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ABSTRACT
Electroencephalograms (EEG) are electric signals that originate in brain and
are measured from scalp. EEG is widely used in the assessment of certain
neurophysiological states and disorders. Although it is well known that the
statistical properties of EEG are not time-independent (stationary), most methods
that are used in EEG analysis rely at least implicitly on that the statistical
properties of EEG do not depend on time.

One of the most difficult topics in the practical analysis of nonstationary
processes such as EEG is that it is difficult to evaluate the performance of
estimation methods since there are usually no known references. One is then
usually obliged to resort to simulations and Monte Carlo analyses.

In this thesis a systematic method for the generation of realistic simulations
for nonstationary background EEG was developed. The method is based on the
realization of EEG as a time-varying autoregressive (AR) process and is capable
of realizing various types of variabilities of EEG. As an example, the applicability
of the method to the simulation of a two state EEG was then verified.

In this thesis a new method for time-varying AR modelling was also developed.
The method is called the modified time-varying autoregressive least squares
(MTVARLS) method. The method is based on the existence of a hypothetical
model for the variability of the phenomenon that is to be estimated. This model
is expressed as an ensemble of optimal predictor or AR parameter evolutions
and the corresponding prediction errors. The model is capable of taking into
account correlations between different kinds of features in the expectable predictor
evolutions. This method was then applied to the estimation of event related
synchronization changes. It was found that the method was able to track for
example small delays in the synchronization.

The case in which the hypothetical ensemble can not be formed was also
studied. This is called blind estimation of optimal MTVARLS subspaces. In this
case adaptive predictors were used to obtain evolution estimates for the optimal
predictors. It was found that in most practical cases the required number of
observations from the process is too high to enable the blind estimation scheme.
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CHAPTER I

Introduction

Few sources of information in the real world conform to the implicit and explicit
assumptions of methods that are used to analyze them. Sometimes these
assumptions are passed unnoticed and the results of the application of the methods
are interpreted as if the (unknown) assumptions had been valid. For the most part
this is an unfortunate side-effect of the enhanced accessibility to sophisticated
software.

The correct approach to deal with the incompability between the source
characteristics and assumptions of the standard methods is naturally to develop
these methods to take into account the characteristics. Due to the differences in
source characteristics it is evident that the better a method is tailored to suit
a specific application the worse and more unpredictable its behavior will be in
applications with different characteristics. This means that in most applications
it is necessary to develop methods that are not just simple modifications of old
ones.

In a real world setting we are hardly ever able to assess the performance
of a method by just applying it to observed data (a sample). In many cases
a method to be tested is compared with an old one that is assumed to give
the correct answers and thus serves as a reference. This approach is agreeable
for example in longitudinal investigations. The new methods are then, however,
limited by the performance of the previous methods. One obvious solution is
to use simulations to test the new method. It turns out that in many cases the
generation of realistic simulations is very problematic and most methods are tested
with such unrealistic simulations that are easy to generate. A further ingredient
of a good simulation is that the optimal performance of the method should be
well defined and calculable from the known characteristics of the simulation. In
other words, the simulation should be such that the estimates given by the method
can be compared to optimal estimates. The above requirements mean that the
ability to generate the simulations requires the knowledge of a good model for the
information source. It is then evident that the optimal method should be based
on this model.

One of the key problems in the tailoring of methods to specific applications is
how to express the prior knowledge in a mathematical formalism. This can turn
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14 1. Introduction

out to be a very difficult task. And even when this can be accomplished there is
still the further task of encoding this information in a form that can be used by
the method.

The aims and contents of the thesis

Throughout this thesis the personal pronoun “we” is used to denote the (sole)
author of this thesis. The original aim of the thesis was to develop an estimation
method for the event related synchronization changes that are observed in
electroencephalograms (EEG’s) and correlate for example with the level of visual
stimulation. The method was to be able to estimate changes and trends in
consecutive tests. The need for such a method was obvious since the methods
that were used in the estimation of event related synchronization changes were
statistically infeasible for single sample estimation.

When the performance of the method that was developed for this end was to
be evaluated, it became clear that the analysis methods used with EEG have been
very seldom evaluated objectively and that there were no systematic algorithms
for the generation of the required realistic simulations. For this reason such a
systematic method was developed in this thesis.

Both the new methods for simulation and estimation are based on time-varying
autoregressive (time-varying AR, TVAR) modelling. We have, however, not used
the concept TVAR in the title of the thesis since the new ideas are also applicable
to other parametric simulation and estimation methods.

In Chapter 2 we discuss the aspects of the theory of stationary and
nonstationary processes and time series models that are relevant to the thesis.
In Chapter 3 we give a short review of selected topics of the the applications
of parametric time series models to the analysis of EEG. We also discuss basic
problems of the use of the models and the interpretation of the results.

The Chapters 4–6 constitute the novel part of this thesis. In Chapter 4 we
discuss the simulation of EEG and present a complete system of generating realistic
simulations of nonstationary EEG. The method is based on the description of the
nonstationary EEG as a time-varying autoregressive process with smoothly varying
parameter evolution. In Chapter 5 we propose a major modification to the time-
varying autoregressive least squares (TVARLS) estimation scheme that is able to
take into account prior information on the evolution of the model parameters. The
encoding of the prior information is based on the formation of a set of expected
evolutions. In Chapter 6 we discuss the scheme of Chapter 5 in the case in which we
do not have enough information to be able to form a set of expected evolutions. As
a solution, the estimation of the set of expected evolutions with the aid of adaptive
predictors is proposed. This approach is called here blind estimation since the
approximating subspace of the modified time-varying autoregressive least squares
(MTVARLS) scheme is estimated from the data itself with no prior assumptions.

Since the proposed methods are somewhat diverse we discuss their extensions
as well as possible further investigations at the end of the respective chapters
rather than in a separate chapter.
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In this thesis we concentrate on the methodological aspect of the modelling.
Moreover, in this stage we are more interested in the theoretical and interpretational
substance of the proposed methods than in the average performance. We feel that
new methodologies are too often applied too early before adequate understanding
of the methods in a general level is acquired. We feel also that the theoretical
characteristics of the methods proposed in this thesis should be investigated further
before the methods are applied to EEG at large. For these reasons we use an
extremely small amount of real EEG data in this thesis and concentrate on the
performance analysis of the methods with this data only. For the same reason we
do not study the multivariate (multichannel) extensions of the proposed methods
here.



CHAPTER II

Autoregressive models

In this chapter we give a short review of stationary and nonstationary
autoregressive models. There are many good textbooks that discuss most of
the topics discussed in this chapter. It must be said, however, that most of the
misinterpretations concerning the results given by parametric modelling are due
to general misunderstanding of stochastic processes. This is turn is due to the
fact that most of the entry-level books exhibit the signal processing paradigm [185]
that focuses on deterministic signals and systems instead of the time series analysis
paradigm [200, 33] in which the true stochastic nature of the estimates is taken into
account and the statistics are taken as estimates from observations (realizations).
There is also an intermediate level of approach that we could describe as the
stochastic process paradigm [187, 188] that consideres time series but takes the
statistics as known.

In a review on spectral analysis of EEG [52] there is a warning concerning the
interpretation of results when the statistical nature of estimation is overlooked.

We do not discuss the statistics of the estimates here. To keep the presentation
short we assume that all processes are normally distributed so that certain notions
such as orthogonality and independence are interchangeable. Also the minimum
mean square estimators coincide with the linear minimum mean square estimators
and we do not have to discuss conditional expectations. This review is also very
selective and discusses different topics on very different levels.

2.1 Stationary ARMA models

Stationary autoregressive moving average ARMA(p, q) processes xt can be
expressed as

xt =
p∑
k=1

φkxt−k + et +
q∑
j=1

θjet−j

(1− Φ(z))xt = (1 + Θ(z))et

Φ(z) =
p∑
k=1

φkz
−k

16



2.1. Stationary ARMA models 17

Θ(z) =
q∑
j=1

θjz
−j ,

where et is a stationary orthogonal process whose autocovariance is thus the
impulse sequence γe(h) = σ2δ(h) and z is the shift operator zkxt = xt+k for
all integers k. The polynomial operators 1 − Φ(z) and 1 + Θ(z) define the
autoregressive (AR) and moving average (MA) recursions of the description,
respectively. If q = 0, xt is an AR(p) process and if p = 0, xt is a MA(q) process.
In what follows the notions variance and power are used interchangeably.

We adopt the following terminology.

• For an ARMA(p, q) process xt the above is true, that is, there are finite p
and q and φk, k = 1, . . . , p and θk, k = 1, . . . , q such that xt is the solution
of the stochastic recursion equation when E {etet+h} = γe(h) = σ2

eδ(h). In
this case the innovations process et is also the minimum variance prediction
error process.

• An ARMA(p, q) approximation for a process xt is the description

xt =
p∑
k=1

φkxt−k + et +
q∑
j=1

θjet−j ,

where Φ(z) and Θ(z) are determined so that the variance σ2
e of the

prediction error process et is minimal in some sense. Usually the criterion
of minimality is taken to be the mean square criterion which in this case
means that the aim is to minimize the variance σ2

e If the process is not an
ARMA(p, q) process, the prediction error process does not coincide with
the innovations process and E {etet+h} = γe(h) �= σ2

eδ(h) although the
conventional ends to the approximation, such as spectral estimation, usually
require that γe(h) ≈ σ2

eδ(h). In [187, 188] this kind of an approximation is
called mean square estimation.

• An ARMA(p, q) estimate for a realization (observation) xt, t = 1, . . . , T
of a stationary stochastic process is a function of the observed data that
gives the estimates Φ̂(z), Θ̂(z) and σ̂2

e . These estimates are functions of
random variables and are thus themselves random variables and depend on
the realization. The random variables êt, t = 1, . . . , T are usually called
residuals and some of the criteria for the validation of the model depend on
how much the sample autocovariance estimate for êt differs from σ̂2

eδ(h).

Note that in the first two cases the true (second order) statistics is known and
in the third case the statistics is not known. In this chapter we assume that the
parameters are constants, that is, they do not depend on the underlying probability
space. The last two cases are different aspects of ARMA modelling.
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An ARMA(p, q) process (approximation, estimate) xt is causal if it assumes
the representation

xt =
∞∑
k=0

ψket−k = Ψ(z)et , (2.1)

where Ψ(z) is a stable causal operator, that is,
∑∞
k=0 |ψk| <∞. A necessary and

sufficient condition for the causality and stationarity of xt is that all the roots
of Ψ(z) have modulus less than unity. An ARMA(p, q) process (approximation,
estimate) xt is invertible if its innovations assume the representation

et =
∞∑
k=0

ξkxt−k = Ξ(z)xt , (2.2)

where the operator Ξ(z) is a stable causal operator. A necessary and sufficient
condition for the invertibility of xt is that all the roots of Ξ(z) have modulus
less than unity. The forms (2.1) and (2.2) are called the MA(∞) and AR(∞)
representations, respectively.

2.1.1 Estimation of AR models

We discuss only the AR model estimation here. Although most of the textbooks
on signal and time series analysis give some methods for the modelling of ARMA
processes, we refer only to [40] that is an up-to-date and comprehensive reference.

Let γ(h) be the (true) autocovariance sequence of xt. Define the vector γmk =
(γ(k), . . . , γ(m))T and the (m+1)× (m+1) symmetric Toeplitz matrix Γm whose
first column equals γm0 . For the optimal (linear) mean square predictor x̂t = α(z)xt
for xt based on the variables (regressors) xt−k, k = 1, . . . , p we write

xt = x̂t + et = α(z)xt + et .

The prediction error variance σ2
e = E

{
e2t
}
is to attain the minimum under this

predictor structure. It is well known that in this case the prediction error is
orthogonal to the regressors [187] and the predictor coefficients αk are obtained as
the solution of the normal equations

Γp−1α = γp1 , (2.3)

where α = (α1, . . . , αp)T. The prediction error variance is then

σ2
e = γ(0)− αTγp1 .

In the Hilbert space setting of random variables we say that x̂t is the orthogonal
projection of xt onto the subspace spanned by the processes xt−k, k = 1, . . . , p. For
a general account on the estimation and optimization in the Hilbert space setting,
see [160, 217].

This is the optimal predictor when the covariance is known. If xt is an AR(p)
process, we have αk = φk, k = 1, . . . , p and αk = 0, k > p, that is, the optimal
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predictor coefficients coincide with the AR(p) coefficients. Thus the estimation
of optimal p–order predictor is equivalent to the estimation of an AR(p) model.
From now on we will denote the predictor estimate with Φ whether or not it is
assumed to contain the parameters of the AR model or predictor coefficient only.

The Yule-Walker estimate for the predictor is obtained by replacing the
covariances in (2.3) by the biased (triangle windowed) sample autocovariance
estimates Γ̂YW and γ̂YW. The least squares (LS) estimate is obtained by writing
the prediction equations

Xt = HΦ+ r ,

where Xt−k = (xp+1−k, . . . xT−k)T, r = (rp+1, . . . , rT )T is the residual and the
regressor matrix

H =

 xp · · · x1

...
...

xT−1 · · · xT−p


and determining Φ so that the square of the norm of the residual ‖r‖2 = rTr
attains its minimum. The prediction equations can also be written in the form

Xt =
p∑
k=1

Hkφk + r =
p∑
k=1

Xt−kφk + r ,

where Hk = Xt−k are the columns of H. The solution is obtained when Xt is
projected (orthogonally) onto the subspace spanned by Xt−k, k = 1, . . . , p. Note
that these are observations of the processes xt−k, k = 1, . . . , p. The residual is
r = Xt −HΦ and

HT(Xt −HΦ) = 0
HTHΦ = HTXt ,

the formal solution to which is

Φ = (HTH)−1HTXt

although it is advisable to compute the solution with an orthogonalization scheme.
The Yule-Walker and LS estimates are thus both of the form of (2.3) and differ

only with respect to the covariance estimates and we can write

Γ̂YW
p−1ΦYW = (γ̂YW)p1
Γ̂LS
p−1ΦLS = (γ̂LS)p1 ,

where the LS covariance estimates are Γ̂LS
p−1 = (T − p)−1HTH and (γ̂LS)p1 =

(T−p)−1HTXt. These are consistent unbiased estimates but although Γ̂LS
p−1 is non-

negative definite, it is not a symmetric Toeplitz matrix and thus is not structurally
the covariance of any stationary process. The LS estimate is sometimes called the
covariance estimate for the AR parameters [164].
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Since the forward and backward predictor coefficients coincide for stationary
processes, the prediction equations can be augmented with the backward
prediction equations. The resulting estimate is called the forward-backward or
the modified covariance estimate [164].

2.1.2 Spectral estimation

A very large class of stationary processes can be expressed in the form

xt =
1√
2π

∫ π
−π

eitω dζ(ω)

F (ω) = E
{
|dζ(ω)|2

}
,

where dζ(ω) is a process defined on the continuous index set ω ∈ (−π, π) and
whose increments (dζ(ωk+δω)−dζ(ωk)) and (dζ(ωj+δω)−dζ(ωj)) are orthogonal
for all ωk �= ωj . If the spectral distribution function F (ω), ω ∈ (−π, π) of xt is
continuously differentiable, we can write dF (ω) = f(ω) dω, where f(ω) is the
spectral density, or spectrum, for short. It can be shown that

γ(h) =
1
2π

∫ π
−π

eihωf(ω) dω (2.4)

f(ω) =
∞∑

k=−∞
γ(k)e−iωk . (2.5)

See [33] for the detailed formulation and results concerning the existence. The
autocovariance sequence is a non-negative definite sequence and the spectrum is
therefore a non-negative function.

Let xt = H(z)vt, where vt is stationary and H(z) is a stable causal invertible
operator (filter). The spectrum fx(ω) of a xt is then

fx(ω) = |H(exp(iω))|2fv(ω) ,

where fv(ω) is the spectrum of vt. An AR(p) process can be written in the form

xt = H(z)et
H(z) = (1− Φ(z))−1

and we have

fx(ω) =
fe(ω)

|1− Φ(exp(iω))|2

=
σ2
e

|1− Φ(exp(iω))|2
,

since γe(h) = σ2
eδ(h).
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2.1.3 Approximate spectral factorization

A useful property of the ARMA(p, q) models is that they can be approximated
by sums of AR(1) and AR(2) processes and a finite order MA(q) process. The
parameters involved in the factorization are often called spectral parameters
(Spectral Parameter Analysis, SPA).

Since the practical computation of the approximate spectral factorization is
not readily found in literature we discuss it here in some detail in the case of AR
models.

For a spectral density function f(ω) define the function S(z), z ∈ C so that
f(ω) = S(z) for z = exp(iω). Also the function S(z) is usually referred to as the
spectrum. For a real-valued AR(p) process (1−Φ(z))xt = et we have |1−Φ(z)|2 =
(1− Φ(z))(1− Φ(z−1)) and

S(z) =
1
2π

σ2
e

(1− Φ(z))(1− Φ(z−1))
.

It can be shown [236] that the covariance of an ARMA(p, q) process with p ≥ q
can be written in the form

γ(τ) = σ2
e

(
p1∑
k=1

κ1
kα
−|τ |
k +

p2∑
k=1

|βk||τ |
(
κ2
k cos(τωk)− κ3

k sin(|τ |ωk)
))

, (2.6)

where the real roots of (1−Φ(z)) are αk, k = 1, . . . , p1 and the complex roots are
βk exp(±iωk), k = 1, . . . , p2 and κ1

k, κ
2
k and κ3

k are constants. The autocovariance
can thus be interpreted to consist of factors corresponding to the roots of 1−Φ(z).
Further, we can write for the variance of xt

γ(0) =
p1+p2∑
k=1

γk(0) ,

where the terms γk(0) come directly from (2.6) with τ = 0 and can be interpreted
as variances corresponding to the factors.

In the frequency domain we can perform the corresponding factorization as

f(ω) =
p1+p2∑
k=1

fk(ω) =
p1+p2∑
k=1

Sk(z)
∣∣
z=exp(iω)

= σ2
e

p1+p2∑
k=1

Θkt (z)
Φkt (z)

∣∣∣∣
z=exp(iω)

, (2.7)

where the real functions fk(ω) are called the spectral factors.
We note, however, the following. The autocovariance factors γk(τ) are not

necessarily non-negative definite sequences. This means that the process xt can
not be thought of as a sum of processes with covariances γk(τ). The non-negative
definiteness of γk(τ) implies that the spectral factors Sk(ω) are not necessarily
positive for all ω. However, when the roots of the model are not too near to each
other, these factors make sense in that the spectral factors are almost positive and
can be said to represent (approximate) either first or second order processes.
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The spectral factors can be calculated using the residue theorem as follows
(see [188] for a general discussion on the use of residue theorem with sequences).
Calculate the roots zk of 1− Φ(z). For the factor corresponding to a real root zk
calculate the residues ζkj , j = 1, 2 of σ2

e(1− Φ(z))(1− Φ(z−1))zp at zk and z−1
k ,

respectively. The spectral factor is now

Sk(z) = ζk1(z − zk)−1 + ζk2(z − z−1
k )−1

and γk(0) can be obtained as the sum of residues of Sk(z)z−1 at zk and 0.
For the factor corresponding to a complex root (pair) zk calculate the residues

ζkj , j = 1, 2 of σ2
e(1 − Φ(z))(1 − Φ(z−1))zp at zk and z−1

k , respectively. The
spectral factor is now

Sk(z) = ζk1(z − zk)−1 + ζk1(z − zk)−1 + ζk2(z − z−1
k )−1 + ζk2(z − z−1

k )−1 ,

where the overbar denotes complex conjugation and γk(0) can be obtained as the
sum of residues of Sk(z)z−1 at zk, zk and 0.

2.2 Time-varying autoregressive models

With time-varying models we refer to such models whose parameters depend on
time. The corresponding processes are thus nonstationary. As for the terminology,
we note that the term nonstationary models refers sometimes to models with
unit roots, e.g. models with seasonal characteristics. In these models the
parameters are not time-varying. See [30, 66] for analysis of such processes. The
notions of deterministic and stochastic regression in the estimation of time-varying
parameters are probably due to Gersch [75].

