++ , i3 = 3*i3)
printf("\n%d %4",i,i3);

This statement uses two ints in the £or loop (i, i3) to print the first 25 powers of 3.
Note that the end condition is still a single expression (i < 25), but that the initialization
and end expressions are two assignments for the two integers separated by a comma.

2.4.5 Program Jumps: break, continue, and goto

The loop control structures just discussed and the conditional statements (1 £, if~else,
and switch) are the most important control structures in C. They should be used ex-
clusively in the majority of programs. The last three control statements (break,
continue, and goto) allow for conditional program jumps. If used excessively, they
will make a program harder to follow, more difficult to debug, and harder to modify.

The break statement, which was already illustrated in conjunction with the switch
statement, causes the program flow to break free of the switch, for, while, or
do-while that encloses it and proceed to the next statement after the associated control
structure. Sometimes break is used to leave a loop when there are two or more reasons
to end the loop. Usually, however, it is much clearer to combine the end conditions in a
single logical expression in the loop test condition. The exception to this is when a large
number of executable statements are contained in the loop and the result of some state-
ment should cause a premature end of the loop (for example, an end of file or other error
condition).
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The continue statement is almost the opposite of break; the continyg
causes the rest of an iteration to be skipped and the next iteration to be started. The
cont inue statement can be used with for, while, and do-while loops, but cannet
be used with switch. The flow of the loop in which the continue statement appears
is interrupted, but the loop is not terminated. Although the continue statement can Te-
sult in very hard-to-follow code, it can shorten programs with nested if-else state.
ments inside one of three loop structures.

The goto statement is available in C, even though it is never required in C pro-
gramming. Most programmers with a background in FORTRAN or BASIC computer lan-
guages (both of which require the goto for program control) have developed bad pro-
gramming habits that make them depend on the goto. The goto statement in C uses 3
label rather than a number making things a little better. For example, one possible legiti-
mate use of goto is for consolidated error detection and cleanup as the following simple
example illustrates:

program statements

status = function_one(alpha,beta,constant);
if (status != 0) goto error_exit;

more program statements

status = function_ two(delta, time);

if(status != 0) goto error_exit;
error_exit: /*end up here from all errors */
switch(status) {
case 1:
printf("\nDivide by zero error\n");
exit();
case 2:
printf(“\nout of memory error\n");
exit();
case 3:
printf{"\nLog overflow error\n");
exit();
default:
printf ("\nUnknown error\n");
exit();
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In the above example, both of the fictitious functions, function_one and
function_two (see the next section concerning the definition and use of functions),
perform some set of operations that can result in one of several errors. If no errors are de-
tected, the function returns zero and the program proceeds normally. If an error is de-
tected, the integer status is set to an error code and the program jumps to the label
error_exit where a message indicating the type of error is printed before the program
is terminated.

2.5 FUNCTIONS

All C programs consist of one or more functions. Even the program executed first is a
function called main(), as illustrated in Listing 2.1. Thus, unlike other programming
languages, there is no distinction between the main program and programs that are called
by the main program (sometimes called subroutines). A C function may or may not re-
tumn a value thereby removing another distinction between subroutines and functions in
languages such as FORTRAN. Each C function is a program equal to every other func-
tion. Any function can call any other function (a function can even call itself), or be
called by any other function. This makes C functions somewhat different than Pascal pro-
cedures, where procedures nested inside one procedure are ignorant of procedures else-
where in the program. It should also be pointed out that unlike FORTRAN and several
other languages, C always passes functions arguments by value not by reference. Because
arguments are passed by value, when a function must modify a variable in the calling
program, the C programmer must specify the function argument as a pointer to the begin-
ning of the variable in the calling program’s memory (see section 2.7 for a discussion of
pointers).

2.5.1 Defining and Declaring Functions

A function is defined by the function type, a function name, a pair of parentheses contain-
ing an optional formal argument list, and a pair of braces containing the optional exe-
cutable statements. The general format for ANSI C is as follows:

type name(formal argument list with declarations)
{
function body

The type determines the type of value the function returns, not the type of arguments. If
no type is given, the function is assumed to return an int (actually, a variable is also
assumed to be of type int if no type specifier is provided). If a function does not return a
value, it should be declared with the type void. For example, Listing 2.1 contains the
function average as follows:
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float average(float arrayl[l,int size)
{
int i;
float sum = 0.0; /* initialize and declare sum */
for{(i =0 ; i < size ; i++)
sum = sum + arraylil; /* calculate sum */
return(sum/size) ; /* return average */

The first line in the above code segment declares a function called average will returp
a single-precision floating-point value and will accept two arguments. The two argumen;
names (array and size) are defined in the formal argument list (also called the formal
parameter list). The type of the two arguments specify that array is a one-dimensional
array (of unknown length) and size is an int. Most modern C compilers allow the ar-
gument declarations for a function to be condensed into the argument list.

Note that the variable array is actually just a pointer to the beginning of the
float array that was allocated by the calling program. By passing the pointer, only one
value is passed to the function and not the large floating-point array. In fact, the function
could also be declared as follows:

float average(float *array, int size)

This method, although more correct in the sense that it conveys what is passed to the
function, may be more confusing because the function body references the variable as
arrayl[il.

The body of the function that defines the executable statements and local variables
to be used by the function are contained between the two braces. Before the ending brace
(3), a return statement is used to return the £loat result back to the calling program. If
the function did not return a value (in which case it should be declared void), simply
omitting the return statement would return control to the calling program after the last
statement before the ending brace. When a function with no return value must be termi-
nated before the ending brace (if an error is detected, for example), a return; state-
ment without a value should be used. The parentheses following the return statement are
only required when the result of an expression is returned. Otherwise, a constant or vari-
able may be returned without enclosing it in parentheses (for example, return 0; or
return n;).

Arguments are used to convey values from the calling program to the function.
Because the arguments are passed by value, a local copy of each argument is made for
the function to use (usually the variables are stored on the stack by the calling program).
The local copy of the arguments may be freely modified by the function body, but will
not change the values in the calling program since only the copy is changed. The return
statement can communicate one value from the function to the calling program. Other
than this returned value, the function may not directly communicate back to the calling
program. This method of passing arguments by value, such that the calling program’s
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variables are isolated from the function, avoids the common problem in FORTRAN
where modifications of arguments by a function get passed back to the calling program,
resulting in the occasional modification of constants within the calling program.

When a function must return more than one value, one or more pointer arguments
must be used. The calling program must allocate the storage for the result and pass the
function a pointer to the memory area to be modified. The function then gets a copy of
the pointer, which it uses (with the indirection operator, *, discussed in more detail in
Section 2.7.1) to modify the variable allocated by the calling program. For example, the
functions average and variance in Listing 2.1 can be combined into one function
that passes the arguments back to the calling program in two £1oat pointers called ave
and var, as follows:

void stats(float *array,int size,float *ave, float *var)

{

int i;
float sum = 0.0; /* initialize sum of signal */
float sum2 = 0.0; /* sum of signal squared */
for(i = 0 ; 1 < size ; i++) {

sum = sum + arrayl[il; /* calculate sums */

sum2 = sum2 + arrayli]*arrayl([i];

*ave sum/size; /* pass average and variance */
*var = (sum2-sum* (*ave))/{size-1);

In this function, no value is returned, so it is declared type wvoid and no return statement
is used. This stats function is more efficient than the functions average and vari-
ance together, because the sum of the array elements was calculated by both the average
function and the variance function. If the variance is not required by the calling program,
then the average function alone is much more efficient, because the sum of the squares of
the array elements is not required to determine the average alone.

