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ABSTRACT and delta features. The framework for this system was
carefully designed to ensure simple integration with
the speech recognition system [5]. The code itself is
written in tutorial fashion, with a direct correlation
between algorithmic lines of code and equations in
this technical paper. This report aims to describe the
signal processing algorithms used in the ISIP front-
end.

We have developed a standard comprehensive
front-end module for a speech recognition system.
Several standard front-ends have been
implemented, including mel cepstra, perceptual
linear prediction, filter bank amplitudes, and delta

features. The framework for this system was
carefully designed to ensure simple integration
with the speech recognition system. The modular 2 HISTORICAL PERSPECTIVE

design of the software along with an intuitive GUI

allow a student of speech processing to easily In order for the front-end to model useful observation
interchange algorithms and vary every aspect of vectors for speech recognition, it must extract
each model parameter, providing a powerful important features from the speech waveform that are
tutorial. The code itself is written in tutorial relatively insensitive to the talker and channel
fashion, with a direct correlation between variability which is unrelated to the message content
algorithmic lines of code and equations in the [10]. The algorithms used by the front-end are
technical paper. The effectiveness of the different composed almost entirely of standard signal
front-end algorithms has been evaluated on a processing techniques, such as digital filter banks,

common set of speech data. linear predictive coding, and homomorphic analysis.
These algorithms are successful because they model
1. INTRODUCTION the speech signal consistently with the human

auditory perceptual system —in the frequency domain

Before a computer can recognize human speech Wit “gpecifically, the short time spectral envelope is
purrent technplogy, the speech mus'_[ first be processefaged since speech is a time-variant signal [16].
into observation vectors I’epresentlng events In thgurthermore, the addition of phySiOIOgicaI knowledge

probability space [14]. This process, known as signalt e yocal articulatory system can be applied to the
modeling, is the function of the front-end module.

: _ ) roblem in order to increase recognition
Using these acoustic observation vectors and so

; > rformance [10].
language constraints, a network search algorithm

(performed by a decoder) finds the most probablgpere are advantages and disadvantages to each
sequence of events to hypothesize the textual ConteQFgorithm described in this paper. For example, while

of the audio signal [14]. linear prediction (LP) coefficients can generally be

i . _computed with fewer resources, the compressive
This paper describes the development and evaluatiq{hy e of the transformation makes the model less

of a standard comprehensive front-end module for g, ¢ 15 noise. Most current state of the art systems

speech recognition system. Several standard fronfise one energy coefficient, twelve Fourier transform-
ends have been implemented, including mel cepstr

s o i ! erived cepstral coefficients, and delta and delta-delta
perceptual linear prediction, filter bank amp“tUdes'derivatives of the first thirteen coefficients.
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3. OVERVIEW a,,—(1-a,)cos(2m/ (Ng—1))
w(n) = 5 (2)

This report is broken into two sections. First, an
overview of the general system structure is discussedhe user can vary the window duration, window type,
This section focuses mainly on the pre- and postand frame duration. A physiological investigation into
processing, with only a cursory scan of the modelinghe human auditory system reveals the quickest
algorithms. This section also describes how the frontmovements of the vocal articulators are on the order
end is interfaced to the full speech recognition systemsf 10 ms. This means if the speech signal is averaged
The second part of the report provides an in deptnd evaluated (framed) every 10 ms, almost no
look at the algorithms which form the heart of theinformation will be lost. Since the window duration is
system, a description of the graphical user interfaconger than the frame duration, efficient buffering
designed for this project, and the evaluation of thesalgorithms reduce the 1/0 complexity of the task by
algorithms. only reading in a single frame of data at each time
step. Compared to the decoding phase of speech
4. SYSTEM STRUCTURE recognition, a front-end’s computational cost is

The modular design of the front-end is shown innegllglble [14]. Nevertheless, poorly written code at

Figure 1. After pre-processing (windowing and Iore_any stage in the process can bog down a production

emphasis are not shown on the diagram), three bas?Q/Stem run in real-time.

operations can be performed on the speech signa).
These general algorithms are filter bank amplitudes”
(FBA), the Fourier transform (FFT), and linear All coefficients from the various algorithms are

prediction (LP) [16]. From the digital filter bank a concatenated into a single observation vector for each
power estimation may be directly computed.frame. To interpret the meaning of a number from its
Perceptual linear prediction (PLP) is a post-processingosition, sequentially add up the number of each
step for LP coefficients, acting as a cascaded filtespecified coefficient. For example, if energy and

