Sec. 5.1 FFT Power Spectrum Estimation 187

(4) Amount of overlap between successive spectra: Determines accuracy of the esti-
mate, directly affects computation time

(5) Number of spectra averaged: Determines maximum rate of change of the detectable
spectra and directly affects the noise floor of the estimate

CHAPTER 5

%
REAL-TIME DSP APPLICATIONS

5.1.1 Speech Spectrum Analysis

One of the common application areas for power spectral estimation is speech processing.
The power spectra of a voice signal give essential clues to the sound being made by the
speaker. Almost all the information in voice signals is contained in frequencies below
3,500 Hz. A common voice sampling frequency that gives some margin above the
Nyquist rate is 8,000 Hz. The spectrum of a typical voice signal changes significantly
every 10 msec or 80 samples at 8,000 Hz. As a result, popular FFT sizes for speech pro-
cessing are 64 and 128 points.

Included on the MS-DOS disk with this book is a file called CHKL.TXT. This is
the recorded voice of the author saying the words “chicken little.”” These sounds were
chosen because of the range of interesting spectra that they produced. By looking at a plot
of the CHKL.TXT samples (see Figure 5.1) the break between words can be seen and the

This chapter combines the DSP principles described in the previous chapters with the
specifications of real-time systems designed to solve real-world problems and provide
complete software solutions for several DSP applications. Applications of FFT spectrum
analysis are described in section 5.1. Speech and music processing are considered in sec-
tions 5.3 and 5.4. Adaptive signal processing methods are illustrated in section 5.2 (para-
metric signal modeling) and section 5.5 (adaptive frequency tracking).

CHKL.TXT Speech Samples
150 T T T T r

1 FFT POWER SPECTRUM ESTIMATION

Signals found in most practical DSP systems do not have a constant power spectrum. The
spectrum of radar signals, communication signals, and voice waveforms change continu-
ally with time. This means that the FFT of a single set of samples is of very limited use.
More often a series of spectra are required at time intervals determined by the type of sig-
nal and information to be extracted.

Power spectral estimation using FFTs provides these power spectrum snapshots
(called periodograms). The average of a series of periodograms of the signal is used as
the estimate of the spectrum of the signal at a particular time. The parameters of the aver-
age periodogram spectral estimate are:

Sample Value

-150 L L : A L
0 1000 2000 3000 4000 5000 6000

(1) Sample rate: Determines maximum frequency to be estimated

(2) Length of FFT: Determines the resolution (smallest frequency difference detectable)

(3) Window: Determines the amount of spectral leakage and affects resolution and
noise floor

Sample Number

FIGURE 5.1 Original CHKL.TXT data file consisting of the author's words
“chicken little” sampled at 8 kHz (6000 samples are shown).

186

188 Real-Time DSP Applications Chap. 5
relative volume can be inferred from the envelope of the waveform. The ffequency co
tent is more difficult to determine from this plot. n-

The program RTPSE (see Listing 5.1) accepts continuous input samples (ysip,
getinput ()) and generates a continuous set of spectral estimates. The power Spectragl
estimation parameters, such as FFT length, overlap, and number of spectra averaged, are
set by the program to default values. The amount of overlap and averaging can be
changed in real-time. RTPSE produces an output consisting of a spectral estimate every 4
input samples. Each power spectral estimate is the average spectrum of the input file over
the past 128 samples (16 FFT outputs are averaged together).

Figure 5.2 shows a contour plot of the resulting spectra plotted as a frequency ver.
sus time plot with the amplitude of the spectrum indicated by the contours. The high fre.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "rtdspc.h"

/*******'k**‘k******************

RTPSE.C - Real-Time Power spectral estimation using the FFT

This program does power spectral estimation on input samples.
The average power spectrum in each block is determined
and used to generate a series of outputs.

Length of each FFT snapshot: 64 points
Number of FFTs to average: 16 FFTs
Amount of overlap between each FFT: 60 points

*t******************************k*******'k****************************/

/* FFT length must be a power of 2 */
#define FFT_LENGTH 64
#define M 6 /* must be log2 (FFT_LENGTH) */

/* these variables global so they can be changed in real-time */
int numav = 16;
int ovlap = 60;

main()
{
int i ' J ki
float scale, tempflt;

LISTING 5.1 Program RTPSE to perform real-time power spectral estimation using
the FFT. (Continued)

Sec. 5.1 FFT Power Spectrum Estimation 189

static float mag [FFT_LENGTH], sig[FFT_LENGTH], hamw({FFT_LENGTH];
static COMPLEX samp [FFT_LENGTH] ;

/* overall scale factor */
scale = 1.0f/(float)FFT_LENGTH;
scale *= scale/(float)numav;

/* calculate hamming window */
tempflt = 8.0*atan(1.0)/(FFT_LENGTH-1);
for(i = 0 ; i < FFT_LENGTH ; i++)
hamw(i] = 0.54 - 0.46*cos(tempflt*i);

/* read in the first FFT_LENGTH samples, overlapped samples read in loop */
for(i = 0 ; i < FFT_LENGTH ; i++) sigfi] = getinput();

for(;;) {
for (k=0; k<FFT_LENGTH; k++) magl{k]l = 0;
for (j=0; j<numav; j++){
for (k=0; k<FFT_LENGTH; k++){
samp[k] .real = hamw(k]*sig([k];

samp [k} .imag = 0;
}

fft (samp, M) ;

for (k=0; k<FFT_LENGTH; k++){
tempflt = samp(k].real * samplk].real;
tempflt += samp[k].imag * samp[k].imag;
tempflt = scale*tempflt;
mag[k] += tempflt;

}

/* overlap the new samples with the old */
for(k = 0 ; k < ovlap ; k++) siglk] sig[k+FFT_LENGTH-ovlap];
for(; k < FFT_LENGTH ; k++) sig(k] = getinput();
}

/* Take log after averaging the magnitudes. */
for (k=0; k<FFT_LENGTH/2; k++){
tempflt = maglk];
if (tempflt < 1l.e-10f) tempflt = 1.e-10f;
sendout (10.0£*1ogl0(tempflt));

LISTING 5.1 (Continued)

190 Real-Time DSP Applicationg Chap, 5

Contour Plot of Power Spectrum of CHKL TXT

T T T T

FFT Frequency Bin Number

Spectral Estimate Number

FIGURE 5.2 Contour plot of the power spectrum versus frequency and
time obtained using the RTPSE program with the input file CHKL.TXT.
Contours are at 5 dB intervals and the entire 2D power spectrum is normal-
ized to 0 dB.

quency content of the “chi’” part of “chicken” and the lower frequency content of “Jittle”’
are clearly indicated.

5.1.2 Doppler Radar Processing

Radar signals are normally transmitted at a very high frequency (usually greater than 100
MHz), but with a relatively narrow bandwidth (several MHz). For this reason most radar
signals are processed after mixing them down to baseband using a quadrature demodula-
tor (see Skolnik, 1980). This gives a complex signal that can be processed digitally in
real-time to produce a display for the radar operator. One type of display is a moving tar-
get indicator (MTI) display where moving targets are separated from stationary targets by
signal processing. It is often important to know the speed and direction of the moving tar-
gets. Stationary targets are frequently encountered in radar because of fixed obstacles
(antenna towers, buildings, trees) in the radar beam’s path. The beam is not totally
blocked by these targets, but the targets do return a large echo back to the receiver. These

Sec. 5.1 FFT Power Spectrum Estimation 191
targets can be removed by determining their average amplitude from a series of echoes
and subtracting them from each received echo. Any moving target will not be subtracted
and can be further processed. A simple method to remove stationary echoes is to simply
subtract successive echoes from each other (this is a simple highpass filter of the Doppler
signal). The mean frequency of the remaining Doppler signal of the moving targets can
then be determined using the complex FFT.

Listing 5.2 shows the program RADPROC.C, which performs the DSP required to
remove stationary targets and then estimate the frequency of the remaining Doppler sig-
nal. In order to illustrate the operation of this program, the test data file RADAR.DAT
was generated. These data represent the simulated received signal from a stationary target

#include <stdlib.h>
#include <math.h>
#include "rtdspc.h"

/***

RADPROC.C - Real-Time Radar processing

This program subtracts successive complex echo signals to
remove stationary targets from a radar signal and then

does power spectral estimation on the resulting samples.

The mean frequency is then estimated by finding the peak of the
FFT spectrum.

Requires complex input (stored real, imag) with 12
consecutive samples representing 12 range locations from
each echo.

******‘k**********************)\'***************************************/

/* FFT length must be a power of 2 */
#define FFT LENGTH 16
#define M 4

#define ECHO_SIZE 12

/* must be log2 (FFT_LENGTH) */

void main()
{
int i,3.k;
float tempflt,rin,iin,pl,p2;
static float mag [FFT_LENGTH] ;
static COMPLEX echos [ECHO_SIZE] [FFT_LENGTH] ;
static COMPLEX last_echo[ECHO_SIZE];

LISTING 5.2 Program RADPROC to perform real-time radar signal process-
ing using the FFT. {Continued)

192 Real-Time DSP Applicationg

/* read in the first echo */
for(i = 0 ; i < ECHO_SIZE ; i++) {
last_echoli].real = getinput();
last_echo[i].imag = getinput();
}

for(:;) {
for (j=0; j< FFT_LENGTH; j++){

Chap. 5

/* remove stationary targets by subtracting pairs (highpass filter) = /

for (k=0; k< ECHO_SIZE; k++){
rin = getinput();
iin = getinput();
echos{k] [j].real
echos k] [j].imag
last_echo(k] .real
last_echo[k] . imag
}
}
/* do FFTs on each range sample */
for (k=0; k< ECHO_SIZE; k++) {

rin - last_echolk]}.real;
iin - last_echo(k].imag;

rin;
iin;

[

Ion

fft (echos(k] ,M);

for(j = 0 ; 3 < FFT_LENGTH ; j++) {
tempflt = echos{k][j].real * echoslk][j].real;
tempflt += echos(k]([j}.imag * echos[k][j].imag;
mag{j] = tempflt;
}
/* find the biggest magnitude spectral bin and output */
tempflt = mag(0];

i=0;
for(j =1 ; j < FFT_LENGTH ; j++) {
if(mag{j] > tempflt) {
tempflt = mag(jl;
i=j;
}

}

/* interpolate the peak loacation */
pl = mag[i]l - mag[i-1];
p2 = magfi] - mag[i+l];
sendout ((float)i + (pl-p2)/(2* (pl+p2+le-30)));

}
}
}

LISTING 5.2 (Continued)

Sec.5.2 Parametric Spectral Estimation 193

added to a moving target signal with Gaussian noise. The data is actually a 2D matrix
representing 12 consecutive complex samples (real,imag) along the echo in time (repre-
senting 12 consecutive range locations) with each of 33 echoes following one after an-
other. The sampling rates and target speeds are not important to the illustration of the pro-
gram. The output of the program is the peak frequency location from the 16-point FFT in
bins (0 to 8 are positive frequencies and 9 to 15 are —7 to —1 negative frequency bins). A
simple (and efficient) parabolic interpolation is used to give a fractional output in the re-
sults. The output from the RADPROC program using the RADAR.DAT as input is 24
consecutive numbers with a mean value of 11 and a small standard deviation due to the
added noise. The first 12 numbers are from the first set of 16 echoes and the last 12 num-
bers are from the remaining echoes.

5.2 PARAMETRIC SPECTRAL ESTIMATION

The parametric approach to spectral estimation attempts to describe a signal as a result
from a simple system model with a random process as input. The result of the estimator is
a small number of parameters that completely characterize the system model. If the
model is a good choice, then the spectrum of the signal model and the spectrum from
other spectral estimators should be similar. The most common parametric spectral estima-
tion models are based on AR, MA, or ARMA random process models as discussed in
section 1.6.6 of chapter 1. Two simple applications of these models are presented in the
next two sections.

