CHAPTER 4

REAL-TIME FILTERING

Filtering is the most commonly used signal processing technique. Filters are usually used
to remove or attenuate an undesired portion of a signal’s spectrum while enhancing the
desired portions of the signal. Often the undesired portion of a signal is random noise
with a different frequency content than the desired portion of the signal. Thus, by design-
ing a filter to remove some of the random noise, the signal-to-noise ratio can be improved
in some measurable way.

Filtering can be performed using analog circuits with continuous-time analog in-
puts or using digital circuits with discrete-time digital inputs. In systems where the input
signal is digital samples (in music synthesis or digital transmission systems, for example)
a digital filter can be used directly. If the input signal is from a sensor which produces an
analog voltage or current, then an analog-to-digital converter (A/D converter) is required
to create the digital samples. In either case, a digital filter can be used to alter the spec-
trum of the sampled signal, x;, in order to produce an enhanced output, y;. Digital filtering
can be performed in either the time domain (see section 4.1) or the frequency domain (see
section 4.4), with general-purpose computers using previously stored digital samples or
in real-time with dedicated hardware.

4.1 REAL-TIME FIR AND IIR FILTERS

Figure 4.1 shows a typical digital filter structure containing N memory elements used to
store the input samples and N memory elements (or delay elements) used to store the out-
put sequence. As a new sample comes in, the contents of each of the input memory ele-
ments are copied to the memory elements to the right. As each output sample is formed
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FIGURE 4.1 Filter structure of Nth order filter. The previous N input and output sam-
ples stored in the delay elements are used to form the output sum.

by accumulating the products of the coefficients and the stored values, the output mem-
ory elements are copied to the left. The series of memory elements forms a digital delay
line. The delayed values used to form the filter output are called zaps because each output
makes an intermediate connection along the delay line to provide a particular delay. This
filter structure implements the following difference equation:

Q-1 P-1
Ym) =Y byx(n-g)-Y a,y(n-p). @1
q=0 p=1

As discussed in Chapter 1, filters can be classified based on the duration of their impulse
response. Filters where the a,, terms are zero are called finite impulse response (FIR) fil-
ters, because the response of the filter to an impulse (or any other input signal) cannot
change N samples past the last excitation. Filters where one or more of the a, terms are
nonzero are infinite impulse response (IIR) filters. Because the output of an IIR filter de-
pends on a sum of the N input samples as well as a sum of the past N output samples, the
output response is essentially dependent on all past inputs. Thus, the filter output re-
sponse to any finite length input is infinite in length, giving the IIR filter infinite memory.

Finite impulse response (FIR) filters have several properties that make them useful
for a wide range of applications. A perfect linear phase response can easily be con-
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structed with an FIR filter allowing a signal to be passed without Phase distortiop, FIR
filters are inherently stable, so stability concerns do not arise in the design or implemey,
tation phase of development. Even though FIR filters typically require a large Dumbey o;
multiplies and adds per input sample, they can be implemented using fast convolutioy,
with FFT algorithms (see section 4.4.1). Also, FIR structures are simpler and easier ¢
implement with standard fixed-point digital circuits at very high speeds. The only pogsi.
ble disadvantage of FIR filters is that they require more multiplies for a given ffequency
response when compared to IIR filters and, therefore, often exhibit a longer Processing
delay for the input to reach the output.

During the past 20 years, many techniques have been developed for the design ang
implementation of FIR filters. Windowing is perhaps the simplest and oldest FIR design
technique (see section 4.1.2), but is quite limited in practice. The window design methog
has no independent control over the passband and stopband ripple. Also, filters with un-
conventional responses, such as multiple passband filters, cannot be designed. Op the
other hand, window design can be done with a pocket calculator and can come close to
optimal in some cases.

This section discusses FIR filter design with different equiripple error in the pass-
bands and stopbands. This class of FIR filters is widely used primarily because of the
well-known Remez exchange algorithm developed for FIR filters by Parks and
McClellan. The general Parks-McClellan program can be used to design filters with sey.
eral passbands and stopbands, digital differentiators, and Hilbert transformers. The FIR
coefficients obtained program can be used directly with the structure shown in Figure 4.1
(with the a_ terms equal to zero). The floating-point coefficients obtained can be directly
used with floating-point arithmetic (see section 4.1.1).

The Parks-McClellan program is available on the IEEE digital signal processing
tape or as part of many of the filter design packages available for personal computers,
The program is also printed in several DSP texts (see Elliot, 1987, or Rabiner and Gold,
1975). The program REMEZ.C is a C language implementation of the Parks-McClellan
program and is included on the enclosed disk. An example of a filter designed using the
REMEZ program is shown at the end of section 4.1.2. A simple method to obtain FIR fil-
ter coefficients based on the Kaiser window is also described in section 4.1.2. Although
this method is not as flexible as the Remez, exchange algorithm it does provide optimal
designs without convergence problems or filter length restrictions.

4.1.1 FIR Filter Function

Figure 4.2 shows a block diagram of the FIR real-time filter implemented by the function
fir_ filter (shown in Listing 4.1 and contained in the file FILTER.C). The
fir_ filter function implements the FIR filter using a history pointer and coefficients
passed to the function. The history array is allocated by the calling program and is used to
store the previous N — 1 input samples (where N is the number of FIR filter coefficients).
The last few lines of code in £ir_£ilter implements the multiplies and accumulates
required for the FIR filter of length N. As the history pointer is advanced by using a post-
increment, the coefficient pointer is post-decremented. This effectively time reverses the
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FIGURE 4.2 Block diagram of real-time N tap FIR filter structure as imple-
mented by function £ir filter.

history [0]

coefficients so that a true convolution is implemented. On some microprocessors, post-
decrement is not implemented efficiently so this code becomes less efficient, Improved
efficiency can be obtained in this case by storing the filter coefficients in time-reversed
order. Note that if the coefficients are symmetrical, as for simple linear phase lowpass fil-
ters, then the time-reversed order and normal order are identical. After the for loop and
N ~ 1 multiplies have been completed, the history array values are shifted one sample to-
ward history[0], so that the new input sample can be stored in history[N-1].
The £ir_filter implementation uses pointers extensively for maximum efficiency.
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fir filter — Perform fir filtering sample by sample on floats

Requires array of filter coefficients and pointer to history.
Returns one output sample for each input sample.

float fir_filter (float input, float *coef, int n, float *history)

float input new float input sample

float *coef pointer to filter coefficients
int n number of coefficients in filter
float *history history array pointer

Returns float value giving the current output.

*******************‘k*****************************************************/

float fir_filter(float input,float *coef,int n, float *history)
{

int i;

float *hist_ptr, *histl_ptr, *coef_ptr;

float output;

hist_ptr = history:;
histl_ptr = hist_ptr; /* use for history update */
coef_ptr = coef + n - 1; /* point to last coef */

/* form output accumulation */

output = *hist_ptr++ * (*coef_ptr—};

for(i = 2 ; i <n; i++) {
*histl_ptr++ = *hist_ptr; /* update history array */
output += (*hist_ptr++) * (*coef_ptr-);

}

output += input * (*coef_ptr); /* input tap */

*histl_ptr = input; /* last history */

return (output) ;

LISTING 4.1 Function fir_ filter(input,coef,n, history).

4.1.2 FIR Filter Coefficient Calculation

Because the stopband attenuation and passband ripple and the filter length are all speci-
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fied as inputs to filter design programs, it is often difficult to determine the filter length
required for a particular filter specification. Guessing the filter length will eventually
reach a reasonable solution but can take a long time. For one stopband and one passband
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the following approximation for the filter length (N) of an optimal lowpass filter has been

developed by Kaiser:

Ay —16 4.2)
29Af

where:
Af:z(j;np"fkms)kﬂ

and Ay, is the minimum stopband attenuation (in dB) of the stopband from f;, to f/2.
The approximation for N is accurate within about 10 percent of the actual required filter
length. For the Kaiser window design method, the passband error (8;) is equal to the
stopband error (3,) and is related to the passband ripple (A, ) and stopband attenuation
(in dB) as follows:

5, =1-10"=u /%
8, = 107 Am /20
A = ~40l0gyo(1-107% %)

As a simple example, consider the following filter specifications, which specify a
lowpass filter designed to remove the upper half of the signal spectrum:

Passband (fpass): 0-0.19f,
Passband ripple (A,,,,): <0.2dB
Stopband (fsmp): 025-05f,
Stopband Attenuation (Asmp): > 40 dB

From these specifications

5, =0.01145,
8, =0.01,
Af =0.06.

The result of Equation (4.2) is N = 37. Greater stopband attenuation or a smaller transi-
tion band can be obtained with a longer filter. The filter coefficients are obtained by mul-
tiplying the Kaiser window coefficients by the ideal lowpass filter coefficients. The ideal
lowpass coefficients for a very long odd length filter with a cutoff frequency of £, are
given by the following sinc function:

¢ = ﬁ‘%""_) @3)

Note that the center coefficient is k = 0 and the filter has even symmetry for all coeffi-
cients above k = 0. Very poor stopband attenuation would result if the above coefficients
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were truncated by using the 37 coefficients (effectively multiplying the sinc
rectangular window, which would have a stopband attenuation of about 13 dB
However, by multiplying these coefficients by the appropriate Kaiser wind
band and passband specifications can be realized. The symmetrical Kaiser

given by the following expression:

2k \?
IpdB,f1-[1-—=
o1B ( N_l)

LB ’ 44

where I(B) is a modified zero order Bessel function of the first kind, B
dow parameter which determines the stopband attenuation. The empiri
when Aguop 15 less than 50 dB is B = 0.5842%(A - 21)%4 + 0'07886*(Ast0p
for a stopband attenuation of 40 dB, B = 3.39532. Listing 4.2 shows program KSRFIR ¢
which can be used to calculate the coefficients of a FIR filter using the Kaiser windo“:
method. The length of the filter must be odd and bandpass; bandstop or highpass filters
can also be designed. Figure 4.3(a) shows the frequency response of the resulting 37.
point lowpass filter, and Figure 4.3(b) shows the frequency response of a 35-point low-
pass filter designed using the Parks-McClellan program. The following computer dialog
shows the results obtained using the REMEZ.C program;