The FT, LP, and PLP algorithms compute thetwelve FFT-derived cepstral coefficients are specified,
spectrum of the signal, which is then processed intéhe first number output is the energy, the fifth number
usable spectral parameters in one of two ways. Thig the fourth cepstral coefficient, etc. This is an

first method is filter bank amplitudes, similar to theefficient method for passing parameters to the
general FBA algorithm which operated on the originahetwork search algorithm because it decouples the
signal. It computes a reduced number of averagesignal modeling information into a vector of pure

sample values from the spectrum. Computing theumbers for pattern recognition. The decoder need

cepstrum is an alternate method of processing thignly be trained on the same coefficients as the test
spectrum. The details of these algorithms are furthegata.

described in the next section.

2. Coefficient Concatenation

4.3. Vector Post-Processing

4.1. Windowing and I/O _ _ o _
Higher order time derivatives of the signal

In order to extract short-term frequency informationmeasurements can be added to better characterize

from a time-varying speech signal, a window functiontemporal variations in the signal. Since the

must be applied. The simplest window function ismeasurements previously described operate on a

rectangular in shape; however, oftentimes mOrgjnqie window of data, they are considered ¥ero

complicated  shapes produce a more desirablg o, gerivatives. First and second derivatives are now
windowed signal [17]. For speech processing, theqmmonly used in speech recognition systems.
Hamming window is used almost exclusively [14].

The Hamming window is a special form of the general
Hanning window, shown in equation (1), with

a,, = 0.54.
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Figure 1. System block diagram

5. SIGNAL MODELING ALGORITHMS where agg(j) denotes theth  coefficient for the

The algorithms described in this section (with thecritical band filter. The number of filter banks
exception of delta features) operate on a singl@ormally is odd when implementing linear phase
window of speech data. The code itself is written infilters. The basic merit of the algorithm is that certain
clear and simple form, referencing blocks of coddilter outputs can be correlated with certain classes of
directly to the equations described in this sectiorfpeech sounds.

where applicable. New sighal modeling algorithms are

added at this point in the structure. The output of filter bank analysis is a vector of power
values for each frame of speech data. Usually these
5.1. Filter Bank Amplitudes values are combined with other parameters, such as

o _ mean energy, to form the final signal measurement
The digital filter bank is one of the most fundamentakector. Since the analysis is based entirely on linear

concepts in speech processing. A filter bank can bgrocessing, the technique is generally robust to
regarded as a crude model of the initial stages ofmbient noise.

transduction in the human auditory system. Each filter

in the digital filter bank is usually implemented as a5 1 1 Fourier Transform-Derived Coefficients

linear phase filter. The filter equations for a linear

phase filter implementation can be summarized aSimple Fourier transform-based filter banks designed

follows: for front-ends obtain the desired frequency resolution
on a mel-scale (the mel-scale is described on page 4).
To implement this filter bank, the window of speech

_40
B\'FBi 2 data is transformed into the frequency domain by the
s(n) = )3 acg (Hs(n+ ), 2) Fouri_e_r transform. Thg magnitude of the _spect_ral
0 0 [ coefficients are then binned through correlation with
=g FB, ~ 12 triangular filters equally spaced on the mel-scale [19].

As defined here, binning means that each spectral
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coefficient is multiplied by the corresponding filter Clean speech (25.3 dB SNR)Noisy speech (2.1 dB SNR)
gain; the bin value is the accumulation of every such
product. Thus, each filter bank coefficient represents
the average spectral magnitude in the filter channel,

N
SavdD = 1 3 WSO, ©)

Sh=0
where N represents the number of samples used|to —  FFT —  FFT
obtain the averaged valuewgg(n)  represents |a —tPC —tPC
weighting function (filter gain), andS(f) is the
magnitude of the frequency response computed by th ,
FFT.