2.5.2 Storage Class, Privacy, and Scope

In addition to type, variables and functions have a property called storage class. There
are four storage classes with four storage class designators: auto for automatic variables
stored on the stack, extern for external variables stored outside the current module,
static for variables known only in the current module, and register for temporary
variables to be stored in one of the registers of the target computer. Each of these four
storage classes defines the scope or degree of the privacy a particular variable or function
holds. The storage class designator keyword (auto, extern, static, or register)
must appear first in the variable declaration before any type specification. The privacy of
a variable or function is the degree to which other modules or functions cannot access a
variable or call a function. Scope is, in some ways, the complement of privacy because
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t}:j scope of a variable describes how many modules or functions have access to the varj.
able.

o Auto variables can only be declared within a function, are created when the func.
tion is invoked, and are lost when the function is exited. Auto variables are known only
to the function in which they are declared and do not retain their value from one invoca-
tion of a function to another. Because auto variables are stored on a stack, a functiop
that uses only auto variables can call itself recursively. The auto keyword is rarely
ulsed in C programs, since variables declared within functions default to the auto storage
class.

Another important distinction of the auto storage class is that an auto variable ig
only defined within the control structure that surrounds it. That is, the scope of an auto
variable is limited to the expressions between the braces ({ and }) containing the variable
declaration. For example, the following simple program would generate a compiler error
since 3 is unknown outside of the for loop: '

main()
{
int i;
for(i=0;i<10;i++) {
int j; /* declare j here */
J o= i*i;
printf(*sd",j);
}
printf (“sd",j); /* j unknown here */

Register variables have the same Scope as auto variables, but are stored in
some type of register in the target computer. If the target computer does not have regis-
ters, or if no more registers are available in the target computer, a variable declared as
register will revert to auto. Because almost all microprocessors have a large num-
ber of registers that can be accessed much faster than outside memory, register vari-
ables can be used to speed Up program execution significantly. Most compilers limit the
use of register variables to pointers, integers, and characters, because the target ma-
c.hines rarely have the ability to use registers for floating-point or double-precision opera-
tions.

Extern variables have the broadest scope. They are known to all functions in a
module and are even known outside of the module in that they are declared. Extern
variables are stored in their own separate data area and must be declared outside of any
functions. Functions that access extern variables must be careful not to call themselves
or call other functions that access the same extern variables, since extexrn variables
retain their values as functions are entered and exited. Extern is the default storage
class for variables declared outside of functions and for the functions themselves. Thus,
functions not declared otherwise may be invoked by any function in a module as well as
by functions in other modules.
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Static variables differ from extern variables only in scope. A static vari-
able declared outside of a function in one module is known only to the functions in that
module. A static variable declared inside a function is known only to the function in
which it is declared. Unlike an auto variable, a static variable retains its value from
one invocation of a function to the next. Thus, static refers to the memory area as-
signed to the variable and does not indicate that the value of the variable cannot be
changed. Functions may also be declared statie, in which case the function is only
known to other functions in the same module. In this way, the programmer can prevent
other modules (and, thereby, other users of the object module) from invoking a particular
function.

2.5.3 Function Prototypes

Although not in the original definition of the C language, function prototypes, in one
form or another, have become a standard C compiler feature. A function prototype is a
statement (which must end with a semicolon) describing a particular function. It tells the
compiler the type of the function (that is, the type of the variable it will return) and the
type of each argument in the formal argument list. The function named in the function
prototype may or may not be contained in the module where it is used. If the function is
not defined in the module containing the prototype, the prototype must be declared exter-
nal. All C compilers provide a series of header files that contain the function prototypes
for all of the standard C functions. For example, the prototype for the stats function
defined in Section 2.5.1 is as follows:

extern void stats(float *,int,float *,float *);

This prototype indicates that stats (which is assumed to be in another module) returns
no value and takes four arguments. The first argument is a pointer to a £loat (in this
case, the array to do statsistics on). The second argument is an integer (in this case, giv-
ing the size of the array) and the last two arguments are pointers to £loats which will
return the average and variance results.

The result of using function prototypes for all functions used by a program is that
the compiler now knows what type of arguments are expected by each function. This in-
formation can be used in different ways. Some compilers convert whatever type of actual
argument is used by the calling program to the type specified in the function prototype
and issue a warning that a data conversion has taken place. Other compilers simply issue
a warning indicating that the argument types do not agree and assume that the program-
mer will fix it if such a mismatch is a problem. The ANSI C method of declaring func-
tions also allows the use of a dummy variable with each formal parameter. In fact, when
this ANSI C approach is used with dummy arguments, the only difference between func-
tion prototypes and function declarations is the semicolon at the end of the function pro-
totype and the possible use of extern to indicate that the function is defined in another
module.
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2.6 MACROS AND THE C PREPROCESSOR

The C preprocessor is one of the most useful features of the C programming language.
Although most languages allow compiler constants to be defined and used for conditiona]
compilation, few languages (except for assembly language) allow the user to define
macros. Perhaps this is why C is occasionally referred to as a portable macro assembly
langueage. The large set of preprocessor directives can be used to completely change the
look of a C program such that it is very difficult for anyone to decipher. On the other
hand, the C preprocessor can be used to make complicated programs easy to follow, very
efficient, and easy to code. The remainder of this chapter and the programs discussed in
this book hopefully will serve to illustrate the latter advantages of the C preprocessor.

The C preprocessor allows conditional compilation of program segments, user-
defined symbolic replacement of any text in the program (called aliases as discussed in
Section 2.6.2), and user-defined multiple parameter macros. All of the preprocessor di-
rectives are evaluated before any C code is compiled and the directives themselves are re-
moved from the program before compilation begins. Each preprocessor directive begins
with a pound sign (#) followed by the preprocessor keyword. The following list indicates
the basic use of each of the most commonly used preprocessor directives:

j#idefine NAME macro Associate symbol NAME with macro definition
. (optional parameters)

f#include "file" Copy named £ile (with directory specified) into
current compilation

#include <file> Include £ile from standard C library

#if expression Conditionally compile the following code if result
of expression is true

#ifdef symbol Conditionally compile the following code if the
symbol is defined

#ifndef symbol Conditionally compile the following code if the
symbol is not defined

#else Conditionally compile the following code if the
associated #i £ is not true

#endif Indicates the end of previous #else, #if,
#ifdef, or #ifndef

#undef macro Undefine previously defined macro

2.6.1 Conditional Preprocessor Directives

Most of the above preprocessor directives are used for conditional compilation of por-
tions of a program. For example, in the following version of the stats function (de-
scribed previously in section 2.5.1), the definition of DEBUG is used to indicate that the
print statements should be compiled:
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void stats(float *array, int size, float *ave, float *var)

{

int 1i;
float sum = 0.0; /* initialize sum of signal */
float sum2 = 0.0; /* sum of signal squared */

for(i = 0 ; i < size ; 1++) {
sum = sum + arraylil;
sum2 = sum2 + arrayl[i]*array]{i]; /* calculate sums */
}

#ifdef DEBUG
printf("\nIn stats sum = %f sum2 = %£", sum, sum2);
printf ("\nNumber of array elements = %d",size);

#endif
*ave = sum/size; /* pass average */
*var = (sum2 - sum* (*ave))/(size-1); /* pass variance */

}

If the preprocessor parameter DEBUG is defined anywhere before the #ifdef DEBUG
statement, then the print£ statements will be compiled as part of the program to aid in
debugging stats (or perhaps even the calling program). Many compilers allow the defi-
nition of preprocessor directives when the compiler is invoked. This allows the DEBUG
option to be used with no changes to the program text.