Wy =

~ 21). Thus,

REMEZ EXCHANGE FIR FILTER DESIGN PROGRAM cen

: EXAMPLEl — LOWPASS FILTER

EXAMPLE2 — BANDPASS FILTER

: EXAMPLE3 — DIFFERENTIATOR

EXAMPLE4 -~ HILBERT TRANSFORMER

: KEYBOARD — GET INPUT PARAMETERS FROM KEYBOARD

U W N R

selection [1 to 5] ? 5

number of coefficients [3 to 128] ? 35

Filter types are: 1=Bandpass, 2=Differentiator, 3=Hilbert
filter type [1 to 3] 2 1

number of bands [1 to 10] ? 2
Now inputting edge (corner) frequencies for 4 band edges

edge frequency for edge (corner) # 1 [0 to 0.5] 2 0
edge frequency for edge (corner) # 2 [0 to 0.51 2 .19

edge frequency for edge (corner) # 3 [0.19 to 0.5] ? .25
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FIGURE 4.3 (a) Frequency response of 37 tap FIR filter designed using the

Kaiser window method. (b) Frequency response of 35 tap FIR filter designed
using the Parks-McClellan program.
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edge frequency for edge (cormer) # 4 [0.25 to 0.5} ? .5

gain of band # 1 [0 to 1000] 2 1

weight of band # 1 [0.1 to 100] ? 1

gain of band # 2 [0 to 1000] 2 O

of band # 2 [0.1 to 100] 2 1

weight

#coeff = 35

Type = 1

#bands = 2

Grid = 16

E[1] = 0.00

E[2] = 0.19

E[3] = 0.25

E[4] = 0.50

Gain, wt([1l] = 1.00 1.00
Gain, wt{2) = 0.00 1.00

Iteration 1 2 345 6 7

Kk kAR ko kA kA ko ko kb h bk hhh b kA bk kb k ko khk kb bk kb kkdx

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM

H(
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BANDPASS FILTER
FILTER LENGTH = 35
#*%+% TMPULSE RESPONSE *****

1)
2)

3) =

4)
5)
6)
7)

-6.360096001e-003
~7.662615827e-005
7.691285583e-003
5.056414595e-003

= -8.359812578e-003

8) =

9)
10)
11)
12)
13)
14)
15)
16)
17)
18)

-1.040090568e-002
8.696002091e-003
2.017050147e-002

-2.756078525e-003

= -3.003477728e-002
= -8.907503106e-003

4.171576865e-002

3.410815421e-002 =

-5.073291821e-002
-8.609754956e-002
5.791494030e~-002
3.117008479e-001
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BAND 1 BAND 2
LOWER BAND EDGE 0.00000000 0.25000000
UPPER BAND EDGE 0.19000000 0.50000000
DESIRED VALUE 1.00000000 0.00000000
WEIGHTING 1.00000000 1.00000000
DEVIATION 0.00808741 0.00808741

DEVIATION IN DB  -41.84380886 -41.84380886

EXTREMAL FREQUENCIES

0.0156250 0.0520833 0.0815972 0.1093750 0.1371528
0.1614583 0.1822917 0.1900000 0.2500000 0.2586806
0.2777778 0.3038194 0.3298611 0.3576389 0.3854167
0.4131944 0.4427083 0.4704861 0.5000000

FIR coefficients written to text file COEF.DAT

Note that the Parks-McClellan design achieved the specifications with two fewer coeffi-
cients, and the stopband attenuation is 1.8 dB better than the specification. Because the
stopband attenuation, passband ripple, and filter length are all specified as inputs to the
Parks-McClellan filter design program, it is often difficult to determine the filter length
required for a particular filter specification. Guessing the filter length will eventually
reach a reasonable solution but can take a long time. For one stopband and one passband,
the following approximation for the filter length (N) of an optimal lowpass filter has been
developed by Kaiser:

_ —20logg /8,5, —13

4.5
14.6Af + *3)

where:

8, =1—1074m /40
8, =10 Awee 120

Af:z(fgw'_j;us)Aﬁ

A, is the total passband ripple (in dB) of the passband from O to fpass. If the maximum
of the magnitude response is 0 dB, then A is the maximum attenuation throughout the
passband. A, is the minimum stopband attenuation (in dB) of the stopband from f,, to
£,/2. The approximation for N is accurate within about 10 percent of the actual required
filter length (usually on the low side). The ratio of the passband error (81) to the stopband
error (3,) is entered by choosing appropriate weights for each band. Higher weighting of
stopbands will increase the minimum attenuation; higher weighting of the passband will
decrease the passband ripple.

The coefficients for the Kaiser window design (variable name £ix_1p£37k) and
the Parks-McClellan design (variable name £ir_1pf£35) are contained in the include
file FILTER.H.
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}
deltaf = (fa-fp) ; if(filt_cat == 2) deltaf = -deltaf;
filter_length( att, deltaf, &nfilt, &npair, &beta );
if( npair > 500 ){
printf("\n*** Filter length %d is too large.\n", nfilt );
exit (0);

/* Linear phase FIR filter coefficient computation using the Kaiser windoy
design method. Filter length is odd. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "rtdspc.h"

}
printf("\n...filter length: %d ...beta: %f", nfilt, beta );

fc = (fp + fa); hinpair] = fc;
if ( filt_cat == 2 ) hinpair] = 1 - fc;
pifc = PI * fc;
for ( n=0; n < npair; n++) {
i = (npair - n);

double get_float (char *title_string, double low_limit,double up_limit),;
void filter_ length(double att,double deltaf,int *nfilt,int *npair, double *beta
double izero (double vY); i

void main() h[n] = sin(i * pifc) / (i * PI):

{ if( filt_cat == 2 ) hin] = - h[nl;
static float h{[500], w[500}, x[500}; }
int eflag, filt_cat, npair, nfilt, n; break;

case 3: case 4:

double att, fa, fp, fal, fa2, fpl, fp2, deltaf, 41, &, f1, fu, beta;
printf ("\m—> Transition bands must be equal <—*);

double fc, fm, pifc, tpifm, i, y, valizb;

char ft_s[128]; do {
eflag = 0;

char fp s[] = "Passband edge frequency Fp"; switch (filt_cat){

char fa_s{] = "Stopband edge frequency Fa*; case 3:

char fpl s[] = "Lower passband edge frequency Fpl*; fal = get_float( fal_s, 0, 0.5);

char fp2_s(] = "Upper passband edge frequency Fp2*; fpl = get_float( fpl_s, fal, 0.5);

char fal s[] = "Lower stopband edge frequency Fal"; fp2 = get_float( fp2_s, fpl, 0.5);

char fa2_s[] = "Upper stopband edge frequency Fa2"; fa2 = get_float( fa2_s, fp2, 0.5); break;

case 4:

printf("\nFilter type (Ip, hp, bp, bs) ? *); fpl = get_float( fpl_s, 0, 0.5);

gets(ft_s); fal = get_float( fal_ s, fpl, 0.5);

strupr( ft_s }; fa2 = get_float( fa2_s, fal, 0.5);

att = get_float("Desired stopband attenuation (ae)", 10, 200); fp2 = get_float( fp2_s, fa2, 0.5);

filt_cat = 0; }

if( stremp( ft_s, "LP" ) == 0 ) filt_cat = 1; dl = fpl - fal; 42 = fa2 - fp2;

if( stremp( ft_s, *HP" ) == 0 ) filt_cat = 2; if ( fabs(dl - d2) > 1E-5 ){

if( strcamp( ft_s, "BP" ) == 0 ) filt_cat = 3; printf( "\n...error...transition bands not equali\n");

if( stramp( ft_s, "BS" ) == 0 ) filt_cat = 4; eflag = -1;

}

} while (eflag):

deltaf = dl; if(filt_cat == 4) deltaf = -deltaf;

filter length( att, deltaf, &nfilt, &npair, &beta);

if( npair > 500 ){
printf("\n*** Filter length %d is too large.\n", nfilt );
exit(0);

if(!filt_cat) exit(0);

switch ( filt_cat ){
case 1: case 2:
switch ( filt_cat ){
case 1:
fp = get_float( fp_s, 0, 0.5 )
fa = get_float( fa s, fp, 0.5 ); break;

}

case 2: printf( "\n..filter length: %d ...beta: %f", nfilt, beta) ;
fa = get_float( fa_s, 0, 0.5 )y: fl = (fal + fpl) / 2; fu = (fa2 + fp2) / 2;
fp = get_float( fp_ s, fa, 0.5 Y: fc = (fu - £1); fm = (fu + f1) / 2;

hinpair]) = 2 * fc; if( filt_cat == 4 ) hlnpair] = 1 - 2 * fc;
LISTING 4.2 Program KSRFIR to calculate FIR filter coefficients using the

Kaiser window method. (Continued) LISTING 4.2 (Continued)
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pifc = PI * fc¢; tpifm = 2 * PI * fm;
for (n = 0; n < npair; n++){
i = (npair - n);
hin] = 2 * sin(i * pifc) * cos(i * tpifm) / (i * pI);
if ( filt_cat == 4) h[n] = -h[n];
} break;
default: printf( "\n## error\n" ); exit(0);
}

/* Compute Kaiser window sample values */
y = beta; wvalizb = izerol(y);
for (n = 0; n <= npair; n++) {
i = (n - npair);
y = beta * sqrt(l - (i / npair) * (i / npair));
wln] = izerol(y) / valizb;

}

/* first half of response */
for(n = 0;- n <= npair; n++) x[n} = w[n] * hln};

printf("\n—First half of coefficient set...remainder by symmetry——");
printf("\n # ideal window actual ");
printf("\n coeff value filter coeff");
for(n=0; n <= npair; n++){
printf ("\n %44 %9.6f %9.6f $9.6£",n, h[n], w[n], x([n});
}
}

/* Use att to get beta (for Kaiser window function) and nfilt (always odd
valued and = 2*npair +1) using Kaiser’s empirical formulas */

void filter_ length(double att,double deltaf,int *nfilt,int *npair, double *beta)

{
*beta = 0; /* value of beta if att < 21 */
if(att >= 50) *beta = .1102 * (att - 8.71);
if (att < 50 & att >= 21)
*beta = .5842 * pow( {att-21), 0.4) + .07886 * (att -~ 21);
*npair = (int)( (att - 8) / (29 * deltaf) );
*nfilt = 2 * *npair +1;
}

/* Compute Bessel function Izero(y) using a series approximation */
double izero(double y){
double s=1, ds=1, d=0;
do{
d=4da+ 2; ds =ds * (y*ty)/(d*d);
s = s + ds;
} while( ds > 1E-7 * s);
return(s);

LISTING 4.2 (Continued)

Chap. 4

Sec. 4.1 Real-Time FIR and lIR Filters 145
4.1.3 IIR Filter Function

Infinite impulse response (IIR) filters are realized by feeding back a weighted sum of past
output values and adding this to a weighted sum of the previous and current input values.
In terms of the structure shown in Figure 4.1, IIR filters have nonzero values for some or
all of the a,, values. The major advantage of IIR filters compared to FIR filters is that a
given order IIR filter can be made much more frequency selective than the same order
FIR filter. In other words, IIR filters are computationally efficient. The disadvantage of
the recursive realization is that IIR filters are much more difficult to design and imple-
ment. Stability, roundoff noise and sometimes phase nonlinearity must be considered
carefully in all but the most trivial IIR filter designs.