Figure 2. LP vs Fourier spectrum

5.1.2. Linear Prediction-Derived Coefficients

. . . _ 5.2. Mel Frequency Cepstral Coefficients
Linear predictive (LP) analysis is an estimate of the

autoregressive all-pole mod@i(w)  of the short-termf® M€l is & psychoacoustic unit of measure for the

perceived pitch of a tone, rather than the physical
e o I‘pfrequency. The correlation of the mel to the physical
analysis is a means for obtaining the smoothegequency is not linear, as the human auditory system
spectral envelope oP(w) . The major disadvantagés a nonlinear system. A mapping between the mel

of the LP model in speech analysis is thA(w) Scale and real frequencies was empirically determined

approximated?(w) equally well at all frequencies ofby Stevens and Volkman in 1940 [14]. The scale is
PP quatly g roughly linear below 1000 Hz, then decays

the analysis band. This property is inconsistent with, o ithmically. It is described mathematically as:
human hearing, which tends to be nonlinear above 800
Hz. Consequently, LP analysis does not preserve or
discard the spectral details d?(w)  according to
auditory prominence. The perceptual linear predictio his nonlinear scale is invaluable to speech coding in
algorithm, described in section [5.3], improves thethat it reduces the sample space with minimal
basic LP model. perceptual loss. In practice, filters banks are evenly
spaced along the mel scale. An overlay of the highest
The spectrum is computed through application of theix triangular filters on the spectrum of a speech
Fourier transform to the linear prediction coefficientssegment is shown in Figure 3. The bars below this
Since there are fewer points in the LP model, thidigure represent the filter bank amplitudes [19].
approach is more efficient. From this LP-derived
spectrum, filter banks are applied in exactly the sam@& homomorphic system is useful for speech
way as for the FT-derived spectrum. These coefficientgrocessing because it offers a methodology for
are known as LP-derived filter bank amplitudes. Aseparating the excitation signal from the vocal tract
comparison of the LP-derived spectrum with theshape [14]. One space which offers this property is the
Fourier spectrum is given in Figure 2. From this wecepstrum, computed as the inverse discrete Fourier
can observe that the LP-derived spectrum is not verjransform (IDFT) of the log energy [3]. This signal is
robust to noise and is unable to model the second pedily definition minimum phase, another useful property.
(also called the second formant) in the presence dEepstral coefficients are computed by the following
noise. equation:

power spectrum of speecP(w) . Alternately,

Mel(f) = 25980g, 1+ f/700). 4)
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5.3. Perceptual Linear Prediction

Perceptual linear predictive (PLP) analysis is a
relatively new method for the analysis of speech
signals. It is an improvement over the widely used LP
(Linear Predictive) analysis. In PLP analysis, the all-
pole modeling is applied to an auditory spectrum
derived by (a) convolvind?(w) with a critical band

masking pattern, followed by (b) resampling the

critical band spectrum at approximatelly Bark

intervals, (c) pre-emphasis by a simulated fixed equal
|I " Il I I I loudness curve, and finally (d) compression of the
A1l o 111 1 resampled and pre-emphasized spectrum through the
Figure 3. Mel-frequency spaced triangular filters cubic root non-linearity, simulating the intensity-
loudness power law. The low order all-pole model of
Nq i-2%n such an auditory spectrum has been found to be
c(n) = Ni 3 10g[S,gk)le Ne 0<ns<N.-1,(5) consistent with several phenomena observed in speech
Sk=0 perception [9]. The block diagram of PLP Analysis is

th shown in Figure 4.
where S, 4(K) is the average signal value in tke

filter channel. In practice,fsfs the discrete cosind\fter windowing, the real and imaginary components
transform may be used in lieu of the IDFT for of the short-term speech spectrum are squared and
computational efficiency. added to get the power spectrum,

A critical analysis of the cepstral variability across P(w) = Rd § W]2+|m[S(V\)]2. (7)
different speakers and channel conditions leads to a

more robust acoustic model for automatic speecfihe spectrumP(w) is warped along its frequency
recognition. The higher order cepstral coefficients argxis into the Bark frequenc® by

more influenced by algorithmic artifacts of the LPC

analysis (the all-pole constraint, for instance).

Alternately, the low cepstral coefficients vary o) = ginHw/(1200m) + [w/ (120002 + 11°°8 (8)
primarily due to variations in transmission, speaker 0 0
characteristics, and vocal efforts [16]. A liftering

procedure, where w is the angular frequency in rad/s. The

resulting warped power spectrum is then convolved

+%Esin%[ n=12..L ©)

0 n<0,n>L Speech Critical Equal
Band Loudness

Analysis Pre-
Emphasis

w(n) =

DDDED

Intensity-
Loudness

Conversion

is used to weight the cepstrum and control the non-
information bearing variabilities. For telephone

bandwidth speech, typically is set to 24 [19].

