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ABSTRACT

We have developed a standard comprehensive
front-end module for a speech recognition system.
Several standard front-ends have been
implemented, including mel cepstra, perceptual
linear prediction, filter bank amplitudes, and delta
features. The framework for this system was
carefully designed to ensure simple integration
with the speech recognition system. The modular
design of the software along with an intuitive GUI
allow a student of speech processing to easily
interchange algorithms and vary every aspect of
each model parameter, providing a powerful
tutorial. The code itself is written in tutorial
fashion, with a direct correlation between
algorithmic lines of code and equations in the
technical paper. The effectiveness of the different
front-end algorithms has been evaluated on a
common set of speech data.

1. INTRODUCTION

Before a computer can recognize human speech w
current technology, the speech must first be proces
into observation vectors representing events in t
probability space [14]. This process, known as sign
modeling, is the function of the front-end module
Using these acoustic observation vectors and so
language constraints, a network search algorith
(performed by a decoder) finds the most probab
sequence of events to hypothesize the textual cont
of the audio signal [14].

This paper describes the development and evaluat
of a standard comprehensive front-end module for
speech recognition system. Several standard fro
ends have been implemented, including mel cepstr
perceptual linear prediction, filter bank amplitude
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and delta features. The framework for this system w
carefully designed to ensure simple integration wi
the speech recognition system [5]. The code itself
written in tutorial fashion, with a direct correlation
between algorithmic lines of code and equations
this technical paper. This report aims to describe t
signal processing algorithms used in the ISIP fron
end.

2. HISTORICAL PERSPECTIVE

In order for the front-end to model useful observatio
vectors for speech recognition, it must extra
important features from the speech waveform that a
relatively insensitive to the talker and channe
variability which is unrelated to the message conte
[10]. The algorithms used by the front-end ar
composed almost entirely of standard sign
processing techniques, such as digital filter bank
linear predictive coding, and homomorphic analysi
These algorithms are successful because they mo
the speech signal consistently with the huma
auditory perceptual system —in the frequency doma
[2]. Specifically, the short time spectral envelope
needed since speech is a time-variant signal [1
Furthermore, the addition of physiological knowledg
of the vocal articulatory system can be applied to th
problem in order to increase recognitio
performance [10].

There are advantages and disadvantages to e
algorithm described in this paper. For example, whi
linear prediction (LP) coefficients can generally b
computed with fewer resources, the compressi
nature of the transformation makes the model le
robust to noise. Most current state of the art system
use one energy coefficient, twelve Fourier transform
derived cepstral coefficients, and delta and delta-de
derivatives of the first thirteen coefficients.
December 12, 1998
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3. OVERVIEW

This report is broken into two sections. First, a
overview of the general system structure is discuss
This section focuses mainly on the pre- and pos
processing, with only a cursory scan of the modelin
algorithms. This section also describes how the fron
end is interfaced to the full speech recognition syste
The second part of the report provides an in dep
look at the algorithms which form the heart of th
system, a description of the graphical user interfa
designed for this project, and the evaluation of the
algorithms.

4. SYSTEM STRUCTURE

The modular design of the front-end is shown i
Figure 1. After pre-processing (windowing and pre
emphasis are not shown on the diagram), three ba
operations can be performed on the speech sign
These general algorithms are filter bank amplitud
(FBA), the Fourier transform (FFT), and linea
prediction (LP) [16]. From the digital filter bank a
power estimation may be directly computed
Perceptual linear prediction (PLP) is a post-processi
step for LP coefficients, acting as a cascaded filt
The FT, LP, and PLP algorithms compute th
spectrum of the signal, which is then processed in
usable spectral parameters in one of two ways. T
first method is filter bank amplitudes, similar to th
general FBA algorithm which operated on the origin
signal. It computes a reduced number of averag
sample values from the spectrum. Computing th
cepstrum is an alternate method of processing t
spectrum. The details of these algorithms are furth
described in the next section.