5.2.1 ARMA Modeling of Signals

Figure 5.3 shows the block diagram of a system modeling problem that will be used to il-
lustrate the adaptive IIR LMS algorithm discussed in detail in section 1.7.2 of chapter 1.
Listing 5.3 shows the main program ARMA.C, which first filters white noise (generated
using the Gaussian noise generator described in section 4.2.1 of chapter 4) using a second-
order IIR filter, and then uses the LMS algorithm to adaptively determine the filter function.
Listing 5.4 shows the function iir_biguad, which is used to filter the white
noise, and Listing 5.5 shows the adaptive filter function, which implements the LMS algo-
rithm in a way compatible with real-time input. Although this is a simple ideal example
where exact convergence can be obtained, this type of adaptive system can also be used
to model more complicated systems, such as communication channels or control systems.
The white noise generator can be considered a training sequence which is known to the
algorithm; the algorithm must determine the transfer function of the system. Figure 5.4
shows the error function for the first 7000 samples of the adaptive process. The error re-
duces relatively slowly due to the poles and zeros that must be determined. FIR LMS al-
gorithms generally converge much faster when the system can be modeled as a MA sys-
tem (see section 5.5.2 for an FIR LMS example). Figure 5.5 shows the path of the pole

coefficients (b0,b1) as they adapt to the final result where b0 = 0.748 and bl = -0.272.
(text continues on page 198)

/*

float iir_adapt_filter(float i

{

/*

/*

/*

/*

/*

196

2 poles (2 b coefs) and 2 zeros (3 a coefs) adaptive jir bigquag Filter ny

int i;

Real-Time DSP Applications

static float out_histl,out_hist2;
static float betal2] ,beta_h1[2] ‘beta_h2{2];

static float alphal3] .alpha_h1

static float in hist([3];
float output,e;

output = out_histl * b[0];
output += out_hist2 * b[1];

in_hist[0] = input;
for(i = 0; i <3 ; i++)
output += in hist[i) * af

calclulate alpha and beta
for(i = 0 ; i <3 ; i+s+)
alphafi] =

betaf0]
beta[l] =

error calculation */
e = d - output;
update coefficients */

al0] += e*0.2*alpha0};
all] += e*0.1*alpha(l];
af2] += e*0.06*alpha(2];
b[0] += e*0.04*beta{0];
b[1l] += e*0.02*beta(1];

update history for alpha */

for(i=0;i<3;i++) {
alpha_h2{i] = alpha_hi[i]
alpha hi{i] = alphali];

}

update history for beta */
for(i = 0 ; i <2 ; i++) ¢

LISTING 5.5 Function iir_adapt_f
adaptive second-order IIR filter {cont

/*

i];

!

ilter(input,d,a,
ained in ARMA.C)

nput, float d,float *a, float *b)

[3],alpha_h2(3];

poles */

/* zeros */

update coefficients */
in hist(i] + b[0]*alpha hi[i] + bl1]*alpha_h2[i];

= out_histl + b[0]*beta_h1[0] + b[1] *beta_h2[0];
out_hist2 + b[0]*beta_h1([1] + bll]l*beta_h2[1];

b), which implements an LMS
(Continued)

Sec. 5.2 Parametric Spectral Estimation
Chap, 5
beta_h2{i] = beta_hl[i];
beta hl{i] = beta[i];
}

Sample Value

/* update input/output history */

197

out_hist2 = out_histl;
out_histl = output;
in hist[2] = in_hist[1];
in_hist(1] = input;
return(output) ;
LISTING 5.5 (Continued)
Error Signal from ARMA.C
1 : . r : T T
0.8} J
0.6} 4

(

3000 4000

Sample Number

FIGURE 5.4 Error signal during the HR adaptive process, illustrated by the

program ARMA.C.

5000

6000

7000

198 Real-Time DSP Applications Chap. 5

Pole Location Coefficients Adaptation from ARMA.C

0.15 . : , : . —

0.1

0.05

b[1] Coefficient

! ! i

0.1 02 03 0.4 0.5 0.6 0.7 0.8

-0.3 L L 4
0
b[0] Coefficient

FIGURE 5.5 Pole coefficients (b0,b1) during the lIR adaptive process, illus-
trated by the program ARMA.C.

5.2.2 AR Frequency Estimation

The frequency of a signal can be estimated in a variety of ways using spectral analysis
methods (one of which is the FFT illustrated in section 5.1.2). Another parametric ap-
proach is based on modeling the signal as resulting from an AR process with a single
complex pole. The angle of the pole resulting from the model is directly related to the
mean frequency estimate. This model approach can easily be biased by noise or other sig-
nals but provides a highly efficient real-time method to obtain mean frequency informa-
tion.

The first step in the AR frequency estimation process is to convert the real signal
input to a complex signal. This is not required when the signal is already complex, as is
the case for a radar signal. Real-to-complex conversion can be done relatively simply by
using a Hilbert transform FIR filter. The output of the Hilbert transform filter gives the
imaginary part of the complex signal and the input signal is the real part of the complex
signal. Listing 5.6 shows the program ARFREQ.C, which implements a 35-point Hilbert
transform and the AR frequency estimation process. The AR frequency estimate deter-
mines the average frequency from the average phase differences between consecutive

Sec. 5.2 Parametric Spectral Estimation 199

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include "rtdspc.h"

/* ARFREQ.C - take real data in one record and determine the
1st order AR frequency estimate versus time. Uses a Hilbert transform
to convert the real signal to complex representation */

main()

{

/* 35 point Hilbert transform FIR filter cutoff at 0.02 and 0.48
+/- 0.5 dB ripple in passband, zeros at 0 and 0.5 */

static float fir hilbert35[35] = {

0.038135, 0.000000, 0.024179, 0.000000, 0.032403,
0.000000, 0.043301, 0.000000, 0.058420, 0.000000,
0.081119, 0.000000, 0.120167, 0.000000, 0.207859,
0.000000, 0.635163, 0.000000, -0.635163, 0.000000,
-0.207859, 0.000000, -0.120167, 0.000000, -0.081119,
0.000000, ~0.058420, 0.000000, -0.043301, 0.000000,
-0.032403, 0.000000, ~0.024179, 0.000000, ~0.038135
}:
static float hist[34];
int i,winlen;
float sig_real,sig_imag, last_real, last_imag;
float cpi,xr,xi, freq;
cpi = 1.0/(2.0*PI);
winlen = 32;
last_real = 0.0;
last_imag = 0.0;
for(;;) {
/* determine the phase difference between sucessive samples */
xr = 0.0;
xi = 0.0;

for(i = 0 ; i < winlen ; i++) {
sig_imag = fir_filter (getinput (), fir hilbert35,35,hist};
sig_real = hist[16];
Xr += sig_real * last_real;
Xr += sig_imag * last_imag;
xi += sig_real * last_imag;

LISTING 5.6 Program ARFREQ.C, which calculates AR frequency estimates
in real-time. (Continued)

200 Real-Time DSP Applications Chap. 5
xi -= sig_imag * last_real;
last_real = sig_real;
last_imag = sig_imag;
}
/* make sure the result is valid, give 0 if not *,
if(fabs(xr) > le-10)
freq = cpi*atan2(xi,xr);

else
freq = 0.0;
sendout (freq) ;

}

LISTING 5.6 (Continued)

complex samples. The arc tangent is used to determine the phase angle of the complex re-
sults. Because the calculation of the arc tangent is relatively slow, several simplificationg
can be made so that only one arc tangent is calculated for each frequency estimate. Let 5

be the complex sequence after the Hilbert transform. The phase difference is "

¢n = arg[xn]— arg[xn—l] = a‘rg[xnx;—ll' . 1)

The average frequency estimate is then

wilen—] wien~1
zq)" arg] Zx,,xn_lJ (52)

7 — _n=0 =~ n=0
f 2n wlen 2n ’

where the last approximation weights the phase differences based on the amplitude of the
complex signal and reduces the number of arc tangents to one per estimate. The constant
wlen is the window length (winlen in program ARFREQ) and controls the number of
phase estimates averaged together. Figure 5.6 shows the results from the ARFREQ pro-
gram when the CHKL.TXT speech data is used as input. Note that the higher frequency
content of the “chi” sound is easy to identify.

3 SPEECH PROCESSING

Communication channels never seem to have enough bandwidth to carry the desired
speech signals from one location to another for a reasonable cost. Speech compression at-
tempts to improve this situation by sending the speech signal with as few bits per second
as possible. The same channel can now be used to send a larger number of speech signals

at a lower cost. Speech compression techniques can also be used to reduce the amount of
memory needed to store digitized speech.

Sec.5.3 Speech Processing 201

Frequency Estimates from ARFREQ.C

0.35 T T T T T T T
03} 1
025 7
g
2 02 h
g
2
g 0.15 b
|
0.1+ 7
0.05}]
0

0 20 40 60 80 100 120 140 160 180 200
Estimate Number

FIGURE 5.6 Frequency estimates from program ARFREQ.C, using the
CHKL.DAT speech data as input.

5.3.1 Speech Compression

The simplest way to reduce the bandwidth required to transmit speech is to simply reduce
the number bits per sample that are sent. If this is done in a linear fashion, then the qual-
ity of the speech (in terms of signal-to-noise ratio) will degrade rapidly when less than 8
bits per sample are used. Speech signals require 13 or 14 bits with linear quantization in
order to produce a digital representation of the full range of speech signals encountered in
telephone applications. The International Telegraph and Telephone Consultative Committee
(CCITT, 1988) recommendation G.711 specifies the basic pulse code modulation (PCM)
algorithm, which uses a logarithmic compression curve called p-law. p-law (see section
1.5.1 in chapter 1) is a piecewise linear approximation of a logarithmic transfer curve
consisting of 8 linear segments. It compresses a 14-bit linear speech sample down to 8
bits. The sampling rate is 8000 Hz of the coded output. A compression ratio of 1.75:1 is
achieved by this method without much computational complexity. Speech quality is not
degraded significantly, but music and other audio signals would be degraded. Listing 5.7
shows the program MULAW.C, which encodes and decodes a speech signal using p-law
compression. The encode and decode algorithms that use tables to implement the com-

202 Real-Time DSP Applications Chap. 5

1clude <stdlib.h>
1clude <stdio.h>
wclude "rtdspc.h”
iclude "mu.h"

B R L L
LT

LAW.C - PROGRAM TO DEMONSTRATE MU LAW SPEECH COMPRESSION

t*************************-k***
*/

n()
int i,3;
for(;;) {

i = (int) getinput();

encode 14 bit linear input to mu-law */
j = abs(i);
if(j > Ox1f£ff) j = Ox1fff;
j = invmutab(j/2];
if(i < 0) j |= 0x80;

decode the 8 bit mu-law and send out */
sendout ((float)mutablj]l);

LISTING 5.7 Program MULAW.C, which encodes and decodes a speech signal using
p-law compression.

pression are also shown in this listing. Because the tables are rather long, they are in the
include file MU.H.

5.3.2 ADPCM (G.722)

The CCITT recommendation G.722 is a standard for digital encoding of speech and audio
signals in the frequency range from 50 Hz to 7000 Hz. The G.722 algorithm uses sub-
band adaptive differential pulse code modulation (ADPCM) to compress 14-bit, 16 kHz
samples for transmission or storage at 64 kbits/sec (a compression ratio of 3.5:1).
Because the G.722 method is a wideband standard, high-quality telephone network appli-
cations as well as music applications are possible. If the sampling rate is increased, the
same algorithmm can be used for good quality music compression.

