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Chapter 1

Trends, Cycles and
Seasonality

1.1 Introduction
In time series analysis we study the probabilistic laws which determine how an
economic time series Wt (such as real GDP, the level of employment or the
S&P 500 ) moves over time. In general economic time series share a number
of characteristics and behave in a surprisingly similar manner. This means that
often one statistical methodology can be used to model almost all economic time
series, usually quite successfully.
We can think of Wt as having three components: 1) a trend Tt; re‡ecting

economic growth, 2) a cycle Yt; re‡ecting the say the business cycle, and 3) a
seasonal component St; re‡ecting such phenomena as the Christmas e¤ect on
consumption or the e¤ect of weather on construction. We thus write:

Wt = f(Tt; Yt; St): (1.1)

The trend Tt and seasonality St will be non-stationary; that is the laws which
determine how they move change over time. The cycle Yt; on the other hand,
will be assumed to be stationary; that is the laws governing how Yt moves will
not change over time.
To simplify the discussion, let us …rst assume that seasonality St plays no

role. This is a reasonable assumption if we are working with seasonally adjusted
data or data without a strong seasonal component such as exchange rates. Given
this assumption we can ignore St and write:

Wt = f(Tt; Yt): (1.2)

A economically sensible functional form for f (Tt; Yt) is log-linear where:

Wt = f(Tt; Yt) = Tte
Yt : (1.3)

1
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The cycle Yt then determines ifWt is above or below trend. Thus if Yt > 0 then
Wt > Tt and the series is above trend, while if Yt = 0 then Wt = Tt and the
series is on trend while if Yt < 0 then Wt < Tt and the series is below trend.
In logarithms (1:3) becomes:

ln (Wt) = ln (Tt) + Yt (1.4)

so that ln (Wt) can be additively decomposed into a trend and cycle term.

1.2 The Trend

There are two ways of modelling the trend: the Trend Stationary or TS approach
and the Di¤erence Stationary or DS approach. We will …rst discuss the older
and more traditional TS approach.

1.2.1 Trend Stationary Models

For the TS approach we imagine the trend grows deterministically as:

Tt = Ae
¹t (1.5)

where ¹ is the growth rate and A is the value of Tt at t = 0:
Substituting Tt = Ae¹t into (1:3) we have:

Wt = Ae
¹t+Yt : (1.6)

so if we then de…ne Xt as the logarithm of Wt as:

Xt ´ ln(Wt) (1.7)

then we get the linear relationship:

Xt = ®+ ¹t+ Yt (1.8)

where ® = ln(A):
Since Yt the cycle will be assumed to be stationary, we see that Xt; is sta-

tionary except for the trend ®+ ¹t; hence the terminology: trend stationary.
Suppose we have a sample of T observations: fW1;W2; : : :WTg of a particular

time series. For TS models we can obtain estimates of ® and ¹; the trend Tt
and the cycle Yt by applying ordinary least squares to (1:8). 1

If the data are expressed as annual rates (i.e., GNP per year and not say
GNP per quarter) then for the vast majority of economic time series we would
expect values of ¹ roughly in the range:

0 · ¹ · 0:1
1 It can be shown under quite general conditions that OLS and GLS are asymptotically

equivalent so that there is no loss of e¢ciency in using the simpler OLS:
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re‡ecting growth between zero and ten percent per year.
For example with post-war quarterly U.S. real consumption, which is plotted

below, we might obtain:

Xt = 6:48
(1479:58)

+ 0:0084
(196:1)

t+ Yt (1.9)

(the …gures in brackets are t statistics). If the data are expressed as consumption
per quarter, the coe¢cient on time is a quarterly growth rate. To convert to an
annual growth rate we multiply by 4 to obtain:

0:0084£ 4 = 0:034 (1.10)

or an annual growth rate of about 3:4%. Using the rule of 72 we would expect
this series to double about every:

72

3:4
¼ 20 years. (1.11)

From the regression in (1:9)we can obtain an estimate of the cycle Yt as the
least squares residual or:

Yt = Xt ¡ 6:48¡ 0:0084t: (1.12)

To interpret the numerical value of Yt use the following principle:

De…nition 1 If W1 and W2 are two numbers and X1 = ln (W1) and X2 =
ln (W2) then

¢X = X2 ¡X1
is (sensibly) de…ned as the percentage change from W1 to W2:

Proof. The usual de…nition of a percentage change is

g =
W2 ¡W1

W1
:

From a …rst-order Taylor series

ln(1 + x) t x

for x small (for example ln (1 + 0:04) = 0:0392 t 0:04 ) so that:

¢X = ln(W2)¡ ln(W1) = ln(1 +
W2 ¡W1

W1
) t W2 ¡W1

W1
= g:

Remark 2 De…ning percentages for discrete changes always involves an arbi-
trary choice of the base. For example g uses W1 as the base but we could equally
well use W2 or W1+W2

2 as the base.
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Remark 3 Given g we can calculate ¢X from ¢X = eg ¡ 1 while given ¢X
we can calculate g from g = ln (1 +¢X) : In practice there is usually little
di¤erence. For example if g = 0:04 or there is a 4% change, then ¢X =
e0:04 ¡ 1 = 0:0408 which would indicate a 4:08% change.

Using this de…nition of percentage we have:

Theorem 4 The numerical value of Yt is the percent by which the original
series Wt is above or below trend: Tt:

Proof. We have:

Yt = ln(Wt)¡ ln(Tt) (1.13)

so that Yt is the percentage deviation of Wt from trend Tt:
For typical macroeconomic time series we might therefore expect magnitudes

of Yt in the range ¡0:1 · Yt · 0:1, that is 10% above or below trend. You
certainly would not expect say Yt = 3, which would indicate the economy being
300% above trend. Such values (which do occur in practice!) typically indicate
programming or data entry errors.

Example 5 If you inspect Yt for say U.S. consumer durables, you will see that
in the early 1970’s Yt ¼ 0:05 indicating that Wt was about 5% above trend while
in the early 1980’s Yt ¼ ¡0:05 indicating that Wt was about 5% below trend.

1.2.2 Di¤erence Stationary Models

An alternative approach, made popular in the 1970’s by the work of Box and
Jenkins, is the di¤erence stationary (or DS ) approach. Here we set

Tt = e
¹Wt¡1; (1.14)

that is as the previous period’s value of Wt increased by ¹ £ 100% to re‡ect
growth from period t¡1 to t: SinceWt¡1 is random, it follows that the trend Tt
is random. This is unlike the TS approach where the trend is nonrandom.. It
is for this reason that people sometimes refer to DS models as stochastic trend
models.
Substituting (1:14) into (1:3) we obtain:

Wt =Wt¡1e¹+Yt : (1.15)

Again if we de…ne Xt ´ ln(Wt) we have:

Xt = Xt¡1 + ¹+ Yt (1.16)

or

¢Xt = ¹+ Yt: (1.17)
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where we use ¢ to denote di¤erences so that:

¢Xt ´ Xt ¡Xt¡1: (1.18)

Since Yt+¹ will turn out to be stationary, we see that Xt is stationary once
it is di¤erenced, hence the terminology: di¤erence stationary.
Now to obtain an estimate of the cycle Yt we regress ¢Xt on a constant. We

might for example obtain:

¢Xt = 0:008
(13:2)

+ Yt (1.19)

(where the …gure in brackets is the t statistic) and the implied annual growth
rate:

0:008£ 4 = 0:032 (1.20)

or 3:2% per year.
The cycle Yt for the DS model can be obtained as the least squares residual

from this regression or:

Yt = ¢Xt ¡ 0:008: (1.21)

In general the DS cycle will be very di¤erent than the TS cycle for the same
series, displaying much less persistence.
To interpret the numerical value of Yt we can use:

Theorem 6 The numerical value of Yt for the DS model is the amount by
which the growth rate of the series Wt exceeds the average growth rate ¹:

Proof. This follows since the growth rate of Wt at time t is:

¢Xt = ln(Wt)¡ ln(Wt¡1); (1.22)

so that

Yt = ¢Xt ¡ ¹ (1.23)

and hence Yt is the extent to which the current growth rate ¢Xt is above or
below the average growth rate ¹.
In general we would expect values of Yt (in terms of annual growth rates)

roughly in the range

¡0:03 · Yt · 0:07: (1.24)

It is of course possible to …nd values outside this range but you should stop and
think if you do. If you …nd say Yt = 10 , which would imply 1000% growth,
then this clearly makes no economic sense so that something like a programming
error or an incorrect data entry has occurred.
You can see the DS cycle Yt for US real consumption, along with its TS

counterpart in the graph above.
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1.3 Seasonality

1.3.1 Introduction

Many economic time series have a strong seasonal component. For much of what
we do, if you ignore this seasonality you will seriously compromise your results.
This is because seasonality is a form of nonstationarity and generally speaking
most of the methods we use require stationarity. So if after plotting a time series
you …nd that it has a strong seasonal component, it is very important that you
either 1) obtain the seasonally adjusted version of the series or 2) seasonally
adjust the data yourself. Below we discuss a few methods for doing the seasonal
adjustment yourself.

1.3.2 TS and Seasonal Dummies

Suppose that we are using the TS approach. Without seasonality we would
have:

Xt = ®+ ¹t+ Yt: (1.25)

Suppose there are S is the number of periods in one year. For quarterly
data then S = 4 while for monthly data S = 12: One strategy for dealing with
seasonality is to replace the intercept ® with S dummy variables

d1t; d2t; : : : dst

so that:

Xt =
SX
j=1

®jdjt + ¹t+ Yt: (1.26)

To obtain Yt; the cycle, would then run least squares on Xt with S seasonal
dummies and a time trend and take Yt as the least squares residual.
For example with quarterly data (or S = 4 ) one would have four dummy

variables so that:

Xt = ®1d1t + ®2d2t + ®3d3t + ®4d4t + ¹t+ Yt (1.27)

where:

dit = 1; if t is in quarter i; dit = 0 otherwise (1.28)

i = 1; 2; 3; 4:

With consumption data we would expect ®4 > ®1; re‡ecting the Christmas
e¤ect on consumption.
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1.3.3 DS with Seasonal Dummies

For the DS model with seasonality a reasonable assumption is that the growth
rate varies according to the period we are in. Thus instead of:

¢Xt = ¹+ Yt (1.29)

we would have:

¢Xt =
SX
j=1

¹jdjt + Yt: (1.30)

To obtain the cycle Yt one would therefore regress ¢Xt on the S seasonal dum-
mies and obtain Yt as the least squares residual.
For example with quarterly data we would have:

¢Xt = ¹1d1t + ¹2d2t + ¹3d3t + ¹4d4t + Yt (1.31)

so that to obtain the cycle Yt one would regress ¢Xt on four seasonal dummies
and obtain Yt as the least squares residual.

1.3.4 Seasonal Di¤erencing

Another approach to seasonality which was made popular by Box and Jenkins
is to seasonally di¤erence. Here instead of (1:14) the trend takes the form:

Tt =Wt¡se¹t: (1.32)

This leads to:

Xt ¡Xt¡s = ¹+ Yt (1.33)

so that instead of di¤erencing 1 period as we normally do for DS models, we
instead di¤erence say S periods.
For example with quarterly data instead of regressing:

Xt ¡Xt¡1 = ¹+ Yt
we would run the regression:

Xt ¡Xt¡4 = ¹+ Yt
and obtain Yt as the least squares residual.

1.4 Modeling the Cycle

The trend usually accounts for most of the movement of Wt; but it is the cycle
Yt that is the more di¢cult and more interesting to model. The next three
chapters will deal with modelling Yt and the theory behind these models.
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The approach we use in time series analysis is to think of Yt as a stationary
random (or stochastic) process such as a …rst-order autoregressive process or
AR(1) where:

Yt = ÁYt¡1 + at (1.34)

or alternatively a …rst-order moving average process or MA(1) where:

Yt = at + µat¡1: (1.35)

More generally we will be interested in autoregressive moving average processes
with p lags of Yt and q lags of at where:

Yt =

pX
j=1

ÁjYt¡j + at +
qX
j=1

µjat¡j :

This is referred to as an ARMA(p,q) process.



Chapter 2

Stationary Stochastic
Processes

2.1 Introduction
Stationarity is one of the fundamental concepts in time series analysis. Roughly
speaking a random process Yt is stationarity if the probabilistic laws determining
Yt do not change over time. Quite a bit of mathematical apparatus is necessary
to express this idea precisely, but fortunately this will not be necessary for our
purposes.
Neither growth nor seasonality are stationary. For example the growth of

GNP means that GNP is likely to be much higher in 1999 than it was in 1947
and so the laws governing GNP in 1999 are not the same as the laws of 1947.
Similarly seasonality for consumption implies that consumption during the

Christmas quarter is likely to be higher than consumption in the January-March
quarter and so the laws governing consumption di¤er in the two quarters.
It is, however, reasonable to assume that growth rates of many economic

time series are stationary; for example that the probability of a recession (say
de…ned as two consecutive quarters of negative growth rate in GNP ) was the
same in 1963 as it is in 1999. Once an economic time series has been detrended
and seasonally adjusted, stationarity is generally a natural assumption to make.
There are in fact many di¤erent mathematical de…nitions of stationarity. For

our purposes second order or weak stationarity is usually su¢cient and can be
easily stated. It says that a time series Yt is stationary if all means, variances
and covariances are the same for all time periods. Thus:

De…nition 7 Stationarity: A time series Yt is stationary if for all periods t;
s and k :

E [Yt] = E [Ys] (2.1)

V ar [Yt] = V ar [Ys]

Cov [Yt; Yt¡k] = Cov [Ys; Ys¡k] :

9
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One of the reasons this de…nition is su¢cient is that most of the time series
we will be dealing with are normally distributed or Gaussian processes de…ned
as follows:

De…nition 8 Gaussian Process: A random process Yt is Gaussian if for any
s periods t1; t2; : : : ts the s£1 random vector ~Y = [Yti ] has a multivariate normal
distribution or:

~Y » N [¹;§] :

or the density of ~Y is given by:

p
³
~Y
´
= (2¼)¡

s
2 j§j¡ 1

2 exp

µ
¡1
2

³
~Y ¡ ¹

´T
§¡1

³
~Y ¡ ¹

´¶
:

Since the normal distribution only depends on the mean in ¹ and the vari-
ances and covariances in §; to show stationarity one only needs that ¹ and §
are the same for all periods.
The mean of Yt is not very important or interesting for stationary time series.

Many of the derivations that we will do are greatly simpli…ed if we assume that
Yt has a mean of zero. Given stationarity this can be done without any loss of
generality since if Yt does not have a mean of zero but say ¹; then it is always
possible to construct another time series Yt ¡ ¹ that does have a mean of zero.
This is a standard assumption in the time series literature and one you need to
get used to.
We state this formally as follows:

Theorem 9 If Y ¤t is any stationary time series with a mean of ¹ then if Yt =
Y ¤t ¡ ¹ then: E [Yt] = 0:
Remark 10 This turns out to be a natural assumption when using either the
TS or DS approach since Yt is in either case a least-squares residual from a
regression with a constant term and consequently must have a sample mean of
0:

The assumption that E [Yt] = 0 simpli…es derivations because variances and
covariances can be expressed as expectations of products as:1

V ar [Yt] = E
£
Y 2t
¤

(2.2)

Cov [Yt; Ys] = E [YtYs] :

1 Since if E [X] = 0 and E [Y ] = 0 then:

V ar [X] = E
£
X2
¤ ¡ E [X]2

= E
£
X2
¤

and

Cov [X;Y ] = E [XY ]¡ E [X]E [Y ]
= E [XY ]
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This leads to an important principle:

Proposition 11 In general when dealing with stationary random vari-
ables with a mean of zero, expectations of squares are variances and
expectations of products are covariances.

2.2 The Short-Memory Property

Many of the models that we will be considering will have the property that
they quickly forget or quickly become independent of what occurs either in the
distant future or the distant past. This forgetting occurs at an exponential rate
which represents a very rapid type of decay.
For example if you have a pie in the fridge and you eat one-half of the pie

each day, you will quickly have almost no pie. After only ten days you would
have: µ

1

2

¶10
=

1

1024

or about one-thousandth of a pie; maybe a couple of crumbs.
We will see that for stationary ARMA(p,q) processes, the in…nite moving

average weights: Ãk; the autocorrelation function ½ (k) and the forecast function
Et [Yt+k] ; all functions of the number of periods k; all have the short-memory
property which we now de…ne:

De…nition 12 Short-Memory: Let Pk for k = 0; 1; 2; : : :1 be some numer-
ical property of a stationary time series which depends on k; the number of
periods. We say Pk displays a short-memory or Pk = O

¡
¿k
¢
if

jPkj · A¿k

where A ¸ 0 and 0 < ¿ < 1:

If Pk = O
¡
¿k
¢
or if Pk has a short-memory then Pk decays rapidly in the

same, manner that is at least as fast as ¿k decays to zero as k ! 1. For
example if:

Pk = 10 cos (2k)

µ
¡1
2

¶k
(2.3)

then Pk decays rapidly in a manner which is bounded by exponential decay
since jcos (2k)j · 1 and so we have:

jPkj · 10
µ
1

2

¶k
= A¿k (2.4)
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where ¿ = 1
2 and A = 10: This is illustrated in the plot below:

-10

-5

0

5

10

1 2 3 4 5 6 7k

Pk = 10 cos (2k)
¡¡1

2

¢k
Not everything decays so rapidly. For example if we reverse the 1

2 and the k

in
¡
1
2

¢k
we obtain:

Qk =
1

k
1
2

= k¡
1
2 : (2.5)

This is hyperbolic decay, a much slower rate of decay.
We can compare the hyperbolic decay of Qk = k¡

1
2 with the exponential

decay of Rk =
¡
1
2

¢k¡1
. For these two example both are equal for k = 1 but Rk

decays much faster than Qk as can be seen by the diagram below:

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20k

Plot of Qk and Rk

:

Note that Rk is e¤ectively equal to zero for k ¸ 8 while Qk is still large for
k = 20:
Let us therefore de…ne long-memory as being bounded by hyperbolic decay

as follows:
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De…nition 13 Long-Memory: Let Pk for k = 0; 1; 2; : : :1 be some numer-
ical property of a stationary time series which depends on k; the number of
periods. We say Pk displays a long-memory or Pk = O (k¡¿ ) if

jPkj · Ak¡¿

where A ¸ 0 and ¿ > 0:

2.3 The AR(1) Model

The simplest interesting model for Yt is a …rst-order autoregressive process or
AR(1) which can be written as:

Yt = ÁYt¡1 + at; at s i:i:n(0; ¾2) ; (2.6)

where i:i:n:(0; ¾2) means that at is independently and identically distributed
(i:i:d:) with a normal distribution with mean 0 and variance ¾2 so that the
density of at is:

p (at) =
1p
2¼¾2

e¡
1
2a

2
t : (2.7)

We can attempt to calculate E [Yt] by taking expectations of both sides of
(2:6) to obtain:

E [Yt] = ÁE[Yt¡1] +E[at] (2.8)

= ÁE[Yt¡1]

since E[at] = 0:We now need to …nd E [Yt¡1]. We could try the same approach
with E [Yt¡1] since Yt¡1 = ÁYt¡2 + at¡1 from which we would conclude that:
E [Yt¡1] = ÁE [Yt¡2] so that:

E [Yt] = Á
2E [Yt¡2] ; (2.9)

but now we now need to …nd E [Yt¡2] : Clearly this process will never end.
If, however, we assume stationarity then it is possible to break this in…nite

regress since by the de…nition of stationarity in De…nition 7:

E[Yt] = E[Yt¡1]: (2.10)

It then follows from (2:8) that:

E[Yt] = ÁE [Yt] (2.11)

or

(1¡ Á)E [Yt] = 0: (2.12)

Assuming that Á 6= 1 (which turns out to be necessary for stationarity) we
conclude that:
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Theorem 14 If Yt is an AR(1) given by (2:6) and Yt is stationary then:

E [Yt] = 0:

The same trick can be use to calculate V ar[Yt] for an AR(1): From (2:6) we
have:

V ar[Yt] = V ar [ÁYt¡1 + at] (2.13)

= Á2 V ar[Yt¡1]| {z }
=V ar[Yt]

+2ÁCov[Yt¡1; at]| {z }
=0

+ V ar[at]| {z }
=¾2

since by stationarity:

V ar[Yt] = V ar[Yt¡1] (2.14)

and at is i:i:d: and hence uncorrelated with Yt¡1: Solving for V ar[Yt] we obtain:

Theorem 15 If Yt is an AR(1) given by (2:6) and Yt is stationary then:

V ar[Yt] =
¾2

1¡ Á2 : (2.15)

The formula (2:15) only makes sense if the variance is non-negative and
…nite; that is if:

0 · V ar[Yt] <1: (2.16)

From this we conclude that a necessary condition for stationarity is that: ¡1 <
Á < 1 since if say Á > 1 the variance would be negative while if Á = §1 the
variance would be in…nite.
This leads us to :

Theorem 16 Yt is a stationary AR(1) process only if

¡1 < Á < 1:
Given stationarity it can be shown that:

Theorem 17 The unconditional distribution of a stationary AR(1) process is:

Yt s N
·
0;

¾2

1¡ Á2
¸

(2.17)

for all t:

From this it then follows then that a band given by:

0§ 1:96 ¾p
1¡ Á2

(2.18)

would contain 95% of all realizations of Yt:
The covariances from an AR(1) process can be calculated recursively using

the following result:
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Theorem 18 For an AR(1) with k > 0:

Cov [Yt; Yt¡k] = ÁCov
£
Yt; Yt¡(k¡1)

¤
:

Proof. Using (2:6) we have:

Cov [Yt; Yt¡k] = E[YtYt¡k]
= E[(ÁYt¡1 + at)Yt¡k]
= ÁE[Yt¡1Yt¡k] +E[atYt¡k]
= ÁCov [Yt¡1; Yt¡k]
= ÁCov

£
Yt; Yt¡(k¡1)

¤
where E[atYt¡k] = 0 since at is uncorrelated with the past Yt¡k while:

Cov [Yt¡1; Yt¡k] = Cov
£
Ys; Ys¡(k¡1)

¤
= Cov

£
Yt; Yt¡(k¡1)

¤
where s = t¡ 1 and using De…nition 7.
We already know that:

Cov [Yt; Yt] =
¾2

1¡ Á2 :

To calculate Cov [Yt; Yt¡1] we then use Theorem 18 to obtain:

Cov [Yt; Yt¡1] = ÁCov [Yt; Yt]

=
Á¾2

1¡ Á2 :

Similarly:

Cov [Yt; Yt¡2] = ÁCov [Yt; Yt¡1]

=
Á2¾2

1¡ Á2 :

More generally using Theorem 18 on Cov
£
Yt; Yt¡(k¡1)

¤
we obtain:

Cov
£
Yt; Yt¡(k¡1)

¤
= ÁCov

£
Yt; Yt¡(k¡2)

¤
(2.19)

so that repeating this argument we conclude that:

Cov [Yt; Yt¡k] = ÁkCov [Yt; Yt] (2.20)

=
Ák¾2

1¡ Á2 (2.21)

and so we conclude that:
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Theorem 19 For a stationary AR(1) for k ¸ 0 we have:

Cov [Yt; Yt¡k] = Ák
µ

¾2

1¡ Á2
¶
:

This then implies that Cov [Yt; Yt¡k] = O
¡
¿k
¢
or Cov [Yt; Yt¡k] has the

short-memory property given in Section 2:2 since:

Cov [Yt; Yt¡k] · A¿k (2.22)

with A = V ar [Yt] and ¿ = Á: This means that Yt rapidly forgets its past history.

2.4 The Autocovariance Function

An important implication of stationarity is that the covariance between the
business cycle in say the …rst and third quarters of say 1999 is the same as the
covariance between the business cycle the …rst and third quarters of say 1963.
In general covariances only depend on the number of periods separating Yt and
Ys so that:

Theorem 20 If Yt is stationary then Cov [Yt1 ; Yt2 ] depends only on k = t1¡t2;
that is the number of periods separating t1 and t2.

Since we will often be focusing on covariances, and since Cov [Yt; Yt¡k] only
depends on k; let us de…ne this as a function of k as: ° (k) ; which we will refer
to as the autocovariance function so that:

De…nition 21 Autocovariance Function: Let Yt be a stationary time series
with E[Yt] = 0: The autocovariance function for Yt, denoted as °(k); is de…ned
for k = 0;§1;§2;§3; : : :§1 as:

°(k) ´ E[YtYt¡k] = Cov[Yt; Yt¡k].
We have the following results for the autocovariance function:

Theorem 22 °(0) = V ar[Yt] > 0

Theorem 23 °(k) = E[YtYt¡k] = E[YsYs¡k] for any t and s:

Theorem 24 °(¡k) = °(k) ( ° (k) is an even function )
Theorem 25 Let t1; t2; : : : tk be any k periods then the symmetric k£k matrix
¡ with i; jth element given by ¡ij = ° (ti ¡ tj) or:

¡ =

26666664
° (0) ° (t1 ¡ t2) ° (t1 ¡ t3) ¢ ¢ ¢ ° (t1 ¡ tk)

° (t1 ¡ t2) ° (0) ° (t2 ¡ t3) ¢ ¢ ¢ ° (t2 ¡ tk)
° (t1 ¡ t3) ° (t2 ¡ t3) ° (0)

. . .
...

...
...

. . .
. . . ° (tk¡1 ¡ tk)

° (t1 ¡ tk) ° (t2 ¡ tk) ¢ ¢ ¢ ° (tk¡1 ¡ tk) ° (0)

37777775
is positive semi-de…nite.
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Theorem 26 If

V ar

"
kX
i=1

aiYti

#
> 0

whenever there is at least one ai 6= 0 then ¡ de…ned in Theorem 25 is positive
de…nite.

Theorem 27 j°(k)j · °(0):
Proof. Theorem 22 follows from the fact that the covariance between a

random variable and itself is its variance. Theorem 23 follows by stationarity.
To prove Theorem 24 note that:

°(k) = E[YtYt¡k]
= E[Yt¡kYt]
= E[YsYs¡(¡k)] where s = t¡ k:
= E[YtYt¡(¡k)] (by stationarity)
= ° (¡k) :

To prove Theorem 25 note that if

~Y =
kX
i=1

aiYti

then:

V ar
h
~Y
i
= aT¡a ¸ 0

where a is the n£ 1 vector of the ai 0s: It follows then that ¡ is positive semi-
de…nite. If V ar

h
~Y
i
> 0 for any a 6= 0 then:

aT¡a > 0

and so ¡ is positive de…nite. This proves Theorem 26: Finally note that if
~Y = aYt + bYt¡k then

V ar[aYt + bYt¡k] = a2V ar[Yt]| {z }
°(0)

+ 2abCov[Yt; Yt¡k]| {z }
°(k)

+ b2V ar[Yt¡k]| {z }
°(0)

=
£
a b

¤ · °(0) °(k)
°(k) °(0)

¸ ·
a
b

¸
¸ 0

so that ¡ is given by:

¡ =

·
°(0) °(k)
°(k) °(0)

¸
:
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Since ¡ is positive semi-de…nite it follows that: det[A] ¸ 0 so that
°(0)2 ¡ °(k)2 ¸ 0 =) °(k)2 · °(0)2

or

j°(k)j · °(0)
which proves Theorem 27.

Remark 28 The fact that ° (k) is an even function means that if we have
calculated ° (k) for k ¸ 0 then we can directly obtain ° (k) for k < 0 using
° (¡k) = ° (k) : For example if ° (3) = 0:7 then ° (¡3) = 0:7:
Remark 29 In general one is on safe ground in simply assuming that ¡ in
Theorem 25 is positive de…nite. Suppose that ¡ were only positive semi-de…nite
so that:

V ar

"
kX
i=1

aiYti

#
= 0

with say a1 6= 0: Then it would follow that:

Yt1 = ¡
1

a1

kX
i=2

aiYti

and so we could make a perfect prediction of Yt1 from the remaining Yti
0s:

Perfect prediction is, aside from accounting identities, something that is pretty
rare in economics and so for sensible problems we can simply assert that ¡ is
positive de…nite without wasting any energy on the issue.

The AR(1) Model

For the AR(1) model we have already shown that:

°(0) = V ar[Yt] =
¾2

1¡ Á2
and that for k > 0:

°(k) = Ák° (0)

= Ák
¾2

1¡ Á2 :

We can make this formula correct for all k by appealing to Theorem 24 and
replacing k with jkj to obtain:
Theorem 30 For an AR(1) process the autocovariance function is given by:

°(k) =
Ájkj¾2

1¡ Á2 :
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2.5 The Autocorrelation Function

The trouble with covariances is that they generally depend on the units with
which Yt is measured. We can easily get around this problem by working cor-
relations, which are just scaled versions of covariances. We have:

De…nition 31 The correlation between Yt and Yt¡k is:

Corr [Yt; Yt¡k] =
Cov [Yt; Yt¡k]

V ar [Yt]
1
2 V ar [Yt¡k]

1
2

: (2.23)

Using stationarity we can simplify this considerably. Since

Cov [Yt; Yt¡k] = ° (k) (2.24)

and by stationarity

V ar [Yt]
1
2 = V ar [Yt¡k]

1
2 = ° (0)

1
2 (2.25)

we have:

Corr [Yt; Yt¡k] =
°(k)

°(0)
: (2.26)

With this in mind we can de…ne the autocorrelation function

½ (k) = Corr [Yt; Yt¡k]

as follows:

De…nition 32 Autocorrelation Function: The autocorrelation function ½(k)
is de…ned as:

½(k) =
°(k)

°(0)
:

Since the autocorrelation function ½(k) is just the autocovariance function
° (k) scaled by 1

°(0) ; both ° (k) and ½ (k) have very similar properties. In par-
ticular:

Theorem 33 ½(0) = 1;

Theorem 34 ½ (k)

8<: > 0
= 0
< 0

if and only if ° (k)

8<: > 0
= 0
< 0

Theorem 35 ½(¡k) = ½(k) (½ (k) is an even function)
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Theorem 36 Let t1; t2; : : : tk be any k periods then the symmetric k£k matrix
R with i; jth element given by Rij = ½ (ti ¡ tj) or:

R =

26666664
1 ½ (t1 ¡ t2) ½ (t1 ¡ t3) ¢ ¢ ¢ ½ (t1 ¡ tk)

½ (t1 ¡ t2) 1 ½ (t2 ¡ t3) ¢ ¢ ¢ ½ (t2 ¡ tk)
½ (t1 ¡ t3) ½ (t2 ¡ t3) 1

. . .
...

...
...

. . .
. . . ½ (tk¡1 ¡ tk)

½ (t1 ¡ tk) ½ (t2 ¡ tk) ¢ ¢ ¢ ½ (tk¡1 ¡ tk) 1

37777775

is positive semi-de…nite.

Theorem 37 If

V ar

"
kX
i=1

aiYti

#
> 0

whenever there is at least one ai 6= 0 then R in Theorem 36 is positive de…nite.

Theorem 38 j½(k)j · 1:

2.5.1 The Autocorrelation Function of an AR(1) Process

We have :

Theorem 39 The autocorrelation function of a stationary AR(1) process is:

½(k) = Ájkj:

Proof. From Theorem 30 it follows that

½(k) =
° (k)

° (0)

=
Ájkj ¾2

1¡Á2
¾2

1¡Á2

= Ájkj:
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We plot ½(k) an AR(1) with Á = 0:7 below: 2
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1
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½ (k) when Á = 0:7

Since jÁj < 1 it follows that the autocorrelation function, like the autocovari-
ance function, has the short-memory property so that ½ (k) = O

¡
¿k
¢
as given

in Section 2.2 with A = 1 and ¿ = jÁj :

2.6 Forecasting

2.6.1 The Conditional Mean

Consider the problem of forecasting future Yt+k given the entire history of Yt
up until time t; that is with the information set It = fYt; Yt¡1; Yt¡2; : : : :g: We
use the conditional mean Et [Yt+k] to forecast Yt+k so that:

De…nition 40 The forecast of Yt+k given the history of Yt up to time t is the
conditional mean Et[Yt+k] de…ned as:

Et[Yt+k] = E [Yt+kjIt]
= E [Yt+kjYt; Yt¡1; Yt¡2; : : : ] :

Forecasting an AR(1)

To forecast an AR(1) process we have:

Theorem 41 For an AR(1) process the optimal forecast k periods in the future
is:

Et[Yt+k] = Á
kYt: (2.27)

2Note that ½ (k) is strictly speaking only de…ned for integer values of k: The plot here
essentially connects the values of ½ (k) between k = 0; 1; 2; ::: to produce a continuous plot.
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Proof. For an AR(1) process we have shifting (2:6) k periods in the future
that:

Yt+k = ÁYt+k¡1 + at+k:

Applying Et to both sides we obtain:

Et[Yt+k] = ÁEt[Yt+k¡1] +Et[at+k]| {z }
=0

(2.28)

where: Et[at+k] = 0 since at+k is i:i:d: and hence independent of the information
at time t: Hence:

Et[Yt+k] = ÁEt[Yt+k¡1]| {z }
=ÁEt[Yt+k¡2]

:

Continuing this process of substitution we have:

Et[Yt+k] = Á
kEt[Yt]: (2.29)

Since Yt is observed at time t and is thus in the information set, it follows that:

Et[Yt] = Yt: (2.30)

Remark 42 Note that the forecast function Et[Yt+k] = O
¡
¿k
¢
where ¿ = jÁj

and hence the forecast function has the short-memory property given in Section
2.2. This means that as we look farther in the future Yt+k rapidly forgets the
information set at time t and so Et[Yt+k] converges rapidly to the unconditional
mean E[Yt+k] = 0:

2.6.2 The Conditional Variance

In addition to our forecast we often need some idea of the accuracy of the fore-
cast. This can be determined from the conditional variance de…ned as follows:

De…nition 43 V art[Yt+k] is the conditional variance of Yt+k given the infor-
mation set at time t de…ned as:

V art[Yt+k] = V ar [Yt+kjYt; Yt¡1; Yt¡2; : : : ] :
This can be used to construct con…dence intervals for our forecasts using the

following result:

Theorem 44 If the stationary stochastic process Yt is Gaussian (normally dis-
tributed) a 95% con…dence interval for Yt+k is:

Et [Yt+k]§ 1:96
p
V art[Yt+k]:
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The Conditional Variance of an AR(1)

To calculate V art[Yt+k] for an AR(1) we have:

Theorem 45 The value of an AR(1) process k periods in the future: Yt+k can
be decomposed into unknown future shocks and the optimal forecast as:

Yt+k = at+k + Á
1at+k¡1 + Á2at+k¡2 + ¢ ¢ ¢+ Ák¡1at+1| {z }

unknown future shocks

+ ÁkYt:

Proof. Note that from (2:6) we can write:

Yt+k = ÁYt+k¡1 + at+k (2.31)

= Á (ÁYt+k¡2 + at+k¡1) + at+k
= at+k + Áat+k¡1 + Á2Yt+k¡2:

Continuing this we have:

Yt+k = at+k + Áat+k¡1 + Á2at+k¡2 + ¢ ¢ ¢+ Ák¡1at+1 + ÁkYt:

From this it follows that

Theorem 46 For an AR(1) process:

V art[Yt+k] = ¾2(1 + Á2 + Á4 + ¢ ¢ ¢+ Á2(k¡1))

=
¾2(1¡ Á2k)
1¡ Á2 :

Proof. The second equality follows from the geometric series:

1 + ¸+ ¸2 + ¢ ¢ ¢+ ¸n¡1 = 1¡ ¸n
1¡ ¸

when n = k and ¸ = Á2 and the fact that V art
h
ÁkYt

i
= 0 since Yt is in the

information set.

Remark 47 Note that

V art[Yt+k] =
¾2(1¡ Á2k)
1¡ Á2

= ° (0)¡ Á2k¾2

1¡ Á2

and so as k !1 V art[Yt+k]! ° (0) :
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Since from Yt is Gaussian we can construct con…dence intervals for our fore-
casts using Theorem 44 as:

Theorem 48 A 95% con…dence interval for the optimal forecast for an AR(1)
process is given by:

ÁkYt § 1:96
¾

q
1¡ Á2kp
1¡ Á2

:

An Example

Suppose that:

Yt = 0:7Yt¡1 + at , at s N
£
0; ¾2

¤
¾ = 0:03: (2.32)

The unconditional distribution is then given by

Yt s N
·
0;
(0:03)2

1¡ 0:72
¸

(2.33)

or:

Yt s N
£
0; (0:042)2

¤
(2.34)

so that 95% of the values of Yt fall in the band

¡0:0823 · Yt · 0:0823: (2.35)

Suppose now that you observe today that Yt = 0:02: Then we have

Et[Yt+k] = (0:7)k(0:02) (2.36)

V art[Yt+k] =
(0:03)2(1¡ (0:7)2k)

(1¡ (0:7)2)
so that:

AR(1) Forecasts and Con…dence Intervals

k Forecast Et[Yt+k]
p
V art[Yt+k] Forecast Con…dence Interval

0 0:02 0 0:02§ 0
1 0:014 0:03 0:014§ 0:059
2 0:0098 0:037 0:0098§ 0:072
3 0:0069 0:039 0:0069§ 0:077
...

...
...

...
1 0 0:042 0:0§ 0:082
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2.7 The Backward Shift Operator

A very useful device is:

De…nition 49 The Backward Shift Operator The backward shift operator
is de…ned by:

BkYt ´ Yt¡k:

Remark 50 Note that using this de…nition: B0Yt = Yt and B¡1Yt = Yt+1 and
in general B¡kYt = Yt+k:

Example 51 The AR(1)

Yt = 0:5Yt¡1 + at

can be re-written as

Yt = 0:5BYt + at

or as:

(1¡ 0:5B)Yt = at:

From the de…nition (1¡ 0:5B) has no meaning when it is separated from Yt.
We will see however that it is useful to think of (1¡ 0:5B) as a mathematical
object on its own. For example we will see that the stationarity of this AR(1)
depends on the root of (1¡ 0:5B) = 0 or B = 2:

2.8 The Wold Representation

2.8.1 Introduction

The Wold representation is a very important and very general result for sta-
tionary time series:

Theorem 52 Wold Representation: Every stationary time series Yt with
E[Yt] = 0 and V ar [Yt] <1 has an in…nite moving average representation:

Yt = at + Ã1at¡1 + Ã2at¡2 + Ã3at¡3 + ¢ ¢ ¢ (2.37)

where at is an uncorrelated series with E [at] = 0 and V ar [at] = ¾2:

Using the backward shift notation we can write this result in another sug-
gestive form:
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Theorem 53 The Wold representation can be written as

Yt = Ã (B) at

where Ã (B) is an in…nite order polynomial:

Ã (B) = 1 + Ã1B + Ã2B
2 + Ã3B

3 + ¢ ¢ ¢

=
1X
j=0

ÃjB
j

where Ão = 1:

The coe¢cients Ãj are sometimes referred to as the in…nite moving average
weights . A moving average process is a weighted sum of past shocks that we
will deal with later. For example a …rst order moving average process or MA(1)
would be:

Yt = at + µat¡1 (2.38)

so that Ã1 = µ:
The in…nite moving average weights often have interesting economic interpre-

tations when the at 0s are interpreted as say monetary or technological shocks.
In this case Ãk determines the impact of a shock k periods in the past on the
Yt or:

@Yt
@at¡k

= Ãk: (2.39)

2.8.2 Wold Representation for an AR(1)

It is easy to derive the Wold representation for the AR(1) model. From (2:6)
we have:

Yt = ÁYt¡1|{z}
=ÁYt¡2+at¡1

+ at = at + Áat¡1 + Á2 Yt¡2|{z}
=ÁYt¡3+at¡2

and continuing this process:

Yt = at + Áat¡1 + Á2at¡2 + Á3at¡3 + ¢ ¢ ¢
so that:

Theorem 54 For an AR(1) process:

Ãk = Á
k:

Since Yt is stationary it follows that jÁj < 1 and hence Ãk ! 0 exponentially
or Ãk = O

¡
¿k
¢
where ¿ = jÁj : Thus like ½ (k) and Et [Yt+k] : Ãk has the short-

memory property given in Section 2.2. This re‡ects the fact that as k !1; Yt
rapidly forgets the e¤ect of past shocks at¡k:
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2.8.3 Implications of the Wold Representation

The following results are direct implications of the Wold representation:

Theorem 55 From the Wold representation in Theorem 52 the autocovariance
and autocorrelation functions for Yt are:

°(0) = ¾2
1X
j=0

Ã2j (2.40)

°(k) = ¾2
1X
j=0

ÃjÃj+k

½(k) =

P1
j=0 ÃjÃj+kP1

j=0 Ã
2
j

:

We can also use the Wold representation to calculate the covariance of Yt
with past shocks at¡k: This will be useful later on for example to derive the
variance of an AR(p). In particular we have:

Theorem 56 From the Wold representation in Theorem 52 the covariance be-
tween Yt and at¡k is given by:

E [Ytat¡k] = Ãk¾
2:

2.8.4 Stationarity and the Wold Representation

A stationary time series must forget the e¤ect of shocks at¡k in the distant
past. In economics we might say that for a stationary time series shocks are
transitory. Mathematically this becomes:

Theorem 57 The in…nite moving average weights of a stationary process must
converge to zero or:

lim
k!1

Ãk = 0:

Proof. If Yt is stationary then by De…nition 7

° (0) = V ar[Yt] <1: (2.41)

Now from (2:40) a …nite variance implies that:

° (0) = V ar[Yt] = ¾
2(1 + Ã21 + Ã

2
2 + ¢ ¢ ¢ ) <1 (2.42)

which implies that the Ãk
0s must converge to zero.3

3 Stationarity also requires that ° (k) be …nite. However, there are no additional implica-
tions to derive from …nite covariances since by Theorem 27 we have:

j° (k)j · ° (0) <1 (2.43)

and so once we establish a …nite variance the covariances are automatically …nite as well.
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Although Ãk ! 0 is necessary for stationarity, it is not su¢cient. For exam-
ple if Ãk has the long-memory property:

Ãk =
1

k¿
(2.44)

it is clear that Ãk ! 0 as long as ¿ > 0 and that

° (0) = ¾2
¡
1 + Ã21 + Ã

2
2 + ¢ ¢ ¢

¢
(2.45)

= ¾2
µ
1 +

1

12¿
+

1

22¿
+

1

32¿
+ ¢ ¢ ¢

¶
: (2.46)

It is a mathematical fact however that4

1

1z
+
1

2z
+
1

3z
+ ¢ ¢ ¢ =1

for z · 1 so that if:
0 < ¿ · 1

2

then:

° (0) =1:
Hence such a series would not have a …nite variance and hence would not be
stationary.
The problem here is that with a long-memory Ãk does not converge fast

enough to zero to insure that the variance is …nite. Thus it is not su¢cient to
show that Ãk ! 0 as k !1 in order to show stationarity.
If however Ãk = O

¡
¿k
¢
and so has the short-memory property (see Section

2.2 ) then we can be sure that ° (0) < 1 and that the series is stationary. In
particular we have:

Theorem 58 If Ãk has the short-memory property then ° (0) < 1 and the
process is stationary.

Proof. This follows from the formula for the geometric series since if jÃkj ·
A¿k then:

° (0) = ¾2
1X
k=0

Ã2k

· ¾2A2
1X
k=0

¿2k

=
¾2A2

1¡ ¿2 <1

since 1¡ ¿2 > 0 if j¿ j < 1:
4For z = 1 it can be shown that:

1 +
1

1
+
1

2
+
1

3
+ : : :+

1

n
¡ ln (n)

converges to ° ¼ 0:57, called Euler’s constant.
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2.8.5 Forecasting

We can also use the Wold representation to obtain important results for fore-
casting. Applying Theorem 52 to Yt+k we obtain:

Theorem 59 The future value of a stationary series Yt+k can be decomposed
into unknown future shocks and current and past shocks as:

Yt+k = at+k + Ã1at+k¡1 + Ã2at+k¡2 + ¢ ¢ ¢+ Ãk¡1at+1| {z }
unknown future shocks

+ Ãkat + Ãk+1at¡1 + ¢ ¢ ¢| {z }
known past & present shocks

By applying Et [ ] to both sides of the result in Theorem 59 we can derive
the optimal forecast Et [Yt+k] as a function of past and present shocks as:

Theorem 60 Et[Yt+k] can be expressed as:

Et[Yt+k] =
1X
j=0

Ãk+jat¡j :

This involves calculating an in…nite sum. For the models we will consider
there are usually better ways of calculating Et[Yt+k] than this result.
However by applying V art [ ] to both sides of Theorem 59 we obtain a very

useful formula for determining V art [Yt+k] as:

Theorem 61 Using the Wold representation V art [Yt+k] can be expressed as:

V art[Yt+k] = ¾
2(1 + Ã21 + Ã

2
2 + ¢ ¢ ¢+ Ã2k¡1):

Note that this involves a …nite sum and hence is much more useful in practice.
Theorem 61 is in fact the basis for all calculations of V art [Yt+k] that we will
consider.