2.2.1 Nonstationary prediction

Let xt, t = 1, . . . , T be a nonstationary process with zero mean and covariance
matrix Γ that is symmetric but does not exhibit Toeplitz structure. Denote the
diagonal blocks of Γ by Γmk with entries E {xixj} = γ(i, j), i, j = k, . . . , k + m.
Define the vector γmk = (γ(k, k− 1), . . . , γ(k, k−m))T. Also this vector is a block
of Γ.

The time-varying minimum mean square predictor Φ(t; z) is obtained as
follows. Write

xt = x̂t + et = Φ(t; z)xt + et

for t = p + 1, . . . , T separately. By employing the orthogonality principle we can
write

E {(xt − x̂t)xt−�} = 0

for ( = 1, . . . , p. The resulting systems of equations are in the matrix form γ(t− 1, t− 1) · · · γ(t− 1, t− p)
...

. . .
...

γ(t− p, t− 1) · · · γ(t− p, t− p)


φ1(t)

...
φp(t)

 =

 γ(t, t− 1)
...

γ(t, t− p)
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and using the above defined notations

Γt−1
t−pΦ(t) = γpt .

The prediction error variance is then

σ2
e(t) = γ(t, t)− ΦT(t)γpt .

The vector valued variable Φ(t) ∈ Rp is called the predictor evolution.
The time-varying AR(p) process with parameter evolution Φ(t) and innovations
variance σ2

e(t) can now be defined as a process for which these coincide with the
predictor evolution and prediction error variance. The innovations are orthogonal
but the variance is not necessarily a constant.

There are also other predictor structures, for example we could use the
variables {xt−1, . . . , xt−p, et−1, . . . , et−q} as regressors and the predictor structure
would be recursive. See [96, 3, 191] for analysis on time-varying predictors.

Available ensemble data

If an ensemble xt(ζk), k = 1, . . . , N from the process is observed, we can readily
estimate the time-varying covariance matrix by

Γ̂ = N−1
N∑
k=1

XkX
T
k ,

where Xk = (x1(ζk), . . . , xt(ζk))T. It must be noted that each predictor estimate
Φ̂(t) is a p-parameter estimate from data of sizeN and the prediction error estimate
is

σ̂2
e(t) =

N

N − p

(
γ̂(t, t)− Φ̂T(t)γ̂pt

)
.

We are thus not able to construct a time-varying predictor easily from a small
ensemble since we should keep N/(N−p) as close to unity as possible. See [68] for
a discussion on the estimation (smoothing) of a time-varying covariance estimate
when the bandwidth of the process is known.

2.2.2 Deterministic regression: TVARLS scheme

The time-varying autoregressive least squares (TVARLS) scheme was first
introduced in 1970 [206]. The approach was to approximate the parameter
evolution by truncated Taylor expansion of order M and to solve the weighted
least squares estimate of the expansion coefficients. This is equivalent to forcing
the parameters to be polynomials of orderM . The idea has been further developed,
e.g. in [147, 90, 95, 77] and several sets of basis functions have been proposed.

Time-varying autoregressive models for a process (sample) xt, t = 1, . . . , T can
be written as

xt =
p∑
k=1

φk(t)xt−k + et , (2.8)
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where et are the residuals and p is the order of the AR model (predictor). One of
the criteria for the validity of the model is that the residuals can be modeled as
zero mean independent random variables with variance σ2

e(t). In the conventional
TVARLS scheme the time-varying prediction coefficients (the AR parameters)
φk(t) are separately constrained to a (usually smooth) subspace S ⊂ RT with
dimension M and basis ψ1(t), ψ2(t), . . . , ψM (t) where the choice ψ1(t) ≡ 1 is
usually made to include the stationary model as a special case. The time-varying
parameters are thus of the form

φk(t) =
M∑
m=1

cmkψm(t) . (2.9)

Denote the p–order linear predictor of xt by x̂t with

x̂t =
p∑
k=1

φk(t)xt−k

=
M∑
m=1

p∑
k=1

cmkψm(t)xt−k (2.10)

so that xt = x̂t + et.
Instead of the usual approach to focus on the normal equations we will employ

the regression formalism since the modification to the TVARLS scheme that we
propose in this paper is more understandable in the latter formalism. To obtain
the nonwindowed prediction equations we write (2.8) in matrix form for t = p +
1, . . . , T and define c = (c11, . . . , c1p, . . . , cM1, . . . , cMp)T, X = (xp+1, . . . , xT )T,
E = (ep+1, . . . , eT )T and the regressor matrix

H =

 ψ1(p+ 1)xp · · · ψ1(p+ 1)x1 · · · ψM(p+ 1)xp · · · ψM (p+ 1)x1

...
...

...
...

ψ1(T )xT−1 · · · ψ1(T )xT−p · · · ψM(T )xT−1 · · · ψM (T )xT−p


(2.11)

where the (roman) superscript T denotes transposition. The prediction equations
take now the form

X = Hc+E . (2.12)

If H is nonsingular, the solution c that minimizes ETE can be expressed in closed
form as c = (HTH)−1HTX , that is, the explicit solution of the normal equations.
The estimated parameter evolution is then obtained from (2.9). In this formalism
each parameter evolution is estimated separately as a linear combination of the
basis functions and we have pM free coefficients in (2.12).

Several sets of functions have been used as TVARLS bases. These include
at least ordinary polynomials, Legendre polynomials, sinusoidal (Fourier) bases,
discrete prolate spheroidal sequences, B-splines, Walsh and Haar bases [206, 147,
77, 38, 2, 62], see also [95, 1]. With the exception of the last two items, the
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bases (and their linear combinations) can be described as smooth. Efficient
computational approaches for the TVARLS scheme are discussed in [147, 28]. The
TVARMALS and lattice structure extensions are studied in [90]. The multivariate
extension of the TVARLS scheme is given in [75]. See also [176] where an
application in which affine basis is used for very short segments.

There is actually no reason whatsoever to restrict oneself to the use of any
of these sets of basis functions. A suitable combination e.g. of polynomial and
sinusoidal functions may well be appropriate in some situations.

2.2.3 Stochastic regression: Adaptive predictors

We do not give a review of adaptive algorithms here. There are good textbooks on
the subject from entry level [233] through [151, 100] to a demanding level [14, 39].
We give only a short description of the structure of adaptive algorithms and discuss
some general characteristics that all adaptive algorithms exhibit.

A large class of adaptive algorithms can be expressed in the form [14]

θ(t) = θ(t− 1) + αtΞ(θ(t − 1), ϕt) + α2
t εt(θ(t − 1), ϕt) , (2.13)

where θ(t) are the recursively estimated parameters, ϕt is a sequence of
observations (regressors), αt is a sequence of scalar gains and Ξt and εt are
functions that define how the parameter estimates are to be updated given a new
observation. These functions depend on the model structure and the employed
criterion of optimality. The criterion of optimality may be either explicit (well
defined) or implicit.

In adaptive linear modelling of time series xt ∈ R, the estimation scheme can
usually (especially in the cases considered in this thesis) be written in the form

xt = x̂t + et

x̂t = ϕT
t θ(t) .

This applies to the so-called transversal filter structure, in which the estimate is a
linear function of the regressors at each time although the parameters depend on
past data in a nonlinear manner. There are also other important filter structures
in which this is not the case, for example the algorithm may update the lattice
parameters [64], the model polynomial roots [177] or the center frequency of
a narrow bandwidth process [144] directly. We discuss only the case of linear
prediction and nonrecursive predictor structure, which yields directly a time-
varying AR model estimate for the process (observation) xt. We have then

ϕt = (xt−1, . . . , xt−p)T

θ(t) = Φ(t) .

The most commonly used transversal algorithms are the least mean square
(LMS, the one-step stochastic gradient algorithm), the recursive least squares
(RLS) and the Kalman filter (KF) algorithms. These can be written in the
following forms.
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• The LMS algorithm can be written in the form

θ(t) = θ(t− 1) + αtϕtet ,

where αt controls the adaptation rate of the algorithm.

• The standard forgetting factor RLS algorithm can be written the form

θ(t) = θ(t− 1) +Ktet

Kt =
κ−1Pt−1ϕt

1 + κ−1ϕT
t Pt−1ϕt

Pt = κ−1Pt−1 − κ−1Ktϕ
T
t Pt−1 ,

where κ is called the forgetting factor and determines the adaptation rate
of the algorithm.

• The Kalman filter corresponding to one-step predictor is of the form

θ(t) = θ(t− 1) +Ktet

Kt =
Pt−1ϕt

σ2
e(t) + ϕT

t Pt−1ϕt

Pt = Pt−1 −
Pt−1ϕtϕ

T
t Pt−1

σ2
e(t) + ϕT

t Pt−1ϕt
+ Γv(t) ,

where this structure corresponds to the random walk hypermodel for the
parameter evolution (state equations) with θ(t + 1) = θ(t) + vt, where vt
is an orthogonal process with covariance Γv(t) and σ2

e(t) is the prediction
error variance. The adaptation rate is controlled by Γv(t). Usually the
choice Γv(t) = σ2

vI is made so that the individual parameter evolutions
are assumed to be independent. Note that the prediction error variance
is assumed to be known. The adaptive Kalman filter that estimates these
variances is given e.g. in [107].

We do not give a general treatment of adaptive algorithms here. We note,
however, that although the Kalman filter is the maximum a posteriori estimator for
the state (predictor parameters) in the case of normal distribution, the optimality
is also connected with the assumed hypermodel. It can be shown that e.g.
LMS and RLS algorithms are optimal a posteriori estimators for the respective
implicitly assumed hypermodels [150]. This means that in order to choose an
“optimal” adaptive estimator for the parameters, we should be able to determine
an appropriate hypermodel in each case. If the assumption on the parameter
evolution is that it is smooth in the sense that the second or third differences
of individual parameter evolutions are small, a higher order hypermodel would
be more appropriate than a first order model. For the determination of the
corresponding multi-stage adaptive estimators, see [13, 14].
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2.2.4 Time-varying spectral estimation

The spectrum is defined only for stationary processes. A general extension to
the time-varying (nonstationary) case is not easily definable. This is due to that
in a nonstationary situation many of the interpretational items will be lost. In
principle there are many possible candidate definitions for the TV spectrum that
balance with the trade-offs inherent in all approaches.

Of fundamental importance is the recognition of the time-frequency uncertainty
principle (theorem), that makes it impossible to define a time-varying spectrum
with arbitrary time and frequency resolutions [187, 188]. It is also essential to
distinguish between deterministic and statistical definitions. There are definitions
that work well in the deterministic setting, for example, in the determination of
filters for chirp signals in radar signal processing [43]. The notion “frozen” is used
to refer to the fixing of time t.

We do not attempt to discuss here all methods that are used to obtain
different kinds of definitions concerning time and frequency variations in processes.
It must be noted that the definitions and the performance of the estimates
concerning these variations can not be easily compared. The most significant
approaches that are not discussed here include short time Fourier transforms
(sliding window periodograms), the time-frequency distributions, such as the
Wigner-Ville distribution, and wavelets and filter banks. For short reviews of
these methods in connection with biomedical signal analysis tasks, see [29, 224].

2.2.5 Evolutionary spectrum

Let xt be nonstationary with covariance (matrix) Γ(s, t) such that Γ(t, t) <∞ for
all t. For stationary processes γ(τ) = Γ(s, t) where τ = t − s depends only on
the difference t − s. Thus we can write for the relation between covariance and
spectral distribution function

γ(τ) =
1
2π

∫ π
−π

eiτωdF (ω)

=
1
2π

∫ π
−π

eiωte−iωsdF (ω) .

In analogy with this representation we write

Γ(s, t) =
1
2π

∫ π
−π

ψ∗s(ω)ψt(ω)dµ(ω) ,

where the functions ψt(ω) are nonstationary kernels corresponding to exp(itω) of
the stationary case. This representation always exists on a finite interval t ∈ (1, T )
and the kernels can be chosen to be the eigenvectors of Γ(s, t). All kernels do not,
however, carry the interpretations of time and frequency. One choice that enables
(in principle) this interpretation, is the family of functions

ψt(ω) = At(ω)eiϑ(ω)t ,



28 2. Autoregressive models

where the (Fourier) spectrum of At(ω) with ω fixed, has absolute maximum at
zero. We do not pursue the general theory of evolutionary spectra here. For the
practical issues of estimation, selection of nonstationary kernels and the theory of
oscillatory processes, see [200, 201]. For a short review of other similar approaches,
see [15].

Definition based on innovations

The theoretical elaboration is probably due to Tjøstheim, see [200, 201], but the
general idea has been proposed earlier at least in [25]. This approach is based on
the representation of the process in terms of the innovations and the associated
Green’s kernel. If the process is regular (purely nondeterministic), it can be
represented in the form

xt = Θ(t; z)et =
∞∑
k=0

θk(t)et−k

in accordance with the MA(∞) representation of the stationary processes. Here
et can be taken as a stationary orthogonal process with constant variance σ2

e but
we cannot have θ0(t) ≡ 1. Equivalently we can take et just to be orthogonal with
variance σ2

e(t) and set θ0(t) ≡ 1.
Let G(t, s) be the one-sided Green’s function (time-varying impulse response)

corresponding to the operator Θ(t; z) [170]. Then

xt =
t∑

k=−∞
G(t, t− k)ek .

This representation is important since G is a causal operator and we can write

X = GE ,

where X = (x1, . . . , xT )T, E = (e1, . . . , eT )T and G is a lower triangular matrix.
The covariance Γ(s, t) is then

Γ(s, t) =
∞∑
k=0

∞∑
j=0

G(t, t− k)G(s, s− j)cov(et−kes−j) .

If et is orthogonal we obtain further for the variance of xt

var(xt) =
∞∑
k=0

G2(t, t− k)var(et−k) .

The time-varying spectrum can now be defined as (with t a fixed parameter)

f(t;ω) =
σ2
e(t)
2π

∣∣∣∣∣1 +
∞∑
k=0

θk(t)e−iωt
∣∣∣∣∣
2

.
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It can be shown that this definition conforms to the class of evolutionary spectra in
which the kernel functions are generated by the corresponding time-varying filters.

Now let Φ(t; z) be a predictor for xt so that the prediction error et is an
orthogonal process and equals thus the innovations of xt. We have then

f(t;ω) =
σ2
e(t)
2π

∣∣∣∣∣1−
∞∑
k=0

φk(t)e−iωt
∣∣∣∣∣
−2

.

The practical task is then to estimate the predictor and the time-varying prediction
error variance σ2

e(t). It turns out that although this definition is both theoretically
and practically interesting, there are some practical problems that do not have any
general solutions. The most difficult problem arises in the case of estimation of
small bandwidth processes. In this case some of the roots of 1 − Φ(t; z) have
near unity moduli and small changes in the estimates Φ̂(t; z) can induce dramatic
changes to the spectrum f(t;ω). This causes occasionally severe instability to the
spectral estimates obtained with this method. The time-varying spectral estimates
of Chapter 6 have been obtained with this method and the instability is clearly
visible.

We can also consider the approximate spectral factorizations for the frozen
models by writing all variables of Section 2.1.3 as functions of time. All
the variance-related variables inherit the problem of the instability of spectral
estimates.



CHAPTER III

Autoregressive models of EEG

In this chapter we discuss general topics that are relevant to the interpretation
and modelling of EEG. We give then a concise review of the applications of
parametric methods to the analysis of EEG. The topics and details in this chapter
are very selective and the weight is on methodological aspects. Some of the main
alternatives to AR models are also mentioned but these are only examples.

In spite of some theoretical similarities between AR processes and some neural
models we should never assume that the EEG process can be fully described by an
AR process [235]. The most we can and in most cases should do is to investigate
whether the EEG can in some cases be approximated with a parametric process.
Even this can be argued to be irrelevant. The ends to the EEG analysis are very
diverse and it is sometimes argued that the main point is whether an EEG model
can extract features that are relevant to the specific application. This is mainly
true but we have to be very careful so as not to evaluate the applicability of the
model based on how well the results given by the model correspond to the results
given by the previously used models. If these are interpreted as correct (true)
references, the new model and the results given by it may be discarded since they
do not give the “correct” results although the main reason for the use of the model
was to test whether these results were correct in the first place.

It is possibly safest to regard the parametric models as approximations to the
true (observed) EEG process. The applications can then often be divided to the
analysis of the quality of the approximations and the subsequent analysis of the
data itself.

There are various methods to test the applicability of the parametric models.
The most important of these are perhaps those that estimate the order (orders) of
the model and those that evaluate the uncorrelatedness of the associated prediction
errors. In some methods these two tasks are carried out simultaneously. It must be
noted, however, that these methods usually assume e.g. regularity of the process.
This means that the interpretation of the results may not be correct in case of
(partly) chaotic data.

If the model is decided to be a valid approximation to the data, the features
given by the model can be used in the application. The most typical features
(ends) in EEG analysis are the model parameters themselves, prediction error

30
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(residual) variance, some features extracted from the power spectrum estimate
corresponding to the model such as band power estimates or the whole spectrum
estimate. In principle the model order could also be used to distinguish between
different states of EEG but we have no knowledge of any studies where model
order had been used explicitly.

For general as well as historical views and aspects on the automatic analysis
of EEG one should see [31, 84, 7, 80, 81, 154]. It must be noted that most
of what is said is dependent on methods of analysis. Most of the method-
independent performance analyses are based on information theory and even then
these are restricted to purely stochastic settings. One should also consult the IFCN
committee guidelines from 1994 [182], in which very conservative recommendations
for EEG analysis methods are given, see also [181]. For example, in the eyes-closed
state, a minimum of 1 sec of artefact-free data should be available for the (center)
frequency analysis of EEG. Also in other aspects the discussion of analysis methods
focuses heavily on the use of periodograms.

3.1 Preliminary models of EEG

In this section we discuss the preliminary models of EEG, that is, whether EEG
can be modeled as a stochastic or a chaotic (deterministic) process. Since this
thesis concentrates on stochastic models, the stationarity of EEG is subsequently
discussed.

3.1.1 Linearity of EEG

Most papers on EEG methodology assume either a statistical framework in which
stationarity, distributions and independence are well defined, or a deterministic
framework in which the processes are assumed to be outputs of chaotic neuronal
circuitry.

As such both frameworks are clearly incorrect. With the current understanding
of quantum mechanics it is impossible to think of anything purely deterministic
concerning the degrees of freedom of even a small neuronal circuitry. On the
other hand, the structure and dynamics of neuronal circuitry is well enough
understood to rule out the possibility that EEG would truly be generated by
a causal linear filter driven by independent normal innovations. Even with local
chaotic generators the EEG measured over the scalp will contain processes over
an extended region. In most cases it can not be assumed that all these generators
are so connected that the observations (the mapping of all these signals through
the volume conductor) could still be represented deterministic.

Anyway, it has been shown that in certain states of the brain the EEG can
be described as e.g. stationary AR process of relatively low order (even with
normal innovations) [195]. Equally as conclusively it has been shown that in some
other states the EEG portrays such phase coherence that it is extremely unlikely
that such would have been produced by a linear system with innovations of any
distribution, see [195, 117].
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A common error in trying to prove that EEG conforms to deterministic chaos
is to compare it to a normal independent process, for such analyses see for example
[59, 10]. To show why this comparison is incorrect is explained below. See [186]
for a correct evaluation, that is, comparison of (sleep) EEG to a normal process
with the same power spectrum. Implicitly the same comparison was made in [19],
where linear and non-linear methods for EEG forecasting were compared. These
results indicate that even partly chaotic EEG can often be well approximated by
AR models, see the example below. Nevertheless, in [117] it was conjectured that
methods based on deterministic chaos would perform better than those conforming
to the statistical framework.

Some define linearity so that the prediction error should be normal. This is
incorrect since we can always have a linearly generated process with independent
identically distributed innovations but with arbitrary non-normal distribution.
The error in the above implicit test of linearity is that if the innovations were
normal and the system was nonlinear, the prediction error corresponding to a
linear predictor would not be normal. See [200] for how to distinguish between
these concepts, in particular for an example of a dependent orthogonal process.