2.6.2 Aliases and Macros

Of all the preprocessor directives, the #define directive is the most powerful because it
allows aliases and multiple parameter macros to be defined in a relatively simple way.
The most common use of #define is a macro with no arguments that replaces one
string (the macro name) with another string (the macro definition). In this way, an alias
can be given to any string including all of the C keywords. For example:

#define DO for(

replaces every occurrence of the string DO (all capital letters so that it is not confused

with the C keyword do) with the four-character string for (. Similarly, new aliases of all
the C keywords could be created with several #define statements (although this seems
silly since the C keywords seem good enough). Even single characters can be aliased. For
example, BEGIN could be aliased to { and END could be aliased to }, which makes a C
program look more like Pascal.

The #define directive is much more powerful when parameters are used to create
a true macro. The above DO macro can be expanded to define a simple FORTRAN style
DO loop as follows:

#define DO(var,beg,end) for(var=beg; var<=end; var++)
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The three macro parameters var, beg, and end are the variable, the beginning value
and the ending value of the DO loop. In each case, the macro is invoked and the string’
placed in each argument is used to expand the macro. For example,

DO(i,1,10)
expands to
for(i=1; i<=10; i++)

which is the valid beginning of a for loop that will start the variable i at 1 and stop it g¢
10. Although this DO macro does shorten the amount of typing required to create such 3
simple for loop, it must be used with caution. When macros are used with other opera-
tors, other macros, or other functions, unexpected program bugs can occur. For example,
the above macro will not work at all with a pointer as the var argument, becausge
DO(*ptr, 1,10) would increment the pointer’s value and not the value it points to (see
section 2.7.1). This would probably result in a very strange number of cycles through the
loop (if the loop ever terminated). As another example, consider the following CcuBg
macro, which will determine the cube of a variable:

#define CUBE(x) (X) * (x) * (x)

This macro will work fine (although inefficiently) with CUBE (i+3), since it would ex-
pand to (i+j)=* (i+3) * (i+3). However, CUBE (i++) expands to (i+4)*(i+4)
*(i++), resulting in i getting incremented three times instead of once. The resulting
value would be x(x+1)(x+2) not x3.

The ternary conditional operator (see section 2.4.3) can be used with macro defini-
tions to make fast implementations of the absolute value of a variable (ABS), the mini-
mum of two variables (MIN), the maximum of two variables (MAX), and the integer
rounded value of a floating-point variable (ROUND) as follows:

#define ABS(a) (({a) < 0) ? (-a) : (a)

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

#define MIN(a,b) (((a) < (b)) ? (a): (b))

#define ROUND(a) (((a}<0)2?(int) ((a)-0.5): {int) ((a)+0.5))

Note that each of the above macros is enclosed in parentheses so that it can be used freely
in expressions without uncertainty about the order of operations. Parentheses are also re-
quired around each of the macro parameters, since these may contain operators as well as
simple variables.

All of the macros defined so far have names that contain only capital letters. While
this is not required, it does make it easy to separate macros from normal C keywords
in programs where macros may be defined in one module and included (using the
#include directive) in another. This practice of capitalizing all macro names and using
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lower case for variable and function names will be used in all programs in this book and
on the accompanying disk.

2.7 POINTERS AND ARRAYS

A pointer is a variable that holds an address of some data, rather than the data itself. The
use of pointers is usually closely related to manipulating (assigning or changing) the ele-
ments of an array of data. Pointers are used primarily for three purposes:

(1) To point to different data elements within an array

(2) To allow a program to create new variables while a program is executing (dynamic
memory allocation)

(3) To access different locations in a data structure

The first two uses of pointers will be discussed in this section; pointers to data structures
are considered in section 2.8.2,

2.7.1 Special Pointer Operators

Two special pointer operators are required to effectively manipulate pointers: the indi-
rection operator (*) and the address of operator (&). The indirection operator (*) is used
whenever the data stored at the address pointed to by a pointer is required, that is, when-
ever indirect addressing is required. Consider the following simple program:

main()
{

int i, *ptr;

i=17; /* set the value of i */
ptr = &i; /* point to address of i */
printf(“\n%d~,i).; /* print i two ways */
printf("\n¥d", *ptr) ;

*ptr = 11; /* change i with pointer */
printf("\n%d 4", *ptr,i); /* print change */

This program declares that i is an integer variable and that ptr is a pointer to an integer
variable. The program first sets i to 7 and then sets the pointer to the address of i by the
Statement ptr=&i;. The compiler assigns i and ptr storage locations somewhere in
memory. At run time, ptr is set to the starting address of the integer variable i. The above
program uses the function printf (see section 2.9.1) to print the integer value of i in two
different ways—by printing the contents of the variable 1 (printf("\n%d",i);),
and by using the indirection operator (printf ("\n%d", *ptr);). The presence of
the * operator in front of ptr directs the compiler to pass the value stored at the address
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ptr to the print£ function (in this case, 7). If only ptr were used, then the address as-
signed to ptx would be displayed instead of the value 7. The last two lines of the exam-
ple illustrate indirect storage; the data at the ptx address is changed to 11. This results in
changing the value of i only because ptr is pointing to the address of i.

An array is essentially a section of memory that is allocated by the compiler and
assigned the name given in the declaration statement. In fact, the name given is nothing
more than a fixed pointer to the beginning of the array. In C, the array name can be used
as a pointer or it can be used to reference an element of the array (i.e., af2]). If a is de-
clared as some type of array then *a and a[0] are exactly equivalent. Furthermore,
* (a+i) and a[i] are also the same (as long as i is declared as an integer), although
the meaning of the second is often more clear. Arrays can be rapidly and sequentially ac-
cessed by using pointers and the increment operator (++). For example, the following
three statements set the first 100 elements of the array a to 10:

int *pointer;
pointer = a;
for(i = 0; i < 100 ; i++) *pointer++ = 10;

On many computers this code will execute faster than the single statement for (i=0;
i<100; i++) alil=10;, because the post increment of the pointer is faster than the
array index calculation.