2.8.6 Linear and Nonlinear Time Series

The Wold representation only guarantees that the at 0s are uncorrelated across
time; it does not guarantee that the at 0s are independent across time. Recall
that independence is a stronger condition than zero covariance; that is, indepen-
dence implies zero covariance but zero covariance does not imply independence.

De…nition 62 If the at 0s in the Wold representation for Yt are independent
across time we say that Yt is a linear time series, otherwise we say that Yt is a
nonlinear time series

For an AR(1) we have at as an i:i:d: process an hence an AR(1) is a linear
time series. In general any series that is Gaussian will be linear since zero
correlation implies independence for the normal distribution.
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An important example (especially in …nance) of a nonlinear time series is an
ARCH (1) process where:

Yt = Zt
¡
®o + ®1Y

2
t¡1
¢1=2

(2.47)

and where Zt is an i:i:d: standard normal process. ARCH models are used to
model the bursts of volatility that one often observes in …nancial markets.
As long as 0 < ®1 < 1, Yt will be stationary with a Wold representation

where Ãk = 0 for k > 0 or:

Yt = at + 0at¡1 + 0at¡2 + ¢ ¢ ¢ (2.48)

and where:

at = Zt
¡
®o + ®1Y

2
t¡1
¢1=2

(2.49)

is uncorrelated across time. Although the at0s are uncorrelated across time they
are not independent since for example a2t is correlated with a

2
t¡1.

2.9 The Yule-Walker Equations

2.9.1 Derivation of the Yule-Walker Equations

The optimal forecast of Yt+1 given knowledge of the entire past history of the
time series is Et [Yt+1] : This forecast uses the entire past history of Yt into the
in…nite past; that is:

It = fYt; Yt¡1; Yt¡2; : : : g: (2.50)

Suppose instead we were only to use the most recent k values in the infor-
mation set or:

Ikt = fYt; Yt¡1; Yt¡2; : : : Yt¡k+1g (2.51)

and we wish to calculate:

E
£
Yt+1jIkt

¤
: (2.52)

What would be the optimal forecast given this information set? This turns
out to be an interesting problem because it leads to the partial autocorrelation
function used in Box-Jenkins identi…cation.
It turns out that given normality the optimal forecast will be a linear function

of the information set so that:

E
£
Yt+1jIkt

¤
=
k¡1X
j=0

ÁjkYt¡j = X
T
t Ák (2.53)
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where the k £ 1 vectors Xt and Ák are given by:

Xt =

26664
Yt
Yt¡1
...

Yt¡k¡1

37775 ; Ák =

26664
Á1k
Á2k
...
Ákk

37775 : (2.54)

It can be shown that Ák will minimize the forecast variance:

S (Ák) = V ar
£¡
Yt+1 ¡E

£
Yt+1jIkt

¤¢¤
(2.55)

= E
h¡
Yt+1 ¡E

£
Yt+1jIkt

¤¢2i
= E

h¡
Yt+1 ¡XT

t Ák
¢2i

:

Di¤erentiating S (Ák) with respect to Ák and setting this equal to zero yields
the …rst-order conditions:

E
£
Xt
¡
Yt+1 ¡XT

t Ák
¢¤
= 0 (2.56)

which states that the information set Xt must be uncorrelated with the forecast
error: Yt ¡XT

t Á: This in turn implies that:

E
£
XtX

T
t

¤| {z }
¡k

Ák = E [XtYt]| {z }
gk

(2.57)

where the k £ k symmetric matrix ¡k is given by:
¡k ´ E

£
XtX

T
t

¤
= ° (0)Rk (2.58)

and the symmetric k £ k matrix Rk is:

Rk =

26666664
1 ½ (1) ½ (2) ¢ ¢ ¢ ½ (k ¡ 1)
½ (1) 1 ½ (1) ¢ ¢ ¢ ½ (k ¡ 2)
½ (2) ½ (1) 1

...
...

...
...

...
. . . ½ (1)

½ (k ¡ 1) ½ (k ¡ 2) ¢ ¢ ¢ ½ (1) 1

37777775 : (2.59)

Similarly we can show that k £ 1 vector gk is given by:
gk ´ E [XtYt+1] = °(0)rk (2.60)

where:

rk =

26664
½(1)
½(2)
...

½(k)

37775 : (2.61)
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We thus have:

° (0)RkÁk = ° (0) rk (2.62)

so that cancelling the scalar °(0) from both sides we have:

RkÁk = rk: (2.63)

which are the Yule-Walker equations. If Rk is nonsingular we can solve these
equations for Ák; the optimal forecast weights. We have:

Theorem 63 The matrix Rk is positive de…nite and so R¡1k exists.

Proof. This follows from Theorem 37 by setting ti = t¡ i for i = 0; 1; 2; : : : k¡
1:
It therefore follows that:

Theorem 64 Yule-Walker: The vector of optimal forecast weights Ák in
E
£
Yt+1jIkt

¤
= XT

t Ák is given by:

Ák = R
¡1
k rk

Remark 65 Note that to actually calculate Ák we need Rk which depends on
½(1); ½(2); : : : ½(k¡ 1) and rk which depends on ½(1); ½(2); : : : ½(k): Thus knowl-
edge of the …rst k autocorrelations is su¢cient to calculation Ák:

Remark 66 It can be shown that:

V ar
£
Yt+1jIkt

¤
= ° (0)¡ ° (0)ÁTkRkÁk
= ° (0)

¡
1¡ rTk R¡1k rk

¢
= V ar [Yt+1]

¡
1¡ rTk R¡1k rk

¢
Thus including the information set Ikt reduces the unconditional forecast vari-
ance V ar [Yt+1] = ° (0) by a factor of

¡
1¡ rTk R¡1k rk

¢
:

2.9.2 Examples

Forecasts when k = 1

For k = 1 we have R1 = 1 and gk = ½(1) so that from Theorem 64 we have:

Á11 = ½(1): (2.64)

Thus the optimal forecast of Yt+1 based only on Yt is:

E [Yt+1jYt] = Á11Yt = ½(1)Yt: (2.65)

If for example we have an AR(1): Yt = ÁYt¡1 + at then ½ (1) = Á and

E [Yt+1jYt] = ÁYt (2.66)
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which is equal to the optimal forecast since:

Et [Yt+1] = ÁYt; (2.67)

that is for an AR(1) process a forecast of Yt+1 based only on Yt is just as good
as a forecast based on the entire past history of Yt at time t :

Yt; Yt¡1; Yt¡2; : : : :

This is a special property of AR processes called the Markov property.

Forecasts when k = 2

For k = 2 we have from (2:63):·
1 ½ (1)
½ (1) 1

¸·
Á12
Á22

¸
=

·
½ (1)
½ (2)

¸
(2.68)

so that using Cramer’s rule:

Á12 =
½ (1) (1¡ ½ (2))
1¡ ½ (1)2 (2.69)

Á22 =
½ (2)¡ ½ (1)2
1¡ ½ (1)2 :

For example given an AR(1) :

Yt = ÁYt¡1 + at (2.70)

we have from Theorem 39 that: ½ (1) = Á and ½ (2) = Á2 so that:

Á12 =
Á
¡
1¡ Á2¢
1¡ Á2 = Á

Á22 =
Á2 ¡ Á2
1¡ Á2 = 0:

Thus:

E [Yt+1jYt; Yt¡1] = ÁYt + 0£ Yt¡1 (2.71)

= ÁYt:

This is again the Markov property of an AR(1) process: the information set at
time t is completely summarized by Yt so that the optimal forecast does not
depend on Yt¡1; Yt¡2; Yt¡3; : : : :
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A Numerical Example

Suppose we wish to use the Yule-Walker equations to derive a forecast rule for
k = 2 or using

E [Yt+1jYt; Yt¡1] = Á12Yt + Á22Yt¡1: (2.72)

Suppose we know that ½ (1) = 0:6 and ½ (2) = 0:5: Then from the Yule-Walker
equations: ·

1 ½ (1)
½ (1) 1

¸·
Á12
Á22

¸
=

·
½ (1)
½ (2)

¸
(2.73)

or: ·
1 0:6
0:6 1

¸·
Á12
Á22

¸
=

·
0:6
0:5

¸
: (2.74)

Solving we …nd that:

Á12 = 0:47 and Á22 = 0:22: (2.75)

We then have:

E [Yt+1jYt; Yt¡1] = 0:47Yt + 0:22Yt¡1: (2.76)

If Yt = 0:03 and Yt¡1 = 0:02 then our forecast of Yt+1 would be :

E [Yt+1jYt; Yt¡1] = (0:47) (0:03) + (0:22) (0:02) = 0:0185: (2.77)

2.9.3 Recursive Calculation of Ák
Once Ák has been calculated this can be used to calculate Ák+1 recursively using

Proposition 67 Durbin’s Formula: Given Ák =
£
Ákj
¤
then the elements

of Ák+1 =
£
Ák+1;j

¤
can be calculated as follows:

Ák+1;j = Ák;j ¡ Ák+1;k+1Ák;k¡j+1; for j = 1; 2; : : : k

Ák+1;k+1 =
½ (k + 1)¡Pk

j=1 ½ (k ¡ j + 1)Ák;j
1¡Pk

j=1 ½ (j)Ák;j
:

2.9.4 The Partial Autocorrelation Function

An important by-product from the Yule-Walker equations is the partial auto-
correlation function.

De…nition 68 Partial Autocorrelation Function: The partial autocorrela-
tion function for a stationary process Yt is de…ned as Ákk where Ákk is the k

th

element of Ák from Theorem 64

Ák = R
¡1
k rk:
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From Cramer’s rule and the Yule-Walker equations we have:

Á11 = ½ (1) ; (2.78)

Á22 =

¯̄̄̄
1 ½ (1)
½ (1) ½ (2)

¯̄̄̄
¯̄̄̄

1 ½ (1)
½ (1) ½ (1)

¯̄̄̄ = ½ (2)¡ ½ (1)2
1¡ ½ (1)2 ;

Á33 =

¯̄̄̄
¯̄ 1 ½ (1) ½ (1)
½ (1) 1 ½ (2)
½ (2) ½ (1) ½ (3)

¯̄̄̄
¯̄¯̄̄̄

¯̄ 1 ½ (1) ½ (2)
½ (1) 1 ½ (1)
½ (2) ½ (1) 1

¯̄̄̄
¯̄
=
½ (3)

³
1¡ ½ (1)2

´
¡ 2½ (2) ½ (1) + ½ (1)3 + ½ (2)2 ½ (1)

1¡ 2½ (1)2 + 2½ (2) ½ (1)2 ¡ ½ (2)2 :

etc..

Note that Ákk is a function of ½ (1) ; ½ (2) ; : : : ½ (k) :

Example 69 Suppose that:

½ (1) = 0:8; ½ (2) = 0:5; ½ (3) = 0:3

then

Á11 = 0:8;

Á22 =

¯̄̄̄
1 0:8
0:8 0:5

¯̄̄̄
¯̄̄̄
1 0:8
0:8 1

¯̄̄̄ = ¡0:39;

Á33 =

¯̄̄̄
¯̄ 1 0:8 0:8
0:8 1 0:5
0:5 0:8 0:3

¯̄̄̄
¯̄¯̄̄̄

¯̄ 1 0:8 0:5
0:8 1 0:8
0:5 0:8 1

¯̄̄̄
¯̄
= 0:18:

Ákk is called the partial autocorrelation function because it can be shown to
be equal to the correlation between Yt+1 and Yt¡k+1 when the predictive e¤ects
of the intermediate values Ikt = fYt; Yt¡1; Yt¡2; : : : Yt¡k+1g are removed; that is:
Theorem 70

Ákk = Corr
£
Yt+1; Yt+1¡kjIkt

¤
: (2.79)

Proof. Recall that for any two scalar random variables: X1 and X2 that
are jointly normally distributed that:

E [X1jX2] = E [X1] + Cov [X1;X2]
V ar [X2]

(X2 ¡E [X2]) :
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It follows then that:

E
£
Yt+1jYt+1¡k;Ikt

¤
= E

£
Yt+1jIkt

¤
+
Cov

£
Yt+1; Yt+1¡kjIkt

¤
V ar

£
Yt+1¡kjIkt

¤ ¡
Yt+1¡k ¡E

£
Yt+1¡kjIkt

¤¢
:

Since the coe¢cient on Yt+1¡k is Ákk it follows that:

Ákk =
Cov

£
Yt+1; Yt+1¡kjIkt

¤
V ar

£
Yt+1¡kjIkt

¤ :

By symmetry (or as an exercise):

V ar
£
Yt+1¡kjIkt

¤
= V ar

£
Yt+1jIkt

¤
and so:

Ákk =
Cov

£
Yt+1; Yt+1¡kjIkt

¤
V ar

£
Yt+1jIkt

¤ 1
2 V ar

£
Yt+1¡kjIkt

¤ 1
2

:

Thus Á11 = ½ (1) because there are no intermediate values between Yt and
Yt¡1: In general though Á22 6= ½ (2) since when we remove the predictive e¤ects
of Yt¡1 when determining the correlation between Yt and Yt¡2 we get a di¤erent
correlation.
Since Ákk is a correlation it is bounded between ¡1 and 1 and so we have:

Theorem 71

¡1 · Ákk · 1: (2.80)



Chapter 3

AR(p) Processes

3.1 Introduction
We can generalize a …rst-order autoregressive process to a pth order as follows:

De…nition 72 AR(p) Processes: We say that Yt follows an AR(p) process
or Yt »AR(p) if :

Yt = Á1Yt¡1 + Á2Yt¡2 + ¢ ¢ ¢+ ÁpYt¡p + at
where at s i:i:n(0; ¾2):

An important question will be the conditions under which an AR(p) process
is stationary. These are somewhat counter-intuitive. For example:

Yt = 0:7Yt¡1 + 0:35Yt¡2 + at (3.1)

turns out to be nonstationary despite the fact that jÁ1j < 1 and jÁ2j < 1 while
Yt = 1:4Yt¡1 ¡ 0:7Yt¡2 + at (3.2)

turns out to be stationary despite the fact that Á1 > 1:
To obtain the conditions for the stationarity of an AR(p) process we will

require the backward shift operator B:
We can use the backward shift operator B to rewrite the AR(p) process

much more compactly. Since:

Yt = Á1Yt¡1|{z}
=BYt

+ Á2 Yt¡2|{z}
=B2Yt

+ ¢ ¢ ¢+ Áp Yt¡p|{z}
=BpYt

+ at (3.3)

it follows that:

Yt = Á1BYt + Á2B
2Yt + ¢ ¢ ¢+ ÁpBpYt + at (3.4)

37
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or placing all the terms involving Yt on the left-hand side and factoring out Yt :

(1¡ Á1B ¡ Á2B2 ¡ ¢ ¢ ¢ ¡ ÁpBp)Yt = at: (3.5)

We therefore have:

Theorem 73 An AR(p) can be written as:

Á(B)Yt = at (3.6)

where Á(B) is a pth order polynomial in B given by:

Á(B) = 1¡ Á1B ¡ Á2B2 ¡ ¢ ¢ ¢ ¡ ÁpBp: (3.7)

Example 74 The AR(2) process

Yt = 0:6Yt¡1 + 0:2Yt¡2 + at (3.8)

can be rewritten with

Á(B) = 1¡ 0:6B ¡ 0:2B2 (3.9)

as: ¡
1¡ 0:6B ¡ 0:2B2¢Yt = at:

3.2 Some Derivations Using B

3.2.1 Wold Representation of an AR(1)

The backward shift operator might now be simply thought of as an empty
notational convention, but this notation turns out to be a very fruitful one.
For example consider the following alternative method for deriving the Wold
representation for the AR(1) model. Throw (1¡ÁB) on the left-hand side onto
the right-hand side as:

Yt =
1

1¡ ÁBat: (3.10)

Since Yt = Ã(B)at we have:

Ã(B) =
1

1¡ ÁB = 1 + ÁB + Á2B2 + Á3B3 + ¢ ¢ ¢ (3.11)

using the geometric series which states that:

1

1¡ x = 1 + x+ x
2 + x3 + ¢ ¢ ¢ : (3.12)
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3.2.2 Wold Representation for an AR(2)

Now consider an AR(2) process:

Yt = 1:3Yt¡1 ¡ 0:4Yt¡2 + at (3.13)

which can in turn be rewritten as:

Á(B)Yt = at

where:

Á(B) = 1¡ 1:3B + 0:4B2:
We might then ask, is it legitimate to throw Á (B) onto the right-hand side as
we did for the AR(1) model to obtain the Wold representation? That is can we
go from (3:13) to:

Yt =
1

1¡ 1:3B + 0:4B2 at:

This answer is yes, provided that Á (B) has certain properties related to its
roots. We can factor Á (B) as:

Á(B) = 1¡ 1:3B + 0:4B2
= (1¡ 0:5B) (1¡ 0:8B) :

Note that the roots of Á (B) are the inverses of 0:5 and 0:8; the coe¢cients on
B in the factorization. You can verify then that:

1

1¡ 1:3B + 0:4B2 =
¡5
3

(1¡ 0:5B) +
8
3

(1¡ 0:8B)
so that:

Yt =
1

1¡ 1:3B + 0:4B2 at

=

µ ¡5
3

(1¡ 0:5B) +
8
3

(1¡ 0:8B)
¶
at

=
1X
k=0

µ
¡5
3
(0:5)k +

8

3
(0:8)k

¶
at¡k

where the last line follows from the geometric series. We conclude that the Wold
representation for Yt is given by:

Ãk =

µ
¡5
3
(0:5)k +

8

3
(0:8)k

¶
and that Ãk ! 0 as k !1:
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3.3 TheWold Representation for an AR(p) Pro-
cess

Suppose that Yt s AR(p). Given that Yt is stationary it has a Wold represen-
tation:

Yt = Ã(B)at: (3.14)

Since Á(B)Yt = at we have

Á(B)Yt = at = Á(B)Ã(B)at (3.15)

so that:

Á(B)Ã(B) = 1 (3.16)

or equivalently:

Á(B)Ã(B) = 1 + 0B + 0B2 + 0B3 + ¢ ¢ ¢ : (3.17)

Writing this out explicitly we have:

(1¡ Á1B ¡ Á2B2 ¡ ¢ ¢ ¢ ¡ ÁpBp)(Ã0 + Ã1B + Ã2B2 + Ã3B3 + ¢ ¢ ¢ ) = 1 + 0B + 0B2 + ¢ ¢ ¢
(3.18)

and equating the coe¢cient on B0 = 1 on both sides we have:

Ã0 = 1 (3.19)

which we already knew.
Equating coe¢cients on B1 on both sides we have:

(Ã1 ¡ Á1Ã0)B1 = 0B1

or

Ã1 ¡ Á1Ã0 = 0

or using the fact that Ã0 = 1 that:

Ã1 = Á1:

We can do the same thing with the coe¢cients on B2 which yields:0B@Ã2 ¡ Á1 Ã1|{z}
=Á1

¡ Á2 Ã0|{z}
=1

1CA£B2 = 0£B2 (3.20)
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or:

Ã2 ¡ Á1Ã1 ¡ Á2Ã0 = 0

or:

Ã2 = Á1Ã1 + Á2Ã0 (3.21)

= Á21 + Á2: (3.22)

If you keep on doing this you will that for Bk:¡
Ãk ¡ Á1Ãk¡1 ¡ Á2Ãk¡2 ¡ ¢ ¢ ¢ ¡ ÁpÃk¡p

¢
Bk = 0£Bk

so that we obtain the following theorem:1

Theorem 75 Recursive Calculation of Ãk: For a stationary AR(p) process
Á (B)Yt = at the Wold representation can be recursively calculated as:

Ãk = Á1Ãk¡1 + Á2Ãk¡2 + ¢ ¢ ¢+ ÁpÃk¡p
with starting values:

Ã0 = 1; Ãk = 0 for k < 0:

An Example

For example consider calculating the Wold representation for the AR(2) model:

Yt = 1:4Yt¡1 ¡ 0:7Yt¡2 + at: (3.23)

From Theorem 75 we have:

Ãk = 1:4Ãk¡1 ¡ 0:7Ãk¡2, (3.24)

with starting values:

Ã0 = 1, Ã¡1 = 0 (3.25)

which can now be used to calculate Ãk recursively. Thus:

Ã1 = 1:4 Ã0|{z}
=1

¡ 0:7Ã¡1|{z}
=0

= 1:4 (3.26)

1Another way of stating this result is that for k > 0:

Á (B)Ãk = 0

where the backward shift operator works on the k subscript so that for example:

B2Ãk = Ãk¡2:
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Ã2 = 1:4 Ã1|{z}
=1:4

¡ 0:7 Ã0|{z}
=1

= 1:26

Ã3 = 1:4 Ã2|{z}
=1:26

¡ 0:7 Ã1|{z}
=1:4

= 0:784

Ã4 = 1:4 Ã3|{z}
=0:784

¡ 0:7 Ã2|{z}
=1:26

= 0:215;

etc..

If you continue with this process you will …nd that Ãk ! 0 very rapidly as
k gets large which re‡ects the fact that this particular AR(2) is stationary.

3.4 Stationarity Conditions for an AR(p)

For an AR(p) we have seen from Theorem 75 how Ãk can be calculated recur-
sively. We know from Theorem 57 that if Yt is stationary then Ãk must converge
to zero. Therefore an empirical method of determining stationarity would be to
calculate Ãk for k large using Theorem 75 and see if appears to be converging
to zero.
We can however settle the issue of stationary by using the fact that:

Ãk =

pX
j=1

ÁjÃk¡j (3.27)

Ã0 = 1; Ãk = 0 for k < 0:

from Theorem 75 and so Ãk follows a p
th order linear di¤erence equation. We

solve linear di¤erence equations in the usual way by conjecturing a solution of
the form:

Ãk = Ar
k (3.28)

which leads to:

Ark|{z}
Ãk

= Á1Ar
k¡1| {z }

Ãk¡1

+ Á2Ar
k¡2| {z }

Ãk¡2

+ ¢ ¢ ¢+ ÁpArk¡p| {z }
Ãk¡p

: (3.29)

Cancelling A and rk from both sides we have:

1 = Á1r
¡1 + Á2r

¡2 + ¢ ¢ ¢+ Ápr¡p (3.30)

or

1¡ Á1r¡1 ¡ Á2r¡2 ¡ ¢ ¢ ¢ ¡ Ápr¡p = 0: (3.31)
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Now since

Á(B) = 1¡ Á1B ¡ Á2B2 ¡ ¢ ¢ ¢ ¡ ÁpBp (3.32)

this can be written compactly as

Á(r¡1) = 0; (3.33)

that is, if we replace B by r¡1 in Á(B) we get zero.
It follows that r¡1 is a root of Á(B). Since Á(B) is a pth order polynomial

we will have p roots:

r¡11 ; r¡12 ; : : : r¡1p (3.34)

so that

Theorem 76 For an AR(p) the in…nite moving average weights Ãk can be ex-
pressed as:

Ãk = A1r
k
1 +A2r

k
2 + ¢ ¢ ¢+Aprkp

where: r¡1i is a root of Á (B) ; that is: Á(r¡1i ) = 0 and Ai can be found from the
starting values

Ã0 = 1; Ãk = 0 for k < 0:

It is slightly awkward that r¡1 is the root of Á (B) and not r: This can be
remedied by de…ning a closely related pth order polynomial where we begin with
a power of p on the left-hand side instead of the power 0 as we do with Á (B) :
More formally:

De…nition 77 Let the pth order polynomial ~Á(r) be de…ned as:

~Á(r) = rpÁ(r¡1)
= rp ¡ Á1rp¡1 ¡ Á2rp¡2 ¡ Á3rp¡3 ¡ ¢ ¢ ¢ ¡ Áp:

We then have:

Theorem 78 r¡1i is a root of Á (B) if and only if ri is a root of ~Á(r).

Proof. If Á
¡
r¡1i

¢
= 0 then ~Á(ri) = rpi Á(r

¡1
i ) = 0: Similarly if ~Á(ri) = 0

then rpi Á(r
¡1
i ) = 0 or Á(r¡1i ) = 0:

Example 79 Given

Á (B) = 1¡ 0:5B ¡ 0:3B2 (3.35)

which has roots

B = ¡2:8403 and B = 1:1736: (3.36)
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~Á(r) is then given by:

~Á(r) = r2 ¡ 0:5r ¡ 0:3 (3.37)

which has roots:

r1 = ¡0:35208 = 1

¡2:8403 and (3.38)

r2 = 0:85208 =
1

1:1736
:

Since for a stationary process we have from Theorem 57 that:

lim
k!1

Ãk = 0 (3.39)

an AR(p) process will only be stationary if for each r¡ki as k !1:
r¡ki ! 0: (3.40)

This in turn will only occur if:

jrij < 1 (3.41)

for all roots.
We can therefore have the essential condition for stationarity:

Theorem 80 An AR(p) process: Á(B)Yt = at is stationary if and only if all
roots of Á (B) are greater than 1 in absolute value; that is if for all i = 1; 2; : : : p

Á
¡
r¡1i

¢
= 0 =) jrij < 1:

We can also express the stationarity condition in terms of the ~Á (r) as:

Theorem 81 An AR(p) process is stationary if an only if all roots of ~Á (r) given
in De…nition 77 are less than 1 in absolute value; that is if for all i = 1; 2; : : : p

~Á (ri) = 0 =) jrij < 1:
Remark 82 We have only proven necessity. For practical purposes these two
conditions are also su¢cient for stationarity. To be precise however we should
make some quali…cation regarding the distribution of the starting values of the
process. For example if for a stationary AR(1) it were the case that the starting
value Yo had say a t distribution instead of a normal, then Yt = ÁYt¡1 +at would
not be strictly speaking stationary since it would take some time for Yt to forget
the distribution of Yo: We would then say that Yt is asymptotically stationary.
Theoretical models often assume that Yt has an in…nite past in order to get
around this problem.

Note that given stationarity rki ! 0 exponentially. This would suggest that
Ãk for a stationary AR(p) has the short-memory property in Section 2.2. We
have:
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Theorem 83 For a stationary AR(p) process Ãk has the short-memory prop-
erty: Ãk = O

¡
¿k
¢
or

jÃkj · A¿k

where

0 · ¿ = max
i
[jrij] < 1:

Proof. From the Cauchy-Schwarz inequality we have:

jÃkj =

¯̄̄̄
¯
pX
i=1

Air
k
i

¯̄̄̄
¯

·
Ã

pX
i=1

A2i

!1=2Ã pX
i=1

jrij2k
!1=2

· A¿k

where

0 · ¿ = max
i
[jrij] < 1

is the absolute value of the largest root of ~Á (r) and:

A =

Ã
pX
i=1

A2i

!1=2
:

From this short-memory result it follows that:

Theorem 84 If for the AR(p) process Á (B)Yt = at , Á (B) has all roots greater
than one in absolute value or jrij < 1 for i = 1; 2; : : : p then:

j° (k)j · ° (0) <1:

Example 1

The process

Yt = 0:5Yt¡1 + 0:2Yt¡2 + at

is stationary since

~Á(r) = r2 ¡ 0:5r ¡ 0:2 = 0 (3.42)

implies that:

r =
0:5§

q
(0:5)2 ¡ 4(¡0:2)

2
(3.43)

or r1 = 0:762 and r2 = ¡0:262: Thus since jr1j < 1 and jr2j < 1 we conclude
that the process is stationary.
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Example 2

The process Yt = 0:8Yt¡1 + 0:3Yt¡2 + at is not stationary since

~Á(r) = r2 ¡ 0:8r ¡ 0:3 = 0 (3.44)

implies that:

r =
0:8§p(0:8)2 ¡ 4(¡0:3)

2
(3.45)

or r1 = 1:08 and r2 = ¡0:278: Thus since jr1j = 1:08 > 1 we conclude that the
process is not stationary.

3.4.1 Necessary Conditions for Stationarity

Sometimes it is not necessary to calculate the roots of a polynomial to know that
a process is nonstationary. Here we derive a number of necessary conditions for
stationarity; that is if these conditions are violated then we know the process is
nonstationary but we cannot conclude from their being satis…ed that the process
is stationary.
Consider the factorization of the pth order polynomial

Á(B) = 1¡ Á1B ¡ Á2B2 ¡ ¢ ¢ ¢ ¡ ÁpBp (3.46)

as:

Á(B) = (1¡ r1B)(1¡ r2B) ¢ ¢ ¢ (1¡ rpB): (3.47)

Multiplying these terms out and equating the coe¢cient on Bp in the two rep-
resentations it follows that we have:

jÁpj = jr1jjr2j ¢ ¢ ¢ jrpj: (3.48)

Since the process is stationary we have: jrij < 1 for i = 1; 2; : : : p and so we
conclude that:

Theorem 85 A necessary condition for the stationarity of an AR(p) process is
that:

jÁpj < 1: (3.49)

Thus the coe¢cient on the last lag Yt¡p must always be less than 1 in
absolute value.

Example 86 We can say that

Yt = 0:1Yt¡1 ¡ 1:1Yt¡2 + at
is not stationary since jÁ2j = 1:1 > 1 without bothering to calculate the roots.
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Another necessary condition for stationarity is that the sum of the Ái
0smust

sum to less than 1 or:

Theorem 87 A necessary condition for the stationarity of an AR(p) process is
that Á(1) > 0 or:

Á1 + Á2 + ¢ ¢ ¢+ Áp < 1: (3.50)

Proof. If ri is real and jrij < 1 then clearly:
1¡ ri > 0:

Thus if all roots are real

Á(1) = (
+

1¡ r1)(
+

1¡ r2) ¢ ¢ ¢ (
+

1¡ rp) > 0 (3.51)

The same argument applies with complex roots. Thus if there is a complex root,
say rk = a+bi; then it will be paired with another root will which is its complex
conjugate say rl = a¡ bi in which case:

(1¡ rk) (1¡ rl) = (1¡ (a+ bi)) (1¡ (a¡ bi))
1¡ 2a+ a2 + b2

= (1¡ a)2 + b2 > 0

and so Á (1) > 0: Now since

Á(1) = 1¡ Á1 ¡ Á2 ¡ ¢ ¢ ¢ ¡ Áp > 0 (3.52)

the result follows.

Example 88 For example the AR(2) process:

Yt = 0:3Yt¡1 + 0:8Yt¡2 + at (3.53)

is not stationary since

Á1 + Á2 = 0:3 + 0:8 = 1:1 > 1: (3.54)

The same argument can be applied to Á (¡1) to obtain:
Theorem 89 A necessary condition for the stationarity of an AR(p) process is
that Á(¡1) > 0 or:

pX
j=1

(¡1)j Áj < 1: (3.55)

Proof. Same as the proof of Theorem 87 except all arguments use (1 + ri)
instead of (1¡ ri) :
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3.4.2 Stationarity of an AR(2)

Suppose we apply the necessary conditions (3:49) ; (3:50) and (3:55) to the
AR(2):

Yt = Á1Yt¡1 + Á2Yt¡2 + at: (3.56)

For the AR(2) these also turn out to be su¢cient for stationarity. That is:

Theorem 90 For the AR(2) model in (3:56) a necessary and su¢cient condi-
tion for stationarity is:

jÁ2j < 1 (3.57)

Á1 + Á2 < 1

Á2 ¡ Á1 < 1:

Proof. We have already shown these conditions are necessary. To prove
su¢ciency note that from:

1¡ Á1B ¡ Á2B2 = (1¡ r1B) (1¡ r2B)
we have:

r1 + r2 = Á1
r1r2 = ¡Á2:

From jÁ2j = jr1r2j = jr1j jr2j < 1 it follows that either jr1j < 1 or jr2j < 1: If
r1 and r2 are complex then jr1j = jr2j < 1 and stationarity follows. Therefore
we need only consider the case where the roots are real. Assume without loss
of generality that jr2j < 1 so it remains to be shown that jr1j < 1: Now from
Á1 + Á2 < 1 we conclude that:

Á1 + Á2 = r1 + r2 ¡ r1r2 < 1
or:

r1 (1¡ r2) < 1¡ r2:
Since (1¡ r2) > 0 if follows that r1 < 1: Now from Á2 ¡ Á1 < 1 we conclude
that:

Á2 ¡ Á1 = ¡r1r2 ¡ r1 ¡ r2 < 1
or:

¡r1 (1 + r2) < (1 + r2) :
Since (1¡ r2) > 0 if follows that r1 > ¡1: Therefore jr1j < 1 and jr2j < 1 and
so the process is stationary.

Remark 91 Note that if the roots r1 and r2 are complex, which occurs if and
only if Á21 + 4Á2 < 0; then a necessary and su¢cient condition for stationarity
is jÁ2j < 1; that is we do not need the other two conditions in (3:57) :
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3.5 The Autocorrelation Function

Consider now the problem of calculating the autocovariance function °(k) and
the autocorrelation function ½(k) for an AR(p) process. We will derive °(0) and
½(k) for k > 1 since given these, °(k) can be calculated as

°(k) = ½(k)°(0): (3.58)

First using Theorem 56 we have:

E[Ytat] = Ão¾
2 = ¾2 (3.59)

since Ão = 1:
Multiplying both sides of

Yt = Á1Yt¡1 + Á2Yt¡2 + ¢ ¢ ¢+ ÁpYt¡p + at
by Yt and taking expectations yields:

°(0) = E[Y 2t ] = Á1E[Yt¡1Yt]| {z }
´°(1)

+ Á2E[Yt¡2Yt]| {z }
´°(2)

+ ¢ ¢ ¢+ ÁpE[Yt¡pYt]| {z }
´°(p)

+E[atYt]| {z }
¾2

(3.60)

so that

°(0) = Á1°(1) + Á2°(2) + ¢ ¢ ¢+ Áp°(p) + ¾2: (3.61)

Now since °(k) = ½(k)°(0) we have solving for °(0) the following theorem:

Theorem 92 For an AR(p) process:

°(0) =
¾2

1¡ Á1½(1)¡ Á2½(2)¡ ¢ ¢ ¢ ¡ Áp½(p)
:

Thus given Á1; Á2; : : : Áp; ¾
2 and ½(1); ½(2); : : : ½(p) we can calculate °(0):

Example 93 For Yt = ÁYt¡1 + at we have: ½ (1) = Á so that:

°(0) =
¾2

1¡ Á½(1) (3.62)

=
¾2

1¡ Á2

a formula we have already derived using other methods.

The autocorrelation function ½ (k) can then be recursively calculated using:
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Theorem 94 For an AR(p) process:

½(k) = Á1½(k ¡ 1) + Á2½(k ¡ 2) + ¢ ¢ ¢+ Áp½(k ¡ p)

with starting values determined by

½(0) = 1 and ½(¡k) = ½(k):

Proof. Multiply both sides of

Yt =

pX
j=1

ÁjYt¡j + at (3.63)

by Yt¡k (for k > 0) and take expectations. Using the fact that E[atYt¡k] = 0 it
follows that:

E[YtYt¡k]| {z }
´°(k)

= Á1E[Yt¡1Yt¡k]| {z }
´°(k¡1)

+ Á2E[Yt¡2Yt¡k]| {z }
´°(k¡2)

+ ¢ ¢ ¢+ ÁpE[Yt¡pYt¡k]| {z }
´°(k¡p)

(3.64)

and dividing both sides by °(0) and using ½(k) = °(k)
°(0) the theorem follows.

Thus ½(k) follows the same linear pth order di¤erence equation as Ãk except
that the starting values are di¤erent. Thus following the proof of Theorem 76
it follows that ½ (k) will have the same solution except that the weights on rkj
will be di¤erent. We thus have:

Theorem 95 For an AR(p) process:

½(k) = B1r
k
1 +B2r

k
2 + ¢ ¢ ¢+Bprkp

where Á(r¡1i ) = 0; ½(0) = 1 and ½(¡k) = ½(k).

We thus conclude for a stationary AR(p) that ½ (k) has the short-memory
property given in Section 2:2: In particular:

Theorem 96 For a stationary AR(p) process ½(k) = O
¡
¿k
¢
or it has the short-

memory property:

j½(k)j · B¿k

where

0 · ¿ = max
i
[jrij] < 1:

Proof. Same as the proof of Theorem 83:
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3.6 Forecasting

Consider the problem of forecasting Yt+k given the information set at time t.
We have:

Et[Yt+k] = Á1Et[Yt+k¡1] + Á2Et[Yt+k¡2] + ¢ ¢ ¢+ ÁpEt[Yt+k¡p] +Et[at+k]:
(3.65)

Since Et[at+k] = 0 for k > 0 it follows that:

Theorem 97 For an AR(p) process:

Et[Yt+k] = Á1Et[Yt+k¡1] + Á2Et[Yt+k¡2] + ¢ ¢ ¢+ ÁpEt[Yt+k¡p] (3.66)

where:

Et[Yt+k] = Yt+k for k · 0: (3.67)

Thus the forecasts follow the same pth order di¤erence equation as Ãk and
½(k) except that the starting values in (3:67) are di¤erent. These starting values
come from the fact that forecasts of the past or present are just the already
known values. We therefore have immediately that:

Theorem 98 For an AR(p) process:

Et[Yt+k] = C1tr
k
1 +C2tr

k
2 + ¢ ¢ ¢+Cptrkp (3.68)

where ri are the roots given by Á(r¡1i ) = 0 and

Et[Yt+k] = Yt+k for k · 0:
Remark 99 Unlike Aj and Bj for Ãk and ½ (k) ; there is a t subscript on Cjt:
This is because the starting values depend on the information set at time t which
depends on t:

It follows that Et [Yt+k], like Ãk and ½ (k) has the short-memory property
and so:

Theorem 100 For a stationary AR(p) process Et [Yt+k] = O
¡
¿k
¢
or it has the

short-memory property:

jEt[Yt+k]j · Ct¿k

where

0 · ¿ = max
i
[jrij] < 1:

Proof. Same as the proof of Theorem 83:
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3.7 Some Worked Examples

Let us now consider a number of worked examples with AR(2) processes.

3.7.1 A Stationary AR(2) with Real Roots

Checking for Stationarity

Consider the AR(2) process:

Yt = 0:3Yt¡1 + 0:4Yt¡2 + at; ; ¾ = 0:01: (3.69)

To determine stationarity we …rst work directly with Á (B) here given by:

Á(B) = 1¡ 0:3B ¡ 0:4B2: (3.70)

Calculating the roots of Á(B) = 0 we …nd that:

1¡ 0:3B ¡ 0:4B2 = 0) B =
0:3§p(¡0:3)2 ¡ 4(1)(¡0:4)

2(¡0:4) (3.71)

or

B1 = ¡2 and B2 = 1:2: (3.72)

Since jB1j > 1 and jB2j > 1 we conclude that the process is stationary.
We can calculate the roots of ~Á(r) = 0 where:

~Á(r) = r2 ¡ 0:3r ¡ 0:4 (3.73)

which yields:

r =
0:3§p(0:3)2 ¡ 4(¡0:4)

2
(3.74)

or

r1 =
4

5
and r2 = ¡1

2
: (3.75)

Since jr1j < 1 and jr2j < 1 we again can conclude again that the series is
stationary.
Finally we can check stationarity from (3:57) : Since:

jÁ2j = 0:4 < 1 (3.76)

Á1 + Á2 = 0:7 < 1

Á2 ¡ Á1 = 0:1 < 1

it follows that the process is stationary.
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In…nite Moving Average Weights

Recursive Calculations To calculate the in…nite moving average weights
recursively we use:

Ãk = 0:3Ãk¡1 + 0:4Ãk¡2 (3.77)

Ã0 = 1, Ã¡1 = 0

so that:

Ã1 = 0:3 Ã0|{z}
=1

+ 0:4Ã¡1|{z}
=0

= 0:3 (3.78)

Ã2 = 0:3 Ã1|{z}
=0:3

+ 0:4 Ã0|{z}
=1

= 0:49

Ã3 = 0:3 Ã2|{z}
=0:49

+ 0:4 Ã1|{z}
=0:3

= 0:267

Ã4 = 0:3 Ã3|{z}
=0:267

+ 0:4 Ã2|{z}
=0:49

= 0:276;

etc..

Solving the Di¤erence Equation

We can also directly solve the above di¤erence equation. The roots of

r2 ¡ 0:3r ¡ 0:4 = 0 (3.79)

are given by: r1 = 4
5 and r2 = ¡1

2 so that:

Ãk = A1

µ
4

5

¶k
+A2

µ
¡1
2

¶k
: (3.80)

To …nd A1 and A2 use the fact that Ã0 = 1 and Ã¡1 = 0 so that:

Ã¡1 = 0 = A1

µ
4

5

¶¡1
+A2

µ
¡1
2

¶¡1
(3.81)

Ã0 = 1 = A1

µ
4

5

¶0
+A2

µ
¡1
2

¶0
or in matrix notation: ·

5
4 ¡2
1 1

¸·
A1
A2

¸
=

·
0
1

¸
: (3.82)
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Solving for A1 and A2 we …nd that:·
A1
A2

¸
=

·
5
4 ¡2
1 1

¸¡1 ·
0
1

¸
(3.83)

=

·
8
13
5
13

¸
so that:

Ãk =
8

13

µ
4

5

¶k
+
5

13

µ
¡1
2

¶k
: (3.84)

You can verify that this is the correct solution by substituting in values of k:
For example for k = 3 we have:

Ã3 =
8

13

µ
4

5

¶3
+
5

13

µ
¡1
2

¶3
(3.85)

= 0:267

which is identical to what we found with the recursive calculation above. A
(connected) plot of Ãk for k = 1; 2; : : : 20 is given below:

0
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0.4

0.6

0.8

1

5 10 15 20k

Plot of Ãk

Note the exponential decay re‡ecting the short-memory property of Ãk = O
¡
¿k
¢
:

Autocorrelations

Recursive Calculations

For the autocorrelation function we have:

½(k) = 0:3½(k ¡ 1) + 0:4½(k ¡ 2): (3.86)



CHAPTER 3. AR(P) PROCESSES 55

We can calculate this recursively as:

½(0) = 1 (3.87)

½(1) = 0:3½(0)|{z}
=1

+ 0:4½(¡1)| {z }
½(1)

so that

½(1) = 0:3 + 0:4½(1) (3.88)

or

½(1) =
0:3

0:6
= 0:5: (3.89)

Continuing we have:

½(2) = 0:3½(1)|{z}
=0:5

+ 0:4½(0)|{z}
=1

= 0:55 (3.90)

½(3) = 0:3½(2)|{z}
=0:55

+ 0:4½(1)|{z}
=0:5

= 0:365

½(4) = 0:3 ½(3)|{z}
=0:365

+ 0:4½(2)|{z}
=0:55

= 0:3295

etc..

Given ½(1) = 0:5; ½(2) = 0:55 we can determine °(0) from Theorem 92 as:

°(0) =
¾2

1¡ Á1½(1)¡ Á2½(2)
(3.91)

=
(0:01)2

1¡ (0:3)(0:5)¡ (0:4)(0:55)
= 0:000159

so that the unconditional standard deviation is:

°(0)
1
2 =

p
0:000159 = 0:0126: (3.92)

Solving the Di¤erence Equation To solve the di¤erence equation for ½ (k)
we have:

½(k) = B1

µ
4

5

¶k
+B2

µ
¡1
2

¶k
(3.93)

with starting values ½(0) = 1 and ½ (¡1) = ½ (1) = 1
2 so that:·

5
4 ¡2
1 1

¸ ·
B1
B2

¸
=

·
1
2
1

¸
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or: ·
B1
B2

¸
=

·
5
4 ¡2
1 1

¸¡1 · 1
2
1

¸
(3.94)

=

·
10
13
3
13

¸
and hence:

½(k) =
10

13

µ
4

5

¶k
+
3

13

µ
¡1
2

¶k
: (3.95)

We can again verify that this is correct for say k = 2 since:

½(2) =
10

13

µ
4

5

¶2
+
3

13

µ
¡1
2

¶2
(3.96)

= 0:55

which is identical to the recursive calculation result. A (connected) plot of ½ (k)
is given below:
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Plot of ½ (k)

Note the exponential decay due to the short-memory property.