4.1. Windowing and I/O

In order to extract short-term frequency informatio
from a time-varying speech signal, a window functio
must be applied. The simplest window function i
rectangular in shape; however, oftentimes mo
complicated shapes produce a more desira
windowed signal [17]. For speech processing, th
Hamming window is used almost exclusively [14]
The Hamming window is a special form of the gener
Hanning window, shown in equation (1), with

.αw 0.54=
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(1)

The user can vary the window duration, window typ
and frame duration. A physiological investigation int
the human auditory system reveals the quicke
movements of the vocal articulators are on the ord
of 10 ms. This means if the speech signal is averag
and evaluated (framed) every 10 ms, almost n
information will be lost. Since the window duration is
longer than the frame duration, efficient bufferin
algorithms reduce the I/O complexity of the task b
only reading in a single frame of data at each tim
step. Compared to the decoding phase of spee
recognition, a front-end’s computational cost i
negligible [14]. Nevertheless, poorly written code a
any stage in the process can bog down a product
system run in real-time.

4.2. Coefficient Concatenation

All coefficients from the various algorithms are
concatenated into a single observation vector for ea
frame. To interpret the meaning of a number from i
position, sequentially add up the number of eac
specified coefficient. For example, if energy an
twelve FFT-derived cepstral coefficients are specifie
the first number output is the energy, the fifth numb
is the fourth cepstral coefficient, etc. This is a
efficient method for passing parameters to th
network search algorithm because it decouples t
signal modeling information into a vector of pure
numbers for pattern recognition. The decoder ne
only be trained on the same coefficients as the t
data.

4.3. Vector Post-Processing

Higher order time derivatives of the signa
measurements can be added to better characte
temporal variations in the signal. Since th
measurements previously described operate on

single window of data, they are considered zeroth

order derivatives. First and second derivatives are n
commonly used in speech recognition systems.

w n( )
αw 1 αw–( ) 2πn Ns 1–( )⁄( )cos–

βw
----------------------------------------------------------------------------------=
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5. SIGNAL MODELING ALGORITHMS

The algorithms described in this section (with th
exception of delta features) operate on a sing
window of speech data. The code itself is written i
clear and simple form, referencing blocks of cod
directly to the equations described in this sectio
where applicable. New signal modeling algorithms a
added at this point in the structure.

5.1. Filter Bank Amplitudes

The digital filter bank is one of the most fundament
concepts in speech processing. A filter bank can
regarded as a crude model of the initial stages
transduction in the human auditory system. Each filt
in the digital filter bank is usually implemented as
linear phase filter. The filter equations for a linea
phase filter implementation can be summarized
follows:

, (2)si n( ) aFBi
j( )s n j+( )

j NFBi
1– 

 – 
  2⁄=

NFBi
1– 

  2⁄

∑=
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where denotes the coefficient for the

critical band filter. The number of filter banks
normally is odd when implementing linear phas
filters. The basic merit of the algorithm is that certai
filter outputs can be correlated with certain classes
speech sounds.

The output of filter bank analysis is a vector of powe
values for each frame of speech data. Usually the
values are combined with other parameters, such
mean energy, to form the final signal measureme
vector. Since the analysis is based entirely on line
processing, the technique is generally robust
ambient noise.

5.1.1.Fourier Transform-Derived Coefficients

Simple Fourier transform-based filter banks design
for front-ends obtain the desired frequency resolutio
on a mel-scale (the mel-scale is described on page
To implement this filter bank, the window of speec
data is transformed into the frequency domain by t
Fourier transform. The magnitude of the spectr
coefficients are then binned through correlation wi
triangular filters equally spaced on the mel-scale [19
As defined here, binning means that each spect

aFBi
j( ) j th i th
Figure 1. System block diagram
December 12, 1998
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FFT
LPC

FFT
LPC
coefficient is multiplied by the corresponding filte
gain; the bin value is the accumulation of every suc
product. Thus, each filter bank coefficient represen
the average spectral magnitude in the filter channel

, (3)

where represents the number of samples used

obtain the averaged value, represents

weighting function (filter gain), and is the
magnitude of the frequency response computed by
FFT.

5.1.2. Linear Prediction-Derived Coefficients

Linear predictive (LP) analysis is an estimate of th

autoregressive all-pole model of the short-ter

power spectrum of speech . Alternately, L
analysis is a means for obtaining the smooth

spectral envelope of . The major disadvantag

of the LP model in speech analysis is that

approximates equally well at all frequencies o
the analysis band. This property is inconsistent wi
human hearing, which tends to be nonlinear above 8
Hz. Consequently, LP analysis does not preserve

discard the spectral details of according t
auditory prominence. The perceptual linear predictio
algorithm, described in section [5.3], improves th
basic LP model.