2.7.2 Pointers and Dynamic Memory Allocation

C has a set of four standard functions that allow the programmer to dynamically change
the type and size of variables and arrays of variables stored in the computer’s memory. C
programs can use the same memory for different purposes and not waste large sections of
memory on arrays only used in one small section of a program. In addition, auto vari-
ables are automatically allocated on the stack at the beginning of a function (or any sec-
tion of code where the variable is declared within a pair of braces) and removed from the
stack when a function is exited (or at the right brace, }). By proper use of auto variables
(see section 2.5.2) and the dynamic memory allocation functions, the memory used by a
particular C program can be very little more than the memory required by the program at
every step of execution. This feature of C is especially attractive in multiuser environ-
ments where the product of the memory size required by a user and the time that memory
is used ultimately determines the overall system performance. In many DSP applications,
the proper use of dynamic memory allocation can enable a complicated DSP function to
be performed with an inexpensive single chip signal processor with a small limited inter-
nal memory size instead of a more costly processor with a larger external memory.

Four standard functions are used to manipulate the memory available to a particular
program (sometimes called the heap to differentiate it from the stack). Malloc allocates
bytes of storage, calloc allocates items which may be any number of bytes long, £ree
removes a previously allocated item from the heap, and realloc changes the size of a
previously allocated item.

When using each function, the size of the item to be allocated must be passed to the
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function. The function then returns a pointer to a block of memory at least the size of the
item or items requested. In order to make the use of the memory allocation functions
portable from one machine to another, the built-in compiler macro sizeof must be
used. For example:

int *ptr;
ptr = (int *) malloc(sizeof(int));

allocates storage for one integer and points the integer pointer, ptr, to the beginning of
the memory block. On 32-bit machines this will be a four-byte memory block (or one
word) and on 16-bit machines (such as the IBM PC) this will typically be only two bytes.
Because malloc (as well as calloc and realloc) returns a character pointer, it must
be cast to the integer type of pointer by the (int *) cast operator. Similarly, calloc
and a pointer, array, can be used to define a 25-element integer array as follows:

int *array:
array = (int *) calloc(25,sizeof(int));

This statement will allocate an array of 25 elements, each of which is the size of an int
on the target machine. The array can then be referenced by using another pointer (chang-
ing the pointer array is unwise, because it holds the position of the beginning of the allo-
cated memory) or by an array reference such as array[i] (where i may be from O to
24). The memory block allocated by calloc is also initialized to zeros.

Malloc, calloc, and £ree provide a simple general purpose memory allocation
package. The argument to £ree (cast as a character pointer) is a pointer to a block previ-
ously allocated by malloc or calloc; this space is made available for further alloca-
tion, but its contents are left undisturbed. Needless to say, grave disorder will result if the
space assigned by malloc is overrun, or if some random number is handed to free.
The function £ree has no return value, because memory is always assumed to be hap-
pily given up by the operating system.

Realloc changes the size of the block previously allocated to a new size in bytes
and returns a pointer to the (possibly moved) block. The contents of the old memory
block will be unchanged up to the lesser of the new and old sizes. Realloc is used less
than calloc and malloc, because the size of an array is usually known ahead of time.
However, if the size of the integer array of 25 elements allocated in the last example must
be increased to 100 elements, the following statement can be used:

array = {(int *) realloc( (char *)array, 100*sizeof(int));

Note that unlike calloc, which takes two arguments (one for the number of items and
one for the item size), realloc works similar to malloc and takes the total size of the
array in bytes. It is also important to recognize that the following two statements are not
equivalent to the previous realloc statement:

free((char *)array);
array = {(int *) calloc(100,sizeof(int));
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These statements do change the size of the integer array from 25 to 100 elements, but g,
not preserve the contents of the first 25 elements. In fact, calloc will initialize al] 1y
integers to zero, while realloc will retain the first 25 and not set the remaining 75
array elements to any particular value.

Unlike £ree, which returns no value, malloc, realloc, and calloc retum 5
null pointer (0) if there is no available memory or if the area has been corrupted by stor.
ing outside the bounds of the memory block. When realloe returns 0, the block
pointed to by the original pointer may be destroyed.

2.7.3 Arrays of Pointers
Any of the C data types or pointers to each of the data types can be declared as an array,

Arrays of pointers are especially useful in accessing large matrices. An array of pointerg
to 10 rows each of 20 integer elements can be dynamically allocated as follows:

int *mat(10];

int i;
for(i = 0 ; i <10 ; i++) {
mat[i] = (int *)calloc(20, sizeof (int));

if(lmatfi]) |
printf ("\nError in matrix allocation\n"};
exit(1);

In this code segment, the array of 10 integer pointers is declared and then each pointer is
set to 10 different memory blocks allocated by 10 successive calls to calloe. After each
call to calloc, the pointer must be checked to insure that the memory was available
(!mat[i] will be true if mat [i] is null). Each element in the matrix mat can now be
accessed by using pointers and the indirection operator. For example, * (mat {i] + i)
gives the value of the matrix element at the ith row (0-9) and the jth column (0-19) and
is exactly equivalent to mat [i] [ J1. In fact, the above code segment is equivalent (in
the way mat may be referenced at least) to the array declaration int mat [10]1120];,
except that mat [10] [20] is allocated as an auto variable on the stack and the above
calls to calloc allocates the space for mat on the heap. Note, however, that when mat
is allocated on the stack as an auto variable, it cannot be used with free or realloc
and may be accessed by the resulting code in a completely different way.

The calculations required by the compiler to access a particular element in a two-
dimensional matrix (by using matrix{i] [j], for example) usually take more instruc-
tions and more execution time than accessing the same matrix using pointers. This is es-
pecially true if many references to the same matrix row or column are required. However,
depending on the compiler and the speed of pointer operations on the target machine, ac-
cess to a two-dimensional array with pointers and simple pointers operands (even incre-
ment and decrement) may take almost the same time as a reference to a matrix such as
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ali] [3]. For example, the product of two 100 x 100 matrices could be coded using
two-dimensional array references as follows:

int a[lOO][lOO],b[lOO][100],0[100][100]; /* 3 matrices */
int i,3j,k; /* indices */

/* code to set up mat and vec goes here */

/* do matrix multiply ¢ = a * b */
for(i = 0 ; i < 100 ; j++) {
for(j = 0 ; j < 100 ; j++) {
clil[j]l = 0;
for(k = 0 ; k < 100 ; k++)
cli][3] += alillk] * blk][3j);

The same matrix product could also be performed using arrays of pointers as follows:

int a[lOO][100],b[100][100],c[100][100]; /* 3 matrices */
int *aptr, *bptr, *cptr; /* pointers to a,b,c */
int i,3,k; /* indicies */.