Forecasts

Recursive Calculations To calculate forecasts from this model suppose that:

Yt¡1 = 0:01, Yt = 0:02; ¾ = 0:01: (3.97)

Then since Et[Yt¡1] = 0:01 and Et[Yt] = 0:02 we have:

Et[Yt+1] = 0:3Et[Yt]| {z }
=0:02

+ 0:4Et[Yt¡1]| {z }
=0:01

= 0:01 (3.98)

Et[Yt+2] = 0:3Et[Yt+1]| {z }
=0:01

+ 0:4Et[Yt]| {z }
=0:02

= 0:011
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Et[Yt+3] = 0:3Et[Yt+2]| {z }
=0:011

+ 0:4Et[Yt+1]| {z }
=0:01

= 0:0073

Et[Yt+4] = 0:3Et[Yt+3]| {z }
=0:0073

+ 0:4Et[Yt+2]| {z }
=0:01

= 0:00619:

Solving the Di¤erence Equation We can also solve the di¤erence equation.
Since

Et[Yt+k] = C1tr
k
1 +C2tr

k
2 (3.99)

with r1 = 4
5 and r2 = ¡1

2 we have:

Et[Yt+k] = C1t

µ
4

5

¶k
+C2t

µ
¡1
2

¶k
: (3.100)

We calculate C1t and C2t using the starting values E[Yt¡1] = 0:01 and Et[Yt] =
0:02 so that:

C1t

µ
4

5

¶¡1
+C2t

µ
¡1
2

¶¡1
= E[Yt¡1] = 0:01

C1t

µ
4

5

¶0
+C2t

µ
¡1
2

¶0
= E[Yt] = 0:02

or in matrix notation: ·
5
4 ¡2
1 1

¸ ·
C1t
C2t

¸
=

·
0:01
0:02

¸
(3.101)

and hence: ·
C1t
C2t

¸
=

·
5
4 ¡2
1 1

¸¡1 ·
0:01
0:02

¸
(3.102)

=

·
0:0154
0:0046

¸
:

We therefore have:

Et[Yt+k] = 0:0154

µ
4

5

¶k
+ 0:0046

µ
¡1
2

¶k
: (3.103)



CHAPTER 3. AR(P) PROCESSES 58

A (connected) plot of Et[Yt+k] is given below:

0

0.005

0.01

0.015

0.02

5 10 15 20k

A plot of Et [Yt+k] as a function of k

:

Note the exponential decay indicative of the short-memory property ofEt [Yt+k] =
O
¡
¿k
¢
:

Con…dence Intervals for Forecasts

To calculate con…dence intervals for the forecasts we use the fact that for any
stationary time series we have from the Wold representation and Theorem 61
that:

V art[Yt+k] = ¾
2(1 + Ã21 + Ã

2
2 + ¢ ¢ ¢+ Ã2k¡1) (3.104)

where the Ãk’s are calculated recursively from:

Ãk = 1:4Ãk¡1 ¡ 0:7Ãk¡2 (3.105)

Ã0 = 1; Ã¡1 = 0:

Recall that Ã1 = 1:4; Ã2 = 1:26; Ã3 = 0:784 and Ã4 = 0:2156: Thus:

V art[Yt+1] = ¾2 = (0:01)2

V art[Yt+1] = ¾2(1 + Ã21) = (0:01)
2 ¡1 + 1:42¢

V art[Yt+2] = ¾2(1 + Ã21 + Ã
2
2) = (0:01)

2 ¡1 + 1:42 + 1:262¢
V art[Yt+3] = ¾2(1 + Ã21 + Ã

2
2 + Ã

2
3) = (0:01)

2 ¡1 + 1:42 + 1:262 + 0:7842¢
etc::

A 95% con…dence interval for Yt+k is then given by:

Et[Yt+k]§ 1:96
p
V art[Yt+k]: (3.106)

As k ! 1 Et[Yt+k] ! E [Yt] = 0 and V art[Yt+k] ! °(0) and the con…dence
interval would be

0§ 1:96
p
°(0): (3.107)
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For this model we have from (3:92) that °(0) = 0:025: Thus we have:

Forecast Con…dence Intervals
k = 1 0:021§ 0:0196
k = 2 0:0154§ 0:037
k = 3 0:007§ 0:0418
k = 4 ¡0:001§ 0:0445
k = 5 ¡0:006§ 0:0447
k =1 0§ 0:049

3.7.2 A Nonstationary AR(2) with Real Roots

Let us consider the AR(2) process:

Yt = 0:7Yt¡1 + 0:6Yt¡2 + at: (3.108)

Here we have:

~Á(r) = r2 ¡ 0:7r ¡ 0:6 (3.109)

which yields:

r1 = 1:2 and r2 = ¡1
2
: (3.110)

Since jr1j = 1:2 > 1 we conclude that the series is nonstationary.
Alternatively we would conclude from the fact that:

Á1 + Á2 = 0:7 + 0:6 = 1:3 > 1

which violates (3:57) and so the process is nonstationary.

In…nite Moving Average Weights

Recursive Calculations To calculate the in…nite moving average weights
recursively we use:

Ãk = 0:7Ãk¡1 + 0:6Ãk¡2 (3.111)

Ã0 = 1, Ã¡1 = 0

so that:

Ã1 = 0:7 Ã0|{z}
=1

+ 0:6Ã¡1|{z}
=0

= 0:7 (3.112)

Ã2 = 0:7 Ã1|{z}
=0:7

+ 0:6 Ã0|{z}
=1

= 1:09
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Ã3 = 0:7 Ã2|{z}
=1:09

+ 0:6 Ã1|{z}
=0:7

= 1:183

Ã4 = 0:7 Ã3|{z}
=1:183

+ 0:6 Ã2|{z}
=1:09

= 1:482;

etc..

Note that the weights are getting bigger and bigger, which is a re‡ection of the
fact that the process is not stationary.

Solving the Di¤erence Equation We can also directly solve the above
di¤erence equation. The roots of

r2 ¡ 0:7r ¡ 0:6 = 0 (3.113)

are given by: r1 = 6
5 and r2 = ¡1

2 so that:

Ãk = A1

µ
6

5

¶k
+A2

µ
¡1
2

¶k
: (3.114)

To …nd A1 and A2 use the fact that Ã0 = 1 and Ã¡1 = 0 so that:

Ã¡1 = 0 = A1

µ
6

5

¶¡1
+A2

µ
¡1
2

¶¡1
(3.115)

Ã0 = 1 = A1

µ
6

5

¶0
+A2

µ
¡1
2

¶0
or in matrix notation: ·

5
6 ¡2
1 1

¸·
A1
A2

¸
=

·
0
1

¸
: (3.116)

Solving for A1 and A2 we …nd that:·
A1
A2

¸
=

·
5
6 ¡2
1 1

¸¡1 ·
0
1

¸
(3.117)

=

·
12
17
5
17

¸
so that:

Ãk =
12

17

µ
6

5

¶k
+
5

17

µ
¡1
2

¶k
: (3.118)
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We can see now why Ã0ks do not converge to zero since the term involving¡
6
5

¢k
will diverge as k !1 even though the term involving

¡¡1
2

¢k
will converge

to zero. A (connected) plot of Ãk for k = 1; 2; : : : 10 is given below shows this:
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A plot of Ãk:

Autocorrelations

Recursive Calculations For the autocorrelation function we have:

½(k) = 0:7½(k ¡ 1) + 0:6½(k ¡ 2): (3.119)

Since the series is not stationary it strictly speaking does not have an autocor-
relation function. We can nevertheless calculate the ½ (k)0 s recursively and see
what happens. We obtain:

½(0) = 1 (3.120)

½(1) = 0:7½(0)|{z}
=1

+ 0:6½(¡1)| {z }
½(1)

so that

½(1) = 0:7 + 0:6½(1) (3.121)

or

½(1) =
0:7

0:4
=
7

4
> 1 (3.122)

which is impossible since ¡1 · ½ (k) · 1: Again we conclude that the series
must be nonstationary.

3.7.3 A Nonstationary AR(2) with a Unit Root

Let us consider the AR(2) process:

Yt = 0:7Yt¡1 + 0:3Yt¡2 + at: (3.123)
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Here we have:

~Á(r) = r2 ¡ 0:7r ¡ 0:3 (3.124)

which yields:

r1 = 1:0 and r2 = ¡0:3: (3.125)

Since r1 = 1:0 which is not less than 1 in absolute value, we conclude that the
series is nonstationary. We can also see this by the fact that:

Á1 + Á2 = 0:7 + 0:3 = 1:0 = 1

which violates (3:57).
This series has a unit root, and is in fact on the border between stationarity

and nonstationarity.

In…nite Moving Average Weights

Recursive Calculations To calculate the in…nite moving average weights
recursively we use:

Ãk = 0:7Ãk¡1 + 0:3Ãk¡2 (3.126)

Ã0 = 1, Ã¡1 = 0

so that:

Ã1 = 0:7 Ã0|{z}
=1

+ 0:3Ã¡1|{z}
=0

= 0:7 (3.127)

Ã2 = 0:7 Ã1|{z}
=0:7

+ 0:3 Ã0|{z}
=1

= 0:79

Ã3 = 0:7 Ã2|{z}
=0:79

+ 0:3 Ã1|{z}
=0:7

= 0:763

Ã4 = 0:7 Ã3|{z}
=0:763

+ 0:3 Ã2|{z}
=0:79

= 0:7711;

etc..

As we shall see, the Ãk
0s are not diverging, as with the previous nonstationary

example, nor are they converging to 0 as required by stationary, but they are
converging to a non-zero constant.
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Solving the Di¤erence Equation We can also directly solve the above
di¤erence equation. The roots of

r2 ¡ 0:7r ¡ 0:3 = 0 (3.128)

are given by: r1 = 1 and r2 = ¡0:3 so that:
Ãk = A1 (1)

k +A2 (¡0:3)k : (3.129)

To …nd A1 and A2 use the fact that Ã0 = 1 and Ã¡1 = 0 so that:

Ã¡1 = 0 = A11
¡1 +A2 (¡0:3)¡1 (3.130)

Ã0 = 1 = A11
0 +A2 (¡0:3)0

or in matrix notation: ·
1 ¡ 1

0:3
1 1

¸ ·
A1
A2

¸
=

·
0
1

¸
: (3.131)

Solving for A1 and A2 we …nd that:·
A1
A2

¸
=

·
1 ¡ 1

0:3
1 1

¸¡1 ·
0
1

¸
(3.132)

=

·
0:76923
0:23077

¸
so that:

Ãk = 0:76923 (1)k + 0:23077 (¡0:3)k (3.133)

= 0:76923 + 0:23077 (¡0:3)k (3.134)

since 1k = 1 for all k: Thus we see that as k !1
Ãk ! 0:76923

as illustrated in the (connected) plot of Ãk below:
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:
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This means that shocks: at¡k will have a permanent e¤ect on Yt:
In general it can be shown that if an AR(p) has a unit root so that:

Á (B) = (1¡B) ~Á (B)
then as k !1

Ãk !
1
~Á (1)

:

In the above example:

Á (B) = 1¡ 0:7B ¡ 0:3B2
= (1¡B) (1 + 0:3B)

so that ~Á (B) = (1 + 0:3B) and so

Ãk !
1
~Á (1)

=
1

(1 + 0:3£ 1) = 0:76923:

3.7.4 A Stationary AR(2) with Complex Roots

Let us consider the AR(2) process:

Yt =
3

2
Yt¡1 ¡ 5

8
Yt¡2 + at; ¾ = 0:01: (3.135)

Calculating the roots of ~Á(r) = 0 where:

~Á(r) = r2 ¡ 3
2
r +

5

8
(3.136)

yields:

r =

3
2 §

q
(32)

2 ¡ 4(58)
2

(3.137)

or

r1 =
3

4
+
1

4
i and r2 =

3

4
¡ 1
4
i: (3.138)

We conclude that the process is stationary since:

jr1j = jr2j =
sµ

3

4

¶2
+

µ
1

4

¶2
=

r
5

8
< 1: (3.139)

Alternatively since we have complex roots it is enough to verify that

jÁ2j =
5

8
< 1

to be sure that the process is stationary.
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In…nite Moving Average Weights

Recursive Calculations To calculate the in…nite moving average weights
recursively we use:

Ãk =
3

2
Ãk¡1 ¡

5

8
Ãk¡2 (3.140)

Ã0 = 1, Ã¡1 = 0

so that:

Ã1 =
3

2
Ã0|{z}
=1

¡ 5
8
Ã¡1|{z}
=0

=
3

2
(3.141)

Ã2 =
3

2
Ã1|{z}
= 3
2

¡ 5
8
Ã0|{z}
=1

= 1:625

Ã3 =
3

2
Ã2|{z}

=1:625

¡ 5
8
Ã1|{z}
= 3
2

= 1:5

Ã4 =
3

2
Ã3|{z}

=1:5

¡ 5
8
Ã2|{z}

=1:625

= 1:234;

Ã5 =
3

2
Ã4|{z}

=1:234

¡ 5
8
Ã3|{z}

=1:5

= 0:9135

etc..

We can also directly solve the above di¤erence equation. Using the roots:

r1 =
3

4
+
1

4
i; r2 =

3

4
¡ 1
4
i (3.142)

we have:

Ãk = A1

µ
3

4
+
1

4
i

¶k
+A2

µ
3

4
¡ 1
4
i

¶k
: (3.143)

To …nd A1 and A2 use the fact that Ã0 = 1 and Ã¡1 = 0 so that:

Ã¡1 = 0 = A1

µ
3

4
+
1

4
i

¶¡1
+A2

µ
3

4
¡ 1
4
i

¶¡1
(3.144)

Ã0 = 1 = A1

µ
3

4
+
1

4
i

¶0
+A2

µ
3

4
¡ 1
4
i

¶0
or in matrix notation:· ¡

3
4 +

1
4 i
¢¡1 ¡

3
4 ¡ 1

4 i
¢¡1

1 1

¸ ·
A1
A2

¸
=

·
0
1

¸
: (3.145)
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Solving for A1 and A2 we …nd that:·
A1
A2

¸
=

· ¡
3
4 +

1
4 i
¢¡1 ¡

3
4 ¡ 1

4 i
¢¡1

1 1

¸¡1 ·
0
1

¸
(3.146)

=

·
1
2 ¡ 3

2 i
1
2 +

3
2 i

¸
so that:

Ãk =

µ
1

2
¡ 3
2
i

¶µ
3

4
+
1

4
i

¶k
+

µ
1

2
+
3

2
i

¶µ
3

4
¡ 1
4
i

¶k
: (3.147)

This solution may not seem correct since we know that Ãk is real while
the solution seems to be complex. If you review your complex variable theory
you will see that the two terms are complex conjugates of each other and so
the imaginary parts will cancel. In fact using the polar representation of the
complex numbers where:

1

2
¡ 3
2
i =

r
5

2
e¡Ái (3.148)

1

2
+
3

2
i =

r
5

2
eÁi

3

4
+
1

4
i =

r
5

8
eµi

3

4
¡ 1
4
i =

r
5

8
e¡µi;

and where:

µ = arctan

µ
1

3

¶
= 0:321 (3.149)

Á = arctan (3) = 1:249

we have using Euler’s theorem:

eix = cos (x) + i sin (x) (3.150)

that:

Ãk =

µ
5

8

¶k=2
(cos (kµ) + 3 sin (kµ)) (3.151)

=
p
10

µ
5

8

¶k=2
sin (µ(k + 1)) : (3.152)

Thus Ãk is an exponentially damped sine wave as the diagram plot below
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shows:
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Plot of Ãk

The fact that Ãk is exponentially damped re‡ects the short-memory property.

3.7.5 A Nonstationary AR(2) with Complex Roots

Let us consider the AR(2) process:

Yt =
3

2
Yt¡1 ¡ 9

8
Yt¡2 + at: (3.153)

Working directly with: Á (B) we …nd that:

Á(B) = 1¡ 3
2
B +

9

8
B2 (3.154)

so that calculating the roots of Á(B) = 0 we …nd that:

1¡ 3
2
B +

9

8
B2 = 0) B =

3
2 §

q
(¡3

2)
2 ¡ 4(1) ¡98¢

2(98)
(3.155)

or

B1 =
2

3
+
2

3
i and B2 =

2

3
¡ 2
3
i: (3.156)

where i =
p¡1:

Using this we see that:

jB1j = jB2j =
sµ

2

3

¶2
+

µ
2

3

¶2
=

r
8

9
< 1 (3.157)

and so conclude that the process is not stationary.
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Alternatively we can calculate the roots of ~Á(r) = 0 where:

~Á(r) = r2 ¡ 3
2
r +

9

8
(3.158)

which yields:

r =

3
2 §

q
(32)

2 ¡ 4(98)
2

(3.159)

or

r1 =
3

4
+
3

4
i and r2 =

3

4
¡ 3
4
i: (3.160)

Using this we conclude that the process is not stationary since:

jr1j = jr2j =
sµ

3

4

¶2
+

µ
3

4

¶2
=

r
9

8
> 1: (3.161)

Finally since the roots are complex it follows from (3:57) that since:

jÁ2j =
9

8
> 1

that the process is nonstationary.
We can also directly solve the above di¤erence equation. we have:

Ãk = A1

µ
3

4
+
3

4
i

¶k
+A2

µ
3

4
¡ 3
4
i

¶k
: (3.162)

To …nd A1 and A2 use the fact that Ã0 = 1 and Ã¡1 = 0 so that:

Ã¡1 = 0 = A1

µ
3

4
+
3

4
i

¶¡1
+A2

µ
3

4
¡ 3
4
i

¶¡1
(3.163)

Ã0 = 1 = A1

µ
3

4
+
3

4
i

¶0
+A2

µ
3

4
¡ 3
4
i

¶0
or in matrix notation:· ¡

3
4 +

3
4 i
¢¡1 ¡

3
4 ¡ 3

4 i
¢¡1

1 1

¸ ·
A1
A2

¸
=

·
0
1

¸
: (3.164)

Solving for A1 and A2 we …nd that:·
A1
A2

¸
=

· ¡
3
4 +

3
4 i
¢¡1 ¡

3
4 ¡ 3

4 i
¢¡1

1 1

¸¡1 ·
0
1

¸
(3.165)

=

·
1
2 ¡ 1

2 i
1
2 +

1
2 i

¸
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so that using Euler’s theorem again we obtain:

Ãk =

µ
1

2
¡ 1
2
i

¶µ
3

4
+
3

4
i

¶k
+

µ
1

2
+
1

2
i

¶µ
3

4
¡ 3
4
i

¶k
(3.166)

=
p
2

Ãr
9

8

!k
cos
³¼
4
(k ¡ 1)

´
:

Note that Ãk is an exponentially explosive sine wave with oscillations in-
creasing in magnitude as k increases. This is illustrated in the diagram below:
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5 10 15 20 25k

Plot of Ãk

3.8 Estimation and Hypothesis Testing

3.8.1 Least Squares Estimation

AR(1) Estimation

To begin …rst consider the problem of estimating an AR(1):

Yt = ÁYt¡1 + at:

We can think of an AR(1) as a linear regression where:

Yt = XtÁ+ at (3.167)

and whereXt = Yt¡1: Since the error term: at is uncorrelated with the regressor
Xt it is natural to expect that the least squares estimator

Á̂ =

PT
t=1XtYtPT
t=1X

2
t

=

PT
t=1 Yt¡1YtPT
t=1 Y

2
t¡1

(3.168)

will be well behaved, at least asymptotically. Thus subject to certain regularity
conditions2 we would expect that given a sample of T observations of Yt that:

2 Stationary AR(p) processes are ergodic, which means that sample means over one real-
ization of the process converge to population means.
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Proposition 101

p
T (Á̂¡ Á) as N

"
0; ¾2(plim

1

T

TX
t=1

X2
t )
¡1
#
: (3.169)

Since Xt = Yt¡1 we have given stationarity that

plim
1

T

TX
t=1

X2
t = E

£
X2
t

¤
= E

£
Y 2t¡1

¤
= °(0)

=
¾2

1¡ Á2

so that:

p
T (Á̂¡ Á) as N

·
0; ¾2(

¾2

1¡ Á2 )
¡1
¸
: (3.170)

Note that ¾2 cancels from the asymptotic variance so that:

Theorem 102 For a stationary AR(1) process:
p
T (Á̂¡ Á) as N [0; 1¡ Á2]:

Remark 103 The fact that the asymptotic variance is independent of ¾2 re-
‡ects the fact that when ¾2 increases it increases both the variability of the error
term in the regression, which reduces the accuracy of the Á̂; and it increases the
variability of the regressor Xt = Yt¡1; which increases the accuracy of the Á̂:
These two e¤ects cancel each other out.

AR(p) Estimation

The AR(p) process

Yt =

pX
j=1

Yt¡jÁj + at (3.171)

can be written as a linear regression model as:

Yt = X
T
t Á+ at (3.172)

where:

Xt
px1

=

26664
Yt¡1
Yt¡2
...

Yt¡p

37775 ; Á
px1

=

26664
Á1
Á2
...
Áp

37775 (3.173)
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If we create a T £ 1 vector Y = [Yt] and a T £ p matrix X =
£
XT
t

¤
then the

least squares estimator Á̂ has the usual formula:

Á̂ =
¡
XTX

¢¡1
XTY: (3.174)

We have:

Theorem 104 If Yt is stationary the OLS estimator Á̂ given either by (3:174)
or by:

Á̂ =

Ã
TX
t=1

XtX
T
t

!¡1 TX
t=1

XtYt (3.175)

has an asymptotic distribution:

p
T (Á̂¡ Á) as N

"
0; ¾2( plim

1

T

TX
t=1

XtX
T
t )

¡1
#
: (3.176)

As with the AR(1) model the asymptotic variance is independent of ¾2 as:

Theorem 105 For a stationary AR(p) process:
p
T (Á̂¡ Á) as N £0; ±R¡1¤

where:

± = 1¡ Á1½(1)¡ Á2½(2)¡ ¢ ¢ ¢ ¡ Áp½(p)
and

R
p£p =

2666666664

1 ½(1) ½(2) ¢ ¢ ¢ ¢ ¢ ¢ ½(p¡ 1)
½(1) 1 ½(1) ½(2) ¢ ¢ ¢ ½(p¡ 2)
½(2) ½(1) 1 ½(1) ¢ ¢ ¢ ½(p¡ 3)
...

...
. . .

. . .
. . .

...

½(p¡ 2) ¢ ¢ ¢ ¢ ¢ ¢ . . . 1 ½(1)
½(p¡ 1) ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ½(1) 1

3777777775
:

Proof. Given that Yt is stationary we expect a law of large numbers to hold
so that:

plim
1

T

TX
t=1

XtX
T
t = E

£
XtX

T
t

¤
:

Now you can verify by taking expectations of each of the components of XtXT
t

that:

E
£
XtX

T
t

¤
= ° (0)R:
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But by Theorem 92

° (0) =
¾2

1¡ Á1½(1)¡ Á2½(2)¡ ¢ ¢ ¢ ¡ Áp½(p)

=
¾2

±
:

Therefore:

¾2( plim
1

T

TX
t=1

XtX
T
t )

¡1 =
¾2

° (0)
R¡1

= ±R¡1:

Remark 106 Note that R is positive-de…nite (and hence R¡1 exists) by Theo-
rem 37.

3.8.2 Calculating the Log-Likelihood

If Yt follows an AR(p) process then as we have seen the Yt 0s will be correlated
across time. This means that the usual method of calculating the likelihood as
the product of the likelihoods of each individual observation will not work; in
other words:

p (YT ; YT¡1; YT¡2; : : : Y1) 6= p (YT ) p (YT¡1) p (YT¡2) ¢ ¢ ¢p (Y1) :

Instead we will factor the likelihood by breaking it down into the product of a
succession of conditional distributions. This trick is of fundamental importance
in time series analysis where the data are not independent across time.
Given that we can write an AR(p) as:

Yt = X
T
t Á+ at (3.177)

where Xt is given in (3:172) ; and since:

at s N [0; ¾2] (3.178)

it follows that if It¡1 is the information set at time t¡ 1 then:

YtjIt¡1 s N [XT
t Á; ¾

2] (3.179)

and so the conditional density is:

p(YtjIt¡1) = 1p
2¼¾2

exp

µ
¡1
2

(Yt ¡XT
t Á)

2

¾2

¶
: (3.180)
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Given a set of data of T observations of Yt and Xt for t = 1; 2; : : : T or
equivalently given

IT = fYT ; YT¡1; YT¡2; : : : Y1; Y0; Y¡1; : : : Y¡p+1g (3.181)

we wish to calculate the density:

p

0@YT ; YT¡1; YT¡2; : : : Y1j starting valuesz }| {
Y0; Y¡1; : : : Y¡p+1

1A ´ p(IT ) (3.182)

As already noted, since the Yt 0s are not independent we cannot factor the
joint density in the usual way. Instead we factor using conditional distribution;
i.e. that

p (A;B) = P (AjB)P (B) (3.183)

with A = YT and B = fYT¡1; YT¡2; : : : Y¡p+1g ´ IT¡1. We thus have:
p(IT ) = p(YT jIT¡1)p(IT¡1) (3.184)

or

p(IT ) =
1p
2¼¾2

exp

µ
¡1
2

(YT ¡XT
T Á)

¾2

¶
p(IT¡1): (3.185)

We then can do the same thing with p(IT¡1); i.e.,

p(IT¡1) = p(YT¡1jIT¡2)p(IT¡2):
Continuing this we …nd that:

p(IT ) =
¡
2¼¾2

¢¡T
2 exp

Ã
¡ 1

2¾2

TX
t=1

(Yt ¡XT
t Á)

2

!
p (I0) : (3.186)

Ignoring the constant term involving (2¼)¡
T
2 and the asymptotically negligible:

p (I0), we obtain the (approximate) log-likelihood:

l
¡
Á; ¾2jIt

¢
= ln (p(IT )) (3.187)

= ¡T
2
ln(¾2)¡ 1

2¾2

TX
t=1

(Yt ¡XT
t Á)

2

or:

Theorem 107 For an AR(p) model the log-likelihood is given by:

l
¡
Á; ¾2

¢
= ¡T

2
ln(¾2)¡ 1

2¾2

TX
t=1

at [Á]
2 (3.188)
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where at [Á] , the residual for a given Á; is de…ned by:

at [Á] ´ Yt ¡XT
t Á (3.189)

´ Yt ¡
pX
j=1

ÁjYt¡j :

Since maximizing l
¡
Á; ¾2

¢
with respect to Á is identical to minimizing the

sum of squares function
PT
t=1 at [Á]

2
; we conclude immediately that:

Theorem 108 For the AR(p) model the ML estimator and OLS estimators
of Á are identical or:

Á̂ML = Á̂ =

Ã
TX
t=1

XtX
T
t

!¡1 TX
t=1

XtYt:

De…ne the least squares residual ât by:

ât ´ at
h
Á̂
i
= Yt ¡XT

t Á̂ = Yt ¡
pX
j=1

Á̂jYt¡j : (3.190)

Then solving for the maximum likelihood estimator of ¾̂2 from the …rst-order
conditions:

@l
³
Á̂; ¾̂2

´
@¾2

= ¡T
2

1

¾̂2
+

1

2
¡
¾̂2
¢2 1X

t=1

0@Yt ¡ pX
j=1

Á̂jY
2
t¡j

1A
| {z }

=â2t

2

= 0 (3.191)

we obtain:

Theorem 109 For the AR(p) model the ML estimator of ¾2 is given by:

¾̂2 =
1

T

TX
t=1

â2t :

Thus theML estimate of ¾̂2 is equal to the sum of squared residuals divided
by the number of observations.
If we de…ne l¤ ´ l

³
Á̂; ¾̂2

´
as the maximized log-likelihood then:

Theorem 110 For the AR(p) model the maximized log-likelihood l¤ is given by:

l¤ = ¡T
2
ln
¡
¾̂2
¢¡ T

2
:
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Proof. This follows from Theorem 109 since:

l¤ ´ l
³
Á̂; ¾̂2

´
= ¡T

2
ln
¡
¾̂2
¢¡ 1

2¾̂2

TX
t=1

â2t| {z }
=T¾̂2

= ¡T
2
ln
¡
¾̂2
¢¡ T

2
:

3.8.3 Likelihood Ratio Tests

Theorem 110 can be used to derive the likelihood ratio statistic ¤ for any set of
hypotheses.
Suppose we wish to test a restricted version of an AR process against the

alternative of some unrestricted version.
We proceed by estimating the restricted version of the model and obtaining

the maximized log-likelihood l¤R given by:

l¤R = ¡
T

2
ln
¡
¾̂2R
¢¡ T

2
(3.192)

where ¾̂2R is the estimator of ¾
2 from the restricted model.

We then estimate the unrestricted version of the model and obtain l¤U given
by:

l¤U = ¡
T

2
ln
¡
¾̂2U
¢¡ T

2
(3.193)

where ¾̂2U is the estimator of ¾
2 from the unrestricted model. We then have:

Theorem 111 For an AR(p) process the likelihood ratio statistic is:

¤ = ¡2 (l¤R ¡ l¤U ) (3.194)

= T ln

µ
¾̂2R
¾̂2U

¶
:

As well we have:

Theorem 112 Under the null that the restrictions are correct:

¤
as Â2r (3.195)

where r is the number of restrictions or the di¤erence in the number of param-
eters in the restricted and unrestricted models.
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An Example

Suppose we believe that Yt in an AR(2) but wish to apply a diagnostic test
to see whether this belief is consistent with the data. To do this we over…t by
estimating an AR(5):

Yt = Á1Yt¡1 + Á2Yt¡2 + Á3Yt¡3 + Á4Yt¡4 + Á5Yt¡5 + at (3.196)

If our belief of an AR(2) is correct then

Á3 = Á4 = Á5 = 0:

We therefore test:

H0 : Yt s AR(2) (or Á3 = Á4 = Á5 = 0) versus

H1 : Yt s AR(5) (or Á3 6= 0 or Á4 6= 0 or Á5 6= 0):
Thus the null hypothesis is that the chosen AR(2) model is correct while the
alternative implies that an AR(2) is false. This form of over…tting then is a way
of deciding if a given model is consistent with the data or not.
If ¾2R = ¾̂

2
2 is the restricted estimator of ¾

2 for the AR(2) model and ¾2U = ¾̂
2
5

is the unrestricted estimator of ¾2 for the AR(5) model then

¤ = T ln

µ
¾̂22
¾̂25

¶
as Â23: (3.197)

3.8.4 Estimating p

We can also use l¤ in Theorem 110 to obtain a consistent estimator of p; the
order of the autoregressive process. One of earliest estimators is based on the
Akaike Information Criterion or AIC . The AIC is constructed to choose that
model which maximizes the trade-o¤ between …t and parsimony given by:

AIC / maximized log-likelihood| {z }
)…t

minus # parameters| {z }
=) parsimony

:

If for an AR(k) process the maximized log-likelihood is l¤k , then the …t term
is given by:

l¤k = ¡
T

2
ln
¡
¾̂2k
¢¡ T

2

so that for an AR(k) the Akaike Information Criterion AIC (k) is given as:

¡T
2
ln
¡
¾̂2k
¢¡ T

2
+ k: (3.198)

Actually this is not the usual way the AIC is expressed. We can ignore the
constant term ¡T

2 in the maximized log-likelihood (which won’t a¤ect anything
anyway) and multiply (3:198) by ¡ 2

T to obtain:
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De…nition 113 For an AR(k) process the Akaike Information Criterion is:

AIC(k) = ln
¡
¾̂2k
¢
+
2k

T
:

Note that since we have multiplied by a negative number, AIC(k) needs to
be minimized now.
We have:

De…nition 114 The AIC estimator of p is that value of k which minimizes
AIC(k) or

p̂AIC = argmin
k

AIC(k) k = 0; 1; 2; : : : pmax : (3.199)

It can be shown that as T !1 that in probability:

p̂AIC ! ~p > p (3.200)

so that AIC tends to overestimate the true p: This theoretical result corresponds
to the fact that in practice the AIC often seems to pick unreasonably large
values of p:
This problem can be remedied by giving the parsimony term involving the

number of parameters a greater weight. One way to do this is to replace the 2
in 2k

T with ln(T ) to obtain the Schwarz criterion3 or SC (k) : We then have:

De…nition 115 For an AR(k) process the Schwarz criterion is:

SC(k) = ln
¡
¾̂2k
¢
+
ln(T )k

T
:

We estimate p as using:

De…nition 116 The Schwarz estimator of p is that value of k which minimizes
SC(k) or:

p̂SC ´ argmin
k

SC(k) , k = 0; 1; 2; : : : pmax: (3.201)

It can be shown that in probability as T !1
p̂SC ! p (3.202)

so the Schwarz criterion selects the correct p asymptotically.

Remark 117 A common error when using either AIC (k) or SC (k) is to forget
to include k = 0 This corresponds to the case where Yt = at or white noise so
that

¾̂20 =
1

T

TX
t=1

Y 2t (3.203)

and

AIC(0) = SC(0) = ln(¾̂20): (3.204)

3This is sometimes refered to as the Bayesian Information Criterion.



CHAPTER 3. AR(P) PROCESSES 78

3.9 The Partial Autocorrelation Function

For an AR(p) process the autocorrelation function ½ (k) is a damped exponen-
tial. Although ½ (k) converges to zero, it never actually reaches or becomes zero.
The partial autocorrelation Ákk, on the other hand function, does actually reach
zero, and it does so precisely after k = p: In particular we have:

Theorem 118 If Yt is an AR(p) then

Ákk 6= 0; for k = 1; 2; : : : p

Ákk = 0; for k = p+ 1; p+ 2; : : :1:
Proof. For an AR(p) process the optimal one-step ahead forecast using the

entire past history of Yt is given by:

Et [Yt+1] =

p¡1X
j=0

ÁjYt¡j : (3.205)

Note this is a function only of the last p values of Yt; Yt¡1; Yt¡2 : : : Yt¡p+1:
Suppose now that we use the last k values of Yt to forecast Yt+1 and that k > p:
Then the optimal weights can be calculated from (2:53) or the Yule-Walker
equations in Theorem 64 as:

E [YtjYt; Yt¡1; Yt¡2; : : : Yt¡k+1] =
k¡1X
j=0

ÁkjYt¡j (3.206)

=

p¡1X
j=0

ÁjYt¡j :

Combining (3:205) and (3:206)it follows that:

Ájk = Áj ; for j = 1; 2; : : : p (3.207)

Ájk = 0; for j = p+ 1; p+ 2; : : : k:

Now by De…nition 68 the partial autocorrelation is Ákk so we conclude that
Ákk = 0 for k > p:
For example suppose Yt is an AR(2) then we know that the optimal forecast

of Yt+1 is given by:

Et [Yt+1] = Á1Yt + Á2Yt¡1: (3.208)

If we were then to calculate:

E [Yt+1jYt; Yt¡1; Yt¡2; Yt¡3] = Á41Yt + Á42Yt¡1 + Á43Yt¡2 + Á44Yt¡3 (3.209)

since this forecast can be no better than the optimal, it must be that:

Á41 = Á1; Á42 = Á2 (3.210)

Á43 = 0; Á44 = 0:
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In particular Á44 = 0:
In general for an AR(2) it must be that:

0 = Á33 = Á44 = Á55 = ¢ ¢ ¢ : (3.211)



Chapter 4

ARMA(p,q) Models

AR(p)0s form a very general class of stochastic processes that is nearly su¢cient
for applied work. Nevertheless it turns out that broadening this class of time
series models to include moving average or MA(q)’s, or mixed ARMA(p,q)’s is
very useful. Sometimes, for example, we can model a particular time series as
an MA(q) with fewer parameters than if we modelled it as an AR(p). Other
times theory predicts other models besides AR(p)’s. For example rational ex-
pectations predicts that forecast errors will be moving average processes while
measurement error or aggregation often mean that even if the underlying pro-
cess is an AR(p) that the observed process will be an ARMA(p,q). Thus if Yt
is an AR(p) process but we observe Y ¤t = Yt + et where et is a white noise
measurement error, then Y ¤t is an ARMA(p,p) process.
We …rst consider the class of moving average processes or MA(q)’s.

4.1 MA(q) Processes

4.1.1 Introduction

As we have already seen, stationary AR(p)0s are characterized by short-memory
exponential decay with Ãk; ½ (k) and Et [Yt+k] all decaying exponentially to 0 as
k ! 1: Exponential decay means that these functions never quite reach zero,
no matter how large is k; in the same manner that if you eat half of the pie each
day there will always be a little pie left.
In contrast moving average processes or MA(q)’s are characterized by a

…nite cuto¤; that is Ãk; ½ (k) and Et [Yt+k] actually reach 0 and then stay at 0:
Furthermore this cuto¤ occurs when k = q + 1:
We de…ne moving averages as follows:

De…nition 119 We say that Yt sMA(q) or Yt follows a qth order moving av-
erage process if:

Yt = at + µ1at¡1 + µ2at¡2 + ¢ ¢ ¢+ µqat¡q;

80
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or alternatively:

Yt = µ (B)at

where:

µ(B) = µo + µ1B + µ2B
2 + ¢ ¢ ¢+ µqBq

=

qX
j=0

µjB
j ;

and where: µo ´ 1:
Example 120 The process:

Yt = at + µ1at¡1 (4.1)

is an MA(1) with

µ (B) = 1 + µ1B

while:

Yt = at + µ1at¡2 + µ2at¡2 (4.2)

is an MA(2) with

µ (B) = 1 + µ1B + µ2B:

4.1.2 Stationarity

The …rst question we might ask is under what circumstances are MA(q)’s sta-
tionary? While you might think that it has something to do with the roots of
µ (B) ; in fact the correct answer is much simpler. We have:

Theorem 121 MA(q)0s are always stationary with:

°(0) ´ V ar[Yt] = ¾2
¡
1 + µ21 + µ

2
2 + ¢ ¢ ¢+ µ2q

¢
<1:

The Wold representation for an MA(q) is also easy to derive. Since the Wold
representation takes the form:

Yt = Ã (B) at (4.3)

and since for an MA(q):

Yt = µ (B)at; (4.4)

it follows (trivially) that Ã (B) = µ (B) or
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Theorem 122 For an MA(q):

Ãk =

½
µk for k = 0; 1; 2; : : : q

0 for k > q:
(4.5)

Remark 123 Note that Ãk has the cuto¤ property which is typical of MA(q)’s.
This is unlike AR(p)0s, where the Ãk 0s decay exponentially to zero but never
actually reach zero.

Example 124 For example the MA(1):

Yt = at + 0:5at¡1 (4.6)

has:

Ã0 = 1; Ã1 = 0:5; and Ãk = 0 for k = 2; 3; : : :1:

Since Ãk actually reaches 0 at k = q+1 and stays there forever, it is trivial
that:

Theorem 125 Ãk has the short-memory property or Ãk = O
¡
¿k
¢
.

4.1.3 The Autocorrelation Function

The autocorrelation function is also characterized by a …nite cuto¤. We have:

Theorem 126 If Yt sMA(q):

½(k) =

( Pq¡jkj
j=0 µjµj+kPq

j=0 µ
2
j

k = 0; 1; 2; : : : q

= 0 k > q:

Proof. This follows from (2:40) and the fact that Ãk = µk:
Again since ½(k) actually reaches 0 at k = q + 1 and stays there forever, it

is trivial that:

Theorem 127 ½(k) has the short-memory property or ½(k) = O
¡
¿k
¢
.

4.1.4 Forecasting

This …nite cuto¤ property also holds for forecasts. Thus:

Theorem 128 If Yt sMA(q) then

Et[Yt+k] =

½ Pq¡k
j=0 µk+jat¡j for k = 0; 1; 2; : : : q

= 0 for k > q:
(4.7)

Again since Et[Yt+k] actually reaches 0 at k = q+1 and stays there forever,
it is trivial that:
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Theorem 129 Et[Yt+k] has the short-memory property or Et[Yt+k] = O
¡
¿k
¢
.

We can then …nd V art [Yt+k] as:

Theorem 130 If Yt sMA(q) then:

V art [Yt+k] = ¾2
¡
1 + µ21 + ¢ ¢ ¢+ µ2k¡1

¢
for k = 1; 2; : : : q

= ° (0) for k > q:

4.1.5 An MA(1) Example

Consider the MA(1):

Yt = at + 0:5at¡1; ¾ = 0:05: (4.8)

Then:

Ã1 = 0:5 and Ãk = 0 for k ¸ 2:
We can calculate the variance ° (0) as:

° (0) = ¾2
¡
1 + µ21

¢
(4.9)

= 0:052
¡
1 + 0:52

¢
(4.10)

= 0:003125

while:

½ (1) =
µ1

1 + µ21
(4.11)

=
0:5

1 + 0:52

= 0:4

with ½ (k) = 0 for k = 2; 3; : : :1:
If at = 0:04 then the one-step ahead forecast is:

Et [Yt+1] = µ1at (4.12)

= 0:5£ 0:04
= 0:02

while for horizons greater than one the forecast is the unconditional mean of 0
or:

Et [Yt+k] = 0 for k = 2; 3; : : : : (4.13)

To construct con…dence intervals for the forecasts we need:

V art [Yt+1] = ¾2 = 0:052 (4.14)

V art [Yt+k] = ° (0) = ¾2
¡
1 + µ21

¢
= 0:003125 for k ¸ 2
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and so con…dence intervals for our forecasts would be:

Forecast Con…dence Intervals
k = 1 0:02§ 1:96(0:05) = 0:02§ :098
k = 2 0§ 1:96 (0:003125)1=2 = 0§ 0:11
k = 3 0§ 1:96 (0:003125)1=2 = 0§ 0:11
k = 4 0§ 1:96 (0:003125)1=2 = 0§ 0:11

.

4.1.6 An MA(2) Example

Now consider the MA(2):

Yt = at + 0:5at¡1 + 0:4at¡1; ¾ = 0:05 (4.15)

The in…nite moving average weights are then:

Ã1 = 0:5; (4.16)

Ã2 = 0:4; (4.17)

Ãk = 0; for k = 3; 4; : : :1:

Thus:

° (0) = ¾2
¡
1 + µ21 + µ

2
2

¢
(4.18)

= 0:052
¡
1 + 0:52 + 0:42

¢
= 0:003525

while:

½ (1) =
µ0µ1 + µ1µ2

1 + µ21 + µ
2
2

(4.19)

=
0:5 + 0:5£ 0:4
1 + 0:52 + 0:42

= 0:496

and

½ (2) =
µ0µ2

1 + µ21 + µ
2
2

(4.20)

=
0:4

1 + 0:52 + 0:42

= 0:283

with

0 = ½ (3) = ½ (4) = ¢ ¢ ¢ : (4.21)
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If at = 0:04 and at¡1 = 0:02 then:

Et [Yt+1] = µ1at + µ2at¡1 (4.22)

= 0:5£ 0:04 + 0:4£ 0:02
= 0:028

while:

Et [Yt+2] = µ2at (4.23)

= 0:4£ 0:04
= 0:016

with Et [Yt+k] = 0 for k = 3; 4; : : : : To construct con…dence intervals for our
forecasts we need:

V art [Yt+1] = ¾2 = 0:052 (4.24)

V art [Yt+2] = ¾2
¡
1 + µ21

¢
= 0:003125

V art [Yt+k] = ° (0) = 0:003525 for k ¸ 3
and so the con…dence intervals would be:

Forecast Con…dence Intervals
k = 1 0:028§ 1:96(0:05) = 0:028§ 0:098
k = 2 0:016§ 1:96 (0:003125)1=2 = 0:016§ 0:11
k = 3 0§ 1:96 (0:003525)1=2 = 0§ 0:116
k = 4 0§ 1:96 (0:003525)1=2 = 0§ 0:116

:

4.2 Invertibility

4.2.1 De…nition

By the Wold representation a stationary time series can be represented as an
MA(1) with a …nite variance, which is why an MA(q) is always stationary. An
AR(p) is not always stationary because it is sometimes not legitimate to throw
Á (B) on to the right-hand side as

Á (B)Yt = at =) Yt =
1

Á (B)
at (4.25)

if the roots of Á (B) are not all greater than 1 in absolute value.
One might also ask the question if a time series has an AR(1) representation.

We de…ne series which have an AR(1) representation as invertible time series
as:

De…nition 131 Invertibility: A process is invertible if it has an in…nite au-
toregressive representation.