The G.722 program is organized as a set of functions to optimize memory usage
and make it easy to follow. This program structure is especially efficient for G.722, since
most of the functions are shared between the higher and lower sub-bands. Many of the

Sec.5.3 Speech Processing 203

functions are also shared by both the encoder and decoder of both sub-bands. All of the
functions are performed using fixed-point arithmetic, because this is specified in the
CCITT recommendation. A floating-point version of the G.722 C code is included on
the enclosed disk. The floating-point version runs faster on the DSP32C processor, which
has limited support for the shift operator used extensively in the fixed-point implementa-
tion. Listing 5.8 shows the main program G722MAIN.C, which demonstrates the algo-
rithm by encoding and decoding the stored speech signal “chicken little,” and then oper-
ates on the real-time speech signal from getinput (). The output decoded signal is
played using sendout () with an effective sample rate of 16 kHz (one sample is inter-
polated using simple linear interpolation giving an actual sample rate for this example of

#include <stdlib.h>
#include "rtdspc.h"

/* Main program for g722 encode and decode demo for 210X0 */

extern int encode({int,int);
extern void decode(int);
extern void reset();

/* outputs of the decode function */
extern int xoutl,xout2;

int chkl_coded{6000];
extern int pm chkl([};

void main()

{
int i,3,t1,t2;
float xf1 = 0.0;
float xf2 = 0.0;

/* reset, initialize required memory */
reset ();

/* code the speech, interpolate because it was recorded at 8000 Hz */
for(i = 0 ; i < 6000 ; i++) {(
tl=64*chkl1[i];
t2=32* (chkl[i]+chkl[i+1]);
chkl_coded[i]=encode(tl, t2);
}

/* interpolate output to 32 KHz */
for{(i = 0 ; i < 6000 ; i++) {

LISTING 5.8 The main program (G722MAIN.C), which demonstrates the
ADPCM algorithm in real-time. (Continued)

204 Real-Time DSP Applications Chap. g
decode (chkl_coded[i]);
xfl = (float)xoutl;
sendout (0.5*x£2+0.5*xf1) ;
sendout (xf1) ;
*xf2 = (float)xout2;
sendout (0.5*x£2+0. S*xf1);
sendout (x£2) ;
}

/* simulate a 16 KHz sampling rate (actual is 32 KHz) */
/* note: the g722 standard calls for 16 KHz for voice Operation */
while (1) {
t1=0.5*(getinput () +getinput());
£2=0.5* (getinput () +getinput());

J=encode(tl,t2);
decode(j);

xfl = (float)xoutl;
sendout (0.5* (xf1+x£2)) ;
sendout (xf1};

xf2 = (float)xout2;
sendout (0.5* (x£2+xf1)) ;
sendout (xf2) ;

LISTING 5.8 (Continued)

32 kHz). Listing 5.9 shows the encode function, and Listing 5.10 shows the decode
function; both are contained in G.722.C. Listing 5.11 shows the functions filtexz,
filtep, quant], invgxl, logscl, scalel, upzero, uppol2, uppoll, in-
vqah, and logsch, which are used by the encode and decode functions. In Listings
5.9, 5.10, and 5.11, the global variable definitions and data tables have been omitted for
clarity.
(text continues on page 215)

722 encode function two ints in, one int out */

encede(int xinl, int xin2)

int i;

int *h_ptr;

int *temf_ptr, *tamf_ptrl;

long int xa,xb;

int x1,xh;

LISTING 5.8 Function encode (xinl,xin2) (contained in G.722.C). (Continued)

/*
/*

/*

/*

/*

/*

/*
/*

/*

Sec. 5.3 Speech Processing

int decis;

int sh; /* this comes from adaptive predictor */
int eh;

int dh;

int il,ih;

int szh, sph, ph,vh;
int szl,spl,sl,el;

encode: put input samples in xinl = first value, xin2 = second value */
returns il and ih stored together */

transmit quadrature mirror filters implemented here */
h_ptr = h;
tamf_ptr = tgmf;
xa = (long) (*tgmf_ptr++) * (*h_ptr++);
xb = (long) (*tgmf_ptr++) * (*h_ptr++);
main multiply accumulate loop for samples and coefficients */
for(i = 0 ; 1 < 10 ; i++) {
xa += (long) (*tqmf_ ptr++) * (*h_ptr++);
xb += (long) (*tgmf_ptr++) * (*h_ptr++);
}
final mult/accumulate */
Xa += (long) (*tamf_ptr++) * (*h_ptr++);
xb += (long) (*tgmf_ptr) * (*h_ptr++);

update delay line tqmf */
tamf _ptrl = tgmf_ptr - 2;
for(i =0 ; i <22 ; i++) *tgmf ptr— = *tqmf_ptril—;
*tgmf_ptr— = xinl;
*tgnf_ptr = xin2;

(xa + xb) >> 15;
(xa - xb) >> 15;

x1
xh

end of quadrature mirror filter code */

into regular encoder segment here */
starting with lower sub band encoder */

filtez - compute predictor output section - zero section */
szl = filtez (delay_bpl,delay dltx);
filtep - compute predictor output signal (pole section) */

spl = filtep(rltl,all,rlt2,al2);

LISTING 5.9 (Continued)

205

206 Real-Time DSP Applications Chap. 5
:ompute the predictor output value in the lower sub_band encoder */

sl
el

szl + spl;
xl - sl;

uantl: quantize the difference signal */
il = quantl(el, detl);

nvgxl: does both invgal and invgbl- computes quantized difference signal */
‘or invgbl, truncate by 2 1lsbs, so mode = 3 */

nvgal case with mode = 3 */
dlt = ((long)detl*ggd_coded_table{il >> 2]) >> 15;

ogscl: updates logarithmic quant. scale factor in low sub band*/
nbl = logscl(il,nbl);

wcalel: compute the quantizer scale factor in the lower sub band*/
alling parameters nbl and 8 (constant such that scalel can be scaleh) */
detl = scalel(nbl,8);

arrec - simple addition to compute recontructed signal for adaptive pred */
plt = 41t + szl;

pzero: update zero section predictor coefficients (sixth order)*/
‘alling parameters: dlt, dlti(circ pointer for delaying */

1t1, dit2, ..., dlté from dlt */

bpli (linear_buffer in which all six values are delayed */

‘eturn params: updated bpli, delayed dltx */

upzero (dlt,delay_dltx,delay bpl);

ppol2- update second predictor coefficient apl2 and delay it as al2 */
‘alling parameters: all, al2, plt, pltl, plt2 */

al2 = uppol2(all,al2,plt,pltl,plt2);

ppoll :update first predictor coefficient apll and delay it as all */
alling parameters: all, apl2, plt, pltl */

all = uppoll(all,al2,plt,pltl);

‘econs : compute recontructed signal for adaptive predictor */
rlt = sl + dlt;

lone with lower sub_band encoder; now implement delays for next time*/

LISTING 5.9 (Continued)

Sec. 5.3 Speech Processing
rlt2 = rltcl;
ritl = rlt;
plt2 = pltl;
pltl = plt;

/* high band encode */

filtez (delay bph,delay_dhx) ;

szh

sph filtep(rhl,ahl,rh2,ah2);
/* predic: sh = sph + szh */

sh = sph + szh;
/* subtra: eh = xh - sh */

eh = xh - sh;

/* quanth - quantization of difference signal for higher sub-band */
/* quanth: in-place for speed params: eh, deth (has init. value) */
/* return: ih */

if(eh >= 0) {

ih = 3; /* 2,3 are pos codes */
}
else {

ih = 1; /* 0,1 are neg codes */
}

decis = (564L* (long)deth) >> 12L;
if (abs(eh) > decis) ih—; /* mih = 2 case */

/* invgah: in-place compute the quantized difference signal
in the higher sub-band*/

dh = ((long)deth*qq2_code2_table[ih]) >> 15L ;
/* logsch: update logarithmic quantizer scale factor in hi sub-band*/
nbh = logsch(ih,nbh);

/* note : scalel and scaleh use same code, different parameters */
deth = scalel (nbh,10);

/* parrec - add pole predictor output to quantized diff. signal (in place)*/
ph = dh + szh;

/* upzero: update zero section predictor coefficients (sixth order) */
/* calling parameters: dh, dhi(circ), bphi (circ) */
/* return params: updated bphi, delayed dhx */

upzero (dh, delay_dhx, delay_bph};

LISTING 5.9 (Continued)

207

208 Real-Time DSP Applications Chap, 5

ppol2: update second predictor coef aph? and delay as ah2 */
ralling params: ahl, ah2, ph, phil, ph2 */

‘eturn params: aph2 */

ah2 = uppol2 (ahl,ah2,ph,ph1,ph2);

ppoll: update first predictor coef. aph2 and delay it as ahl */
ahl = uppoll (ahl, ah2,ph,phl);

‘econs for higher sub-band */
yh = sh + dh;

lone with higher sub-band encoder, now Delay for next time */
rh2 = rhi;

rhl = yh;
ph2 = phi;
phl = ph;

mltiplexing ih and il to get signals together */
return(il | (ih << 6));

LISTING 5.9 (Continued)

lecode function, result in xoutl and xout2 */

| decode (int input)

int i;

int xal,xa2; /* gmf accumulators */
int *h_ptr;

int pm *ac_ptr, *ac_ptrl, *ad_ptr, *ad | ptrl;
int ilr,ih;

int xs,xd;

int rl, rh;

int di;

plit transmitted word from input into ilr and ih */
ilr = input & Ox3f;

ih = input >> 6;

OWER SUB_BAND DECODER */

‘iltez: compute predictor output for zero section */

LISTING 5.10 Function decode (input) (contained in G.722.C). (Continued)

S———— |

/*

/*

/*

/*

/*

/*
/*

/*

/*

/*

/*

/*

Sec. 5.3 Speech Processing 209
dec_szl = filtez(dec_del_bpl,dec_del_dltx) ;

filtep: compute predictor output signal for pole section */
dec_spl = filtep(dec_rltl, dec_all,dec_rlt2,dec_al2);

dec_sl = dec_spl + dec_szl;

invgxl: compute quantized difference signal for adaptive predic in low sb */
dec_dlt = ((long)dec_detl*qq4_code4_ta.b1e[ilr >> 21) >> 15;

invgxl: compute quantized difference signal for decoder output in low sb */
dl = ((long)dec_detl*qq6_code6_tab1e[ilr]) >> 15;

rl = dl + dec_sl;

logscl: quantizer scale factor adaptation in the lower sub-band */
dec_nbl = logscl(ilr,dec_nbl);

scalel: computes quantizer scale factor in the lower sub band */
dec_detl = scalel (dec_nbl, 8);

parrec - add pole predictor output to quantized diff. signal (in place) */
for partially reconstructed signal */

dec_plt = dec_dit + dec_szl;
upzero: update zero section predictor coefficients */

upzero (dec_dlt, dec_del_dltx, dec_del bpl);
uppol2: update second predictor coefficient apl2 and delay it as al2 */
dec_al2 = uppolz(dec_all,dec__alZ,dec__plt,dec _pltl,dec_plt2);

uppoll: update first predictor coef. (pole setion) */

dec_all = uppoll (dec_all,dec_al2,dec_plt,dec pltl);

Trecons : compute recontructed signal for adaptive predictor */
dec_rlt = dec_sl + dec_dlt;

done with lower sub band decoder, implement delays for next time */

USTING 5.10 (Continued)

