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Chapter 9 

Non-Linear Tirne- 
Frequency Distributions 

In  Chapters 7 and 8 two  time-frequency  distributions were discussed: the 
spectrogram  and  the  scalogram.  Both  distributions  are  the result of linear 
filtering and subsequent  forming of the  squared  magnitude.  In  this  chapter 
time-frequency  distributions derived in a different manner will be considered. 
Contrary to spectrograms  and  scalograms,  their resolution is not  restricted 
by the  uncertainty principle. Although  these  methods  do  not yield positive 
distributions in all cases, they allow extremely  good insight into signal 
properties  within  certain applications. 

9.1 The Ambiguity  Function 

The goal of the following considerations is to describe the relationship between 
signals and  their  time  as well as frequency-shifted versions. We start by looking 
at time  and  frequency shifts separately. 

Time-Shifted Signals. The  distance d(z ,  2,) between an energy signal z(t)  
and  its time-shifted version z,(t) = z(t + T )  is related to  the autocorrelation 
function T ~ ~ ( T ) .  Here the following holds (cf. (1.38)): 

d(&, .lZ = 2 1 1 4 1 2  - 2 w % T ) } ,  (9-1) 
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266 Chapter 9. Non-Linear Time-Ekequency Distributions 

where 
CC 

T ~ , ( T )  E = (zT, z) = z*(t) z(t + .r)dt. L (9-2) 
As explained  in  Section 1.2, T ; ~ ( T )  can  also  be  understood as  the inverse 

Fourier transform of the energy  density  spectrum S,",(w) = IX(w)I2: 

In  applications  in which the signal z(t)  is transmitted  and  the  time shift T 
is to be  estimated from the received signal z(t + T ) ,  it is important  that z(t)  
and z(t + T) are  as dissimilar as possible for T # 0. That is, the  transmitted 
signal z(t)  should have an  autocorrelation  function that is as Dirac-shaped as 
possible. In the frequency  domain  this  means that  the energy  density  spectrum 
should  be as  constant  as possible. 

Frequency-Shifted Signals. Frequency-shifted versions of a signal z( t )  
are  often  produced  due to  the Doppler effect. If one  wants to estimate  such 
frequency shifts  in  order to determine the velocity of a moving object,  the dis- 
tance between a signal z(t)  and  its frequency-shifted version zv(t)  = z( t )e jut  
is  of crucial  importance. The distance is given by 

d ( z , z v )  = 2 llz112 - 2 x{(~ ,z>} .  (9.4) 

For the inner  product (zv, z) in (9.4) we  will henceforth use the abbreviation 
,ofz (v). We have 

= z*(t)  z(t) ejutdt 
J-W (9-5) 
W 

= sEz(t) ejVtdt with sEz(t) = lz(t)I2, 
J-CC 

where sEz((t) can  be viewed as  the  temporal energy density.' Comparing (9.5) 
with (9.3) shows a certain  resemblance of the formulae for .Fz(.) and pEz(v), 

'In (9.5) we have an inverse  Fourier  transform  in  which the usual prefactor 1/27r does 
not  occur  because we integrate  over t ,  not  over W .  This  peculiarity  could  be  avoided if Y 
was replaced by -v and (9.5) was  interpreted  as  a  forward  Fourier  transform. However, this 
would lead to  other inconveniences  in the remainder of this  chapter. 
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however, with the  time frequency  domains  being  exchanged. This becomes 
even more obvious if pF,(u) is stated  in  the frequency  domain: 

We see that pF,(u) can  be seen as  the  autocorrelation function of X ( w ) .  

Time and  Frequency-Shifted Signals. Let us consider the signals 

which are  time  and frequency  shifted versions of one another, centered  around 
z( t ) .  With  the  abbreviation 

for the so-called time-frequency  autocorrelation function or ambiguity func- 
tion’ we get 

Thus, the real part of Azz(v,  r) is related to  the distance between both signals. 

In non-abbreviated  form (9.8) is 

Azz(u, T) = S_,z*(t - 7 )  z(t + I) Gut dt. 
W 

2 2 
(9.10) 

Via  Parseval’s  relation we obtain  an expression for computing A,, (U, r) in the 
frequency domain 

X ( w  - -) X*(w + -) ejwT dw. (9.11) 
U U 

2  2 

‘We find different definitions of this  term  in  the  literature.  Some  authors  also  use  it for 
the  term IAZz(u,~)1’ [150]. 
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Example. We consider the Gaussian signal 

(9.12) 

which satisfies 1 1 2  1 1  = 1. Using the correspondence 

we obtain 
A,, (v, T) = e-- ;? e-&u2 (9.14) 

Thus, the ambiguity  function is a two-dimensional  Gaussian  function whose 
center is located at the origin of the  r-v plane. 