¼ (B)Yt = at
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where:

¼ (B) = 1 + ¼1B + ¼2B
2 + ¢ ¢ ¢

and where ¼k ! 0 as k !1:

4.2.2 Conditions for Invertibility

For an invertible MA(q) can we throw µ (B) on to the left-hand side as

Yt = µ (B)at =) 1

µ (B)
Yt = at (4.26)

so that:

¼ (B) =
1

µ (B)
:

Just as with stationarity this turns out to be legitimate only if µ (B) has all its
roots greater than 1 in absolute value or

Theorem 132 An MA(q) is invertible only if

µ (B) = 0 =) jBj > 1
in which case ¼k = O

¡
¿k
¢
has the short-memory property where:

¼k =

qX
j=1

Djr
k
j ;

µ
¡
r¡1j

¢
= 0 and ¿ = maxj jrj j < 1:

Again, just as MA(q)’s are always stationary we have:

Theorem 133 An AR(p) process Á (B)Yt = at is always invertible with:

¼k = ¡Ák; for k = 0; 1; : : : p
= 0; for k > p:

Example 134 An example of an invertible MA(1) process is:

Yt = at ¡ 0:5at¡1 (4.27)

since it has an in…nite AR representation:

1

1¡ 0:5BYt = at (4.28)

or:

Yt + 0:5Yt¡1 + 0:52Yt¡2 + 0:53Yt¡3 + ¢ ¢ ¢ = at (4.29)

where:

¼k = (0:5)
k
: (4.30)
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Example 135 An example of a non-invertible MA(1) process is:

Yt = at ¡ 2at¡1 (4.31)

since it would have an in…nite AR representation given by

1

1¡ 2BYt = at (4.32)

or:

Yt + 2Yt¡1 + 22Yt¡2 + 23Yt¡3 + ¢ ¢ ¢ = at (4.33)

where:

¼k = (2)
k (4.34)

does not converge to zero as k !1:

Invertibility is not as important as stationarity, but it does arise in estimation
as many methods of approximating the log-likelihood require invertibility.

4.2.3 Why MA(q)’s are Almost Always Invertible

A curious fact about MA(q) processes is that although:

Yt = at + 3at¡1 (4.35)

is not invertible, there is an observationally equivalent representation:

Yt = ~at +
1

3
~at¡1 (4.36)

which is invertible where

V ar [~at] = 3
2V ar [at] : (4.37)

More generally we have

Theorem 136 If:

Yt = at + µat¡1

with V ar [at] = ¾2 then an observationally equivalent MA(1) is:

Yt = ~at + ~µ~at¡1

where: V ar [~at] = µ
2¾2 and ~µ = 1

µ : You can verify the truth of this theorem by
showing the two MA(1)0s have identical autocovariance functions.
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This result means that if µ > 1 for the …rst representation, and hence the
MA(1) is not invertible, then there exists a second MA(1) with a MA coe¢cient
1
µ < 1 which is invertible.
Analogous results hold for higher order MA(q)’s; in particular:

Proposition 137 Given an MA(q) with: Yt = µ (B) at where µ (B) has all real
roots and can be factored as:

µ (B) = (1¡ r1B) (1¡ r2B) ¢ ¢ ¢ (1¡ rqB)

then there is an observationally equivalent representation: Yt = ~µ (B) ~at where:

~µ (B) =
³
1¡ (r1)§1B

´³
1¡ (r2)§1B

´
¢ ¢ ¢
³
1¡ (rq)§1B

´
:

Thus if µ (B) is non-invertible because jrij > 1 we can replace ri by r¡1i in
~µ (B) and obtain an invertible MA(q): The same argument applies to complex
roots except one must treat roots then in conjugate pairs.
Because of this curious property of MA(q)’s we can almost always avoid the

invertibility problem by picking the invertible representation.
Problems can still arise, however, when jrij = 1 since in this case

¯̄
r¡1i

¯̄
= 1

as well. In particular for the MA(1) if µ = 1 or µ = ¡1 then there is no way
around non-invertibility.
This sometimes occurs in practice, especially if we over-di¤erence. For ex-

ample suppose the truth is TS with a white noise cycle or Yt = at; so that:

Xt = ®+ ¹t+ at (4.38)

but we wrongly assume that the process is DS: In this case we would arrive at
a cycle:

Yt = Xt ¡Xt¡1 ¡ ¹ (4.39)

= at ¡ at¡1
which is a non-invertible MA(1) with µ = ¡1:
We can summarize the relationship between stationarity and invertibility for

AR(p) and MA(q) models as follows:

Duality Between Stationarity and Invertibility

Model Stationarity Invertiblity
AR(p) =MA(1) Always
Condition: Roots of Á (B)¤ None
MA(q) Always =AR(1)
Condition: None Roots of µ (B)¤

¤The roots must be greater than 1 in absolute value.
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4.3 Mixed Processes

4.3.1 Introduction

So far we have considered pure AR(p) and pure MA(q) processes. We can
combine the two to form a broader class of models where there is both an MA
and an AR component. This is called an ARMA(p,q) or autoregressive moving
average which we de…ne as:

De…nition 138 We say that Yt »ARMA(p,q) if

Yt =

pX
j=1

ÁjYt¡j + at +
qX
j=1

µjat¡j : (4.40)

or equivalently

Á (B)Yt = µ (B)at (4.41)

and neither Á (B) nor µ (B) share any common roots.

Remark 139 The condition that Á (B) and µ (B) not share any common roots
is required for identi…cation. If Á (B) and µ (B) shared a common root, say ~r,
then we could write

Á (B) = (1¡ ~rB) ~Á (B)
µ (B) = (1¡ ~rB) ~µ (B)

so that the ARMA(p,q) model becomes:

(1¡ ~rB) ~Á (B)Yt = (1¡ ~rB) ~µ (B)at:

Cancelling (1¡ ~rB) from both sides then leaves:

~Á (B)Yt = ~µ (B)at

which is an observationally equivalent ARMA(p-1,q-1) model. Furthermore
given any ARMA(p,q):

Á (B)Yt = µ (B)at

then we can always multiply both sides by (1¡ ~rB) to obtain:

(1¡ ~rB)Á (B)Yt = (1¡ ~rB) µ (B)at
for an arbitrary ~r to obtain an observationally equivalent ARMA(p+1,q+1) pro-
cess.
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4.3.2 The Wold Representation

To calculate the Wold or in…nite moving average representation simply throw
Á (B) on the right-hand side of (4:41) to obtain:

Yt =
µ (B)

Á (B)
at = at + Ã1at¡1 + Ã2at¡2 + ¢ ¢ ¢ : (4.42)

To calculate Ãk recursively we use the following:

Theorem 140 If Yt »ARMA(p,q) the Ãk 0s can be calculated recursively as:

Ãk =

pX
j=1

ÁjÃk¡j + µk , k = 0; 1; 2; : : : q (4.43)

=

pX
j=1

ÁjÃk¡j , k > q

with starting values Ã0 = 1 and Ãk = 0 for k < 0:

Since for k > q we have:

Ãk =

pX
j=1

ÁjÃk¡j

it follows that Ãk follows a linear p
th order di¤erence equation. This di¤erence

equation is identical to that which we derived for the AR(p) and hence will have
the same solution. We therefore have:

Theorem 141 If Yt »ARMA(p,q) with p > 0 the Ãk 0s can be for k > q written
as:

Ãk =

pX
j=1

Ajr
k
j

where:

Á
¡
r¡1j

¢
= 0 for j = 1; 2; : : : p:

From this we conclude that the stationarity of an ARMA(p,q) depends only
on the roots of Á (B) : In particular:

Theorem 142 For a stationary ARMA(p,q) process Ãk = O
¡
¿k
¢
has the short-

memory property or:

jÃkj · A¿k

where 0 · ¿ = maxj [jrj j] < 1 and where Á (rj) = 0:
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4.3.3 The Autocorrelation Function

A similar result holds for the autocorrelation function. We have:

Theorem 143 If Yt »ARMA(p,q) with p > 0 then for 0 · k · q

½ (k) = Á1½ (k ¡ 1) + Á2½ (k ¡ 2) + ¢ ¢ ¢+ Áp½ (k ¡ p) (4.44)

+

Pq
j=1 µjÃj¡kP1
j=0 Ã

2
j

while for k > q

½ (k) = Á1½ (k ¡ 1) + Á2½ (k ¡ 2) + ¢ ¢ ¢+ Áp½ (k ¡ p)

with starting values given by ½ (¡k) = ½ (k) :

Proof. The proof follows that of Theorem 94 and using the fact that

qX
j=1

µjE [at¡jYt¡k] = ¾2
qX
j=1

µjÃk¡j

and from Theorem 56 that

° (0) = ¾2
1X
j=0

Ã2j

and using Theorem 2.40.
Since the term in the second line of (4:44) becomes zero when k > q and so

reduces to:

½ (k) = Á1½ (k ¡ 1) + Á2½ (k ¡ 2) + ¢ ¢ ¢+ Áp½ (k ¡ p)

it follows that ½ (k) follows the same linear pth order di¤erence equation as Ãk;
except of course that the starting values are di¤erent. It follows then that

Theorem 144 If Yt »ARMA(p,q) with p > 0 then for k > q

½ (k) =

pX
j=1

Bjr
k
j

where Á
¡
r¡1j

¢
= 0 for j = 1; 2; : : : p:

It follows immediately that:

Theorem 145 For a stationary ARMA(p,q) process ½ (k) = O
¡
¿k
¢
has the

short-memory property.
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4.3.4 Forecasting

To calculate forecasts for Yt+k recursively we use apply Et to both sides of (4:40)
to obtain:

Theorem 146 If Yt »ARMA(p,q) with p > 0 then for k > q

Et [Yt+k] =

pX
j=1

ÁjEt [Yt+k¡j ] +
qX
j=1

µjEt [at+k¡j ] (4.45)

where

Et [Yt+k] = Yt+k and Et [at+k] = at+k for k · 0:
Just as with Ãk and ½ (k) the …nal term in (4:45) becomes 0 for k > q and

so we have:

Et [Yt+k] =

pX
j=1

ÁjEt [Yt+k¡j ] for k > q:

From this it follows that:

Theorem 147 If Yt »ARMA(p,q) with p > 0 then

Et [Yt+k] =

pX
j=1

Cjtr
k
j

where Cjt is a function of the information set at time t:

It follows immediately that

Theorem 148 For a stationary ARMA(p,q) process Et [Yt+k] = O
¡
¿k
¢
has the

short-memory property.

Con…dence intervals for forecasts of an ARMA(p,q) process can be calcu-
lated as usual from the Wold representation using:

Theorem 149 If Yt »ARMA(p,q) with p > 0 then for k > q

V art [Yt+k] = ¾
2
k¡1X
j=0

Ã2j (4.46)

where Ãj is calculated from (4:43).

As k ! 1 the conditional forecast variance approaches the conditional
forecast variance very rapidly or: V art [Yt+k] ! ° (0) : In particular we can
show that the di¤erence between V art [Yt+k] and ° (0) has the short memory
property.
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Theorem 150 If Yt »ARMA(p,q) is stationary then:
jV art [Yt+k]¡ ° (0)j = O

¡
¿2k
¢
:

Proof. Since jÃkj · A¿k and

° (0) = ¾2
1X
j=0

Ã2j

we have:

jV art [Yt+k]¡ ° (0)j · ¾2A2
1X

j=k+1

¿2j

=

µ
¾2A2¿2

1¡ ¿2
¶
¿2k:

It is possible the calculate V art [Yt+k] recursively since from Theorem 149

Theorem 151 If Yt »ARMA(p,q) with p > 0 then for k > q then:
V art [Yt+k] = V art [Yt+k¡1] + ¾2Ã2k¡1

with V art [Yt+1] = ¾2:

We then construct a con…dence interval for our forecasts in the usual way
as:

Theorem 152 A 95% con…dence interval for Yt+k is:

Et [Yt+k]§ 1:96
p
V art [Yt+k] (4.47)

where Et [Yt+k] is calculated from Theorem 146 and V art [Yt+k] from Theorem
149 or Theorem 151.

4.3.5 The ARMA(1,1) process

For an ARMA(1,1) process

Yt = ÁYt¡1 + at + µat¡1 (4.48)

we have:

Ã1 = ÁÃ0 + µ = Á+ µ

and for k ¸ 2
Ãk = ÁÃk¡1 (4.49)

= Ák¡1Ã1 (4.50)

= Ák¡1 (Á+ µ) : (4.51)
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Thus Ãk decays exponentially for k > 1:
From this we can calculate ° (0) as:

° (0) = ¾2

Ã
1 +

1X
k=1

Ã2k

!
= ¾2

Ã
1 + (µ + Á)2

1X
k=1

Á2(k¡1)
!

(4.52)

= ¾2

Ã
1 +

(µ + Á)2

1¡ Á2
!

and ° (1) from:

° (1) = E [YtYt¡1] = E [(ÁYt¡1 + at + µat¡1)Yt¡1] (4.53)

= Á° (0) + µ¾2

= ¾2

Ã
Á+ µ +

Á (µ + Á)2

1¡ Á2
!
:

Thus:

½ (1) =

³
Á+ µ + Á(µ+Á)2

1¡Á2
´

³
1 + (µ+Á)2

1¡Á2
´ (4.54)

and ½ (k) is:

½ (k) = Ák¡1½ (1) for k = 1; 2; : : :1: (4.55)

Thus ½ (k) decays exponentially for k > 1:
For forecasting we have:

Et [Yt+k] = ÁEt [Yt+k¡1] + µEt [at+k¡1] (4.56)

so that:

Et [Yt+k] = ÁYt + µat (4.57)

and for k ¸ 2
Et [Yt+k] = ÁEt [Yt+k¡1] = Ák¡1 (ÁYt + µat) : (4.58)

To construct con…dence intervals for an ARMA(1,1) we have:

V art [Yt+k] = ¾2

0@1 + k¡1X
j=1

Ã2j

1A (4.59)

= ¾2

0@1 + (µ + Á)2
³
1¡ Á2(k¡1)

´
1¡ Á2

1A :
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4.3.6 Common AR and MA factors

Now consider an ARMA(1,1) model with Á = ¡µ so that
Yt = ÁYt¡1 + at ¡ Áat¡1:

For this process when we calculate the Wold representation we …nd that for
k ¸ 1 :

Ãk = Á
k¡1 (Á+ µ) = Ák¡1 (¡µ + µ) = 0 (4.60)

so that

Yt = at; (4.61)

that is, this process is not really ARMA(1,1) but white noise or ARMA(0,0):
Another way of seeing this is to write the model with µ = ¡Á as :

(1¡ ÁB)Yt = (1¡ ÁB)at (4.62)

so that the two polynomials cancel and we are left with:

Yt = at (4.63)

Whenever you deal with mixed ARMA(p,q) processes you need to be aware
of the potential problem of near or exact cancelation. For example if you esti-
mate the ARMA(1,1) process:

Yt = 0:53Yt¡1 + at ¡ 0:51at¡1 or (4.64)

(1¡ 0:53B)Yt = (1¡ 0:51B)at (4.65)

the AR and MA terms nearly cancel and the data is probably best modelled
as white noise. It is very likely that such near cancelation will be associated
with numerical problems such a failure to achieve convergence with iterative
nonlinear estimation procedures.
It is not always obvious that there is a problem with near cancellations.

Consider for example the apparent ARMA(2,1) model:

Yt = 0:3Yt¡1 + 0:4Yt¡2 + at + 0:5at¡1 (4.66)

which can be written as:¡
1¡ 0:3B ¡ 0:4B2¢Yt = (1 + 0:5B)at: (4.67)

Factoring the AR polynomial we obtain

(1¡ 0:8B) (1 + 0:5B)Yt = (1 + 0:5B)at (4.68)

so that cancelling (1 + 0:5B) from both sides:

(1¡ 0:8B)Yt = at
and so the process is really an AR(1).
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4.3.7 Forecasting Growth Rates

So far we have concentrated our forecasting on Yt: In the real work however
most forecasting exercises are concerned with growth rates and not the TS or
DS cycle Yt: It is important therefore to be able to convert forecasts involving
Yt into forecasts involving growth rates.
Suppose we are interested in forecasting the growth rate of some economic

variable Wt such as GDP; the price level or employment. The growth rate for
Wt is de…ned as:

¢Xt = ln (Wt)¡ ln (Wt¡1) : (4.69)

The optimal forecast of ¢Xt+k is then Et [¢Xt+k] while a 95% con…dence
interval will take the form:

Et [¢Xt+k]§ 1:96
p
V art [¢Xt+k]: (4.70)

The problem then is to calculate Et [¢Xt+k] and V art [¢Xt+k] :
In the real world instead of ¢Xt the growth rate of Wt is usually de…ned as

gt where gt is given by:

gt =
Wt ¡Wt¡1
Wt¡1

:

In practice it generally makes no real practical di¤erence whether gt or ¢Xt is
used. If for example gt = 0:04 or 4% growth, then ¢Xt would be e0:04 ¡ 1 =
0:0408 or 4:08% growth. In any case it is easy to convert from gt to ¢Xt using

gt = e
¢Xt ¡ 1

or from ¢Xt to gt using:

¢Xt = ln (1 + gt) :

Furthermore if (4:70) is a 95% con…dence interval for ¢Xt+k then an equivalent
95% con…dence interval for gt+k would be:

Pr [b1 · gt+k · b2] = 0:95

where:

b1 = exp
³
Et [¢Xt+k]¡ 1:96

p
V art [¢Xt+k]

´
¡ 1

b2 = exp
³
Et [¢Xt+k] + 1:96

p
V art [¢Xt+k]

´
¡ 1:

Let us quickly review forecasting Yt: We now know how to forecast and
construct con…dence intervals for Yt de…ned by:

Yt = ln (Wt)¡ (®+ ¹t) (4.71)
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for TS models and

Yt = ln (Wt)¡ ln (Wt¡1)¡ ¹ (4.72)

for DS models. From Theorem 146 we can recursively calculate forecasts of
Yt+k as:

Et [Yt+k] =

pX
j=1

ÁjEt [Yt+k¡j ] +
qX
j=1

µjEt [at+k¡j ] (4.73)

where Et [Yt+k] = Yt+k and Et [at+k] = at+k for k · 0: Con…dence intervals for
Yt+k can then be calculated using Theorem 151 using

V art [Yt+k] = ¾
2
k¡1X
j=0

Ã2j (4.74)

where Ãk is recursively calculated from:

Ãk =

qX
j=1

ÁjÃk¡j + µk for k = 0; 1; 2; : : : q (4.75)

=

qX
j=1

ÁjÃk¡j for k > q

with Ã0 = 1 and Ãk = 0 for k < 0:

Forecasting ¢Xt+k from a DS Model

Let us …rst consider the case of forecasting for the DS model since this is quite
easy. We have:

Theorem 153 If Xt is DS then the optimal forecast for ¢Xt+k is:

Et [¢Xt+k] = Et [Yt+k] + ¹

with:

V art [¢Xt+k] = ¾
2
k¡1X
j=0

Ã2j

and a 95% con…dence interval for ¢Xt+k is:

(Et [Yt+k] + ¹) § 1:96¾
vuutk¡1X

j=0

Ã2j : (4.76)
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Proof. Since for a DS model:

¢Xt+k = ¹+ Yt+k

it follows that:

Et [¢Xt+k] = ¹+Et [Yt+k] :

Furthermore, since ¹ is a constant:

V art [¢Xt+k] = V art [¹+ Yt+k]

= V art [Yt+k]

= ¾2
k¡1X
j=0

Ã2j :

Forecasting ¢Xt+k from a TS Model

Now consider the problem of forecasting ¢Xt+k from the TS model. Since:

Xt = ln (Wt) = ®+ ¹t+ Yt

we now have:

¢Xt ´ ln (Wt)¡ ln (Wt¡1) = Yt ¡ Yt¡1 + ¹: (4.77)

To construct a con…dence interval for ¢Xt+k we then have:

Theorem 154 If Xt is TS then the optimal forecast for ¢Xt+k is:

Et [¢Xt+k] = Et [Yt+k]¡Et [Yt+k¡1] + ¹
with:

V art [¢Xt+k] = ¾2
k¡1X
j=0

¡
Ãj ¡ Ãj¡1

¢2
= ¾2

0@1 + k¡1X
j=1

¡
Ãj ¡ Ãj¡1

¢21A
and a 95% con…dence interval for ¢Xt+k is:

(Et [Yt+k]¡Et [Yt+k¡1] + ¹)§ 1:96¾
0@k¡1X
j=0

¡
Ãj ¡ Ãj¡1

¢21A 1
2

:
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Proof. Since:

¢Xt+k = Yt+k ¡ Yt+k¡1 + ¹ (4.78)

it follows that:

Et [¢Xt+k] = Et [Yt+k]¡Et [Yt+k¡1] + ¹: (4.79)

From (4:75)

Yt+k =
1X
j=0

Ãjat+k¡j (4.80)

Yt+k¡1 =
1X
j=0

Ãjat+k¡1¡j

so that:

¢Xt+k = Yt+k ¡ Yt+k¡1 + ¹ (4.81)

=
1X
j=0

Ãjat+k¡j ¡
1X
j=0

Ãjat+k¡1¡j + ¹

= at+k +
1X
j=1

¡
Ãj ¡ Ãj¡1

¢
at+k¡j + ¹:

Using this and (4:78) it follows that:

V art [¢Xt+k] = ¾
2
k¡1X
j=0

¡
Ãj ¡ Ãj¡1

¢2
:

Remark 155 Note that for j = 0 the term in the sum

k¡1X
j=0

¡
Ãj ¡ Ãj¡1

¢2
becomes

¡
Ã0 ¡ Ã¡1

¢2
= 1 since Ã¡1 = 0 and Ã0 = 1:

4.4 Box-Jenkins Identi…cation

4.4.1 Identi…cation using ½ (k) and Ákk
Box-Jenkins identi…cation is a method, based on the estimated autocorrelation
and partial autocorrelation functions, of determining whether a given series is
better described by an AR(p) or an MA(q) model.
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To simplify matters let us …rst suppose we know the actual autocorrelation
function ½(k) and the actual partial autocorrelation function Ákk.
If Yt is an AR(p) then ½ (k) will be a damped exponential while Ákk will

have a cuto¤ at k = p; that is:

Ákk 6= 0; for k = 1; 2; : : : p (4.82)

= 0; for k = p+ 1; p+ 2; : : :1:
Thus if we observe that ½ (k) is a damped exponential and Ákk has a …nite cuto¤
at some value of k; then we know that the series is an AR(p) and furthermore
we can determine p from the cuto¤ value.
For example if we were to observe:

k = 1 2 3 4 5 6 7 8 9 10
½ (k) = 0:57 0:38 0:34 0:25 0:19 0:14 0:07 0:03 0:01 0:005
Ákk = 0:57 0:08 0 0 0 0 0 0 0 0

then we know right away that Yt is an AR(p) and not an MA(q) since ½ (k)
behaves like a damped exponential; that is it decays but never reaches zero.
Furthermore we know that p = 2 since Ákk has a cuto¤ at k = 2: Thus Yt
follows an AR(2) :
What if Yt follows an MA(q) process? Then we know that ½(k) will have a

cuto¤ at k = q: What about Ákk? It turns out that if Yt is an MA(q) then Ákk
will be a damped exponential. This is the reverse of the case where Yt is an
AR(p):
Thus if we were to observe that:

k = 1 2 3 4 5 6 7 8 9 10
½ (k) = 0:17 0:38 0:34 0 0 0 0 0 0 0
Ákk = 0:17 0:36 0:24 0:16 0:08 ¡0:04 0:02 ¡0:01 0:005 ¡0:001

then we know that Yt is not an AR(p) since Ákk is a damped exponential and
½ (k) has a cuto¤. Furthermore we know that q = 3 since the cuto¤ for Ákk
occurs at k = 3 so that Yt is an MA(3):
This then is the essence of the Box-Jenkins identi…cation procedure which

can be summarized by the following table:
Model ½ (k) Ákk
AR(p) Damped Exponential Cuto¤ at k = p
MA(q) Cuto¤ at k = q Damped Exponential

.

4.4.2 Estimating ½ (k) and Ákk
In practice we do not observe ½ (k) and Ákk but must estimate them from the
data. Let us begin by estimating the autocovariance function. Given a sample
of T observations the autocovariance function ° (k) can be estimated by:
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De…nition 156 Estimated Autocovariance Function:

°̂ (k) ´ 1

T

T¡jkjX
t=1

¡
Yt ¡ Y

¢ ¡
Yt+k ¡ Y

¢
for jkj < T: (4.83)

Remark 157 Quite often it will be the case that Y = 0; for example with either
the TS and DS detrending methods models where Yt is the least squares residual
from a regression with a constant term so that Y = 0: In such cases or where
we know a priori that E [Yt] = 0 that we can use:

°̂ (k) ´ 1

T

T¡jkjX
t=1

YtYt+k: (4.84)

From °̂ (k) we can construct an estimate of the autocorrelation function as:

De…nition 158 Estimated of the Autocorrelation Function:

½̂ (k) =
°̂ (k)

°̂ (0)
: (4.85)

With Box-Jenkins identi…cation we need to standard errors to determine if
½̂ (k) is signi…cantly di¤erent than zero. We have:1

Proposition 159 The asymptotic distribution of ½̂ (k) is of the form:
p
T (½̂ (k)¡ ½ (k)) as N [0; V (k)]

where V (k) is given by:

V (k) =
1X

j=¡1

³
½ (j)2 + ½ (j + k) ½ (j ¡ k) + 2½ (k)2 ½ (j)2 ¡ 4½ (k) ½ (j) ½ (j ¡ k)

´
:

(4.86)

Remark 160 ½̂ (k) and ½̂ (l) will in general be asymptotically correlated with
each other with the asymptotic correlation an even more complicated function
than V (k) :

If ½ (k) = 0 for k = 1; 2; : : :1 (i.e. Yt is white noise) then things simplify
considerably. In this case V (k) = 1 so that:

p
T ½̂ (k)

as N [0; 1] (4.87)

and the ½̂ (k)’s are asymptotically uncorrelated. Although not strictly speaking
correct, we often make this assumption when doing Box-Jenkins identi…cation

1See Priestly, p332
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analysis so that, at least approximately, a standard error for ½̂ (k) is calculated
as:

SE [½̂ (k)] =
1p
T
: (4.88)

Thus using a two-sigma rule,2 ½̂ (k) is taken as being signi…cantly di¤erent than
zero if:

j½̂ (k) j > 2p
T
: (4.89)

For example given T = 150 observations we would have:

2£ SE [½̂ (k)] = 2p
150

= 0:16 (4.90)

so that ½̂ (k) 0s greater than about 0:16 would be taken as being signi…cant.
We can estimate the partial autocorrelation function by Ákk by replacing

½ (k) with ½̂ (k) in the Yule-Walker equations. These have a nicer asymptotic
distribution. In particular

Proposition 161 If Ákk = 0 for k > p (i.e., Yt is an AR(p)) then:
p
TÁ̂kk

as N [0; 1] for k > p (4.91)

and the Á̂kk 0s are asymptotically uncorrelated with each other.
Thus

SE
h
Á̂kk

i
=

1p
T

(4.92)

so that, again using a two-sigma rule, Á̂kk would be taken as signi…cantly dif-
ferent than zero if:

jÁ̂kkj >
2p
T
: (4.93)

Again given T = 150 observations 2p
T
= 0:16 so that Á̂kk 0s greater than about

0:16 in absolute value would be taken as signi…cantly di¤erent that zero.
It turns out that when p > 0 and q > 0 that both the autocorrelation

function ½ (k) and the partial autocorrelation function Ákk behave like damped
exponentials so that:

Model ½ (k) Ákk
AR(p) Damped Exponential Cuto¤ at k = p
MA(q) Cuto¤ at k = q Damped Exponential
ARMA(p,q) Damped Exponential Damped Exponential

:

2You could use 1:96 from the standard normal tables instead of 2 but this level of precision
is really not necessary given the looseness in the way distributional theory is used for Box-
Jenkins identi…cation.
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This means that it is only when we observe that both ½ (k) and Ákk appear as
damped exponentials that we should choose a mixed process. Unfortunately
if we observe such a pattern there is nothing in either ½ (k) or Ákk to tell us
what p and q are. This problem is made even more di¢cult when we use the
estimated functions ½̂ (k) and Á̂kk: Although Box and Jenkins discuss methods
of identifying mixed models, generally in practice and with commonly found
sample sizes, these methods are of little or no value.
In practice this is not such a serious problem since generally either a pure

AR(p) or MA(q) will be found which …t the data quite well. Usually then there
is no need to consider mixed processes. The only situation when you might is
when both a pure AR(p) or MA(q) would involve a large number of parameters.
For example suppose ½̂ (k) has signi…cant values out to k = 10 while Á̂kk has

signi…cant values out to k = 12: In this case you would be choosing between
either an MA(10) or an AR(12) ; neither of which is very parsimonious. In
this case you might try say an ARMA(2,1) and see if you could get by with
estimating 3 parameters instead of 10 or 12:

4.5 Maximum Likelihood Estimation

4.5.1 Calculating the Log-Likelihood

Once we have identi…ed an ARMA(p,q) model we will need to estimate it. We
have:

Theorem 162 For an ARMA(p,q) the log-likelihood is given by:

l
¡
Á; µ; ¾2

¢
= ¡T

2
ln
¡
¾2
¢¡ 1

2¾2

TX
t=1

at [Á; µ]
2 (4.94)

where at [Á; µ] is calculated recursively by:

at [Á; µ] = Yt ¡
pX
j=1

ÁjYt¡j ¡
qX
j=1

µjat¡j [Á; µ] : (4.95)

Proof. From the ARMA(p,q) model:

Yt =

pX
j=1

ÁjYt¡j + at +
qX
j=1

µjat¡j (4.96)

de…ne the conditional expectation of Yt given the information set at time t¡ 1;
the AR parameters Á and the MA parameters µ as:

Et¡1 [YtjÁ; µ] =

pX
j=1

ÁjYt¡j +
qX
j=1

µjat¡j [Á; µ] (4.97)

at [Á; µ] = Yt ¡Et¡1 [YtjÁ; µ] : (4.98)
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Then

YtjIt¡1 » N
£
Et¡1 [YtjÁ; µ] ; ¾2

¤
so that:

p(YtjIt¡1) =
1p
2¼¾2

exp

µ
¡1
2

(Yt ¡Et¡1 [YtjÁ; µ])2
¾2

¶
=

1p
2¼¾2

exp

Ã
¡1
2

at [Á; µ]
2

¾2

!
:

Following the derivation of the likelihood for the AR(p) process in Section 3.8.2
the result follows.
In order to calculate at [Á; µ] from the recursive formula in (4:95) one needs

starting values. One way of doing this is to use the unconditional mean 0 so
that:

at [Á; µ] = E [at] = 0; for t · 0:
As long as the chosen model is invertible and the number of observations is
reasonably large the choice of these starting values will have little e¤ect on the
ML estimates. Box and Jenkins suggest backcasting as a method of obtaining
better starting values.

4.5.2 Estimating Á and µ

To estimate Á and µ we need to minimize the sum of squares:

S (Á; µ) =
TX
t=1

at [Á; µ]
2
: (4.99)

The maximum likelihood estimators: Á̂; µ̂ are then the solutions to the …rst-order
conditions:

@S
³
Á̂; µ̂

´
@Á

= 0;
@S
³
Á̂; µ̂

´
@µ

= 0:

It q > 0 this will require a nonlinear optimization procedure such as Newton’s
method where consistent starting values Á̂0; µ̂0 are chosen and one iterates as:

·
Á̂n
µ̂n

¸
=

·
Á̂n¡1
µ̂n¡1

¸
¡
24 @2S(Á̂n¡1;µ̂n¡1)

@Á@ÁT
@2S(Á̂n¡1;µ̂n¡1)

@µ@ÁT

@2S(Á̂n¡1;µ̂n¡1)
@Á@µT

@2S(Á̂n¡1;µ̂n¡1)
@µ@µT

35¡1 24 @S(Á̂n¡1;µ̂n¡1)
@Á

@S(Á̂n¡1;µ̂n¡1)
@µ

35

until convergence takes place. Such nonlinear optimization procedures are now
standard in econometric software such as TSP; GAUSS; and RATS:
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4.5.3 The MA(1) Model

For an MA(1) we have:

at [µ] = Yt ¡ µat¡1 [µ] (4.100)

= Yt ¡ µ (Yt¡1 ¡ µat¡2 [µ])
...

= Yt ¡ µYt¡1 + µ2Yt¡2 ¡ µ3Yt¡3 + ¢ ¢ ¢+ (¡µ)t¡1 Yt + (¡µ)t a0 [µ] :
As long as the process is invertible or jµj < 1; the choice of a0 [µ] will have little
impact on most of the at [µ]

0
s since (¡µ)t will generally be a small number. For

example if µ = 0:5 and t = 40 we would have as a coe¢cient on a0 [µ] :

(¡0:5)40 = 0:000000000000909: (4.101)

If we set the starting values a0 [µ] = 0; then we obtain:

at [µ] = Yt ¡
t¡1X
j=1

(¡1)j¡1 µjYt¡j : (4.102)

Note that unlike the AR model this is a nonlinear function of µ since we have
the powers: µj : This means that when we minimize the sum of squares:

S (µ) =
TX
t=1

0@Yt ¡ t¡1X
j=1

(¡1)j¡1 µjYt¡j
1A2

: (4.103)

that minimizing S (µ) requires an iterative quadratic hill-climbing procedure
such as Newton’s method.
Once µ̂ has been found, however, things proceed as before with the AR(p)

model. De…ne the least squares residual ât by:

ât = at

h
µ̂
i
= Yt ¡

qX
j=1

µ̂j ât¡j : (4.104)

Once µ̂ and Á̂ are found by such a non-linear procedure things become easy
again and we can proceed as before. We have:

Theorem 163 The ML estimator of ¾2 is given by:

¾̂2 =
1

T

TX
t=1

â2t (4.105)

where:

ât = at

h
Á̂; µ̂

i
(4.106)

and the maximized log-likelihood is:

l¤ ´ l
³
Á̂; µ̂; ¾̂2

´
= ¡T

2
ln
¡
¾̂2
¢¡ T

2
: (4.107)
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Proof. Solving for the maximum likelihood estimator of ¾̂2 from the …rst-
order condition

@l
³
Á̂; µ̂; ¾̂2

´
@¾2

= ¡T
2

1

¾̂2
+

1

2
¡
¾̂2
¢2 TX

t=1

â2t = 0

we obtain:

¾̂2 =
1

T

TX
t=1

â2t : (4.108)

The proof for l¤ is the same as for the AR(p) model in Section 3.8.2.

4.5.4 Likelihood Ratio Tests

Since the formula in (4:107) is identical to that for the AR(p) model, likelihood
ratio tests are the same as in Section 3.8.2. We proceed by estimating a re-
stricted and an unrestricted version of an ARMA process. The restricted and
unrestricted maximized log-likelihoods are then:

l¤R = ¡T
2
ln
¡
¾̂2R
¢¡ T

2
and (4.109)

l¤U = ¡T
2
ln
¡
¾̂2U
¢¡ T

2

where ¾̂2R and ¾̂
2
U are the restricted estimator and unrestricted estimators of ¾

2.
The likelihood ratio statistic:

¤ = ¡2 (l¤R ¡ l¤U ) = T ln
µ
¾̂2R
¾̂2U

¶
(4.110)

then has under the null that the restrictions are true an asymptotic distribution:

¤
as Â2r (4.111)

where r is the number of restrictions or the di¤erence in the number of param-
eters in the restricted and unrestricted models.
For example suppose we believe that Yt in an MA(2) but wish to apply a

diagnostic test to see whether this belief is consistent with the data. To do this
we over…t by estimating an MA(5):

Yt = at + µ1at¡1 + µ2at¡2 + µ3at¡3 + µ4at¡4 + µ5at¡5:

If our belief of an MA(2) is correct then µ3 = µ4 = µ5 = 0: We therefore test:

H0 : Yt sMA(2) (or µ3 = µ4 = µ5 = 0) versus
H1 : Yt sMA(5) (or µ3 6= 0 or µ4 6= 0 or µ5 6= 0):
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Suppose we have T = 100 observations and for the restricted MA(2) model
we …nd that:

¾̂2R =
(0:15)2

100

where (0:15)2 is the restricted sum of squares. We then estimate the unrestricted
MA(5) and …nd

¾̂2U =
(0:11)2

100

where (0:11)2 is the unrestricted sum of squares.
We then have:

¤ = 100 ln

Ã
(0:15)2

100
(0:11)2

100

!
= 100 ln

µ
(0:15)2

(0:11)2

¶
= 62:03 > Â23(0:05) = 7:815 (4.112)

and so we reject H0 that Yt is an MA(2):

4.5.5 Estimating p and q

We can also calculate either the Akaike or Schwarz criteria for an ARMA(k,l)
as:

AIC (k; l) = ln
¡
¾̂2k;l

¢
+
2 (k + l)

T
(4.113)

SC (k; l) = ln
¡
¾̂2k;l

¢
+
ln (T ) (k + l)

T

for k = 0; 1; 2; : : : pmax and l = 0; 1; 2; : : : qmax where k is the order of the AR
and l the order of the MA with ¾̂2k;l the estimated value of ¾

2 for an ARMA(k,l)
process.
Thus in principle we could use either the Akaike or Schwarz criterion to esti-

mate p and q: This would seem to get around the problem of determining p and
q for mixed processes associated with the Box-Jenkins identi…cation procedure.
A number of di¢culties should be noted however. First when l > 0 we require
an iterative procedure to estimate the ARMA(k,l) process and for this we will
need to worry about convergence and starting values which may make it very
time consuming to implement in practice. Secondly, we might have di¢culties
with near cancellation of common roots for many values of k and l: Thus for ex-
ample if an ARMA(1,1) represents the data well, we are likely to …nd numerical
problems if we try and estimate an ARMA(2,4):
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4.6 ARIMA(p,d,q) models

Box and Jenkins proposed a general class of models called ARIMA models
(autoregressive integrated moving average processes) de…ned as:

De…nition 164 We say that Xt s ARIMA(p,d,q) if :

Á (B) (1¡B)dXt = ®+ µ (B)at:
where p is the order of the AR polynomial Á (B), q is the order of the MA
polynomial µ (B) ; and d is the number of times that Xt must be di¤erenced to
achieve stationarity.

In economics the only values of d which generally make sense are

d = 0; 1; 2:

A value of d = 0 corresponds to the case where Xt is already stationary
and so does not require di¤erencing. Examples of time series where d = 0 is
reasonable would be the growth rate of real GDP; the rate of unemployment or
the real rate of interest. In this case

¹ = E [Xt] =
®

Á (1)

is the mean of the series.
The case of d = 1 corresponds to the case where Xt is not stationary but

(1¡B)Xt is stationary. This is essentially the DS model where:
Yt = (1¡B)Xt ¡ ¹ (4.114)

with growth rate given by:

¹ = E [(1¡B)Xt] = ®

Á (1)

and where Yt follows a stationary ARMA(p,q) process with mean 0:
It is hard to think of many examples where d = 2 might make economic

sense since this implies that the growth rate of the series is nonstationary. One
possible example is if Xt = ln (Pt) where Pt is the CPI or the GDP price
de‡ator. In this case (1¡B)Xt would be the rate of in‡ation. Given the recent
in‡ationary history of many modern economies, it is not unreasonable to assume
that in‡ation is nonstationary and hence would require di¤erencing so that only
(1¡B)2Xt; or the change in in‡ation, is stationary. Such a model then would
be of the form:

Á (B) (1¡B)2Xt = ®+ µ (B)at (4.115)

in which case

¹ = E
h
(1¡B)2Xt

i
=

®

Á (1)

would be the average increase in the rate of in‡ation. Unless the economy is
experiencing hyperin‡ation it would probably make sense to set ® = 0.
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4.6.1 Box Jenkins Identi…cation

Generally speaking economic considerations pretty well determine the value of
d although there are some exceptions. For example many economic theories
predict the real rate of interest should be stationary even though actual real
rates of interest often appear to be nonstationary.
Box and Jenkins suggest an examination of the estimated autocorrelation

function ½̂ (k) and partial autocorrelation function Á̂kk in order to determine
d: If a series is stationary both ½̂ (k) and Á̂kk should have the short memory
property and so decay rapidly to zero. We have:

Proposition 165 For a nonstationary series that needs di¤erencing the typical
pattern one sees is that ½̂ (k) decays linearly (typically with ½̂ (1) t 1 ) while Á̂kk
has one big spike at k = 1 (typically with Á̂11 t 1 ) with Á̂kk t 0 for k > 1:

The linear decay in particular is inconsistent with the short-memory property
which requires exponential rather than linear decay.
Thus the approach suggested by Box and Jenkins is to continue di¤erencing

the series until ½̂ (k) and Á̂kk are consistent with exponential decay.
Once stationarity has been achieved it is important not to overdi¤erence.

A value of ½̂ (1) ¼ ¡0:5 is often indicative of over-di¤erencing. For example if
Yt is stationary white noise so that: Yt = at but you incorrectly di¤erence Yt
then the di¤erenced series eYt ´ (1¡B)Yt will be a non-invertible MA(1) since:eYt = at ¡ at¡1 (4.116)

In this case ½ (1) = ¡1
2 since for an MA(1) with µ = ¡1 we have:

½ (1) =
µ

1 + µ2
= ¡1

2
: (4.117)

4.7 Diagnostic Tests

4.7.1 Introduction

By the time we have arrived at our chosen ARMA(p,q) model many decisions
have had to be made. Should I detrend using TS or DS? Do I need to correct
for seasonality and if so, is it better to use seasonal dummies or seasonal di¤er-
encing? There was one signi…cant autocorrelation at lag 7 which I ignored (or
did not ignore) was that correct?
Each time we make a decision there arises the possibility of error. The

purpose of diagnostic testing then is to make us aware of errors that we have
made so that we have a chance to correct them.

4.7.2 Catastrophic Errors

The worst kind of errors are catastrophic errors. Catastrophic errors are errors
which mean that your results are garbage; catastrophic errors make you look
foolish at best and may mean losing your job at worst.
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Unfortunately catastrophic errors often occur innocently, in a manner en-
tirely disproportionate to their e¤ects. For example, the data in the …le you are
using contain two columns, in the …rst is the date of each observation while in
the second is say GDP ; that is something like this:

1956 478:2
1957 483:9
1958 492:1
1959 498:7
etc. etc..

You don’t realize that the date is in the …rst column and ask the computer to
read the data from this …le. Computers being what they are do this without
complaining so the GDP series is loaded into the computer as:

1956 478:2 1957 483:9 1958 etc..

You then go ahead and do unit root tests and identify an ARMA(p,q) model
for the series.
Your results are, unfortunately, junk. Your data has GDP in 1956 being

equal to 1956 with a massive recession in 1957 when GNP falls to 478:2; a 76%
fall in output; something only a nuclear war would be likely to accomplish. You
have made a catastrophic error.
It is not a problem to make this sort of error, in fact you will make this sort

of error regularly if you do applied work. The important point is not to let it
slip by you without noticing it; not, for example, to hand it in as an assignment
or give it to your boss in your annual report.
If you do make this sort of error without catching it …rst, it is often because

you have never really looked at your data or at what you have given the com-
puter. You are acting like a machine. Catastrophic errors are characteristic of
an age where computers allow you to perform all sorts of sophisticated statis-
tical analysis without ever actually looking at the data. As the old expression
goes, garbage in, garbage out.
Avoiding catastrophic errors is often quite easy. The two essential commands

are PRINT and PLOT. If you get in the habit of printing out and plotting your
data and intermediate results, it is much less likely that you miss a catastrophic
error. The PRINT and PLOT commands are therefore your most important
diagnostic tests; to be performed before any other. Use them regularly!

4.7.3 Regular Errors

In applied work you can safely bet that the model you choose is not going to
be the true model; whatever “true model” means. More importantly, the model
you have chosen may not be adequate over certain dimensions.
There are now a huge number of diagnostic tests available in the literature

and in many computer programs. We will concentrate on the following:

1. Over…tting ,
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2. Tests for Normality,

3. Tests for White Noise and

4. A Lagrange Multiplier Test for ARCH.

4.7.4 Over…tting

Suppose your chosen model is ARMA(p,q):

Yt =

pX
j=1

ÁjYt¡j + at +
qX
j=1

µjat¡j (4.118)

but you think that maybe p or q should have been larger.
Assuming the model in (4:118) is true it follows that it is also an ARMA(p+r,q)

model where:

Yt =

pX
j=1

ÁjYt¡j + at +
qX
j=1

µjat¡j (4.119)

+Áp+1Yt¡(p+1) + Áp+2Yt¡(p+2) + ¢ ¢ ¢+ Áp+rYt¡(p+r)
and where:

Áp+1 = Áp+2 = ¢ ¢ ¢ = Áp+r = 0: (4.120)

Alternatively if (4:118) is true then Yt also follows an ARMA(p,q+r) model
as:

Yt =

pX
j=1

ÁjYt¡j + at +
qX
j=1

µjat¡j (4.121)

+µq+1at¡(q+1) + µq+2at¡(q+2) + ¢ ¢ ¢+ µq+rat¡(q+r)
where:

µq+1 = µq+2 = ¢ ¢ ¢ = µq+r = 0: (4.122)

If however the chosen ARMA(p,q) in (4:118) is false or inadequate, then we
would expect the restrictions in either (4:120) or (4:122) to be rejected by the
data.3

This then is the basis for over…tting as a diagnostic test: we estimate a
larger model that includes our model as a special case and see if the data is
consistent with the implied restrictions. Thus if we make the ARMA(p,q) model

3You should not increase both p and q at the same time since under the null hypothesis
of an ARMA (p; q) the parameters of an ARMA (p+ r; q + r) are not identi…ed due to the
cancellation of common factors.
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or (4:120) as the null hypothesis and an ARMA(p+r,q) as the alternative then
the maximized log-likelihood of the unrestricted model is:

l¤p+r;q = ¡
T

2
ln
¡
¾̂2p+r;q

¢¡ T
2

(4.123)

where ¾̂2p+r;q is the estimator of ¾
2 from the unrestricted ARMA(p+r,q) model.