210 Real-Time DSP Applications Chap, 5 | Sec.5.3 Speech Processing 21
dec_rlt2 = dec_rltl; /* recons : compute recontructed signal for adaptive predictor */
dec_rltl = dec_rlt; : rh = dec_sh + dec_dh;
dec_plt2 = dec_pltl;
dec_pltl = dec_plt; | /* done with high band decode, implementing delays for next time here */

i dec_rh2 = dec_rhl;
* HIGH SUB-BAND DECODER */ ; dec_rhl = rh;
dec_ph2 = dec_phl;
* filtez: compute predictor output for zero section */ dec_phl = dec_ph;
dec_szh = filtez(dec_del_bph,dec_del_dhx); /* end of higher sub_band decoder */
* filtep: compute predictor output signal for pole section */ /* end with receive quadrature mirror filters */
. xd = rl - rh;
dec_sph = filtep(dec_rhl,dec_ahl,dec_rh2,dec_ah2); xs = rl + rh;
* predic:compute the predictor output value in the higher sub_band decoder */ i /* receive quadrature mirror filters implemented here */
! h ptr = h;
dec_sh = dec_sph + dec_szh; ac_ptr = accumc;
: ad_ptr = accumd;
* invgah: in-place compute the quantized difference signal : xal = (long)xd * (*h_ptr++);
in the higher sub band */ xa2 = {long)xs * (*h_ptr++);
/* main multiply accumulate loop for samples and coefficients */
dec_dh = ((long)dec_deth*gq2_code2_table[ih]) >> 15L ; ; for{i = 0 ; i < 10 ; i++) {
xal += (long) {*ac_ptr++) * (*h_ptr++);
* logsch: update logarithmic quantizer scale factor in hi sub band */ ; xa2 += (long) (*ad_ptr++) * (*h_ptr++);
‘ }
dec_nbh = logsch(ih,dec_nbh); : /* final mult/accumulate */
xal += (long) (*ac_ptr) * (*h_ptr++);
* scalel: compute the guantizer scale factor in the higher sub band */ xa2 += (long) (*ad_ptr) * (*h_ptr++);
dec_deth = scalel (dec_nbh,10); /* scale by 2714 */
xoutl = xal >> 14;
* parrec: compute partially recontructed signal */ xout2 = xa2 >> 14;

dec_ph = dec_dh + dec_szh;
/* update delay lines */

* upzero: update zero section predictor coefficients */ ac_ptrl = ac_ptr - 1;
ad_ptrl = ad_ptr - 1;
upzero (dec_dh, dec_del dhx,dec_del_bph); for(i = 0 ; 1 < 10 ; i++) {
*ac_ptr— = *ac_ptrl—;
*uppol2: update second predictor coefficient aph2 and delay it as ah2 */ 1 *ad _ptr— = *ad_ptrl—;
}
dec_ah2 = uppol2(dec_ahl,dec_ah2,dec_ph,dec_phl,dec_ph2); *ac_ptr = xd;
*ad_ptr = xs;

* uppoll: update first predictor coef. (pole setion) */

dec_ahl = uppoll (dec_ahl,dec_ah2,dec_ph,dec_phl); LISTING 5.10 (Continued)

LISTING 5.10 (Continued)

212 Real-Time DSP Applications

-1tez - compute predictor output signal (zero section) */
put: bpll-6 and diltl-6, output: gzl */

iltez(int *bpl,int *dlt)

nt i;
.ong int zl;
:1 = (long) (*bpl++) * (*dlt++);
:‘or(i=l;i<6;i++)
zl += (long) (*bpl++) * (*dlt++);

‘eturn((int) (z1 >> 14)); /* x2 here */

ltep - compute predictor output signal (pole section) */
put rltl-2 and all-2, output spl */

‘iltep(int riltl,int all,int rlt2,int al2)

ong int pl;
1 = (long)all*rltl;
1 += (long)al2*rlt2;

eturn((int) (p1 >> 14)); /* x2 here */

antl - guantize the difference signal in the lower sub-band */
uantl (int el, int detl)

nt ril,mil;
ong int wd,decis;

s of difference signal */
d = abs(el);
termine mil based on decision levels and detl gain */
or(mil = 0 ; mil < 30 ; mil++) {

decis = (decis_levl[mil]*(long)detl) >> 15L;
if(wd < decis) break;

mil=30 then wd is less than all decision levels */
f(el >= Q) ril = quant26bt_pos[mil];

lse ril = Quant26bt_neg[mil];

eturn(ril);

LISTING 5.11 Functions used by the encode and decode algorithms of G.722 (con-
tained in G.722.C). {Continued)

Chap. 5

Sec. 5.3 Speech Processing

/* logscl - update the logarithmic quantizer scale factor in lower sub-band */

/* note that nbl is passed and returned */

int logscl(int il,int nbl)
{
long int wd;
wd = ((long)nbl * 127L) >> 7L; /* leak factor 127/128 */
nbl = (int)wd + wl_code_table[il >> 2];
if(nbl < 0) nbl = 0;
if(nbl > 18432) nbl = 18432;
returm(nbl) ;
}

/* scalel: compute the quantizer scale factor in the lower or upper sub-band*/

int scalel(int nbl, int shift_constant)

{
int wdl,wd2,wd3;
wdl = (nbl >> 6) & 31;
wd2 = nbl >> 11;
wd3 = ilb_table{wdl] >> (shift_constant + 1 - wd2);
return({wd3 << 3);
}

/* upzero - inputs: dlt, d1ti[0-5], bli[0-5], outputs: updated bli{0-5] */
/* also implements delay of bli and update of dlti from dlt */

void upzero(int dlt,int *dlti,int *bli)
{
int i,wd2,wd3;
/*if dlt is zero, then no sum into bli */
if(dlt == 0) {
for(i =0 ; i <6 ; i++) {

bli[i] = (int) ((255L*bli[i]) >> 8L); /* leak factor of 255/256 */

}
}
else {
for(i =0 ; i < 6 ; i++) {
if((long)dlt*diti[i] »>= 0) wd2 = 128; else wd2 = -128;
wd3 = (int) ((255L*bli[i]) >> 8L);
blifi] = wd2 + wd3;
}
}
/* implement delay line for dit */

LISTING 5.11 (Continued)

/* leak factor of 255/256 */

214 Real-Time DSP Applications Chap. 5
diti{s] = d1ti[4];
dltcif4] = Aiti([3);
dlti{3] = diti[2}];
diti{2] = ditif(1];
ditifl] = Aiti([o0);

a1ti{0] = dit;

ippol2 - update second predictor coefficient (pole section) */
inputs: all, al2, plt, pltl, plt2. outputs: apl2 */

uppol2(int all,int al2,int plt,int pltl,int plt2)

long int wd2,wd4;

int apl2;

wd2 = 4L* (long)all;

if ((long)plt*pltl >= OL) wd2 = -wd2; /* check same sign */

wd2 = wd2 >> 7; /* gain of 1/128 */
if ((long)plt*plt2 >= OL) {

wdd = wd2 + 128; /* same sign case */
}
else {

wdd = wd2 - 128;
}
apl2 = wd4 + (127L*(long)al2 >> 7L); /* leak factor of 127/128 */

ipl2 is limited to +-.75 */
if(apl2 > 12288) apl2 = 12288;
if(apl2 < -12288) apl2 = -12288;
return(apl2) ;

1ppoll - update first predictor coefficient (pole section) */
inputs: all, apl2, plt, pltl. outputs: apll */

uppoll (int all,int apl2,int plt,int pltl)

long int wd2;
int wd3,apll;
wd2 = ({(long)all*255L) >> 8L; /* leak factor of 255/256 */
if((long)plt*pltl >= OL) {
apll = (int)wd2 + 192; /* same sign case */
}
else {
apll = (int)wd2 - 192;
}

LISTING 5.11 (Continued)

Sec. 5.3 Speech Processing 215

/* note: wd3= .9375-.75 is always positive */
wd3 = 15360 - apl2; /* limit value */
if(apll > wd3) apll = wd3;
if (apll < -wd3) apll = -wd3;
return{apll);
}

/* logsch - update the logarithmic quantizer scale factor in higher sub-band */
/* note that nbh is passed and returned */

int logsch(int ih, int nbh)
{
int wd;
wd = ((long)nbh * 127L) >> TL; /* leak factor 127/128 */
nbh = wd + wh_code_table(ih];
if(nbh < 0) nbh = 0;
if (nbh > 22528) nbh = 22528;
return (nbh) ;

LISTING 5.11 (Continued)

Figure 5.7 shows a block diagram of the G.722 encoder (transmitter), and
Figure 5.8 shows a block diagram of the G.722 decoder (receiver). The entire algorithm
has six main functional blocks, many of which use the same functions:

1) A transmit quadrature mirror filter (QMF) that splits the frequency band into
two sub-bands.

(2&3) A lower sub-band encoder and higher sub-band encoder that operate on the
data produced by the transmit QMF.

4&5) A lower sub-band decoder and higher sub-band decoder.

©) A receive QMF that combines the outputs of the decoder into one value.

Higher Sub-Band | 16 kbit/s

Transmit X, | ADPCM Encoder Ih 64 Kbl
S L
Filters .| Lower Sub-Band | 48 kbit/s
X, | ADPCM Encoder 1, -

FIGURE 5.7 Block diagram of ADPCM encoder {transmitter) implemented by pro-
gram G.722.C.

216 Real-Time DSP Applications Chap. 5 Sec. 5.3 Speech Processing 217
16 kbit/s | Higher Sub-Band o R e, 4-Level I 16 kbit/s
64 kbit/s I ADPCM Decoder T Quadrar:re o C ggssttiger
- e
:.ded —»1 DMUX Mirror X ‘r
48 kbit/s‘ Lower Sub-Band . Filters o A 4
I, | ADPCM Decoder n "
‘} Quantizer
Adaptation h
Mode Indication y
FIGURE 5.8 Biock diagram of ADPCM decoder (receiver) implemented by program 4-Level
G.722.C. Inverse
The G.722.C functions have been checked against the G.722 specification and are Adapt.lve
fully compatible with the CCITT recommendation. The functions and program variables are Quantizer
named according to the functional blocks of the algorithm specification whenever possible. < 9y
Quadrature mirror filters are used in the G.722 algorithm as a method of splitting Sy Adaptive !
the frequency band into two sub-bands (higher and lower). The QMFs also decimate the - Predictor Ty A_'_ +
encoder input from 16 kHz to 8 kHz (transmit QMF) and interpolate the decoder output - +
from 8 kHz to 16 kHz (receive OMF). These filters are 24-tap FIR filters whose impulse
response can be considered lowpass and highpass filters. Both the transmit and receive

QMFs s.ha.re the same coefﬁcients.and a delay hm? of the same number of taps. FIGURE 5.9 Block diagram of higher sub-band ADPCM encoder implemented by
Figure 5.9 shows a block diagram of the higher sub-band encoder. The lower and program G.722.C.

higher sub-band encoders operate on an estimated difference signal. The number of bits

required to represent the difference is smaller than the number of bits required to repre-

sent the complete input signal. This difference signal is obtained by subtracting a pre- Figure 5.10 shows a block diagram of the higher sub-band decoder. In general, both

dicted value from the input value: ’ the higher and lower sub-band encoders and decoders make the same function calls in al-
most the same order because they are similar in operation. For mode 1, a 60 level inverse
el = x1 - sl adaptive quantizer is used in the lower sub-band, which gives the best speech quality. The
eh = xh - sh higher sub-band uses a 4 level adaptive quantizer.
The predicted value, s1 or sh, is produced by the adaptive predictor, which con-
tains a second-order filter section to model poles, and a sixth-order filter section to model 4-Level
zeros in the input signal. After the predicted value is determined and subtracted from the 16 kbit/s _ Inverse dy j
input signal, the estimate signal e1 is applied to a nonlinear adaptive quantizer. Iy Adaptive e @ + rﬁ_* Ty
One important feature of the sub-band encoders is a feedback loop. The output of Quantizer
the adaptive quantizer is fed to an inverse adaptive quantizer to produce a difference sig- yy
nal. This difference signal is then used by the adaptive predictor to produce s1 (the esti- Adaptive Sy
mate of the input signal) and update the adaptive predictor. A, _ Predictor
The G.722 standard specifies an auxiliary, nonencoded data channel. While the
G.722 encoder always operates at an output rate of 64 kbits per second (with 14-bit, - Quantizer

16kHz input samples), the decoder can accept encoded signals at 64, 56, or 48 kbps. The
56 and 48 kbps bit rates correspond to the use of the auxiliary data channel, which oper-
ates at either 8 or 16 kbps. A mode indication signal informs the decoder which mode is FIGURE 5.10 Block diagram of higher sub-band ADPCM decoder implemented by
being used. This feature is not implemented in the G.722.C program. program G.722.C.