Properties of the Ambiguity Function. 

1. A time  shift of the input  signal  leads to a modulation of the ambiguity 
function  with  respect to  the frequency  shift v: 

This  relation  can easily be  derived  from (9.11) by exploiting the fact 
that x ( w )  = e-jwtoX(w).  

2. A modulation of the input  signal  leads to a modulation of the ambiguity 
function  with  respect to I-: 

z(t)  = eJwotz(t) + AEZ(V,T) = d W o T  A,,(~,T). (9.16) 

This is directly  derived from (9.10). 

3. The ambiguity  function  has its maximum at the origin, 

where E, is the signal energy. A modulation and/or  time shift of the 
signal z(t)  leads to a modulation of the ambiguity  function, but  the 
principal  position  in the  r-v plane is not affected. 

Radar Uncertainty Principle. The classical  problem  in radar is to find 
signals z(t)  that allow estimation of time  and  frequency  shifts  with high 
precision. Therefore, when designing an appropriate  signal z(t)  the expression 
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is considered, which contains  information  on the possible resolution of a given 
z ( t )  in the r-v plane. The ideal of having an impulse  located at the origin of 
the r-v plane  cannot  be realized since we have [l501 

m 
IAzz(v,r)I2 d r  dv = IA,,(O,0)I2 = E:. (9.18) 

That  is, if  we achieve that IA,,(v, .)I2 takes  on  the form of an impulse at the 
origin, it necessarily has to grow in other regions of the r-v plane  because of 
the limited maximal value IA,,(O, 0)12 = E:. For this reason, (9.18)  is also 
referred to as  the radar uncertainty principle. 

Cross Ambiguity Function. Finally we want to remark that, analogous 
to  the cross correlation, so-called cross  ambiguity functions are defined: 

W 

A?/Z(V, 7) = 1, z(t + f) y * ( t  - f) ejyt dt 
(9.19) 

X ( W  - ;) Y * ( w  + ;) eJw7 dw. 

9.2 The Wigner Distribution 

9.2.1 Definition  and Properties 

The Wigner  distribution is a tool for time-frequency analysis, which has  gained 
more and more  importance owing to many  extraordinary  characteristics. In 
order to highlight the motivation for the definition of the Wigner  distribution, 
we first look at the ambiguity  function. From A,, (v, r)  we obtain for v = 0 
the  temporal  autocorrelation function 

from which we derive the energy density spectrum by means of the Fourier 
transform: 

(9.21) 
W 

- - lmA, , (O,r )  e-iwT dr .  
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On the  other  hand, we get the  autocorrelation  function pFz (v) of the  spectrum 
X ( w )  from A z z ( v , 7 )  for 7 = 0: 

The  temporal  energy  density &(-L) is the Fourier  transform of &(v): 

(9.23) 

These  relationships  suggest defining a two-dimensional time-frequency  distri- 
bution W z z ( t ,  W )  as  the two-dimensional  Fourier  transform of A,,(v,  7): 

W22 ( t ,  W )  = - A z z ( v , r ) e  e U dr .  (9.24) -jvt - jwr  d 
2n -m -m 

The  time-frequency  distribution W,,( t ,  W )  is known as  the Wigner distribu- 
t i ~ n . ~  

The two-dimensional  Fourier  transform  in (9.24) can  also  be viewed as 
performing two subsequent  one-dimensional  Fourier  transforms  with  respect 
to r and v. The  transform with  respect to v yields the temporal  autocorrelation 
function4 

(9.25) 

(9.26) 

= X ( w  - g)  X * ( w  + 5). 

3Wigner  used W z z ( t , w )  for describing  phenomena of quantum mechanics [163], Ville 
introduced  it for signal  analysis later [156], so that one  also  speaks of the Wigner-Ville 
distribution. 

41f z( t )  was  assumed to  be  a  random process, E { C J ~ ~ ~ ( ~ , T ) }  would be  the  autocorrelation 
function of the process. 
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I Wignerdistribution I 

Temporal autocorrelation Temporal autocorrelation 

Figure 9.1. Relationship  between  ambiguity  function  and  Wigner  distribution. 

The function @,,(U, W) is so to say the temporal  autocorrelation  function of 
X(W). Altogether we obtain 

(9.27) 

with & , ( t , ~ )  according to (9.25) and @,,(Y,w) according to (9.26), in full: 

Figure 9.1 pictures  the relationships mentioned above. 