Similarly the maximized log-likelihood of the restricted model is:

l¤p;q = ¡
T

2
ln
¡
¾̂2p;q

¢¡ T
2

where ¾̂2p;q is the estimator of ¾
2 from the restricted ARMA(p,q) model. We

then have under the null hypothesis that the ARMA(p,q) model is adequate
that for the likelihood ratio statistic:

¤ = ¡2 (l¤R ¡ l¤U) (4.124)

= T ln

Ã
¾̂2p;q

¾̂2p+r;q

!
as Â2r:

Similarly if the alternative is an ARMA(p,q+r) then we would use

¤ = T ln

Ã
¾̂2p;q

¾̂2p;q+r

!
as Â2r:

4.7.5 Tests for Normality

If we estimate our ARMA(p,q) model as:

Á̂ (B)Yt = µ̂ (B)at (4.125)

and obtain the residuals:

ât =
Á̂ (B)

µ̂ (B)
Yt (4.126)

then if the model is correct ât should be approximately i:i:n
¡
0; ¾2

¢
or alterna-

tively

ẑt =
ât
¾̂

(4.127)

should be i:i:n (0; 1) ; that is a sequence of independent standard normals.
One very simple but often very e¤ective test for normality is simply to plot

ẑt: We know from the properties of the standard normal distribution that if

zt s N [0; 1]
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then:

Pr [jztj ¸ 2] t 0:05 (i.e., one in 20) (4.128)

Pr [jztj ¸ 3] t 0:0027 (i.e., one in 370)

Pr [jztj ¸ 4] t 0:00006 (i.e., one in 15787)

Pr [jztj ¸ 5] t 0:0000006 (i.e., one in 1; 744; 277):

It is clear that the tails of the normal distribution rapidly thin out; for
example it is almost impossible (in a normal sized sample) that the normal
distribution would every produce a zt greater than 4 in absolute value.
In a typical sample of say T t 150; we would expect to see about 7 values

of ẑt greater than 2 in absolute value, maybe 1 or 2 greater than 3 in absolute
value and none greater than 4 in absolute value. If we do observe even one
observation greater than 4; or say ten observations greater than 3; then this by
itself is pretty conclusive evidence against the normal distribution.
Sometimes very large values of ẑt (or outliers) correspond to special historical

circumstances: wars, strikes or natural disasters. Therefore it is important to
consider when the outliers take place. You might then want to remove them from
the sample or include dummy variables when doing the DS or TS detrending.
Real big outliers are often the result of some kind of computing error or

recording error or catastrophic error. If you have missed a decimal place in say
the third quarter of 1968, typing 96784 instead of 967:84; then this will likely
show up a large value of ẑt in 1968.
We can also test for normality more formally. The two telltale characteristics

of the standard normal distribution are symmetry and thin tails which can be
measured by skewness and kurtosis. In particular if zt is a standard normal
then:

·3 ´ E
£
z3t
¤
= 0 (4.129)

·4 ´ E
£
z4t
¤
= 3

where ·3 is the skewness and ·4 the kurtosis. Two important ways that the
actual distribution could di¤er from the normal is either being skewed (i:e: not
symmetric) so that ·3 6= 0 or by having thicker tails than the normal distribution
so that ·4 > 3:
To test normality consider calculating the sample skewness and kurtosis

estimates given by:

·̂3 =
1

T

TX
t=1

ẑt =
1

T

PT
t=1 â

2
t

¾̂4
(4.130)

·̂4 =
1

T

TX
t=1

ẑt =
1

T

PT
t=1 â

4
t

¾̂4
:

It can then be shown that under

H0 : ·3 = 0
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that:

t̂3 =

r
T

6
·̂3

as N [0; 1] : (4.131)

Similarly given:

Ho : ·4 = 3

it can be shown that:

t̂4 =

r
T

24
(·̂4 ¡ 3) as N [0; 1] : (4.132)

Furthermore t̂3 and t̂4 are asymptotically independent.
We would therefore reject normality because of skewness ( at the 5% level)

if:

jt̂3j > 1:96 (4.133)

or because of kurtosis if:

jt̂4j > 1:96: (4.134)

If t̂3 > 1:96 then the distribution is skewed to the right ( ẑt probably has
more or larger positive outliers) while if t̂3 < ¡1:96 then the distribution is
skewed to the left ( ẑt probably has more or larger negative outliers).
Similarly if t̂4 > 1:96 then the tails of the distribution are signi…cantly

thicker than the normal (there will be more large values of ẑt than the normal
distribution can account for) which is while if t̂4 < ¡1:96 then the tails of
the distribution are signi…cantly thinner than the normal distribution (the ẑt’s
have fewer outliers than one would expect with the normal distribution). In
economics rejection because t̂4 > 1:96 is much more common.
A joint test of zero skewness and excess kurtosis is also available. Under the

null of normality or:

H0 : ·3 = 0; ·4 = 3

we have:

JB = t̂23 + t̂
2
4 = T

Ã
·̂23
6
+
(·̂4 ¡ 3)2
24

!
as Â22: (4.135)

This is often referred as the Jarque-Bera test for normality. Thus at the 5%
level if JB > 6 (the exact critical value is 5.991465) we would reject the null of
normality.
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4.7.6 Portmanteau Tests of Zero Correlation

Let us assume for the moment that we know the ARMA(p,q) parameters of our
model. This would allow us to calculate at directly as:

at = Yt ¡
pX
j=1

ÁjYt¡j ¡
qX
j=1

µjat¡j : (4.136)

If we have chosen Á (B) and µ (B) properly then the series at should be i:i:d:
and hence uncorrelated. From this it follows that the autocorrelation function
for at de…ned by:

½a (k) =
E [atat¡k]

¾2
(4.137)

satis…es:

½a (k) = 0 for k 6= 0 (4.138)

We can test this implication of our model by estimating ½a (k) by:

½̂a (k) =

PT¡jkj
t=1 atat¡kPT

t=1 a
2
t

: (4.139)

Under

H0 : ½a (k) = 0 for k = 1; 2; : : :M

we have:
p
T ½̂a (k)

a» N [0; 1]

and that ½̂a (k) and ½̂a (l) are independent for k 6= l:
This suggests calculating ½̂a (k) for k = 1; 2; : : :M and comparing them with

the standard error SE [½̂a (k)] =
1p
T
so that if:

j½̂a (k)j >
1:96p
T

(4.140)

we would suspect that the i:i:d: assumption is not correct and that we haven’t
chosen Á (B) or µ (B) properly.
We can also construct a joint test since under H0 :

Q = T
MX
k=1

½̂a (k)
2 a» Â2M (4.141)

which is the Box-Pierce portmanteau test applied to at:
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Unfortunately these procedures are not feasible since we do not know in
practice what are the true parameters of Á (B) and µ (B). We can however use
the estimated parameters and residuals as:

ât = Yt ¡
pX
j=1

Á̂jYt¡j ¡
pX
j=1

µ̂j ât¡j (4.142)

and calculate

½̂â (k) =

PT¡jkj
t=1 âtât¡kPT

t=1 â
2
t

: (4.143)

A complication arises because the noise in the parameter estimates a¤ects the
distribution of ½̂â (k) ; even asymptotically. However, if we let:

M ¼
p
T (4.144)

so that M grows as the square root of the number of observations T then for

Q = T
MX
k=1

½̂â (k)
2 (4.145)

we have:

Q
a» Â2M (4.146)

This then is the feasible form of the Box-Pierce portmanteau test. Often you will
see a small-sample degrees of freedom correction for the asymptotic distribution:

Q
a» Â2M¡p¡q (4.147)

where p and q are the order of the AR and MA polynomials.
Monte Carlo and other theoretical studies have shown that the Box-Pierce

test often does not perform well in a small samples. For this reason a modi…ca-
tion is often made known as the Ljung-Box portmanteau test:

Q¤ = T (T + 2)
MX
k=1

(T ¡ k)¡1 ½̂â (k)2 (4.148)

which has the same asymptotic distribution as Q; that is:

Q¤ a» Â2M (4.149)

but has better small sample characteristics.

Remark 166 It is important to realize that ½̂a (k) is not the same as the ½̂ (k)
we encountered with Box-Jenkins identi…cation, which is calculated for Yt and
not ât; that is:

½̂ (k) =

PT¡jkj
t=1 YtYt+kPT

t=1 Y
2
t

(4.150)

which is not the same as (4:143) : If the model is correct then we would expect
½̂a (k) ¼ 0 but not that ½̂ (k) ¼ 0:
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4.7.7 Testing for ARCH

Even if the data appear to be consistent with the at 0s being uncorrelated, it does
not follow that the at 0s are independent. This is because zero correlation does
not imply independence. For example it even if at is uncorrelated with at¡1;
it may still be that a2t is correlated with a

2
t¡1: This is in fact quite common in

economics, especially with …nancial data which experience occasional bursts of
volatility.
Autoregressive, conditional, heteroskedastic models of order q or ARCH(q)

models display this kind of behavior. We have:

De…nition 167 ARCH (q) : at follows an ARCH(q) process if

at = zt
¡
¾2 + ®1a

2
t¡1 + ®2a

2
t¡2 + ¢ ¢ ¢+ ®qa2t¡q

¢1=2
where zt » i:i:n (0; 1) is a sequence of independent standard normals.

Under the null hypothesis that:

H0 : ®1 = ®2 = ¢ ¢ ¢ = ®q = 0 (4.151)

the ARCH model reduces to

at = ¾zt » i:i:n
¡
0; ¾2

¢
(4.152)

which is what we assume with an ARMA(p,q) model. Thus we can view testing
H0 as a diagnostic test of the adequacy of the assumption that the a0ts are
independent.
Engle (1982) has shown that a Lagrange Multiplier (or LM) test of (4:151)is

very easy to perform. It consists in running the regression:

â2t = ¯0 + ¯1â
2
t¡1 + ¯2â

2
t¡2 + ¢ ¢ ¢+ ¯qâ2t¡q + error (4.153)

and calculating the R2 from this regression. Under H0:

LM = T £R2 a» Â2q: (4.154)



Chapter 5

TS Versus DS Models

5.1 Introduction
We have encountered two methods for dealing with the trend, the trend sta-
tionary or TS approach where:

TS : Xt = ®+ ¹t+ Yt (5.1)

with Xt ´ ln(Wt) ( and Wt is say real GNP ) and the di¤erence stationary or
DS approach where:

DS : Xt ¡Xt¡1 = ¹+ Yt: (5.2)

For both the TS and DS models we assume that Yt is a stationary ARMA(p,q)
model: Á (B)Yt = µ (B) at with Wold representation:

Yt = Ã (B)at (5.3)

= at + Ã1at¡1 + Ã2at¡2 + ¢ ¢ ¢ :
As we have already seen, stationary ARMA(p,q) processes have a number

of short-memory properties. Let us quickly review these. The in…nite moving
average weights Ãk and the forecast function Et [Yt+k] have the short-memory
property and hence converge to zero very rapidly, essentially exponentially, as
k gets large. We write this as Ãk = O

¡
¿k
¢
and Et [Yt+k] = O

¡
¿k
¢
or more

precisely:

jÃkj · A¿k (5.4)

jEt [Yt+k]j · Ct¿
k (5.5)

where 0 · ¿ < 1 is the absolute value of the largest root of Á (B) : Furthermore
long-run uncertainty regarding future Yt is bounded so that:

V art [Yt+k] = ¾2
¡
1 + Ã21 + Ã

2
2 + ¢ ¢ ¢+ Ã2k¡1

¢
(5.6)

· ° (0) = ¾2
¡
1 + Ã21 + Ã

2
2 + ¢ ¢ ¢

¢
118
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and V art [Yt+k] = ° (0) + O
¡
¿2k
¢
so that V art [Yt+k] is bounded by and con-

verges rapidly to ° (0) :
Since Yt is modelled the same way for both TS and DS models, there is

nothing regarding Yt that will be nothing qualitatively di¤erent between the
TS and DS approaches.1 Rather it is regarding the level of the series: Xt =
ln (Wt) that TS and DS models will have important qualitative di¤erences.
In addition we shall see that the asymptotic properties of ¹̂; the least squares
estimator of ¹ are very di¤erent for TS and DS models.

5.2 Implications of the TS approach

We begin with the implications of adopting the TS approach. We will show
that this has the following implications:

1. The e¤ect of past shocks at¡k on Xt is transitory.

2. Forecasts of future Xt+k converge rapidly to the deterministic trend ®+
¹ (t+ k) :

3. Long-run uncertainty regarding Xt+k is bounded.

4. The estimator of ¹ is supere¢cient.

5.2.1 Shocks are Transitory

We …rst show that

Theorem 168 For the TS model past shocks: at¡k have a transitory impact
on Xt; in particular:

@Xt
@at¡k

= Ãk = O
¡
¿k
¢
:

Proof. From the Wold representation for the TS model in (5:1) we have:

Xt = ®+ ¹t+ Yt (5.7)

= ®+ ¹t+ at + Ã1at¡1 + Ã2at¡2 + ¢ ¢ ¢ :

It therefore follows that:

@Xt
@at¡k

= Ãk = O
¡
¿k
¢
: (5.8)

Thus for the TS model Ãk ! 0 exponentially so that past shocks have a
transitory impact on Xt

1Aside from the fact that we will have di¤erent estimates of Á (B) and µ (B) :
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5.2.2 Forecasting

Consider now the problem of forecasting Xt+k for the TS model. We have:

Theorem 169 For the TS model forecasts converge exponentially to the trend
line ®+ ¹ (t+ k) : In particular:

Et[Xt+k] = ®+ ¹(t+ k) +O
¡
¿k
¢
:

Proof. From (5:1) for period t+ k we have:

Et[Xt+k] = ®+ ¹(t+ k) +Et[Yt+k]: (5.9)

Since Et[Yt+k] = O
¡
¿k
¢
then result follows.

Long-run uncertainty about the future is determined by V art[Xt+k], which
is given by:

V art [Xt+k] = V art [®+ ¹(t+ k) + Yt+k] (5.10)

= V art[Yt+k]

= ¾2
¡
1 + Ã21 + Ã

2
2 + ¢ ¢ ¢+ Ã2k¡1

¢
:

From this it follows that:

Theorem 170 If Xt is TS then long-run uncertainty is bounded, in particular:

V art [Xt+k] · ° (0) (5.11)

for all forecast horizons k:

Furthermore:

Theorem 171 V art[Xt+k] converges rapidly to °(0); in particular:

jV art[Xt+k]¡ ° (0)j = O
¡
¿2k
¢
:

5.2.3 An Example

Suppose that:

Xt = 6 + 0:03t+ Yt

and Yt is an AR(1) where

Yt = 0:7Yt¡1 + at:

Then

Et [Yt+k] = (0:7)
k
Yt:
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If Yt = 0:05 then

Et [Xt+k] = 6 + 0:03(t+ k) + (0:7)
k 0:05

which is plotted below using t = 20 as the present year.

6.6

6.65

6.7

6.75

6.8

6.85

6.9

0 2 4 6 8 10k

Forecast and Trend Line
Note how the forecast converges rapidly to the trend line.
Now consider constructing a con…dence interval for Xt+k based on:

Et [Xt+k]§ 1:96
p
V art [Xt+k]

where:

V art [Xt+k] = (0:04)
2

Ã
1¡ (0:7)2k
1¡ (0:7)2

!
:

Note that

° (0) = (0:04)2
Ã

1

1¡ (0:7)2
!
= 0:00314

which bounds V art [Xt+k] from above as the diagram below illustrates:

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

2 4 6 8 10k

V art [Xt+k] and ° (0) :
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Con…dence intervals thus take the form:

6 + 0:03(t+ k) + (0:7)k 0:05§ 1:96£ (0:04)
s
1¡ (0:7)2k
1¡ (0:7)2 :

This is plotted below using t = 20 as the base period.

6.6

6.7

6.8

6.9

7

7.1

2 4 6 8 10 12 14k

Con…dence Intervals for Xt+k

Notice how the width of the lower and upper bands of the con…dence interval
quickly reach an upper bound as the forecast horizon k gets larger, re‡ecting
the fact that long-run uncertainty is bounded.

5.2.4 Estimating ¹

For the TS the growth rate ¹ is estimated by regressing Xt on a constant and
trend t resulting in the estimator:

¹̂ =

PT
t=1

¡
t¡ T

2

¢ ¡
Xt ¡X

¢PT
t=1

¡
t¡ T

2

¢2 : (5.12)

It can be shown that ordinary and generalized least squares are asymptotically
equivalent for the TS model.
Recall that most reasonable estimators encountered in statistics converge to

the population values at a rate of Op
³
T¡

1
2

´
; that is if ^̄ estimates ¯ then the

standard error SE
h
^̄
i
= O

³
T¡

1
2

´
or goes to zero in the same way that as 1p

T

goes to zero as T !1:
Some estimators go to zero at a faster rate than Op

³
T¡

1
2

´
: These estimators

are called supere¢cient. We have:

De…nition 172 A consistent estimator ^̄ is said to be supere¢cient if

SE
h
^̄
i
= O

¡
T¡±

¢
for ± > 1

2 :
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It turns out that one implication of the TS model is that ¹̂ is supere¢cient.
In particular we have:

Proposition 173 If Xt is TS then ¹̂ is supere¢cient, in particular:

SE [¹̂] ¼
p
12¾jÃ(1)j
T

3
2

= O
³
T¡

3
2

´
:

Proof. (Informal) It can be shown that:

V ar [¹̂] ¼ ¾2jÃ(1)j2PT
t=1

¡
t¡ T

2

¢2 (5.13)

=
¾2jÃ(1)j2
1
12T

3 + 1
6T

¼ 12¾2jÃ(1)j2
T 3

: (5.14)

The last line follows because the 1
12T

3 term in the denominator dominates the
term 1

6T for T large. The asymptotic standard error for ¹̂ is therefore given by:

SE [¹̂] ¼
p
12¾jÃ(1)j
T

3
2

= O
³
T¡

3
2

´
: (5.15)

5.3 Implications of the DS approach

We will now show that DS have very di¤erent implications. In particular we
will show that:

1. The e¤ect of past shocks at¡k on Xt is permanent.

2. Forecasts of future Xt+k converge rapidly to a stochastic trend Rt + ¹k
where Rt is a random variable.

3. Long-run uncertainty regarding Xt+k is unbounded.

4. The Estimator of ¹ is not supere¢cient.

5.3.1 The Beveridge-Nelson Decomposition

Proving similar results for theDS model is more di¢cult because of the presence
of Xt¡1 in (5:2) or

Xt = ¹+Xt¡1 + Yt: (5.16)

For example a past shock at¡k will a¤ect both Xt¡1 and Yt which makes it
di¢cult to get the e¤ect of at¡k on Xt by itself.
Of all the DS models random walks are the easiest to analyze. A very useful

result is to decompose Xt into a trend and a cycle where the trend is a random
walk. This is the Beveridge-Nelson decomposition which states that:
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Theorem 174 Beveridge-Nelson Decomposition: If Xt is DS as:

(1¡B)Xt = ¹+ Ã (B)at
where Ãk = O

¡
¿k
¢
with j¿ j < 1 and Ã (1) 6= 0 then Xt can be decomposed as:

Xt = T
¤
t + Y

¤
t

where T ¤t is a random walk with drift:

T ¤t = ¹+ T
¤
t¡1 + Ã (1) at (5.17)

and Y ¤t is a stationary cycle with Wold representation:

Y ¤t = Ã¤ (B)at (5.18)

= Ã¤oat + Ã
¤
1at¡1 + Ã

¤
2at¡2 + ¢ ¢ ¢

and where Ã¤k = O
¡
¿k
¢
.

Proof. See the appendix to this chapter.

Remark 175 If Ã (1) = 0 then T ¤t = ®+ ¹t in which case Xt = ® + ¹t + Y ¤t
and hence Xt would be TS:

Remark 176 The roll played by Ã (1) in the Beveridge Nelson decomposition
and in many of the results that follow is closely related to the spectrum f (¸) at
frequency ¸ = 0 since:

f (0) =

µ
¾2

2¼
Ã
¡
ei¸
¢
Ã
¡
e¡i¸

¢¶ j¸=0
=

¾2

2¼
Ã (1)2 :

(See the section on spectral analysis.) Roughly this means that it is only the low
frequency or long-run properties coming from Ã (B) that has an a¤ect on the
results.

It is possible to calculate the Beveridge-Nelson decomposition for a particular
time series in a number of ways. For example:

Theorem 177 If Xt is DS with Yt an AR(p) process then T ¤t in the Beveridge-
Nelson decomposition is given by:

T ¤t =
1

Á (1)
Á (B)Xt:

Proof. From the Beveridge-Nelson decomposition:

(1¡B)T ¤t = ¹+
1

Á (1)
at
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and since Yt is an AR(p)

Á (B) (1¡B)Xt = Á (1)¹+ at
so that:

(1¡B)T ¤t = ¹+
1

Á (1)
(Á (B) (1¡B)Xt ¡ Á (1)¹)

=
Á (B)

Á (1)
(1¡B)Xt:

Cancelling the (1¡B) from both sides then yields the result.

Example 178 If

Xt = ¹+Xt¡1 + Yt

where: Yt = 0:7 Yt¡1 + at then T ¤t can be calculated as:

T ¤t =
Á (B)

Á (1)
Xt

=
1¡ 0:7B
1¡ 0:7 Xt

=
1

0:3
(Xt ¡ 0:7Xt¡1) :

The cycle Y ¤t can then be calculated as:

Y ¤t = Xt ¡ T ¤t :

5.3.2 Shocks are Permanent

Unlike TS models past shocks have a permanent impact on Xt: In particular
we have:

Theorem 179 If Xt is DS shocks are permanent with

@Xt
@at¡k

= Ã (1) +O
¡
¿k
¢! Ã (1) (5.19)

as k !1:
Proof. Since T ¤t in the Beveridge Nelson decomposition is a random walk

with drift, it follows that

T ¤t = ¹+ T ¤t¡1 + Ã (1) at
= t¹+ T ¤o + Ã (1) (at + at¡1 + ¢ ¢ ¢+ a1) :
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Thus a past shock at¡k has a permanent impact on T ¤t with multiplier Ã(1) or:

@T ¤t
@at¡k

= Ã(1): (5.20)

On the other hand with Y ¤t is stationary and

@Y ¤t
@at¡k

= Ã¤k = O
¡
¿k
¢
: (5.21)

Since Xt = T ¤t + Y ¤t it follows that:

@Xt
@at¡k

=
@T ¤t
@at¡k

+
@Y ¤t
@at¡k

(5.22)

= Ã(1) + Ã¤k
= Ã(1) +O

¡
¿k
¢
: (5.23)

Thus there is no tendency for the e¤ect of past shocks on Xt to diminish as
we look farther and farther in the past so that shocks have a permanent e¤ect
on Xt: It is as if the economy today were still a¤ected by a bad harvest 4000
years ago. This is unlike the TS case (where shocks were transitory) shocks
This is one reason why macroeconomists have been so interested in DS

models since they imply that shocks such as natural disasters, monetary shocks,
demand shocks etc. have permanent e¤ects on the economy; that is their in‡u-
ence does not die out with time.

An Example

Suppose that Yt follows a stationary AR(1) process:

Yt = ÁYt¡1 + at (5.24)

so that:

Ã (B) =
1

1¡ ÁB :

and hence:

Ã (1) =
1

1¡ Á: (5.25)

It then follows that:

@Xt
@at¡k

=
1¡ Ák
1¡ Á (5.26)

= Ã (1)¡ Ák

1¡ Á (5.27)

= Ã (1) +O
¡
¿k
¢

(5.28)
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where ¿ = Á: Note how @Xt

@at¡k
! Ã (1) exponentially as k !1:

If Á = 1
2 for example then:

Ã (1) =
1

1¡ 1
2

= 2

so that:

@Xt
@at¡k

= 2¡ 2
µ
1

2

¶k
(5.29)

! 2: (5.30)

5.3.3 Forecasting

Now consider the problem of forecasting Xt+k: We have:

Theorem 180 If Xt is DS then forecasts of Xt+k converge rapidly to a stochas-
tic trend line or more precisely:

Et [Xt+k] = T
¤
t + ¹k +O

¡
¿k
¢
:

Thus just as with the TS model, Et [Xt+k] converges rapidly to a trend
line. However, unlike the TS model the trend line is random, in particular the
intercept is T ¤t (instead of the constant ® for the TS trend ®+ ¹t ) which is a
nonstationary random walk with drift.
Furthermore for the DS model long-run uncertainty regarding Xt+k is un-

bounded. In particular if we measure uncertainty by the forecast variance then
uncertainty increases linearly with the forecast horizon k: In particular:

Theorem 181 If Xt is DS then:

V art[Xt+k] = ¾
2Ã(1)2k +O

¡
¿2k
¢
: (5.31)

Thus for the DS model V art [Xt+k] grows linearly with the forecast horizon
as ¾2Ã(1)2k.
Proof. Since T ¤t follows a random walk with drift ¹ we have:

T ¤t+k = T
¤
t + ¹k + Ã (1) (at+k + at+k¡1 + ¢ ¢ ¢+ at+1) (5.32)

so that:

Et
£
T ¤t+k

¤
= T ¤t + ¹k (5.33)

V art
£
T ¤t+k

¤
= ¾2Ã (1)2 k:

Since Y ¤t is stationary we have:

Et
£
Y ¤t+k

¤
= O

¡
¿k
¢

V art
£
Y ¤t+k

¤
= ¾2

¡
Ã¤20 + Ã

¤2
1 + Ã¤22 + ¢ ¢ ¢+ Ã¤2k¡1

¢
· V ar [Y ¤t ]



CHAPTER 5. TS VERSUS DS MODELS 128

and

V art
£
Y ¤t+k

¤
= V ar [Y ¤t ] +O

¡
¿2k
¢
:

Thus:

Et [Xt+k] = Et
£
T ¤t+k

¤
+E

£
Y ¤t+k

¤
= T ¤t + ¹k +O

¡
¿k
¢

and

V art [Xt+k] = ¾
2Ã (1)2 k +O

¡
¿2k
¢
:

This in turn means that con…dence intervals for forecasts for DS models will
be approximately:

T ¤t + ¹k § ¾jÃ(1)j
p
k (5.34)

so that the width of con…dence intervals for Xt+k will grow as the square root
of the forecast horizon k:

An Example

For example consider the simplest case where Yt is white noise or Yt = at so
that:

Xt = Xt¡1 + ¹+ Yt: (5.35)

Thus

Xt = Xt¡1 + ¹+ at (5.36)

and so Xt is thus a random walk with drift. In the Beveridge Nelson decompo-
sition Xt = T ¤t ; Y ¤t = 0 and Ã (1) = 1:
By repeated substitution we have:

Xt = X0 + ¹t+ at + at¡1 + at¡2 + at¡3 + ¢ ¢ ¢+ a1: (5.37)

Consequently we have:

@Xt
@at¡k

= 1 (5.38)

for all k:
To calculate forecasts note that:

Xt+k = Xt + ¹k + at+k + at+k¡1 + ¢ ¢ ¢+ at+1 (5.39)
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so that the k step ahead forecast is

Et [Xt+k] = Xt + ¹k: (5.40)

Note that the intercept for the forecast function is Xt; which is a nonstationary
random walk.
Now from (5:39) we have:

V art [Xt+k] = ¾
2k

which then illustrates Theorem 181 since Ã (1) = 1:
Suppose then that: Xt = 6; ¹ = 0:03 and ¾ = 0:04: A con…dence interval

for Xt+k would take the form:

6 + 0:03k § 1:96£ (0:04)
p
k:

The the forecast and con…dence intervals for this DS model are plotted below:

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

0 2 4 6 8 10 12 14k

Forecast Con…dence Intervals

:

Note how the width of the con…dence interval grows with the square root of the
forecast horizon k; re‡ecting the fact that long-run uncertainty is unbounded.
If we plot the width of the con…dence interval against the forecast horizon

then this width grows as the square root of the forecast horizon, and so has
the shape of a neo-classical production function as illustrated by the diagram
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below:

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14k

Con…dence Interval Width

:

5.3.4 Estimating ¹

For DS models the ordinary least squares estimate of ¹ is given by:

¹̂ =
1

T
(¢X1 +¢X2 + ¢ ¢ ¢+¢XT )

=
XT ¡X0

T
:

It can be shown that ¹̂ is asymptotically equivalent to the generalized least
squares estimator of ¹:
We have seen that for TS models that ¹̂ is supere¢cient. For DS models ¹̂

converges to ¹ in the conventional Op
³
T¡

1
2

´
manner. In particular we have:

Theorem 182 If Xt is DS then:

SE [¹̂] ¼ ¾jÃ(1)j
T

1
2

:

Proof. From the Beveridge-Nelson decomposition for XT = T ¤T +Y
¤
T we

have that:

¹̂ =
XT ¡X0

T

=
T ¤T ¡ T ¤0
T

+
Y ¤T ¡ Y ¤0

T
:

Now since:

T ¤T = T
¤
o + ¹T + Ã(1)

TX
t=1

at (5.41)
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it follows that:

¹̂ = ¹+
1

T
Ã(1)

TX
t=1

at +
Y ¤T ¡ Y ¤0
T

:

Since Y ¤t is stationary it follows that: Y ¤
T¡Y ¤

0

T ! 0 in probability so that the
variance is dominated by the second term so that:

V ar [¹̂] ¼ ¾2Ã(1)2

T
: (5.42)

Hence the standard error for ¹̂ is:

SE [¹̂] ¼ ¾jÃ(1)j
T

1
2

: (5.43)

5.4 Summary of Di¤erences
We can summarize the di¤erence between TS and DS models then in the fol-
lowing table:

TS DS
@Xt

@at¡k
= Ãk ! 0

(shocks are transitory)

@Xt

@at¡k
= Ã(1) +O

¡
¿k
¢ 6= 0

(shocks are permanent)

Et [Xt+k] = ®+ ¹ (t+ k) +O
¡
¿k
¢

(intercept is non-random)

Et [Xt+k] = T
¤
t + ¹k +O

¡
¿k
¢

(when Yt = at)
(intercept is random)

V art [Xt+k] · °(0)
(uncertainty is bounded)

V art [Xt+k] = ¾
2jÃ(1)j2k +O ¡¿k¢

(uncertainty is unbounded)

SE [¹̂] ¼
p
12¾jÃ(1)j
T
3
2

¹̂ is supere¢cient

SE [¹̂] ¼ ¾jÃ(1)j
T
1
2

¹̂ is not supere¢cient

:

5.5 Testing for Unit Roots

We have seen that many of the properties of the time series Xt depend critically
on whether it is TS or DS: Since this is a potentially important issue, and since
we often will have no a priori knowledge of whether Xt is TS or DS; it would be
nice if we could let the data inform us about what is the appropriate model. In
what follows we will construct a regression in which if a particular parameter °
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is zero then Xt is DS while if ° < 0 Xt is TS: This then leads to the Augmented
Dickey-Fuller test (or ADF test) for a unit root.
Imagine that Xt is written as a linear trend plus a cycle Yt as:

Xt = ®+ ¹t+ Yt (5.44)

where we assume that Yt follows a (not necessarily stationary) AR(p) process:

Á (B)Yt = at: (5.45)

Whether Xt is DS or TS will depend on Á (B) : In particular:

Theorem 183 Suppose that Á (B) in (5:44) is factored as:

Á (B) = (1¡ r1B) (1¡ r2B) ¢ ¢ ¢ (1¡ rpB)
and suppose that jrj j < jr1j for j = 2; 3; : : : p so that r1 is the largest rj in
absolute value. Then Xt in (5:44) is DS if and only if r1 = 1 while Xt is TS if
and only if jr1j < 1:
Proof. Clearly jr1j < 1 if and only if Yt in (5:44) is stationary which in turn

is equivalent to Xt being TS: If r1 = 1 then Yt is not stationary and hence Xt
is not TS: However, (1¡B)Yt is stationary since:

Á (B) = (1¡B) (1¡ r2B) ¢ ¢ ¢ (1¡ rpB)
= (1¡B) ~Á (B)

where:

~Á (B) = (1¡ r2B) (1¡ r3B) ¢ ¢ ¢ (1¡ rpB) (5.46)

is a stationary AR(p-1) polynomial. Thus (5:45) becomes:

~Á (B) (1¡B)Yt = at
and so (1¡B)Yt is a stationary AR(p-1). Multiplying both sides of (5:44) by
(1¡B) we obtain:

(1¡B)Xt = ¹+ (1¡B)Yt
and so (1¡B)Xt is stationary and hence Xt is DS: To prove the only if part
note that if Xt is DS then (1¡B)Yt must be stationary and hence r1 = 1:
Thus to distinguish between TS and DS models we need only to focus on

r1: This however involves calculating roots of polynomials, a very nonlinear
computation, and hence is not directly amenable to linear regression methods.
We can link r1 to a parameter ° de…ned as follows:

° = ¡Á (1) = ¡ ¡1¡ Á1 ¡ Á2 ¡ ¢ ¢ ¢ ¡ Áp¢ :
We now have:
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Theorem 184 Given the assumptions of Theorem 183 then Xt in (5:44) is DS
if and only if ° = 0

Proof. Since:

° = ¡Á (1) = (1¡ r1) ~Á (1)

where ~Á (B) is de…ned in (5:46) : Since by assumption ~Á (1) 6= 0 it follows that
° = 0 if and only if r1 = 1 so by Theorem 183 Xt is DS if and only if ° = 0:

Theorem 185 Given the assumptions of Theorem 183 then Xt in (5:44) is TS
if and only if ° < 0:

Proof. Since by Theorem 183 Xt is TS if and only if jr1j < 1: Following
the proof of Theorem 87 we conclude that this is equivalent to Á (1) > 0 which
is equivalent to ° < 0:
Using these two results we can test whether Xt is DS or TS if we can set

up a regression where ° is a coe¢cient on some regressor. This is provided by
the next result where ° is the coe¢cient on Xt¡1 :

Theorem 186 The series Xt in (5:44) can be represented as:

~Á (B) (1¡B)Xt = ±o + ±1t+ °Xt¡1 + at
or equivalently as:

¢Xt = ±o + ±1t+ °Xt¡1 +
p¡1X
j=1

~Áj¢Xt¡j + at (5.47)

where:

±o = ° (®¡ ¹) + ¹~Á (1)
±1 = ¡¹°
° = ¡Á (1) :

To perform the augmented Dickey-Fuller test we run the regression in (5:47) ;
obtain the t statistic on °, say ¿°; and test:

Ho : Xt is DS (or ° = 0) versus

Ho : Xt is TS (or ° < 0) .

If ¿° ¼ 0 then this is consistent with Xt being DS while if signi…cantly less than
zero or ¿° ¿ 0 then this would be consistent with Xt being TS: To perform
this test we require a critical value ¿c° for our test statistic ¿° such that if

¿° > ¿
c
° (5.48)
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we accept Ho that Xt is DS while if

¿° < ¿
c
° (5.49)

we reject Ho that Xt is DS and instead conclude that Xt is TS:
Because Xt has a unit root under Ho and is therefore not stationary, it turns

out that ¿° does not have an asymptotic standard normal distribution as one
would usually expect for a t statistic. Instead ¿° has a non-normal distribution
that is skewed to the left. It is however an easy matter to obtain critical values
using computer simulation assuming that one has run the proper regression.
At the 5% signi…cance level the critical value is about:

¿ c° = ¡3:4 (5.50)

which is much less than the ¡1:65 one would use if ¿° were asymptotically
standard normal.

Example 187 If in the regression we obtained a value of °̂ = ¡0:056 with t
statistic ¿° = ¡1:7 then since ¿° > ¡3:4 we would accept Ho that Xt is DS:
Alternatively, if we obtained °̂ = ¡0:25 with t statistic ¿° = ¡4:7 then since
¿° < ¡3:4 we would reject Ho that Xt is DS and conclude that Xt is TS:

Note that under the null that Xt is DS or that ° = 0 so that the Dickey-
Fuller regression in (5:47) reduces to:

¢Xt = ¹~Á (1) +

p¡1X
j=1

~Áj¢Xt¡j + at (5.51)

and there is no trend term in the restricted model.
One might then think it is better to run the regression (5:51) instead of

(5:47) : This would however not be correct since it turns out that the asymptotic
distribution of ¿° would then depend on the unknown ¹ and so it would not be
possible to construct a valid test. It turns out that the only time one should
estimate (5:51) instead of (5:47) is if you knew a priori that ¹ = 0:
In fact all the regressors in (5:51) are needed to insure that ¿° has the correct

asymptotic distribution and does not depend on unknown nuisance parameters.
The constant term ±o is needed to insure that the distribution of ¿° does not
depend on Xo while the lagged values of ¢Xt¡k; or the “augmented” part of the
augmented Dickey-Fuller test, are needed so that the asymptotic distribution of
¿° does not depend on Á (B) : Roughly speaking one needs a su¢cient number
of lagged values of ¢Xt to insure that the error term at can be considered as
being uncorrelated. There are a number of ways of choosing the appropriate
number p; one of which would be to use either the Akaike or Schwarz criteria
on the DS model .
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5.6 Appendix

5.6.1 Proof of Theorem 186

Multiply both sides of

Xt = ®+ ¹t+ Yt

by Á (B) to obtain:

Á (B)Xt = Á (B)®+ ¹Á (B) t+ Á (B)Yt:

From (5:45)

Á (B)Yt = at:

For a constant Bc = c while Bt = t¡ 1 so that:
Á (B)® = ®¡ Á1®¡ Á2®¡ ¢ ¢ ¢ ¡ Áp® (5.52)

= Á (1)®

Á (B) t = t¡
pX
j=1

Áj (t¡ j) (5.53)

= Á (1) t+

pX
j=1

Ájj

= Á (1) t¡ Á0 (1)
where: Á0 (1) is the derivative of Á (B) evaluated at B = 1:
It follows then that (5:44) becomes:

Á (B)Xt = Á (1)®¡ ¹Á0 (1) + ¹Á (1) t+ at: (5.54)

Now if we de…ne ¡ (B) by:

¡ (B) = Á (B)¡ Á (1)B (5.55)

it is clear that ¡(1) = 0 so that (1¡B) can be factored out of ¡ (B) as:
¡(B) = ~Á (B) (1¡B) : (5.56)

Since Á (0) = 1 we have ¡ (0) = 1 and hence ~Á (0) = 1 so that ~Á (B) is a p¡ 1th
degree polynomial with ~Áo = 1 that can be written as:

~Á (B) = 1¡ ~Á1B ¡ ~Á2B2 ¡ ¢ ¢ ¢ ¡ ~Áp¡1Bp¡1: (5.57)

Then since

¡ (B) = Á (B)¡ Á (1)B = ~Á (B) (1¡B)
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we can write Á (B) as:

Á (B) = Á (1)B + ~Á (B) (1¡B) : (5.58)

Finally di¤erentiating Á (B) at setting B = 1 we obtain:

Á0 (1) = Á (1)¡ ~Á (1) : (5.59)

Inserting (5:58) into (5:54) we obtain:³
Á (1)B + ~Á (B) (1¡B)

´
Xt = Á (1)®+ ¹

³
~Á (1)¡ Á (1)

´
+ ¹Á (1) t+ at

(5.60)

or equivalently:

~Á (B) (1¡B)Xt = Á (1)®+ ¹
³
~Á (1)¡ Á (1)

´
+ ¹Á (1) t+ at: (5.61)

5.6.2 Proof of the Beveridge Nelson Decomposition

Let (1¡B)Xt be a stationary time series with Wold representation:
(1¡B)Xt = ¹+ Ã (B)at: (5.62)

where we assume that:

jÃkj < A¿k (5.63)

for some A and ¿ such that

0 · ¿ < 1: (5.64)

In addition we assume that:

Ã (1) 6= 0: (5.65)

Together these assumptions imply that Xt is DS.
We can rewrite the model as:

(1¡B)Xt = ¹+ Ã (1) at + (Ã (B)¡ Ã (1)) at (5.66)

= (1¡B)T ¤t + (1¡B)Y ¤t
where we de…ne the trend T ¤t by:

(1¡B)T ¤t = ¹+ Ã (1) at (5.67)

and the cycle Y ¤t by:

Y ¤t = Ã
¤ (B)at (5.68)
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where:

Ã¤ (B) =
(Ã (B)¡ Ã (1))

1¡B : (5.69)

Cancelling (1¡B) from both sides of (5:66) yields:

Xt = T
¤
t + Y

¤
t (5.70)

which is the Beveridge-Nelson decomposition. What remains to be shown is
that T ¤t is a random walk with drift while Y ¤t is stationary.
It is easy to show that T ¤t follows a random walk with drift ¹ since from it’s

de…nition we have:

T ¤t = ¹+ T
¤
t¡1 + Ã (1) at: (5.71)

To show that Y ¤t is stationary note that from (5:69) that:

(1¡B)Ã¤ (B) = Ã (B)¡ Ã (1) (5.72)

so that equating powers of Bk on both sides of:

(1¡B)
0@ 1X
j=0

Ã¤jB
j

1A =
1X
j=0

ÃjB
j ¡ Ã (1) (5.73)

we obtain:

Ã¤k ¡ Ã¤k¡1 = Ãk (5.74)

Ã¤0 = 1¡ Ã (1) = ¡
1X
j=1

Ãj :

From this we conclude that:

Ã¤k = ¡
1X

j=k+1

Ãj : (5.75)

Now using the assumption that Ãk = O
¡
¿k
¢
or jÃkj · A¿k or has the short-

memory property, we show Ã¤k = O
¡
¿k
¢
or jÃ¤kj · D¿k or Ã¤k also has the

short-memory property.
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We have:

jÃ¤kj =

¯̄̄̄
¯̄ 1X
j=k+1

Ãj

¯̄̄̄
¯̄ (5.76)

·
1X

j=k+1

A¿ j

= A
1X

j=k+1

¿ j

=
A¿k+1

1¡ ¿
= D¿k

where:

D =
A¿

1¡ ¿ : (5.77)

We therefore conclude from Theorem 58 that:

Y ¤t = Ã
¤ (B)at (5.78)

is a stationary time series with a …nite variance. This completes the proof of
the Beveridge-Nelson decomposition.



Chapter 6

Multivariate Time Series

6.1 VARMA(p,q) Models

6.1.1 Introduction

In economics we are often interested in the relationship between di¤erent time
series. For example we might be interested in the relationship between Y1t or
national income: GNPt; Y2t the money supply Ms

t and Y3t the rate of interest
Rt (all variables detrended say using either TS or DS detrending).
Consider then a straightforward generalization of a scalar ARMA(p,q): Let

Yt be an n£ 1 vector of time series and at be an n£ 1 vector of i:i:d: shocks so
that:

Yt =

26664
Y1t
Y2t
...
Ynt

37775 ; at =
26664
a1t
a2t
...
ant

37775 :
For example if we are interested in GNP; the money supply and interest rates
then n = 3 and

Yt =

24 Y1t
Y2t
Y3t

35 =
24 GNPt

Ms
t

Rt

35 ; at =
24 a1t
a2t
a3t

35
so that a1t would then be the GNP shock, a2t the money shock and a3t the
interest rate shock.
We can then have a vector ARMA(p,q) process or VARMA(p,q) de…ned as:

De…nition 188 VARMA(p,q): Yt follows a VARMA(p,q) process if:

Yt =

pX
j=1

ÁjYt¡j +
qX
j=1

µjat¡j + at (6.1)

139
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where at is an n£ 1 vector of i:i:d: shocks with:
at » i:i:n(0;­)

where ­ is n £ n symmetric and positive de…nite while Áj and µj are n £ n
matrices.

The density of at is given by:

p (at) = (2¼)
¡n

2 j­j¡ 1
2 exp

µ
¡1
2
aTt ­

¡1at

¶
: (6.2)

where the inverse of ­ exists since ­ is positive de…nite. We can write ­ as:1

­
n£n =

26664
!11 !12 : : : !1n
!12 !22 : : : !2n
...

...
. . .