4

Adaptation

o

218 Real-Time DSP Applications Chap. 5 Sec.5.4 Music Processing 219

MUSIC PROCESSING #include <stdlib.h>
#include <math.h>

Music signals require more dynamic range and a much wider bandwidth than speech sig- #include "rtdspc.h”

nals. Professional quality music processing equipment typically uses 18 to 24 bits to rep-

resent each sample and a 48 kHz or higher Sampling rate. Consumer dlgltal audio pro- /**

cessing (in CD players, for example) is usually done with 16-bit samples and a 44.1 kHz

sampling rate. In both cases, music processing is a far greater challenge to a digital signal EQUALIZ.C - PROGRAM TO DEMONSTRATE AUDIO EQUALIZATION

processor than speech processing. More MIPs are required for each operation and quanti- USING 7 1IR BANDPASS FILTERS.

zation noise in filters becomes more important. In most cases DSP techniques are less ex-
pensive and can provide a higher level of performance than analog techniques.

‘k/

. R /* gain values global so they can be changed in real-time */
5.4.1 Equalization and Noise Removal /* start at flat pass through */

float gain(7] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
Equalization refers to a filtering process where the frequency content of an audio signal is

adjusted to make the source sound better, adjust for room acoustics, or remove noise that void main()

may be in a frequency band different from the desired signal. Most audio equalizers have {

a number of bands that operate on the audio signal in parallel with the output of each fil- int i;

ter, added together to form the equalized signal. This structure is shown in Figure 5.11. float signal_in,signal out;

The program EQUALIZ.C is shown in Listing 5.12. Each gain constant is used to adjust
the relative signal amplitude of the output of each bandpass filter. The input signal is al-
ways added to the output such that if all the gain values are zero the signal is unchanged.

/* history arrays for the filters */
static float hist([7]([2];

Setting the gain values greater tharf zero will l?oost frequency response in each band. , /* bandpass filter coefficients for a 44.1 kHz sampling rate */

For example, a boost of 6 dB is obtained by setting one of the gain values to 1.0. The 1 /* center fregs are 60, 150, 400, 1000, 2400, 6000, 15000 Hz */

center frequencies and number of bandpass filters in analog audio equalizers vary widely ; /* at other rates center fregs are: */

from one manufacturer to another. A seven-band equalizer with center frequencies at 60, ! /* at 32 kHz: 44, 109, 290, 726, 1742, 4354, 10884 Hz */

| /* at 22.1 kHz: 30, 75, 200, 500, 1200, 3000, 7500 Hz */

static float bpf{7]1([5] = {
{ 0.0025579741, -1.9948111773, 0.9948840737, 0.0, -1.0 1},
{ 0.0063700872, -1.9868060350, 0.9872598052, 0.0, -1.01},
Bandpass l { 0.0168007612, -1.9632060528, 0.9663984776, 0.0, -1.0 1},
) Filter { 0.0408578217, -1.8988473415, 0.9182843566, 0.0, -1.0 },
I { 0.0914007276, -1.7119922638, 0.8171985149, 0.0, -1.01},
| f ! Gain [0] { 0.1845672876, -1.0703823566, 0.6308654547, 0.0, -1.0 1},
Y { 0.3760778010, 0.6695288420, 0.2478443682, 0.0, -1.01},
. TTTT™NA ~ };
el L z Y
] o out for(;;) {
- / /* sum 7 bpf outputs + input for each new sample */
signal_out = signal_in = getinput();
Bandpass | for(i = 0 ; i <7 ; i++)
—> Filter signal_out += gain[i]*iir_filter(signal_in,bpf(i],1,hist[i]);
| Gain [6] sendout (signal_out) ;
}
}
233:52%11 Block diagram of audio equalization implemented by program LISTIhIIG 5.12 Program EQUALIZ.C, which performs equalization on audio samples
in real-time.

220 Real-Time DSP Applications Chap. 5
150, 400, 1000, 2400, 6000, and 15000 Hz is implemented by program EQUALIZ.C. The
bandwidth of each filter is 60 percent of the center frequency in each case, and the sam-
pling rate is 44100 Hz. This gives the coefficients in the example equalizer program

EQUALIZ.C shown in Listing 5.12. The frequency response of the 7 filters is shown in
Figure 5.12.

5.4.2 Pitch-Shifting

Changing the pitch of a recorded sound is often desired in order to allow it to mix with g
new song, or for special effects where the original sound is shifted in frequency to a poing
where it is no longer identifiable. New sounds are often created by a series of pitch shifts
and mixing processes.

Pitch-shifting can be accomplished by interpolating a signal to a new sampling rate,
and then playing the new samples back at the original sampling rate (see Alles, 1980; or
Smith and Gossett, 1984). If the pitch is shifted down (by an interpolation factor greater
than one), the new sound will have a longer duration. If the pitch is shifted upward (by an
interpolation factor less than one where some decimation is occurring), the sound be-
comes shorter. Listing 5.13 shows the program PSHIFT.C, which can be used to pitch-

7 Band Equalizer Filter Frequency Response

0 e e L R e
\ S S oo
FAERY 3 , . Y - L

-10

-12+

Magnitude (dB)

-14¢

20 d i
10! 102 103 104 105

Frequency (Hz, fs=44100 Hz)

FIGURE 5.12 Frequency response of 7 filters used in program EQUALIZ.C.

Sec.5.4 Music Processing 221

shift a sound up or down by any number of semitones (12 semitones is an octave as indi-
cated by equation 4.13). It uses a long Kaiser window filter for interpolation of the sam-
ples as illustrated in section 4.3.2 in chapter 4. The filter coefficients are calculated in the
first part of the PSHIFT program before real-time input and output begins. The filtering is
done with two FIR filter functions, which are shown in Listing 5.14. The history array is
only updated when the interpolation point moves to the next input sample. This requires
that the history update be removed from the fir filter function discussed previ-
ously. The history is updated by the function £ ir_history_update. The coefficients
are decimated into short polyphase filters. An interpolation ratio of up to 300 is per-

formed and the decimation ratio is determined by the amount of pitch shift selected by
the integer variable key.

#include <stdlib.h>
#include <math.h>
#include "rtdspc.h"

/* Kaiser Window Pitch shift Algorithm */

/* set interpolation ratio */
int ratio = 300;
/* passband specified, larger makes longer filters */
float percent pass = 80.0;
/* minimum attenuation in stopbands (dB), larger make long filters */
float att = 50.0;
/* key value to shift by (semi-tones up or down) */
/* 12 is one octave */
int key = -12;
int lsize;

void main()

{
int i,3;
int nfilt,npair,n,k;
float fa, fp,deltaf,beta, valizb,alpha;
float w,ck,y,npair_inv, pi_ratio;
float signal_in,phase,dec;

int old_key = 0; /* remember last key value */
float **h;
static float hist([100}; /* lsize can not get bigger than 100 */

long int filter_length(float, float, float *);
float izero(float);

LISTING 5.13 Program PSHIFT.C, which performs pitch shifting on audio samples in
real-time. (Continued)

292 Real-Time DSP Applications Chap. 5

float fir_filter no_update(float input, float *coef,int n, float *history);
void fir_update_history(float input,int n,float *history); !

fp = percent_pass/(200.0*ratio);

fa = (200.0 - percent_pass)/(200.0*ratio);
deltaf = fa-fp;

nfilt = filter_length(att, deltaf, &beta);

lsize = nfilt/ratio;

nfilt = (long)lsize*ratio + 1;
npair (nfilt - 1)/2;

h = (float **) calloc(ratio,sizeof (float *));
if(th) exit(l);
for(i = 0 ; i < ratio ; i++) {
h[i] = (£loat *) calloc(lsize,sizeof(float));
if(th[i]) exit(l);

}

/* Compute Kaiser window sample values */
i=0;

j=20;

valizb = 1.0 / izero(beta);
npair_inv = 1.0/npair;
pi_ratio = PI/ratio;
hii++][{j] = 0.0; /*n = 0 case */
for (n = 1 ; n < npair ; n++) {
k = npair -~ n;
alpha = k * npair_inv;
y = beta * sgrt(l1.0 ~ (alpha * alpha));
w = valizb * izero(y);
ck = ratio*sin(k*pi_ratio)/(k*PI);
hii++1[j] = w * ck;
if(i == ratio) {
i=0;
J4+;
}
}
force the pass through point */
hi{i)l{lsize/2] = 1.0;

second half of response */
for(n = 1; n < npair; n++) {

i = npair - n; /* "from" location */

LISTING 5.13 (Continued)

Sec. 5.4 Music Processing 223

k = npair + n; /* "to" location */
h{k%ratio] [k/ratio] = h[i%ratio][i/ratio];
}

/* interpolate the data by calls to fir_filter no_update,
decimate the interpolated samples by only generating the samples

required */
phase = 0.0;
dec = (float)ratio;
for(; ;) {

/* decimation ratio for key semitones shift */
/* allow real-time updates */
if (key != old_key) {
dec = ratio*pow(2.0,0.0833333333*key);
0l1d_key = key;
}

signal_in = getinput();

while(phase < (float)ratio) {
k = (int)phase; /* pointer to poly phase values */
sendout (fir_filter no_update(signal_in, h([k],1lsize, hist));
phase += dec;

}

phase -= ratio;

fir_update_ history{signal_in, lsize hist);

}

/* Use att to get beta (for Kaiser window function) and nfilt (always odd
valued and = 2*npair +1) using Kaiser’s empirical formulas. */
long int filter_length(float att,float deltaf, float *beta)
{
long int npair;
beta = 0.0; / value of beta if att < 21 */
if(att >= 50.0) *beta = .1102 * (att - 8.71);
if (att < 50.0 & att >= 21.0)
*beta = .5842 * pow((att-21.0), 0.4) + .07886 * (att - 21.0);
npair = (long int) ((att - 8.0) / (28.72 * deltaf));
return(2*npair + 1);
}

/* Compute Bessel function Izero(y) using a series approximation */
float izero(float y){

float s=1.0, ds=1.0, d=0.0;

do {

LISTING 5.13 (Continued)

T ——

224 i
Real-Time DSP Applications Chap. 5
d=d4d+ 2;
ds = ds * (y*y)/(a*d);
s = s + ds;
} while(ds > 1E-7 * s);
return(s);
LISTING 5.13 (Continued)
/* run the fir filter and do not update the history array */
float fir_filter no update (f1 i i
: 1 (float input, float *coef, int n, float *history)

int i;
float *hist_ptr, *coef_ptr;
float output;

hist_ptr = history;
coef_ptr = coef + n - 1; /* point to last coef */
/* form output accumulation */

output = *hist_ptr++ * (*coef _ptr-);

for(i = 2 ; i<n; i+ ¢
output += (*hist_ptr++) * (*coef_ptr—);
) ’
output += input * (*coef _ptr); /* input tap */

return(output) ;

/* update the fir filter history array */

\(/old fir_update_history(float input,int n, float *history)

int i;
float *hist_ptr,*histl_ptr;

h.ist_ptr = history;
;1iz§ip_§;:f+l= hist_ptr; /* use for history update */
for(i = 2 ; i <n; i++) {

} *histl_ptr++ = *hist_ptr++; /* update history array */

*hist]l =1 ;
) stl _ptr = input; /* last history */

LISTING 5.14 Functions £ir £11
_filter no_update and
update_history used by program PSHIFT.C. " finfiier

Sec.5.4 Music Processing 225
5.4.3 Music Synthesis

Music synthesis is a natural DSP application because no input signal or A/D converter is
required. Music synthesis typically requires that many different sounds be generated at
the same time and mixed together to form a chord or multiple instrument sounds (see
Moorer, 1977). Each different sound produced from a synthesis is referred to as a voice.
The duration and starting point for each voice must be independently controlled. Listing
5.15 shows the program MUSIC.C, which plays a sound with up to 6 voices at the same
time. It uses the function note (see Listing 5.16) to generate samples from a second
order IIR oscillator using the same method as discussed in section 4.5.1 in chapter 4. The
envelope of each note is specified using break points. The array trel gives the relative
times when the amplitude should change to the values specified in array amps. The enve-
lope will grow and decay to reach the amplitude values at each time specified based on
the calculated first-order constants stored in the rates array. The frequency of the sec-
ond order oscillator in note is specified in terms of the semitone note number key. A
key value of 69 will give 440 Hz, which is the musical note A above middle C.