The spectrum is computed through application of th
Fourier transform to the linear prediction coefficient
Since there are fewer points in the LP model, th
approach is more efficient. From this LP-derive
spectrum, filter banks are applied in exactly the sam
way as for the FT-derived spectrum. These coefficien
are known as LP-derived filter bank amplitudes.
comparison of the LP-derived spectrum with th
Fourier spectrum is given in Figure 2. From this w
can observe that the LP-derived spectrum is not ve
robust to noise and is unable to model the second pe
(also called the second formant) in the presence
noise.

Savg f( )
1

Ns
------- wFB n( ) S f( )

n 0=

Ns

∑=

Ns

wFB n( )

S f( )

A w( )
P w( )

P w( )
A w( )

P w( )

P w( )
ECE4773/Digital Signal Processing
e

m

P
ed

e

f
th
00
or

o
n
e

e
s.
is
d
e
ts

A
e
e
ry
ak
of

5.2. Mel Frequency Cepstral Coefficients

A mel is a psychoacoustic unit of measure for th
perceived pitch of a tone, rather than the physic
frequency. The correlation of the mel to the physic
frequency is not linear, as the human auditory syste
is a nonlinear system. A mapping between the m
scale and real frequencies was empirically determin
by Stevens and Volkman in 1940 [14]. The scale
roughly linear below 1000 Hz, then decay
logarithmically. It is described mathematically as:

. (4)

This nonlinear scale is invaluable to speech coding
that it reduces the sample space with minim
perceptual loss. In practice, filters banks are even
spaced along the mel scale. An overlay of the highe
six triangular filters on the spectrum of a speec
segment is shown in Figure 3. The bars below th
figure represent the filter bank amplitudes [19].

A homomorphic system is useful for speec
processing because it offers a methodology f
separating the excitation signal from the vocal tra
shape [14]. One space which offers this property is t
cepstrum, computed as the inverse discrete Four
transform (IDFT) of the log energy [3]. This signal is
by definition minimum phase, another useful propert
Cepstral coefficients are computed by the followin
equation:

Mel f( ) 2595 1( f 700⁄ )+10log=
Figure 2. LP vs Fourier spectrum
December 12, 1998
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, (5)

where is the average signal value in the

filter channel. In practice,fsfs the discrete cosin
transform may be used in lieu of the IDFT fo
computational efficiency.

A critical analysis of the cepstral variability acros
different speakers and channel conditions leads to
more robust acoustic model for automatic spee
recognition. The higher order cepstral coefficients a
more influenced by algorithmic artifacts of the LPC
analysis (the all-pole constraint, for instance
Alternately, the low cepstral coefficients vary
primarily due to variations in transmission, speak
characteristics, and vocal efforts [16]. A liftering
procedure,

, (6)

is used to weight the cepstrum and control the no
information bearing variabilities. For telephon

bandwidth speech, typically  is set to 24 [19].

Most state-of-the-art speech recognition systems us
front-end comprising of 12 Fourier transform-derive
mel-frequency cepstral coefficients and mean ener
as a first order model of the signal.

c n( ) 1
Ns
------ Savg k( ) e

j
2π

Ns
------kn

log
k 0=

Ns

∑= 0 n Ns 1–≤ ≤

Savg k( ) k
th

w n( )
1

L
2
--- 

  nπ
L

------sin+

0





=
n 1 2 … L, , ,=

n 0 n L>,≤

L
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5.3. Perceptual Linear Prediction

Perceptual linear predictive (PLP) analysis is
relatively new method for the analysis of speec
signals. It is an improvement over the widely used L
(Linear Predictive) analysis. In PLP analysis, the a
pole modeling is applied to an auditory spectru

derived by (a) convolving with a critical band
masking pattern, followed by (b) resampling th

critical band spectrum at approximately Bar
intervals, (c) pre-emphasis by a simulated fixed equ
loudness curve, and finally (d) compression of th
resampled and pre-emphasized spectrum through
cubic root non-linearity, simulating the intensity
loudness power law. The low order all-pole model o
such an auditory spectrum has been found to
consistent with several phenomena observed in spe
perception [9]. The block diagram of PLP Analysis i
shown in Figure 4.