The direct form IIR filter realization shown in Figure 4.1, though simple in appear-
ance, can have severe response sensitivity problems because of coefficient quantization,
especially as the order of the filter increases. To reduce these effects, the transfer function
is usually decomposed into second order sections and then realized either as parallel or
cascade sections (see chapter 1, section 1.3). In section 1.3.1 an IIR filter design and im-
plementation method based on cascade decomposition of a transfer function into second
order sections is described. The C language implementation shown in Listing 4.3 uses
single-precision floating-point numbers in order to avoid coefficient quantization effects
associated with fixed-point implementations that can cause instability and significant
changes in the transfer function.

Figure 4.4 shows a block diagram of the cascaded second order IIR filter imple-
mented by the 1ir_£i1ter function shown in Listing 4.3. This realization is known as
a direct form 1I realization because, unlike the structure shown in Figure 4.1, it has only

Section 1 Section N

new_hist

coef [2] coef (4] coof[4*N-2]

—05 B 1)) Bow

history 2

FIGURE 4.4 Block diagram of real-time IIR filter structure as implemented by func-
tion iir_filter.
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/*******************************************************************
Kkkogey
* %

iir_filter -~ Perform IIR filtering sample by sample on floats

Implements cascaded direct form IT second order sections.
Requires arrays for history and coefficients.

The length (n) of the filter specifies the number of sections.
The size of the history array is 2*n.

The size of the coefficient array is 4*n + 1 because

the first coefficient is the overall scale factor for the filter.
Returns one output sample for each input sample.

float iir filter(float input, float *coef,int n, float *history)

float input new float input sample

float *coef pointer to filter coefficients
int n number of sections in filter
float *history history array pointer

Returns float value giving the current output.

****************‘k*************‘k****i'*************************************/

float iir filter(float input, float *coef, int n, float *history)
{

int i;

float *histl_ptr,*hist2_ptr,*coef_ptr;

float output,new_hist, historyl, history?2;

coef_ptr = coef; /* coefficient pointer */

hist]l_ptr = history;
hist2_ptr = histl ptr + 1;

/* first history */
/* next history */

output = input * (*coef_ptr++); /* overall input scale factor */
for(i = 0 ; i <n ; i++) {

historyl = *histl_ptr;
history2 = *hist2_ptr;

/* history values */

output = output - historyl * (*coef _Dtr++) ;
new_hist = output - history2 * (*coef_ptr++); /* poles */

output new_hist + historyl * (*coef _ptr++) ;
output = output + history2 * (*coef _ptr++); /* zeros */

*hist2_ptr++ = *histl_ptr;
*histl ptr++ = new_hist;

LISTING 4.3 Function iir filter(input,coef,n,history). (Continued)
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histl_ptr++;
hist2_ptr++;

}

return(output) ;

LISTING 4.3 (Continued)

two delay elements for each second-order section. This realization is canonic in the sense
that the structure has the fewest adds (4), multiplies (4), and delay elements (2) for each
second order section. This realization should be the most efficient for a wide variety of -
general purpose processors as well as many of the processors designed specifically for
digital signal processing.

IIR filtering will be illustrated using a lowpass filter with similar specifications as used
in the FIR filter design example in section 4.1.2. The only difference is that in the IIR filter
specification, linear phase response is not required. Thus, the passband is 0 to 0.2 £, and the
stopband is 0.25 £, t0 0.5 f,. The passband ripple must be less than 0.5 dB and the stopband
attenuation must be greater than 40 dB. Because elliptic filters (also called Cauer filters)
generally give the smallest transition bandwidth for a given order, an elliptic design will be
used. After referring to the many elliptic filter tables, it is determined that a fifth order elliptic
filter will meet the specifications. The elliptic filter tables in Zverev (1967) give an entry for
a filter with a 0.28 dB passband ripple and 40.19 dB stopband attenuation as follows:

Q =1.3250 (stopband start of normalized prototype)
oy =—0.5401 (first order real pole)

o, =-0.5401 (real part of first biquad section)

o3 =—0.5401 (real part of second biquad section)
Q,=1.0277 (imaginary part of first biquad section)
Q,=1.9881 (first zero on imaginary axis)
Q;=0.7617 (imaginary part of second biquad section)
Q,=1.3693 (second zero on imaginary axis)

As shown above, the tables in Zverev give the pole and zero locations (real and imagi-
nary coordinates) of each biquad section. The two second-order sections each form a conju-
gate pole pair and the first-order section has a single pole on the real axis. Figure 4.5(a)
shows the locations of the 5 poles and 4 zeros on the complex s-plane. By expanding the
complex pole pairs, the s-domain transfer function of a fifth-order filter in terms of the above
variables can be obtained. The z-domain coefficients are then determined using the bilinear
transform (see Embree and Kimble, 1991). Figure 4.5(b) shows the locations of the poles and
zeros on the complex z-plane. The resulting z-domain transfer function is as follows:

0.0553(1+z7") 140704z +22  1-0.01037" + 72
1-0436z7" 1-0.523z7' -0.8622 1-0.6967"" — 0.48672
Figure 4.6 shows the frequency response of this Sth order digital IIR filter.
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FIGURE 4.5 Pole-zero plot of fifth-
order elliptic IR lowpass filter. (a) s-
plane representation of analog proto-
type fifth-order elliptic filter. Zeros are
indicated by “0” and poles are indi-
cated by “x”. {b) z-plane representa-
tion of lowpass digital filter with cut-
off frequency at 0.2 £ In each case,
poles are indicated with “x”and

zeros with “o0”".

The function iir_f£ilter (shown in Listing 4.3) implements the direct form II cascade
filter structure illustrated in Figure 4.4. Any number of cascaded second order sections
can be implemented with one overall input (x;) and one overall output (y,). The coeffi-
cient array for the fifth order elliptic lowpass filter is as follows:
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FIGURE 4.6 (a) Lowpass fifth-order elliptic IR filter linear magnitude fre-
quency response. (b) Lowpass fifth-order elliptic lIR filter frequency re-
sponse. Log magnitude in decibels versus frequency.
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float iir_1pf5([13] = {
0.0552961603,
-0,4363630712, 0.0000000000, 1.0000000000, 0.0000000000,
-0.5233039260, 0.8604439497, 0.7039934993, 1.0000000000,
~0.6965782046, 0.4860509932, -0.0103216320, 1.0000000000
Y

The number of sections required for this filter is three, because the first-order section jg
implemented in the same way as the second-order sections, except that the second-order
terms (the third and fifth coefficients) are zero. The coefficients shown above were ob-
tained using the bilinear transform and are contained in the include file FILTER H. The
definition of this filter is, therefore, global to any module that includes FILTER H. The
iir f£ilter function filters the floating-point input sequence on a sample-by-sample
basis so that one output sample is returned each time iir filter is invoked. The his-
tory array is used to store the two history values required for each second-order section,
The history data (two elements per section) is allocated by the calling function, The inj-
tial condition of the history variables is zero if calloec is used, because it sets alj the al-
located space to zero. If the history array is declared as static, most compilers initialize
static space to zero. Other initial conditions can be loaded into the filter by allocating and
initializing the history array before using the iir filter function. The coefficients
of the filter are stored with the overall gain constant (K) first, followed by the denomina-
tor coefficients that form the poles, and the numerator coefficients that form the zeros for
each section. The input sample is first scaled by the K value, and then each second-order
section is implemented. The four lines of code in the iir filter function used to im-
plement each second-order section are as follows:

output = output - historyl * (*coef _DPtr++);

new_hist = output - history2 * (*coef_ptr++); /* poles */

output = new_hist + historyl * (*coef _btr++);
output = output + history2 * (*coef_ptr++); /* zeros */
The historyl and history2 variables are the current history associated with the sec-
tion and should be stored in floating-point registers (if available) for highest efficiency.
The above code forms the new history value (the portion of the output which depends on
the past outputs) in the variable new_hist to be stored in the history array for use by
the nextcall to 4ir_filter. The history array values are then updated as follows:

*hist2_ptr++ = *histl_ptr;
*histl_ptr++ = new_hist;
histl_ptr++;

hist2_ptr++;

This results in the oldest history value (*hist2_ptr) being lost and updated with
the more recent *histl ptr value. The new_hist value replaces the old
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*histl_ptr value for use by the next call to iir filter. Both history pointers are
incremented twice to point to the next pair of history values to be used by the next
second-order section.

4.1.4 Real-Time Filtering Example

Real-time filters are filters that are implemented so that a continuous stream of input sam-
ples can be filtered to generate a continuous stream of output samples. In many cases,
real-time operation restricts the filter to operate on the input samples individually and
generate one output sample for each input sample. Multiple memory accesses to previous
input data are not possible, because only the current input is available to the filter at any
given instant in time. Thus, some type of history must be stored and updated with each
new input sample. The management of the filter history almost always takes a portion of
the processing time, thereby reducing the maximum sampling rate which can be sup-
ported by a particular processor. The functions fir filter and iir filter areim-
plemented in a form that can be used for real-time filtering. Suppose that the functions
getinput () and sendout () return an input sample and generate an output sample at
the appropriate time required by the external hardware. The following code can be used
with the iir filtexr function to perform continuous real-time filtering:

static float histi[6];
for(;;)
sendout (iir_filter(getinput(), iir_1pf5,3,histi));

In the above infinite loop for statement, the total time required to execute the in,
iir_ filter, and out functions must be less than the filter sampling rate in order to
insure that output and input samples are not lost. In a similar fashion, a continuous real-
time FIR filter could be implemented as follows:

static float histf[34];
for(;:)
sendout (fir_filter (getinput(), fir_1pf35,35,histf));

Source code for sendout () and getinput () interrupt driven input/output functions
is available on the enclosed disk for several DSP processors. C code which emulates
getinput () and sendout () real-time functions using disk read and write functions
is also included on the disk and is shown in Listing 4.4. These routines can be used to
debug real-time programs using a simpler and Iess expensive general purpose computer
environment (IBM-PC or UNIX system, for example). The functions shown in
Listing 4.4 read and write disk files containing floating-point numbers in an ASCII text
format. The functions shown in Listings 4.5 and 4.6 read and write disk files containing
fixed-point numbers in the popular WAV binary file format. The WAYV file format is part
of the Resource Interchange File Format (RIFF), which is popular on many multimedia
platforms.