#include <stdlib.h>

#include <math.h>

#include "rtdspc.h"

#include "song.h" /* song[108][7) array */

/* 6 Voice Music Generator */

typedef struct {
int key, t,cindex;
float cw,a,b;
float y1,y0;

)} NOTE_STATE;

#define MAX VOICES 6
float note(NOTE_STATE *,int *,float *);

void main()
{
long int n,t,told;
int vnum,v,key;
float ampold;
register long int i,endi;
register float sig_out;

LISTING 5.15 Program MUSIC.C, which illustrates music synthesis by play-
ing a 6-voice song. {Continued)

226 Real-Time DSP Applications

Chap. 5
static NOTE_STATE notes[MAX_ VOICES*SONG_LENGTH] ;
static float trel{5] = 0.1, 0.2, 0.7, 1.0, 0.0 };
static float amps({5] = { 3000.0 , 5000.0, 4000.0, 10.0, 0.0 };

static float rates[10];
static int tbreaks[10];

for(n = 0 ; n < SONG_LENGTH ; n++) {

/* number of samples per note */
endi = 6*songn][0];

/* calculate the rates required to get the desired amps */
i= 0;
told = 0;
ampold = 1.0; /* always starts at unity */
while(amps{i] > 1.0) {
t = trellil*endi;
rates[i] = exp(log(amps[i]/ampold)/ (t-told));
ampold = amps[i];
tbreaks[i] = told = t;
i++;

}

/* set the key numbers for all voices to be played (vnum is how many) */
for(v = 0 ; v < MAX_VOICES ; v++) {
key = song[n] [v+1];
if(lkey) break;
notes([v] .key = key;
notes([v].t = 0;

}

vnum = v;
for(i = 0 ; 1 < endi ; i++) {
sig out = 0.0;
for(v = 0 ; v < viaum ; v++) {
sig_out += note(¬es|[vl, tbreaks, rates);
}
sendout (sig_out);
}
}
flush();

LISTING 5.15 (Continued)

e it i ST

Sec. 5.4 Music Processing 227

#include <stdlib.h>
#include <math.h>
#include "rtdspc.h"

/* Function to generate samples from a second order oscillator */

/* key constant is 1/12 */
#define KEY_CONSTANT 0.083333333333333

/* this sets the A above middle C reference frequency of 440 Hz */
#define TWO_PI_DIV_FS_440 (880.0 * PI / SAMPLE_RATE)

/* cw is the cosine constant required for fast changes of envelope */
/* a and b are the coefficients for the difference equation */

/* y1l and y0 are the history values */

/* t is time index for this note */

/* cindex is the index into rate and tbreak arrays (reset when t=0) */

typedef struct {
int key, t,cindex;
float cw,a,b;
float y1,y0;

} NOTE_STATE;

/*
key:
semi-tone pitch to generate,
number 69 will give A above middle C at 440 Hz.
rate_array:
rate constants determines decay or rise of envelope (close to 1)
tbreak_array:
determines time index when to change rate
*/

/* NOTE_STATE structure, time break point array, rate parameter array */
float note(NOTE_STATE *s,int *tbreak_array,float *rate_array)
{

register int ti,ci;
float wosc,rate,out;

ti = s->t;
/* t=0 re-start case, set state variables */
if(rei) {

wosc = TWO_PI_DIV_FS_440 * pow(2.0, (s->key-69} * KEY_CONSTANT) ;

LISTING 5.16 Function note(state, tbreak array,rate_array) generates
the samples for each note in the MUSIC.C program. (Continued)

228 Real-Time DSP Applications Chap. 5
s->cw = 2,0 * cos {(wosc) ;
rate = rate_array{0];
$->a = s->cw * rate;
s->b = -rate * rate;
s->y0 = 0.0;

out = rate*sin(wosc);
s->cindex = 0;

/* rate change */

}
else {
ci = s->cindex;
/* rate change case */
if(ti == tbreak_array[ci]) {
rate = rate_array[++ci];
S->a = s->cw * rate;
S->b = ~rate * rate;
s->cindex = ci;

}

/* make new sample */
out = s->a * s->yl + g-sp * s->y0;
S->y0 = s->yi;

}

s->yl = out;

S->t = ++ti;

return{out) ;

LISTING 5.16 {Continued)

'APTIVE FILTER APPLICATIONS

A signal can be effectively improved or enhanced using adaptive methods, if the signal
frequency content is narrow compared to the bandwidth and the frequency content
changes with time. If the frequency content does not change with time, a simple matched
filter will usually work better with less complexity. The basic LMS algorithm is illus-
trated in the next section. Section 5.5.2 illustrates a method that can be used to estimate
the changing frequency of a signal using an adaptive LMS algorithm.

5.5.1 LMS Signal Enhancement

Figure 5.13 shows the block diagram of an LMS adaptive signal enhancement that will be
used to illustrate the basic LMS algorithm. This algorithm was described in section 1.7.2
in chapter 1. The input signal is a sine wave with added white noise. The adaptive LMS

—

3

!

Sec. 5.5

Adaptive Filter Applications 229

2 A sinwjk+ng
i

~A

H(2) 5\2/

f

Enhancgj
Output

FIGURE 5.13 Block diagram of LMS adaptive signal enhancement.

#include <stdlib.h>
tinclude <stdio.h>
#include <math.h>

#include "rtdspc.h"

#define N 351 .
#define L 20 /* filter order, (length L+l) */
/* set convergence parameter */

float mu = 0.01;

void main()

{
float lms(float, float, float *,int, float, float);

static float d4IN],b{21];
float signal_amp,noise_anp,arg,x,y;
int k;

/* create signal plus noise */
signal_amp = sqrt(2.0);
noise_; = 0.2*sqgrt(12.0);
arg = 2.0*PI/20.0;

LISTING 5.17 Program LMS.C which illustrates signal-to-noise enhance-
ment using the LMS algorithm. (Continued)

230 Real-Time DSP Applications Chap. 5
for(k = 0 ; k < N ; k++) {

, d[k] = signal_amp*sin(arg*k) + noise_amp*gaussian();

/* scale based on L */
mu = 2.0%mu/ (L+1);

x = 0.0;
for(k = 0 ; k < N ; k++) {
sendout (1ms (x,d[k),b,L,mu,0.01));
/* delay x one sample */
x = d[k];
}

LISTING 5.17 (Continued)

/*
function lms(x,d,b,1,mu,alpha)

Implements NIMS Algorithm b(k+1)=b(k)+2*mu*e*x (k) / ({1+1) *sig)

X = input data

d = desired signal

b[0:1] = Adaptive coefficients of lth order fir filter

1 = order of filter (> 1)

ma = Convergence parameter (0.0 to 1.0)

alpha = Forgetting factor sig{k)=alpha* (x(k)**2)+(1-alpha) *sig(k-1)

(>= 0.0 and < 1.0)

returns the filter output
*/

float lms(float x,float 4,float *b,int 1,
{ float mu, float alpha)
int 11;
float e,mu_e,lms_const,y;
static float px([51]; /* max L = 50 */
static float sigma = 2.0; /* start at 2 and update internally */

px[0]=x;

US‘!’ING 5.18 Function 1ms(x,d,b,1,m,alpha) implements the LMS al-
gorithm. (Continued)

Sec. 5.5 Adaptive Filter Applications 231

/* calculate filter output */
y=b[0]*px{0];
for(il =1 ; 11 <=1 ; 11++)
y=y+b[11]*px{11];

/* error signal */
e=d-y;

/* update sigma */
sigma=alpha* (px[0]*px[0]1)+ (1-alpha)*sigma;
m_e=mu*e/sigma;

/* update coefficients */
for(ll = 0 ; 11 <= 1 ; 1l++)
b[ll]=b[ll]+mu_e*px[ll];
/* update history */
for(ll =1 ; 11 >= 1; 11-)
px[11}=px{11-1];

return(y) ;

LISTING 5.18 (Continued)

algorithm (see Listings 5.17 and 5.18) is a 21 tap (20th order) FIR filter where the filter
coefficients are updated with each sample. The desired response in this case is the noisy
signal and the input to the filter is a delayed version of the input signal. The delay (A) is
selected so that the noise components of d; and x; are uncorrelated (a one-sample delay
works well for sine waves and white noise).

The convergence parameter ma is the only input to the program. Although many re-
searchers have attempted to determine the best value for mu, no universal solution has
been found. If mu is too small, the system may not converge rapidly to a signal, as is il-
lustrated in Figure 5.14. The adaptive system is moving from no signal (all coefficients
are zero) to an enhanced signal. This takes approximately 300 samples in Figure 5.14b
with mu = 0.01 and approximately 30 samples in Figure 5.14c withmu = 0.1.

3 Program LMS.C Output
2
1
Q
3 of
>
(a) B U
g f
vy
2t
3k
4 L —‘\l\d\‘\-}
0 50 100 150 200 250 300 350
Sample Number
5 Program LMS.C Output
1.5+
l (-
o O05F
5
o 1]
Q0
® &
3
0.5
-1}
-1.5¢-
2 " 1 L L L
0 50 100 150 200 250 300 350
Sample Number

FIGURE 5.14 (a) Original noisy signal used in program LMS.C. (b} En-
hanced signal obtained from program LMS.C with sm = 0.01.

232

Sec. 5.5 Adaptive Filter Applications 233

Program LMS.C Output
25 T . T T T
2+ J
3
>
© &]
g
3 i
2k H]
_2.5 1 i3 'l e i 1
0 50 100 150 200 250 300 350
Sample Number

FIGURE 5.14 (c¢) Enhanced signal obtained from program LMS.C with
m = 0.1. (Continued)

5.5.2 Frequency Tracking with Noise

Listing 5.19 shows the INSTF.C program, which uses the 1ms function to determine in-
stantaneous frequency estimates. Instead of using the output of the adaptive filter as illus-
trated in the last section, the INSTF program uses the filter coefficients to estimate the
frequency content of the signal. A 1024-point FFT is used to determine the frequency re-
sponse of the adaptive filter every 100 input samples. The same peak location finding al-
gorithm as used in section 5.1.2 is used to determine the interpolated peak frequency re-
sponse of the adaptive filter. Note that because the filter coefficients are real, only the
first half of the FFT output is used for the peak search.

Figure 5.15 shows the output of the INSTF program when the 100,000 samples
from the OSC.C program (see section 4.5.1 of chapter 4) are provided as an input. Figure
5.15(a) shows the result without added noise, and Figure 5.15(b) shows the result when
white Gaussian noise (standard deviation = 100) is added to the signal from the OSC pro-
gram. Listing 5.19 shows how the INSTF program was used to add the noise to the input
signal using the gaussian () function. Note the positive bias in both results due to the fi-
nite length (128 in this example) of the adaptive FIR filter. Also, in Figure 5.15(b) the first
few estimates are off scale because of the low signal level in the beginning portion of the
waveform generated by the OSC program (the noise dominates in the first 10 estimates).