The relevant question is then: How adequately can EEG be described by
either model, or more practically, do the parameters pertaining to a model include
enough information so as to be useful. Such a question is extremely difficult to
answer since, as noted earlier, there is no ‘The EEG ’ and the failure of both
models in some states is obvious as such and has been demonstrated many times.

One possible solution would be to employ a detector that would estimate e.g.
the incompatibility of a (fixed order) AR model with the EEG. We would then
use e.g. a chaotic description until the AR model would again be compatible.

A regular process that simulates phase coherence

To show why one should be very careful when using correlation dimensions in the
assessment of chaoticity of time series we present a simple method how to generate
a regular stochastic process that could easily be judged as deterministic. Consider
the following. Select an EEG waveform that would be regarded as deterministic.
At least for some time this can be described as periodic. Let the period be T .
Calculate the trigonometric Fourier expansion

x =
N∑

k=−N
〈x, φk〉φk ,

where φk = exp(−jkω0t), t = 1, . . . , T , k = −N, . . . , N are the basis functions of
the expansion, x = (x1, . . . , xT ), 〈·, ·〉 denotes inner product and where N is fixed
by the sampling frequency and T . Generate the filters

fk,ε(z) =
σ−2
k,ε 〈x, φk〉

1− 2(1− ε) cos(kω0)z−1 + (1− ε)2z−2
,
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where

σ2
k,ε =

1
2π

∫ π
−π

∣∣1− 2(1− ε) cos(kω0) exp(−jω) + (1− ε)2 exp(−2jω)
∣∣−2

dω .

Then generate

xεt =
N∑
k=1

fk,ε(z)et ,

where et are independent identically distributed with unit variance. Then let ε
tend to but not reach zero. From the construction it is evident that xεt is regular
for all 0 < ε < 1 and that its variance equals 〈x, x〉. The time domain appearance
is not likely to resemble x but its appearance should be as “deterministic” as that
of xt.

The main point was not to try to maintain that this would be a feasible model
for EEG but rather to point out that in calculating correlation dimensions the
correct “noise reference” is not necessarily white noise. We refer to [201] and [200]
for a discussion on the differences between linearity of time series, distribution of
innovations and prediction error, and mean square prediction. See also [129] for
a review of the methods to generate regular stochastic processes with prescribed
(non-normal) distribution and covariance.

3.1.2 Stationarity of EEG

When we consider measured “real world” processes we can hardly ever postulate
wide sense stationarity for an observation of an arbitrary time span. We are thus
obliged to restrain ourselves to approximate stationarity over time spans of variable
duration. The segmentation of the observations to such epochs necessitates
measures of changes in the statistical description of the process and the estimates.

It is qualitatively clear that the faster the description changes over time the
smaller is the amount of information based on which we have to judge whether a
change has happened or not. If we use methods that rely on (implicit) assumptions
on stationarity to nonstationary segments we will obtain, as a rule, unpredictable
results whose interpretation is more or less impossible. This applies also to EEG.
It is customary to segmentate the observation to either fixed or variable span
segments that are considered as approximately stationary, or pseudostationary.
The spans of accepted pseudostationary segments vary from a second to several
minutes depending on the situation. It must be noted that the term nonstationary
often refers to “disturbances” in a stationary epoch rather than to a (slowly)
varying statistical description. These nonstationarities are discussed later in this
chapter.

Historically, most early analyses on the stationarity of EEG were done
incorrectly using statistical methods that required that the samples were
independent and normal, i.e. the observation was a normal innovation process.
For a review on early studies, see [167]. Other factors in the early studies were
insufficient ensemble data, single channel experiments and few subjects.
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It is clear that the notions of (amplitude) distribution and nonstationarity
can not be separated. This follows from the fact that in order to be able to
employ correct degrees of freedom we must know the covariance of the process.
This in turn has no meaning if the ensemble is not stationary. This necessitates
simultaneous estimation of (degrees of) stationarity and the deviation from a
default distribution, most notably the normal distribution.

One such approach using the Kolmogorov–Smirnov test has been described in
[167]. Other studies/situations on the stationarity and normality include mental
arithmetics and sleep [223]. The results are usually expressed in the form ‘X
percent of T length epochs in state S were classified as stationary/normal’. The
main result is that there is no dramatic “shoulder” in the segment length –
percentage graphs that would allow one to choose a prescribed segment length
of either approximate stationarity or normal characteristics.

The measures for stationarity depend heavily on the aims and requirements
of the analysis methods. In [42], for example, stationarity is claimed to hold for
12 sec in most cases.

As mentioned above, every method that is used to segmentate the process has
to incorporate a measure of change. These are not, however, always appropriate
as many methods employ an initialization phase after each segment boundary,
which means that the process should be stationary after each boundary. This is a
requirement that is seldom met.

3.2 Spectral analysis of EEG

EEG is often divided into the frequency bands delta (0.5–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz) and beta (over 13 Hz). These limits are only approximate and
other limits are sometimes used. These bands are also sometimes divided further
into e.g. low and high alpha. Taking into account the attainable durations of
stationary epochs and the theoretical resolution and variance of the spectrum
estimates it is often questionable whether reliable inference for the sub-bands can
be made. Some statistical studies support the hypothesis that frequency bins are
heavily correlated and that the number of approximately independent generators
would most often be only four.

The spectrum estimation methods can be coarsely divided into 1) Fourier
methods, 2) parametric methods and 3) filter bank -type methods. The
Fourier methods include the conventional variety of non-parametric methods
such as smoothed and non-smoothed periodograms and Blackman-Tukey and
other methods in which various windows are applied either directly to data or
autocovariance estimate. We associate the Fourier transform approximations such
as the Walsh transforms also to this class. The parametric methods and their
use in spectral analysis are reviewed in Chapter 2. The filter bank -type methods
employ a bank of parallel band pass filters into which the EEG is input. The
outputs of these filters are demodulated to give the mean powers of the bands
with the energy spectrum of the filters as spectral weights.
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3.2.1 Fourier methods

The traditional method (since 1938) to estimate the spectrum of EEG is to use
Fourier analysis [89]. See [52] for a review on Fourier transform based spectral
analysis methods with special reference to EEG. Also most textbooks on time
series analysis consider the basic Fourier transform based spectral estimation
methods. It is a common misunderstanding that periodogram is the definition
of power spectrum for the observed data. This is probably partly due to entry
level textbooks such as [185] that call sample autocovariance just (deterministic)
autocovariance or autocorrelation. See Section 2.1.2 for the correct definition of
spectrum.

There are basically the three following approaches. Here Xt denotes the
measurement vector and X−t its time inverse, ∗ denotes convolution, W is a non-
negative valued weight vector, S the power spectrum estimate and F denotes the
(finite) Fourier transform operator. Here the scalings are omitted.

1. Data windowing and subsequent use of the Wiener-Khinchine theorem. S =
|F(WX)|2. With no windowing (W ≡ 1) we obtain the most commonly
used method and S is called the periodogram. All spectrum estimates are
non-negative definite. The periodogram can be smoothed by convolving
it with a frequency domain window. The non-windowed periodogram is
asymptotically unbiased but not consistent. The consistent variants are
not even asymptotically unbiased.

2. Computation of the Fourier transform of the windowed sample autocovariance.
F(W (Xt ∗ X−t)). With a triangle window we obtain the common
periodogram. The spectrum estimates may not be non-negative definite.

3. Computation of periodograms of segmented data with or without segment
overlapping and subsequent averaging over the periodograms. These are
called Welch estimates and they are consistent, asymptotically unbiased
and non-negative definite. Averaging the corresponding amplitude spectrum
estimates over an ensemble will yield (possible severely) biased estimates.

Two more items are worth reminding. The first is that the spectrum of
a time series is a function defined on the interval [−π, π] ⊂ R, that is, on a
continuous index set. The values given by any Fourier based spectrum estimator
will not generally yield the values of the true spectrum in the uniform grid even
in the deterministic case. See [188] for an exact account on the properties of
Fourier transforms concerning time and frequency sampling. The other is that
interpolation of the estimates (usually carried out by the so-called zero-padding)
does not enhance the true resolution of the estimate although the visual appearance
would suggest that.

Fourier transform based methods are usually referred to as FFT (Fast Fourier
Transform) methods although FFT is only an algorithm that computes the finite
Fourier transform in time (computational complexity) T logT instead of T 2 for
the direct calculation.
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The selection and analysis of different window families with special reference to
EEG characteristics have been analyzed in [125]. A data-dependent window size
estimation for the post-windowing of the periodogram is proposed in [173] The
fitting of some ”hump”-type functions to raw periodograms have been proposed
in [140, 189]. These are not equivalent to any windowing.

One of the problems associated with the Fourier methods is the leakage of
power between frequency bins. The problem is most relevant when there are
spectrally relevant features in nearby bins and the difference between the powers
is large. In [16] a pre-whitening procedure is proposed. First an AR model is
estimated and the spectrum of the residual is then calculated with periodogram
instead of the usual constant spectrum assignment, see Section 2.1.2.

One major problem with Fourier methods is the sensitivity to spikes and
artefacts [53]. This follows from the fact that the spectrum of an impulse sequence
is constant and therefore affects all frequency bins in the spectrum estimate.

The estimation of the powers of bands is usually carried out by summing
over appropriate frequency bins of periodogram. See [52] for how to treat the
background. For the statistics of periodogram based band power analysis see
[213, 214].

The most appealing feature of the Fourier based methods is that the smoothed
versions are quite robust. They do not perform either very well or badly and
the interpretation of the results does not require understanding of very complex
theories. The interpretation of AR model induced spectral estimates, on the
other hand, requires understanding of rather difficult topics especially due to the
instability of the estimates when some roots of the estimated model polynomial
have near unity moduli.

Walsh transforms

The Walsh transform has been proposed to be used as an approximation to the
Fourier transform of EEG [230, 146, 115, 119, 54]. The Walsh transform is the
analogue of Fourier transform with an orthonormal kernel that attains only values
±1. The Walsh kernel functions can be described as the Fourier kernel functions
after taking the sign mapping. Thus the computation of the Walsh transform
consists only of addings and subtractions.

Estimation of the bispectrum

The (power) spectrum is a function that depends only on the second moments of
the process. For normal processes this is all that is needed since all the higher
order moments can be calculated from this. The bispectrum is a third order
method. It contains information for example about phase coherences between
different frequencies and it can be used to distinguish between different non-normal
processes that have the same power spectrum. AR models have also be used in
the estimation of EEG bispectra [180]. See [51] for the applications of bispectrum
estimation with EEG.
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3.2.2 Parametric methods

Almost all the studies in which parameric estimates for EEG have been calculated,
the corresponding spectral estimates have also been computed. Spectrum
estimation can be said to be one of the main applications of AR models to
EEG analysis. Most of the early papers on the parametric models of EEG were
directly concerned with direct estimation of the spectrum [73, 25, 193] or with the
estimation of the autocovariance [61, 236].

The main attraction in the use of parametric models in spectrum estimation
is that the degrees of freedom of the model can usually be kept relatively low. For
example, an AR(6) model may be adequate in some situations where we have, say,
one sample of T = 120 points on which the estimate can be based on. A similar
reduction in the degrees of freedom for a periodogram yields estimates with very
poor frequency resolution. See [134, 164] for general accounts on the spectral
estimation based on various approaches. As noted earlier the classical approach
to deal with the nonstationarities of EEG is to divide the observation into small
segments and assume the segments represent samples from essentially stationary
processes. It is possible that the duration of these segments are very short. The
ability of the estimation scheme to model short segments is then a central problem.
In [118] a comparison between spectral estimation with short length AR models
and periodograms was given.

Another feature of AR models is that they are relatively efficient in the
estimation of center frequencies of bands. There are some studies in which the
center frequency estimates from periodograms and AR models are compared, see
for example [104]. The results are clearly in favor of AR models over periodograms.

Parametric spectrum estimates are relatively insensitive to spikes and
artefacts. A robust procedure (tolerant to the mis-specifications in the
distribution) for spectral estimation is proposed in [171]. The method is based
on an iteration consisting of the following steps: AR model estimation, a “soft
limiting” of the residuals and the recomputation of the sample.

The statistics of SPA parameters computed from different estimators for AR
and ARMA parameters were discussed in [220]. They proposed that in spite of
theoretical supremacy of ARMA models, the AR models are more feasible for the
estimation of the band parameters of EEG.

We refer sometimes to the AR parameters and sometimes to the prediction
coefficients. Although these coincide for normal AR processes and mean square
estimates for predictors, the following must be taken into account. When we refer
to AR models we assume that the model is a good approximation for the process,
in other words, the prediction error process can be assumed to be orthogonal.
However, we may still use a “predictor model” for the process when we do not
necessarily try to acquire the orthogonality of the prediction error process. The
predictor coefficients can then be used e.g. as features but we should not form the
corresponding spectrum estimate without estimating the spectrum f̂e(ω) of the
prediction error process et.
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Estimates for the model order

As there is no general EEG there is not a general model order that would be
universally appropriate. In principle it would be possible to select the smallest
order that is adequate for all expectable cases. Ideally the excessive prediction
coefficients would then tend to be very small and perhaps effectively zero. This
will, however, lead to excessive computations and the stability of the predictor
parameter estimates decreases. The worst point is, however, that the instability
of the spectrum estimates may increase dramatically. For this reason it is not
advisable to select a “maximum expectable order”.

Depending on the situation the estimated (used) orders range from p = 2 [180]
up to p = 48 [221] where the latter figure was obtained with the AIC criterion for
a frequency band 0 – 51 Hz. Most of the studies on specific applications of AR
models to EEG include at least a preliminary estimation for the model order in
that situation. The most often proposed model order is perhaps p = 5 [229]. See
[221] for empirical evaluation of different model order selection criteria in EEG
modelling. It must be noted that preprocessing of the data before modelling, such
as filtering (typically band pass filtering with 1 – 20 Hz), effects the estimation of
AR models severely. Very narrow band pass filtering means that the AR model
describes the preprocessing filter more than the actual EEG itself.

3.2.3 Filter bank -type methods

The use of filter banks in EEG analysis dates back at least to 1966 [49]. In that
study the problems involved in the selection of time windows, filter bandwidth
and variance of the band estimates at the output of the detector are already
discussed although in most subsequent applications these problems seem to have
been ignored.

Several bandpass filter structures have been employed, for example Butterworth
[101] and Chebychev [6] filters. We have no knowledge whether bandpass filters
with any optimality structure have been used in EEG analysis.

3.3 Specific applications of autoregressive models to EEG

In this section we give a brief review of the use of parametric models with EEG.
The review concentrates on such applications that might be approached with the
methods proposed in this thesis. Since this thesis concentrates on the models
of EEG we do not review clinical applications except occasionally. It must be
noted that the modelling stage of EEG is hardly ever the end to any analysis but
rather a building block of a larger system. The parametric models have in some
applications acquired the status of discrete Fourier transforms in the sense that
these methods are sometimes hardly mentioned even when they are used, see [114]
for an example.

The AR and ARMA process models were first applied to the EEG in [236, 61,
73, 232]. In spite of the theoretical advantages of ARMA structure over AR and
MA cases, ARMA estimates have not been widely applied to EEG analysis. This
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is mostly due to the problems that are inherent in the estimation of the the ARMA
parameters. In [175] it was suggested that EEG is not always a minimum phase
process which means that the models are not causally invertible. The argument
was based on estimated ARMA models.

The applicability of AR models to the EEG has usually been verified only
experimentally but there has been some limited interest towards the theoretical
justification of this [221, 235, 19]. AR models have been used in a wide collection
of tasks concerning EEG, including spectral analysis, classification of brain states,
detection of transients, prediction of epileptic seizures and the simulation of EEG.
See [110, 155, 116, 41, 113] for general reviews on the use of parametric models
with EEG.

3.3.1 Detection of transients

In this setting a transient refers to a short disturbance in the process that can
otherwise be described as stationary. Detection of other kinds of short-time
waveforms is usually not best done using the method described below. Some
waveforms such as spike-and-wave and K-complexes are usually detected e.g.
with template matching procedures [211, 50] or complex sequential nonlinear
procedures [32]. Other methods that are proposed to be used as transient detectors
include time domain peak-trough analysis [8], syntactic methods [58], time domain
descriptors [218, 85], nonlinear filters [204] and fractal dimension calculation [5].
Of greater interest is a method for the detection of vertex waves and K-complexes
that is based on a generator model and the corresponding detector [47]. See [88]
for a review of spike detection algorithms in connection with epilepsy.

The detection of transients (disturbances, nonstationarities) with the aid of
parametric models is usually called inverse filtering. We write the process in the
form xt = yt+νt where yt is the EEG and νt is the transient. Let Φ(z) be at least an
approximation to the optimal predictor of yt. Then (1−Φ(z))yt is approximately
equivalent to the innovations of yt with variance σ2

e . Now assume that νt = δt−t0 .
Then (1−Φ(z))xt = et+Φ̃t−t0 where Φ̃t = Φt when 0 ≤ t ≤ p and zero otherwise.
This means that the inverse filtering reduces yt to its innovations and that the
impulse disturbation triggers a signal equivalent to the impulse response of the
inverse filter. This is basically the idea presented e.g. in [157].

A modification of this was studied in [4] where the parameters were tracked
with the LMS algorithm and the simple treshold detector was substituted with
more general nonlinear functions. In [17] a modification was presented in which
effectively the prediction error of the second difference of EEG was tracked.

In many cases the bandwidth of the EEG is such that the variance ratio σ2
y/σ

2
e

is of the order 10 to 100 and the maximum of the impulse response is typically of
the order 1. For the calculation of sensitivities and specifities and detection theory
in general, see for example [169].

This method can also easily be used to suppress the transients by e.g. hard
limiting the prediction error process to yield êt and calculating x̂t = (1−Φ̂(z))−1êt.
This can be done in the cases when νt is not considered as part of the EEG such



40 3. Autoregressive models of EEG

as an epileptiform spike or a spike-and-wave pattern but rather a (measurement)
disturbance. This approach to parametric modelling is sometimes called robust
estimation, see [102] for a general review on robust methods and [171] for an
application to AR modelling of EEG.

3.3.2 Adaptive segmentation

Segmentation of nonstationary processes is another example of the use of inverse
filtering. Consider a nonstationary process whose statistical description may
change slowly in time so that the prediction error variance is time invariant. Let
the optimal predictor of the process at time t0 be Φ0(z). Let the prediction error
variance of this time-frozen predictor be σ2

e(t). It is then clear that σ2
e(t0) is the

minimum attainable prediction error variance and that σ2
e(t) > σ2

e(t0) always when
the optimal predictor at time t differs from Φ0(z). It is then possible to construct
a statistics for the detection of a change point in the process based on the statistics
of a (weighted) sample of the prediction errors from Φ0(z).

In practice it is necessary to estimate the process variance and/or the deviation
of the spectrum of the prediction errors from white noise to be able to construct
a detector of a change point or a segmenter.

The approach taken in the classical papers [22, 21] is to estimate an AR model
at the begin of each segment using a fixed window of about 200 points. Then a
moving window AR model is estimated and the segment boundary is assigned to
a time where the two models differ considerably from each other. The distance
measure that was used was the mean quadratic difference between the spectra
corresponding to the two models. It has been shown that the estimated transition
time has high variance and that it is asymmetrical with respect to the direction
of the transition, see [11].

In [111, 112] the Kalman filter was used to track the AR parameters of a
time-varying ARMA process, where the aggregate model was an ARMA process
in additive independent noise. The change-point detection was based on a short-
time (sliding window) estimate of the approximate likelihood function and an
estimate on the variance of the additive noise. They also discuss the tracking of
the statistics of [22, 21] with Kalman filter.

In [72] the changes in the estimated cross spectra between two different
channels were tracked. The criterion was selected to enable the use of a vector
valued AR model. Also other features than prediction error variances and spectral
parameters can be used as the tracking variables. In [132, 190] the problem
of spindle detection was approached by tracking the EEG with a time-varying
predictor of structure ARMA(6,2). The roots of the corresponding denominator
polynomial were tracked and the EEG was segmented based on the movement of
the roots in the complex plane.