After windowing, the real and imaginary componen
of the short-term speech spectrum are squared a
added to get the power spectrum,

. (7)

The spectrum is warped along its frequenc

axis into the Bark frequency  by

(8)

where is the angular frequency in rad/s. Th
resulting warped power spectrum is then convolve

P w( )

l

P w( ) Re S w( )[ ]2
Im S w( )[ ]+

2
=

P w( )
Ω

Ω w( ) 6 w 1200π( )⁄( ) w 1200π( )⁄ 2
1+[ ]

0.5
+

 
 
 

ln=

w

Figure 3. Mel-frequency spaced triangular filters
Figure 4.Block Diagram for PLP Analysis
December 12, 1998
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with the power spectrum of the simulated critical ban

masking curve ,

. (9)

The discrete convolution of with (the even

symmetric and periodic function) yields
samples of the critical band power spectrum,

. (10)

This convolution significantly reduces the spectr

resolution of in comparison with the origina

. This also allows for down sampling.

The sampled is pre-emphasized by
simulated equal loudness curve,

, (11)

where is an approximation to the nonequ
sensitivity of human hearing at different frequencie
and simulates the sensitivity of human hearing
about the 40 dB level. The particular approximation
given by:

, (12)

where , , and

. This pre-emphasized function is

then amplitude compressed using cubic ro
amplitude compression.

In practice, the convolution and preemphasis a

carried out for each sample of in the

domain by one weighted spectral summation p

spectral sample . Thus the spectral samp

 is then given as

ψ Ω( )

ψ Ω( )

0 Ω, 1.3–<

10
2.5 Ω 0.5+( )

1.3– Ω 0.5–≤ ≤,

1 0.5–, Ω 0.5≤ ≤

10
1.0 Ω 0.5–( )–

0.5, Ω 2.5≤ ≤
0 2.5, Ω<










=

ψ Ω( )
P w( )

θ Ωi( ) P
i 1.3–=

2.5

∑ Ω Ωi–( ) ψ Ω( )⋅=

θ Ω( )
P w( )

θ Ω w( )( )

Ξ Ω w( )[ ] E w( ) θ̇ Ω w( )[ ]•=

E w( )

E w( )
w2 k1+( )w4

w2 k2+( )2 w2 k3+( )
-------------------------------------------------=

k1 56.8 106×= k2 6.3 106×=

k3 0.38 109×=

Ξ Ωk( ) P w( )

Ξ Ωi( )

Ξ Ω wi( )[ ]
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The limits in the summation and the weightin

functions are computed from Equations (9), (11

and (14) using the inverse of (8), which is given by

(14)

The final operation of PLP analysis is th

approximation of by the spectrum of an all
pole model using the autocorrelation method of a
pole spectral modeling [12]. The principle is to appl
the inverse discrete Fourier transform (IDFT) t

and find the dual of its autocorrelation
function. The IDFT is the better choice here than th
inverse FFT, since only a few autocorrelation value

are needed. The first autocorrelation value
are used to solve the Yule-Walker equations for th

autoregressive coefficients of the th-order all-po
model. These PLP coefficients can be process
through the same methods as standard LP coefficie
to extract observation vectors.

The PLP-derived spectrum is more robust to noi
compared to the LP-derived spectrum. This
illustrated in Figure 5. It may be observed that th
PLP-derived spectrum is able to model the seco
formant in regardless of noise whereas the LP-deriv

Ξ Ω wi( )[ ] ωi w( )P w( )
w wil=

wih

∑=

ωi

w 1200π Ω
6
---- 

 sinh=

θ Ω( )

θ Ω( )

M 1+( )

M

Figure 5.PLP-derived spectrum
December 12, 1998
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spectrum was unable to as shown previously in Figu
2.. The comparison between the PLP-derive
spectrum and the FFT derived spectrum is not sho
in this figure because the PLP frequency axis
warped to the Bark scale.

5.4. Delta Features

The performance of a speech recognition system
enhanced greatly by adding time derivatives to th
basic static parameters. The first-order derivatives a
referred to as delta features; the second-ord
derivatives are referred to as delta-delta features.

In digital signal processing, there are several ways
approximate the first order time derivative of signal.

(15)

(16)

(17)

Equations (15) and (16) are known as backward a
forward differences, respectively. Equation (17)
often referred to as regression analysis. Similarly, t
second-order time derivatives are approximated
reapplying these equations to the output of the firs
order differentiator [19].

Since differentiation is inherently a noisy proces
computing derivatives of smoothed parameters
desirable. The regression analysis as shown
equation (17) is a popular way to achieve this resu
Since this equation computes difference

symmetrically placed around the sample at time ,

uses a combination of previous samples in ea
direction to compute the current value. Hence som
measure of smoothing is inherent.