234 Real-Time DSP Applications

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "rtdspc.h"

/* LMS Instantaneous Frequency Estimation Program */
#define L 127

#define LMAX 200
#define NEST 100

/* filter order, L+l coefficients */
/* max filter order, L+1 coefficients */
/* estimate decimation ratio in output */

/* FFT length must be a power of 2 */
#define FFT_LENGTH 1024
#define M 10 /* must be log2 (FFT_LENGTH) */
/* set convergence parameter */

float mu = 0.01;

void main()
{
float 1lms(float, float, float *,int, float, float);
static float b[LMAX];
static COMPLEX samp{FFT_LENGTH];
static float mag[FFT _LENGTH];
float x,d, tempflt,pl,p2;
int i,3.k;

/* scale based on L */
mu = 2.0*mu/ (L+1);

x = 0.0;
for(;;) {
for(i =0 ; 1 < NEST ; i++) {
/* add noise to input for this example */
x = getinput() + 100.0*gaussian();
Ims(x,d,b,L,mu, 0.01);
/* delay 4 one sample */
d = x;

}

LISTING 5.19 Program INSTF.C. which uses function 1ms(x,d,b,1,m, alpha)
to implement the LMS frequency tracking algorithm. (Continued)

Chap. 5

Sec. 5.5

Adaptive Filter Applications 235

/* copy L+1 coefficients */

for(i =0 ; 1 <= L ; i++) {
samp[i] .real = b{i];
samp(i].imag = 0.0;

}

/* zero pad */

for(; i < FFT_LENGTH ; i++) {
samp{i] .real = 0.0;
samp[i] .imag = 0.0;

}

fft (samp,M) ;

for(j = 0 ; j < FFT_LENGTH/2 ; J++) {
tempflt = samp[j].real * samplj].real;
tempflt += samp(j].imag * samp(j).imag;
mag([j] = tempflt;

}

/* find the biggest magnitude spectral bin and output */

tempflt = mag(0};
i=0;
for{j = 1 ; j < FFT_LENGTH/2 ; j++) {
if (mag{j] > tempflt) {
tempflt = magljl;

i=j;
}
}
/* interpolate the peak loacation */
if(i == 0) {
pl =p2 = 0.0;
}
else {
pl = mag[i] - magli-1];
p2 = magli] - magli+l];
}

sendout (({float)i + 0.5*((pl—p2)/(p1+p2+1e-30)))/FFI‘_LEM;‘I'H);

LISTING 5.19 (Continued)

(a)

(b)

236

Frequency (f/fs)

Frequency (f/fs)

0.09

0.08

0.07

0.06

0.05

0.08

0.07

0.06

0.05

0.04

0 100 200 300 400 500 600 760 8(I)0 960

HGPRg 5.15_ (a). Freguency estimates obtained from program INSTF.C
(solid line) with input from OSC.C and correct frequencies (dashed line)

Sec. 5.6 References 237

5.6 REFERENCES

MOORER, I. (August 1977). Signal Processing Aspects of Computer Music: A Survey. Proceedings
of IEEE, 65, (8).

ALLES, H. (April 1980). Music Synthesis Using Real Time Digital Techniques. Proceedings of the
IEEE, 68, (4).

SMITH J. and GOSSETT, P. (1984). A Flexible Sample Rate Conversion Method. Proceedings of
ICASSP.

CROCHIERE, R. and RABINER, L. (March 1981). Interpolation and Decimation of Digital Signals—
A Tutorial Review. Proceedings of the IEEE, 69, 300—331.

SKOLNIK, M. (1980). Introduction to Radar Systems, (2nd ed.). New York: McGraw-Hill.

General Aspects of Digital Transmission Systems (Nov. 1988). Terminal Equipments
Recommendations G.700-G.795. International Telegraph and Telephone Consultative
Committee (CCITT) 9th Plenary Assembly, Melbourne.

APPENDIX

DSP FUNCTION LIBRARY
AND PROGRAMS

The enclosed disk is an IBM-PC compatible high-density disk (1.44 MBytes capacity)
and contains four directories called PC, ADSP21K, DSP32C, and C30 for the specific
programs that have been compiled and tested for the four platforms discussed in this
book. Each directory contains a file called READ.ME, which provides additional infor-
mation about the software. A short description of the platforms used in testing associated
with each directory is as follows:

Directory Available Sampling
Name Platform used to Compile and Test Programs MIPs Rate (kHz)

PC General Purpose IBM-PC or workstation Not Any

(ANSIC) Real-time
ADSP21K Analog Devices EZ-LAB ADSP-21020/ADSP-21060

(version 3.1 compiler software) 25 32
DSP32C CAC AC4-A0 Board with DBDADA-16

(version 1.6.1 compiler software) 12.5 16
C30 Domain Technologies DSPCard-C31

(version 4.50 compiler software) 16.5 16

The following table is a program list of the C programs and functions described in detail
in chapters 3, 4, and 5. The first column gives the section number in the text where the
program is described and then a short description of the program. The remaining columns
give the filenames of the four different versions of the source code for the four different
platforms. Note that the files from each platform are in different directories as shown in
the previous table.

238

Appendix DSP Function Library and Programs 239
PC 210X0 DSP32C 320C30
filename filename filename filename
(*.0) (*.c) (*.0 (*.0
3.3.3 1024-Point FFT Test Function fft1k fftn fftlk fftlk
3.4.2 Interrupt-Driven Output example NA intout NA NA
4.1.1 FIR Filter Function (fir_filter) filter filter filter filter
4.1.2 FIR Filter Coefficient by Kaiser Window ksrfir NA NA NA
4.1.2 FIR Filter Coefficients by Parks-McClellan remez NA NA NA
4.1.3 IIR Filter Function (iir_filter) filter filter filter filter
4.1.4 Real-Time getinput Function (ASCII text for PC) getsend getinput getinput send_c30
4.1.4 Real-Time getinput Function (WAYV file format) getwav NA NA NA
4.1.4 Real-Time sendout Function (ASCII text for PC) getsend sendout sendout send_c30
4.1.4 Real-Time sendout Function (WAYV file format) sendwav NA NA NA
4.2.1 Gaussian Noise Generation Function filter filter filter filter
4.2.2 Signal-to-Noise Ratio Improvement mkgwn mkgwn mkgwn mkgwn
4.3.3 Sample Rate Conversion example interp3 NA NA NA
4.4.1 Fast Convolution Using FFT Methods rfast rfast21 rfast32 rfast30
4.4.2 Interpolation Using the FFT intfft2 NA NA NA
4.5.1 IIR Filters as Oscillators 0sc osc osc osc
4.5.2 Table-Generated Waveforms wavetab wavetab wavetab wavetab
5.1.1 Speech Spectrum Analysis rpse NA NA NA
5.1.2 Doppler Radar Processing radproc NA NA NA
5.2.1 ARMA Modeling of Signals arma NA NA NA
5.2.2 AR Frequency Estimation arfreq NA NA NA
5.3.1 Speech Compression mulaw mulaw mulaw mulaw
5.3.2 ADPCM (G.722 fixed-point) g722 g722 21k NA g722¢3
5.3.2 ADPCM (G.722 floating-point) NA g722 21f g722 32c g722c3f
5.4.1 Equalization and Noise Removal equaliz equaliz equaliz equaliz
5.4.2 Pitch-Shifting pshift pshift pshift pshift
5.4.3 Music Synthesis music mu2lk mu32c muc3
5.5.1 LMS Signal Enhancement Ims NA NA NA
5.5.2 Frequency Tracking with Noise instf NA NA NA

Note: “NA” refers to programs that are not applicable to a particular hardware platform.

Make files (with an extension .MAK) are also included on the disk for each plat-
form. If the user does not have a make utility availible, PC batch files (with an extension
BAT) are also included with the same name as the make file. The following table is a
make file list for many of the C programs described in detail in Chapters 3, 4and5:

240 DSP Function Library and Programs Appendix
PC 210X0 DSP32C 320C30
filename filename filename filename
(*.mak) (*.mak) (*.mak) (*.mak)
3.4.2 Interrupt-Driven Output Example NA iout21k NA NA
4.2.2 Signal-to-Noise Ratio Improvement mkgwn mkgwn mkgwn mkgwn
4.3.3 Sample Rate Conversion Example interp3 NA NA NA
4.4.1 Fast Convolution Using FFT Methods rfast f21k f32 rfc30
4.4.2 Interpolation Using the FFT intfft2 NA NA NA
4.5.1 IR Filters as Oscillators osc osc21k 0s¢ osc
4.5.2 Table Generated Waveforms wavetab wavetab wavetab wavetab
5.1.1 Speech Spectrum Analysis rtpse NA NA NA
5.1.2 Doppler Radar Processing radproc NA NA NA
5.2.1 ARMA Modeling of Signals arma NA NA NA
5.2.2 AR Frequency Estimation arfreq arfreq arfreq arfreq
5.3.1 Speech Compression mulaw mulaw mulaw mulaw
5.3.2 ADPCM (G.722 fixed-point) g722 £722_21k NA 8722¢3
5.3.2 ADPCM (G.722 floating-point) NA 8722_21f 8722_32¢ 8722c3f
5.4.1 Equalization and Noise Removal eqgpe eq eq eq
5.4.2 Pitch Shifting ps ps Ps ps
5.4.3 Music Synthesis music mu2lk mu32c muc3
5.5.1 LMS Signal Enhancement Ims NA NA NA
5.5.2 Frequency Tracking with Noise instf instf instf instf

Note: “NA” refers to programs that are not applicable to a particular platform,

INDEX

A

A/D converter, 3, 54, 125, 132, 225

accumulation, 136, 223

adaptive, 46, 48, 50, 51, 52, 111, 112, 186, 193,
194, 195, 196, 197, 198, 202, 205, 206, 209,
211, 216, 217, 228, 229, 231, 233

adaptive filters, 1, 46, 111

address of operator, 77, 87

ADPCM, 202, 204, 215, 217

ADSP-21020, 99, 104, 105, 116, 118, 119, 129, 130

ADSP-21060, 99, 104, 107

ADSP-210XX, 104, 107, 112, 114, 121,127

aliases, 74, 75

aliasing, 7, 162, 163

analog filters, 21

analog-to-digital converter, 41, 42, 132

AR Processes, 43

architecture, 92, 99, 102, 107, 108, 113, 116, 130,
131

ARFREQ.C, 198, 199, 201

arithmetic operators, 59, 60

ARMA filters, 17, 18

ARMA.C, 193, 194, 195, 196, 197, 198

array index, 66, 78

arrays, 54, 56, 58, 59, 78, 81, 82, 84, 88, 114, 128,
146, 167, 179, 219, 226

assembly language, 74, 92, 99, 102, 108, 111, 113,
114,115, 116, 117, 118, 120, 121, 125, 127

Assembly-C Language Interfaces, 118, 120

Assignment Operators, 59

attenuation, 22, 24, 136, 137, 138, 141, 142, 147,
162, 163, 165, 166, 221

autocorrelation, 39, 42, 43, 44, 49, 111

automatic variables, 71

autoregressive (AR), 17, 44

average power, 188

bandpass filter, 138, 140, 218, 219

bandwidth, 33, 102, 113, 147, 160, 190, 200, 201,
218,228

bilinear transform, 21, 147, 150

bit reversal, 122, 123

bitwise operators, 59, 60

Box-Muller method, 158

butterfly, 29

C

C preprocessor, 74, 87, 113

C Programming Pitfalls, 87

C++, 82,97

calloc, 78, 79, 80, 83, 84, 89, 150, 171, 173, 177,
222

case statement, 65

cast operator, 79

241

242

causality, 10

circular convolution, 170

clipping, 33, 34

coefficient quantization, 21, 145

combined operators, 61

comments, 54, 92, 93, 94

complex conjugate, 19, 20, 91

complex conversion, 198

Complex Data, 90

complex numbers, 85, 87, 90, 91

complex signal, 190, 198, 200

compound statements, 64

compression, 33, 46, 200, 201, 202

conditional compilation, 74

conditional execution, 63, 95

constants, 20, 26, 42, 62, 71, 74, 90, 124, 225,
227

continue, 18, 66, 67, 68, 90, 96, 127

continuous time signals, 4

control structures, 63, 64, 66, 67, 95, 96

converter, 3, 41, 42, 54, 125, 132, 225

convolution, 9, 10, 18, 25, 134, 135, 165, 168, 170,
171,172

cross correlation, 49

D

data structures, 53, 54, 55, 77

data types, 53, 56, 58, 80, 82, 90

debuggers, 117

decimation, 160, 162, 163, 164, 173, 182, 220, 221,
222,234

declaring variables, 57

delay, 11,13, 107, 132, 133, 134, 146, 165, 168

DFT, 18, 25, 26, 27, 28, 29, 30, 32, 44

difference equation, 10, 17, 22, 23, 133, 226

differentiator, 138

digital filters, 1, 2, 17, 19, 21, 52, 163, 184

Dirac delta function, 3

direct form, 21, 145, 146, 148

discrete Fourier transform, 1, 3, 18, 25, 26, 44,
52

discrete Time Signals, 5

disk files, 151

do-while loop, 66, 96

documentation, 94

Doppler, 190, 191

double precision, 57

downsampling, 160

DSP programs, 53, 59, 92, 93, 114

DSP3210, 99, 100, 102, 104, 112, 120

DSP32C, 99, 100, 101, 102, 111, 112, 114, 115,
117, 118, 120, 129, 130, 203

Index

dynamic memory allocation, 77, 78

E

efficiency, 92, 93, 111, 113, 120, 121, 127, 128,
129, 135, 150

elliptic filter, 147, 149

enhancement, 160, 228, 229

EQUALIZ.C, 218, 219, 220

equiripple, 134

execution time, 65, 80, 89, 92, 93, 123, 124, 125

expected value, 37, 39, 42,43

exponential, 32, 128, 178

expression, 8, 19, 37, 49, 59, 60, 61, 62, 63, 64, 65,
66, 67, 70, 86, 87, 91, 95, 128, 138, 165