Most state-of-the-art speech recognition systems use a Inverse
front-end comprising of 12 Fourier transform-derived Discrete
mel-frequency cepstral coefficients and mean energy Fourier
as a first order model of the signal. Transform

Solution for
Autoregressive
Coefficients

All-Pole
Model

Figure 4.Block Diagram for PLP Analysis
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with the power spectrum of the simulated critical band Wip
masking curvep(Q) 2wl = Y o(wP(w)  (13)
W= W
Ho Q<-1.3 The limits in the summation and the weighting
01074999 13<0<-05 functionswy, are computed from Equations (9), (11),
WQ) = 01 ~055Q<05 - 9) : . o
0 and (14) using the inverse of (8), which is given by
010%27%9 g5<0<25
5o 2.5<0 0
- : O
The discrete convolution ofp(Q)  with (the even W= 1200r[5'nhD§D (14)

symmetric and periodic function)P(w) yields

samples of the critical band power spectrum, The final operation of PLP analysis is the

approximation of8(Q) by the spectrum of an all-

25 pole model using the autocorrelation method of all-
B(Q) = 5 P(Q-Q)W(Q). (10)  pole spectral modeling [12]. The principle is to apply
i=-13 the inverse discrete Fourier transform (IDFT) to

This convolution significantly reduces the spectral®(Q) and find the dual of its autocorrelation

resolution ofB(Q) in comparison with the original function. The IDFT is the better choice here than the
inverse FFT, since only a few autocorrelation values

are needed. The fir§tM + 1)  autocorrelation values
The sampled B(Q(W)) is pre-emphasized by & used to solve the Yule-Walker equations for the
simulated equal loudness curve autoregressive coefficients of thd  th-order all-pole
’ model. These PLP coefficients can be processed
=[Q(W)] = E(w) * 8[Q(W)], (11) through the same methods as standard LP coefficients

to extract observation vectors.

where E(w) is an approximation to the nonequal _ _ _
sensitivity of human hearing at different frequencies! "€ PLP-derived spectrum is more robust to noise
and simulates the sensitivity of human hearing af®mPared to the LP-derived spectrum. This is

about the 40 dB level. The particular approximation id!lustrated in Figure S. It may be observed that the
given by: PLP-derived spectrum is able to model the second

formant in regardless of noise whereas the LP-derived

P(w) . This also allows for down sampling.

(W2 + ky)w?
(W2 + Ky) % (W2 + Kg) '

E(w) = (12) Clean speech (25.3 dB SNR)  Noisy speech (2.1 dB SNR)

where k; = 56.8x 1¢, k, = 6.3x 16®, and

kg = 0.38x 1@. This pre-emphasized function is

then amplitude compressed using cubic root
amplitude compression.

In practice, the convolution and preemphasis ar
carried out for each sample af(Q,) in tH&(w)

domain by one weighted spectral summation pe
spectral sample=(Q;) . Thus the spectral sampl

=[Q(w;)] is then given as . ,
Figure 5.PLP-derived spectrum
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spectrum was unable to as shown previously in Figure dw

2.. The comparison between the PLP-derived > w(C . \w=C _w

spectrum and the FFT derived spectrum is not shown d = W= 1 (18)
in this figure because the PLP frequency axis is . dw '

warped to the Bark scale. 2y w

w=1
5.4. Delta Features : -
whered, is a delta coefficient at frame G _
The performance of a speech recognition system is _
enhanced greatly by adding time derivatives to th@&ndC_ ,, are static parameters before and next to

basic static parameters. The first-order derivatives are

referred to as delta features; the second-ordetrecurrent frame coefficiert, ,amdw s the delta

derivatives are referred to as delta-delta features. ~ window size. Since the regression formula depends on
past and future speech parameter values, some
In digital signal processing, there are several ways tg1odifications are required for the beginning and end

approximate the first order time derivative of signal. of the speech data. The formulas shown in (19)
account for these conditions.

w

st(n) = %s( n) = s(n)—s(n-1) (15) dw
Z WEbn +WwW COD
_ i _ _ d.=W= 1 ,n<dw,
s{(n) = =-(n) = s(n+1)—s(n) (16) n T
>
a N w=1
sHn) = 5s(n) = § ws(n+w) (17) dw
ot = WHCw—C _
w = -N Z w n— WU
Equations (15) and (16) are known as backward and d, = w=1 - ,n>dw (29)
forward differences, respectively. Equation (17) is 2 s W2
often referred to as regression analysis. Similarly, the W=1

second-order time derivatives are approximated by
reapplying these equations to the output of the first-
order differentiator [19].
6. GRAPHICAL USER INTERFACE

computing derivatives of smoothed parameters igNh'Ie the frqnt—end IS capable of producing output
odels consistent with other state of the art systems,

desirable. The regression analysis as shown i|t can also be used to study the differences between
equation (17) is a popular way to achieve this result, . ) .
. (17) Pop y he different algorithms. A Tcl-Tk based graphical

Since this equation computes differences : ) . o )
_ d P _ _user interface (GUI) is available to facilitate this user
symmetrically placed around the sample at time

» fnteraction. This utility inherits the signal display
uses a combination oN  previous samples in eacloutine from the SWITCHBOARD Segmenter [4]. A
direction to compute the current value. Hence somenap short of the GUI is shown in Figure 6.
measure of smoothing is inherent.