/* code to set up mat and vec goes here */

/* doc=a*b */
for(i = 0 ; 1 < 100 ; i++) {
cptr = c[i];
bptr = b{0];
for(j = 0 ; j <100 ; j++) {
aptr = ali}l;
*cptr = (*aptr++) * (*bptr++);
for(k = 1 ; k < 100; k++) {
*eptr += (*aptr++) * blk][j];
}
cptr++;

The latter form of the matrix multiply code using arrays of pointers runs 10 to 20 percent
faster, depending on the degree of optimization done by the compiler and the capabilities
of the target machine. Note that ¢[1] and a [4i] are references to arrays of pointers each
pointing to 100 integer values. Three factors help make the program with pointers faster:

(1) Pointer increments (such as *aptr++) are usually faster than pointer adds.
(2) No multiplies or shifts are required to access a particular element of each matrix.
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(3) The first add in the inner most loop (the one involving k) was taken outside the
loop (using pointers aptr and bptr) and the initialization of ¢[11 [J} to zero
was removed.

2.8 STRUCTURES

Pointers and arrays allow the same type of data to be arranged in a list and easily accessed
by a program. Pointers aiso allow arrays to be passed to functions efficiently and dynami-
cally created in memory. When unlike logically related data types must be manipulated,
the use of several arrays becomes cumbersome. While it is always necessary to process
the individual data types separately, it is often desirable to move all of the related data
types as a single unit. The powerful C data construct called a structure allows new data
types to be defined as a combination of any number of the standard C data types. Once the
size and data types contained in a structure are defined (as described in the next section),
the named structure may be used as any of the other data types in C. Arrays of structures,
pointers to structures, and structures containing other structures may all be defined.

One drawback of the user-defined structure is that the standard operators in C do not
work with the new data structure. Although the enhancements to C available with the C++
programining language do allow the user to define structure operators (see The C++
Programming Language, Stroustrup, 1986), the widely used standard C language does not
support such concepts. Thus, functions or macros are usually created to manipulate the
structures defined by the user. As an example, some of the functions and macros required
to manipulate structures of complex floating-point data are discussed in section 2.8.3.

2.8.1 Declaring and Referencing Structures

A structure is defined by a structure template indicating the type and name to be used to
reference each element listed between a pair of braces. The general form of an N-element
structure is as follows:

struct tag name {
typel element namel;
type2 element name2;

typeN element_nameN;
} variable_name;

In each case, typel, type2, ..., typeN refer to a valid C data type (char, int,
float, or double without any storage class descriptor) and element namel,
element_name2, ..., element_nameN refer to the name of one of the elements
of the data structure. The tag_name is an optional name used for referencing the struc-
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" ture later. The optional variable_name, or list of variable names, defines the names

of the structures to be defined. The following structure template with a tag name of
record defines a structure containing an integer called length, a float called
sample_rate, a character pointer called name, and a pointer to an integer array called
data:

struct record {
int length;
float sample_ rate;
char *name;
int *data;
};

This structure template can be used to declare a structure called voice as follows:
struct record voice;
The structure called voice of type record can then be initialized as follows:

voice.length = 1000;
voice.sample rate = 10.e3;
voice.name = "voice signal®;

The last element of the structure is a pointer to the data and must be set to the beginning
of a 1000-element integer array (because length is 1000 in the above initialization). Each
element of the structure is referenced with the form struct_name.element. Thus,
the 1000-element array associated with the voice structure can be allocated as follows:

voice.data = (int *) calloc(1000,sizeof(int));

Similarly, the other three elements of the structure can be displayed with the following
code segment:

printf ("\nLength = %d",voice.length);
printf("\nSampling rate = %f",voice.sample rate);
printf("\nRecord name = %s",voice.name);

A typedef statement can be used with a structure to make a user-defined data type and
make declaring a structure even easier. The typedef defines an alternative name for the
structure data type, but is more powerful than #define, since it is a compiler directive
as opposed to a preprocessor directive. An alternative to the record structure is a
typedef called RECORD as follows:

typedef struct record RECORD;
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This statement essentially replaces all occurrences of RECORD in the program with the
struct record definition thereby defining a new type of variable called RECORD
that may be used to define the voice structure with the simple statement RECORD voice ;.

The typedef statement and the structure definition can be combined so that the
tag name record is avoided as follows:

typedef struct {
int length;
float sample_rate;
char *name;
int *data;
} RECORD;

In fact, the typedef£ statement can be used to define a shorthand form of any type of
data type including pointers, arrays, arrays of pointers, or another typede€£. For exam-
ple,

typedef char STRING[80];

allows 80-character arrays to be easily defined with the simple statement STRING
namel, name2;. This shorthand form using the typedef is an exact replacement for
the statement char namel[80], name2 [80];.

2.8.2 Pointers to Structures

Pointers to structures can be used to dynamically allocate arrays of structures and effi-
ciently access structures within functions. Using the RECORD typedef defined in the
last section, the following code segment can be used to dynamically allocate a five-
element array of RECORD structures:

RECORD *voices;
voices = (RECORD *) calloc (5, sizeof (RECORD) ) ;

These two statements are equivalent to the single-array definition RECORD
voices[5]; except that the memory block allocated by calloe can be deallocated by
a call to the £ree function. With either definition, the length of each element of the array
could be printed as follows:

int i;
for(i =0 ; 1 <5 ; i++)
printf ("\nLength of voice %d = %d",1i,voices[i].length);

The voices array can also be accessed by using a pointer to the array of structures. If
voice_ptr is a RECORD pointer (by declaring it with RECORD *voice_ptr;), then
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(*voice ptr).length could be used to give the length of the RECORD which was
pointed to by voice_ptr. Because this form of pointer operation occurs with structures
often in C, a special operator (->) was defined. Thus, voice _ptr->length is equiv-
alent to (*voice_ptr). length. This shorthand is very useful when used with func-
tions, since a local copy of a structure pointer is passed to the function. For example, the
following function will print the length of each record in an array of RECORD of length
size:

void print_record_length (RECORD *rec, int size)

{
int i;
for(i = 0 ; i < size ; i++) {
printf ("\nLength of record %d = %d",i,rec_>length);
rec++;
}
}

Thus, a statement like print_record*length(voices, 5) ; will print the lengths
stored in each of the five elements of the array of RECORD structures.

2.8.3 Complex Numbers

A complex number can be defined in C by using a structure of two floats and a
typedef as follows:

typedef struct {
float real;
float imag;
} COMPLEX;

Three complex numbers, %, ¥, and z can be defined using the above structure as follows:
COMPLEX X,¥,z;

In order to perform the complex addition z = x + y without functions or macros, the fol-
lowing two C statements are required:

z.real = x.real + y.real;
z.imag = x.imag + y.imag;

These two statements are required because the C operator + can only work with the indi-
vidual parts of the complex structure and not the structure itself. In fact, a statement in-
volving any operator and a structure should give a compiler error. Assignment of any
structure (like z = x;) works just fine, because only data movement is involved. A sim-
ple function to perform the complex addition can be defined as follows:
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COMPLEX cadd{(COMPLEX a,COMPLEX b) /* pass by value */
{

COMPLEX sum; /* define return value */
sum.real = a.real + b.real;
sum.imag = a.imag + b.imag;
return(sum) ;
}

This function passes the value of the a and b structures, forms the sum of a and b, and
then returns the complex summation (some compilers may not allow this method of pass-
ing structures by value, thus requiring pointers to each of the structures). The cadd func-
tion may be used to set z equal to the sum of x and y as follows:

z = cadd(x,y):

The same complex sum can also be performed with a rather complicated single line
macro defined as follows:

#define CADPD(a,b}\
(C_t.real=a.real+b.real,C_t.imag=a.imag+b.imag,C_t)

This macro can be used to replace the cadd function used above as follows:

COMPLEX C_t;
z = CADD(z,¥y);

This CADD macro works as desired because the macro expands to three operations separated
by commas. The one-line macro in this case is equivalent to the following three statements:

C_t.real = x.real + y.real;
C_t.imag = x.imag + y.real;
z = C_t;

The first two operations in the macro are the two sums for the real and imaginary parts.
The sums are followed by the variable ¢_t (which must be defined as COMPLEX before
using the macro). The expression formed is evaluated from left to right and the whole ex-
pression in parentheses takes on the value of the last expression, the complex structure
C_t, which gets assigned to 2 as the last statement above shows.