Regression analysis is used in this front-end
compute delta features. The first formulation is simp
a weighted version of equation (17):

s∗ n( )
t∂

∂
s n( ) s n( ) s n 1–( )–= =

s∗ n( )
t∂

∂
n( ) s n 1+( ) s n( )–= =

s∗ n( )
t∂

∂
s n( ) ws n w+( )

w N–=

N

∑= =

n

N
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where is a delta coefficient at frame ,

and are static parameters before and next

the current frame coefficient , and is the delt

window size. Since the regression formula depends
past and future speech parameter values, so
modifications are required for the beginning and en
of the speech data. The formulas shown in (1
account for these conditions.

,

(19)

6. GRAPHICAL USER INTERFACE

While the front-end is capable of producing outpu
models consistent with other state of the art system
it can also be used to study the differences betwe
the different algorithms. A Tcl-Tk based graphica
user interface (GUI) is available to facilitate this use
interaction. This utility inherits the signal display
routine from the SWITCHBOARD Segmenter [4]. A
snap short of the GUI is shown in Figure 6.

The user can vary different parameters for ea
algorithm and study its effect on the output featu
vector. The option to run two or more algorithms a
the same time is also available, enabling the user
compare the performance of different algorithms wi
respect to any parameter of interest. Of course au
capabilities are present, either the entire utterance

dn

w c
n w+ c

n w––( )
w 1=

dw

∑

2 w
2

w 1=

dw

∑
-----------------------------------------------------------=

dn n c
n w–

c
n w+

cn dw

dn

w c
n w+ c0– 

 

w 1=

dw

∑

2 w
2

w 1=

dw

∑
------------------------------------------------= n dw<,

dn

w cdw c
n w–– 

 

w 1=

dw

∑

2 w
2

w 1=

dw

∑
---------------------------------------------------= n dw>,
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the currently displayed window can be played. A
algorithmic parameters (window type, LP order, etc
can be varied in the configuration window, shown i
Figure 7.

7. EVALUATION

While the preferred method of evaluation would hav
been to study the effects of the front-end algorithm
on the overall speech-to-text word error rate (WER
this is not a plausible course of action due to th
current state of development of the ISIP recognitio
system. The ISIP recognizer does not current
support a training mode, which means it cannot u
feature vectors generated by our front-end to train t
acoustic models. The only acoustic models availab
to the ISIP recognizer are based on external softwa
so any WER experiments would suffer greatly from
mismatched acoustic information. Instead, a state-
the-art phone classification system is used to evalu
the effectiveness of each feature extraction algorith
The data used is a subset of the OGI Alphadig
Corpus [1]. The Alphadigit Corpus was chose
ECE4773/Digital Signal Processing
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because it has similar acoustic conditions
SWITCHBOARD [8], yet the Alphadigit task is
significantly easier and forced alignments will b
more accurate.

A frame duration of 10 ms. and a window duration o
25 ms. is used for data generation. The coefficie
vectors generated include 12 mel scaled cepst
coefficients, mean energy, and 24 filter ban
amplitudes. These features are generated for e
algorithm, namely FFT, LPC and PLP. A LP order o
14 and PLP order of 5 is used.

The first classification technique employed is
Support Vector Machine (SVM) [7]. The core
component in this paradigm is SVMLite, an SVM
toolkit which is available as freeware. This SVM
package can be applied to large datasets and
capable of handling classification tasks with tens
thousands of support vectors.

Since SVMs are a recent addition to the suite of too
commonly used by speech researchers, we levera
Figure 6. Screen capture of the graphical user
December 12, 1998
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indigenous expertise in decision trees [11] to veri
the results of one experiment. A Bayesian decisio
tree was trained and evaluated on the same data as
SVM for the FFT_MFCC features.

By comparing the output of this classifier and th
reference information, which can be obtained by th
state-level forced alignments of the input speech da
we evaluated the performance of each algorithm.
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8. RESULTS AND CONCLUSIONS

The training for the classification technique
described above was performed on 200 frames p
phone and the testing used 80 frames per phone. T
results from the classification techniques are given
Table 1.

Nothing useful may be concluded from these numbe
except for the fact that our evaluation was severe
flawed.

The first thought upon seeing these numbers is tha
better understanding of the SVM toolkit is needed
improve performance. To test this hypothesis,
decision tree experiment was run for one cas
Unfortunately, the decision tree confirmed the po
results of the SVM experiment.