We speak of W,, (t,  W)  as a distribution  because  it is supposed to reflect 
the  distribution of the signal energy in the time-frequency plane. However, 
the Wigner  distribution  cannot  be  interpreted  pointwise  as a distribution of 
energy  because it  can also take on  negative values. Apart from this  restriction 
it  has all the  properties one would  wish of a time-frequency  distribution. The 
most important of these  properties will be briefly listed. Since the proofs can 
be  directly inferred from  equation (9.28) by exploiting the  characteristics of 
the Fourier transform,  they  are  omitted. 
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Some Properties of the Wigner Distribution: 

1. The Wigner  distribution of an  arbitrary signal z(t)  is always real, 

(9.29) 

2. By integrating over W we obtain  the  temporal energy density 

m 

s,,(t) E =L/ W,,(t,w) dw = lz(t)I2. (9.30) 
2n -m 

3. By integrating over t we obtain  the energy density spectrum 

m 

S,”,(w) = W,,(t,w) d t  = I X ( W ) ~ ~ .  (9.31) 
J -m 

4. Integrating over time  and frequency yields the signal energy: 

W W 

W,,(t,w) dw d t  = (9.32) 

5.  If a signal z(t)  is non-zero in only a certain  time  interval,  then  the 
Wigner  distribution is also restricted to this  time interval: 

z(t)  = 0 for t < tl and/or t > t 2  

U (9.33) 

W,,(t,w) = 0 for t < tl and/or t > t z .  

This  property  immediately follows from (9.28). 

6. If X ( w )  is non-zero  only in a certain  frequency region, then  the Wigner 
distribution is also restricted to this frequency region: 

X ( w )  = 0 for W < w1 and/or W > w2 

U (9.34) 

W,,(t,w) = 0 for W < w1 and/or W > w2. 
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7. A time shift of the signal leads to a time shift of the Wigner  distribution 
(cf. (9.25) and (9.27)): 

Z ( t )  = z(t - t o )  * WEE(t, W )  = W,,(t - t o ,  W ) .  (9.35) 

8. A modulation of the signal leads to a frequency shift of the Wigner 
distribution (cf. (9.26) and (9.27)): 

Z ( t )  = z(t)ejwot + Wgg( t ,w)  = W z z ( t , w  - W O ) .  (9.36) 

9. A simultaneous time shift and  modulation lead to a time  and  frequency 
shift of the Wigner  distribution: 

~ ( t )  = z(t - to)ejwOt ~ E s ( t , w )  = ~ , , ( t  - t o ,  W - W O ) .  (9.37) 

10. Time scaling leads to 

Signal Reconstruction. By an inverse Fourier transform of Wzz(t ,  W )  with 
respect to W we obtain  the function 

7- 
+zz(t,7-) = X * ( t  - -1 4 t  + 5)' 

2(.) = +zz(5,7-) = X*(O) X(.). (9.40) 

7- 

2 
(9.39) 

cf. (9.27). Along the line t = 7-/2 we get 
7- 

This  means that any z(t)  can  be perfectly reconstructed  from  its  Wigner 
distribution  except for the prefactor z*(O). 

Similarly, we obtain for the  spectrum 

X * ( u )  = Qzz(-,U) = X ( 0 )  X*@).  U 

2 
(9.41) 

Moyal's  Formula for Auto-Wigner Distributions. The  squared magni- 
tude of the inner product of two signals z(t)  and y(t) is  given  by the inner 
product of their  Wigner  distributions [107], [H]:  
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9.2.2 Examples 

Signals with Linear  Time-Frequency Dependency. The prime  example 
for demonstrating the excellent properties of the Wigner  distribution  in  time- 
frequency analysis is the so-called chirp  signal, a frequency  modulated (FM) 
signal whose instantaneous  frequency  linearly changes with  time: 

x( t )  = A ,j+Dt2 ejwOt. (9.43) 

We obtain 
W,,(t,w) = 2~ [AI2 S(W - WO - pt). (9.44) 

This  means that  the Wigner  distribution of a linearly  modulated  FM  signal 
shows the exact  instantaneous frequency. 

Gaussian Signal. We consider the signal 

wit h 

The Wigner  distribution W,,(t, W )  is 

W,, (t,  u) = 2 e-at' e-n W ' ,  
1 

and for WZZ (t ,  W )  we get 

(9.45) 

(9.46) 

(9.47) 

wZE((t, W )  = 2 e-"(t - to)' e-a [W - W O ] ' .  
1 

(9.48) 

Hence the Wigner  distribution of a modulated  Gaussian  signal is a two- 
dimensional Gaussian whose center is located at [to,  WO] whereas the ambiguity 
function is a modulated two-dimensional Gaussian  signal whose center is 
located at the origin of the 7-v plane (cf. (9.14),  (9.15) and (9.16)). 

Signals with  Positive Wigner Distribution. Only  signals of the form 

(9.49) 

have a positive Wigner  distribution [30]. The  Gaussian signal and  the chirp 
are to be regarded as special cases. 