Since differentiation is inherently a noisy process

The user can vary different parameters for each
Regression analysis is used in this front-end talgorithm and study its effect on the output feature
compute delta features. The first formulation is simplyector. The option to run two or more algorithms at
a weighted version of equation (17): the same time is also available, enabling the user to
compare the performance of different algorithms with
respect to any parameter of interest. Of course audio
capabilities are present, either the entire utterance or
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Figure 6. Screen capture of the graphical user

the currently displayed window can be played. Allbecause it has similar acoustic conditions to
algorithmic parameters (window type, LP order, etc. SWITCHBOARD [8], yet the Alphadigit task is
can be varied in the configuration window, shown insignificantly easier and forced alignments will be
Figure 7. more accurate.

7. EVALUATION A frame duration of 10 ms. and a window duration of
_ _ 25 ms. is used for data generation. The coefficient
While the preferred method of evaluation would havevectors generated include 12 mel scaled cepstral
been to study the effects of the front-end algorithm%oeﬁicients mean energy, and 24 filter bank
on the overall speech-to-text word error rate (WER), it des. These features are generated for each

this is not a plausible course of action due to thealgorithm namely FFT, LPC and PLP. A LP order of
current state of development of the ISIP recognition; 4 o4 PLP order of 5 ’is used. '

system. The ISIP recognizer does not currently

support a training mode, which means it cannot Usy» first classification technique employed is a
feature vectors generated by our front-end to train th upport Vector Machine (SVM) [7]. The core
acoustic models. The only acoustic models ava"ablﬁomponent in this paradigm is SVML.ite an SVM
to the ISIP recognizer are based on external SOftwar‘?oolkit which is available as freeware. "I'his SVM

so any WER experiments would suffer greatly from,, 206 can be applied to large datasets and is
mismatched acoustic information. Instead, a state-o capable of handling classification tasks with tens of

the-art phone classification system is used to evalua{ﬁousands of support vectors

the effectiveness of each feature extraction algorithm. '

The data usedhls alshlbg_et_ of the OGI Alphsd'g't%ince SVMs are a recent addition to the suite of tools
Corpus [1]. The Alphadigit Corpus was Chosen.,ymqniyv used by speech researchers, we leveraged
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[*] I5IF Front_end Configuration | 8. RESULTS AND CONCLUSIONS
Window T — + The training for the classification techniques
1nCow-Type anning described above was performed on 200 frames per
_ _ phone and the testing used 80 frames per phone. The
Window Duration ¥ 0.020 & results from the classification techniques are given in
Table 1.
Frame Duration ¥ 0,010 4
Sample Frequency ¥ oo A _ Classification Error
Algorithm
Number of Channels 1 F 3 SVM DT
Current Channel 0 F 3 FBA 96.3
_ FFT_FBA 92.7
Number of Filter Banks ¥ 24 A -
FFT_MFCC 80.7 78.94
LP Order ¥ 14 A
LPC_FBA 95.1
Uze Pre-emphaziz u PLP_FBA 91.9
Preemphasis Coefficient W 0,97 A PLP_MFCC 91.5
Table 1: Classification Errors
lze Liftering
Nothing useful may be concluded from these numbers
Lifter Coefficient ¥ 2z F 3 except for the fact that our evaluation was severely

flawed.
Swap Bytes

The first thought upon seeing these numbers is that a
Normalization u better understanding of the SVM toolkit is needed to
improve performance. To test this hypothesis, a
decision tree experiment was run for one case.
Unfortunately, the decision tree confirmed the poor
results of the SVM experiment.