...
!1n !2n : : : !nn

37775 (6.3)

so that:

V ar [ait] = !ii (6.4)

Cov [ait; ajt] = !ij :

Thus !ii is the variance of the ith shock while !ij is the contemporaneous
covariance between the ith and the jth shock. Thus although at is independent
across time, we allow for contemporaneous correlation between the shocks at
time t:
We can write the VARMA(p,q) model more compactly as:

Á (B)Yt = µ (B)at (6.5)

where Á (B) and µ (B) are matrix polynomials given by:

Á (B) = I ¡ Á1B ¡ Á2B2 ¡ ¢ ¢ ¢ ¡ ÁpBp (6.6)

µ (B) = I + µ1B + µ2B
2 + ¢ ¢ ¢+ µqBq:

Note that B can be treated as a scalar when manipulating Á (B) and µ (B).
The (k; l) elements of the square matrices Áj and µj will be denoted by Á

j
kl

and µjkl so that:

Áj =

26664
Áj11 Áj12 : : : Áj1n
Áj21 Áj22 : : : Áj2n
...

...
. . .

...
Ájn1 Ájn2 : : : Ájnn

37775 ; µj =
26664
µj11 µj12 : : : µj1n
µj21 µj22 : : : µj2n
...

...
. . .

...
µjn1 µjn2 : : : µjnn

37775 : (6.7)

We can also de…ne the vector analogues of AR(p)’s and MA(q)’s as:
1Note that for the univariate case (n = 1) we had: ­ = ¾2: It might therefore be natural

to use § rather than ­ . We use ­ rather than § to avoid a con‡ict with the summation
notation

Pn
i=1 :
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De…nition 189 VAR(p): Yt follows a VAR(p) process if:

Yt =

pX
j=1

ÁjYt¡j + at: (6.8)

orÁ (B)Yt = at:

De…nition 190 VMA(q): Yt follows a VMA(q) process if:

Yt =

qX
j=1

µjat¡j + at

or Yt = µ (B)at:

An Example

For example if n = 2 then Y1t might be GNP while Y2t might be money (ap-
propriately detrended by either DS or TS ). Then a VARMA(2; 1) with n = 2
components in Yt would be:

Yt = Á1Yt¡1 + Á2Yt¡2 + at + µ1at¡1 (6.9)

or unpacking the matrix notation:·
Y1t
Y2t

¸
=

·
Á111 Á112
Á121 Á122

¸ ·
Y1t¡1
Y2t¡1

¸
+

·
Á211 Á212
Á221 Á222

¸ ·
Y1t¡2
Y2t¡2

¸
(6.10)

+

·
a1t
a2t

¸
+

·
µ111 µ112
µ121 µ122

¸·
a1t¡1
a2t¡1

¸
or multiplying out the matrices:

Y1t = Á111Y1t¡1 + Á
1
12Y2t¡1 + Á

2
11Y1t¡2 + Á

2
12Y2t¡2 + a1t + µ

1
11a1t¡1 + µ

1
12a2t¡1

Y1t = Á121Y1t¡1 + Á
1
22Y2t¡1 + Á

2
21Y1t¡2 + Á

2
22Y2t¡2 + a2t + µ

1
21a1t¡1 + µ

1
22a2t¡1:

We then have lagged GNP and money up to lag 2 in both the GNP and the
money equations as well as lagged GNP shocks a1t¡1 and money shocks a2t¡1
in both equations. Furthermore if !12 6= 0 there will be a contemporaneous
correlation between the GNP shock a1t and the money shock a2t:
Using the notation in (6:6) we can write this VARMA(2,1) as: Á (B)Yt =

µ (B)at where:

Á (B) =

·
1 0
0 1

¸
¡
·
Á111 Á112
Á121 Á122

¸
B ¡

·
Á211 Á212
Á221 Á222

¸
B2 (6.11)

µ (B) =

·
1 0
0 1

¸
+

·
µ111 µ112
µ121 µ122

¸
B:
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6.1.2 Stationarity

We now investigate the conditions which determine whether a V ARMA(p; q)
process is stationary. As you might expect stationarity depends on Á (B) : There
is a complication however in that Á (B) is a matrix polynomial and not a scalar
polynomial. The appropriate generalization involves the roots of the determi-
nant of Á (B) de…ned as:

De…nition 191 De…ne the scalar polynomial ® (B) as:

® (B) = det [Á (B)] (6.12)

which is a scalar polynomial of order p¤ = np so that:

® (B) = 1 + ®1B + ®2B
2 + ¢ ¢ ¢+ ®p¤Bp¤

where ®i is a scalar.

We can always rewrite a VARMA(p,q) process so that it has a scalar autore-
gressive polynomial ® (B) as:

Theorem 192 A V ARMA(p; q) process: Á (B)Yt = µ (B)at can always be
written as:

® (B)Yt = ~µ (B)at (6.13)

where ® (B) is given in (6:12) and ~µ (B)at is a …nite order vector moving average
process of order q + p (n¡ 1) :
Proof. For any square matrix A

adj [A] A = A adj [A] = det [A] I (6.14)

where adj [A] is the adjoint matrix of A: Now if we multiply both sides of
Á (B)Yt = µ (B)at with adj [Á (B)] we obtain:

® (B)Yt = adj [Á (B)] µ (B)at: (6.15)

Since adj [Á (B)] involves taking determinants of sub-matrices of Á (B) of order
(n¡ 1) £ (n¡ 1) ; it is a …nite order matrix polynomial which can be written
as:

adj [Á (B)] =

q¤X
j=0

~µjB
j : (6.16)

and where q¤ = p(n¡ 1): Therefore
~µ (B) = adj [Á (B)] µ (B)

is a …nite order matrix polynomial of order q + q¤ = q + p (n¡ 1) :
An implication of this result is that
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Corollary 193 If Yit is an element of a vector VARMA(p,q) process then Yit
is a scalar ARMA(pn,q+p(n-1)).

Example 194 If Yt is an VARMA(3,1) and Yit is an element of Yt with n = 10
time series in Yt; then Yit will be an ARMA(30,28) model since pn = 30 and
q + p(n¡ 1) = 28:
Since the right-hand side of (6:13) is a …nite order vector moving average, it

is always stationary. We therefore have:

Theorem 195 A necessary condition for a V ARMA(p; q) process to be station-
ary is that the scalar polynomial ® (B) have roots all greater than 1 in absolute
value or:

det [Á (B)] = 0 =) jBj > 1:

6.1.3 An Example

To see how this works consider a V AR (1) with n = 2:·
Y1t
Y2t

¸
=

·
a1t
a2t

¸
+

·
Á11 Á12
Á21 Á22

¸ ·
Y1t¡1
Y2t¡1

¸
:

Since:

Á (B) =

·
1 0
0 1

¸
¡
·
Á11 Á12
Á21 Á22

¸
B (6.17)

=

·
1¡ Á11B ¡Á12B
¡Á21B 1¡ Á22B

¸
we have:

~µ (B) = adj [Á (B)] (6.18)

=

·
1¡ Á22B Á12B
Á21B 1¡ Á11B

¸
=

·
1 0
0 1

¸
+

· ¡Á22 Á12
Á21 ¡Á11

¸
| {z }

~µ1

B

so that q¤ = 1:
We can also …nd the scalar polynomial ® (B) as:

® (B) = det [Á (B)]

= det

·
1¡ Á11B ¡Á12B
¡Á21B 1¡ Á22B

¸
= (1¡ Á11B) (1¡ Á22B)¡ Á12Á21B2
= 1¡ (Á11 + Á22)| {z }

®1

B ¡ (Á12Á21 ¡ Á11Á22)| {z }
®2

B2
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so that p¤ = 2.
We can thus rewrite the V AR (1) model as:

® (B)Yt = ~µ (B)at (6.19)

or:

® (B)

·
Y1t
Y2t

¸
=

µ·
1 0
0 1

¸
+

·
Á22 Á12
Á21 Á11

¸
B

¶·
a1t
a2t

¸
(6.20)

or as:

® (B)Y1t = a1t + Á22a1t¡1 + Á12a2t¡1
® (B)Y2t = a2t + Á21a1t¡1 + Á11a2t¡1:

The right-hand side of both equations is a scalar MA(1) so that both Y1t and
Y2t follow scalar ARMA(2,1) processes.
If then we have:

Y1t = 0:5Y1t¡1 + 0:1Y2t¡1 + a1t (6.21)

Y2t = 0:2Y1t¡1 + 0:3Y2t¡1 + a2t

then:

® (B) = det [Á (B)]

= det

·
1¡ 0:5B ¡0:1B
¡0:2B 1¡ 0:3B

¸
= 1¡ 0:8B + 0:13B2

and so p¤ = 2 here. The two roots of ® (B) are given by:

B1 =
0:8 +

q
(¡0:8)2 ¡ 4 (0:13)
2 (0:13)

= 4:41 (6.22)

B2 =
0:8¡

q
(¡0:8)2 ¡ 4 (0:13)
2 (0:13)

= 1:74:

Since jB1j = 4:41 > 1 and jB2j = 1:74 > 1 this process is stationary.

6.1.4 Wold Representation

As with univariate time series we have the Wold representation:

Theorem 196 Wold Representation: Every stationary vector time series
Yt with E[Yt] = 0 has an in…nite moving average representation:

Yt = at + Ã1at¡1 + Ã2at¡2 + Ã3at¡3 + ¢ ¢ ¢ (6.23)

= Ã (B)at
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where at is an uncorrelated series with E [at] = 0,

V ar [at] = E
£
ata

T
t

¤
= ­

and:

Ã (B) = 1 + Ã1B + Ã2B
2 + Ã3B

3 + ¢ ¢ ¢ :
We can calculate the Wold representation for a VAR(p) just as with an

AR(p) as follows:

Theorem 197 Recursive Calculation of Ãk: For a stationary VAR(p) pro-
cess Á (B)Yt = at the Wold representation can be recursively calculated as:

Ãk = Á1Ãk¡1 + Á2Ãk¡2 + ¢ ¢ ¢+ ÁpÃk¡p
with starting values:

Ã0 = I; Ãk = 0 for k < 0:

It can then be shown that:

Theorem 198 For an VAR(p) the in…nite moving average weights given by the
n£ n matrix: Ãk can be expressed as:

Ãk = A1r
k
1 +A2r

k
2 + ¢ ¢ ¢+Ap¤rkp¤

where: r¡1i is one of the p¤roots of ® (B) = det [Á (B)] and Ai are n£n matrices.

6.1.5 VAR(1) as a General Special Case

It is easy to derive the Wold representation for the VAR(1) model as

Yt = ÁYt¡1 + at

= at + Áat¡1 + Á2Yt¡2

and continuing this process we have:

Yt = at + Áat¡1 + Á2at¡2 + Á3at¡3 + ¢ ¢ ¢
so that:

Theorem 199 For an VAR(1) process:

Ãk = Á
k:

Stationarity requires that Ãk ! 0 as k !1: If we write Á as:
Á = C¤C¡1

where ¤ is a diagonal matrix with the eigenvalues of Á along the diagonal then
it is easily veri…ed that:

Ák = C¤kC¡1:

Therefore Ák ! 0 is equivalent to ¤k ! 0 and so we have:
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Theorem 200 A VAR(1) process is stationary if and only if all the eigenvalues
of Á are less than 1 in absolute value.

This result actually provides us with an alternative criterion for stationarity
for all VAR(p) processes (and indeed of any VARMA(p,q) process). This is
because of the following result:

Theorem 201 Any VARMA(p) process can be represented by an VAR(1) pro-
cess.

Proof. We will only prove this for a VAR(p) process. Suppose Yt follows a
VAR(p) process so that:

Yt =

pX
j=1

ÁjYt¡j + at:

De…ne ~Yt; ~Á and ~at as:

~Yt =

2666664
Yt
Yt¡1
Yt¡2
...

Yt¡p+1

3777775 ; ~Á =
2666664
Á1 Á2 Á3 ¢ ¢ ¢ Áp
I 0 0 ¢ ¢ ¢ 0
0 I 0 ¢ ¢ ¢ 0
...

. . .
. . .

. . .
...

0 ¢ ¢ ¢ 0 I 0

3777775 ; ~at =
2666664
at
0
0
...
0

3777775
then the VAR(p) can be written as:2666664

Yt
Yt¡1
Yt¡2
...

Yt¡p+1

3777775 =
2666664
Á1 Á2 Á3 ¢ ¢ ¢ Áp
I 0 0 ¢ ¢ ¢ 0
0 I 0 ¢ ¢ ¢ 0
...

. . .
. . .

. . .
...

0 ¢ ¢ ¢ 0 I 0

3777775

2666664
Yt¡1
Yt¡2
Yt¡3
...

Yt¡p

3777775+
2666664
at
0
0
...
0

3777775
or as ~Yt = ~Á~Yt¡1 + ~at:

Remark 202 The VAR(1) representation of a time series model is called the
state space representation. The state space representation in turn is the basis
for the Kalman …lter, a very powerful algorithm which can be used, for example,
to obtain the exact likelihood of any VARMA(p,q) process and hence to obtain
estimates, to handle measurement error and data with di¤erent timing inter-
vals (for example monthly and quarterly data). See Harvey’s book Forecasting,
Structural Time Series Models and the Kalman Filter for a good introduction
to this topic.

Since we have a stationarity condition for a VAR(1) in Theorem 200 and
since any VAR(p) can be written as a VAR(1) we have:
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Theorem 203 A VAR(p) process is stationary only if all the eigenvalues of ~Á
are less than 1 in absolute value.

Theorem 204 The eigenvalues of ~Á are the inverse of the roots of ® (B) : In
particular if ¸ is an eigenvalue of ~Á if and only if:

®
¡
¸¡1

¢
= 0:

6.1.6 Some Examples

Example 1

Consider a scalar AR(2) process:

Yt = 0:6Yt¡1 + 0:2Yt¡2 + at: (6.24)

This can be written as a VAR(1) as:·
Yt
Yt¡1

¸
=

·
0:6 0:2
1 0

¸ ·
Yt¡1
Yt¡2

¸
+

·
at
0

¸
:

We can check for stationarity by calculating the eigenvalues of

~Á =

·
0:6 0:2
1 0

¸
or by …nding the roots of

det

··
0:6 0:2
1 0

¸
¡ ¸

·
1 0
0 1

¸¸
= 0:

Since these eigenvalues are ¸1 = 0:838 and ¸2 = ¡0:238 and both are less than
1 in absolute value, we conclude that the process is stationary.

Example 2

Suppose now that we have V AR(2)

Yt = Á1Yt¡1 + Á2Yt¡2 + at

with n = 2 and suppose further that: Á1 and Á2 are given by:

Á1 =

·
0:5 ¡0:1
0:5 0:3

¸
; Á2 =

·
0:2 0:3
0:1 0:2

¸
:

First let us check for stationarity by calculating the roots of ® (B) given by:

® (B) = det

µ·
1 0
0 1

¸
¡B

·
0:5 ¡0:1
0:5 0:3

¸
¡B2

·
0:2 0:3
0:1 0:2

¸¶
= 1¡ 0:8B ¡ 0:2B2 + :02B3 + :01B4:
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Using the computer we …nd that the four roots of ® (B) are:

B1 = ¡3:9018 + 2:2711i; B2 = ¡3:9018¡ 2:2711i
B3 = 1:0272; B4 = 4:7763:

Since all roots are greater than 1 in absolute value2 we conclude that the esti-
mated model is stationary.
Alternatively we can check for stationarity by …nding the eigenvalues of the

matrix:

~Á =

·
Á1 Á2
I 0

¸
which here is given by:

~Á =

2664
0:5 ¡0:1
0:5 0:3

0:2 0:3
0:1 0:2

1 0
0 1

0 0
0 0

3775 :
Using the computer we …nd the eigenvalues are:

¸1 = ¡0:19143 + 0:11143i; ¸2 = ¡0:19143¡ 0:11143i
¸3 = 0:9735; ¸4 = 0:20937:

Since all eigenvalues are less than 1 in absolute value we conclude the process
is stationary.

6.2 VAR(p) Estimation

6.2.1 Linear Regression of VAR(p) Models

In general estimating and identifying vector VARMA(p,q) with a moving av-
erage component (q > 0) processes is quite di¢cult. Most applied work deals
with the VAR(p) model:

Yt =

pX
j=1

ÁjYt¡j + at (6.25)

which can be written in scalar notation as:

Yit =

pX
k=1

nX
j=1

ÁkijYjt¡k + ait , i = 1; 2; : : : n: (6.26)

2Note that for the two complex roots that:

jB1j = jB2j = j¡3:901 8§ 2: 271 1ij = 4:5146 > 1
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Just as with an AR(p), a VAR(p) can be estimated by ordinary least squares
where the lagged series Yjt¡k act as regressors.
For example with n = 2 variables (say GNP and money appropriately de-

trended) and p = 2 lags we have:

GNP : Y1t = Á
1
11Y1t¡1 + Á

1
12Y2t¡1| {z }

Lag 1 GNP and Money

+ Á211Y1t¡2 + Á
2
12Y2t¡2| {z }

Lag 2 GNP and Money

+ a1t(6.27)

Money : Y2t = Á
1
21Y1t¡1 + Á

1
22Y2t¡1| {z }

Lag 1 GNP and Money

+ Á221Y1t¡2 + Á
2
22Y2t¡2| {z }

Lag 2 GNP and Money

+ a2t:

Instead of grouping the variables on the right-hand side by lag, we could
group them by variable (e.g. GNP and Money). This correspond to reversing
the double summation and writing:

Yit =
nX
j=1

pX
k=1

ÁkijYjt¡k + ait i = 1; 2; : : : n: (6.28)

In the above example this would mean that we write:

GNP : Y1t = Á
1
11Y1t¡1 + Á

2
11Y1t¡2| {z }

GNP: all lags

+ Á112Y2t¡1 + Á
2
12Y2t¡2| {z }

Money: all lags

+ a1t (6.29)

Money : Y2t = Á
1
21Y1t¡1 + Á

2
21Y1t¡2| {z }

GNP: all lags

+ Á122Y2t¡1 + Á
2
22Y2t¡2| {z }

Money: all lags

+ a2t:

Since a1t and a2t are uncorrelated with lagged GNP and lagged money, we can
estimate this model by running ordinary least squares on the GNP equation
and on the money equation. As long as the VAR is stationary this will lead
to consistent estimates with the usual asymptotic properties. The complication
is that the error term in the GNP equation a1t may be contemporaneously
correlated (with a covariance !12) with the error term in the money equation
a2t: The question is could we obtain more e¢cient estimates if we estimated
both the GNP and money equation together as a system.
Before answering this question let us …rst treat the general case where instead

of 2 variables we have n variables in the VAR. Taking the transpose of both sides
of (6:25) we obtain:

Y Tt =

pX
k=1

Y Tt¡kÁ
T
k + a

T
t (6.30)

=
£
Y Tt¡1 Y

T
t¡2 Y

T
t¡3 ¢ ¢ ¢Y Tt¡p

¤
26664
ÁT1
ÁT2
...
ÁTp

37775+ aTt
= XT

t Á+ at
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where

Xt
np£1

=

2666664
Yt¡1
Yt¡2
Yt¡3
...

Yt¡p

3777775 and Á
np£p

=

2666664
ÁT1
ÁT2
ÁT3
...
ÁTp

3777775 : (6.31)

We can think of Xt as a vector of regressors and Á as a matrix of coe¢cients to
estimate. In the example in (6:27) we would have:

Xt =

2664
Y1t¡1
Y2t¡1
Y1t¡2
Y2t¡2

3775 ; Á =
2664
Á111 Á121
Á112 Á122
Á211 Á221
Á212 Á222

3775 : (6.32)

If we now de…ne:

Y
T£n

=

2666664
Y T1
Y T2
Y T3
...
Y TT

3777775 , X
T£np

=

2666664
XT
1

XT
2

XT
3
...
XT
T

3777775 , A
T£n

=

2666664
aT1
aT2
aT3
...
aTT

3777775 (6.33)

then we can rewrite the VAR(p) model in something resembling the linear re-
gression form (i.e., Y = X¯ + e) as:

Y = XÁ+A: (6.34)

This is not a simple linear regression since Y , Á; and A are not vectors but
matrices. We can however convert it into a system of regression models.
Let yi = [Yit] be the ith column of Y which will be a T £ 1 vector of the ith

variable Yit (e.g., money if i = 2 in (6:27)) and let the T £ 1 vector ai be the
ith column of A, (e.g., the money shocks if i = 2 in (6:27) ) so that:

yi
T£1

=

2666664
Yi1
Yi2
Yi3
...
YiT

3777775 ; aiT£1
=

2666664
ai1
ai2
ai3
...
aiT

3777775 :
Now let the p£1 vector ¯i be the ith column of Á: If for example i = 2 in (6:27)
then ¯2 would contain all coe¢cients in the money equation or:

¯2 =

2664
Á121
Á122
Á221
Á222

3775 :
We have:
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Theorem 205 The VAR(p) model in (6:34) can be expressed as n regression
models as:

yi = X¯i + ai; for i = 1; 2; : : : n (6.35)

where

ai » N [0; !iiI]
and

Cov
£
ai; aj

¤
= E

h
ai
¡
aj
¢T i

= !ijI: (6.36)

Remark 206 Note that each regression has the same matrix of regressors X
and that the error terms in the n regressions are contemporaneously correlated
from (6:36) : Thus (6:35) is a system of seemingly unrelated regressions called
the SUR model.

The ordinary least squares estimator of ¯i is then:

^̄i =
¡
XTX

¢¡1
XTyi (6.37)

with asymptotic distribution

p
T
³
^̄i ¡ ¯i

´
a» N

"
0; !ii

µ
plim
T!1

XTX

T

¶¡1#
: (6.38)

Thus it is legitimate to base hypothesis tests and con…dence intervals on the
estimated variance-covariance matrix:

^
V ar

h
^̄i
i
= !̂ii

¡
XTX

¢¡1
(6.39)

calculated by a regression packages. Furthermore if you wanted to test cross-
equation restrictions then you could use:

^
Cov

h
^̄i; ^̄

j
i
= !̂ij

¡
XTX

¢¡1
where !̂ij is a consistent estimator of !ij :

6.2.2 Proof that OLS is E¢cient

Ordinarily with a SUR model applying ordinary least squares to each equa-
tion individually results in ine¢cient estimates. There is however a striking
result that when the regressors in each equation are identical then ordinary
least squares and generalized least squares are numerically identical and so OLS
is in fact e¢cient. Since for the VAR model the regressor matrix X in (6:37)
is the same for all equations, this result applies. We will now proceed with the
proof of this result, which is instructive because it illustrates the use of many of
the mathematical tools that are important for multivariate analysis. We begin
then with some preliminary mathematical results.
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Some Mathematical Results

We often wish to write the elements of a matrix as a vector. If A is an m£ n
vector then V ec [A] is a mn£1 column vector obtained by stacking the columns
of A on top of each other. For example if

A =

·
1 2 3
4 5 6

¸
then

V ec [A] =

26666664
1
4
2
5
3
6

37777775 : (6.40)

The other important concept we will need is the Kronecker product. If A is
m£n and B is r£ s then the Kronecker product: A­B is an mr£ ns matrix
obtained by multiplying each element of A = [aij ] by B; that is

A­B = [aijB] (6.41)

For example if:

A =

·
1 2
3 4

¸
, B =

·
5 6
7 8

¸
(6.42)

then

A­B =

266664
1

·
5 6
7 8

¸
2

·
5 6
7 8

¸

3

·
5 6
7 8

¸
4

·
5 6
7 8

¸
377775 =

2664
5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32

3775 (6.43)

We then have the following results:

Theorem 207

A­ (B +C) = A­B +A­C
(A+B)­C = A­C +B ­C
(A­B)T = AT ­BT

(A­B) (C ­D) = AC ­BD
(A­B)¡1 = A¡1 ­B¡1
V ec [A+B] = V ec [A] + V ec [B]

V ec [AB] = (I ­A)V ec [B]
V ec [BC] =

¡
CT ­ I¢V ec [B]

V ec [ABC] =
¡
CT ­A¢V ec [B] :
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Applying the V ec [ ] operator to both sides of (6:34) and using the last result
in Theorem 207 on

Y = XÁ+A (6.44)

we obtain:

Theorem 208 A VAR(p) model: Á (B)Yt = at with T observations can be
expressed as:

y = (I ­X)¯ + a (6.45)

where

y = V ec [Y ] ; ¯ = V ec [Á] ; a = V ec [A] : (6.46)

We have:

Theorem 209 The error term a has a variance-covariance matrix given by:

E
£
aaT

¤
= ­­ I (6.47)

where I here is a T £ T identity matrix.
Proof. Since by de…nition:

a =

26664
a1

a2

...
an

37775
and using (6:36) we obtain:

E
£
aaT

¤
= E

266664
a1
¡
a1
¢T

a1
¡
a2
¢T ¢ ¢ ¢ a1 (an)T

a1
¡
a1
¢T

a1
¡
a1
¢T ¢ ¢ ¢ a1

¡
a1
¢T

...
...

. . .
...

an
¡
a1
¢T

an
¡
a2
¢T ¢ ¢ ¢ an (an)T

377775

=

26664
!11I !12I ¢ ¢ ¢ !1nI
!12I !22I ¢ ¢ ¢ !2nI
...

...
. . .

...
!1nI !2nI ¢ ¢ ¢ !nnI

37775
= ­­ I:

First consider estimating ¯ =
£
¯i
¤
by the least squares estimator obtained

by stacking ^̄
i
in a vector or:

^̄ =
h
^̄i
i
=
h¡
XTX

¢¡1
XT yi

i
:
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This is equivalent to using (6:45) as a regression model with regression matrix
(I ­X) but ignoring the fact the variance covariance matrix of a is not of the
form ¾2I but is ­­ I by Theorem 209 . We therefore have:

^̄ =
³
(I ­X)T (I ­X)

´¡1
(I ­X)T y (6.48)

=
³
I ­ ¡XTX

¢¡1
XT

´
y:

Now consider using the generalized least squares estimator ~̄ where we use
the fact that the variance covariance matrix of a is ­­ I and so:

~̄ =
³
(I ­X)T (­­ I)¡1 (I ­X)

´¡1
(I ­X) (­­ I)¡1 y: (6.49)

We are now in a position to show that:

Theorem 210 For the VAR(p) model ordinary and generalized least squares
are identical or:

~̄ = ^̄

Proof. Using Theorem 207 we have:

~̄ =
¡¡
I ­XT

¢ ¡
­¡1 ­ I¢ (I ­X)¢¡1 (I ­X)T (­­ I)¡1 y

=
¡
­¡1 ­ ¡XTX

¢¢¡1 ¡
­¡1 ­XT

¢
y

=
³
­­ ¡XTX

¢¡1´ ¡
­¡1 ­XT

¢
y

=
³
I ­ ¡XTX

¢¡1
XT

´
y

= ^̄:

Note that since ¯ = V ec [Á] we have:

V ec
h
Á̂
i
=

³
I ­ ¡XTX

¢¡1
XT

´
y (6.50)

=
³
I ­ ¡XTX

¢¡1
XT

´
V ec [Y ]

= V ec
h¡
XTX

¢¡1
XTY

i
from which it follows that:

Theorem 211 The least squares estimator of Á is:

Á̂ =
¡
XTX

¢¡1
XTY: (6.51)

To estimate ­ we use:
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Proposition 212 A consistent estimator of ­ is

­̂ =
ÂT Â

T
;

where:

Â = Y ¡XÁ̂:

6.2.3 Maximum Likelihood

The log-likelihood for a VAR(p) model is given by:

l (Á;­) = ¡T
2
ln j­j ¡ 1

2

TX
t=1

at [Á]
T ­¡1at [Á] (6.52)

where j­j ´ det [­] and

at [Á] = Yt ¡
pX
j=1

ÁjYt¡j : (6.53)

Since GLS is the ML estimate under normality, and since we have shown that
GLS and OLS are identical, it follows that

Theorem 213 For a VAR(p) model the maximum likelihood estimate of Á is
the least squares estimator:

Á̂ML = Á̂ =
¡
XTX

¢¡1
XTY (6.54)

Now de…ne the n£ 1 vector of least squares residuals ât as:

ât = at
h
Á̂
i
= Yt ¡

pX
j=1

Á̂jYt¡j : (6.55)

It then can be shown that

Proposition 214 The ML estimate of ­ is given by

­̂ =
1

T

TX
t=1

âtâ
T
t =

ÂT Â

T
(6.56)

If !̂ij is the i; jth of ­̂ then this is equivalent to:

!̂ij =
1

T

TX
t=1

âitâjt (6.57)
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where âit is the ith element of ât: Thus !̂ij is the sample covariance between
the least squares residuals in the ith and jth equations.
As before we will require the maximized log-likelihood:

l¤ ´ l
³
Á̂; ­̂

´
: (6.58)

We have:

Theorem 215 For a VAR(p) model the maximized log-likelihood is given by:

l¤ = ¡T
2
ln
¯̄̄
­̂
¯̄̄
¡ Tn

2
:

Proof. Using the fact that the trace of a scalar is identical to that scalar it
follows that:

l¤ = ¡T
2
ln
¯̄̄
­̂
¯̄̄
¡ 1
2

TX
t=1

âTt ­̂
¡1ât (6.59)

= ¡T
2
ln
¯̄̄
­̂
¯̄̄
¡ 1
2

TX
t=1

Tr
h
âTt ­̂

¡1ât
i
:

Using the fact that Tr [AB] = Tr [BA] we have

l¤ = ¡T
2
ln
¯̄̄
­̂
¯̄̄
¡ 1
2

TX
t=1

Tr
h
âTt ­̂

¡1ât
i

= ¡T
2
ln
¯̄̄
­̂
¯̄̄
¡ 1
2

TX
t=1

Tr
h
­̂¡1âtâTt

i

= ¡T
2
ln
¯̄̄
­̂
¯̄̄
¡ 1
2
Tr

266664­̂¡1
TX
t=1

¡
âtâ

T
t

¢
| {z }

=T ­̂

377775
= ¡T

2
ln
¯̄̄
­̂
¯̄̄
¡ T
2
Tr
h
­̂¡1­̂

i
= ¡T

2
ln
¯̄̄
­̂
¯̄̄
¡ T
2
Tr

·
I

n£n

¸
= ¡T

2
ln
¯̄̄
­̂
¯̄̄
¡ Tn

2

6.2.4 Hypothesis Testing

We can use the formula for l¤ to construct likelihood ratio test of restrictions
on a V AR(p) model. Given

H0 : A Set of Restrictions versus

H1 : The Restrictions do not Hold
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suppose we obtain the restricted log-likelihood:

l¤R = ¡
T

2
ln
¯̄̄
­̂R

¯̄̄
¡ Tn

2
(6.60)

where ­̂R is the estimator of ­ for the restricted model, and the unrestricted
log-likelihood:

l¤U = ¡
T

2
ln
¯̄̄
­̂U

¯̄̄
¡ Tn

2
(6.61)

where ­̂U is the estimator of ­ for the unrestricted model.
Under H0 we have the likelihood ratio statistic:

¤ = ¡2 (l¤R ¡ l¤U ) = T
³
ln
¯̄̄
­̂R

¯̄̄
¡ ln

¯̄̄
­̂U

¯̄̄´
(6.62)

so that:

¤
a» Â2r (6.63)

where r is the number of restrictions under Ho:
To be more concrete suppose we are testing

H0 : Yt » V AR(p) versus

H1 : Yt » V AR(p+ s):

Then it follows that the likelihood ratio test statistic is:

¤ = T
³
ln
¯̄̄
­̂p

¯̄̄
¡ ln

¯̄̄
­̂p+s

¯̄̄´
(6.64)

where ­̂p is the estimate of ­ for the V AR(p) model and ­̂p+s is the estimate
of ­ for the V AR(p+ s) model. Under H0 we have

¤
a» Â2r (6.65)

where:

r = n2s: (6.66)

Note that the number of restrictions is n2s and not s as you might …rst
think. This is because H0 is

H0 : Áp+1 = Áp+2 = ¢ ¢ ¢ = Áp+s = 0:

Recall that Áj is an n£ n matrix so that each Áp+j has n2 parameters.
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6.2.5 Estimating p

We can also use the formula for l¤ to derive the Akaike and Schwarz criteria for
a V AR(k) and use this in turn to estimate p:
The Akaike Information Criterion AIC(K) for a VAR(k) is given by:

AIC(k) = ln
¯̄̄
­̂k

¯̄̄
+
2n2k

T
k = 0; 1; 2; : : : pmax: (6.67)

We can then estimate p by p̂ the value of k which minimizes AIC(k): As before
p̂ tends to choose overly large values of p: We have:

Proposition 216 If p̂ minimizes AIC (k) then as T !1
plim p̂ ¸ p (6.68)

As before the Schwarz criterion SC(k) given by:

SC(k) = ln
¯̄̄
­̂k

¯̄̄
+
ln(T )n2k

T

remedies this defect of the AIC in that it picks the correct value of p asymp-
totically or

Proposition 217 If p̂ minimizes SC(k) then as T !1
plim p̂ = p (6.69)

6.3 Granger Causality

6.3.1 De…ning Causality

Philosophers have long been arguing about the nature of causality and causality
plays an important role in economic thought.
When estimating regressions it is easy to detect relations which re‡ect cor-

relation and not causation. For example if we were to regress sun tan lotion
sales on ice cream sale we would likely obtain a signi…cant coe¢cient on the ice
scream regressor. This would presumable re‡ect a correlation between the sales
of ice cream and suntan lotion, but we would not want to conclude from this
that ice cream consumption causes people to buy suntan lotion. Rather there
is a third causal factor at work, weather, is causing ice cream and suntan lotion
use to rise and fall together. It is particularly di¢cult to de…ne causality with
probabilistic models.
Granger causality is an attempt to make the notion of causality amenable

to econometric analysis. Suppose we have two (possibly vector) time series Y1t
and Y2t and we wish to determine which variable causes which.
One of the basic ideas of causality is that it is the past which causes the

present and not vice versa. Furthermore, if say Y1t causes Y2t then we would
expect past values of Y1t to be useful in predicting present Y1t:
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De…ne I1t as the information set which contains the past history of Y1t , I2t
as the information set which contains the past history of Y2t so that:

I1t = fY1t¡1; Y1t¡1; Y1t¡3; : : : g
I2t = fY2t¡1; Y2t¡1; Y2t¡3; : : : g :

In addition de…ne I3t as the information set containing all other relevant infor-
mation.
If Y1t causes Y2t then we would expect I1t to be useful in predicting Y2t:

This leads to the following de…nitions:

De…nition 218 Granger Causality Y1t Granger causes Y2t or Y1t ! Y2t if
and only if:

V ar [Y2tjI1t; I2t; I3t] < V ar [Y2tjI2t; I3t] :
De…nition 219 Y1t does not Granger cause Y2t or Y1t 9 Y2t if and only if:

V ar [Y2tjI1t; I2t; I3t] = V ar [Y2tjI2t; I3t] :
Thus Granger causality hinges on whether the past history of Y1t; given by

I1t; is useful in predicting Y2t:

Remark 220 The presence of I3t in the de…nition of Granger causality is there
to insure that a variable is not helping in predicting simply because it is correlated
with another variable that is causing the variable. For example suppose warm
weather Y3t causes both ice cream sales Y1t and the number of stork nests Y2t to
rise. If past warm weather or I3t were not included in the de…nition of Granger
causality then one might mistakenly think that stork nests Y2t are causing ice
cream sales Y1t.

Remark 221 In practice it is very di¢cult, if not impossible, to be sure that
all of I3t is included in any test of Granger causality.

We can also talk about the causality going in the opposite direction; that is
from Y2t to Y1t so that:

De…nition 222 Y2t Granger causes Y1t or Y2t ! Y1t if and only if:

V ar [Y1tjI1t; I2t; I3t] < V ar [Y1tjI1t; I3t] :
De…nition 223 Y2t does not Granger cause Y1t or Y2t 9 Y1t if and only if:

V ar [Y1tjI1t; I2t; I3t] = V ar [Y1tjI1t; I3t] :
Between any two time series then we can have four di¤erent situations:

1. No causality at all where:Y1t 9 Y2t and Y2t 9 Y1t:

2. Unidirectional from Y1t to Y2t where: Y1t ! Y2t and Y2t 9 Y1t;

3. Unidirectional from Y2t to Y1t where: Y2t ! Y1t and Y1t 9 Y2t; and

4. Causality in both directions or feedback where: Y1t ! Y2t and Y2t ! Y1t:
s
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6.3.2 Causality and Bivariate VAR(p)’s

Consider a bivariate V AR(p) (i.e., with n = 2 ) so that

Y1t =

pX
k=1

Ák11Y1t¡k +
pX
k=1

Ák12Y2t¡k + a1t (6.70)

Y2t =

pX
k=1

Ák21Y1t¡k +
pX
k=1

Ák22Y2t¡k + a2t:

We can make Granger causality a statistically operational concept as follows.
We have:

Theorem 224 Given (6:70) then Y1t 9 Y2t if and only if:

Á121 = Á
2
21 = Á

3
21 = ¢ ¢ ¢ = Áp21 = 0: (6.71)

Theorem 225 Given (6:70) then Y1t ! Y2t if and only if:

Á121 6= 0 or Á221 6= 0 or ¢ ¢ ¢ or Áp21 6= 0: (6.72)

Thus to test for causality we can make Y1t 9 Y2t or that Y1t does not
Granger cause Y2t the null hypothesis:

Ho : Á
1
21 = Á

2
21 = Á

3
21 = ¢ ¢ ¢ = Áp21 = 0 (Y1t 9 Y2t)

and test this against

H1 : Á
1
21 6= 0 or Á221 6= 0 or ¢ ¢ ¢ or Áp21 6= 0 (Y1t ! Y2t) :

To perform this hypothesis test we run the unrestricted regression:

Y2t =

pX
k=1

Ák21Y1t¡k +
pX
k=1

Ák22Y2t¡k + a2t

and obtain the unrestricted estimate of the variance of a2t : ¾̂
2
2U : We then run

the restricted regression:

Y2t =

pX
k=1

Ák22Y2t¡k + a2t

and obtain the restricted estimate of the variance of a2t : ¾̂
2
2R: Then under Ho :

¤ = T ln

µ
¾̂22R
¾̂22U

¶
a» Â2p:

To test for causality in the opposite direction we have:
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Theorem 226 Given (6:70) then Y2t 9 Y1t if and only if:

Á112 = Á
2
12 = Á

3
12 = ¢ ¢ ¢ = Áp12 = 0: (6.73)

Theorem 227 Given (6:70) then Y2t ! Y1t if and only if:

Á112 6= 0 or Á212 6= 0 or ¢ ¢ ¢ or Áp12 6= 0: (6.74)

Thus to test for causality we can make Y1t 9 Y2t or that Y1t does not
Granger cause Y2t the null hypothesis so that:

Ho : Á
1
12 = Á

2
12 = Á

3
12 = ¢ ¢ ¢ = Áp12 = 0 (Y2t 9 Y1t)

and test this against

H1 : Á
1
12 6= 0 or Á212 6= 0 or ¢ ¢ ¢ or Áp12 6= 0: (Y2t ! Y1t) :

To perform this hypothesis test we run the unrestricted regression:

Y1t =

pX
k=1

Ák11Y1t¡k +
pX
k=1

Ák12Y2t¡k + a1t

and obtain the unrestricted estimate of the variance of a1t : ¾̂
2
1U : We then run

the restricted regression:

Y1t =

pX
k=1

Ák11Y1t¡k + a1t

and obtain the restricted estimate of the variance of a1t : ¾̂
2
1R: Then under Ho :

¤ = T ln

µ
¾̂21R
¾̂21U

¶
a» Â2p:

6.3.3 An Economic Example

To make the preceding section more concrete, think of Y1t as real GNP (ap-
propriately detrended say as either a DS or TS model) and Y2t as the money
supply (again appropriately detrended).
As economists we might be interested in the relationship between Y1t and

Y2t; that is the relationship between monetary policy and the business cycle.
As such we would like to know if it is money that causes output or output that
causes money.
Classical economic theory predicts that money is neutral; that money only

a¤ects nominal variables. Classical theory would therefore predict that Y2t 9
Y1t: If you look at the data, however, there is often found to be a correlation
between money and output so to explain this correlation a classical theorist
might argue that it is because money is endogenous; that increased economic
activity causes increases in the money supply so that: Y1t ! Y2t:
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Standard Keynesian or IS=LM analysis on the other hand predicts that
changes in the money supply have an impact on GNP ; for example when the
money supply is increased the LM curves shifts to the right and GNP goes up.
Thus a Keynesian economist would believe that Y2t ! Y1t.
Money is treated as an exogenous variable in the IS=LM model so that there

is no causality from GNP to money. Thus a Keynesian economist would tend
to believe that Y1t 9 Y2t.
We might therefore attempt to test:

H0 : money is neutral or Y2t 9 Y1t versus

H1 : money is not neutral or Y2t ! Y1t

A Keynesian would anticipate the rejection of Ho while the classical economist
would anticipate accepting Ho:
Similarly we might test:

H0 : Money is Exogenous or Y1t 9 Y2t versus

H1 : Money is Endogenous or Y1t ! Y2t:

A Keynesian would now anticipate accepting Ho while the classical economist
would anticipate rejecting Ho:

6.3.4 Instantaneous Causality

De…nition

Generally speaking one thinks of causal mechanisms occurring across time with
the past values causing the present. It is theoretically possible (but philosophi-
cally dubious) to have causality occurring instantaneously if adding say current
Y1t is useful in predicting current Y2t . In particular we have:

De…nition 228 Instantaneous Granger Causality Y1t Granger instanta-
neously causes Y2t or Y1t , Y2t if and only if:

V ar [Y2tjY1t; I1t; I2t; I3t] < V ar [Y2tjI1t; I2t; I3t] :
De…nition 229 Y1t does not instantaneously Granger cause Y2t or Y1t < Y2t
if and only if:

V ar [Y1tjY2t; I1t; I2t; I3t] = V ar [Y1tjI1t; I2t; I3t] :
Unlike ordinary causality, instantaneous causality has no direction. In par-

ticular:

Theorem 230 Y1t < Y2t if and only if Y2t < Y1t:

For a VAR(p) model the existence of instantaneous causality depends on the
variance-covariance matrix of at given by: ­: In particular:
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Theorem 231 If Yt follows a VAR(p) process then Yit () Yjt if and only if
!ij 6= 0: Alternatively Yit < Yjt if and only if !ij = 0:

Thus a necessary and su¢cient condition for instantaneous causality between
Yit and Yjt to exist is that ait and ajt be contemporaneously correlated with
each other.
Proof. Recall that for any two scalar random variables: X1 and X2 that

are jointly normally distributed that:

E [X1jX2] = E [X1] +
Cov [X1;X2]

V ar [X2]
(X2 ¡E [X2])

V ar [X1jX2] = V ar [X1]

Ã
1¡ Cov [X1;X2]

2

V ar [X1]V ar [X2]

!
:

Now let X1 be Yit and let X2 be Yjt. Then:

V art¡1 [YitjYjt] = V art¡1 [Yit]

Ã
1¡ Covt¡1 [Yit; Yjt]

2

V art¡1 [Yit]V art¡1 [Yjt]

!