(text continues on page 158)
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#include <stdlib.h>

#include <stdio.h> #incmde o
1 .

#include <stdio.h>
ginclude <string.h>
#include <math.h>

#j_nclude <conio.h>
#include swavimt . h*

/* getinput - get one sample fram disk to simulate real-time i
input #,

float getinput()

{ ginclude “rtdspc.h”
static FILE *fp = NULL;
float x; J* code to get samples from a WAV type file format */
/* open input file if not done in previous calls */
if (tfp) /* getinput - get one sample from disk to simulate realtime input */
char s([80];
printf("\nEnter input file name ? "); /* input WAV format header with null init */
gets(s); WAVE_HDR win = { ", OL };
fp = fopen(s,"r"); CHUNK_HDR cin = { "*, 0L };
if(1fp) | DATA HDR din = { "*, OL };
printf(*\nError opening input file in GETINPUT\n"); WAVEFORMAT wavin = { 1, 1, OL, OL, 1, 8 };
exit(1);
} /* global number of samples in data set */
} unsigned long int number_of_samples = 0;
/* read data until end of file */ :
if (fscanf(fp, "%f",&x) != 1) exit(l); float getinput ()
return(x) ; {
}

static FILE *fp_getwav = NULL;

static channel number = 0;

short int int_datal4]; /* max of 4 channels can be read */
unsigned char byte datal4]; /* max of 4 channels can be read */
short int j;

int i;

/* sendout - send sample to disk to simulate real-time output */

void sendout (float x)
{
static FILE *fp = NULL;
/* open output file if not done in previous calls */

if (1fp) { /* open input file if not done in previous calls */
char s[80}; if (! fp getwav) {
printf("\nEnter output file name ? "); char s[80];
gets(s); printf("\nEnter input .WAV file name ? ");
fp = fopen(s,"w"); gets(s);
if(!fp) { fp_getwav = fopen(s, "rb");
printf ("\nError opening output file in SENDOUT\n"); if (1 fp_getwav) {
exit(1); printf ("\nError opening *.WAV input file in GETINPUT\n");
} exit(1l);
} }

/* write the sample and check for errors */
if (fprintf(fp, "$f\n",x) < 1) {
printf ("\nError writing output file in SENDOUT\n");
exit(1l);

/* read and display header information */

fread(&win, sizeof (WAVE_HDR) , 1, fp_getwav) ;

printf (*\n%c%c%ckc",
win.chunk_id[0],win.chunk_id[1],win.chunk_id[2],win.chunk_id[3]};

printf ("\nChunkSize = %1d bytes",win.chunk_size);

LISTING 4.4 Functions sendout (output) and getinput () used to emulate

LISTING 45 Function getinput() used to emulate real-time input using
real-time input/output using ASCH text data files (contained in GETSEND.C).

WAV format binary data files (contained in GETWAV.C). (Continued)
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if (strnicmp(win.chunk_id, "RIFF",4) != 0) {

printf("\nError in RIFF header\n");

exit(1l);
}

fread(&cin, sizeof (CHUNK_HDR),1, fp_getwav) ;

printf("\n");

for(i = 0 ; i < 8 ; i++) printf("%c",cin.form type(il]);

printf("\n");

if (strmicmp (cin. form_type, "WAVEfmt *,8) != 0)
printf("\nError in WAVEfmt header\n");
exit(1);

{

}

if(cin.hdr_size != sizeof (WAVEFORMAT)) {
printf("\nError in WAVEfmt header\n");
exit(l);

}

fread(&wavin, sizeof (WAVEFORMAT) , 1, fp_getwav) ;
if (wavin.wFormatTag != WAVE_FORMAT PCM) {
printf("\nError in WAVEfmt header - not PCM\n") ;
exit(1);
}
printf ("\nNumber of channels %d",wavin.nChannels) ;
printf("\nSample rate = %1d",wavin.nSamplesPerSec) ;
printf("\nBlock size of data = %d bytes”,wavin.nBlockAlign) ;
printf ("\nBits per Sample %d\n",wavin.wBitsPerSample) ;

/* check channel number and block size are good */
if (wavin.nChannels > 4 || wavin.nBlockAlign > 8) {
printf("\nError in WAVEfmt header - Channels/BlockSize\n");
exit(1l);

fread(&din, sizeof (DATA_HDR), 1, fp_getwav) ;
printf ("\n¥%c%c%ckc",

din.data_type[0],din.data_type[1],din.data_type[2] ,din.data_type[3]);
printf("\nData Size = %1d bytes",din.data_size);

/* set the number of samples (global) */
number_of_samples din.data_size/wavin.nBlockAlign;

printf("\nNumber of Samples per Chamnel = %1d\n",number_of samples);

if (wavin.nChannels > 1) {
do {
printf ("\nError Channel Number [0..%d] - “,wavin.nChannels-

LISTING 4.5 (Continued)
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i = getche() '‘0';
if(i < (4-'0')) exit(l);
} while(i < 0 || i >= wavin.nChannels);
channel_number = ji;
}

}

/* read data until end of file */
if (wavin.wBitsPerSample == 16) {
if(fread(int_data,wavin.nBlockAlign,1,fp _getwav) != 1) {
flush(); /* flush the output when input runs out */
exit(1);

}
j = int_data[channel_number] ;
}
else {
if(fread(byte_data,wavin.nBlockAlign,l,fp _getwav) 1= 1) {

flush(); /* flush the output when input runs out */

exit(1);
}
j = byte_data[channel_number];
j ~= 0x80;
Jj <<= 8;

}

return{( (float)j);

LISTING 4.5 (Continued)

#include
#include
#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<string.h>
<math.h>
"wavfmt . h*
"rtdspc.h"

/* code to send samples to a WAV type file format */

/* define BITS16 if want to use 16 bit samples */
/* sendout - send sample to disk to simulate realtime output */

static FILE *fp_sendwav
static DWORD samples_sent

NULL;
OL; /* used by flush for header */

1); i

} LISTII_\IG 4.6 Functions sendout (output) and flush() used to emulate
real-time output using WAV format binary data files (contained in
SENDWAV.C). (Continued)
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/* WAV format header init */
static WAVE HDR wout = { "RIFF", OL }; /* fill size at flush */
static CHUNK_HDR cout = { "WAVEfmt " , sizeof (WAVEFORMAT) };
static DATA _HDR dout = { "data" , OL }; /* £ill size at flush */

if(x > 32767.0) j = 32767;
else if(x < -32768.0) j = -32768;

sifdef BITS16

static WAVEFORMAT wavout = { 1, 1, OL, OL, 1, 8 }; § ~= 0x8000;
extern WAVE_HDR win; if (fwrite (&],sizeof (short int),1, fp_sendwav) != 1) {
extern CHUNK_HDR cin; printf (“\nError writing 16 Bit output *.WAV file in SENDOUT\n");
extern DATA HDR din; exit(1);
extern WAVEFORMAT wavin; }
. #else
void sendout (float x) /* clip output to 8 bits */
{ j =3 > 8;
int BytesPerSample; j ~= 0x80;

short int j;
if (fputc(j, fp_sendwav) == EOF) {

printf ("\nError writing output *.WAV file in SENDOUT\n");
exit(l);

/* open output file if not done in previous calls */
if (1 fp_sendwav) {

char s[80];

printf ("\nEnter output *.WAV file name ? ");

gets(s);

fp_sendwav = fopen(s, "wb");

if (1 fp_sendwav) {
printf ("\nError opening output *.WAV file in SENDOUT\n");
exit(1l);

}
fendif

samples_sent++;

}

) /* routine for flush - must call this to update the WAV header */

/* write out the *.WAV file format header */ void flush()

#ifdef BITSL6 {

wavout .wBitsPerSample = 16;
wavout .nBlockAlign = 2;
printf("\nUsing 16 Bit Samples\n");

int BytesPerSample;

BytesPerSample = (int)ceil (wavout.wBitsPerSample/8.0);
dout.data_size=BytesPerSample*samples_sent;

#else
pondit wavout .wBitsPerSample = 8; wout.chunk_size=
dout .data_size+sizeof (DATA_HDR) +sizeof (CHUNK_HDR) +sizeof (WAVEFORMAT) ;
wavout .nSamplesPerSec = SAMPLE RATE; /* check for an i t WAV head i i i
BytesPerSample = (int)ceil (wavout.wBitsPerSample/8.0); if (strni ( r?pu hun} .ga"er ax“1d use the sampl:.mg rate, if valid */
wavout .nAvgBytesPerSec = BytesPerSample*wavout.nSamplesPerSec; cmptwin. ¢ —1d, "RIFF f4) == 0 & wavin.nSamplesPerSec != 0) {
wavout .nSamplesPerSec = wavin.nSamplesPerSec;
furite (swout, izeof (WAVEHDR) , 1, fp._sendwav) ; ) wavout .nAvgBytesPerSec = BytesPerSample*wavout.nSamplesPerSec;
fwrite (&cout, sizeof (CHUNK_HDR), 1, fp_sendwav) ;
fwrite (&wavout, sizeof (WAVEFORMAT) , 1, fp_sendwav) ; fseek (£
fwrite (sdout, sizeof (DATA_HDR) , 1, fp_sendwav) ; eek (fp_sendwav, OL, SEEK_SET) ;
) fwrite (&wout, sizeof (WAVE_HDR) , 1, fp_sendwav) ;

fwrite (&cout, sizeof (CHUNK_HDR), 1, fp_sendwav) ;
fwrite (&wavout, sizeof (WAVEFORMAT) , 1, fp_sendwav) ;
fwrite (&dout, sizeof (DATA_HDR), 1, fp_sendwav) ;

/* write the sample and check for errors */
/* clip output to 16 bits */
j = (short int)x;

LISTING 4.6 (Continued) LISTING 4.6 (Continued)
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4.2 FILTERING TO REMOVE NOISE

Noise is generally unwanted and can usually be reduced by some type of filtering. Noise
can be highly correlated with the signal or in a completely different frequency band, i,
which case it is uncorrelated. Some types of noise are impulsive in nature and occur reja.
tively infrequently, while other types of noise appear as narrowband tones near the signa]
of interest. The most common type of noise is wideband thermal noise, which originateg
in the sensor or the amplifying electronic circuits. Such noise can often be considereq
white Gaussian noise, implying that the power spectrum is flat and the distribution jg nor-
mal. The most important considerations in deciding what type of filter to use to remove
noise are the type and characteristics of the noise. In many cases, very little is knowp
about the noise process contaminating the digital signal and it is usually costly (in terms
of time and/or money) to find out more about it. One method to study the noise perfor-
mance of a digital system is to generate a model of the signal and noise and simulate the
system performance in this ideal condition. System noise simulation is illustrated in the
next two sections. The simulated performance can then be compared to the system perfor-
mance with real data or to a theoretical model.