There are many problems with the segmentation of EEG. The types of change
are very diverse including almost stepwise changes such as sleep EEG changes
sometimes are, slow drift-type changes or trends such as the changes in EEG
when the effect of anaesthetics diminishes. The segmenters then often yield a
larger number of segments that visual inspection would suggest [154]. The changes
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may also be in the spectral characteristics or just in the variance; there might be
a change between two different lengthy pseudostationary segments or a very short
”excursion” from a single pseudostationary state.

Perhaps the most difficult task for a segmenter (segmentation algorithm) is to
handle such cases where the changes can not be modeled as stepwise changes
but the rate of change is so great that there cannot be assumed to be any
pseudostationary segments long enough to allow for the initialisation, that is, the
estimation of the reference predictor. In these cases the initial estimates could
be based on a severely nonstationary segments. Such a case is the event related
synchronization of occipital EEG that is studied in Section 5.2.2.

Other approches to the segmentation of EEG include information theoretic
measures [207] and finite state automata [91]. See [94] and the references therein
for a review on the current state of the art of segmentation with model based
methods.

3.3.3 Classification and clustering

The task of the classification of EEG can be divided into two stages. First some
features are extracted from the data for each segment and then the features are
compared to representations of the classes to decide to which class the segment
belongs. There are several principles (classifiers) on which the classification can be
based on, see for example [65, 169]. In unsupervised clustering procedure the class
representers are not initially given but the algorithm will itself generate classes
based on some fixed measures of how much the features are allowed to differ from
each other within a class. Reviews of classification and clustering methods with
special reference to the applications in EEG are [82, 152].

Often we have to know the density functions for the features for each class
to be able to compute e.g. the likelihoods for each class given the features of a
segment. In practice this involves also the selection of the number of the classes and
preselection of the segments belonging to each class to enable the determination
of the class statistics. Since assumptions on the class statistics such as normality
can often not be done, the size of the training set can turn out to be very large
and impractical.

A central problem in classification is the selection of features. It is common
jargon in EEG classification literature to say that different features yield different
”discrimination powers”, that is, different percentages of agreement between
the classifier and the known classes. When the implementation of classifiers is
considered it is clear that a set of features and the same features under a nonlinear
bijection may perform very differently although in principle the situation does not
change. This is due to that the discriminant functions may have radically different
topologies. An example of a mapping inducing nontrivial changes to topologies
is the mapping from polynomial coefficients to the roots. A common approach in
the selection of features is to start with a large set and to discard some of these
e.g. with the aid of stepwise discriminant analysis [196].

The traditional features used with the classification of EEG include mean
power or amplitude and powers of some frequency bands. These are usually
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calculated from FFT’s of the segments [216]. Since the early 1980’s it has also
been popular to calculate these and other so-called spectral parameters from the
respective AR models. This is due to studies that were somewhat in favor of AR
parameters or some other spectral parameters obtained from the respective AR
models [98, 123, 121, 20, 124, 45].

Other features include cepstral coefficients and center frequency [23, 44] roots
of the AR model polynomials [79, 132, 190] reflection coefficients corresponding to
the lattice representation of the AR model [126, 127] and correlation coefficients
[35].

Some studies have been done in which it has been assessed that the parameters
of the approximate spectral decomposition correlate strongly with the visual
appearance of the EEG [106]. As noted previously, this is still considered important
in EEG analysis.

Sleep scoring

An important subfield of the EEG classification is sleep scoring, or sleep stage
classification. Sleep is usually classified into five sleep stages and the awake
stage. These classes are called the Reschenhofer-Kales classes. The predictor
coefficients were first suggested to be used to classify sleep stages in [79]. Since
then sleep scoring has been a popular application of AR modelling of EEG
[123, 122, 120, 121]. In [69, 70] Bodenstein-Praetorius algorithm was used to divide
the EEG into variable duration segments and the prediction coefficients among
some other features were used to cluster and classify the epochs. In [208] predictor
coefficients for fixed length segments were calculated by averaging estimates from
Kalman filter. The features were subsequently fed into the self-organizing map for
clustering and classification. For a review of methods for the classification of sleep
EEG see [219].

Also in sleep scoring the utilization of periodograms is the standard choice. In
[67, 86, 128] periodogram was used to extract band powers that are used as features
in sleep stage classification. This was done also in [83, 215, 183] where neural
networks were used as classifiers. In [228] it was maintained that periodogram
estimates were more suitable in the estimation of low amplitude mixed frequency
EEG that is typical during wakefulness. There are also some other classification
schemes where sleep/vigilance is divided into a greater number of states [158, 228].

3.3.4 Tracking of anaesthesia

Parametric modeling has also been applied to the tracking of the effect of drugs,
especially the depth of anaesthesia. It must be noted that somewhat unlike sleep
EEG, the EEG under anaesthesia is more like a continuous transition phenomenon.
For practical reasons, however, the depth of anaesthesia is usually divided into
classes [203].

Also in this application the first time series method that was used was
periodogram [168, 166]. Autoregressive models were first suggested to be used in
the estimation of the depth of anaesthesia in [78] where Kullback-Leibler nearest
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neighbor classifier was used. Here distances of samples from the classes were
calculated as the prediction error variances of EEG for the predictors representing
the classes. In [37] fixed duration segments were modelled with ARMA(p, q) and
AR(p) models of different orders. Rather than model parameters they examined
the roots of the model polynomials which was done earlier also in [79]. Clustering
with AR parameters as features has been done also in [226]. Also in [48, 12] ARMA
models were estimated from fixed duration segments. Subsequently, in [48] the
change points were estimated with the aid of several linear regression estimates
for the time variation of the alpha band power. In [36] the patient’s EEG was
tracked with Kalman filter (predictor) and the state (prediction coefficients) was
used to assess the effect of anaesthetic drugs and so aided in the respective control.
The state was, however, not used as a direct control variable.

In [202] four different sets of features were used for the classification: band
powers from FFT, AR parameters from Kalman filter, Hjorth descriptors and zero
crossing statistics. In this study the discriminatory power of the different sets of
features were almost equal.

3.3.5 Other applications

In [227] a method for eye movement artifact suppression was proposed. The
method is based on parametric modeling of observed EEG as a sum of true EEG
(AR process) and electro-oculogram that was handled as an exogenous input, see
[148] for a unified treatment on methods for the estimation of parametric models
with exogenous inputs. In [103] this was done with the aid of RLS algorithm
connected to estimate the EEG with electro-oculograms (EOG) as regressors. The
use of Kalman filter in the reductions of additive noise and EMG is described in
[130, 9, 212].

AR models have also been used in the estimation of information flow
between different parts of the brain. All these applications use thus methods
for multivariate models. The most important application of this has been the
localization of epileptic foci with stationary AR models [74, 225] and nonstationary
AR models [192]. AR models were used in other information related studies also
in [210, 105, 159]. For a short review on the applications, see [165]

In [137, 136] a preliminary attempt to realize man–machine communication
with EEG was made. A severely paralyzed patient was asked to think of
performing some tasks such as opening the door and rotating a wheel to turn
left. The EEG during the times of concentration was recorded, modeled as an AR
model and classified according to the task. After this the patient was equipped
with EEG apparatus and was able to control a wheelchair with some degree of
success. The wheelchair was equipped with a computer and on-line analysis and
classification software and appropriate control actuators and telemetry devices.

3.4 Nonstationary analysis of EEG

It is impossible to define exactly what nonstationary analysis refers to. In this
thesis we, loosely speaking, take nonstationary analysis to mean “continuously”
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time-to-time changing estimates. In this setting, such estimates that are inherently
time-varying but that are subsequently converted to segment estimates by
averaging are not considered nonstationary analyses. Such an approach has been
adopted e.g. in [36] in which the predictor estimates from Kalman filter were
averaged over either a fixed or variable duration segments.

Even in cases of relatively rapidly varying situations it is still a common
approach to divide the EEG into short segments and to model these as samples
from stationary processes, for examples see [104, 71, 209]. In these cases the
segments are usually modelled with AR models, see [118] for analysis of the
estimation of EEG spectra from very short segments.

The main problem in nonstationary analyses is that the amount of ”information”
can become larger than that of the original data. For example, if we use the
Kalman filter to estimate six time-varying prediction coefficients, we end up
with six parameter evolution processes whose traces are practically impossible to
interpret as such. On the other hand, we might look for an estimate for the time-
varying power of the alpha waves. This is a variable whose time trace is clearly
easily interpretable. This can in principle be estimated from a nonstationary
parametric model [236] and is also done in Chapter 6.

The earliest nonstationary analysis of EEG is probably [25], where Kalman
filter was used to track the prediction coefficients. This is an example of a
stochastic regression method. The analysis was pursued further in [26]. Here the
assumed hypermodel was the first order homogenous Markov model, or random
walk, and was assigned only to the AR parameters. Thus the parameter (state)
evolutions were assumed to be independent. In this and most later studies the
ARMA extension was also studied, but the MA part was frozen to some prescribed
state. Most notably, the estimation of state and observation noise (co)variances,
Γv = µ2I and σ2

e , respectively, by seeking the maximum likelihood of these
parameters iteratively, is also discussed. An index of nonstationarity d is then
proposed

d =
√
var(xt)µ/σe .

Here d is considered as a constant and thus var(xt) is actually also a constant. This
is an implicit constraint to the parameter evolution processes. In [26] numerical
and implementational considerations were also given. This was also the approach
taken in [106, 109] where a larger class of EEG data was examined.

In [112] Kalman filter was used to track very slowly varying background
and was then used to aid in the use of Bodenstein-Praetorius type change point
detector. Slow potential shifts and the corresponding residuals were estimated
with AR and ARMA models in [198].

The deterministic regression approach (TVARLS scheme) was proposed in
[2] to be used as an aid in the segmentation of sleep EEG. This is probably the
situation where the TVARLS scheme is least appropriate since the concatenation of
the parameter evolutions is not ”continuous” and constraint extensions that would
yield meaningful estimates at the presegment boundaries have not been proposed.
See [75] for the multivariate extension of the TVARLS scheme and applications to
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EEG. A modified TVARLS scheme is discussed in Section 5.1 where the modelling
of event-related syncronization changes is discussed.

In [133] a short-time Fourier transform scheme (a modified sliding window
periodogram) was proposed and the method was then applied to visual event
related desynchronization and synchronization (ERD/ERS) estimation. This is a
non-parametric scheme where the stability of the algorithm is controlled by the
duration of the sliding window. This kind of an approach stands no chance to
estimate the dynamics of the transition phases as it was deduced. The spectrum
estimates are often arranged into a matrix structure whose display is called the
compressed spectral array (CSA) and is often interpreted as a data reduction
method although the amount of data in the CSA is often greater than in the
original data [205].

The use of cascades consisting of a band-pass filter and a demodulator (a
rectifier and a low-pass filter) has been popular in the extraction of the (time-
varying) powers of bands [194]. A short description of the problems related to this
kind of approaches is given in Section 5.3.

One of the difficult topics in nonstationary EEG analysis is the performance
evaluation of the tracking and other estimation algorithms. Since EEG itself
does not provide any reference one usually has to resort to simulations. In many
studies the tracking algorithms have been tested with time-varying sinusoids, for
example, see [112]. This is not very appropriate since sinusoids form a very special
class of processes, that is, the class of predictable processes. The performance of
algorithms with such processes is usually much too good to enable any inference
to be made with respect to non-predictable (regular) processes. A better approach
to evaluate the performance of tracking algorithms is taken in [108, 231] where a
time-varying AR process was generated. Here the parameters of the approximate
spectral factorization were made time-varying and the description of the process
was realistic. In Chapter 4 we discuss a systematic method for generation of
simulations (realizations) of nonstationary EEG.



CHAPTER IV

Simulation of nonstationary EEG

In the estimation of the properties of stationary processes we have several methods
with which we can obtain consistent estimates if the process is ergodic, which
means that the time averages can be used to estimate the ensemble averages. We
can then make our estimates more accurate by using more data to calculate them.

In the case of nonstationary processes we often cannot use time averages.
To estimate a property of the process at a time instant we have, in the strict
sense, just one point of the sample to build our estimate on. To get over this
problem the assumption of slow time variation is often adopted. This gives us a
possibility to use e.g. adaptive segmentation which will chop the sample to quasi-
stationary (almost stationary) epochs to which we would then apply methods
that are intended to be used with samples from ergodic processes [22, 111]. The
applicability of this approach depends heavily on the rate of time variation, the
criteria on which the segmentation is based and the correctness, or rather, the
adequacy of the time series model.

There are cases in which the time variation is so rapid that the process cannot
be approximated with a concatenation of stationary epochs but can not be decribed
as an abrupt change from one stationary state to another either. The lengths of the
quasi-stationary segments would then be too short to enable adequate estimates.
This applies to both estimation and simulation of such processes. On the other
hand, we cannot allow for a time variation that is totally ”unpredictable”. This
would mean that if we have obtained a sample of the process and aim to estimate its
time-varying characteristics, the model may have, loosely speaking, more degrees
of freedom than the sample the estimates are based on [76].

If we can make an assumption of smoothness of the time variation we can
still obtain meaningful estimates and at the same time allow reasonably rapid
changes of process characteristics. This follows from the fact that one can have a
smooth sequence of parameters describing the process, i.e. a sequence with small
second and/or third differences, that has large first differences. This means that
the parameter rate of change does not have to be small as such. This applies also
to the building of models for time-varying processes and the use of these models
to the generation of realizations of these processes.

46



4.1. Earlier approaches 47

4.1 Earlier approaches

The simulation of EEG using an AR model was suggested early in the seventies
by [60, 232, 237], see also Chapter 3. Simulations of time-varying AR processes
were used by [231] to test the modeling and tracking capabilities of the Kalman
filter. The aim in this paper was to assess the applicability of the Kalman filter
to the estimation of the time-varying EEG and the simulations were made to
approximate the classical band structure of EEG. They used an approximate
factorization of AR model to first and second order spectral factors that have
been shown to correspond to the classical bands of EEG, see Section 2.1.3. To
produce time-varying realizations they let the parameters of these factors, i.e. the
power, bandwidth and the center frequency, to be time-varying. They did not,
however, discuss how the time variability should be systematically implemented
to produce realizations that would exhibit the time-varying characteristics of the
EEG. In addition, the classical band structure of EEG does not always apply,
especially when the EEG exhibits at least partly chaotic characteristics. They
also discussed the use of simulations to aid in the recognition of certain spectral
parameters of the model using visual inspection [106].

4.2 Simulation with TVAR representation

In this section we present a systematic method which can be used to generate
realizations for the simulation of time-varying EEG. The method is purely
phenomenological and does not rely on models for the neuronal generation of
EEG as in [145].

The method is based on dividing the EEG to classes that are described by
estimated distributions of their predictor (AR model) coefficients and prediction
error variances. If the class evolution is not predetermined, this evolution is then
simulated using e.g. estimated state transition probabilities and Markov models or
state lengths (durations). The parameter representers of the classes are then drawn
from the respective distributions according to the state evolution and concatenated
in time. This piecewise stationary parameter evolution is projected onto a set of
smoothly time-varying functions, which projection is finally used to generate the
realizations by time-varying filtering.

4.2.1 Estimation and simulation of the state evolution and class
representers

We assume that the time-varying EEG can be approximated with a progression
of states sj , j = 1, . . . each of which is a member of a class Ck, k = 1, . . . ,K, and
that within these states the process can be approximated with an AR(p) process.
For the selection of an appropriate order p in different situations, see [229]. The
final selection of p should be the maximum of the adequate orders of all classes.
We also assume that within each state the coefficients φji , i = 1, . . . , p of the
predictor and the prediction error variance σ2

j corresponding to the AR(p) model
are drawn from the density that can be approximated with a p + 1 –dimensional



48 4. Simulation of nonstationary EEG

normal distribution. Each class has its own distribution. We call the vector
θj = (φj1, . . . , φ

j
p, σ

2
j )

T a representer of the state sj . We will further assume that
the representer of the state sj is independent of the representers of the states s�
for all j �= ( if the class to which sj belongs is known.

There are several methods with which to estimate such a class evolution if
the (probabilistic) description is not known a priori . One such a method is to
model the class evolution as a Markov model and estimate the parameters of the
model. This model can then be used to simulate the class evolution. The states are
then drawn from the respective distributions in the order that the class evolution
dictates. The estimation of a continuous-time Markov model and the simulation
of sleep EEG class evolution (hypnogram) has been discussed in [139, 138]. In
addition to the class evolution, the model should produce the durations Tj of the
states.

The assumption of approximate normality of representers implies that we only
need to estimate the means and covariances of θk for each class Ck to be able to
generate representers.

If the means and covariances of θk are not known, they can be estimated
from existing segmented and classified real EEG data e.g. by using any preferred
method to calculate the parameters of the AR(p) model and the associated residual
error variance for each segment. These can be used in lieu of the predictor
coefficients and the prediction error variances.

Let there be nk > p estimates θ̂k for θk. Estimates for the mean µ̂k and
covariance Γ̂k of θ̂k can then be obtained as

µ̂k = n−1
k

nk∑
i=1

θ̂ki (4.1)

Γ̂k = (nk − 1)−1
nk∑
i=1

(θ̂ki − µ̂k)(θ̂ki − µ̂k)T . (4.2)

We can now generate representers from the thus estimated p + 1-variate normal
distributions

Nk(θ) = (2π)−p/2|Γ̂k|−p/2 exp
(
−(θ − µ̂k)TΓ̂−1

k (θ − µ̂k)
)

,

where |Γ̂k| denotes the determinant of the Γ̂k, as follows: Generate a p+ 1-vector
g of independent normal variables with zero mean and unit variance. Then the
variables θ = Lkg + µ̂k are distributed with density Nk(θ), where Γ̂k = LT

kLk is
the Cholesky decomposition of the Γ̂k [187].

Note that if the representers have been estimated from relatively short
segments, the covariances Γ̂k may include a non-negligible contribution that is
due to the small sample estimate properties. In such a case we can reduce the
variances of the classes simply by dividing the covariance matrices by a number
that is greater than unity. While this method is not the correct way to diminish
the small sample contribution, it maintains the eigenvector structure of Γ̂k and
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only diminishes the eigenvalues. This means that the only result of this operation
is that the deviances of the simulated θks from the means µ̂k will be smaller. This
will also decrease the possibility of obtaining a temporarily unstable model.

An AR(p) model is stable if and only if the roots ζi, i = 1, . . . , p of the
polynomial 1−Φ(t; z) fulfil |ζi| < 1 for all t. For some classes the roots of 1−Φ(t; z)
with φi = µi, i = 1, . . . , p may have almost unit modulus or the covariance may
be large, which means that the probability of obtaining an unstable representer is
non-negligible. This is why the stability of each representer should be verified by
calculating the roots of the polynomial. All roots with modulus greater than or
equal to unity should be transferred to lie inside the unit circle and the predictor
reassembled. This can be done by factoring the polynomial to (complex) roots
and multiplying each unstable root ζi by |ζi|−2. This operation will approximately
restore the shape of the spectrum in most practical cases [149, subroutine fstab].

4.2.2 Generation of the time-varying AR model

We will discuss first two types of direct concatenation that are not feasible to
generate time-varying realizations and how this unfeasibility can be overcome.
Then we discuss the details of the method that was shortly described in the
beginning of this chapter.

Direct concatenation

The majority of time series methods that are designed to track the characteristics
of time-varying processes are based on either direct or indirect minimization of
the prediction (residual) error [148]. It is thus desirable that the optimal predictor
of the realization behaves in a way that it makes sense to compare the estimated
model with it. For example, if the coefficients of the optimal predictor will decay
relatively fast, we would use as the definition of time-varying spectral density
(2.2.5).