extensibility, 92, 93

extern, 71, 72, 73, 155, 203

F

fast convolution, 134, 168, 170, 171, 172

fast filtering, 168

fast Fourier transform, 26, 28, 52, 160, 184

filter design, 18, 19, 22, 134, 136, 138, 140, 141,
145, 147, 184

filter functions, 221

filter order, 229, 234

filter specifications, 23, 24, 137

filter structures, 44, 45, 46

FILTER.C, 134, 158

FILTER.H, 141, 150, 162, 171

finite impulse response (FIR), 17, 133, 140

FIR filter, 18, 20, 22, 23, 50, 111, 113, 121, 128,
129, 134, 136, 138, 142, 144, 145, 147, 151,
160, 162, 165, 168, 171, 176, 198, 199, 221,
231,233

fir_filter, 134, 135, 136, 151, 162, 167, 168, 199,
221, 222,223,224

floating point, 203

flush, 154, 155, 156, 157, 180, 183, 226

fopen, 152, 153, 155

for loop, 54, 67, 72, 76, 87, 91, 94, 95, 96, 135

Fourier transform, 1, 3, 4, 14, 15, 17, 18, 19, 25, 26,
28, 31, 44, 52, 160, 170, 184

free, 67, 78, 79, 80, 84,93, 112, 125,173

frequency domain, 7, 15, 16, 17, 18, 23, 24, 25, 30,
32, 44, 132, 168, 170, 176

frequency estimation, 198, 234

frequency response, 15, 17, 18, 19, 20, 21, 22,23,
134, 138, 142, 149, 166, 176, 218, 220, 233

frequency tracking, 186, 233, 235

function call, 60, 86, 127, 128

function prototype, 73

Index

G

G.711, 201

G.722, 202, 215, 216

GT722.C, 204, 208, 211, 214, 215, 216, 217

Gaussian, 37, 39, 45, 47, 158, 159, 160, 162, 193,
233

GETSEND.C, 152

GETWAV.C, 154

global variables, 93, 114, 118, 125

goto, 67, 68, 95, 96

H

hamming window, 188

Harris, 28, 52

highpass filter, 191

Hilbert transform, 198, 199, 200

1

IBM PC, 58, 79, 88,97

ideal lowpass filter, 137, 165

identifier, 56

if-else, 63, 64, 65, 66, 67, 68, 95

IIR filter design, 22, 145

IR filters, 18, 21, 50, 111, 132, 134, 145,178

iir_filter, 145, 146, 147, 148, 150, 151, 219, 239

impulse response, 9, 10, 17, 18, 21, 133, 140, 145,
170, 172, 178, 216

impulse sequence, 8, 9, 32

indexing, 67, 87

infinite loop, 67, 151

initialization, 59, 67, 82, 83,91, 113, 124

input/output functions, 151

INSTF.C, 233, 235, 236

INTERP3.C, 167, 168

interpolation, 160, 163, 164, 165, 166, 167, 168,
170, 176, 177, 179, 193, 203, 220, 221

interrupts, 102, 107, 121, 125, 126

INTFFT2.C, 176, 177

INTOUT.C, 126

inverse DFT, 18

inverse FFT, 170, 171, 172, 176, 177

iteration, 67, 90, 91, 95, 128, 140, 174

K

Kaiser window, 18, 134, 137, 138, 141, 142, 143,
144, 165, 221, 222,223

keyboard, 98, 138

keywords, 56, 66, 75, 76, 90, 91, 114

KSRFIR.C, 138

243

L

label, 9, 65, 68, 69

library functions, 87, 113

linear interpolation, 179, 203

linear operators, 1,2, 11, 17, 18,25,32

linear phase, 20, 21, 52, 133, 135, 140, 142, 147,
162, 164, 184

linear time invariant operators, 1, 8

LMS, 50, 51, 193, 196, 228, 229, 231, 232, 233,
234,235

local variables, 55, 70

log, 149, 158, 159, 180, 189, 226

log,, 29, 170, 171, 176, 188, 191, 234

logical operators, 59, 61, 91

loops, 46, 61, 66, 67, 68,95, 96, 107, 108, 125, 128,
129

lowpass filter, 23, 24, 137, 138, 141, 147, 148, 149,
162, 163, 164, 165

M

macros, 74, 75, 76, 82, 85, 90, 120, 121, 128

magnitude, 23, 24, 48, 141, 149, 192, 235

maintainability, 92, 93

malloc, 78, 79, 80

matrices, 80, 81

matrix operations, 90, 111

mean, 37, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 158,
159, 191, 193, 198

mean squared error, 40, 41, 42, 48, 50

mean value, 40, 43, 193

memory allocation functions, 79

memory map, 113

memory mapped, 100, 124

MKGWNLC, 162

modeling, 21, 43, 46, 48, 186, 193, 194, 198

modulus operator, 60

moment, 39, 43

moving average (MA), 44

MULAW.C, 201, 202

multiprocessor, 108, 130

music, 132, 178, 182, 186, 201, 202, 218, 225, 226,
228

N

noise, 21, 28, 35, 42, 43, 44, 45, 46, 47, 50, 51, 98,
132, 145, 158, 160, 162, 163, 186, 187, 193,
198, 201, 218, 228, 229, 231, 233, 234, 236

nonlinear, 1, 2, 32, 33, 164, 216

normal equation, 49

null pointer, 80

244

numerical C, 87,90, 91, 113, 121, 124
Nyquist rate, 176, 187

(o]

operator precedence, 62
optimal filter, 46
OSC.C, 181, 233,236
oscillators, 178
oversized function, 93

P

parameters, 1, 24, 43, 46, 51, 74,75, 76, 121, 126,
138, 186, 188, 193

parametric, 186, 193, 198

pass-by-address, 87

periodic, 3, 8, 25, 28, 29, 32, 178, 183

periodogram, 186

phase response, 22, 23

physical input/output, 124

pitch-shifting, 220, 223

pointer operators, 77

pointers, 53, 56, 60, 69, 71, 72, 73, 77, 78, 80, 81,
82, 84, 86, 88, 90, 128, 135, 150

pole-zero plot, 149

poles, 51, 146, 147, 149, 150, 178, 193, 194, 195,
216

polled input/output, 124

polling, 125

polynomial interpolation, 163

post increment, 78

power spectral estimation, 186, 187, 188, 189, 191

power spectrum, 27, 28, 44, 125, 158, 163, 186, 189

precedence, 62

preprocessor directives, 74, 75

privacy, 71

probability, 2, 35, 36, 37, 39, 40, 41, 42, 43, 52, 185

program control, 53, 54, 63, 65, 68

program jumps, 67, 69

programming style, 92, 95, 97

promotion, 63

properties of the DFT, 26

PSHIFT.C, 220, 223, 224

Q

quantization, 3, 21, 32, 33, 40, 41, 42, 99, 145, 201,
207,218

R
radar, 46, 186, 190, 191, 192, 193, 198

Index

RADPROC.C, 191

rand, 158, 159

random number generator, 158

random processes, 2, 35, 42, 43

random variables, 36, 37, 39, 42, 43, 52, 158, 159,
185

realloc, 78, 79, 80

rectangular window, 138

referencing Structures, 82

register, 71, 72, 107, 108, 111, 115, 118, 120, 121,
128,129, 182

reliability, 92, 93

Remez exchange algorithm, 18, 134, 140

REMEZ.C, 19, 134, 138

RFAST.C, 171

RIFF, 151, 153, 155, 156

RTPSE.C, 188

S

s-plane, 147, 149

sample rate conversion, 112, 160, 167

sampled signal, 3, 4, 7, 132, 160

sampling function, 3,4, 5

sampling rate, 15, 24, 99, 127, 151, 156, 160, 162,
163, 201, 202, 204, 218, 219, 220

scaling, 99

scanf, 66, 87, 88, 89

scope, 71, 72,73

seed, 107, 194

SENDWAV.C, 157

sequences, 1, 2, 10, 11, 16, 17, 25, 27, 28, 40, 158,
168, 170, 172

serial, 100, 102, 107, 108, 124

shift operator, 99, 203

signal enhancement, 228, 229

simulation, 158

simulator, 102, 111, 112, 113, 114, 115, 116, 117,
118,119, 120

sinc function, 137, 138, 165

single-line conditional expressions, 65

singular, 49

sinusoid, 42

sizeof, 79, 80, 83, 84, 89, 153, 154, 155, 156, 171,
173,177, 222

software quality, 93

software tools, 111, 117

source level debuggers, 117

spectral analysis, 30, 168, 198

spectral density, 42, 44

spectral estimation, 186, 187, 188, 189, 191, 193

speech compression, 46, 200, 201, 202

speech signal, 200, 201, 202, 203

Index

srand, 194, 195

stack, 70, 71, 78, 80, 107, 118, 121

standard deviation, 55, 160, 162, 193, 233, 236

stationary, 42, 43, 190, 191

statistics, 43, 44, 49, 54

status, 68, 69, 107, 125

stopband, 22, 24, 134, 136, 137, 138, 141, 142, 147,
163, 165, 166

storage class, 71, 72, 82

stream, 100, 151

structured programming, 63, 95, 96

structures, 21, 44, 45, 46, 53, 54, 55, 63, 64, 66, 67,
68, 77, 82, 84, 85, 86, 90, 95, 96, 134

superposition, 4

switch, 64, 65, 67, 68, 95, 142, 143

synthesis, 98, 132, 178, 184, 225, 226

system design, 114, 124

T

table generated waveforms, 179

taps, 100, 133, 216

thermal noise, 158

tightly bound, 93

time domain, 7, 13, 15, 17, 25, 30, 40, 44, 132, 168,
170, 176

time invariant operators, 1, 8, 10

TMS320C30, 99, 100, 108, 109, 113, 116, 117, 120,
121, 129, 130

TMS320C40, 99, 100, 108, 110

transfer function, 13, 14, 19, 20, 21, 45, 48, 50, 145,
147,193

transform domain, 13

transition band, 24, 137, 163, 165

truncation, 3, 32, 63, 107

245

two's complement, 60, 64

type conversion, 62

typedef, 83, 84, 85, 122, 225, 226
types of numbers, 56

U

unary minus, 60, 62

underscore, 56

unit circle, 16, 17, 51, 178
unsigned, 57, 58, 59, 61, 63, 90, 153
upsampling, 160

user interface, 116

\4

variance, 37, 39, 40, 42, 44, 54, 55,71, 73, 75,
158, 159

w

WALV file, 151, 153, 154, 155, 156, 157
waveform synthesis, 178

waveforms, 7, 178, 179, 186

WAVETAB.C, 179

white noise, 42, 45, 46, 160, 162, 193, 228, 231
Wiener filter, 46, 48, 49, 160

windowing, 27, 134, 164

windows, 28, 52

zZ

z-plane, 16, 149
z-transform, 11, 12, 13, 14, 15, 16, 17, 21,26
zero padding, 170

-~ C ALGORITHMS
FOR REAL-TIME DSP

PAuL M. EMBREE

N

Prentice Hall PTR
Upper Saddle River, NJ 07458

	C Algorithms for Real-Time DSP