4.2.1 Gaussian Noise Generation

The function gaussian (shown in Listing 4.7) is used for noise generation and is con-
tained in the FILTER.C source file. The function has no arguments and returns a single
random floating-point number. The standard C library function rand is called to gener-
ate uniformly distributed numbers. The function rand normally returns integers from 0
to some maximum value (a defined constant, RAND_MAX, in ANSI implementations). As
shown in Listing 4.7, the integer values returned by rand are converted to £loat val-
ues to be used by gaussian. Although the random number generator provided with
most C compilers gives good random numbers with uniform distributions and long peri-
ods, if the random number generator is used in an application that requires truly random,
uncorrelated sequences, the generator should be checked carefully. If the rand function
is in question, a standard random number generator can be easily written in C (see Park
and Miller, 1988). The function gaussian returns a zero mean random number with a
unit variance and a Gaussian (or normal) distribution. It uses the Box-Muller method (see
Knuth, 1981; or Press, Flannary, Teukolsky, and Vetterling, 1987) to map a pair of inde-
pendent uniformly distributed random variables to a pair of Gaussian random variables.
The function rand is used to generate the two uniform variables v1 and v2 from -1 to
+1, which are transformed using the following statements:

r = v1*vl + v2*v2;

fac = sqgrt(-2.*log(r)/r);
gstore = vl*fac;

gaus = v2*fac;

The x variable is the radius squared of the random point on the (v1, v2) plane. Ip th'e
gaussian function, the r value is tested to insure that it is always less than 1 (which it
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/**********************i'***************************************************

gaussian - generates zero mean unit variance Gaussian random numbers

Returns one zero mean unit variance Gaussian random numbers as a double.
yUses the Box-Muller transformation of two uniform random numbers to
Gaussian random numbers.

*************************************************************************/

float gaussian()

{
static int ready = 0; /* flag to indicated stored value */
static float gstore; /* place to store other value */
static float rconstl = (float) (2.0/RAND_MAX) ;
static float rconst2 = (float) (RAND_MAX/2.0) ;
float v1,v2,r, fac,gaus;

/* make two numbers if none stored */
if(ready == 0) {

do {
vl (float)rand() - rconst2;
v2 (float)rand() - rconst2;
vl *= rconstl;
v2 *= rconstl;
r = vi*vl + v2*y2;

} while(r > 1.0f); /* make radius less than 1 */

I

/* remap vl and v2 to two Gaussian numbers */
fac = sqrt(-2.0f*log(r)/r);

gstore = vl*fac; /* store one */
gaus = v2*fac; /* return one */
ready = 1; /* set ready flag */
}
else {
ready = 0; /* reset ready flag for next pair */

gaus = gstore; /* return the stored one */
}
return(gaus) ;

LISTING 4.7 Function gaussian().

usually is), so that the region uniformly covered by (v1, v2) is a circle and so that
log(x) is always negative and the argument for the square root is positive. The vari-
ables gstore and gaus are the resulting independent Gaussian random variables.
Because gaussian must return one value at a time, the gstore variable is a static
floating-point variable used to store the v1*£ac result until the next call to gaussian.
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The static integer variable ready is used as a flag to indicate if gstore has ;
been stored or if two new Gaussian random numbers should be generated. Just

4.2.2 Signal-to-Noise Ratio Improvement

One common application of digital filtering is signal-fo-noise ratio enhancement, 1t the
signal has a limited bandwidth and the noise has a spectrum that is broad, then a filter cap
be used to remove the part of the noise spectrum that does not overlap the signa) spec-
trum. If the filter is designed to match the signal perfectly, so that the maximum amoupt
of noise is removed, then the filter is called a matched or Wiener filter. Wiener ﬁltering is
briefly discussed in section 1.7.1 of chapter 1.

Figure 4.7 shows a simple example of filtering a single tone with added white
noise. The MKGWN program (see Listing 4.8) was used to add Gaussian white nojse
with a standard deviation of 0.2 to a sine wave at a 0.05 f; frequency as shown in Figure
4.7(a). The standard deviation of the sine wave signal alone can be easily found to be
0.7107. Because the standard deviation of the added noise is 0.2, the signal-to-noise ratig
of the noisy signal is 3.55 or 11.0 dB. Figure 4.7(b) shows the result of applying the 35.
tap lowpass FIR filter to the noisy signal. Note that much of the noise is still present but
is smaller and has predominantly low frequency components. By lowpass filtering the
250 noise samples added to the sine wave separately, the signal-to-noise ratio of Figure
4.7(b) can be estimated to be 15 dB. Thus, the filtering operation improved the signal-to-
noise ratio by 4 dB.

(CY
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4.3 SAMPLE RATE CONVERSION

Many signal processing applications require that the output sampling rate be different
than the input sampling rate. Sometimes one section of a system can be made more effi-
cient if the sampling rate is lower (such as when simple FIR filters are involved or in data
transmission). In other cases, the sampling rate must be increased so that the spectral de-
tails of the signal can be easily identified. In either case, the input sampled signal must be
resampled to generate a new output sequence with the same spectral characteristics but at
a different sampling rate. Increasing the sampling rate is called interpolation or upsam-
pling. Reducing the sampling rate is called decimation or downsampling. Normally, the
sampling rate of a band limited signal can be interpolated or decimated by integer ratios
such that the spectral content of the signal is unchanged. By cascading interpolation and
decimation, the sampling rate of a signal can be changed by any rational fraction, P/M,
where P is the integer interpolation ratio and M is the integer decimation ratio.
Interpolation and decimation can be performed using filtering techniques (as described in
this section) or by using the fast Fourier transform (see section 4.4.2).

Decimation is perhaps the simplest resampling technique because it involves redutf-
ing the number of samples per second required to represent a signal. If the input signal is
strictly band-limited such that the signal spectrum is zero for all frequencies above
f,/(2M), then decimation can be performed by simply retaining every Mih sample and

(b)

Sample Value
=)

50 100 150 200 250
Sample Number

FIGURE 4.7 MKGWN program example output. Filtering a sine wave with
added noise (frequency = 0.05). (a) Unfiltered version with Gaussian noise
(standard deviation = 0.2). {(b) Output after lowpass filtering with 35-point
FIR filter.
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#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include "rtdspc.h"
#include "filter.h"

/***********************************************************************

MKGWN.C - Gaussian Noise Filter Example

This program performs filters a sine wave with added Gaussian noise
It performs the filtering to implement a 35 point FIR filter
(stored in variable fir 1pf35) on an generated signal.

The filter is a LPF with 40 dB out of band rejection. The 3 dB
point is at a relative frequency of approximately .25*fs.

************i****************************'k******************************/

float sigma = 0.2;

void main()
{
int i, j:
float x;
static float hist[34];
for(i = 0 ; i < 250 ; i++) {
X = sin(0.05*2*pI*i) + sigma*gaussian() ;
sendout (fir_filter(x, fir 1pf£35,35 ,hist));

LISTING 4.8 Program MKGWN to add Gaussian white noise to cosine
wave and then perform FIR filtering.

discarding the M — 1 samples in between. Unfortunately, the spectral content of a signal
above f/(2M) is rarely zero, and the aliasing caused by the simple decimation almost al-
ways causes trouble. Even when the desired signal is zero above J/(2M), some amount of
noise is usually present that will alias into the lower frequency signal spectrum. Aliasing
due to decimation can be avoided by lowpass filtering the signal before the samples are
decimated. For example, when M = 2, the 35-point lowpass FIR filter introduced in sec-
tion 4.1.2 can be used to eliminate almost all spectral content above 0.25 f; (the attenua-
tion above 0.25 f; is greater than 40 dB). A simple decimation program could then be
used to reduce the sampling rate by a factor of two. An IIR lowpass filter (discussed in
section 4.1.3) could also be used to eliminate the frequencies above f,/(2M) as long as
linear phase response is not required.
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4.3.1 FIR Interpolation

Interpolation is the process of computing new samples in the intervals between existing
data points. Classical interpolation (used before calculators and computers) involves esti-
mating the value of a function between existing data points by fitting the data to a low-
order polynomial. For example, linear (first-order) or quadratic (second-order) polyno-
mial interpolation is often used. The primary attraction of polynomial interpolation is
computational simplicity. The primary disadvantage is that in signal processing, the input
signal must be restricted to a very narrow band so that the output will not have a large
amount of aliasing. Thus, band-limited interpolation using digital filters is usually the
method of choice in digital signal processing. Band-limited interpolation by a factor P:1
(see Figure 4.8 for an illustration of 3:1 interpolation) involves the following conceptual
steps:

(1) Make an output sequence P times longer than the input sequence. Place the input
sequence in the output sequence every P samples and place P — 1 zero values be-
tween each input sample. This is called zero-packing (as opposed to zero-padding).
The zero values are located where the new interpolated values will appear. The ef-
fect of zero-packing on the input signal spectrum is to replicate the spectrum P
times within the output spectrum. This is illustrated in Figure 4.8(a) where the out-
put sampling rate is three times the input sampling rate.

(2) Design a lowpass filter capable of attenuating the undesired P — 1 spectra above the
original input spectrum. Ideally, the passband should be from 0 to f/2P) and the
stopband should be from f12P) to £,/2 (where S, is the filter sampling rate that is
P times the input sampling rate). A more practical interpolation filter has a transi-
tion band centered about f//2P). This is illustrated in Figure 4.8(b). The passband
gain of this filter must be equal to P to compensate for the inserted zeros so that the
original signal amplitude is preserved,

(3) Filter the zero-packed input sequence using the interpolation filter to generate the
final P:1 interpolated signal. Figure 4.8(c) shows the resulting 3:1 interpolated
spectrum. Note that the two repeated spectra are attenuated by the stopband attenu-
ation of the interpolation filter. In general, the stopband attenuation of the filter
must be greater than the signal-to-noise ratio of the input signal in order for the in-
terpolated signal to be a valid representation of the input.