There are at least two trivial ways to use concatenation to generate realizations
of nonstationary processes which ways are not directly usable. The first is
to generate separately stationary segments and then concatenate them directly.
There are two major problems with this kind of realizations. In this case we
have actually a non-overlapping sum of independent processes. Let xt be the
realization with zero mean for all t and t∗ be the first instant of a new segment.
Then, irrespective of the values at time t∗ − 1, the correlation of xt∗ with the
entire history of xt is zero, the predictor for xt∗ is zero and the spectrum estimate
f(t∗;ω) = σ2

e(t∗). This is clearly not desirable. In [143] a direct concatenation
of AR(2) realizations were used to simulate EEG and test the performance of a
segmenting algorithm. The accuracy of the segmenting was therefore excellent, in
all cases less than the inverse of the maximum frequency of the spectrum, that is,
the approximate ”wavelength”.

On the neuronal level this kind of a sudden change in process characteristics
would correspond to a situation in which one activity inducing neuron cluster
would shut down abruptly and at the same time another cluster would gain its
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full effect. This is a totally unrealistic situation.
The second type of concatenation involves the concatenation of the parametric

representations of the segments. This concatenation could then be used as a time-
varying filter with abrupt filter coefficient changes at the segment borders. As
above, this kind of change would correspond to an unrealistic abrupt change in
the physical and chemical state of the neuron cluster. In addition, it turns out
that the calculation of the optimal predictor is far from straightforward.

For this reason we have chosen to build a smoothly changing parametric
representation for the process. We use a time-varying AR(p) model as the
representation and generate the realizations by feeding white noise to the
corresponding filter. If the coefficients of the model do not change very much
during the correlation time of the process, the optimal predictor is approximately
equal to the coefficients of the AR(p) at each time. Thus the reference against
which the estimates are compared is directly accessible.

The generation of smooth parameter evolution

We start from a sequence of representers (predictor coefficients and prediction
error variances φik, k = 1, . . . , p and σ2

i , respectively) which are the result of the
simulated state evolution as described above. Let the corresponding sequence of
the lengths (durations) of the segments be Ti, i = 1, . . .. We call the concatenate
of the segments a block which is of length T =

∑
Ti. First we build the coefficient

matrix Φc of piecewise constant parameter evolution

Φc =



φ1
1 φ1

2 · · · φ1
p

...
...

φ1
1 φ1

2 · · · φ1
p

T1

φ2
1 φ2

2 · · · φ2
p

...
...

φ2
1 φ2

2 · · · φ2
p

T2

φ3
1 φ3

2 · · · φ3
p

...
...

...


= [Φc

1 Φc
2 . . .] .

Next we smooth each individual parameter process Φc
j j = 1, . . . , p by projecting

them separately onto a smooth subspace S of RT , where T =
∑

Ti. Let us
for the moment suppose, that the smooth subspace S is such that there are
projections onto it which restore the approximate ”shapes” of Φc

j . Let now
S = [ψ1, ψ2, . . . , ψM ] be a T ×M matrix containing a basis of S in its columns.

The orthogonal projections Φj of Φc
j onto S are

Φj = Φc
j

∣∣
S = S(STS)−1STΦc

j = PSΦc
j ,

where PS is the orthogonal projector onto S. The invertibility of STS is trivial
since S is assumed to contain a basis for S. The projection can be performed
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simultaneously for all j giving
Φ = PSΦc .

The predictor coefficients φk(t) are now of the form

φk(t) =
M∑
l=1

qklψl(t) ,

where {qkl} = Q = PSΦc. To complete the specification we need the
correspondingly smoothed evolution of the prediction error variance. As above,
concatenate σ2

i to give

Υc = (

T1︷ ︸︸ ︷
σ2
1 , . . . , σ

2
1,

T2︷ ︸︸ ︷
σ2
2 , . . . , σ

2
2 , σ

2
3, . . .)

T .

Then using the same basis we obtain

Υ = PSΥc .

Next we generate a white noise sequence of zero mean and unit variance et, t =
1, . . . , T . The realization is then obtained as

(1− Φ(t; z))xt =
√
Υ(t)et .

Due to the highly nonlinear mapping of polynomial coefficients to the roots,
it would be very burdensome to add the stability condition |ζk(t)| < 1 to the
projection as a constraint in the least squares problem corresponding to the
projection. This constrained least squares problem can be expressed as

min
Φ
{‖Φ− Φc‖, Φj ∈ S ∀j, |ζk(t)| < 1 ∀k, t} .

Since Φ tends to overshoot the stationary representers in parameter space, it is
probable that in some cases the roots ζk(t) will be temporarily unstable. This is,
however, not a problem if the overshoot and its extent in time are not large since
in this case xt does not diverge much.

The choice of basis for S

It is always necessary to include the constant basis as one of the functions so that
the stationary case falls into this setting as a special case whatever the basis. For
convenience we will thus assume that ψ1 ≡ 1.

The basis function selection has been discussed in the literature concerning
time-varying AR modeling, for a review see [75] and Section 2.2.2. The problem
of estimating optimal time-varying AR (TVAR) model can be viewed to be the
inverse to the one at hand. In TVAR modeling the parameter evolution is
constrained so that each parameter process is in S.

The basis functions suggested to be used in conjunction with TVAR models
include general polynomial, Fourier, Haar, Walsh, Legendre, spline and prolate
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spheroidal wave bases. With the exceptions of the Haar and Walsh basis, which
are block pulse bases, the suggested bases are able to model smooth changes in
the parameter evolution. This ability is dependent on the choice of basis and the
parameters concerning it, the dimension of S in particular.

The problem with most bases is that they are global within the block so that a
small change anywhere in the block induces changes that extend overall within the
block. This is obviously not desirable. What we wish to have is to maintain the
local nature of the basis and simultaneously obtain a smooth parameter evolution.

We have chosen to use a basis consisting of shifted and scaled (sampled)
Gaussian functions ψi(t):

ψi(t) = exp
(
−(t− ti)2/d2

i

)
, i = 2, . . . ,M .

Obviously there can be no fixed general choice for M , ti or di that would be
optimal in some sense. The choice of these parameters depends heavily on the
underlying situation and the demands. In the case of simulation the feasible
parameters depend on the number and lengths (durations) of the stationary
segments, or more generally, the distribution of these two.

According to our experience the Gaussian basis fulfils the requirements of
locality and smoothness of evolution with relatively simple selection rules of M ,
ti or di for a wide class of evolutions. The trivial choice for ti and di is such
that the half-widths of ψi will exactly cover the length of the block. This leads to
ti = (i−1)T/(M−1), 2Mdi = T , where T is the length of the block. The selection
of M is yet left open. If the block consists of D segments of length L each, then
T = DL and we could choose M = D + 1. This selection leads to projections
that are smooth but tend to overshoot the design classes heavily in the parameter
space.

We have found that the selection

M ≈ 6D
di ≈ 3T/M
ti = (i− 1)T (M − 1)

will produce reasonable projections if the segment length distribution is not very
wide.

Other methods to obtain a smooth parameter evolution

Naturally it is possible to tailor the bases individually to follow the state evolution
and just to smooth the transients of the parameter evolution. One way to
implement this indirectly is to use the sigmoidal basis. An example of a sigmoidal
type basis function is

ψi(t) = (1 + exp(−c(t− ti)))−1 ,

where ti are selected to coincide with the segment borders and c is adjusted to
give desired rise times.
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It is also easy to build Φc and then filter the columns with a (noncausal)
zero-phase low-pass filter. Just like with the sigmoidal basis this will, however,
lead to a situation where the realization would be a concatenate of stationary and
transition regions which is not very realistic.

In addition, it has been shown that the tracking capability of adaptive
estimators depends on the type of evolution of the parameters [14]. If the
parameters would be time-invariant for a long period of time, the estimators could
perform markedly better with the realization than with the real EEG data.

In principle it is possible to realize the parameter evolution as a multivariable
AR process. For many situtions this could be assumed to be a feasible model
for parameter evolution. The probability density function of the parameters is,
however, very difficult to control so that the model remains stable at all times.
If the parameter processes are forced to the stability region after generation, the
smoothness exhibited e.g. by a second order low pass type AR process is difficult
to maintain. The testing for stability must be carried out for each t which will be
very burdensome with long realizations.

4.3 Simulation of a two state EEG

As an example of the use of the proposed method we simulate the EEG
(electrocorticogram) of a drowsy rat. This is a simple example since this EEG
can be approximated as a process that toggles between two states. The amount
of data on which the statistics we give here is far too small to enable any true
inference. The main point of this example is to illustrate the steps of the proposed
method in detail.

The state evolution

The data was visually classified to two states. As an aid in the classification we used
the spectrum estimates and root locations of the modified covariance estimates of
AR(6) model, see Section 2.1.1. The spectrum of rat EEG is often estimated with
periodograms [46] and AR models have also been used in this case [162].

The exponential distribution induced by the Markov model did not fit the
experimental segment length distribution of either class. We adopted another
model for the state evolution. Since there are only two states, state 1 always
changes to state 2 and vice versa . Thus we can model the state evolution simply
by the estimated distributions of the segment lengths. The gamma distribution

g(T ;λ1, λ2) =
λλ1+1
2

G(λ1 + 1)
T λ1 exp(−λ2T )

seemed to fit the observed histograms of both states reasonably well, where G is
the gamma function. The estimated probability densities g1(T ) = g(T ;λ1

1, λ
1
2) and

g2(T ) = g(T ;λ2
1, λ

2
2) are shown in Fig 4.1.
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Figure 4.1: The density estimates g1(T ) = g(T ; 4, 0.006) and g2(T ) =

g(T ; 7, 0.013) of the segment length densities for classes 1 (solid) and 2

(dashed).

The representer estimates

We used the forward-backward least squares method to estimate the coefficients of
AR(6) models for both states. These coefficients and the corresponding residual
variances were used as estimates of the predictor coefficients and prediction error
variances. Forty estimates of the representers θ1 and θ2 were obtained. The
marginal densities of each φi, i = 1, . . . , 6 were visually examined to support the
normal approximation of the predictor coefficients. The marginal density of the
prediction error variances σ2, however, could not be approximated with the normal
distribution, which was to be expected. To use another distribution would be very
cumbersome, so we let the joint density be normal but applied hard limits to σ2

when representers were drawn from the distribution. As hard limits we used the
minimum and maximum of the observed residual variances of both classes.

The means µ̂1, µ̂2 and the covariances Γ̂1 and Γ̂2 are given in Table 4.1. The
spectra and root locations corresponding to the means are given in Fig. 4.2. Note
that the frequency corresponding to the second peak in the spectrum of state 2 is
approximately two times the frequency of the first. This can be taken as a sign of
partially chaotic nature of state 2.

The generation of realizations

The segment length sequence was generated by drawing independent random
numbers from the distributions g1 and g2 in turn. The representer sequence was
generated as described in Section 4.2.1.

The segment lengths and representers of a realization are given in Table 4.2.
The corresponding concatenated predictor coefficient processes (vectors) Φc

1 and
Φc

2 and the corresponding smoothed processes Φ1 and Φ2 are shown in Fig. 4.3a.
The evolution of the prediction error variances Υc and Υ are shown in Fig. 4.3b.
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Table 4.1

The estimated means µ̂1, µ̂2 and the covariances Γ̂1 and Γ̂2 of classes 1 and 2,
see (4.1) and (4.2). The predictor coefficients are φk and the prediction error
variances are σ2.

φ1 φ2 φ3 φ4 φ5 φ6 σ2

µ̂1 0.5065 -0.0528 0.0619 -0.0828 -0.0009 -0.1431 0.5686

µ̂2 0.6722 -0.3583 -0.1741 -0.0562 -0.0344 -0.2811 1.1819
0.0362 -0.0335 0.0182 -0.0016 0.0049 -0.0055 0.0223
-0.0335 0.0448 -0.0185 -0.0033 -0.0027 0.0031 -0.0296
0.0182 -0.0185 0.0283 -0.0029 -0.0034 -0.0005 0.0056

Γ̂1 -0.0016 -0.0033 -0.0029 0.0139 0.0003 -0.0063 -0.0054
0.0049 -0.0027 -0.0034 0.0003 0.0182 -0.0124 0.0026
-0.0055 0.0031 -0.0005 -0.0063 -0.0124 0.0183 0.0082
0.0223 -0.0296 0.0056 -0.0054 0.0026 0.0082 0.0444
0.0177 -0.0066 -0.0101 0.0127 0.0073 -0.0046 -0.0119
-0.0066 0.0179 -0.0115 0.0111 -0.0092 0.0097 -0.0072
-0.0101 -0.0115 0.0398 -0.0343 -0.0026 0.0157 0.0083

Γ̂2 0.0127 0.0111 -0.0343 0.0408 -0.0070 -0.0021 -0.0175
0.0073 -0.0092 -0.0026 -0.0070 0.0197 -0.0192 0.0066
-0.0046 0.0097 0.0157 -0.0021 -0.0192 0.0359 -0.0013
-0.0119 -0.0072 0.0083 -0.0175 0.0066 -0.0013 0.4413

The corresponding realization is shown in Fig. 4.3c and an example of the original
EEG in Fig. 4.3d.

To verify the similarity of the quasi-stationary epochs and the transition region
between the original rat EEG data and the realizations, we show in Fig. 4.4a a
segment of original data and a realization in Fig. 4.4b which is adapted to the
original segment as follows: The EEG was divided visually into three parts and the
representers for the quasistationary parts were estimated. The temporal extent of
the representers was broadened to cover the transition region. The concatenated
and smoothed parameter evolution is shown in Fig. 4.4c.

4.4 Discussion

We have presented a systematic method which can be used to simulate
nonstationary EEG. The applicability of the method to e.g. human sleep EEG
simulation is obvious. Apart from EEG that can be described by a stochastic
state evolution, this method is also applicable to such processes that exhibit a
deterministic type state evolution.

An example is the gradual desynchronization of alpha waves as a response
to visual stimulus [163]. In such a case we can take samples of the EEG that
are synchronized with the stimulus, estimate representer statistics before the
stimulus using one segment (k1;T1) and after the stimulus using several segments
(k2, k2, . . . ;T2, T3, . . .). We can then use the predetermined state order k1, k2, . . .
and segment lengths and vary the representers only.

Signals such as EOG, electromyelograms (EMG) and some event related



56 4. Simulation of nonstationary EEG

 0 π/2  π

Figure 4.2: The spectra of classes 1 (solid) and 2 (dotted) corresponding

to the means µ1 and µ2 and the model polynomial root (pole) locations in

the complex plane, ◦ : class 1, + : class 2

potentials can be added to the realizations directly. When doing this, however, it
must be noted that the occurrences may correlate some states of the background.
An example is the correlation of EOG with rapid eye movement (REM) sleep. To
achieve a realistic situation the occurrence statistics should be estimated and used
accordingly.

It is well known that some epochs of EEG are better described as a mixture of
chaotic and stochastic behaviour rather than a regular stochastic process such
as an AR(p) model, see e.g. [195]. However, for short segments the main
difference between chaotic and regular description is that the former exhibits
phase correlation whereas the phase of the latter should be independent between
any two different frequencies and have uniform distribution between zero and 2π.
Short segments of chaotic processes are periodic and can thus be modeled as a
limiting case of a regular process having a line spectra with the lines exactly at
the multiples of the inverse of the period. Such a process can be approximated also
with an AR(p) model. As an example we can draw into attention the state 2 of
the rat EEG and the corresponding simulation of Fig. 4.4. The visual appearance
of the chaotic state 2 does not differ much from the simulation that is regular
by construction. See [19] for a discussion of the applicability of AR(p) model to
chaotic EEG.

If this approach is not considered adequate, the prediction error process Υ
can be smoothly forced to zero and the thus obtained gap filled by a chaotic
process that is multiplied with a taper to avoid the abrupt changes in process
characterictics discussed in Section 4.2.2. See [63] for an example of the simulation
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Figure 4.3: a) The concatenated predictor coefficient processes Φc
1 and

Φc
2 and the corresponding smoothed processes Φ1 and Φ2. b) As in a) but

for prediction error variances Υc and Υ. c) The corresponding realization.

d) An example of original rat EEG.
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Figure 4.4: a) A segment of original rat EEG data. The dotted lines

divide the segment to three parts: state 1, transition and state 2. b) The

concatenated parameter evolutions Φc
1, Φ

c
2 and the corresponding smoothed

evolutions. c) An adapted realization.
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Table 4.2

The segment lengths Ti drawn from the distributions g1(T ) and g2(T ) and the
predictor coefficients φj , j = 1, . . . , 6 and prediction error variances σ2 drawn

from the normal distribution with means µ̂1, µ̂2 and covariances Γ̂1 and Γ̂2.
The prediction error marked with an asterix has been constrained to lie in the
observed region.

State
∑
Ti Ti φ1 φ2 φ3 φ4 φ5 φ6 σ2

1 0 645.5 0.3402 0.0455 -0.02277 -0.08406 0.0358 -0.2347 0.437
2 645 410.2 0.7642 -0.3862 -0.2483 0.06458 -0.01698 -0.3176 2.224
1 1056 804.8 0.25 0.161 -0.1543 0.06727 0.05747 -0.295 0.3∗
2 1861 532.5 0.9159 -0.3473 -0.53 0.254 0.106 -0.4673 1.159
1 2393 1368 0.4241 0.05525 0.03071 0.01801 0.1109 -0.3348 0.3509
2 3761 555.4 0.774 -0.4261 -0.3595 0.02872 0.1362 -0.5736 1.522

of chaotic EEG. Another method to achieve this is to generate a noise process with
constant spectrum but with appropriate phase coherence. This can then be fed to
the time-varying filter.

In the above realizations the band processes were not orthogonal since the
innovations were fed into the complete model. It has been argued that the band
processes should be modeled as (approximately) orthogonal. The proposed method
can be easily modified to fulfill this requirement. We just perform the approximate
spectral factorization and use the time-varying extension of the approximate
spectral factorization and mutually independent innovations for each band process.
This was the approach in [237]. In [174] filters were used to generate the different
band processes with mutually independent innovations.



CHAPTER V

Modified TVARLS Scheme and Estimation
of ERD/ERS

The modeling of EEG with time-varying autoregressive (TVAR) models in which
the parameter evolution is constrained to be a linear combination of basis functions
is discussed. As a suggestion how to overcome the difficulties inherent in using
generic basis functions and separately adjustable coefficients, a method is presented
in which the basis is constructed so that the expected parameter evolutions can be
optimally approximated by the basis. The method is then applied to the estimation
of event related synchronization changes in the EEG. The results show that a
properly selected basis enables effective estimation of the parameter evolution if
the process to be estimated is compatible with the learning set with which the
basis were constructed.

In the conventional TVARLS scheme the coefficients of the basis for each
parameter evolution are separately adjustable, see Section 2.2.2. If we assume
that the process is stable at all times, we can easily run into trouble with
processes that are temporarily of the narrow band type. The roots of the
characteristic polynomial of the model will then easily have modulus greater than
unity temporarily, which is due to the tendency of the parameters to overshoot in
the parameter space. Naturally, unstable models are not always a serious problem
e.g. if the end to the modeling is prediction since the predictors corresponding to
finite order AR models are always stable. However, if the end is e.g. to obtain an
evolutionary spectrum estimate, this is a major problem.

In some cases more can be assumed of the process than just smoothness or slow
variation. One such a case is the event related desynchronization/synchronization
(ERD/ERS) of alpha waves of EEG [163, 194]. For example, when a patient has
his/her eyes closed, the occipital EEG (primary visual cortex) shows high intensity
in the 8–12 Hz region (alpha band, synchronization) while the opening of the eyes
this intensity decreases or even vanishes (desynchronization). In this kind of a
situation we can assume that the EEG exhibits a more or less rapid transition
from a state to another and that the transition starts at some time after the visual
stimulation.

While it seems that we had access to an ensemble of realizations by repeating
the visual stimulation, this is not necessarily the case. It is well known that in

59



60 5. Modified TVARLS Scheme and Estimation

many EEG experiments of this type the patients are subject to habituation, that
is, the responses to stimulations may exhibit various kinds of trends. In such cases
the treatment of consecutive responses as an ensemble does not give us a correct
view of the situation since we do not actually have an ensemble. Rather, we will
obtain some kind of “average” estimates if we e.g. calculated the covariance of
these “pseudoensembles”.