= V art¡1 [Yit]

Ã
1¡ !2ij

!ii!jj

!

since for a VAR(p)

Covt¡1 [Yit; Yjt] = !ij :

Thus V art¡1 [YitjYjt] = V art¡1 [Yit] if and only if !ij = 0:

The Structural VAR Representation

Normally we write a VAR(p) as:

Yt =

pX
k=1

ÁkYt¡k + at: (6.75)

and so there are no contemporaneous values of Yt on the right-hand side to
act as regressors. There is an alternative representation of a VAR(p) where
contemporaneous Yt 0s do appear on the right-hand side but where the error
terms are contemporaneously uncorrelated. In particular we have:

Theorem 232 Structural VAR Representation: The VAR(p) model in
(6:75) has an equivalent representation:

Yt = ~ÁoYt +

pX
k=1

~ÁkYt¡k + "t
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where ~Áo is a upper triangular matrix
3 with zeros along the diagonal and

"t » N [0;¤]
where ¤ is a diagonal matrix (or Cov ["it; "jt] = 0 for i 6= j ).
Proof. Using the Cholesky decomposition we can write the variance-covariance

matrix of at as:

­ = C¤CT

where C is an upper triangular matrix with 10s along the diagonal and ¤ is a
diagonal matrix with positive elements along the diagonal. Multiplying both
sides of (6:75) by C¡1 we obtain:

C¡1Yt =
pX
k=1

C¡1ÁkYt¡k +C
¡1at:

De…ne:

"t = C
¡1at » N [0;¤]

(so that Cov ["it; "jt] = 0 for i 6= j) and
~Áo = I ¡C¡1
~Ák = C¡1Ák:

Since C¡1 is upper triangular with 10s along the diagonal, ~Áo = I ¡ C¡1 is
upper triangular with 00s along the diagonal. Now using C¡1Yt = Yt ¡ ~ÁoYt
and putting ~ÁoYt on the right-hand side we obtain:

Yt = ~ÁoYt +

pX
k=1

~ÁkYt¡k + "t:

An Example

To make this more concrete consider the case where n = 2 so that:·
Y1t
Y2t

¸
=

pX
k=1

·
Ák11 Ák12
Ák21 Ák22

¸·
Y1t¡k
Y2t¡k

¸
+

·
a1t
a2t

¸
: (6.76)

Given the variance-covariance matrix of at :

­ =

·
!11 !12
!12 !22

¸
3That is all elements below the diagonal are zero.
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the Cholesky decomposition is:

­ =

·
!11 !12
!12 !22

¸
=

·
1 ¯
0 1

¸·
¸1 0
0 ¸2

¸·
1 0
¯ 1

¸
:

You can verify this by multiplying out the right-hand side to show that:

¯ =
!12
!22

; C =

·
1 !12

!22
0 1

¸
; (6.77)

¸1 = !11 ¡ !
2
12

!22
; ¸2 = !22:

Thus

C¡1 =
·
1 ¡¯
0 1

¸
and so multiplying both sides of (6:76) by C¡1 as:·
1 ¡¯
0 1

¸ ·
Y1t
Y2t

¸
=

pX
k=1

·
1 ¡¯
0 1

¸ ·
Ák11 Ák12
Ák21 Ák22

¸·
Y1t¡k
Y2t¡k

¸
+

·
1 ¡¯
0 1

¸·
a1t
a2t

¸

and putting ¡¯Y2t on the right-hand side we obtain·
Y1t
Y2t

¸
=

·
0 ¯
0 0

¸ ·
Y1t
Y2t

¸
+

pX
k=1

"
~Á
k

11
~Á
k

12

~Á
k

21
~Á
k

22

#·
Y1t¡k
Y2t¡k

¸
+

·
"1t
"2t

¸
or

Y1t = ¯Y2t +

pX
k=1

~Á
k

11Y1t¡k +
pX
k=1

~Á
k

12Y2t¡k + "1t (6.78)

Y2t =

pX
k=1

~Á
k

21Y1t¡k +
pX
k=1

~Á
k

22Y2t¡k + "2t

where

~Áo =

·
0 ¯
0 0

¸
and

~Ák =

"
~Á
k

11
~Á
k

12

~Á
k

21
~Á
k

22

#
=

·
Ák11 ¡ ¯Ák21 Ák12 ¡ ¯Ák22

Ák21 Ák22

¸
and

"t =

·
"1t
"2t

¸
=

·
a1t ¡ ¯a2t

a2t

¸
:

Note that ~Áo is upper triangular with zeros along the diagonal. You might want
to verify directly that Cov ["1t; "2t] = 0:
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Testing

There are two ways of testing for instantaneous causality. I will only consider
the case where n = 2 but generalizations are straightforward.
First we can test:

H0 : !12 = 0 (or Y1t < Y2t ) versus

H1 : !12 6= 0 (or Y1t , Y2t )

using a likelihood ratio test. Under H0 the restricted maximum likelihood esti-
mator of ­ is:

­̂R =

·
!̂11 0
0 !̂22

¸
(6.79)

where !̂11 and !̂22 are the estimated variances from running the two regressions:

Y1t =

pX
k=1

Ák11Y1t¡k +
pX
k=1

Ák12Y2t¡k + a1t (6.80)

Y2t =

pX
k=1

Ák21Y1t¡k +
pX
k=1

Ák22Y2t¡k + a2t

or:

!̂11 =
1

T

TX
t=1

â21t , !̂22 =
1

T

TX
t=1

â22t: (6.81)

The unrestricted estimator of ­ is

­̂U =

·
!̂11 !̂12
!̂12 !̂22

¸
(6.82)

where

!̂12 =
1

T

TX
t=1

â1tâ2t (6.83)

is the estimated correlation between a1t and a2t from the above two regression
and !̂11 and !̂22 are the same as before (this follows since we showed that OLS
and GLS are the same). The likelihood ratio statistic is then:

¤ = T
³
ln
¯̄̄
­̂R

¯̄̄
¡ ln

¯̄̄
­̂U

¯̄̄´
(6.84)

= ¡T ln ¡1¡ ½̂212¢
where

½̂12 =
!̂12p
!̂11
p
!̂22

(6.85)
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is the estimated correlation between a1t and a2t: Under H0 then ¤
a» Â21:

The second method for testing instantaneous causality is to test

H0 : ¯ = 0 versus H1 : ¯ 6= 0
using the …rst equation of the structural V AR model:

Y1t = ¯Y2t +

pX
k=1

~Á
k

11Y1t¡k +
pX
k=1

~Á
k

12Y2t¡k + "1t (6.86)

and doing a t test on ^̄ in the usual way.

6.4 Forecasting

6.4.1 Theory

As with ARMA(p,q) models we can recursively calculate forecasts for a multi-
variate time series Yt and construct con…dence intervals. Here I will only discuss
the V AR (p) model.
To calculate forecasts: Et [Yt+k] recursively we use:

Theorem 233 For an VAR(p) process:

Et[Yt+k] = Á1Et[Yt+k¡1] + Á2Et[Yt+k¡2] + ¢ ¢ ¢+ ÁpEt[Yt+k¡p] (6.87)

with starting values given by:

Et[Yt+k] = Yt+k for k · 0: (6.88)

The problem now is to calculate con…dence intervals for our forecasts. We
use the following result.

Theorem 234 For a VAR(p):

V art [Yt+k] = ­+ Ã1­Ã
T
1 + Ã2­Ã

T
2 + ¢ ¢ ¢+ Ãk¡1­ÃTk¡1

where Ãk is calculated recursively from:

Ãk = Á1Ãk¡1 + Á2Ãk¡2 + ¢ ¢ ¢+ ÁpÃk¡p
and with starting values Ã0 = I and Ãk = 0 for k < 0:

We can calculate V art [Yt+k] recursively using:

Theorem 235 For a VAR(p):

V art [Yt+k] = V art [Yt+k¡1] + Ãk¡1­Ã
T
k¡1 (6.89)

with:

V art [Yt+1] = ­:
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Suppose we wish to forecast some linear combination of the elements of Yt+k;
say cTYt+k where c is an n£ 1 vector. We have:

Theorem 236 A 95% con…dence interval for cTYt+k is:

cTEt[Yt+k]§ 1:96
q
cTV art [Yt+k] c:

Note that if we wish to forecast say Yit+k we simply set the ith element of c
to 1 and all other elements equal to zero in which case we have:

Theorem 237 A 95% con…dence interval for Yit+k is:

Et[Yit+k]§ 1:96
p
V art [Yit+k]

where Et[Yit+k] is the ith element of Et[Yt+k] and V art [Yit+k] is the ith diagonal
element of V art [Yt+k] :

Allowing arbitrary linear combinations when forecasting may be useful. For
example suppose that n = 2 and Y1t = ln (UNt) where UNt is the number of
unemployed and Y2t = ln (LFt) where LFt is the labour force. Then if:

cT =
£
1 ¡1 ¤

then

cTYt =
£
1 ¡1 ¤ · Y1t

Y2t

¸
= Y1t ¡ Y2t = ln

µ
UNt
LFt

¶
and so cTYt is the log of the rate of unemployment. Thus we could use Theorem
236 to construct a forecast for the rate of unemployment.

6.4.2 A Worked Example

An ordinary AR(p) model uses only a series own past history to construct
forecasts. A V AR(p) on the other hand uses in addition the past history of
other series and so one might expect in many situations that this will provide
better forecasts. For example it has been found that such variables as the term
structure of interest rates are very useful when forecasting the business cycle.
As usual the matrix notation for forecasting a VAR(p) hides a lot of details

that are important. In general you will want to use the computer to do the
tedious work of calculating forecasts and constructing con…dence intervals but
to do the programming properly you need to understand what is going on inside
the matrices.
Suppose then we have n = 2 time series and we have estimated a VAR(2)

Yt = Á1Yt¡1 + Á2Yt¡2 + at
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as:

Y1t = 0:5Y1t¡1 ¡ 0:1Y2t¡1 + 0:2Y1t¡1 + 0:3Y2t¡1 + a1t (6.90)

Y2t = 0:5Y1t¡1 + 0:3Y2t¡1 + 0:1Y1t¡1 + 0:2Y2t¡1 + a2t:

To make things concrete you may want to think of Y1t as say detrended GNP
and Y2t as detrended money.
In matrix notation Á1 and Á2 are given by:

Á1 =

·
0:5 ¡0:1
0:5 0:3

¸
; Á2 =

·
0:2 0:3
0:1 0:2

¸
:

Suppose further that the estimated variance-covariance matrix is:

­ =

·
(0:05)2 0:0001

0:0001 (0:08)2

¸
and we observe at time t that:

Yt =

·
Y1t
Y2t

¸
=

·
0:03
0:05

¸
(6.91)

Yt¡1 =

·
Y1t¡1
Y2t¡1

¸
=

·
0:04
0:06

¸
:

To calculate the one-step ahead forecast: Et [Yt+1] we use:

Et [Y1t+1] = 0:5Et [Y1t]¡ 0:1Et [Y2t] + 0:2Et [Y1t¡1] + 0:3Et [Y2t¡1]
Et [Y2t+1] = 0:5Et [Y1t] + 0:3Et [Y1t] + 0:1Et [Y1t¡1] + 0:2Et [Y2t¡1]

or in matrix notation

Et [Yt+1] = Á1Et [Yt] + Á2Et [Yt¡2]

or:·
Et [Y1t+1]
Et [Y2t+1]

¸
=

·
0:5 ¡0:1
0:5 0:3

¸ ·
Et [Y1t]
Et [Y2t]

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
Et [Y1t¡1]
Et [Y2t¡1]

¸
:

From the starting values in (6:91) we then have:·
Et [Y1t+1]
Et [Y2t+1]

¸
=

·
0:5 ¡0:1
0:5 0:3

¸·
0:03
0:05

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
0:04
0:06

¸
=

·
:036
:046

¸
:

Thus our one-step ahead forecasts are Et [Y1t+1] = 0:036 or 3:6% for GNP
growth and Et [Y2t+1] = 0:046 or 4:6% for money growth.
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To calculate the two step ahead forecast we repeat the procedure using:

Et [Yt+2] = Á1Et [Yt+1] + Á2Et [Yt]

or: ·
Et [Y1t+2]
Et [Y2t+2]

¸
=

·
0:5 ¡0:1
0:5 0:3

¸ ·
0:036
0:046

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
0:03
0:05

¸
=

·
0:0344
0:0448

¸
:

Thus our two-step ahead forecasts are Et [Y1t+2] = 0:0344 and Et [Y2t+1] =
0:0448:
Finally let us calculate the three-step ahead forecast as:·
Et [Y1t+3]
Et [Y2t+3]

¸
=

·
0:5 ¡0:1
0:5 0:3

¸ ·
0:0344
0:0448

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
0:036
0:046

¸
=

·
0:03372
0:04344

¸
:

To construct con…dence intervals we …rst need to calculate the Ãk
0s: We

have as starting values for the recursive calculations:

Ã0 =

·
1 0
0 1

¸
; Ã¡1 =

·
0 0
0 0

¸
:

To calculate Ã1 we then use:

Ã1 = Á1Ã0 + Á2Ã¡1

or:

Ã1 =

·
0:5 ¡0:1
0:5 0:3

¸·
1 0
0 1

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
0 0
0 0

¸
=

·
0:5 ¡0:1
0:5 0:3

¸
:

Then to calculate Ã2 we use:

Ã2 = Á1Ã1 + Á2Ã0

or:

Ã2 =

·
0:5 ¡0:1
0:5 0:3

¸·
0:5 ¡0:1
0:5 0:3

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
1 0
0 1

¸
=

·
0:4 0:22
0:5 0:24

¸
:
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Finally let us calculate Ã3 and Ã4 as

Ã3 =

·
0:5 ¡0:1
0:5 0:3

¸ ·
0:4 0:22
0:5 0:24

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
0:5 ¡0:1
0:5 0:3

¸
=

·
0:4 0:156
0:5 0:232

¸
and:

Ã4 =

·
0:5 ¡0:1
0:5 0:3

¸ ·
0:4 0:156
0:5 0:232

¸
+

·
0:2 0:3
0:1 0:2

¸ ·
0:4 0:22
0:5 0:24

¸
=

·
0:38 0:1708
0:49 0:2176

¸
:

This kind of calculation is something that computers are obviously very good
at.
Now consider calculating the conditional variance-covariance matrix of Yt+k:

Using (6:89) we have …rst that:

V art [Yt+1] = ­ =

·
(0:05)2 0:0001

0:0001 (0:08)2

¸
:

To calculate V art [Yt+2] we then use:

V art [Yt+2] = V art [Yt+1] + Ã1­Ã
T
1

or

V art [Yt+2] =

·
(0:05)2 0:0001

0:0001 (0:08)2

¸
+

·
0:5 ¡0:1
0:5 0:3

¸ ·
(0:05)2 0:0001

0:0001 (0:08)2

¸ ·
0:5 ¡0:1
0:5 0:3

¸T
=

·
3:179£ 10¡3 5:43£ 10¡4
5:43£ 10¡4 7:631£ 10¡3

¸
:

Then to calculate V art [Yt+3] we use:

V art [Yt+3] = V art [Yt+2] + Ã2­Ã
T
2

=

·
3:179£ 10¡3 5:43£ 10¡4
5:43£ 10¡4 7:631£ 10¡3

¸
+

·
0:4 0:22
0:5 0:24

¸ ·
(0:05)2 0:0001

0:0001 (0:08)2

¸ ·
0:4 0:22
0:5 0:24

¸T
=

·
3:9064£ 10¡3 1:4015£ 10¡3
1:4015£ 10¡3 8:6486£ 10¡3

¸
:

A 95% con…dence interval for Y1t+3 is then given by:

Et [Y1t+3]§ 1:96
p
V art [Y1t+3]
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where V art [Y1t+3] is the (1; 1) element of V art [Yt+3] above. The con…dence
interval is therefore:

0:03372§ 1:96
p
3:9064£ 10¡3

or

0:03372§ 0:1225:
Similarly a 95% con…dence interval for Y2t+3 is given by:

0:04344§ 1:96
p
8:6486£ 10¡3

or

0:03372§ 0:18228:
If we wished to calculate a con…dence interval for a linear combination, say:

Wt+3 = 0:6Y1t+3 + 0:4Y2t+3

or Wt+3 = c
TYt+3 where:

cT =
£
0:6 0:4

¤
we would use:

cTEt [Yt+3]§ 1:96
q
cTV art [Yt+3] c

or:

£
0:6 0:4

¤ · 0:03372
0:04344

¸
§ 1:96

s£
0:6 0:4

¤ · 3:9064£ 10¡3 1:4015£ 10¡3
1:4015£ 10¡3 8:6486£ 10¡3

¸ ·
0:6
0:4

¸

which reduces to:

0:0376§ 0:115:

6.5 Cointegration

6.5.1 The Long-Run in Economics

Many times in economics we know that a theory is false in the short-run but
still believe it to be true in the long-run. Consider for example the theory of
purchasing power parity (PPP) which states that:

Pt = etP
F
t (6.92)
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where Pt is the price of some domestic good, PFt is the price of the same good
in a foreign country, and et is the exchange rate between the two countries.
We know that PPP does not hold in the short-run. Generally speaking

in 1999 if you go from Canada to the United States you will …nd goods more
expensive than in Canada while in 1989 you would …nd the same goods cheaper
in the United States. Nevertheless many economists still believe that PPP
holds in the long-run.
Many economic models make balanced growth predictions; for example that

consumption Ct or investment It should be a constant proportion of national
income: Yt or:

Ct = ¯Yt (6.93)

It = °Yt:

Clearly these predictions are false since we observe that the ratios of consump-
tion and investment to GNP vary over time. Nevertheless these ratios do not
change by very much and so one is tempted to say that these balanced growth
relationships hold in the long run even though they do not hold in the short
run.
Finally consider a demand for money or LM relationship of the form:

Ms
t = AY

®
t R

¯
t P

°
t (6.94)

where Ms
t is the money supply, Pt is the price level, Yt is real GNP and Rt is

an interest rate. Again we know that such a relationship does not hold exactly
in the short-run, say because of short-run money market dynamics, but we may
nevertheless still believe that such a relationship will hold over the long-run.
Cointegration provides a theoretical framework with which we can give a

precise meaning to the idea of a relationship holding in the long-run, and which
allow us to estimate and test these long-run relationships.

6.5.2 Some Theory

To begin we need some de…nitions and results commonly used in the cointegra-
tion literature.

De…nition 238 We say that Zt is integrated of order d or

Zt » I (d)

if (1¡B)d¡1 Zt is nonstationary and (1¡B)d Zt is stationary and invertible.
If Zt is stationary we say that Zt is I (0) :

For our purposes we only need to refer to I (0) or stationary series and I (1)
or series that have a unit root. I (0) and I (1) series behave very di¤erently.
An I (0) series is stationary and hence ‡uctuates around its mean value. If that
mean value is zero then an I (0) series will generally speaking not wander too
far from zero.
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An I (1) series on the other hand is nonstationary. It behaves like a random
walk (and a random walk is I (1) ) in that it does not have a mean value around
which it ‡uctuates. I(1) series wander a great deal. Roughly speaking after k
periods have elapsed an I (1) series will have wandered distance proportional top
k and so will eventually move an unbounded distance from zero.
We have the following results for I (0) and I (1) variables:

Theorem 239 If Zt » I (0) with E [Zt] = 0 then Zt will cross the horizontal
axis (go from being positive to negative or from negative to positive) an in…nite
number of times with probability 1:

Theorem 240 If Zt » I (1) and E [¢Zt] = 0 then Zt will cross the horizon-
tal axis with probability 1 but only a …nite number of times. Furthermore the
expected length of time between crossings is in…nite.

We have the following results for I (0) and I (1) variables:

Theorem 241 If Xt » I (0) and Yt » I (0) then for any nonrandom constants
® and ¯:

®Xt + ¯Yt » I (0)
Theorem 242 If Xt » I (1) and Yt » I (0) then:

Xt + Yt » I (1) :
Thus adding two stationary series together always yields another stationary

series while adding a stationary series to a non-stationary series always yields a
nonstationary series.
Normally one would expect that adding two I (1) series together can would

lead to another I (1) ; that is if Xt » I (1) and Yt » I (1) then
®Xt + ¯Yt » I (1) :

However, it turns out to be possible that adding two I (1) series together can
lead to an I (0) series; that is:

®Xt + ¯Yt » I (0) :
This occurs when Xt and Yt are cointegrated and ® and ¯ then form the com-
ponents of a cointegrating vector.
More formally the de…nition of cointegration is as follows:

De…nition 243 If for the n £ 1 vector time series Xt » I (1) there exists a
nonrandom n£ 1 vector c 6= 0 such that:

Zt ´ cTXt » I (0)
then we say that Xt is cointegrated with cointegrating vector c:
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Remark 244 If c = 0 then cTXt = 0, which is in a trivial sense always sta-
tionary or I (0) : This is the reason we impose the requirement that c 6= 0.

Actually, if Xt has one cointegrating vector then in a trivial sense it has an
in…nite number of cointegrating vectors. Thus it will be necessary to make our
questions more precise if we are to make them meaningful. This is because of
the following two theorems:

Theorem 245 If Xt has a cointegrating vector c then if ® is any nonzero con-
stant then

d = ®c

is also a cointegrating vector.

Proof. Given that:

cTXt » I (0)

if we multiply both sides by ® we then …nd that:

dTXt = ®c
TXt » I (0) (6.95)

since a scalar multiplied by a stationary I (0) series is also I (0) : We therefore
conclude that d is also a cointegrating vector.
The problem of non-uniqueness here could be easily …xed by requiring say

that the …rst non-zero element in c be 1 and so we could rule out d as a cointe-
grating vector.
However we also have:

Theorem 246 Suppose Xt has two cointegrating vectors c1 and c2. Then c =
c1 + c2 is also a cointegrating vector.

Proof. This follows since:

cTXt = (c1 + c2)
T
Xt = c

T
1Xt + c

T
2Xt » I (0) (6.96)

from Theorem 241.
Combining these two results we see that in general if c1 and c2 are two

cointegrating vectors then so is

®1c1 + ®2c2 (6.97)

where ®1 and ®2 are two scalars and so we have:

Theorem 247 The set of cointegrating vectors that satisfy cTXt » I (0) (in-
cluding c = 0) form a linear space.
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Example 248 Given two cointegrating vectors:

c1 =

24 1
¡1
¡1

35 ; c2 =
24 ¡2

1
¡3

35
then c = 2c1 + 4c2 given by:

c = 2

24 1
¡1
¡1

35+ 4
24 ¡2

1
¡3

35 =
24 ¡6

2
¡14

35
is also a cointegrating vector. Any other weights besides 2 and 4 will also lead
to a cointegrating vector.

In general then if there is one cointegrating vector there will be an in…nite
number of cointegrating vectors. The linear space of cointegrating vectors will
however contain only a …nite number of linearly independent cointegrating vec-
tors or a …nite number of economically meaningful and distinct cointegrating
vectors.
We might therefore rephrase our question: what determines if Xt is coin-

tegrated, and if Xt is cointegrated, what determines the number of linearly
independent cointegrating vectors.
Given that Xt is I (1) it follows that (1¡B)Xt is I (0) or stationary and

hence has a Wold representation given by:

(1¡B)Xt = ¹+ Ã (B)at: (6.98)

It turns out that whether Xt is cointegrated or not depends on the n£ 1 vector
or growth rates ¹ and the n£ n matrix Ã (1) given by:

Ã (1) = I + Ã1 + Ã2 + Ã3 + ¢ ¢ ¢ :

We have:

Theorem 249 If the n£ 1 vector c is a cointegrating vector then:
cT¹ = 0

cTÃ (1) = 0

Remark 250 The condition cT¹ = 0 is often ignored in discussions of coin-
tegration by simply assuming that ¹ = 0 in the Wold representation. In what
follows we will always assume that the condition cT¹ = 0 is satis…ed.

The interesting object for cointegration is in fact the matrix Ã (1) :We have:

Theorem 251 Xt is cointegrated if and only if Ã (1) is a singular matrix; that
is if Ã (1)¡1 does not exist or det [Ã (1)] = 0 or rank [Ã (1)] < n:
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It turns out that it is the di¤erence between the dimension of the matrix Ã (1)
and its rank which determine the number of linearly independent cointegrating
vectors. In particular we have:

Theorem 252 If rank [Ã (1)] = n¡ r then Xt has r linearly independent coin-
tegrating vectors c1; c2; : : : cr where the ci satisfy:

cTi Ã (1) = 0:

Proof. We can obtain the Beveridge-Nelson decomposition for a Xt in
exactly the same way we did for a univariate time series to obtain:

Xt = T
¤
t + Y

¤
t (6.99)

where T ¤t is an n£ 1 vector of I (1) random walks

T ¤t = ¹+ T
¤
t¡1 + Ã (1) at (6.100)

and Y ¤t is an n£ 1 vector which is stationary or I (0) with:
Y ¤t = Ã

¤ (B)at (6.101)

Ã¤ (B) =
1X
k=0

Ã¤kB
k

where:

Ã¤k = ¡
1X

j=k+1

Ãj : (6.102)

Suppose now that Xt is cointegrated with a cointegrating vector c: By the
de…nition of cointegration cTXt is I (0) and hence:

cTXt| {z }
I(0)

= cTT ¤t + c
TY ¤t| {z }
I(0)

(6.103)

since Y ¤t is I (0) from the Beveridge-Nelson decomposition. Thus from Theorem
242 if we de…ne:

~T ¤t = c
TT ¤t

then the only way that (6:103) can be true is if ~T ¤t is I (0) : From (6:100) we
have:

~T ¤t = c
T¹+ ~T ¤t¡1 + c

TÃ (1) at: (6.104)

From this we conclude that:

cT¹ = 0

cTÃ (1) = 0
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since if cT¹ 6= 0 then ~T ¤t would have a trend with slope cT¹ and hence would
not be stationary or I (0) while if cTÃ (1) 6= 0 then ~T ¤t would be a random
walk with noise term: cTÃ (1) at and hence ~T ¤t would be I (1) and not I (0) as
required for cointegration. (It follows then that ~T ¤t = ~T ¤ a constant for all t.)
Recall now that the only way that cTÃ (1) = 0 can be true for c 6= 0 is if Ã (1)
is a singular4 and so it must be that Ã (1) has less than full rank or:

rank [Ã (1)] < n:

The number of linearly independent cointegrating vectors r is therefore the
di¤erence between n and rank [Ã (1)] and so

r = n¡ rank [Ã (1)] :

If Xt has r linearly independent cointegrating vectors then we can put these
into an n£ r matrix C with columns given by the cointegrating vectors as:

C = [c1; c2; : : : cr] : (6.105)

Therefore if Zt is de…ned as Zt = CTXt then:

Zt ´ CTXt » I (0) : (6.106)

The matrix C is not unique however since we have:

Theorem 253 If ¡ is any non-singular n £ n matrix then ~C = C¡ gives an
equivalent set of linearly independent cointegrating vectors.

Proof. We …rst prove that the columns of ~C are linearly independent. We
have: ~C± = 0 implies that C¡± = 0 which implies that ± = 0 since ¡ is non-
singular and the columns of C are linearly independent. Thus the columns of
~C are linearly independent. Furthermore:

~CTXt = ¡
TCTXt » I (0)

since CTXt is I (0) : Thus the columns of ~C are cointegrating vectors.

6.5.3 Some Examples

Purchasing Power Parity

From (6:92) de…ne:

X1t = ln (Pt) (6.107)

X2t = ln
¡
PFt
¢

X3t = ln (et)

4Otherwise if Ã (1)¡1 exists we would conclude from cTÃ (1) = 0 that:

cT = Ã (1)¡1 0 = 0

which contradicts the requirement that c 6= 0:
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so that there are n = 3 components inXt. Empirically all three of these variables
have strong random walk components so that it is not at all unreasonable to
assume that:

Xt =

24 X1t
X2t
X3t

35 =
24 ln (Pt)

ln (et)
ln
¡
PFt
¢
35 » I (1) : (6.108)

Now suppose that PPP held. Taking logs of both sides of (6:92) yields:

ln (Pt) = ln (et) + ln
¡
PFt
¢

(6.109)

or, we can de…ne Zt as the deviation from PPP as follows:

Zt = ln (Pt)¡ ln (et)¡ ln
¡
PFt
¢

(6.110)

= X1t ¡X2t ¡X3t: (6.111)

Clearly Zt = 0 if and only if PPP holds.
If we now de…ne

c =

24 1
¡1
¡1

35 (6.112)

then we can write the deviation from PPP as:

Zt = c
TXt: (6.113)

If Zt = 0 always, then PPP would always hold, even in the short-run.
Clearly then if Zt = 0 then Zt is I (0) in a trivial sense, that is Zt is stationary.
In the real world however we observe that PPP does not hold or we observe
that Zt 6= 0.
We might therefore wish to weaken examine a weaker form of PPP where

Zt is I (0) so that PPP holds on average; that is E [Zt] = 0 and that deviations
from PPP never get too large. Thus if Zt » I (0) but we allow the possibility
that Zt 6= 0; equivalently that Xt is cointegrated with cointegrating vector c;
then we can say that PPP holds in the long-run or on average. We can then
interpret Zt crossing the horizontal axis as indicating that the event Zt = 0
occurs or that PPP holds. Thus if Zt is I (0) then from Theorem 239 PPP will
hold in…nitely often, although it will not hold all the time.
If on the other hand Zt » I (1) ; or Xt is not cointegrated with cointegrating

vector c; then we cannot say that E [Zt] = 0 since Zt is nonstationary and hence
does not have a mean. The event that Zt = 0 or that PPP holds will only
happen very infrequently so that even given an in…nite span of time one would
only see PPP holding a …nite number of times. Furthermore the deviations
from PPP would get arbitrarily large as time progresses. Thus if Zt » I (1) it
would be natural to say that PPP does not hold, even in the long-run.
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Note that c is not the only vector we could have used to de…ne the deviation
from PPP since by Theorem 245 d = 3c or:

d =

24 3
¡3
¡3

35 (6.114)

also a cointegrating vector. In terms of economics however both c and d have
the same economic content; that is the PPP hypothesis.

Long-Run Money Demand

Consider now an example where the cointegrating vector c might depend on
unknown parameters, in particular the long-run demand for money relationship:

Ms
t = AY

®
t R

¯
t P

°
t :

Taking logs of both sides we obtain:

ln (Ms
t ) = ln (A) + ® ln (Yt) + ¯ ln (Rt) + ° ln (Pt) (6.115)

so that if :

Xt =

2664
X1t
X2t
X3t
X4t

3775 =
2664
ln (Ms

t )
ln (Yt)
ln (Rt)
ln (Pt)

3775 (6.116)

then we can de…ne

Zt = c
TXt ¡ ln (A)

as the deviation from the long-run demand for money relationship where:

c =

2664
1
¡®
¡¯
¡°

3775 : (6.117)

If then Zt » I (0) then we can say that the long-run money demand rela-
tionship holds in the long-run and hence Xt is cointegrated with cointegrating
vector c: If on the other hand Zt » I (1) then Xt is not cointegrated and the
long-run money demand relationship does not hold.
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Combining PPP and Money Demand

Consider now combining the time series in the money demand and PPP exam-
ples to form an Xt de…ned as:

Xt =

26666664
X1t
X2t
X3t
X4t
X5t
X6t

37777775 =
26666664
ln (Pt)
ln (et)
ln
¡
PFt
¢

ln (Ms
t )

ln (Yt)
ln (Rt)

37777775 : (6.118)

We now have two economically meaningful long-run relationships with corre-
sponding cointegrating vectors c1 and c2: PPP with c1 and the long-run money
demand relationship with c2 as:

c1 =

26666664
1
¡1
¡1
0
0
0

37777775 ; c2 =
26666664
¡°
0
0
1
¡®
¡¯

37777775 : (6.119)

It does not particularly interest us as economists that say c3 = 4c1 + 2c2,
given by:

c3 = 4

26666664
1
¡1
¡1
0
0
0

37777775+ 2
26666664
¡°
0
0
1
¡®
¡¯

37777775 =
26666664
4¡ 2°
¡4
¡4
2
¡2®
¡2¯

37777775
is also a cointegrating vector since c3 merely mixes up PPP and the long-run
money demand relationship in a way that is hard to interpret in an economically
meaningful way. Thus we can in a sense say there are only two economically
meaningful or two linearly independent cointegrating vectors c1 and c2 with all
others being a weighted combination of these two.
Suppose we did not know c1 and c2 but instead estimated a model where:

Ã (1) =

26666664

7
11

7
22

7
22

1
22 ¡ 1

11
3
22

7
22

29
44 ¡15

44
1
44 ¡ 1

22
3
44

7
22 ¡15

44
29
44

1
44 ¡ 1

22
3
44

1
22

1
44

1
44

41
44

3
22 ¡ 9

44¡ 1
11 ¡ 1

22 ¡ 1
22

3
22

8
11

9
22

3
22

3
44

3
44 ¡ 9

44
9
22

17
44

37777775 :

Using Ã (1) we can determine if Xt is cointegrated and what the cointegrating
vectors are.
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If you calculate det [Ã (1)] (using the computer of course!) you will …nd that:

det [Ã (1)] = 0

so that Ã (1) is singular and hence from Theorem 251 Xt is cointegrated. Again,
if you calculate the rank of Ã (1) you will …nd (also using the computer or from
the fact that Ã (1) happens to be idempotent so that rank [Ã (1)] = tr [Ã (1)] = 4
) that:

rank [Ã (1)] = 4:

Since n = 6 there must be r = 6 ¡ 4 = 2 linearly independent cointegrating
vectors from Theorem 252. Again, the computer can calculate a basis for the
null space of Ã (1) ; that is it will …nd two vectors c1 and c2 such that cT1 Ã (1) = 0
and cT2 Ã (1) = 0: For this particular example the computer …nds:

c1 =

26666664
1
0
0
¡1
2
¡3

37777775 ; c2 =
26666664

0
1
1
¡1
2
¡3

37777775 :

The …rst cointegrating vector c1 is just the long-run money demand relationship.
That is:

Z1t = c
T
1Xt = lnPt ¡ lnMs

t + 2 lnYt ¡ 3 lnRt
or:

lnMs
t = 2 lnYt ¡ 3 lnR+ lnPt ¡ Z1t

where ¡Z1t is the I (0) error term and where ® = 2 is the income elasticity,
¯ = ¡3 is the interest elasticity and ° = 1: It is hard to see any economic
interpretation for the second cointegrating vector c2 since:

Z2t = c
T
2Xt = ln et + lnP

F
t ¡ lnMs

t + 2 lnYt ¡ 3 lnRt:

However if we recall from Theorem 246 that c = c1 ¡ c2 is also a cointegrating
vector and take Z3t = (c1 ¡ c2)T Xt = Z1t ¡ Z2t we obtain:

Z3t = lnPt ¡ ln et ¡ lnPFt
which is the deviation from PPP .

6.5.4 The Common Trends Representation

A useful representation for a model with cointegration is:
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Theorem 254 Common Trends Representation: If Xt is cointegrated with
r linearly independent cointegrating vectors then Xt can be written as:

Xt = AT̂
¤
t + Y

¤
t

where A is an n£(n¡ r) matrix such that CTA = 0 where C is given in (6:105)
and T̂ ¤t is an (n¡ r)£ 1 vector of random walks and Y ¤t » I (0) :
If the n£ 1vector Xt was not cointegrated then it would contain n random

walks as:

Xt = T
¤
t + Y

¤
t

from the Beveridge-Nelson decomposition. Thus there would be one trend or
T ¤it for each of the n components of Xt. If Xt is cointegrated with r linearly
independent cointegrating vectors, then from the common trends representation
Xt can be thought of as containing only n ¡ r random walks given by the
(n¡ r) £ 1 vector T̂ ¤t rather than the full n: Thus with cointegration the n
series which are I (1) in Xt must share the n¡ r random walks. Cointegration
exists because this gap between n and n¡ r allows there to be r cointegrating
vectors which annihilate A; that is CTA = 0.
The proof is as follows:
Proof. Given Theorem 6.103 there must be n£ (n¡ r) matrices A and F

and (n¡ r)£ 1 vector ~¹ such that
Ã (1) = AFT

¹ = A¹¤

with CTA = 0: Then from (6:100)

¢T ¤t = ¹+ Ã (1) at

= A
¡
¹¤ + FTat

¢
= A

³
¢T̂ ¤t

´
where:

¢T̂ ¤t = ¹¤ + a¤t
a¤t = FTat:

It then follows that:

T ¤t = AT̂
¤
t

so that

Xt = AT̂
¤
t + Y

¤
t :
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Example 255 In the PPP long-run money demand example the common trends
representation can be found by calculating a column basis for Ã (1) and using
these 4 vectors to form the columns of A: Here we have 6 series depending on 4
random walks as:26666664

ln (Pt)
ln (et)
ln
¡
PFt
¢

ln (Ms
t )

ln (Yt)
ln (Rt)

37777775 =
26666664
0 1 0 0
0 0 1 0
0 1 ¡1 0
0 0 0 1
1 0 0 0
2
3

1
3 0 ¡1

3

37777775
2664
T̂ ¤1t
T̂ ¤2t
T̂ ¤3t
T̂ ¤4t

3775+
26666664
Y ¤1t
Y ¤2t
Y ¤3t
Y ¤4t
Y ¤5t
Y ¤6t

37777775 :

where the four T̂ ¤it are I (1) random walks and the six Y ¤it are I (0) or stationary.

6.5.5 The Error Correction Model

If we model Xt as DS then a natural framework to attempt an analysis of
cointegration is to di¤erence Xt and estimate an VAR(p) model as:

Á (B) (1¡B)Xt = ®+ at: (6.120)

Unfortunately this model rules out any possibility of cointegration! Thus we
cannot use this model to study cointegration. This is an implication of Theorem
251. In particular:

Theorem 256 If (1¡B)Xt follows a stationary VAR(p) process then Xt can-
not be cointegrated.

Proof. If:

Á (B) (1¡B)Xt = ®+ at (6.121)

then since:

Ã (B) = Á (B)¡1 (6.122)

and:

Ã (1) = Á (1)¡1

with rank [Ã (1)] = n since Á (1)¡1 exists. Therefore by Theorem 252 it follows
that r = 0:
This result would seem to make the study of cointegration very di¢cult since

so far the VAR(p) process is the only multivariate model in which estimation is
tractable.
Fortunately this problem can be remedied adding an additional set of re-

gressors to the VAR(p) model. This then is the Error Correction Model or
ECM .
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Theorem 257 Error Correction Model: If Xt is I (1) as

~Á (B)Xt = ®+ at

and Xt is cointegrated with r linearly independent cointegrating vectors, then Xt
has an Error Correction Representation (ECM) given by:

Á (B)¢Xt = ®+DC
TXt¡1 + at

where C and D are n£ r matrices with rank r and the rows of C are composed
of r linearly independent cointegrating vectors.

Proof. See the Appendix.

Remark 258 If we de…ne the matrix coe¢cient on Xt¡1 in the ECM as:

¡ = DCT

then ¡ is uniquely de…ned and identi…able but D and C are not since by Theorem
253 there are many ways of representing the cointegrating vectors in C: Thus if
H is any nonsingular r £ r matrix then we can replace C and D by:

~C = C
¡
H¡1¢T

~D = CH

in which case ¡ = DCT = ~D ~CT :

Remark 259 Note that ¢Xt is stationary or I (0) while Xt¡1 on the right-
hand side is I (1) : This does not involve a contradiction because CTXt¡1 is
I (0) since C is a matrix of cointegrating vectors. This becomes apparent if we
de…ne the r £ 1 vector Zt as:

Zt = C
TXt

or:

Zt =

2666664
Z1t
Z2t
Z3t
...
Zrt

3777775 =
2666664
cT1Xt
cT2Xt
cT3Xt
...

cTrXt

3777775 (6.123)

so that Zt is I (0) and we can write the ECM model as:

¢Xt = ®+
rX
j=1

djZjt¡1 +
pX
j=1

Áj¢Xt¡j + at (6.124)

where dj is the jth column of D and Zjt¡1 is the jth element of Zt¡1:
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The ECM representation is identical to a VAR(p) except that DZt¡1 is
added to the right-hand side. Thus if you estimate a VAR(p) for ¢Xt your
regression will be misspeci…ed unless the error correction term Zt¡1 is included
as a regressor on the right-hand side.

Example 260 In the PPP long-run money demand example the ECM would
with p = 0 take the form:

¢Xt =

26666664
¢ln (Pt)
¢ ln (et)
¢ ln

¡
PFt
¢

¢ln (Ms
t )

¢ ln (Yt)
¢ ln (Rt)

37777775 =
26666664
®1
®2
®3
®4
®5
®6

37777775+
26666664
d11 d12
d21 d22
d31 d32
d41 d42
d51 d52
d61 d62

37777775
·
Z1t¡1
Z2t¡1

¸
+

26666664
a1t
a2t
a3t
a4t
a5t
a6t

37777775
or:

¢ln (Pt) = ®1 + d11Z1t¡1 + d12Z2t¡1 + a1t
¢ln (et) = ®2 + d21Z1t¡1 + d22Z2t¡1 + a2t

¢ln
¡
PFt
¢
= ®3 + d31Z1t¡1 + d32Z2t¡1 + a3t

¢ln (Ms
t ) = ®4 + d41Z1t¡1 + d42Z2t¡1 + a4t

¢ln (Yt) = ®5 + d51Z1t¡1 + d52Z2t¡1 + a5t
¢ln (Rt) = ®6 + d61Z1t¡1 + d62Z2t¡1 + a6t

where Z1t and Z2t are the deviations from PPP and the long-run money demand
relationship as:

Z1t = lnPt ¡ ln et ¡ lnPFt

Z2t = lnM
s
t ¡ ® lnYt ¡ ¯ lnRt ¡ ° lnPt:

6.5.6 Testing for Cointegration

When the Cointegrating Vector is Known

Consider …rst the problem of testing for cointegration when the cointegration
vector c is known. This is actually quite common in practice; for example as we
saw with PPP we know that:

cT =
£
1 ¡1 ¡1 0 0 0

¤
so that c does not contain any unknown parameters.
The null hypothesis and alternative hypotheses are:

Ho : Xt is not cointegrated with cointegrating vector c versus

H1 : Xt is cointegrated with cointegrating vector c
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which can be reformulated as:

Ho : Zt = c
TXt » I (1)

H1 : Zt = c
TXt » I (0) :

For example with PPP we would calculate:

Zt = cTXt (6.125)

= ln (Pt)¡ ln (et)¡ ln
¡
PFt
¢
:

The idea then is to determine whether Zt; which measures the deviation from
PPP; is I (1) ; which implies that PPP does not hold even in the long-run, or
if Zt is I (0) in which case we could say PPP holds in the long-run.
One very simple way of informally testing for cointegration then is simply

to plot Zt and see if it looks like an I (1) process, which infrequently crosses the
horizontal axis, or an I (0) process which frequently crosses the horizontal axis.
More formally we can test for cointegration using an augmented Dickey-

Fuller test to see if Zt has a unit root. We therefore run the Dickey-Fuller
regression:

¢Zt = ®+ ¯t+ °Zt¡1 + ±1¢Zt¡1 + ±2¢Zt¡2 + ¢ ¢ ¢+ ±p¢Zt¡p + et (6.126)

and test:

Ho : ° = 0 ( Xt is not cointegrated) versus

H1 : ° < 0 ( Xt is cointegrated)

using the t statistic, say ¿° ; for ° and the same critical values we used for
the augmented Dickey-Fuller test. For example at the 5% signi…cance level we
would use ¿c° = ¡3:4 so that if ¿° > ¡3:4 we would accept the null that Xt is
not cointegrated with cointegrating vector c while if ¿° < ¡3:4 we would accept
the null that Xt is cointegrated with cointegrating vector c:

When the Cointegrating Vector is Unknown

Suppose now that the cointegrating vector is unknown. For example we have
seen with the money demand example that:

c =

26666664
¡°
0
0
1
¡®
¡¯

37777775
and so depends on the unknown the money demand parameters ®; ¯; and °:
Given:

Zt = c
TXt (6.127)
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suppose, without loss of generality, that the …rst element of c is non-zero and
hence can be normalized to equal unity. We then have, adding the constant co
if Zt has a non-zero mean, that:

X1t + c2X2t + c3X3t + ¢ ¢ ¢+ cnXnt = co + Zt (6.128)

or:

X1t = co ¡ c2X2t ¡ c3X3t ¡ ¢ ¢ ¢ ¡ cnXnt + Zt: (6.129)

This can be thought of a regression with Zt as the error term. Thus one
would estimate:

X1t = ĉo ¡ ĉ2X2t ¡ ĉ3X3t ¡ ¢ ¢ ¢ ¡ ĉnXnt + Ẑt: (6.130)

For example with the long-run money demand example we would run the re-
gression:

ln (Ms
t ) = ®o + ® ln (Yt) + ¯ ln (Rt) + ° ln (Pt) + Zt

and obtain the least squares residual Ẑt:
Now to test for cointegration perform a unit root test on least squares resid-

ual: Ẑt:

¢Ẑt = ®+ ¯t+ °Ẑt¡1 + ±1¢Ẑt¡1 + ±2¢Ẑt¡2 + ¢ ¢ ¢+ ±pẐt¡p + et (6.131)

and test:

Ho : ° = 0 ( Xt is not cointegrated) versus

H1 : ° < 0 ( Xt is cointegrated)

using the t statistic for °: ¿° . Because we estimated the cointegrating vector it
turns out that we need to use a di¤erent critical value than when we knew c: That
is we would not use ¿ c° = ¡3:4 at the 5% level. The appropriate critical values
are however available, and are provided, for example, by the CDF command in
TSP.