4.3.2 Real-Time Interpolation Followed by Decimation

Figure 4.8(d) illustrates 2:1 decimation after the 3:1 interpolation, and shows the spec-
trum of the final signal, which has a sampling rate 1.5 times the input sampling rate.
Because no lowpass filtering (other than the filtering by the 3:1 interpolation filter) is per-
formed before the decimation shown, the output signal near £;"/2 has an unusually shaped
power spectrum due to the aliasing of the 3:1 interpolated spectrum. If this aliasing
causes a problem in the system that processes the interpolated output signal, it can be
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FIGURE 4.8 lllustration of 3:1 interpolation followed by 2:1 decimation. The aliased
input spectrum in the decimated output is shown with a dashed line. (a) Example real
input spectrum. (b) 3:1 interpolation filter response {f = 3f). {c} 3:1 interpolated
spectrum. (d} 2:1 decimated output (f," = £/2).

eliminated by either lowpass filtering the signal before decimation or by designing the in-
terpolation filter to further attenuate the replicated spectra.

The interpolation filter used to create the interpolated values can be an OR or FIR
lowpass filter. However, if an IIR filter is used the input samples are not preserved ex-
actly because of the nonlinear phase response of the IIR filter. FIR interpolation filters
can be designed such that the input samples are preserved, which also results in some
computational savings in the implementation. For this reason, only the implementation of
FIR interpolation will be considered further. The FIR lowpass filter required for interpo-
lation can be designed using the simpler windowing techniques. In this section, a Kaiser
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" window is used to design 2:1 and 3:1 interpolators. The FIR filter length must be odd so

that the filter delay is an integer number of samples and the input samples can be pre-
served. The passband and stopband must be specified such that the center coefficient of
the filter is unity (the filter gain will be P) and P coefficients on each side of the filter
center are zero. This insures that the original input samples are preserved, because the re-
sult of all the multiplies in the convolution is zero, except for the center filter coefficient
that gives the input sample. The other P — 1 output samples between each original input
sample are created by convolutions with the other coefficients of the filter. The following
passband and stopband specifications will be used to illustrate a P:1 interpolation filter:

Passband frequencies: 0-0.81,/(2P)
Stopband frequencies: 1.2£f/(2P)y-0.5 f;
Passband gain: P

Passband ripple: <0.03dB
Stopband attenuation: > 56 dB

The filter length was determined to be 16P — 1 using Equation (4.2) (rounding to the
nearest odd length) and the passband and stopband specifications. Greater stopband atten-
uation or a smaller transition band can be obtained with a longer filter. The interpolation
filter coefficients are obtained by multiplying the Kaiser window coefficients by the ideal
lowpass filter coefficients. The ideal lowpass coefficients for a very long odd length filter
with a cutoff frequency of f, /2P are given by the following sinc function:

Psin(kn/ P)
Cp = ——— .
kn

Note that the original input samples are preserved, because the coefficients are zero for
all k = nP, where n is an integer greater than zero and ¢, = 1. Very poor stopband attenua-
tion would result if the above coefficients were truncated by using the 16P — 1 coeffi-
cients where I < 8P. However, by multiplying these coefficients by the appropriate
Kaiser window, the stopband and passband specifications can be realized. The symmetri-
cal Kaiser window, w,, is given by the following expression:

Io{B 1‘(%)2 }
1))

where I,(B) is a modified zero order Bessel function of the first kind, P is the Kaiser
window parameter which determines the stopband attenuation and N in equation (4.7)
is 16P+ 1. The empirical formula for B when A, is greater than 50 dB is
B = 0.1102*(Ag,,, — 8.71). Thus, for a stopband attenuation of 56 dB, B = 5.21136.
Figure 4.9(a) shows the frequency response of the resulting 31-point 2:1 interpolation
filter, and Figure 4.9(b) shows the frequency response of the 47-point 3:1 interpolation
filter.

(4.6)

W, = , %))
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FIGURE 4.9 (a) Frequency response of 31-point FIR 2:1 interpolation filter
{gain = 2 or 6 dB). (b) Frequency response of 47-point FIR 3:1 interpolation
filter (gain = 3 or 9.54 dB).
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4.3.3 Real-Time Sample Rate Conversion

Listing 4.9 shows the example interpolation program INTERP3.C, which can be used to
interpolate a signal by a factor of 3. Two coefficient arrays are initialized to have the dec-
imated coefficients each with 16 coefficients. Each of the coefficient sets are then used
individually with the £ir £ilter function to create the interpolated values to be sent
to sendout (). The original input signal is copied without filtering to the output every
P sample (where P is 3). Thus, compared to direct filtering using the 47-point original fil-
ter, 15 multiplies for each input sample are saved when interpolation is performed using
INTERP3. Note that the rate of output must be exactly three times the rate of input for
this program to work in a real-time system.

<stdliib.h>
<stdio.h>
<string.h>
<math.h>
"rtdspc.h"

#include
#include
#include
#include
#include

/******‘k***********’k******************‘k******'lr*****************************

INTERP3.C - PROGRAM TO DEMONSTRATE 3:1 FIR FILTER INTERPOLATION
USES TWO INTERPOLATION FILTERS AND MULTIPLE CALLS TO THE
REAL TIME FILTER FUNCTION fir_filter().

*************************************************************************/

main()

{

int i;

float signal_in;

/* interpolation coefficients for the decimated filters */
static float coef31[16] ,coef32{16];

/* history arrays for the decimated filters */

static float hist31{15] ,hist32[15];

/* 3:1 interpolation coefficients, PB 0-0.133, SB 0.2-0.5 */

static float interp3[47] = {

-0.00178662, -0.00275%941, 0., 0.00556927, 0.00749929, 0.,
-0.01268113, -0.01606336, 0., 0.02482278, 0.03041984, 0.,
-0.04484686, -0.05417098, 0., 0.07917613, 0.09644332, 0.,
~0.14927754, -0.19365910, 0., 0.40682136, 0.82363913, 1.0,
0.82363913, 0.40682136, 0., -0.19365910, -0.14927754, 0.,
0.09644332, 0.07917613, 0., ~-0.05417098, -0.04484686, 0.,
0.03041984, 0.02482278, 0., -0.01606336, -0.01268113, 0.

LISTING 4.9 Example INTERP3.C program
(Continued)

for 3:1 FIR interpolation.



168 Real-Time Filtering Program INTERP3.C Input (WAVE3.DAT)

Chap. 4

0.00749928, 0.00556927, 0., -0.00275941, -0.00178662

}: 0.8} i
for(i = 0 ; i < 16 ; i++) coef3l[i] = interp3[3*i]; 06 1 ‘ I it i
0.4 : i | 7

for(i =0 ; i < 16 ; i++) coef32[i] interp3([3*i+1];
/* make three samples for each input */
for(;:) {
signal_in = getinput();
sendout (hist31[71); /* delayed input */
sendout (fir_filter(signal_in,coef31,16,hist31));

0.2 !

(a)

Sample Value
=

sendout (fir_filter(signal_in, coef32,16,hist32)); 041 | b
} |
} 0.6 b
LISTING 4.9 (Continued) -0.8 1
Figure 4.10 shows the result of running the INTERP3.C program on the WAVE3 DAT -1 . - . L :
data file contained on the disk (the sum of frequencies 0.01, 0.02 and 0.4). Figure 4.10(a) 0 30 100 150 200 250
shows the original data. The result of the 3:1 interpolation ratio is shown in Figure Sample Number
4.10(b). Note that the definition of the highest frequency in the original data set (0.4 f)is
much improved, because in Figure 4.10(b) there are 7.5 samples per cycle of the highest ) Program INTERP3.C Output
frequency. The startup effects and the 23 sample delay of the 47-point interpolation filter ' ' ’ ' ' '
is also easy to see in Figure 4.10(b) when compared to Figure 4.10(a). 08l 4
osl |[Hill it L 1
i FAST FILTERING ALGORITHMS 04 ‘H;:,‘ L il Al ‘J
4 [l il il :
' ] iith | I
The FFT is an extremely useful tool for spectral analysis. However, another important ap- s o2l | ; I bk ; ‘;, (i ‘ | |
plication for which FFTs are often used is fast convolution. The formulas for convolution = BRI | i i ‘ HHH | kil
were given in chapter 1. Most often a relatively short sequence 20 to 200 points in length i 0 i {154 .
(for example, an FIR filter) must be convolved with a number of longer input sequences. (b) E‘ ' | ; ‘
The input sequence length might be 1,000 samples or greater and may be changing with v 02} ‘ ‘ i HE
time as new data samples are taken. i
One method for computation given this problem is straight implementation of the 04r ‘ i
time domain convolution equation as discussed extensively in chapter 4. The number of real 06k |
multiplies required is M * (N ~ M + 1), where N is the input signal size and M is the length ' |4l
of the FIR filter to be convolved with the input signal. There is an alternative to this rather 08F 4
lengthy computation method—the convolution theorem. The convolution theorem states
that time. domain f:onvolution is equival‘ent to multiplication in the' frequency domain. The -1 0 ™ 700 300 200 500 600 700 800
convolution equation above can be rewritten in the frequency domain as follows:
Sample Number

Y(k) = H(k) X(k) 4.8)
. . FIGURE 4.10 {a) Example of INTERP3 for 3:1 interpolation. Original
Because interpolation is also a filtering operation, fast interpolation can also be pet- WAVES3.DAT. (b} 3:1 interpolated WAVE3.DAT output.

formed in the frequency domain using the FFT. The next section describes the implemen-

169
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tation of real-time filters using FFT fast convolution methods, and section 4.4.2 desers
a real-time implementation of frequency domain interpolation. Cribes

4.4.1 Fast Convolution Using FFT Methods

Equation (4.8) indicates that if the frequency domain representations of h(n) and x(n)
known, then Y(k) can be calculated by simple multiplication. The sequence y(n) cap t:re
be obtained by inverse Fourier transform. This sequence of steps is detailed below: .

(1) Create the array H(k) from the impulse response h(n) using the FFT.
(2) Create the array X(k) from the sequence x(n) using the FFT,

(3) Multiply H by X point by point thereby obtaining ¥(k).

(4) Apply the inverse FFT to Y(k) in order to create y(n).