In this chapter we propose an approach to TVARLS modeling in which prior
assumptions on the dynamics of the process can be taken into account. This
is accomplished by first forming a representative set of expectable parameter
evolutions, or a learning set. Since the individual parameter evolutions in
practically all relevant cases are mutually correlated, the learning set is constructed
so that these correlations are not lost. A low dimensional subspace of the space
of all expectable parameter evolutions is then extracted in such a way that the
evolutions of the learning set can be approximated in this subspace with minimal
error. This is accomplished via the eigendecomposition of the covariance matrix
of the learning set.

The rest of the chapter is organized as follows. In Section 5.1.1 we discuss
the problems inherent in the use of generic bases and the determination of the
adjusted bases in general. We also modify prediction equations to give a scheme
with non-separately determined basis. In Section 5.2.2 we discuss the formation
of the learning set for the visual ERD/ERS data. In Section 5.2.3 we evaluate
the performance of the method with simulations and in Section 5.2.4 we apply the
method to real ERS data and verify that the method is applicable to the ERD/ERS
measurements. We also show how the evolution estimates could be employed to
further estimate e.g. delays in the start of the synchronization/desynchronization
after the trigger. Finally, in Section 5.3 we address the problems and the potentials
of the proposed method and discuss some previous methods that have been used
in the analysis of ERD/ERS.

5.1 The modified TVARLS scheme

5.1.1 The consept and determination of the optimal subspaces

It is clear that the ability of the TVAR scheme to model the time-varying
characteristics of the process is limited by the ability of the chosen set of basis
functions to approximate the optimal predictor evolution [2]. Without any prior
information on the evolution of the optimal predictor coefficients we are not able
to treat the problem of optimality of the basis either.

If the second order statistics of the process were known, the optimal (in the
mean square sense) time-varying linear p–order predictor for xt could be calculated,
e.g. by using the methods discussed in Section 2.2. Assume that the optimal
predictor exists but we have no access to it and use the TVARLS scheme instead.
If we now have reason to assume e.g. that the evolution of the optimal predictor
is constant on a time interval, we should employ such a basis that forces the
parameter evolution to be constant on this interval. Generally speaking, the
subspace S should contain only such parameter evolutions that are assumed to
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be expected. Naturally, in most cases this kind of prior assumptions can not be
made, but when these can be done, they should somehow be taken into account.

Assume further that we have prior estimates on the probability distribution of
the predictor at times t = 1, . . . , T and that these distributions are not separable.
If we use separately adjustable coefficients in (2.9) we can not introduce prior
information on the densities to the estimates easily.

For these reasons we consider coefficientwise concatenates of the parameters in
the sequel. This way we can take into account the mutual correlation between the
parameters of the predictor. We denote these concatenates by Ψ ∈ RK , K = pT

Ψ = (φ1(1), . . . , φ1(T ), . . . , φp(1), . . . , φp(T ))
T

.

The concatenates Ψ are also called evolutions although the indexes to Ψ are not
interpreted as previously.

Let us assume that we have access to a set of evolutions Ψn, n = 1, . . . , N
that can be assumed to represent all expectable evolutions Ψ∗ in the following
sense. Let Θ ⊂ R

K be the subspace spanned by {Ψn, n = 1, . . . , N} and PΘ

be the orthogonal projector onto Θ. Of all Ψ̃ ∈ Θ the one nearest to Ψ∗ with
respect to the Euclidean norm is Ψ̃ = PΘΨ∗. Assume now that ‖Ψ∗ − Ψ̃‖ < δ1
for some appropriately small δ1. We could thus use a basis for Θ as the basis
for the parameter evolution. However, since the dimension N of Θ can be large,
we can easily run into stability problems when we try to estimate the parameter
evolution. For this reason we aim next to determine an M -dimensional subspace
Θ(M) ⊂ Θ so that the mean of the errors ‖Ψn − PΘ(M)Ψn‖2, n = 1, . . . , N is
minimal, where PΘ(M) is the orthogonal projector onto the subspace Θ(M).

Denote by Γ the non–centered sample covariance matrix of the set {Ψn, n =
1, . . . , N}

Γ = N−1
N∑
n=1

ΨnΨT
n = N−1Ψ̄Ψ̄T , (5.1)

where the K ×N matrix Ψ̄ = (Ψ1, . . . ,ΨN). Let vk and λk, k = 1, . . . ,K, be the
eigenvectors and eigenvalues, respectively, of Γ, where λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0.

It is well known that the mean error criterion is minimized when Θ(M) is
spanned by the M eigenvectors vm corresponding to the M greatest eigenvalues
λm, m = 1, . . . ,M [184, 131]. The subspace Θ(M) is called the principal subspace
of dimension M and if the set {Ψn, n = 1, . . . , N} was a true ensemble, we would
call this approach the sample principal component analysis (PCA). We can thus
use these eigenvectors as the basis for parameter evolution with the modifications
discussed in Section 5.1.1.

The mean approximation error of the learning set in Θ is

JM =
K∑

m=M+1

λm .

The mean normalized approximation error is JM/tr Γ, where tr denotes the trace
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of a matrix. If the eigenvalues decay sufficiently fast, we may obtain a small
normalized approximation error with a small value of M .

Let the maximum approximation error be ‖Ψn−PΘ(M)Ψn‖ < δ2 for all n. We
have then by triangle inequality that

‖Ψ∗ − PΘ(M)Ψ∗‖ < δ1 + δ2

for all expectable parameter evolutions Ψ∗. The key problem in the formation of
the learning set and in the determination of Θ is to achieve as low a dimensionM as
possible for a given total approximation error δ1 + δ2. The notion of “optimality”
now refers to the optimality of Θ(M) with respect to the learning set, not to
the expected evolutions. The determination of the optimal subspace Θ∗(M) with
respect to the expected evolutions requires that the covariance of these is known,
which can very rarely be the case. However, if we can assume that δ1 is small,
Θ(M) can be assumed to be a good approximation to Θ∗(M).

The modified prediction equations

The constraining of the (concatenated) parameter evolution to Θ(M) is equivalent
to replacing the functions ψm(t) with the respective sections of vm(t) for each
individual parameter and setting cmk = cm for all k = 1, . . . , p.

Let vm = (v1
m(t)T, . . . , vpm(t)T)T, m = 1, . . . ,M and t = 1, . . . , T . The

predictor coefficients are now written in the form

φk(t) =
M∑
m=1

cmv
k
m(t) .

Thus, instead of the columns of H in (2.11) we have

ϕm(t) =
p∑
k=1

vkm(t)xt−k

as regressors. The prediction estimate is now of the form

x̂t =
M∑
m=1

p∑
k=1

cmv
k
m(t)xt−k

=
M∑
m=1

cmϕm(t) .

The prediction equations are as in (2.12) but with c = (c1, . . . , cM )T and

H =

 ϕ1(p+ 1) · · · ϕM (p+ 1)
...

...
ϕ1(T ) · · · ϕM (T )

 .
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The dimensionality of the LS problem has now been reduced from pM to M and
the estimated parameter evolutions are in Θ(M) by construction.

It is recommended that the LS solution of c is not done via the normal
equations. Instead, the reduction of H to a canonical form via an orthogonal
transform will lead to a modification of the prediction equations, the solution of
which is numerically more stable [87].

5.2 Modeling of ERD/ERS

5.2.1 Previously used methods for the tracking of alpha type activity
in EEG

In [99] a method based on phase locked loop circuitry is presented in which the
center frequency of EEG is tracked. This was then applied to a visual learning
task. It was noticed that the center frequency was highly nonstationary during
periods of less than 5s.

Even relatively recent investigations on time-varying characteristics of EEG
rely on segmentation and subsequent stationary AR models of these. These include
tracking of alpha frequency before generalized spike-and-wave complexes [104].

In [132, 190] the problem of spindle detection was approached by tracking the
EEG with a time-varying predictor of structure ARMA(6,2). The roots of the
corresponding denominator polynomial were then tracked with a damped complex
Newton method. It was argued that the classification of the EEG between spindle
and non-spindle classes was easier to accomplish with a method that is based on
these roots than directly on the model parameters. Earlier, the model polynomial
roots have been used as features in [79, 36, 37] but the analyses were based on
pseudostationary segments.

Several methods that are based on existing integrated circuits of different levels
of complexity have been proposed. Usually these methods require the setting of
some parameters such as tresholds for which there are not always rules. Often
these methods employ some kind of ad hoc post-processing by a computer. Most
reports are specific only on the implementation of the circuit and do not discuss
the performance analysis of the method. As examples we list the following. In [34]
an analog phase-locked loop circuitry was described. A modification of this was
reported in [197]. A method based on separate amplitude, period (zero crossing)
and pattern channels was proposed in [135]. A method that is based on a simple
analog comparator equipped with timers and counters is described in [172].

In [199] the running fractal dimension was used to detect spindle type
background activity. Complex demodulation (envelope detection with known
center frequency) was used in [97] to detect sleep spindles.

5.2.2 Construction of the learning set

To test the proposed approach we conducted a visual ERD/ERS test using the
international 10–20 electrode system. This was carried out by opening and closing
the eyes with an auditory stimulus (beep) on 15 second intervals. The subject
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Figure 5.1: a) Five samples of ERS. Vertical scale in microvolts and time

in seconds. The trigger is set at time t = 0. b) Amplitude spectra of AR(6)

models of desynchronized (top) and synchronized (bottom)states for the

five samples. Vertical scale is arbitrary and horizontal is in normalized

frequency.

was a healthy young female. We chose five samples of the measured EEG at
the transition from desynchronized state to synchronized state (eyes open → eyes
closed). The samples were low–pass filtered to allow for the decimation of the
sampling frequency from 250 Hz to 250/4 Hz. The final length of the samples was
960.

For the phenomenology and clinical relevance concerning alpha rhythms and
the ERD/ERS phenomenon, see [163, 194, 234, 141, 27]. For a discussion on the
neuroanatomical basis of rhythms, see [222, 156, 153]. For the statistics of the
duration of alpha state during the eyes-closed condition, see [24]

We estimated the AR parameters with p = 6 for both synchronized and
desynchronized states for all five samples using segments of length 240 at the tails of
the samples. The parameters were estimated with the modified covariance method
[164]. The samples are shown in Fig. 5.1a. The amplitude spectra corresponding
the models are shown in Fig. 5.1b. We form the learning set first. We assume
that the sets of AR(6) parameters describe the EEG in the synchronized (AS

j ) and
desynchronized (AD

i ) states. We form the parameter evolutions from every AD
i to

every AS
j assuming that the transition between the two states is smooth. As the

model for transitions we use sigmoid function for which we use three different slopes
and 10 different delays of transition. As the length of the parameter evolutions we
use T = 240. The parameter processes Aijk�(t) ∈ Rp×T are formed by

Aijk�(t) = AS
i + (AD

j −AS
i )σk�(t) ,

where i, j = 1, . . . , 5, k = 1, . . . , 10, ( = 1, 2, 3 and σk�(t) is the sigmoid function

σk�(t) = (1 + d0 exp(d1�(t− d2k)))−1 ,
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Figure 5.2: a) The extreme cases of sigmoids used in the construction

of the learning set. b) An example of a member Ψn of the learning set

showing the structure of the concatenated parameter evolutions.

where d0 = 1/9, d11 = 0.056, d12 = 0.08, d13 = 0.12 and d2k = 68 + 8(k − 1).
The parameter evolutions are monotonous by construction. The extreme cases
of the sigmoids σk�(t) are shown in Fig. 5.2a. The learning set thus contains
N = 5 · 5 · 10 · 3 = 750 vectors Ψn of length K = pT = 1440, that are the
componentwise concatenates of Aijk�(t). An example of a member Ψn of the
learning set is shown in Fig. 5.2b.

The covariance Γ of the learning set was only implicitly formed as in (5.1).
Since the matrix Ψ̄ = (Ψ1, . . . ,ΨN ) is of size 1440 × 750, Γ would be of size
1440× 1440. On many platforms the calculation of the whole eigendecomposition
of Γ would be computationally too burdensome and memory demanding, especially
when we only need a few principal eigenvectors. Fortunately, we can use the so–
called orthogonal iteration method [87] to calculate the principal subspace in such
a way that we do not actually even have to compute Γ. This method was then used
to calculate 20 principal eigenvectors and the corresponding eigenvalues. The 20
largest eigenvalues of Γ are shown in Fig. 5.3a. The sections v2

m(t), m = 1, 3, 5, 9
of the basis functions corresponding to the coefficient φ2(t) are shown in Fig. 5.3b.

Note that by construction of the learning set the times and the rates of
change of the transitions as well as the initial and final states are assumed to
be independent.

5.2.3 Simulations

To find a feasible dimensionM of the basis we generated realizations with members
from the learning set and formed the modified TVARLS estimates for different M .
The choiceM = 5 seemed to be a reasonable compromise between approximability
and stability. Too low an orderM means that the evolutions can not be adequately
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Figure 5.3: a) The 20 first eigenvalues of the covariance matrix Γ of the

learning set Ψ̄ b) The sections of eigenvectors v2
m(t), m = 1, 3, 5, 9 of the

covariance matrix Γ corresponding to the parameter φ2(t).

approximated by the basis while too high an order introduces instability to
the estimates in sense that the realization–wise evolution estimates have non–
acceptably high variance.

Since we are more interested in the difference between the true and estimated
evolution of the prediction coefficients (mean deviation) than residual error
variance we will focus our attention on the mean deviation of the parameter φ2(t),
the mean change of which is the greatest for the learning set.

Three different evolutions of φ2(t) and the corresponding estimates φ̂2(t) from
single realizations are shown in Fig. 5.4a. The initial and final states (and so also
φ2(1) and φ2(T )) are equal in the three cases. As we can see, the estimates φ̂2(t)
can track the transition time differences in φ2(t) but tend to be biased towards
the “center of the learning set”. In addition, the estimated rates of change are too
low. These are features that can be explained by the nature of the eigenvectors as
shown by Fig. 5.3b in which the eigenvectors that exhibit qualitative differences are
shown. The linear combinations of the 2 first eigenvectors have all approximately
the same instant and slope of the transition. The features in vk(t) that allow
for changes in the instant of the transition occur from eigenvectors v3(t) on but
all these have the same slope. The corresponding slope features occur in the
eigenvectors from v9(t) on but the features for estimating the instants of transition
are still present. Thus the approximability of the slopes of transition of the
evolutions would necessitate that we use M > 5.

To test the variance of the estimates we calculated the means and variances of
parameter evolutions in several cases of the learning set. A typical case is shown
in Fig. 5.4b with true and mean evolutions and standard deviation intervals for 20
realizations.
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Figure 5.4: a) The parameter processes φ2(t) of three examples of

the learning set (solid) and the corresponding estimates (dashed) based

on single realizations. b) A true parameter process φ2(t) (solid), the

mean estimate (dashed) and standard deviation interval (dotted) of 20

realizations.

5.2.4 Tracking of ERS

To evaluate the applicability of the method to real data we estimated the predictor
evolutions for the data from which the initial and final predictor estimates were
calculated, see Fig. 5.1a.

Although we do not propose this method to be used in estimating the instant
of an abrupt change in EEG, we conduct an experiment in which we try to evaluate
the tracking capability of the estimates. Since there are now no true parameter
processes, we can not compare the estimates to these. We take a sample xt of the
measured EEG and form the estimates for xt+Ttr where Ttr was allowed to extend
somewhat beyond the modeling capability of the learning.

We estimate ad hoc the instant of change by the time T̂tr that is nearest to the
mean of the estimated initial and final states, that is, φ̂2(T̂tr) ≈ (φ̂2(1)+ φ̂2(T ))/2.
These ad hoc estimates T̂tr as a function of the shifts Ttr are shown in Fig. 5.5a.
The relationship between these is approximately T̂tr ≈ 0.75 · Ttr + T0 when T̂tr is
compatible with the learning set. The reason that the slope is smaller than unity
is that the employed set of basis has a clear bias to estimate the change instant
towards the average of the change points in the learning set as explained in Section
5.2.3. This tendency is diminished when the order M is increased. We can also
see that the degree of linearity diminishes when xt+Ttr is not compatible with
the learning set. In Fig. 5.5b we show a typical evolutionary spectrum estimate
(spectrogram) that is based on the time–frozen parameters of the estimated TVAR
model.
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Figure 5.5: a) The ad hoc estimate of the transition instants as a function

of the shift of a single sample of EEG. The slope is approximately linear

(T̂tr ≈ 0.75Ttr + T0) on the interval where the basis allows for changes in

the parameters. b) An example of a modified evolutionary (amplitude)

spectrum estimate based on the TVARLS model with var(et) ≡ 1.

5.3 Discussion

We have discussed a modification of the TVARLS scheme in which the individual
parameter evolutions are not separately adjustable, but in which the mutual
correlation of the parameters is taken into account. We have also presented a
principal component type method for estimating such a basis for the parameter
evolution that can optimally approximate the expectable evolutions. We have then
applied the proposed method to the modeling of the ERD/ERS phenomenon of
EEG.

The crucial problem of the method is the existence of a low dimensional
subspace in which the expectable evolutions can be approximated with adequately
small errors. If this is not the case, e.g. when the eigenvalues of Γ decay too slowly,
this method should not be applied. The second problem is the formation of the
learning set which may not always be as straightforward as in this case.

It must be noted that the approximability of “marginal” members of the
learning set with a basis is poorer than the approximability of more medial
members. For this reason it could be recommended that the learning set should
contain members that are slightly off the expected region. Otherwise it could be
necessary to use a larger dimension M than with this trick if we wish to have a
uniform approximability on the whole set. On the other hand, too large a learning
set will yield a set of eigenvalues of Γ that will decay slowly, which means that to
maintain the approximability we should again increase M which in turn decreases
stability of the estimates.

There are two previous approaches to estimate the ERD/ERS evolution. The
first is a short time Fourier transform -type (STFT) scheme in which discrete
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Fourier transforms are calculated from sliding windowed estimates of sample
correlation [133]. In this method the window has to be made relatively short
to maintain adequate time resolution and the variances of the time–frequency bins
tend to become so large that the usefulness of the estimates suffers. We would
thus be compelled to use averaging of the individual estimates.

The other method is to pass the EEG realization–wise through bandpass filters,
square the outputs and average over realizations [194]. Thus we obtain e.g. an
estimate for the time–varying variance (power) of the alpha band. However, the
bandpass filtering exhibits some drawbacks. The first is that the decay time of the
filter impulse response (from 1 to 0.707) is approximately equal to the inverse of
the width of the filter spectrum. If the band is 8–12 Hz, the decay time is about
0.25 s. In practice this means that the evolution estimates are effectively convolved
with a window of this duration. The other problem in the filtering approach is
that we are not able to track changes in the center frequency of a band within
the passband. This implies that, e.g. if the alpha band “peak” moves towards the
boundaries of the passband, but does not change in variance, the variance of the
output of the filter decreases giving us a false indication. To overcome this problem
we can divide the alpha band into sub–bands, but this will further decrease the
time resolution.

The proposed method does not necessitate ensemble averaging and it can thus
track changes in single realizations and thus also trends through the ensemble. The
frequency resolution is that of the AR models in general, but with the restrictions
imposed by the subspace constraint. Some special information, such as the time–
varying variances of the EEG bands can be directly accessed using the approximate
spectral decomposition of the model, see Section 2.1.3 for the factorization of
stationary parametric models.

One further advantage of the proposed approach is that in some cases different
kinds of deviations between parameter evolutions are portrayed in different basis
vectors. It is thus possible that it is easier to draw inference from the coefficients
of these basis vectors than from coefficients of generic basis.