The complex add macro CADD will execute faster than the cadd function because
the time required to pass the complex structures x and y to the function, and then pass the
sum back to the calling program, is a significant part of the time required for the function
call. Unfortunately, the complex add macro cannot be used in the same manner as the
function. For example:

COMPLEX a,b,c,d;
d = cadd(a,cadd(b,c));
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will form the sum d=a+b+c; as expected. However, the same format using the CADD
macro would cause a compiler error, because the macro expansion performed by the C
preprocessor results in an illegal expression. Thus, the CADD may only be used with sim-
ple single-variable arguments. If speed is more important than ease of programming, then
the macro form should be used by breaking complicated expressions into simpler two-
operand expressions. Numerical C extensions to the C language support complex num-
bers in an optimum way and are discussed in section 2.10.1.

2.9 COMMON C PROGRAMMING PITFALLS

The following sections describe some of the more common errors made by programmers
when they first start coding in C and give a few suggestions how to avoid them.

2.9.1 Array Indexing

In C, all array indices start with zero rather than one. This makes the last index of a N
long array N-1. This is very useful in digital signal processing, because many of the ex-
pressions for filters, z-transforms, and FFTs are easier to understand and use with the
index starting at zero instead of one. For example, the FFT output for k = 0 gives the zero
frequency (DC) spectral component of a discrete time signal. A typical indexing problem
is illustrated in the following code segment, which is intended to determine the first 10
powers of 2 and store the results in an array called power2:

int power2{10};

int i,p;

p=1;

for (i =1 ; i<= 10 ; i++) {
power2[i] = p;
p = 2*p;

This code segment will compile well and may even run without any difficulty. The prob-
lem is that the £or loop index i stops on i=10, and power2 [10] is not a valid index
to the power2 array. Also, the for loop starts with the index 1 causing power2[0] to
not be initialized. This results in the first power of two (20, which should be stored in
power2[0]) to be placed in power2[1]. One way to correct this code is to change the
for loop to read for(i = 0; 1i<10; i++), so that the index to power2 starts at O
and stops at 9.

2.9.2 Failure to Pass-by-Address
This problem is most often encountered when first using scanf to read in a set of vari-

ables. If i is an integer (declared as int i;), then a statement like scanf ("%d~", i) ;
is wrong because scanf expects the address of (or pointer to) the location to store the
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integer that is read by scanf. The correct Statement to read in the integer i is
scanf ("%d", &i) ;, where the address of operator (&) was used to point to the addresg
of i and pass the address to scanf as required. On many compilers these types of errorg
can be detected and avoided by using function prototypes (see section 2.5.3) for all user
written functions and the appropriate include files for all C library functions. By using
function prototypes, the compiler is informed what type of variable the function expects
and will issue a warning if the specified type is not used in the calling program. On many
UNIX systems, a C program checker called LINT can be used to perform parameter-type
checking, as well as other syntax checking.

2.9.3 Misusing Pointers

Because pointers are new to many programmers, the misuse of pointers in C can be par-
ticularly difficult, because most C compilers will not indicate any pointer errors. Some
compilers issue a warning for some pointer errors. Some pointer errors will result in the
programs not working correctly or, worse yet, the program may seem to work, but wil
not work with a certain type of data or when the program is in a certain mode of opera-
tion. On many small single-user systems (such as the IBM PC), misused pointers can eas-
ily result in writing to memory used by the operating system, often resulting in a system
crash and requiring a subsequent reboot.

There are two types of pointer abuses: setting a pointer to the wrong value (or not
initializing it at all) and confusing arrays with pointers. The following code segment
shows both of these problems:

char *string;
char msg[10];
int 1i;
printf ("\nEnter title");
scanf ("%s", string) ;
i=0;
while(*string I= ' ') {
i++;
string++;
}
msg="Title = ",
printf('%s %s %d before space", msg, string,i);

The first three statements declare that memory be allocated to a pointer variable called
string, a 10-element char array called msg and an integer called 1. Next, the user is
asked to enter a title into the variable called string. The while loop is intended to
search for the first space in the string and the last printf statement is intended to dis-
play the string and the number of characters before the first space.

There are three pointer problems in this program, although the program will com-
pile with only one fatal error (and a possible warning). The fatal error message will refer-
ence the msg="Title ="; statement. This line tells the compiler to set the address of
the msg array to the constant string "Title =". This is not allowed so the error
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“Lvalue required” (or something less useful) will be produced. The role of an array and a
pointer have been confused and the msg variable should have been declared as a pointer
and used to point to the constant string "Title =", which was already allocated stor-
age by the compiler.

The next problem with the code segment is that scanf will read the string into the
address specified by the argument string. Unfortunately, the value of string at exe-
cution time could be anything (some compilers will set it to zero), which will probably
not point to a place where the title string could be stored. Some compilers will issue a
warning indicating that the pointer called string may have been used before it was de-
fined. The problem can be solved by initializing the string pointer to a memory area allo-
cated for storing the title string. The memory can be dynamically allocated by a simple
call to calloc as shown in the following corrected code segment:

char *string, *msg;
int i;
string:calloc(BO,sizeof(char));
printf("\nEnter title*);
scanf ("%s", string);
i=0;
while(*string 1= ' ) {
i++;
string++;
}
msg="Title =v;
printf("$s %s %d before space",msg, string, i) ;

The code will now compile and run but will not give the correct response when a title
string is entered. In fact, the first characters of the title string before the first space will
not be printed because the pointer string was moved to this point by the execution of
the while loop. This may be useful for finding the first space in the whi le loop, but re-
sults in the address of the beginning of the string being lost. It is best not to change a
pointer which points to a dynamically allocated section of memory. This pointer problem
can be fixed by using another pointer (called ep) for the while loop as follows:

char *string, *cp, *msg;
int i;
string:calloc(BO,sizeof(char));
printf ("\nEnter title");
scanf ("$s", string) ;
i=0;
cp = string;
while(*cp 1= + 1) {
i++;
Cp++;
}
msg="Title =";
printf("%s %s %d before space", msg,string,i);
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Another problem with this program segment is that if the string entered containg
spaces, then the while loop will continue to search through memory until it findg
space. On a PC, the program will almost always find a space (in the operating syster, 1
haps) and will set i to some large value. On larger multiuser systems, this may result j
fatal run-time error because the operating system must protect memory not allocated -
the program. Although this programming problem is not unique to C, it does illustrate
important characteristic of pointers—pointers can and will point to any memory loca
without regard to what may be stored there.