There are several points to note about this procedure. First, very often the impulse
response h(n) of the filter does not change over many computations of the convolutiop
equation. Therefore, the array H(k) need only be computed once and can be used repeat-
edly, saving a large part of the computation burden of the algorithm,

Second, it must be noted that h(n) and x(n) may have different lengths. In this case, it
is necessary to create two equal length sequences by adding zero-value samples at the end of
the shorter of the two sequences. This is commonly called zero filling or zero padding. This
is necessary because all FFT lengths in the procedure must be equal. Also, when using the
radix 2 FFT all sequences to be processed must have a power of 2 length. This can require
zero filling of both sequences to bring them up to the next higher value that is a power of 2.

Finally, in order to minimize circular convolution edge effects (the distortions that
occur at computation points where each value of h(n) does not have a matching value in
x(n) for mulitiplication), the length of x(n) is often extended by the original length of h(n)
by adding zero values to the end of the sequence. The problem can be visualized by
thinking of the convolution equation as a process of sliding a short sequence, h(n), across
a longer sequence, x(n), and taking the sum of products at each translation point. As this
translation reaches the end of the x(n) sequence, there will be sums where not all h(n) val-
ues match with a corresponding x(n) for multiplicatjon. At this point the output y(n) is ac-
tually calculated using points from the beginning of x(n), which may not be as useful as
at the other central points in the convolution, This circular convolution effect cannot be
avoided when using the FFT for fast convolution, but by zero filling the sequence its re-
sults are made predictable and repeatable.

The speed of the FFT makes convolution using the Fourier transform a practical
technique. In fact, in many applications fast convolution using the FFT can be signifi-
cantly faster than normal time domain convolution. As with other FFT applications, there
is less advantage with shorter sequences and with very small lengths the overhead can
create a penalty. The number of real multiply/accumulate operations required for fast
convolution of an N length input sequence (where N is a large number, a power of 2 and
real FFTs are used) with a fixed filter sequence is 2*N*[1 + 2*log,(N)]. For example,
when N is 1,024 and M is 100, fast convolution is as much as 2.15 times faster.

Chap, 4
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The program RFAST (see Listing 4.10) illustrates the use of the ££t function for
fast convolution (see Listing 4.11 for a C language implementation). Note that the in-
verse FFT is performed by swapping the real and imaginary parts of the input and out-
put of the ££t function. The overlap and save method is used to filter the con-
tinuous real-time input and generate a continuous output from the 1024 point FFT. The
convolution problem is filtering with the 35-tap low pass FIR filter as was used in sec-
tion 4.2.2. The filter is defined in the FILTER.H header file (variable £ir_1p£35).
The RFAST program can be used to generate results similar to the result shown in
Figure 4.7(b).
(text continues on page 176)

#include <stdlib.h>
#include <stdio.h>

" #include <string.h>

#include <math.h>
#include “rtdspc.h"
#include *filter.h"

/*;\-***********‘k**********i'**********************************************

RFAST.C - Realtime fast convolution using the FFT

This program performs fast convolution using the FFT. It performs
the convolution required to implement a 35 point FIR filter
(stored in variable fir 1pf35) on an

arbitrary length realtime input. The filter is

a LPF with 40 dB out of band rejection. The 3 dB point is at a
relative frequency of approximately .25*fs.

************************************************************************/

/* FFT length must be a power of 2 */
#define FFT_LENGTH 1024

#define M 10

/* must be log2 (FFT_LENGTH) */

#define FILTER_LENGTH 35

void main()

{

int i, j;

float tempflt;
COMPLEX *samp, *filt;

static float input_save[FILTER_LI-N‘;I'H];

/* power of 2 length of FFT and complex allocation */
samp = (COMPLEX *) calloc (FFT_LENGTH, Sizeof(COMPLEX));
if (Isamp) {

LISTING 4.10 Program RFAST to perform real-time fast convolution using
the overlap and save method. (Continued)
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exit(1l);
}

/* Zero fill the filter to the sequence length */
filt = (COMPLEX *) calloc(FFT_LENGTH, sizeof (COMPLEX));
if (1Eilt)
exit(1);
}

/* copy the filter into complex array and scale by 1/N for inverse FFT */
tempflt = 1.0/FFT_LENGTH;
for(i = 0 ; i < FILTER_LENGTH ; i++)

filt{i] .real = tempflt*fir 1pf35[i];

/* FFT the zero filled filter impulse response */
FEE(£ilt, M) ;

/* read in one FFT worth of samples to start, imag already zero */
for(i = 0 ; i < FFT_LENGTH-FILTER_LENGTH ; i++)
samp([i] .real = getinput();

/* save the last FILTER_LENGTH points for next time */
for(j = 0 ; j < FILTER _LENGTH ; j++, i++)
input_save(jl = samp[i].real = getinput();

while(1) {

/* do FFT of samples */
fft (samp, M) ;

/* Multiply the two transformed sequences */
/* swap the real and imag outputs to allow a forward FFT instead of
inverse FFT */
for(i = O ; i < FFT_LENGTH ; i++) {
tempflt = samp[i].real * filt[i].real
- samp{i].imag * filt[i].imag;
samp[i) .xreal = samp([i].real * £ilt[i].imag
+ sampii].imag * filt(i].real;
tempflt;

samp (i} .imag
}

/* Inverse fft the multiplied sequences */
fft (samp, M) ;

/* Write the result out to a dsp data file */
/* because a forward FFT was used for the inverse FFT,

LISTING 4.10 (Continued)
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the output is in the imag part */
for(i = FILTER_LENGTH ; i < FFT_LENGTH ; i++) sendout(sampli].imag);

/* overlap the last FILTER_LENGTH-1 input data points in the next FFT */
for(i = 0; i < FILTER_LENGTH ; i++) {
samp[i].real = input_savel(i];
samp[i].imag = 0.0;
}

for( ; 1 < FPFT_LENGTH-FILTER_LENGTH ; i++) {
samp[i] .real = getinput();
samp{i] .imag = 0.0;

}

/* save the last FILTER_LENGTH points for next time */
for(j = 0 ; j < FILTER _LENGTH ; j++, i++) {
input_save[j] = samp[i].real = getinput();
samp[i].imag = 0.0;

LISTING 4.10 (Continued)
/**************************************************************************

fft - In-place radix 2 decimation in time FFT

Requires pointer to complex array, x and power of 2 size of FFT, m
(size of FFT = 2**m). Places FFT output on top of input COMPLEX array.

void fft(COMPLEX *x, int m)

*************************************************************************/

void f£ft (COMPLEX *x,int m)
{
/* used to store the w complex array */
/* stores m for future reference */

/* length of fft stored for future */

static COMPLEX *w;
static int mstore = 0;
static int n = 1;

COMPLEX u, temp, tm;
COMPLEX *xi,*xip, *xj, *wptr;

int i,3j,k,1,le,windex;

double arg,w_real,w_imag,wrecur_real,wrecur_imag,wtemp_real;

LISTING 4.11 Radix 2 FFT function ££t (x,m). (Continued)
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if(m != mstore) {

/* free previously allocated storage and set new m */

if (mstore != 0) free(w);
mstore = m;
if(m == 0) return; /* if m=0 then done */

/* n = 2*%*m = fft length */

n=1 <<m;
le = n/2;

/* allocate the storage for w */

w = (COMPLEX *) calloc(le-l,sizeof(COMPLEx));
if(1w) {

exit(1l);
}

/* calculate the w values recursively */

arg = 4.0*atan(1.0)/le;
wrecur_real = w_real = cos{arg) ;
wrecur_imag = w_imag = -sin(arg);

/* PI/le calculation */

Xj = w;

for (j =1; j < le; j++) {
xj->real = (float)wrecur_real;
Xj->imag = (float)wrecur_imag;
Xj++;

wtenmp_real = wrecur_real*w_real - wrecur_imag*w_imag;
wrecur_imag = wrecur_real*w_imag + wrecur_imag*w_real;
wrecur_real = wtemp_real;

/* start fft */

le = n;

windex = 1;

for (1=0;1<m; 1++) {
le = le/2;

/* first iteration with no multiplies */
for(i=0;i<n;i=i+2*1e) {

xi =x + i;
xip = xi + le;

LISTING 4.11 (Continued)

. 4.4
Chap, 4 Sec. 4

*xi = temp;

/* remaining iterations

wptr = w + windex

for (j =
u = *wptr;
for (1 =3 ;

temp.real
temp. imag
tm.real =
tm. imag =
xip->real
Xip->imag

}

}

j=0;

k = n/2;

while(k <= j) {
i=3-k;
k = k/2;

}

j=3+k;

if (i < j§) {
xi=x+i,‘
Xj = x + j;

temp = *xj;
*xj = *xi;
*x1 = temp;

i<n;

xi =x + i;

xip = xi + 1le;

windex = 2*windex;

for (i =1 ; i < (n-1)

Fast Filtering Algorithms

temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
xip->real = xi->real - xip->real;
Xip->imag = xi->imag - xip->imag;

use stored w */

-1;

1:3<1le; j++) {

1=1+ 2%le) {

= xi->real + xip->real;

= xi->imag + xip->imag;

xi->real - xip->real;

xi->imag - xip->imag;

= tm.real*u.real - tm.imag*u.imag;
= tm.real*u.imag + tm.imag*u.real;

*xi = temp;

Wptr = wptr + windex;

/* rearrange data by bit reversing */

;oi+d) {

LISTING 4.11 (Continued)
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4.4.2 Interpolation Using the FFT

In section 4.3.2 time domain interpolation was discussed and demonstrated using severy
short FIR filters. In this section, the same process is demonstrated using FFT techniques
The steps involved in 2:1 interpolation using the FFT are as follows: )

(1) Perform an FFT with a power of 2 length (N) which is greater than or equa] to the
length of the input sequence.

(2) Zero pad the frequency domain representation of the signal (a complex array) by
inserting N — 1 zeros between the positive and negative half of the spectrum, The
Nyquist frequency sample output of the FFT (at the index N/2) is divided by 2 apnq
placed with the positive and negative parts of the spectrum, this results in a Sym-
metrical spectrum for a real input signal.

(3) Perform an inverse FFT with a length of 2N.

(4) Multiply the interpolated result by a factor of 2 and copy the desired portion of the
result that represents the interpolated input, this is all the inverse FFT samples if the
input length was a power of 2.