We are currently studying the Bayesian extension of TVARLS and MTVARLS
schemes. In the case of MTVARLS this extension means that we compute the
projections of the learning set onto the subspace Θ(M) and approximate these
projections with an M–dimensional density. This is taken to approximate the
prior density of the coefficients ck. We also need the likelihood function (the
conditional density of observed xt on ck) whose estimation is not quite as simple
the approximation of the prior density. However, once this is accomplished, the
maximum posterior (MAP) estimate for ck, k = 1, . . . ,M is calculated. This is
an extension that enables the use of a relatively large dimension M so that more
features can be estimated. We do not elaborate the extension further here.
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Blind estimation of optimal MTVARLS subspaces

In most practical cases we do not have enough information on the evolution of the
process to be able to construct a learning set. However, if we can assume that
the class of predictor evolutions is adequately tight as above, we can use adaptive
predictor estimators to approximate the predictor evolution for each realization.
We can then calculate the covariance of these evolution estimates and determine
the principal subspace from this.

The reason why we use stochastic regression methods to obtain bases for
deterministic regression methods rather than use the former estimates directly is
that with this approach we aim to estimate differences in a small pseudoensemble.
The size of this pseudoensemble is too small to enable the direct application of
the principal component analysis to the time-varying covariance. Since there is no
(hypothetical) model for the parameter evolution as was the case in Chapter 5, we
call this approach blind estimation of modified TVARLS (MTVARLS) subspaces.

6.1 Tracking capability of adaptive algorithms

It is well known that adaptive predictors and filters in general can roughly be
said to exhibit two kinds of parameter estimation error that are often referred to
as noise and lag misadjustments. We could also use the notions instantaneous
variance and bias of parameter estimates.

The LMS, RLS and KF algorithms were discussed in Section 2.2.3. From
(2.13) it is obvious that the gain αt controls the rate of change of parameter
evolution estimates. If the assumed rate of change is fast we should not set αt
too low to allow the algorithm to be able to track the parameter changes, in other
words, to keep the bias low. However, increasing αt will invariably also increase
the instantaneous variance of the estimates. Thus the selection of the gain αt is a
trade-off between tracking speed and “noisiness” of the estimates.

In the sequel we concentrate on the forgetting factor RLS algorithm that is
one of the most popular adaptive algorithms due to the facts that the criterion is
well understood (weighted least squares solution), it is computationally relatively
feasible (matrix inversion lemma), it is easily stabilized (by adjusting the forgetting
factor to less than unity) and it does not exhibit different modes of convergence

70
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as do some steepest descent type algorithms such as the LMS algorithm. This is
due to the approximate orthogonalizing nature of RLS.

6.1.1 Tracking performance of the RLS algorithm

The performance of an adaptive algorithm can be evaluated by many criteria,
such as the mean prediction error and the mean parameter deviation. The most
straightforward way is to adjust the parameters of the algorithm to minimize∑
t e

2
t , which was the approach in [26] where the unknown covariances needed by

the Kalman filter were adjusted to obtain the minimum mean prediction error.
In parameter estimation the most relevant criterion, however, is often the mean
square deviation of the parameters, that is

min
θ̂

‖θ∗(t)− θ̂(t)‖ ,

where θ∗(t) is the true parameters evolution when such an evolution can be said
to exist or the optimal one when all the statistics were known. In practice the
evolution θ∗(t) is not known.

In some cases it is possible to assume a model (hypermodel) for the evolution of
the parameters. There are several results that can be used as aids in the selection of
the parameters of several algorithms when the assumed hypermodel is the random
walk model. As usual, the more we can make assumption on the situation, the
tighter the results are. The results rely often on such assumptions that are not
fulfilled. The most important assumption in many results is the orthogonality of
the regressors, that is, ϕT

t ϕt−k = 0 for all k �= 0. In the adaptive prediction case
we have ϕt(k) = ϕt−j(k + j) for 1 ≤ k + j ≤ p, 1 ≤ k ≤ p, so the correlation
between regressors is obvious and in many cases, especially in the small bandwidth
case, the correlation “strength” is such that any analyses assuming orthogonality
are clearly useless. We are aware of only one study concerning the performance of
the RLS algorithm with this special sequential structure of regressors that evolves
in the case of adaptive prediction. Even then the process was a deterministic chirp
signal in noise [161].

Other common assumptions include M–dependence, (conditional) zero mean
difference of the true parameter evolution, boundedness of observation and
regressor processes, implicit assumptions on stationarity and technical assumptions
that yield proper conditional expectations. We refer here only to [39, 14, 92, 93,
18, 57, 56] where results with some of the above assumptions are given. The results
concern typically such estimates as upper bounds for parameter deviation or upper
bounds for the mean parameter tracking error. It is also important to note that
tracking a constantly varying predictor (or a system in general) is not the same as
transient recovery, i.e. the case when the process is stable and stationary between
non-frequent stepwise changes.

Covariance of parameter deviation, RLS and random walk hypermodel

Let θ∗t be the true parameter evolution, or equivalently, the optimal predictor
evolution. Assume that et is a zero mean process with variance σ2

e(t). Further,
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assume that the true parameter evolution satisfies the first order hypermodel
(random walk)

θ∗(t) = θ∗(t− 1) + δwt ,

where cov(wt) = Γw(t), δ > 0 and with E {etwt} = 0. Let θ̃(t) = θ∗(t)−θ̂(t) be the
parameter estimation error (misadjustment), where θ̂(t) is the parameter estimate
obtained from the RLS algorithm with forgetting factor κ. Define further Πt =
E{θ̃(t)θ̃(t)T} and Ψ(t) = E

{
ϕtϕ

T
t

}
. The exact form for Πt is very complicated

and not very tractable. However, there are a sequence of papers with a decreasingly
restrictive assumptions and culminating in [92, 93] in which the approximation for
small µ = 1− κ is given:

Π̂0 = Π0

Π̂t = ĀtΠ̂t−1Ā
T
t + µ2P̄tΨtP̄tσ2

e(t) + δ2Γw(t) ,

where

Āt = I − µP̄tΨt
P̄t = R̄−1

t

R̄t = (1− µ)R̄t−1 + µΨt
R̄0 = R0 .

The coefficientwise error variances are then obtained from the diagonal of Π̂t.
Although it is not very easy to see, the qualitative nature of the result is

that decreasing κ will enlarge (not necessarily monotonously) the variance of the
parameter estimates. In our case, the assumption of the orthogonality of wt and
wt−k, k �= 0 is not fulfilled, since the random walk model is not appropriate here.
A more feasible model would be a higher order LP-type hypermodel, but a tracking
performance analysis for these is not easily tractable. We are not aware of results
of the above type in the case of higher order hypermodels.

Evolution of the mean parameter deviation of RLS

Let θ(t) = E{θ̂(t)} be the expected evolution of the parameter estimates and
redefine θ̃(t) = θ∗(t)− θ(t). The regressors are allowed to be non-orthogonal with
exponentially decaying covariance so that such constants c > 0 and 0 < ϑ < 1
exist that

|E {xtxt−k}| < cϑ|k| .

The forgetting factor RLS is the solution to the problem

θ̂(t) = argmin
θ(t)

t∑
k=1

κt−k(xt − θT(t)ϕt)2 .

Let

Dt =
t∑
k=1

κt−k =
κ− κt

1− κ

κ̃ = κ/D∞ .
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We have then [178, 179]

θ(t) = D−1
t

t∑
k=1

κt−kθ∗(k) +O(1/Dt) , (6.1)

where O(·) is the “big-O” function. This yields asymptotically

θ(t) ≈
∞∑
k=0

κ̃kθ∗(t− k) . (6.2)

This can also be expressed in the form [55]

θ̃(t) ≈ z−1 − 1
1− κz−1

θ∗(t) .

These forms are in principle just what are needed to be able to optimize the
forgetting factor κ when θ∗ is known or there is a realistic hypermodel. However,
it turns out that the O(1/Dt) term is of the form

O(1/Dt) =
ca

D(1− ϑ2)
,

where a is a function of second and fourth order moments of ϕt. It is clearly
seen that in the case of narrow band processes, that is, processes with ϑ � 1, the
approximation error term can become very large and the approximation loses its
usefulness.

This is the situation also in the synchronized state of the ERD/ERS.
Preliminary simulations showed that in this case the approximation (6.1) could
not be used in the evaluation of the mean tracking error. However, the qualitative
nature of the performance of RLS with respect to κ is clearly seen from (6.2).
Increasing κ will make the memory of the algorithm longer and the mean tracking
error increases. And vice versa, letting κ → 0 yields θ(t) → θ∗(t). These two
results indicate clearly the trade-off between the noise and lag misadjustments.

There are very nice results that would allow one to make an optimal choice of
κ with respect to the parameter error covariance. Unfortunately the assumptions
are such that these results are not applicable in our case. However, the results
involve the minimization of functionals that are of the form

O(µ+ ϑ2/µb) ,

where b = 1/2, 1 or some other figure depending on the assumptions. It must still
be noted that whether the assumptions are valid in a particular situation or not,
it might not be relevant to minimize the above criterion. Rather, some ends might
emphasize the need for stability instead of tracking speed.
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Figure 6.1: Examples of RLS tracking performance with different

forgetting factors κ. Bold line: the true evolution φ2(t), medium line:

backward estimate and weak line: forward estimate.

6.2 A simulation study

We will study the ERS case as follows. We select four forgetting factors κ1 = 0.95,
κ2 = 0.97, κ = 0.98 and κ3 = 0.99. These can be said to correspond to small bias,
two compromise and small noise cases, respectively. We also select two sample
sizes N = 1000 and N = 20, that is, the number of realizations that are used to
estimate the basis. Of these two the former represents a “large” sample although
the obtained eigenspace estimates can not be said to be asymptotical ones. The
smaller sample is of interest to us since it is approximately the size that one has
access to in the case of real ERD/ERS data.

The parameter evolutions corresponding to the realizations are drawn
randomly from the learning set that was constructed in Section 5.2.2. The
forward parameter evolution estimates Φ̂f(t) are then computed with RLS and
the selected forgetting factors κ for each realization. To reduce the delay of
the estimates we form also the backward estimates Φ̂b(t) and use the averages
Φ̂(t) = 1/2(Φ̂f(t)+ Φ̂b(t)) as evolution estimates. This trick will reduce the delays
of the estimates but does not reduce the “smeariness” of these. To obtain initial
state estimates with correct distribution, the tracking was initialized at a time well
before the investigated epoch. In Fig. 6.1 typical RLS estimates Φ̂f(t) and Φ̂b(t)
together with the true evolution are shown.

As in Chapter 5, the evolution estimates are concatenated to form Ψ̂ and the
principal subspaces of the corresponding covariances Γ̂ are computed.
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Figure 6.2: The eigenvalue convergence (decay) of the RLS basis

estimates, from top to bottom: κ = 0.95 (solid bold), κ = 0.97 (dashed

bold), κ = 0.98 (solid weak) and κ = 0.99 (dashed weak). The vertical

scale is logarithmic and the figures denote powers of 10.

6.2.1 Convergence of the principal eigenspaces

It can be conjectured that since the use of a small forgetting factor yields a
small bias, the principal eigenvectors v̂m corresponding to the covariances of the
estimates Ψ̂ would asymptotically converge to somewhere in the vicinity of the
true eigenvectors vm. Also, since the noisiness of the estimates increases with
decreasing κ, it can be expected that the eigenvalues would decay faster with
large κ than with small κ. It is clear that the required number of realizations
would then be very large and it became clear that N = 1000 is not enough.

The decays of eigenvalues are shown in Fig 6.2. It is clearly seen that the
larger the forgetting factor, the faster the eigenvalue decay is. The fast eigenvalue
convergence in the case κ = 0.99 should not be regarded as an asset in this case.
While fast decay of the eigenvalues implies that the corresponding learning set can
be approximated with a smaller mean square error for a given subspace dimension
and is generally a desired property (fast convergence of the principal subspace),
in this case this is due to the lower approximability of the true evolutions in this
subspace. The mean eigenvalue decay for sample size N = 20 was also calculated.
The mean convergence in this case was the same as that for the size N = 1000
sample.

The principal eigenvectors exhibit such characteristics as expected. The
eigenvectors corresponding to the high κ cases are smoother than the others in
both the senses that they are less noisy and the evolutions are slower. The true
eigenvectors vk(t) and the estimates v̂k(κ) with k = 1, 3 and κ = 0.97, 0.99 are
shown in Fig. 6.3 for the case N = 1000 and examples of these for the case N = 20
in Fig. 6.4. The stability of the estimates that are based on a small sample only
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are of importance when the simulations are used to select parameters for the true
(measured) ERS data.

According to the simulations the forgetting factor κ = 0.97 seemed to be a
feasible compromise between tracking speed and noisiness. Also the stability of
the eigenvector estimates seemed to be adequate with respect to the Standard
deviation intervals with size N = 20 samples.

6.2.2 Modified TVARLS estimates

There are two possibilities to evaluate the performance of a selected combination
(κ,M) that determines a particular basis. One is to calculate the mean prediction
error variances for each selection over a large sample. The problem here, however,
is that due to the nature of the LS projection, the error will be monotonously
decreasing with respect to M and it would seem that increasing M will ever
yield better parameter estimates for the processes. This is clearly incorrect since
the estimates will only be more “local” and describe the realization instead of
the process. With the AR model order p the standard approach would be to
employ order selection principles such as Akaike’s information criterion (AIC),
finel prediction error (FPE), minimum description length (MDL) etc. [40], but
these methods are not directly applicable to the selection of M . See [142] for a
general discussion of model order selection in the general time-varying case.

The other problem is the sensitivity of the prediction error variance with
respect to variations in the estimated parameter processes and the coefficients
of the basis vectors. This makes it possible that the prediction error variance may
well be smaller in a case where the parameter deviance is larger. Furthermore, in
most cases even the mean paramater deviation is not a feasible criterion that should
be dictated by the specific application itself. Although in Section 6.3 we calculate
and show some approximate spectral factorizations, we do not explicitly aim to
any specific application (further use) of the estimated parameter evolutions. For
this reason we do not calculate any performance/merit statistics for the estimates
with different (κ,M) and concentrate on the raw evolution estimates instead.

In Fig. 6.5 we show a realization corresponding to a member Ψ∗ of the learning
set. In the sequel we will study the forgetting factors κ = 0.97 and κ = 0.99 that
are taken to represent the small bias and small noise cases, respectively. All
subsequent estimates calculated and shown in this section are calculated for this
data.

To help in the visual evaluation of the estimates we show the following
evolution estimates together with the true evolution Ψ∗.

1. Projection of Ψ∗ onto the span{v1, . . . , vM}. This is the best possible
estimate in the mean square sense in the optimal (correct) subspace.

2. Projection of Ψ∗ onto the span{v̂1(κ), . . . , v̂M (κ)}. This is the best possible
estimate in the mean square sense in the blind estimate for the principal
subspace.
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Figure 6.3: The eigenvectors (weak lines) corresponding to the five largest

eigenvalues of the RLS covariance matrices with A) κ = 0.97 and B) κ =

0.99. In both sets the bold lines are the eigenvectors of the learning set.

Number of realizations is N = 1000.
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Figure 6.4: As in Fig. 6.3 but the number of realizations is 20.
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Figure 6.5: A realization corresponding to an evolution of the learning

set (hypothetical basis) for which the estimates shown in Figs. 6.6–6.13 are

calculated.

3. MTVARLS estimate with the optimal basis {v1, . . . , vM}. This depends on
the realization for Ψ∗.

4. MTVARLS estimate with the blind estimate {v̂1(κ), . . . , v̂M (κ)}. Also this
depends on the realization for Ψ∗.

In Figs. 6.6 and 6.7 these estimates are shown in the case κ = 0.97 for M = 1
and M = 3, respectively. In Figs. 6.8 and 6.9 these estimates are shown in the
case κ = 0.99 for M = 1 and M = 3, respectively.

It must be noted that the estimates shown in Figs. 6.6–6.9 are only examples
corresponding to the chosen Ψ∗ and a single realization. A large number of
estimates was inspected visually for different Ψ∗ and M = 1, . . . , 5. It seemed that
overall the dimensionM = 3 should not be exceeded in either of the blind estimates
of the basis. On the other hand, the mean difference between approximability
(projections) of the evolutions between M = 2 and M = 3 suggests that we
should use M = 3 in this case (N = 1000). We do not show the estimates with
too large M here but refer to Fig. 6.20 where the results of the use of too large an
M are clearly visible.

With respect to the forgetting factor in this case, κ = 0.97 is clearly superior
to κ = 0.99 which is due to the fact that the approximate memory of RLS in the
case κ = 0.99 is 100. This is clearly too large, see Fig. 5.2a. In Figs. 6.10–6.13 we
show the projections of Ψ∗ onto the blind estimate span{v̂1(κ), . . . , v̂M (κ)} and
the MTVARLS estimates with this basis in the case N = 20 for M = 1, 3 and
κ = 0.97, 0.99.

6.2.3 Overview of the blind estimates

For a pseudoensemble of this nature even a sample size of N = 1000 seems to be
too small to extract the true eigenvectors except for the first few ones. It is also
evident that if the forgetting factor is diminished to reduce the serial correlations
of the evolution estimates, the required sample size will easily become too large to
be realizable in any circumstances.

The extraction of the particular eigenvectors is, however, not a necessity. More
important subjects are the approximability of the true evolutions in a subspace of
dimension M and the sensitivity of the MTVARLS scheme with the corresponding



80 6. Blind estimation of optimal MTVARLS subspaces

 T 2T 3T 4T 5T 6T

-0.5

0

0.5

 T 2T 3T 4T 5T 6T

-0.5

0

0.5

 T 2T 3T 4T 5T 6T

-0.5

0

0.5

 T 2T 3T 4T 5T 6T

-0.5

0

0.5

Figure 6.6: True parameter evolution (bold line in all figures)

corresponding to the realization shown in Fig. 6.5. The weak lines

correspond to (from top to bottom) projection onto optimal subspace,

projection onto RLS subspace, MTVARLS estimate with optimal basis and

MTVARLS estimate with RLS basis. The forgetting factor is κ = 0.97,

dimension of subspace M = 1 and the bases are calculated from a sample

of size N = 1000.
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Figure 6.7: As in Fig. 6.6 but with the dimension of subspace M = 3 .
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Figure 6.8: As in Fig. 6.6 but the forgetting factor is κ = 0.99 and the

dimension of subspace M = 1 .
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Figure 6.9: As in Fig. 6.8 but with the dimension of subspace M = 3 .
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Figure 6.10: True parameter evolution (bold line in both figures) with

(weak lines) projection (top) and MTVARLS estimate (bottom); forgetting

factor κ = 0.97, dimension of subspace M = 1 and bases calculated from

a sample of size 20.
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Figure 6.11: As in Fig. 6.10 but with dimension of subspace M = 3.
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Figure 6.12: As in Fig. 6.10 but the forgetting factor is κ = 0.99.
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Figure 6.13: As in Fig. 6.12 but with dimension of subspace M = 3.
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basis. The first subject can be evaluated by computing the projections of the
members Ψ of the learning set onto span{v1, . . . , vM} and span{v̂1(κ), . . . , v̂M (κ)}
and the corresponding error norms. The ratio of these two can be taken as a
measure of the approximating capability of the blind estimate for the basis.

For a principal subspace of dimension M the mean projection error can be
computed as

Eopt(M) = N−1
N∑
k=1

‖Ψk‖2 −
M∑
k=1

λk .

For the corresponding mean error Eblind(M,κ) with the basis {v̂k(κ)} we have to
compute the projections PΘ(M,κ)Ψ directly. The results in the case κ = 0.97 are
shown in Table 6.1. The ratios of the errors support the choice M = 3.

Table 6.1

The mean projection errors of the learning set onto the optimal subspace
(EOpt(M)), the corresponding blind estimates (Eblind(M,κ = 0.97)) and the
ratios of these in the case κ = 0.97 for different subspace dimensions M . The
sample size is N = 1000.