Some ANSI C compilers designed for DSP processors are now available with numeric

extensions. These language extensions were developed by the ANSI NCEG (Numeric @ 7

Extensions Group), a working committee reporting to ANSI X3J11. This section gives
overview of the Numerical C language recommended by the ANSI standards commi
Numerical C has several features of interest to DSP programmers:

(1) Fewer lines of code are required to perform vector and matrix operations.

(2) Data types and operators for complex numbers (with real and imaginary compos
nents) are defined and can be optimized by the compiler for the target processor;
This avoids the use of structures and macros as discussed in section 2.8.3.

(3) The compiler can perform better optimizations of programs containing iterati
which allows the target processor to complete DSP tasks in fewer instruction cycles..

2.10.1 Complex Data Types

Complex numbers are supported using the keywords complex, creal, cimag, and
conj. These keywords are defined when the header file complest.h is included. The
are six integer complex types and three floating-point complex types, defined as shown
the following example:

short int complex i;

int complex j;

long int complex k;

unsigned short int complex ui;
unsigned int complex uj;
unsigned long int complex uk;
float complex x;

double complex y;

long double complex z;

The real and imaginary parts of the complex types each have the same representations
the type defined without the complex keyword. Complex constants are represented a5

Sec. 2.10 Numerical C Extensions 91

sum of a real constant and an imaginary constant, which is defined by using the suffix i
after the imaginary part of the number. For example, initialization of complex numbers is
performed as follows:

short int complex i = 3 + 2i;
float complex x[3] = {1.0+2.0i, 3.0i, 4.0};

The following operators are defined for complex types: & (address of), * (point to com-
plex number), + (add), — (subtract), * (multiply), / (divide). Bitwise, relational, and logi-
cal operators are not defined. If any one of the operands are complesx, the other
operands will be converted to complex, and the result of the expression will be
complex. The ereal and cimag operators can be used in expressions to access the
real or imaginary part of a complex variable or constant. The con3j operator returns the
complex conjugate of its complex argument. The following code segment illustrates these
operators:

float complex a,b,c;

creal(a)=1.0;

cimag(a)=2.0;

creal (b)=2.0*cimag(a) ;

cimag(b)=3.0;

c=conj(b) ; /* ¢ will be 4 - 3i */

2.10.2 iteration Operators

Numerical C offers iterators to make writing mathematical expressions that are computed
iteratively more simple and more efficient. The two new keywords are iter and sum.
Iterators are variables that expand the execution of an expression to iterate the expression
so that the iteration variable is automatically incremented from O to the value of the itera-
tor. This effectively places the expression inside an efficient £or loop. For example, the
following three lines can be used to set the 10 elements of array ix to the integers 0 to 9:

iter I=10;
int ix[101;
ix[I1=1;

The sum operator can be used to represent the sum of values computed from values of an
iterator. The argument to sum must be an expression that has a value for each of the iter-
ated variables, and the order of the iteration cannot change the result. The following code
segment illustrates the sum operator:

float a[10],b{10},c[10],d[10}{10],e[10]}{10],£(10][10];
float s;

iter I=10, J=10, K=10;

s=sum{al[I]); /* computes the sum of a into s */
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blJ]=sum(alT]); /* sum of a calculated 10 times and storeg
in the elements of b */
c[Ji=sum(d[I] [J]); /* computes the sum of the column
elements of d, the statement is
iterated over J */

2.11.1 Software Quality

The four measures of software quality (reliability, maintainability, extensibility, and effi-
ciency) are rather difficult to quantify. One almost has to try to modify a program to find
* out if it is maintainable or extensible. A program is usually tested in a finite number of

= ; * 11 the el ts in g * o . . .
z[i??;?z[iilfjé)[l] (K] *é [K???]S)‘_a I mz;iim ;unlii;l;y ) / ways much smaller than the millions of input data conditions. This means that a program
cl{I=sum(d[T] [K]*a[K]) ; ' /* matrix * vector */ can be considered reliable only after years of bug-free use in many different environ-

ments.

Programs do not acquire these qualities by accident. It is unlikely that good pro-
grams will be intuitively created just because the programmer is clever, experienced, or
uses lots of comments. Even the use of structured-programming techniques (described
briefly in the next section) will not assure that a program is easier to maintain or extend.
It is the author’s experience that the following five coding situations will often lessen the
software quality of DSP programs:

17 COMMENTS ON PROGRAMMING STYLE

The four common measures of good DSP software are reliability, maintainability, ey,
sibility, and efficiency.

A reliable program is one that seldom (if ever) fails. This is especially importang
DSP because tremendous amounts of data are often processed using the same program.
the program fails due to one sequence of data passing through the program, it may be dj
ficult, or impossible, to ever determine what caused the problem.

Since most programs of any size will occasionally fail, a maintainable program
one that is easy to fix. A truly maintainable program is one that can be fixed by someo
other than the original programmer. It is also sometimes important to be able to Maintain
a program on more than one type of processor, which means that in order for a progra
to be truly maintainable, it must be portable.

An extensible program is one that can be easily modified when the requiremen
change, new functions need to be added, or new hardware features need to be exploited.

An efficient program is often the key to a successful DSP implementation of a d
sired function. An efficient DSP program will use the processing capabilities of the targ
computer (whether general purpose or dedicated) to minimize the execution time. In
typical DSP system this often means minimizing the number of operations per input sam

(1) Functions that are too big or have several purposes

(2) A main program that does not use functions

(3) Functions that are tightly bound to the main program

(4) Programming “tricks” that are always poorly documented
(5) Lack of meaningful variable names and comments

An oversized function (item 1) might be defined as one that exceeds two pages of source
listing. A function with more than one purpose lacks strength. A function with one clearly
defined purpose can be used by other programs and other programmers. Functions with
many purposes will find limited utility and limited acceptance by others. All of the func-
tions described in this book and contained on the included disk were designed with this
important consideration in mind. Functions that have only one purpose should rarely ex-

ple or maximizing the number of operations that can be performed in parallel. In eith ceed one page. This is not to say that all functions will be smaller than this. In time-
case, minimizing the number of operations per second usually means a lower overall sys . critical DSP applications, the use of in-line code can easily make a function quite long
tem cost as fast computers typically cost more than slow computers. For example, but can sometimes save precious execution time. It is generally true, however, that big
could be said that the FFT algorithm reduced the cost of speech processing (both imple programs are more difficult to understand and maintain than small ones.