Listing 4.12 shows the program INTFFT2.C that performs 2:1 interpolation using
the above procedure and the ££t function (shown in Listing 4.11). Note that the inverse
FFT is performed by swapping the real and imaginary parts of the input and output of the
££t function. Figure 4.11 shows the result of using the INTFFT2 program on the 128
samples of the WAVE3.DAT input file used in the previous examples in this chapter
(these 256 samples are shown in detail in Figure 4.10(a)). Note that the output length is
twice as large (512) and more of the sine wave nature of the waveform can be seen in the
interpolated result. The INTFFT2 program can be modified to interpolate by a larger
power of 2 by increasing the number of zeros added in step (2) listed above. Also, be-
cause the FFT is employed, frequencies as high as the Nyquist rate can be accurately in-
terpolated. FIR filter interpolation has a upper frequency limit because of the frequency
response of the filter (see section 4.3.1).

#include
#include
#include
#include
#include

/************* IRARE KA AR AT AR AR AR AT AR ARk Ak Ak kb Ak ko hhkk Ak hhhk bk kb hkkhhkd

INTFFT2.C - Interpolate 2:1 using FFT

Generates 2:1 interpolated time domain data.

* Ak dkdkkkkhkkhkdkdok ***********************************************************/

<stdlib.h>
<stdio.h>
<string.h>
<math.h>
"rtdspc.h"

LISTING 4.12 Program INTFFT2.C used to perform 2:1 interpolation using
the FFT. (Continued)

Sec. 4.4 Fast Filtering Algorithms

¢define LENGTH 256

pdefine M 8 /* must be log2 (FFT_LENGTH) */
main()
( a

int 1;

float temp;

COMPLEX *samp;

/* allocate the complex array (twice as long) */
samp = (COMPLEX *) calloc(2*LENGTH, sizeof (COMPLEX));
if(!samp) {
printf ("\nError allocating fft memory\n");
exit(1l);
}

/* copy input signal to complex array and do the fft */
for (i = 0; i < LENGTH; i++) samp[i].real = getinput();

fft (samp, M) ;

/* swap the real and imag to do the inverse fft */
for (i = 0; i < LENGTH; i++) {
temp = samp(i].real;
sanmp(i] .real = samp{il.imag;
samp[i].imag = temp;
}

/* divide the middle frequency component by 2 */
samp [LENGTH/2] .real 0.5*samp [LENGTH/2] .real ;
samp [LENGTH/2] . imag 0.5*samp [LENGTH/2] . imag;

/* zero pad and move the negative frequencies */
samp [3*LENGTH/2] = samp[LENGTH/2];
for (i = LENGTH/2 + 1; i < LENGTH ; i++) {

samp [i+LENGTH] = samp([i];
samp[i].real = 0.0;
samp{i] .imag = 0.0;

}

/* do inverse fft by swapping input and output real & imag */

fft (samp,M+1) ;

/* copy to output and multiply by 2/(2*LENGTH) */
temp = 1.0/LENGTH;

for (i=0; i < 2*LENGTH; i++) sendout(temp*samp(i].imag):;

LISTING 4.12 (Continued)
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FIGURE 4.11 Example use of the INTFFT2 program used to interpolate
WAVES signal by a 2:1 ratio.

4.5 OSCILLATORS AND WAVEFORM SYNTHESIS

The generation of pure tones is often used to synthesize new sounds in music or for test-
ing DSP systems. The basic oscillator is a special case of an IIR filter where the poles are
on the unit circle and the initial conditions are such that the input is an impulse. If the
poles are moved outside the unit circle, the oscillator output will grow at an exponential
rate. If the poles are placed inside the unit the circle, the output will decay toward zero.
The state (or history) of the second order section determines the amplitude and phase of
the future output. The next section describes the details of this type of oscillator. Section
4.5.2 considers another method to generate periodic waveforms of different frequencies
—the wave table method. In this case any period waveform can be used to generate a
fundamental frequency with many associated harmonics.

4.5.1 IR Filters as Oscillators

The impulse response of a continuous time second order oscillator is given by

J(0) = e SI(@)
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If d > O then the output will decay toward zero and the peak will occur at

_ tan"(w/d)

t = .
peak ©

(4.10)

The peak value will be

—dt
e

Wt ak) = ————
ke vd?* + »?

A second-order difference can be used to generate a response that is an approximation of
this continuous time output. The equation for a second-order discrete time oscillator is
based on an IIR filter and is as follows:

“4.11)

Yn+1 = C1Yn 3 blxn» (412)

where the x input is only present for ¢ = 0 as an initial condition to start the oscillator and

c = 2¢H cos(wt)
Cy = e
where T is the sampling period (1/f;) and @ is 27 times the oscillator frequency.

The frequency and rate of change of the envelope of the oscillator output can be
changed by modifying the values of d and ® on a sample by sample basis. This is illus-
trated in the OSC program shown in Listing 4.13. The output waveform grows from a
peak value of 1.0 to a peak value of 16000 at sample number 5000. After sample 5000
the envelope of the output decays toward zero and the frequency is reduced in steps every
1000 samples. A short example output waveform is shown in Figure 4.12.

4.5.2 Table-Generated Waveforms

Listing 4.14 shows the program WAVETAB.C, which generates a fundamental fre-
quency at a particular musical note given by the variable key. The frequency in Hertz is
related to the integer key as follows:

f =440 ¢2%2 (4.13)

Thus, a key value of zero will give 440 Hz, which is the musical note A above mid-
dle C. The WAVETAB.C program staris at a key value of —24 (two octaves below A) and
steps through a chromatic scale to key value 48 (4 octaves above A). Each sample output
value is calculated using a linear interpolation of the 300 values in the table gwave. The
300 sample values are shown in Figure 4.13 as an example waveform. The gwave array is
301 elements to make the interpolation more efficient. The first element (0) and the last ele-
ment (300) are the same, creating a circular interpolated waveform. Any waveform can be
substituted to create different sounds. The amplitude of the output is controlled by the env
variable, and grows and decays at a rate determined by trel and amp arrays.



#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "rtdspc.h”

/* change_flag:
-1 = start new sequence from t=0
0 = no change, generate next sample in sequence
1 = change rate or frequency after start

*

float osc(float, float,int); !

float rate, freq;

float amp = 16000;

if (change_flag != 0) {
/* assume rate and freq change every time */
wosc = freq * two_pi_div_sample rate;
arg = 2.0 * cos(wosc);

void main() a = arg * rate;

{ b = -rate * rate;
long int i,length = 100000;
if (change_flag < 0) { /* re-start case, set state variables */
/* calculate the rate required to get to desired amp in 5000 samples */ y0 = 0.0f;

rate = (float)exp(log(amp)/(5000.0)); return(yl = rate*sin(wosc));

}
/* start at 4000 Hz */
freq = 4000.0; -

}
/* make new sample */
out = a*yl + b*y0;

/* first call to start up oscillator */ y0 = v1;
sendout (osc (freq, rate, ~1)) ; vl = out;
/* special case for first 5000 samples to increase amplitude */ return(out) ;
for(i = 0 ; i < 5000 ; i++) }
sendout (osc (freq, rate,0));
LISTING 4.13 (Continued)
/* decay the osc 10% every 5000 samples */
rate = (float)exp(log(0.9)/(5000.0)); x104 Program OSC.C Output
for( ; i < length ; i++) {
if((1%1000) == 0) { /* change freq every 1000 samples */ )

freq = 0.98*freq;
sendout (osc (freq, rate, 1)) ;

1.5 H ﬂ

}
else { /* normal case */
sendout (osc(freq, rate, 0)) ; 05t .
} D) g
} G
>
flush(); % 0 E
} g
2 st
/* Function to generate samples from a second order oscillator i
rate = envelope rate of change parameter (close to 1).
change_flag = indicates that frequency and/or rate have changed. -1
v i
. -1.5} E
float osc(float freq, float rate,int change_flag)
{
/* calculate this as a static so it never happens again */ -2 . v . . + L L
o 0 500 1000 1500 2000 2500 3000 3500 4000

static float two_pi div_sample_rate = (float) (2.0 * PI / SAMPLE RATE);
static float yl,y0,a,b,arg;
float out,wosc;

Sample Number

FGURE 4.12 Example signal output from the OSC.C program (modified to
reach peak amplitude in 500 samples and change frequency every 500 sam-
ple for display purposes).

LISTING 4.13 Program OSC to generate a sine wave signal with a variable
frequency and envelope using a second-order IIR section. {Continued)
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if(i == tbreaks[ci]) rate = rates[++ci];
env = rate*env;

/* determine interpolated sample value from table */

#include <stdlib.h>
#include <math.h>

#include "rtdspc.h*" X (int)pha
#include “"gwave.h" /* ve{301]) array */ = \int)phase;
gu= ) ol frac = phase - (float)k;
/* Wavetable Music Generator 4-20-94 PME */ sample = gwavelk]; . .
delta = gwavel(k+1] - sample; /* possible wave_size+l access */
int key; sample += frac*delta;
! /* calculate output and send to DAC */
void main() sig_out = env*sample;
{ sendout (sig_out);
int t,told,ci,k; /* calculate next phase value */
float ampold,rate,env,wave_size,dec,phase,frac,delta,sample; Phase += dec; . .
register long int i,endi; if(phase >= wave_size) phase -= wave_size;
register float sig_out; } }
static float trel(5] = {  0.02,  0.14, 0.6, 1.0, 0.0 }; ‘ flush();
static float amps{S5] = { 15000.0 , 10000.0, 4000.0, 10.0, 0.0 }; }
Stat%c Flgazb ra;zﬁg;: LISTING 4.14 (Continued)
static in re ;
wave_size = 300.0; /* dimension of original wave */
~ gram WAVET R
endi = 96000; /* 2 second notes */ . G\.N.'AVEforPro . v I?BC .
for(key = -24 ; key < 48 ; key++) { i
/* decimation ratio for key semitones down */ |
dec = powf(2.0,0.0833333333*(float)key),-
/* calculate the rates required to get the desired amps */ |
i=0; ° ]
told = 0; 3
ampold = 1.0; /* always starts at unity */ i ]
while(amps({i] > 1.0) { e
t = trel(i]*endi; :,é}
rates[i] = expf(logf (amps[i] /ampold) / (t-told)) ;
ampold = amps{i]; 04k
tbreaks[i] = told = t; )
i++;
' 0.6
}
phase = 0.0; -08F
rate = rates[0]; 1 ) . A . .
env = 1.0; 0 50 100 150 200 250 300
ci=0;
for(i = 0 ; i < endi ; i++) { Sample Number
/* calculate envelope amplitude */
FIGURE 4.13 Example waveform (gwave[301] array) used by program
LISTING 4.14 Program WAVETAB to generate periodic waveform at any WAVETAB.
frequency. (Continued)

s
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