M EOpt(M) Eblind(M,κ = 0.97) EOpt(M)/Eblind(M,κ = 0.97)

1 8.3635 7.7483 1.0794
2 6.0667 5.2810 1.1488
3 4.6463 3.7529 1.2381
4 3.8961 2.3606 1.6505
5 2.4316 1.5310 1.5882

The usual method to evaluate the sensitivity of LS solutions is to compute
condition numbers for the corresponding regressor matrices. In this case this kind
of a comparison does not yield any significant results since the basis vectors are
orthonormal in both cases. Instead, we calculate the generalized angles between
the subspaces and the corresponding distance measures [87]. The distance between
two subspaces S1 and S2 is defined as

dist(S1,S2) = ‖PS1 − PS2‖ ,

where PS1 and PS2 are orthogonal projectors onto the subspaces and the norm
indicates the operator 2-norm. With the aid of the CS decomposition it can be
shown that

dist(S1,S2) =
(
1− σ2

min(S
T
1 S2)

)1/2
,

where S1 and S2 are orthonormal bases of the corresponding subspaces and σmin

denotes the smallest singular value. The angle ξ(S1,S2) between the subspaces is
then

ξ(S1,S2) = arcsindist(S1,S2)
and is π/2 (90◦) at maximum. If ξ(S1,S2) = π/2 this means that there is a
nonzero vector in S1 whose projection onto S2 is zero. In a way the angle between
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subspaces is thus a worst case measure. It turns out that the angles are relatively
large. These are shown in Table 6.2.

Table 6.2

Generalized angles (in degrees) between the true subspaces and the corresponding
blind estimates for different forgetting factors κ and subspace dimensionsM . The
sample size is N = 1000.

κ M = 1 M = 2 M = 3 M = 4 M = 5
0.95 3.8617 26.0467 52.9268 76.6944 60.9379
0.97 4.0563 24.8252 61.1358 66.6164 39.0881
0.98 5.2849 49.2113 66.9481 24.8129 41.0861
0.99 7.8150 79.6824 74.0150 32.7801 41.2169

A more relevant measure would perhaps be the mean distance between the
subspaces spanned by the columns of the corresponding MTVARLS regressor
matrices. The evaluation of this measure would, however, require a large number
of realizations for each Ψ since the differences induced into the regressor matrices
are for the most part dependent on the realizations.

6.3 The blind estimates from ERS data

In this section we compute the blind estimates for the basis from ERS data. We
use the same ERS data as in the forming of the learning set in the hypothetical
evolution case. The data consists of N = 20 ERS observations and is shown in
Fig. 6.14.

We use the forgetting factor κ = 0.97 and proceed as in the previous section.
The first three eigenvectors are shown in Fig. 6.15. These should be compared to
Fig. 6.4A.

The most important difference between these is that with ERS data the first
eigenvector (that is almost equal to the mean evolution estimate in this case)
shows considerably less any trend in the separate parameter evolutions than with
the simulated data. The other clearly visible difference is that the structure of
the eigenvectors seems to disappear faster than with the simulations (the fourth
eigenvector corresponding to the ERS data can be described as pure noise). This
can mean that the differences between the RLS estimates in the ERS case are more
irregular or that the differences are smaller. The latter case can be understood if
we consider an ensemble consisting of noisy observations of a single (deterministic)
evolution. Then the first eigenvector would resemble this evolution and the other
eigenvectors could be described as noise with no correlation structure. The other
point is that in this case the decay of the eigenvalues will be very slow. It is also
possible that the irregularity is partly due to the inadequateness of the 6:th order
predictor model.

The mean of v̂k(t) also displays slight trend on the interval just before the
trigger which could be taken as a waiting state for the event.
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Figure 6.14: The 20 ERS observations for which the RLS estimates are

computed. The trigger is at time t = 80 and is shown with the dotted line.

The vertical scale is in microvolts.
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Figure 6.15: The first three eigenvectors corresponding to the covariance

of the RLS estimates with κ = 0.97 and the ERS data shown in Fig. 6.14.

Direct estimation of the mean predictor evolution

We calculated also the mean predictor evolution of order p = 6 for the
TV covariance of the (pseudo)ensemble xkt , k = 1, . . . , 20 directly from the
nonstationary covariance estimate as explained in Section 2.2.1. If data were from
an ensemble this estimate would asymptotically give the true optimal predictor
evolution. In the case of a pseudoensemble we can only obtain a mean predictor
evolution. We can, however, assume that since the first eigenvectors should (in this
case) closely resemble the mean evolution, we can compare these three estimates.

Since for each time t this is a p = 6 parameter estimate based on N = 20
observations, the estimates would have a large variance even if the data would form
a true ensemble. For this reason we smooth each parameter evolution according to
the smoothness priors assumption [76]. These evolutions are shown in Fig. 6.16.

The smoothness priors estimate is computed as follows. Let Φ̂k be the TV
covariance estimate of the k:th parameter evolution. The smoothness priors
estimate Φ̂SP

k is the solution to the problem

min
(
‖Φ̂k − Φ̂SP

k ‖2 + α2‖LΦ̂SP
k ‖2

)
, (6.3)

where L is usually the matrix corresponding to either the second or third order
difference operator and α is a constant that controls the trade-off between deviation
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and smoothness. To minimize the functional (6.3) we write

Φ̃k = (φ̂k(1), . . . , φ̂k(T ), 0, . . . , 0︸ ︷︷ ︸
T−3

)T

ΦSP
k = (φSP

k (1), . . . , φSP
k (T ))T

E = (e1, . . . , e2T−3)T

L̃ =



1
. . .

. . .
1

−1 3 −3 1
. . . . . .

−1 3 −3 1


W = diag (T−1, . . . , T−1︸ ︷︷ ︸

T

, α2, . . . , α2︸ ︷︷ ︸
T−3

)T .

We can now restate the problem as a weighted LS problem

minETWE, where
Φ̃k = L̃ΦSP

k +E .

The formal solution is
ΦSP
k = (L̃TWL̃)−1L̃TW Φ̃k ,

although it is numerically more stable to compute the conventional LS solution of
the modified problem

W 1/2Φ̃k = W 1/2L̃ΦSP
k +W 1/2E

with e.g. some orthogonalization scheme such as QR decomposition, whereW 1/2 is
the Cholesky factor of W , in this case W 1/2 = diag (T−1/2, . . . , T−1/2, α, . . . , α)T.

Also other TV covariance smoothing methods could be used. The most
common ones are sliding window estimates, see [133, 201, 200]. The smoothness
priors estimate, however, does not necessarily slow down the evolutions at all if the
matrix L corresponds to at least the second difference operator. For this reason
the smoothness priors estimate can be argued to suit better to the case at hand.

In Fig. 6.17 we show the predictor evolutions corresponding to the first
eigenvector of the hypothetical evolution, the smoothed TV covariance estimate
and the first eigenvector of the blind estimate. As can be seen, the TV covariance
follows more closely the hypothetical evolution than the blind estimate with respect
to the parameters φ2 and φ5. In the case of parameters φ3 and φ6 the situation
is reversed. Most notable is the behavior of the RLS estimate for the parameter
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Figure 6.16: Top: the predictor evolution corresponding to the TV

covariance estimate. Bottom: The corresponding smoothed evolution.
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Figure 6.17: The time varying predictors (normalized) corresponding to

the first eigenvector of the hypothetical evolutions (bold), first eigenvector

of the RLS estimates (medium) and the TV covariance estimate (weak).

φ2 that has the greatest effect on the location of the model pole that corresponds
to the peak at alpha band and therefore also to the bandwidth of the process.
The change in this parameter is much smaller than in the hypothetical and TV
covariance cases, the latter two of which seem to follow each other well. This
is a demonstration of the complex serial and inter-parameter correlations when
an adaptive predictor is used. The phenomenon can be partly explained by the
common behavior of the adaptive filters that the tracking speed is not symmetrical
with respect to the transitions from large process (prediction error) variance epochs
to small variance epochs and vice versa.
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Figure 6.18: The TV (amplitude) spectrum estimate corresponding to

the TV covariance estimate. Vertical scale is arbitrary.

The time-varying spectrum estimates

The modified TV spectrum estimates for the smoothed TV covariance estimate
and the evolution corresponding to the first eigenvector of the blind estimate, that
is,
√
λ1v̂1(κ) are shown in Figs. 6.18 and 6.19, respectively. The notion “modified”

is to be taken in the sense of [164], that is, the prediction error variance σ2
e(t) is

set to unity for all t. The reason for this here is that the estimation of the time-
varying process (prediction error) variance is a very difficult problem that has no
general solution. We do not attempt to solve this problem here. Several ad hoc
methods evolve immediately, such as LP filtering or smoothness priors estimate of
the mean squared prediction errors N−1

∑
k(e

k
t )

2. However, it turns out that in
this case it is very difficult to make these methods robust. It is possible that the
projection of the mean squared prediction errors onto an appropriately selected
subspace could be a feasible approach in this case. This is, however, no solution
to this problem in general.

The main problem with AR model based TV spectrum estimation can clearly
be seen from these figures and Fig. 6.20. This is the sensitivity of the spectra to
small changes in the modulus of the model roots near the unit circle. Nevertheless,
at least the qualitative nature of the evolution of the alpha activity is clearly visible
in Figs. 6.18 and 6.19 although the latter contains more alpha activity on the pre-
stimulus period. The effect of the small upward swing in v̂1 corresponding to φ2(t)
that can be seen in Fig. 6.17 at about the time of the trigger (t = 80) is clearly
seen Fig. 6.19 as a downward swing in the alpha activity.
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Figure 6.19: The TV (amplitude) spectrum estimate corresponding to the

first eigenvector of the RLS covariance estimate. Vertical scale is arbitrary.

The estimation of the alpha activity

It is clear that the blind estimates that are based on a sample of sizeN = 20 are not
suitable for the estimation of the differences between the evolutions, and therefore
not for evolution of the alpha activity. As an example we show in Fig. 6.20 an
observation together with the alpha component activities (STD’s) corresponding
to the TV covariance estimate and MTVARLS estimates with Blind estimates for
the basis for M = 1, . . . , 4. It is clearly seen that the case M = 2 is no different
from the case M = 1 and that the cases M = 3, 4 are clearly meaningless. In
Fig. 6.18 we show the approximate alpha component spectrum corresponding to
the TV covariance estimate.

6.4 Discussion

We have discussed the possibility of using adaptive predictors (filters) in the aid
in estimating basis functions for the modified TVARLS scheme. To this end we
evaluated the ability of the RLS algoritm to extract the true eigenspace structure
using simulations. This was done in the case of a relatively large sample size
(N = 1000) and a small sample size (N = 20) that is relevant in the case of the
application of the method to the estimation of ERD/ERS dynamics.

It was found that even in the large sample case the forgetting factor RLS
algorithm was able to extract only first few eigenvectors. This was due to (at
least) the following reasons.

1. Although the uniform distribution of the hypothetical evolutions does not
induce uniformity of the distribution of the parameter estimates, the sample
size N = 1000 seems to be too small.
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Figure 6.21: The TV (amplitude) spectrum estimate corresponding to the

alpha band factor obtained from the approximate spectral factorization of

the (smoothed) TV covariance estimate

2. The maximum rate of evolution seems to necessitate the use of a forgetting
factor κ = 0.95 or smaller. This would in turn require an even larger
number of realizations since the realizations-wise variance of estimates
would become larger.

It must be remembered that one of the main motivations for this study was
that the transitions could not be assumed either to be abrupt or slow in the
classical sense.

Comparison of eigenvalue decays

It is also interesting to compare the eigenvalue decay rates of the hypothetical
case (learning set), the blind estimates of the simulations and the ERS data.
These are shown in Table 6.3. The fact that the decay rate in the case of the
simulations is slower than with the optimal subspaces is clear since the adaptive
predictor estimates have to add to the variability of the original evolutions if these
evolutions are to be estimated in the first place. This would not be the case when
κ → 1 in which case all individual predictor estimates would tend to constant
evolutions.

More notable is the structure of the eigenvalue decay in the case of blind
estimates of ERS data. If we take the simulation case to decay slowly but steadily,
in the ERS case λ2 is much larger than with the simulations and there is a
pronounced step between λ2 and λ3 after which the decay is slow. The eigenvalues
λk, k = 3, . . . , 5 are, however, considerably smaller than in the case of simulations.
There are many possible explanations for this phenomenon but these can not be
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verified without knowledge on the distributions of the original data and the blind
estimates.

However, it can be said that the phenomenon relates to the variability of the
evolution estimates. Thus the evolutions of the ERS data can be approximated
with subspaces of smaller dimension than the simulation estimates. Since the
increase in the variability due to the RLS estimates is the same in both cases, it
can be said that the variability in the hypothetical pseudoensemble is larger than
in true ERS data. Since the initial and final states were estimated from the same
data at least the following explanations are possible: the initial and final state
distribution estimates were too wide, the transitions and states were correlated in
ERS data, the hypothetical transition dynamics was too complex and/or the true
differences in the optimal predictor evolutions of ERS data are of more random
nature than the hypothetical evolutions. These possibilities could be investigated if
enough data could be collected to obtain very accurate estimates for, say, M = 10
largest eigenvalues and the corresponding eigenvectors.

Table 6.3

The eigenvalue decays corresponding to the optimal hypothetical subspace, the
corresponding simulations and the ERS estimates. The figures are scaled so that
λ1 = 1 in all three cases.

Case λ2 λ3 λ4 λ5
Optimal 0.0204 0.0126 0.0115 0.0069
Simulations, κ = 0.97 0.0287 0.0189 0.0178 0.0154
ERS, κ = 0.97 0.0349 0.0141 0.0122 0.0087

Separate basis estimates

It is possible that the separation of the estimation of the basis for different
parameters could be a feasible alternative. This would mean that we would
use the conventional TVARLS scheme and estimate the basis function for each
parameter separately. The gains and losses as compared to the MTVARLS
scheme are evident. We could have, say, four basis functions for each parameter
and would in principle be able to model the initial and final states, transition
times and transition rates for each parameter evolution separately. The total
degrees of freedom would then be 4 · 6 = 24 that is just one tenth of the data
on the observation interval. This ratio can be considered to be somewhat too
small. Again, the separate bases would allow the changes in individual parameter
evolutions to happen at different times. This is not possible with the MTVARLS
basis corresponding to the hypothetical evolution.

On the other hand, the correlations between the initial and final states would
largely be lost and the final states would approximately equal to stationary AR
model estimates that are calculated from the initial and final segments. In the
hypothetical evolution of Chapter 5 the initial and final states were assumed to be
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Figure 6.22: The first three eigenvectors (in decreasing boldness of line

styles) corresponding to the covariance of the centered sigmoids.

independent but this was just an ad hoc choice. In the case of MTVARLS scheme
and blind estimates for the basis this would not be the case.

With the hypothetical evolutions, the first basis vector would be set to unity
and the eigenvectors for k > 1 would be obtained from the covariance of σk�(t)−1/2
(the sigmoidal model evolutions, see Fig. 5.2). The first three of these eigenvectors
are shown in Fig. 6.22. It can be seen that for the most part the coefficients
corresponding to the constant function and the first eigenvector determine the
initial and final states, the second eigenvector determines the transition instant
and the third eigenvector determines the rate of change of the transition.



CHAPTER VII

Conclusions

Since the 1970’s the trend in time series analysis and system identification has
been towards nonstationary and nonlinear (not normally distributed) analyses.
Several classes of methodologies have been developed for both cases. Although
the methods used in EEG analysis usually assume both stationarity and linearity,
it is well known that these assumptions are not valid and in many cases not even
approximately valid. This thesis is concerned with the analysis of nonstationary
EEG.

In a general setting there are limits in the performance of nonstationary
analyses. For example, in nonstationary spectral estimation the time-frequency
uncertainty principle is a fundamental limit. This principle does not depend on
the estimation method but is a consequence of the definition of spectrum and the
Cauchy-Schwartz inequality. The situation is different when prior information on
the process is available. The problem is then usually that the information is such
that it can not be implemented into the estimation algorithms easily. For example
in nonstationary spectrum estimation the inherent uncertainties can be partially
avoided when certain structural information on the process evolution is available.

The adaptive algorithms that are able to track the process or system
parameters continuously have been proposed to be used in nonstationary time
series analysis from the 1960’s on when they were first conceived. Several
adaptive algorithms have been suggested to be used also to estimate nonstationary
EEG. Till the end of 1980’s the performance analysis of adaptive algorithms was
concentrated on transient analysis while the studies on true tracking performance
were uncommon. Since that it has turned out that the analytical results on true
tracking performance are not easy to use to optimize and analyze the algorithm
performance. One has then usually to resort to simulations in the evaluation of
the algorithm performance. The problem can then be that there are no easy ways
of producing realistic nontrivial simulations with adequate variability.

In this thesis we have presented new methods for the simulation and estimation
of nonstationary processes. Although the main application of the methods in this
thesis is EEG it is by no means the only possible application. On the other
hand, these new methods were originally motivated and developed by the specific
problems in EEG analysis, that is, generating simulations for Monte Carlo type

96
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performance evaluation of EEG analysis methods and the estimation of the event
related synchronization changes.

The proposed method for the simulation of scalp EEG is the first systematic
approach to the problem. Although some details of the method have been used
earlier, the realization of the state variabilities, the smoothing of the predictor
evolution and the overall composition are new. It was also demonstrated that
acceptable simulations can be realized with information based on very small
amount of data. It is also worth of noting that the method was developed in the
first place since there were no such methods previously and these were necessary
for the evaluation of the MTVARLS method which was the original aim of this
thesis.

In the second novel part of this thesis a new estimation method was developed
that is capable of taking into account prior information on the phenomenon.
This is called the modified time-varying autoregressive least squares (MTVARLS)
method. We believe that it is worth to explain shortly the train of thoughts
that led to the MTVARLS method. The MTVARLS method and the consept of
optimal subspaces grew gradually when we gained understanding of the TVARLS
method. One of the first problems associated with the TVARLS method was that
all the proposed bases (subspaces) were more or less of ad hoc type. A question
of possible optimality of the bases was then pursued. After some experimental
work and theoretical considerations it became clear that in general cases (such
as the prolate spheroidal wave bases in the low pass type parameter evolution
case) the performance of any basis with some optimality structure would not
be considerably better than, say, of generic polynomial basis. However, the
optimality of a basis scheme could be pursued if the variability of the nonstationary
covariances would not be too big. The event related synchronization changes
are examples of such cases. Once it was conceived that in this case it was
possible to construct a set of representative individual parameter evolutions, the
use of principal component analysis with this hypothetical ensemble to obtain
low-dimensional approximations arose immediately. The problem was still that
although, in a way, the individual parameter dynamics could be controlled in this
way, the information on the interrelations and correlations between e.g. initial
and final states could not be implemented in the ordinary TVARLS scheme in
any feasible way. It was then realized that the parameter evolutions could not be
treated and estimated individually. This meant that the parameter evolutions had
to be concatenated and that these concatenations should be treated as primary
variables. The principal component analysis of these variables led to a subspace
constraint of the TVARLS scheme that we call the MTVARLS scheme. This is the
theory presented in this thesis. The obvious Bayesian extension of the approach
is not pursued in this thesis. The method was then applied to the estimation of
event related synchronization.

The final part of the thesis consists of a preliminary evaluation of the
MTVARLS method in a situation in which it is not possible to form a hypothetical
ensemble of expectable parameter evolutions. As a solution to this problem we
proposed the estimation of the parameter evolutions from samples using adaptive
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predictors and to use these estimates as the ensemble. This approach was called
blind estimation of MTVARLS subspaces. After discussing the possibilities for
analytical studies we studied the method experimentally to find whether the
principal component analysis of the adaptive predictor estimates could extract the
structure of the principal subspace of the true ensemble. This was done in both
large and small sample cases. It was found that although the blind estimation
for the basis could in principle be done, the required sample size can turn out to
be too large in most cases, especially in the case of event related synchronization
changes.

All methods proposed in this thesis can be said to be on theoretically sound
bases. The complexity of the ideas, as is often the case with nonstationary analyses,
does not, however, allow for any simple universal interpretation of the results
obtained with these methods. Furthermore, the applicability of the proposed
methods depends heavily on the characteristics of the end application and the
verification of the applicability of these methods can turn out to be tedious in
many cases.
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