mentation cost and development cost) such that iexpensive speech recognition and gen A main program that does not use functions (item 2) will often result in an ex-
eration processors are now available for use by the general public. tremely long and hard-to-understand program. Also, because complicated operations
Unfortunately, DSP programs often forsake maintainability and extensibility for ef: often can be independently tested when placed in short functions, the program may be
ficiency. Such is the case for most currently available programmable signal processin easier to debug. However, taking this rule to the extreme can result in functions that are
integrated circuits. These devices are usually programmed in assembly language in such tightly bound to the main program, violating item 3. A function that is tightly bound to
way that it is often impossible for changes to be made by anyone but the original pro- the rest of the program (by using too many global variables, for example) weakens the
grammer, and after a few months even the original programmer may have to rewrite th entire program. If there are lots of tightly coupled functions in a program, maintenance
program to add additional functions. Often a compiler is not available for the Processor of. becomes impossible. A change in one function can cause an undesired, unexpected
’ change in the rest of the functions.
piled language. The current trend in programmable signal processors appears to be to- Clever programming tricks (item 4) should be avoided at all costs as they will often
ward high-level languages. In fact, many of the DSP chip manufacturers are supplying C : not be reliable and will almost always be difficult for someone else to understand (even
with lots of comments). Usually, if the program timing is so close that a trick must be
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used, then the wrong processor was chosen for the application. Even if the progray
trick solves a particular timing problem, as soon as the system requirements Chang
they almost always do), a new timing problem without a solution may soon develop,
A program that does not use meaningful variables and comments (item 5) ig
anteed to be very difficult to maintain. Consider the following valid C program:

11.2 Structured Programming

sructured programming has developed from the notion that any algorithm, no matter
how complex, can be expressed by using the programming-control structures if-else,
while, and sequence. All programming languages must contain some representation of
these three fundamental control structures. The development of structured programming

main() {int _o_oo_,_ooo;for(_o oo _=2;; o__o_  ++ .
{for{__o00o_=2; o__00_ % 000_1=0;__000_++; ) ‘revealed that if a program uses these three control structures, then the logic of the pro-
1 (_ 000 == 0 _oo_)printf("\nsd*, o_oo_ ):}} can be read and understood by beginning at the first statement and continuing

‘downward to the last. Also, all programs could be written without goto statements.
Generally, structured-programming practices lead to code that is easier to read, easier to
maintain, and even easier to write.

The C language has the three basic control structures as well as three additional
structured-programming constructs called do-while, for, and case. The additional three
control structures have been added to C and most other modern languages because they
‘are convenient, they retain the original goals of structured programming, and their use
often makes a program easier to comprehend.

The sequence control structure is used for operations that will be executed once in a
function or program in a fixed sequence. This structure is often used where speed is most
important and is often referred to as in-line code when the sequence of operations are
identical and could be coded using one of the other structures. Extensive use of in-line

Even the most experienced C programmer would have difficulty determining what
three-line program does. Even after running such a poorly documented program, it
be hard to determine how the results were obtained. The following program does ex:
the same operations as the above three lines but is easy to follow and modify:

main ()
{
int prime_test,divisor;
/* The outer for loop trys all numbers >1 and the inner
for loop checks the number tested for any divisors
less than itself. */

for (prime_test = 2 ; ; prime_test++) { code can obscure the purpose of the code segment.
3 3 = - 3 3 3 = . 1 i . . . . . qs P
for(divisor = 2 ; prime_test % divisor != 0 ; divisor:+); The if-else control structure in C is the most common way of providing conditional
if (divisor == prime_test) printf("\n%d", prime_test);

execution of a sequence of operations based on the result of a logical operation. Indenting
of different levels of 1£ and else statements (as shown in the example in section 2.4.1)
is not required; it is an expression of C programming style that helps the readability of the
-else control structure. Nested while and for loops should also be indented for im-
proved readability (as illustrated in section 2.7.3).

The case control structure is a convenient way to execute one of a series of opera-
ons based upon the value of an expression (see the example in section 2.4.2). It is often
used instead of a series of if-else structures when a large number of conditions are tested
based upon a common expression. In C, the switch statement gives the expression to
‘test and a series of case statements give the conditions to match the expression. A
default statement can be optionally added to execute a sequence of operations if none
of the listed conditions are met.

The last three control structures (while, do-while, and for) all provide for repeating
sequence of operations a fixed or variable number of times. These loop statements can
ake a program easy to read and maintain. The while loop provides for the iterative ex-
cution of a series of statements as long as a tested condition is true; when the condition
, false, execution continues to the next statement in the program. The do-while con-
-trol structure is similar to the while loop, except that the sequence of statements is exe-
cuted at least once. The £or control structure provides for the iteration of statements
‘with automatic modification of a variable and a condition that terminates the iterations.
For loops are more powerful in C than most languages. C allows for any initializing
tatement, any iterating statement and any terminating statement. The three statements do

}

It is easy for anyone to discover that the above well-documented program prints a lis
prime numbers, because the following three documentation rules were followed:

(1) Variable names that are meaningful in the context of the program were used. Av
variable names such as ®.y,z or i,j.k, unless they are simple indexes used 1
very obvious way, such as initializing an entire array to a constant.

(2) Comments preceded each major section of the program (the above program
has one section). Although the meaning of this short program is fairly clear wi
the comments, it rarely hurts to have too many comments. Adding a blank line,
tween different parts of a program also sometimes improves the readability
program because the different sections of code appear separated from each other;

(3) Statements at different levels of nesting were indented to show which control st
ture controls the execution of the statements at a particular level. The author p
to place the right brace ({) with the control structure (for, while, if, etc.) an
place the left brace (}) on a separate line starting in the same column as the b
ning of the corresponding control structure. The exception to this practice
function declarations where the right brace is placed on a separate line after
gument declarations.
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after displaying an error message. Such an error-related exit is performed by calling the C
brary function exit (n) with a suitable error code, if desired. Similarly, many of the
unctions have more than one return statement as this can make the logic in a function
much easier to program and in some cases more efficient.

not need to be related and any of them can be a null statement or multiple statemenpg;
following three examples of while, do-while, and £or loops ail calculate the

of two of an integer i (assumed to be greater than 0) and set the result to x._ The
loop is as follows:

k =2; /* while loop k=2**i */
while(i > 0) {
k = 2%k;

i
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}

The do-while loop is as follows:

k =1; /* do-while loop k = 2%*ji */

k = 2%k;
i
} while(i > 0);

The £ox loop is as follows:

fortk =2 ; i >1; i—)
k = 2*k; /* for loop k=2**j */

Which form of loop to use is a personal matter. Of the three equivalent code segm
shown above, the for loop and the while loop both seem easy to understand and wo
probably be preferred over the do-while construction.

The C language also offers several extensions to the six structured progra

because more than one condition may cause the iterations to stop. The infamous
statement is also included in C. Nearly every language designer includes a goto st
ment with the advice that it should never be used along with an example of whe
might be useful. :

The program examples in the following chapters and the programs contained on.
enclosed disk were developed by using structured-programming practices. The code
be read from top to bottom, there are no goto statements, and the six accepted cont

throughout the software in this book is that each program and function have only
entry and exit point. Although every function and program does have only one ¢
point (as is required in C), many of the programs and functions have multiple exit poi
Typically, this is done in order to improve the readability of the program. For examp
error conditions in a main program often require terminating the program prema