(k, Cancel

Figure 7.Configuration Window for the GUI

indigenous expertise in decision trees [11] to VerifyHowever the featu_res do obey theoretical trends and
the results of one experiment. A Bayesian decisio®€ comparable with those of HTK, a state-of-the-art

tree was trained and evaluated on the same data as ffynmercial recognizer. A comparison of the first
SVM for the EET MECC features. cepstral coefficient is give in Figure 8. The plot

- indicates a nearly constant difference between the two
By comparing the output of this classifier and thedUe t0 pre-scaling of the data by the HTK front-end. A
reference information, which can be obtained by thérue evaluation of the front-end module involving full
state-level forced alignments of the input speech dat&€cognition experiments will be necessary to verify
we evaluated the performance of each algorithm.  the validity of its output.

As neither classification technique seemed able to
properly discriminate between the phones, yet the
visual inspection of the coefficients suggest validity,
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20.0 ' ' : performed by the front-end module. Frequency
~ Sinacwwp|{  domain signal analysis techniques tend to be more
insensitive to talker and channel variability than time
domain approaches, thus extracting more useful
information for speech-to-text systems. The standard
oo L | algorithms employed are mean energy, digital filter
banks, the Fourier transform, linear prediction, the
cepstrum, and difference equations. Physiological
-10.0 |- 4 knowledge of the human auditory and vocal
articulatory systems is applied (the mel and Bark
scales, perceptual linear prediction, frame duration,
etc.) to the standard signal processing techniques to
0.0 200.0 400.0 600.0 better model speech and increase recognition

Figure 8.Comparison of the second FFT_MFCC performance.

10.0 7

-20.0

the fault must be either in the data preparation or thé!l Software for this front-end module was developed
experimental paradigm itself. Statistical inspection of? C++ using the public-domain GNU compiler. Our
the training and testing data showed huge within clasgoftware is comprehensive, allowing the user
variance, generally an order of magnitude larger thaROmplete control over all aspects of the signal
the distance between the means of other classes. modeling process. This includes algorithm selection,
frame and window duration, and internal parameters.
The most likely factor is improper correlation between® T¢l-Tk based graphical user interface (GUI) is also
the forced alignment time markers and our featureivailable to facilitate user interaction with the
Visual inspection of the audio file and forced Numerous parameters. The GUI allows the user to
alignments show a variable skew between 5 and 1%ary different modeling parameters and study the
frames (0.15 seconds). In other words, the framé&ffect on the output observations. It also assists in the
numbers shown in the alignments do not match theomparison of different algorithms on the same data.
absolute time within the audio signal. The HTK o _ _ _
recognizer prunes away data from the beginning anWhile the classification experiments are inconclusive,
end of the utterance, so time-marks are not relative tgisual comparison of the first order coefficients to a
the first sample in the file. Also, these alignments weréeference system suggest the validity of our features.
obtained using error prone monophone models (akheé most likely problems in the evaluation are
opposed to more state-of-the-art crossword triphonesjnProper phone alignment markers, stemming either
rom lack of understanding of HTK recognizer output
Hypothesizing that HTK generated features would®f Poor performance of the recognizer in forced
match the HTK generated alignments, a decision tre@lignment mode due to the use of monophone HMMs.
classification experiment was run with 300 FFT- _ . _
MFCC features for each phone. This experimenthe front-end module described in this paper
produced an open loop error of 95%. Visual andnterfaces directly with the ISIP speech recognition
statistical inspection of the HTK generated data agaifiyStém. A public domain implementation of all
showed extremely high variance and misalignmeng@lgorithms examined is available [6].
Further inspection into the HTK recognizer is
necessary to ascertain the absolute time of the 10. FUTURE WORK

alignment markers before meaningful classificationrye most ohvious continuance of the work described
results may be conducted. in this paper is to run speech recognition experiments!

A Viterbi training mode will be available to the ISIP

9. SUMMARY recognizer by the end of the year. No longer
The processing of speech data into observation vectop§icumbered by this limitation, real experiments may
which represent events in the probability space is
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be run to compare signal modeling parameters on

recognizer accuracy.

Classification results would be helpful as an alternate
means for empirically optimizing the front-end. The[4]
source of failure in the current experiments is most
likely the forced alignment output, either an offset is
present or the decoder does a poor job with
monophone models. More powerful cross-word
triphone models should be run for more accurate
alignment information. If an offset still exists after [5]
running these models, its source (and inverse) must be

uncovered.

The software itself leaves room for optimization. The
current interface to the speech recognition system is
text based, highly inefficient. Also, the final details of
standardization to strict software engineerin

guidelines have yet to be applied.

Once the performance of this software is empirically
verified and the code is standardized, this front-end
module will take its place as an integral part of the

public domain speech recognition system.
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