6.5.7 The Engle-Granger Two-Step Estimation Procedure

We will now discuss the Engle-Granger two-step procedure for estimating an
error correction model or ECM when r = 1 so that is when there is only one
cointegrating vector for Xt: The case where r > 1 is trickier because, as we have
seen, there are many di¤erent ways of representing the two or more cointegrating
vectors. This is best handled with the Johansen procedure considered in the
next section.
First suppose we know c (as with the PPP example). The …rst step then is

to calculate the scalar series:

Zt = c
TXt: (6.132)
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To estimate the ECM then we merely have to add Zt¡1 as an additional re-
gressor and proceed in the same manner we estimated then for i = 1; 2; : : : n
run the regressions:

¢Xit = ®i + diZt¡1 +
pX
k=1

nX
j=1

Ákij¢Xjt¡k + ait: (6.133)

For example if there was only the PPP relationship we would calculate:

Zt = ln (Pt)¡ ln (et)¡ ln
³
P ft

´
and run the regressions:26666664
¢ln (Pt)
¢ ln (et)
¢ ln

¡
PFt
¢

¢ln (Ms
t )

¢ ln (Yt)
¢ ln (Rt)

37777775 =
26666664
®1
®2
®3
®4
®5
®6

37777775+
26666664
d11Zt¡1
d21Zt¡1
d31Zt¡1
d41Zt¡1
d51Zt¡1
d61Zt¡1

37777775+
pX
j=1

Áj

26666664
¢ln (Pt¡j)
¢ ln (et¡j)
¢ ln

¡
PFt¡j

¢
¢ln

¡
Ms
t¡j
¢

¢ln (Yt¡j)
¢ ln (Rt¡j)

37777775+
26666664
a1t
a2t
a3t
a4t
a5t
a6t

37777775

so that Zt¡1 would simply be added as an extra regressor in the VAR(p) model.
Suppose now that the cointegrating vector c is unknown. The …rst step of

the Granger-Engle two-step procedure now is to run the regression:

X1t = co ¡ c2X2t ¡ c3X3t ¡ ¢ ¢ ¢ ¡ cnXnt + Zt (6.134)

in order to estimate c and obtain an estimate of Zt : Ẑt , the least squares
residual. It turns out estimates of coe¢cients are supere¢cient, that is the
converge at a rate of T¡1 to the true values so as far as asymptotic theory
is concerned in next step, can treat Ẑt as if it were Zt: We now estimate the
regressions:

¢Xit = ®i + diẐt¡1 +
pX
k=1

Áij¢Xjt¡k + ait: (6.135)

For example with the long-run money demand relationship as our cointe-
grating relationship we would run the regression:

ln (Ms
t ) = ®o + ® ln (Yt) + ¯ ln (Rt) + ° ln (Pt) + Zt

and obtain:

Ẑt = ln (M
s
t )¡ ®̂o ¡ ®̂ ln (Yt)¡ ^̄ ln (Rt)¡ °̂ ln (Pt)

and put Ẑt¡1 in the ECM regression as we did for the PPP example. Since the
estimators ®̂; ^̄ and °̂ are supere¢cient we can, for asymptotic theory purposes,
treat Ẑt¡1 as if it were equal Zt¡1; that is as if the estimated values of ®; ¯ and
° were the true values.
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6.5.8 The Johansen Procedure

The Johansen procedure allows for the estimation of the ECM with any value
of r and also provides a way of determining r: Let us write the ECM as:

¢Xt = ®+¡Xt¡1 +
pX
i=1

Ái¢Xt¡1 + at (6.136)

where:

¡ = DCT : (6.137)

Consider then estimating (6:136) by maximum likelihood subject to the con-
straint that ¡ be of rank r or that (6:137) holds. This is known as a reduced
rank regression.
To do this perform the following regressions:

¢Xt = b+

pX
i=1

Bi¢Xt¡1 + e1t (6.138)

Xt¡1 = d+

pX
i=1

Di¢Xt¡1 + e2t

and construct the following n£ n matrices:

S11 =
1

T

TX
t=1

ê1tê
T
1t (6.139)

S12 =
1

T

TX
t=1

ê1tê
T
2t

S21 =
1

T

TX
t=1

ê2tê
T
1t = S

T
12

S22 =
1

T

TX
t=1

ê2tê
T
2t:

The positive de…nite matrix S22 can be decomposed as:

S22 = S2S
T
2 (6.140)

where S2; a non-singular square matrix, can be thought of as the square root of
S22: Calculating S2 is standard in most regression packages and so this is not
a di¢cult calculation. For example we could use the Cholesky decomposition
where S2 is upper triangular, or S2 = C¤

1
2C¡1 where S22 = C¤C¡1 is the

diagonalization of S22 and ¤ is a diagonal matrix of eigenvalues.
Now calculate:

S = S¡12 S21S
¡1
11 S12

¡
ST2
¢¡1

(6.141)
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and calculate the eigenvalues ¸i for i = 1; 2; : : : n (which are bounded between
0 and 1) and eigenvectors vi for i = 1; 2; : : : n of the matrix S Again calculating
eigenvalues and eigenvectors is now standard in most regression packages and
so this is also not a di¢cult calculation.
Now order the eigenvalues from the largest to the smallest as:

1 ¸ ¸1 ¸ ¸2 ¸ ¢ ¢ ¢ ¸ ¸n ¸ 0 (6.142)

along with the corresponding eigenvectors: vi for i = 1; 2; : : : n . It can then be
shown that the restricted ML estimates of C and D are given by:

Ĉ =
£
ĉ1 ĉ2 ĉ3 ¢ ¢ ¢ ĉr

¤
(6.143)

D̂ = ¡S12Ĉ
³
ĈTS22Ĉ

´¡1
where:

ĉi = S
T
2 vi for i = 1; 2; : : : r: (6.144)

Suppose now we wish to test:

Ho : r = ro

Ho : r > ro:

The likelihood ratio test statistic for this null, referred to as the trace test, is
given by:

¤ = ¡T
nX

i=ro+1

ln (1¡ ¸i) : (6.145)

Alternatively suppose that we wish to test:

Ho : r = ro

Ho : r = ro + 1

then the likelihood ratio test statistic for this null is given by:

¤ = ¡T ln (1¡ ¸ro+1) : (6.146)

Critical values tables are available in the literature or calculated in packages
such as CATS and TSP (for (6:146) ). By beginning with ro = 0; that is that
there are no cointegrating vectors and increasing ro until the null of r = ro is
accepted, it is possible estimate the number of cointegrating vectors r:

A Numerical Example

The Johansen procedure is numerically intensive and so best left to computers
for most of the calculations. We can however illustrate the nature these calcu-
lations and some of the numerical techniques you will need if you wish to do
your own programming.
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Suppose you have n = 3 time series and you …nd that:

S11 =

24 0:28571 0:09862 0:14665
0:09862 0:32264 0:26366
0:14665 0:26366 0:40862

35 ; S22 =
24 0:21471 0:12554 0:20232
0:12554 0:21300 0:20733
0:20232 0:20733 0:29659

35
S12 =

24 0:12917 0:17447 0:17811
0:14275 0:19244 0:22765
0:20437 0:16144 0:22248

35 ; S21 =
24 0:12917 0:14275 0:20437
0:17447 0:19244 0:16144
0:17811 0:22765 0:22248

35 :
In performing the Johansen procedure our …rst task is to decompose S22 as

S22 = S2S
T
2 : This can be done either with the Cholesky decomposition or by

using the computer to decompose S22 as S22 = C¤C¡1 where ¤ is a diagonal
matrix with the positive eigenvalues of S22 on the diagonal as:

S22 =

24 0:21471 0:12554 0:20232
0:12554 0:21300 0:20733
0:20232 0:20733 0:29659

35
=

24 0:19684 0:53726 0:2659
0:22952 ¡0:49792 0:2684
¡0:32468 ¡2:6256£ 10¡2 0:35094

35
£
24 2:7371£ 10¡2 0 0

0 8:8475£ 10¡2 0
0 0 :60845

35
£
24 1:0 1:166 ¡1:6494
1:0 ¡0:92678 ¡0:04887
1:0 1:0094 1:3198

35 :
We then have: S2 = C¤

1
2C¡1 or:

S2 =

24 0:19684 0:53726 0:2659
0:22952 ¡0:49792 0:2684
¡0:32468 ¡2:6256£ 10¡2 0:35094

35
£
24 p

2:7371£ 10¡2 0 0

0
p
8:8475£ 10¡2 0

0 0
p
0:60845

35
£
24 1:0 1:166 ¡1:6494
1:0 ¡0:92678 ¡0:04887
1:0 1:0094 1:3198

35
so that:

S2 =

24 0:39978 9:9228£ 10¡2 0:21222
9:9228£ 10¡2 0:39286 0:22092
0:21222 0:22092 0:45027

35 :
Note that with this decomposition S2 is symmetric. We now calculate S as:

S = S¡12 S21S
¡1
11 S12

¡
ST2
¢¡1
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or:

S =

24 0:33801 9:4053£ 10¡2 0:12041
9:4048£ 10¡2 0:5036 0:35477
0:12041 0:35477 0:32011

35 :
Again we ask the computer to …nd the three eigenvectors and eigenvalues of

S: vi and ¸i as:

v1 =

24 0:4166
1:0638
0:84919

35$ ¸1 = 0:82362

v2 =

24 0:96083
¡0:32185

¡6:8155£ 10¡2

35$ ¸2 = 0:29796

v3 =

24 9:6069£ 10¡2
0:40396
¡0:5532

35$ ¸3 = 0:040135:

Note the eigenvalues are bounded between 0 and 1:
Suppose we have T = 150 observations and we wish to test Ho : r = 0 versus

H1 : r > 0 using the trace test the likelihood ratio test statistic would be:

¤ = ¡150 (ln (1¡ 0:82362) + ln (1¡ 0:29796) + ln (1¡ 0:040135))
= 319:48

while if one tested Ho : r = 0 versus H1 : r = 1 the likelihood ratio test statistic
would be:

¤ = ¡150 (ln (1¡ 0:82362))
= 260:27:

To test Ho : r = 1 versus H1 : r > 1 using the trace test the likelihood ratio
test statistic would be:

¤ = ¡150 (ln (1¡ 0:29796) + ln (1¡ 0:040135))
= 59:209

while to test Ho : r = 1 versus H1 : r = 2 the likelihood ratio test statistic
would be:

¤ = ¡150 (ln (1¡ 0:29796))
= 53:065:

Critical values for these test statistics are available.
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Suppose we believe that r = 2. To calculate the cointegrating vectors we
use: ĉi = ST2 vi for i = 1; 2 to obtain:

ĉ1 =

24 0:39978 9:9226£ 10¡2 0:21222
9:9226£ 10¡2 0:39286 0:22092
0:21222 0:22092 0:45027

3524 0:4166
1:0638
0:84919

35
=

24 0:45232
0:64687
0:70579

35
ĉ2 =

24 0:39978 9:9226£ 10¡2 0:21222
9:9226£ 10¡2 0:39286 0:22092
0:21222 0:22092 0:45027

3524 0:96083
¡0:32185

¡6:8155£ 10¡2

35
=

24 0:33772
¡4:6158£ 10¡2

0:10212

35
so that

Ĉ =

24 0:45232 0:33772
0:64687 ¡4:6158£ 10¡2
0:70579 0:10212

35 :
Now from

D̂ = ¡S12Ĉ
³
ĈTS22Ĉ

´¡1
we have:

D̂ =

24 0:6018 5:5455£ 10¡2
0:70865 6:4549£ 10¡2
0:7171 8:6944£ 10¡2

35
so that ¡̂ in the ECM model is:

¡̂ = D̂ĈT

=

24 0:29093 0:38673 0:43041
0:34234 0:45542 0:50675
0:35372 0:45986 0:51500

35 :
6.6 Appendix

6.6.1 Proof of the ECM Representation

Suppose that Xt follows a VAR(p) process in levels of the form:

~Á (B)Xt = ®+ at: (6.147)
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If Xt is DS then (1¡B)Xt has a Wold representation:
(1¡B)Xt = ¹+ Ã (B)at: (6.148)

As we have seen, cointegration depends on the matrix Ã (1) :Multiplying (6:147)
by (1¡B) it follows that:

~Á (B) (1¡B)Xt = (1¡B) at (6.149)

and substituting (6:148) in we have:

~Á (B) (¹+ Ã (B)at) = (1¡B) Iat: (6.150)

Applying E [ ] to both sides and using E [at] = 0 we conclude that:

~Á (1)¹ = 0

so that equating both sides we conclude that:

~Á (B)Ã (B) = (1¡B) I (6.151)

and so we have:

Theorem 261 Given (6:147) and (6:148) :
~Á (1)¹ = 0

~Á (B)Ã (B) = (1¡B) I: (6.152)

Proof. Setting B = 1 in (6:151) we arrive at:
~Á (1)Ã (1) = 0: (6.153)

It then follows from Theorem 6.103 that if Xt is cointegrated then the rows
of ~Á (1) are cointegrating vectors and hence linear combinations of C given in
(6:105) : We can therefore write ~Á (1) as:

¡~Á (1) = DCT (6.154)

where D is an n £ r matrix with rank r. Subtracting ¡~Á (1)Xt¡1 from both
sides of (6:147) we obtain:³

~Á (B)¡ ~Á (1)B
´
Xt = ®¡ ~Á (1)Xt¡1 + at: (6.155)

De…ne:

¡ (B) = ~Á (B)¡ ~Á (1)B (6.156)

and note that since ¡ (1) = 0; an n£ n matrix of zeros, so we can factor out a
1¡B from ¡(B) as:

¡ (B) = ~Á (B)¡ ~Á (1)B = (1¡B)Á (B) : (6.157)

Replacing ~Á (B)¡ ~Á (1)B with (1¡B)Á (B) in (6:155) we obtain:
Á (B) (1¡B)Xt = ®¡ ~Á (1)Xt¡1 + at: (6.158)

Finally replace ~Á (1) with the right-side of (6:154) to obtain the ECM model.



Chapter 7

Special Topics

7.1 The Frequency Domain

7.1.1 The Spectrum

So far we have discussed functions de…ned in the time domain. That is ½ (k),
Ãk and Et [Yt+k] have as arguments k; the number of time periods, which has a
time dimension.
There is another way of looking at time series where the argument is a

frequency. Suppose Yt is a sine wave with frequency ¸ as:

Yt = sin (¸t) :

If

¸ =
2¼

P

then Yt repeats itself or has a period of P periods. For example if

¸ =
2¼

5
= 1:2566

196
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then Yt would look like:

-1

-0.5

0

0.5

1

-10 -5 5 10t

Plot of sin
¡
2¼
5 t
¢
:

:

and so repeats itself every 5 periods. If we reduce the frequency so that:

¸ =
2¼

10
= 0:62832

then we have:

-1

-0.5

0

0.5

1

-10 -5 5 10t

Plot of sin
¡
2¼
10 t
¢
:

and Yt now repeats itself every 10 periods. In general if

¸ =
2¼

P

then Yt repeats itself or has a period of P periods.
Economic time series do not have such regular cyclical behavior. However

you can think of breaking up a time series into a number of frequencies or sine
waves of di¤erent frequency. Amongst others there might for example be the
seasonal frequency, a business cycle frequency. We might then be interesting in
seeing how each frequency contributes to the time series in the same sense that
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we might want to see how much di¤erent colours or sounds contribute to a light
or sound source.
The spectrum of a stationary time series: f (¸) roughly measures the con-

tribution of the frequency ¸ sine wave to Yt: For example ¸ = 2¼
4 (which has

a period of 4) would measure the importance of the seasonal frequency for a
quarterly time series Yt:
More exactly f (¸) is the Fourier transform of the autocovariance function

° (k) de…ned as:1

De…nition 262 The spectrum of a stationary time series: f (¸) is (equiva-
lently) de…ned as:

f (¸) =
° (0)

2¼
+
1

¼
(° (1) cos (¸) + ° (2) cos (2¸) + ° (3) cos (3¸) + ¢ ¢ ¢ )

=
1

2¼

1X
k=¡1

° (k) cos (¸k)

=
1

2¼

1X
k=¡1

° (k) ei¸k

for ¡¼ · ¸ · ¼:

The equivalence of the …rst and second lines follow from the fact that
cos (¡x) = cos (x) : The third line follows from Euler’s Theorem:

eix = cos (x) + i sin (x)

and the fact that sin (¡x) = ¡ sin (x) :
Note that f (¸) is a continuous function of the frequency ¸: It can be shown

that:

Theorem 263 The spectrum is a non-negative even function:

f (¸) ¸ 0

f (¡¸) = f (¸) :

Given ° (k) we can thus calculate the spectrum f (¸) using the Fourier trans-
form. It turns out that given f (¸) we can also calculate ° (k) using the inverse
Fourier transform. Thus both ° (k) and f (¸) contain exactly the same amount
of information, although this information is expressed in di¤erent ways. We
have:

1To see why all three de…nitions are equivalent recall that:

cos (¡¸k) = cos (¸k)

sin (¡¸k) = ¡ sin (¸k) :
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Theorem 264 The autocovariance function ° (k) can be calculated from f (¸)
as:

° (k) =

Z ¼

¡¼
f (¸) cos (¸k) d¸ (7.1)

=

Z ¼

¡¼
f (¸) e¡i¸kd¸:

By setting k = 0 in (7:1) it follows that

Theorem 265

° (0) =

Z ¼

¡¼
f (¸) d¸:

Remark 266 This means that the total area under f (¸) is the variance of
Yt given by ° (0). Thus f (¸) can be more precisely interpreted as the contribu-
tion of frequency ¸ to the total variance of Yt:

An important special case is a white noise time series so that ° (k) = 0 for
k 6= 0: In this case the spectrum is ‡at and given by:

f (¸) =
° (0)

2¼
=
¾2

2¼
:

Thus if Yt is white noise as:

Yt = at » N [0; 25]

then f (¸) = 25
2¼ = 3:978 as plotted below:

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3x

Spectrum of White Noise

:

Thus with a white noise time series all frequencies contribute equally to the
variance of Yt just as with white light all colours contribute equally to the
intensity of the light.
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7.1.2 The Spectrum of an ARMA(p,q)

There is a very beautiful relationship between the Wold representation and the
spectrum which often allows for the easy calculation of the spectrum:

Theorem 267 From the Wold representation: Yt = Ã (B) at the spectrum can
be expressed as:

f (¸) = Ã
¡
ei¸
¢
Ã
¡
e¡i¸

¢ ¾2
2¼

=
¯̄
Ã
¡
ei¸
¢¯̄2 ¾2

2¼
:

Remark 268 Recall from the Beveridge-Nelson decomposition that Ã (1) played
a key roll. This is closely related to f (0) since if ¸ = 0 then ei¸j¸=0 = e0 = 1
and so:

f (0) = Ã (1)2
¾2

2¼
:

Remark 269 There are multivariate analogues of the spectrum. In particular
if Yt is an n£ 1 multivariate vector of time series with Wold representation:

Yt = Ã (B) at

and V ar [at] = ­ then the spectrum of Yt is:

f (¸) = Ã
¡
e¡i¸

¢T
­Ã

¡
ei¸
¢
:

The easiest way to calculate f (¸) is via Theorem 267. For example the
AR(1) model:

Yt = ÁYt¡1 + at

with Ã (B) = 1
1¡ÁB has a spectrum:

f (¸) =
¾2

2¼

1

(1¡ Áei¸) (1¡ Áe¡i¸)
=

¾2

2¼

1¡
1 + Á2 ¡ 2Á cos (¸)¢

where we use the fact that:

cos (¸) =
ei¸ + e¡i¸

2
:

If we set Á = 0:7 and ¾2 = 2 then we obtain the spectrum:

f (¸) =
2

2¼

1

(1¡ 0:7ei¸) (1¡ 0:7e¡i¸)
=

1

¼

1

(1:49¡ 1:4 cos (¸))
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which is plotted below:
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Plot of f (¸)

:

Note that it is the low frequencies, that is ¸ close to zero that contribute the
most to the variance of Yt: This re‡ects the fact that with Á > 0 the series will
exhibit persistence and hence will tend to have longer wave like patterns the
greater is Á:
If instead set Á = ¡0:7 with ¾2 = 2 we obtain the spectrum:

f (¸) =
2

2¼

1

(1 + 0:7ei¸) (1 + 0:7e¡i¸)

=
1

¼

1

(1:49 + 1:4 cos (¸))

which is plotted below:
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:

Note that it is now the high frequencies that contribute the most to the variance
of Yt; re‡ecting the fact that if Yt > 0 then it is more likely that Yt+1 < 0 so
that Yt tends to alternate in sign.
You might want to prove that:
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Theorem 270 The spectrum of an AR(1) is either monotonically increasing
or decreasing depending on whether Á > 0 or Á < 0:

From Theorem 267 the spectrum of an AR(p) is:

f (¸) =
¾2

2¼
Ã
¡
ei¸
¢
Ã
¡
e¡i¸

¢
=

¾2

2¼

1

Á (ei¸)Á (e¡i¸)
:

To have a non-monotonic spectrum with a peak we need at least an AR(2).
The spectrum for an AR(2) is given by:

f (¸) =
¾2

2¼

1

(1¡ Á1ei¸ ¡ Á2e2i¸) (1¡ Á1e¡i¸ ¡ Á2e¡2i¸)
(7.2)

=
¾2

2¼

1

1 + Á21 + Á
2
2 ¡ 2 (Á1 cos (¸) + Á2 cos (2¸) + Á1Á2 cos (¸))

Consider for example the AR(2) in (3:135):

Yt = 1:5Yt¡1 ¡ 0:625Yt¡2 + at; ¾ = 0:01:
In this case the spectrum becomes:

f (¸) =
(0:01)2

2¼ (3:6406¡ 1:125 cos (¸) + 1:25 cos (2¸))
which is plotted below:
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7e-06
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Plot of f (¸)

:

Note that f (¸) has a peak at ¸ = 1:3439.2

2 If you di¤erentiate with respect to ¸ the …rst-order conditions are

1:125 sin (¸)¡ 2:5 sin (2¸) = 0:
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From Theorem 267 the spectrum of an ARMA(p,q) is:

f (¸) =
¾2

2¼

µ
¡
ei¸
¢
µ
¡
e¡i¸

¢
Á (ei¸)Á (e¡i¸)

=
¾2

2¼

¯̄
1 + µ1e

i¸ + µ2e
i2¸ + ¢ ¢ ¢+ µqeiq¸

¯̄2¯̄
1¡ Á1ei¸ ¡ Á2ei2¸ ¡ ¢ ¢ ¢ ¡ Ápeip¸

¯̄2 :
For example the ARMA(2,1) model :

Yt = 1:5Yt¡1 ¡ 0:625Yt¡2 + at + 0:5at¡1; ¾ = 0:01
has a spectrum:

f (¸) =
(0:01)2 (1:25 + cos (¸))

2¼ (3:6406¡ 1:125 cos (¸) + 1:25 cos (2¸))
which is plotted below:
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:

7.1.3 Spectral Estimation

The most basic estimator of the spectrum f (¸) is the periodogram I (¸) de…ned
as the Fourier transform of the estimated autocovariance function where:

De…nition 271 The periodogram I (¸) is:

I (¸) =
1

2¼

T¡1X
k=¡(T¡1)

°̂ (k) cos (¸k) (7.3)

Since sin (2¸) = 2 sin (¸) cos (¸) this reduces to:

1:125¡ 5 cos (¸) = 0
or:

¸ = arccos

µ
1: 125

5

¶
= 1:3439:
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or equivalently as:

I (¸) =
1

2¼T

¯̄̄̄
¯
TX
t=1

Yte
i¸t

¯̄̄̄
¯
2

: (7.4)

For cases where T is large (say T > 1000 ) it is faster to calculate I (¸)
using (7:4) and the fast Fourier transform. Otherwise (7:3) is adequate for
computational purposes.
Since I (¸) is a continuous function of ¸ we cannot actually calculate I (¸)

for all ¸ in the interval [0; ¼] : In fact it su¢ces to calculate I (¸j) for:3

¸j =
2¼j

T
; for j = 0; 1; 2; : : :

·
T ¡ 1
2

¸
:

These are sometimes referred to as the fundamental frequencies. Note that for
¸j = 0 we have:

I (0) =
1

2¼T

¯̄̄̄
¯
TX
t=1

Yt

¯̄̄̄
¯
2

=
T ¹Y 2

2¼
: (7.5)

Thus if Yt comes from either the DS or TS models where ¹Y = 0 it follows that
I (0) = 0.
I (¸j) is asymptotically unbiased but the variance of I (¸j) does not go to

zero as the sample size T increases so that I (¸j) is an inconsistent estimator of
f (¸) : In fact it can be shown that:

Proposition 272 The asymptotic distribution of the periodogram is:

I (¸j)

f (¸j)
a» Â22 for j = 1; 2; : : :

·
T ¡ 1
2

¸
where I (¸j) and I (¸k) are asymptotically independent for j 6= k:
One way of seeing why the periodogram is not a consistent estimator is to

note from (7:3) that I (¸j) is based on °̂ (k) for k · T ¡ 1: For k ¼ T there will
be very few pairs of Yt in a sample of T observations with which to estimate
° (k) and so °̂ (k) will be a poor estimator for k large. The most extreme
example is for k = T ¡ 1 where there is only one possible pair of observations
separated by T ¡ 1 periods: Y1 and YT so that:

°̂ (T ¡ 1) = 1

T
Y1YT : (7.6)

Clearly then °̂ (k) for k ¼ T will have large sample variation. This problem will
remain even as T !1 and so I (¸j) does not converge to the spectrum f (¸) :
Consistent estimates of f (¸) can be obtain by giving °̂ (k) for k large a

smaller weight in (7:3) using a lag window estimator:4

3 [x] is the integer part of x:
4 See Priestly chapter 6
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De…nition 273 The lag window estimator of f (¸) is de…ned as

f̂ (¸j) =
1

2¼

T¡1X
k=¡(T¡1)

w

µ
k

M

¶
°̂ (k) cos (¸jk) (7.7)

where w (·) ; referred to as a lag window, has the following properties:

w (·) = 0 for j·j > 1
w (¡·) = w (·)

and where M; the width of the lag window satis…es:

M !1

M

T
! 0 (7.8)

as T !1.
One popular choice, among many others for w (·) is the Tukey-Hanning

window where:

w (·) =

½
1
2 (1 + cos (¼·)) ; if 0 · j·j · 1

0; if j·j > 1 (7.9)

which is plotted below:
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Tukey Window: w (·)

:

The fact that w (·) decreases as · ! 1 insures that °̂ (k) does not a¤ect f̂ (¸)
very much until T is large enough so that °̂ (k) can be reliably estimated.
With the Tukey-Hanning window it can then be shown that:

Proposition 274r
T

M

³
f̂ (¸j)¡ f (¸j)

´
a» N

·
0;
3

4
f (¸j)

2

¸
(7.10)
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Note that this implies that the variance of f̂ (¸j) is approximately given by:

V ar
h
f̂ (¸j)

i
¼ 3

4

M

T
f (¸j)

2 (7.11)

which does go to zero as long as (7:8) is satis…ed.
Another popular choice is the Parzen window where:

w (·) =

8><>:
1¡ 6·2 + 6 j·j3 if 0 · j·j · 1

2

2
³
1¡ j·j3

´
if 12 < j·j · 1

0 if j·j ¸ 1:
(7.12)

With the Parzen window it can then be shown that:

Proposition 275r
T

M

³
f̂ (¸j)¡ f (¸j)

´
a» N

h
0; 0:539£ f (¸j)2

i
(7.13)

Thus the variance of f̂ (¸j) is approximately given by:

V ar
h
f̂ (¸j)

i
¼ 0:539M

T
f (¸j)

2 (7.14)

which also does go to zero as long as (7:8) is satis…ed.

7.1.4 Maximum Likelihood in the Frequency Domain

It is possible to write down the likelihood for a time series model in the frequency
domain. This is sometimes useful when calculating the likelihood in the time
domain is very di¢cult; particularly with fractional di¤erencing, which we will
discuss in the next section or with exponential time series models where the
Wold representation takes the form (see Bloom…eld (1973)):

Ã (B) = exp
¡
®1B + ®1B

2 + ¢ ¢ ¢+ ®pBp
¢
: (7.15)

We have:

Theorem 276 If Yt has a Wold representation

Yt = Ã (Bj®)at
where ® is a set of unknown parameters which determine the Wold representa-
tion: (i.e., the AR or MA parameters) then the likelihood can be approximated
as:

l
¡
®;¾2

¢
= ¡T

2
ln
¡
¾2
¢¡ 2¼

¾2

[T¡12 ]X
j=0

I (¸j)

jÃ (ei¸j®)j2 : (7.16)



CHAPTER 7. SPECIAL TOPICS 207

Estimating the parameters in ® thus boils down to minimizing:

S (®) =

[T¡12 ]X
j=0

I (¸j)

jÃ (ei¸j¯)j2 (7.17)

over ®: This can be done with a nonlinear optimization procedure, standard
now in most econometric programs. Once ®̂ has been calculated ¾̂2 can then be
calculated as:

¾̂2 =
1

2¼T

[T¡12 ]X
j=0

I (¸j)

jÃ (ei¸j®̂)j2 : (7.18)

For example consider calculating the likelihood of an MA(1) model which
has a spectrum:

f (¸) =
¾2

2¼

¡
1 + µ2 + 2µ cos (¸)

¢
: (7.19)

Here ® = µ so that: ¯̄
Ã
¡
ei¸jµ¢¯̄2 = ¡1 + µ2 + 2µ cos (¸)¢ (7.20)

and the log-likelihood can be expressed as:

l
¡
µ; ¾2

¢
= ¡T

2
ln
¡
¾2
¢¡ 2¼

¾2

[T¡12 ]X
j=0

I (¸j)¡
1 + µ2 + 2µ cos (¸j)

¢ : (7.21)

A more exotic model is the …rst-order exponential process where:

Ã (Bj®) = e®B (7.22)

so that:

Yt = e®Bat

=

µ
1 + ®B +

®2

2!
B2 +

®3

3!
B3 +

®4

4!
B4 +

®5

5!
B5 + ¢ ¢ ¢

¶
at

=
1X
k=0

®k

k!
at¡k: (7.23)

It would be relatively di¢cult to estimate ® using maximum likelihood in the
time domain. In the frequency domain, however, we can easily calculate the
spectrum as:

f (¸j®) =
¾2

2¼
exp

¡
ei¸
¢
exp

¡
e¡i¸

¢
=

¾2

2¼
exp (2® cos (¸)) (7.24)
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so that ¯̄
Ã
¡
ei¸j®¢¯̄2 = e2® cos(¸) (7.25)

and the likelihood can be calculated as:

l
¡
®; ¾2

¢
= ¡T

2
ln
¡
¾2
¢¡ 2¼

¾2

[T¡12 ]X
j=0

I (¸j) e
¡2® cos(¸): (7.26)

Either an iterative procedure or search over ® can then be used to …nd ®̂:

7.2 Fractional Di¤erencing

So far every stationary time series model we have considered has the short-
memory property. There are stationary time series models which do not have
the short-memory property. One example of these are fractional di¤erencing
models.
Ordinarily we di¤erence an integer number of times. If for example we

di¤erence Yt d times then this can be represented as:

(1¡B)d Yt: (7.27)

If d = 0 this means that we do not di¤erence so that:

(1¡B)0 Yt = Yt (7.28)

while if d = 1 we di¤erence once so that:

(1¡B)1 Yt = (1¡B)Yt = Yt ¡ Yt¡1: (7.29)

If d = 2 we di¤erence twice and obtain:

(1¡B)2 Yt = (1¡B) (Yt ¡ Yt¡1) (7.30)

= Yt ¡ 2Yt¡1 + Yt¡2
or alternatively we could use the fact that:

(1¡B)2 = 1¡ 2B +B2 (7.31)

to obtain the same result with d = 2:
Now it is also possible have d = 1

2 ; that is to di¤erence one-half times. The

idea is the same as with (7:31) where we use the Taylor series of (1¡B) 12 as:

(1¡B) 12 = 1¡ 1
2
B ¡ 1

8
B2 ¡ 1

16
B3 ¡ 5

128
B4

¡ 7

256
B5 ¡ 21

1024
B6 ¡ ¢ ¢ ¢ (7.32)
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In general we have:

(1¡B)d = 1 + (¡d)B + 1
2
d (d¡ 1)B2

+

µ
¡1
6
d (d¡ 1) (d¡ 2)

¶
B3 + ¢ ¢ ¢

=
1X
k=0

ºkB
k (7.33)

where:

ºk = (¡1)k d (d¡ 1) (d¡ 2) ¢ ¢ ¢ (d¡ k + 1)
k!

(7.34)

= (¡1)k ¡ (k ¡ d)
¡ (¡d) ¡ (k + 1)

and where ¡ (n) is the gamma function de…ned by:

¡ (n) =

Z 1

0

xn¡1e¡x (7.35)

and which satis…es ¡ (n) = (n¡ 1)! for n an integer and in general:
¡ (n) = (n¡ 1)¡ (n¡ 1) : (7.36)

De…nition 277 We say that Yt is a fractionally di¤erenced time series if:

(1¡B)d Yt = at (7.37)

or equivalently if:

1X
k=0

(¡1)k ¡ (k ¡ d)
¡ (¡d) ¡ (k + 1)Yt¡k = at:

Assuming Yt is stationary it will have a Wold representation:

Yt = (1¡B)¡d at
=

1X
k=0

Ãkat¡k:

where expanding (1¡B)¡d we have:

Ãk =
¡(k + d)

¡ (d) ¡ (k + 1)
: (7.38)
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This is plotted below for d = 1
4 :
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Ãk for d =
1
4

:

From Stirling’s approximation which states that for n large:

¡(n) ¼
p
2¼nnne¡n (7.39)

it can be shown that for large k :

Ãk =
¡(k + d)

¡ (d) ¡ (k + 1)
¼ kd¡1

¡ (d)
: (7.40)

Thus Ãk decays at a hyperbolic rate O
¡
kd¡1

¢
rather than exponentially as

O
¡
¿k
¢
for short-memory models.

Example 278 When d = 1
4 we have:

Ãk ¼
k¡

3
4

¡
¡
1
4

¢ = 0:27582£ k¡3
4

and so Ãk = O
³
k¡

3
4

´
:

Let us now address the question of stationarity. If d = 0 then Yt is white
noise and hence stationary while if d = 1 Yt follows a random walk and hence
is not stationary. It would appear therefore that somewhere between d = 0 and
d = 1 a fractionally di¤erenced process becomes nonstationary. This transition
point in fact occurs at d = 1

2 : We have:

Theorem 279 Yt in (7:37) is stationary and invertible if:

¡1
2
< d <

1

2
:
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Proof. (Informal) Stationarity requires V ar [Yt] <1: From (7:40) we have:

V ar [Yt] ¼ ¾2

¡ (d)2

1X
k=1

k2(d¡1) <1:

In order for the sum to be …nite we require the exponent on k to be less than
¡1 and so:

2 (d¡ 1) < ¡1
which implies that:

d <
1

2
:

To show d > ¡1
2 for invertibility requires similar ideas.

It can be shown that the variance ° (0) and the autocorrelation function
½ (k) for Yt in (7:37) are given by:

° (0) = ¾2
¡ (1¡ 2d)
¡ (1¡ d)2

½ (k) =
¡ (1¡ d) ¡ (k + d)
¡ (d) ¡ (k + 1¡ d) :

For example if d = 1
4 and ¾

2 = 1 we have:

° (0) =
¡
¡
1
2

¢
¡
¡
3
4

¢2 = 2:6114
and

½ (k) =
¡
¡
3
4

¢
¡
¡
k + 1

4

¢
¡
¡
1
4

¢
¡(k + 3)

and where ½ (k) is plotted below:
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Note the slow rate of convergence to zero of ½ (k) : This re‡ects the fact that:

½ (k) =
¡ (1¡ d) ¡ (k + d)
¡ (d) ¡ (k + 1¡ d) ¼

¡(1¡ d)
¡ (d)

k2d¡1:

As long as the stationarity condition d < 1
2 is satis…ed ½ (k) decays hyperbolically

as O
¡
k2d¡1

¢
and so ½ (k) also has the long-memory property.

The spectrum of Yt is given by:

f (¸) =
¾2

2¼

¡
1¡ ei¸¢¡d ¡1¡ e¡i¸¢¡d (7.41)

=
¾2

2¼
(2 (1¡ cos (¸)))¡d :

A plot of f (¸) with ¾2 = 2¼ and d = 1
4 is given below:
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f (¸) with d = 1
4

:

Note how f (¸) ! 1 as ¸ ! 0; so that the series is dominated by the low
frequencies. The fact that f (0) = 1 in turn implies that the autocovariances
of the series sum to in…nity. We have:

Theorem 280 If d > 0 then f (0) =1 and

1X
k=1

° (k) =1:

Proof. That f (0) = 1 follows from (7:41) : Using the de…nition of the
spectrum and the fact that cos (0) = 1 we obtain:

f (0) =
1

2¼

1X
k=¡1

° (k)

=
° (0)

2¼
+
1

¼

1X
k=1

° (k) =1:
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Finally, we can add ARMA(p,q) dynamics to a fractionally di¤erenced model
to obtain a fractionally integrated ARMA or ARFIMA(p,d,q) model de…ned as:

De…nition 281 We say that Yt is a ARFIMA(p,d,q) if:

Á (B) (1¡B)d Yt = µ (B)at: (7.42)

It can be quite di¢cult to calculate the likelihood in the time domain. Gen-
erally the easiest way is to work with the frequency domain where the log-
likelihood for an ARFIMA(p,d,q) is from (7:16):

l
¡
Á; µ; d; ¾2

¢¡ T
2
ln
¡
¾2
¢¡ 2¼

¾2

[T¡12 ]X
j=0

I (¸j)
¯̄
µ
¡
e¶¸j

¢¯̄2
(2 (1¡ cos (¸j)))d jÁ (e¶¸j )j2

:

7.3 Nonlinearity and Nonnormality

7.3.1 A General Class of Models

Until now we have dealt only with linear time series models with normally
distributed errors. What is one to do if the data do not seem consistent with
either linearity or normality?
Consider a time series model which takes the following form:

Yt = ¹t (Á) +
p
ht (®)Zt: (7.43)

where Zt is i:i:d: with density:

p (z j v) (7.44)

where v is a vector of parameters.
In this framework ¹t (Á) is the conditional mean of Yt at time based on the

information at time t¡ 1 while ht (Á) is the conditional variance so that:

Et¡1 [Yt] = ¹t (Á) (7.45)

V art¡1 [Yt] = ht (®) :

Every univariate time series model we have considered so far can be con-
sidered as a special case of (7:43) : This class of models however includes many
more types of models. For example it would include an AR(p) with an error
term that has a t distribution instead of the normal that we have assumed so
far. It also includes ARCH and GARCH models as well as threshold time series
models. It is also possible to extend this class of models to multivariate time
series models.
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If you have a model that is of the form (7:43) then it is possible to estimate it
by maximum likelihood. The key result is that the log-likelihood can be shown
to take the form:

l (Á; ®; v) = ¡1
2

TX
t=1

ln (ht (®)) +
TX
t=1

ln

µ
p

µ
Yt ¡ ¹t (Á)
ht (®)

j v
¶¶

: (7.46)

There are now generally available computer routines, for example in TSP;
GAUSS; RATS and SHAZAM which will …nd the maximum likelihood es-
timates for you if you can program the log-likelihood. Thus to estimate the
parameters Á;® and v in any of these models then you merely give such a
program the above likelihood and the computer does the rest.
In what follows we will look at some very useful models that can be estimated

using this approach.

7.3.2 Families of Densities

The normal distribution is not always consistent with economic data. Instead
we might want to have densities that are skewed or have thicker tails than the
normal. In what follows we will discuss two families of distributions which allow
for thicker tails than the normal.
The density

p (z j v) (7.47)

depends on a set of parameters v: If Zt has a standard normal distribution then
there are no parameters and we can write:

p (z) =
e¡

1
2z

2

p
2¼
: (7.48)

We can allow for thicker tails (i.e., a higher probability of outliers) by assum-
ing that Zt has a student’s t distribution with v degrees of freedom (normalized
so that V ar [Zt] = 1) where:

p (z j v) = ¡
¡
v
2

¢
¡
¡
1
2

¢
¡
¡
v+1
2

¢p
v ¡ 2

µ
1 +

z2

v ¡ 2
¶¡ v+1

2

: (7.49)

Using this framework then we can estimate v; the degrees of freedom and allow
the data to decide if the normal distribution is appropriate or not since when
v =1 this density reduces to the normal distribution. This density is plotted
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below with v = 7:
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t distribution: v = 7 and v =1:
The t distribution looks like the normal distribution but has much thicker tails
and hence a higher probability of outliers. This is illustrated below where the
tails of the t distribution with v = 7 and the normal distribution are plotted for
z > 2:
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Another class of densities which have thicker tails than the normal and are
often found in practice are those of the generalized exponential distribution:

p (z j v) = e¡
1
v jzjv

2v(1¡
1
v )¡

¡
1
v

¢ : (7.50)

This reduces to the standard normal distribution when v = 2 and the Laplace
distribution

p (z j 1) = e¡jzj

2
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when v = 1: The normal and Laplace densities are plotted below:
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Generalized Exponential: v = 1; 2:

7.3.3 Regime Switching Models

This class of models includes the familiar AR(p) model when we de…ne:

¹t (Á) =

pX
j=1

ÁjYt¡j ; (7.51)

ht (®) = ¾2

p (z j v) =
1p
2¼
e¡

1
2z

2

in which case we have:

Yt =

pX
i=1

ÁiYt¡i + at (7.52)

where

at = ¾Zt » N
£
0; ¾2

¤
; (7.53)

the ordinary AR(p) process.
By modifying p (z j v) we could, say to be of the form (7:49) or (7:50) ; we

obtain an AR(p) model where at is non-normal, say a Student’s t distribution
or generalized exponential distribution.
An interesting class of models is one which allows for changes in regime.

An AR(p) model restricts the dynamics of the economy to be the same in all
periods. We might, however, believe that the dynamics of the economy are
di¤erent say in a recession than in an expansion. A common observation is that
recessions are short with a dramatic decline while expansions last longer with
more gentle changes.
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This could be captured by supposing that Yt is an AR(1) but with an AR
parameter of Á1 when Yt > 0 and Á2 when Yt < 0 so that:

¹t (Á1; Á2) =

½
Á1Yt¡1; if Yt¡1 > 0
Á2Yt¡1; if Yt¡1 · 0: (7.54)

More generally we could have:

¹t (Á1; Á2) =

½ Pp
i=1 Á

1
iYt¡i; if Yt¡d > cPp

i=1 Á
2
iYt¡i; if Yt¡d · c

so that the AR parameter changes from Á2i to Á
1
i when Yt¡d crosses the threshold

given by c: These are called threshold autoregressive processes or TAR processes.
It is also possible to smooth the change in regime so that instead of an abrupt
change as Yt¡d crosses c there is a smooth change over from the two regimes.
Such models are called STAR or smooth transition threshold autoregressive
processes.
TAR models have the property that the condition which determines the

regime is observable; that is if:

St =

½
1 if Yt¡d > c
0 if Yt¡d · c

then at time t we observe St which determines which regime we are in. We can
write ¹t as:

¹t (Á1; Á2) = St

pX
i=1

Á1iYt¡i + (1¡ St)
pX
i=1

Á2iYt¡i:

Hamilton (1989) discusses a class of regime switching models, which has subse-
quently become very popular, where St is an unobserved process determined by
a Markov chain with transition matrix:·

p00 p01
p10 p11

¸
where:

pij = Pr [St = jjSt¡1 = i]
where i; j = 0; 1: These models are much harder to estimate than TAR models
but it is now feasible. Useful techniques include the EM algorithm and Gibbs
sampling.

7.3.4 Changing Volatility

Many …nancial series are subject to dramatic changes in their volatility. There
are a number of models which attempt to capture this behavior and which are
included in this general framework.
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The earliest is where Yt follows a qth order Autoregressive Conditional Het-
eroskedasticity or ARCH(q) process. In this case we set:

¹t (Á) = 0 (7.55)

ht (®) = ®o + ®1Y
2
t¡1 + ®2Y

2
t¡2 + ¢ ¢ ¢+ ®qY 2t¡q:

A very successful extension of the ARCH(q) model is a generalized ARCH or
GARCH. The GARCH(1,1) is given by:

ht (®o; ®1; ®2) = ®o + ®1Y
2
t¡1 + ®2ht¡1 (®o; ®1; ¯1) : (7.56)

This can be extended to the GARCH(p,1) process as:

ht (®; ¯) = ®o + ®1Y
2
t¡1 + ®2Y

2
t¡2 + ¢ ¢ ¢+ ®qY 2t¡q

+¯1ht¡1 (®; ¯) + ¯2ht¡2 (®; ¯) + ¢ ¢ ¢+ ¯pht¡p (®; ¯) :

Many other functional forms for ht (®; ¯) ; such as EGARCH fall into this frame-
work. Many of these models combine non-normal densities such as the t density
in (7:49) or the generalized exponential distribution in (7:50) :
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