However the features do obey theoretical trends a
are comparable with those of HTK, a state-of-the-a
commercial recognizer. A comparison of the firs
cepstral coefficient is give in Figure 8. The plo
indicates a nearly constant difference between the t
due to pre-scaling of the data by the HTK front-end.
true evaluation of the front-end module involving ful
recognition experiments will be necessary to veri
the validity of its output.

As neither classification technique seemed able
properly discriminate between the phones, yet t
visual inspection of the coefficients suggest validit

Algorithm
Classification Error

SVM DT

FBA 96.3

FFT_FBA 92.7

FFT_MFCC 80.7 78.8

LPC_FBA 95.1

LPC_MFCC 77.8

PLP_FBA 91.9

PLP_MFCC 91.5

Table 1: Classification Errors
Figure 7.Configuration Window for the GUI
December 12, 1998
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the fault must be either in the data preparation or t
experimental paradigm itself. Statistical inspection
the training and testing data showed huge within cla
variance, generally an order of magnitude larger th
the distance between the means of other classes.

The most likely factor is improper correlation betwee
the forced alignment time markers and our feature
Visual inspection of the audio file and forced
alignments show a variable skew between 5 and
frames (0.15 seconds). In other words, the fram
numbers shown in the alignments do not match t
absolute time within the audio signal. The HTK
recognizer prunes away data from the beginning a
end of the utterance, so time-marks are not relative
the first sample in the file. Also, these alignments we
obtained using error prone monophone models (
opposed to more state-of-the-art crossword triphone

Hypothesizing that HTK generated features wou
match the HTK generated alignments, a decision tr
classification experiment was run with 300 FFT
MFCC features for each phone. This experime
produced an open loop error of 95%. Visual an
statistical inspection of the HTK generated data aga
showed extremely high variance and misalignmen
Further inspection into the HTK recognizer i
necessary to ascertain the absolute time of t
alignment markers before meaningful classificatio
results may be conducted.

9. SUMMARY

The processing of speech data into observation vect
which represent events in the probability space
ECE4773/Digital Signal Processing
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performed by the front-end module. Frequenc
domain signal analysis techniques tend to be mo
insensitive to talker and channel variability than tim
domain approaches, thus extracting more use
information for speech-to-text systems. The standa
algorithms employed are mean energy, digital filte
banks, the Fourier transform, linear prediction, th
cepstrum, and difference equations. Physiologic
knowledge of the human auditory and voca
articulatory systems is applied (the mel and Ba
scales, perceptual linear prediction, frame duratio
etc.) to the standard signal processing techniques
better model speech and increase recogniti
performance.

All software for this front-end module was develope
in C++ using the public-domain GNU compiler. Ou
software is comprehensive, allowing the use
complete control over all aspects of the sign
modeling process. This includes algorithm selectio
frame and window duration, and internal paramete
A Tcl-Tk based graphical user interface (GUI) is als
available to facilitate user interaction with the
numerous parameters. The GUI allows the user
vary different modeling parameters and study th
effect on the output observations. It also assists in t
comparison of different algorithms on the same dat

While the classification experiments are inconclusiv
visual comparison of the first order coefficients to
reference system suggest the validity of our feature
The most likely problems in the evaluation ar
improper phone alignment markers, stemming eith
from lack of understanding of HTK recognizer outpu
or poor performance of the recognizer in force
alignment mode due to the use of monophone HMM

The front-end module described in this pape
interfaces directly with the ISIP speech recognitio
system. A public domain implementation of al
algorithms examined is available [6].

10. FUTURE WORK

The most obvious continuance of the work describ
in this paper is to run speech recognition experimen
A Viterbi training mode will be available to the ISIP
recognizer by the end of the year. No longe
encumbered by this limitation, real experiments ma
Figure 8.Comparison of the second FFT_MFCC
December 12, 1998
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be run to compare signal modeling parameters
recognizer accuracy.

Classification results would be helpful as an alterna
means for empirically optimizing the front-end. Th
source of failure in the current experiments is mo
likely the forced alignment output, either an offset i
present or the decoder does a poor job wi
monophone models. More powerful cross-wor
triphone models should be run for more accura
alignment information. If an offset still exists afte
running these models, its source (and inverse) must
uncovered.

The software itself leaves room for optimization. Th
current interface to the speech recognition system
text based, highly inefficient. Also, the final details o
standardization to strict software engineerin
guidelines have yet to be applied.

Once the performance of this software is empirical
verified and the code is standardized, this front-e
module will take its place as an integral part of th
public domain speech recognition system.
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