For the Wigner  distribution of z ( t )  according to (9.49) we get 

(9.50) 

with W,,(t, W )  2 0 V t ,  W .  
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It can  be  regarded as a two-dimensional  Fourier  transform of the cross 
ambiguity  function AYz(v, 7). As can  easily  be verified, for arbitrary signals 
z ( t )  and y ( t )  we have 

W,, ( 4  W )  = W:, (t,  W ) .  (9.54) 

We  now consider a signal 

and  the corresponding  Wigner  distribution 

= W Z Z ( t , W )  + 2 WW,z( t ,41  + W & , W ) .  

(9.56) 

We see that  the Wigner  distribution of the sum of two signals  does  not 
equal the sum of their  respective  Wigner  distributions. The occurrence of 
cross-terms WVZ(t,u) complicates the  interpretation of the Wigner distri- 
bution of real-world signals. Size and location of the interference terms  are 
discussed in the following examples. 

Moyal's  Formula for Cross Wigner Distributions. For the inner 
product of two cross Wigner distributions we have [l81 

with (X, y) = J z ( t )  y * ( t )  dt.  

Example. We consider the sum of two complex exponentials 

For W,, (t,  W )  we get 

(9.58) 

W z z ( t ,  W )  = A: S(W - w I )  + A$ S(W - w Z )  
(9.59) 

+ 2 A 1 A z  C O S ( ( W ~  - W 1 ) t )  S(W - + ~ 2 ) )  

Figure 9.3 shows W,,(t ,w) and  illustrates the influence of the cross-term 
2 A 1 A 2  C O S ( ( W ~  - W 1 ) t )  S(W - ~ ( w I  + ~ 2 ) ) .  
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Figure 9.3. Wigner distribution of the sum of two sine waves. 

Example. In  this  example  the  sum of two modulated  Gaussian  signals is 
considered: 

4 t )  = 4 t )  + Y ( t >  (9.60) 

with 

z(t) = ,jw1(t - tl) ,-fa(t - 

and 

(9.61) 

(9.62) 

Figures 9.4 and 9.5 show examples of the Wigner distribution. We see that  the 
interference term lies between the two signal  terms, and  the modulation of the 
interference term takes  place  orthogonal to  the line  connecting the two signal 
terms.  This is different for the ambiguity  function,  also shown in  Figure 9.5. 
The center of the signal term is located at the origin, which results  from the 
fact that  the ambiguity  function is a time-frequency  autocorrelation  function. 
The interference terms concentrate  around 
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t t 
(a) (b) 

Figure 9.4. Wigner distribution of the sum of two modulated and time-shifted 
Gaussians; (a) tl = t z ,  w1 # wz; (b) tl # t z ,  w1 = w2. 

t Signal (real part): 

l m Wigner  distribution w z - - - - j - *  

Ambiguity function 

(c) 

Figure 9.5. Wigner distribution and ambiguity function of the sum of  two modu- 
lated and time-shifted Gaussians (tl # t z ,  w1 # wz).  
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9.2.4 Linear Operations 

Multiplication in  the  Time  Domain. We consider the signal 

Z ( t )  = z(t)  h(t) .  (9.63) 

For the Wigner  distribution we get 

W 

- 
- L 

The multiplication of $==(t, T) and $ h h ( t ,  r)  with respect to r can  be  replaced 
by a convolution in the frequency  domain: 

l 
271 WE ( t ,  W )  = - W,, ( t ,  W )  : W h h ( t ,  W )  

That is, a multiplication in the  time domain is equivalent to a convolution of 
the Wigner  distributions W,,(t,w) and W h h ( t ,  W )  with respect to W .  

Convolution  in the  Time  Domain. Convolving z(t)  and h( t ) ,  or equiv- 
alently, multiplying X ( W )  and H ( w ) ,  leads to a convolution of the Wigner 
distributions W,,(t,w) and W h h ( t ,  W )  with respect to t .  For 

Z ( t )  = x ( t )  * h( t )  (9.66) 

(9.67) 

= I W z z ( t ’ , ~ )  W’h(t - t ’ , ~ )  dt’. 

Pseudo-Wigner Distribution. A practical  problem  one  encounters when 
calculating the Wigner  distribution of an  arbitrary signal x ( t )  is that (9.28) 
can  only  be  evaluated for a time-limited z(t) .  Therefore, the concept of 
windowing  is introduced. For this, one usually does  not  apply a single window 
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h(t) to z( t ) ,  as in (9.65), but one centers h(t)  around  the respective time of 
analysis: 

M 

z*(t - 7) x( t  + -) h ( ~ )  e-jwT dT. 
7 

2 2 
(9.68) 

Of course, the time-frequency  distribution  according to (9.68) corresponds 
only approximately to  the Wigner  distribution of the original signal. Therefore 
one  speaks of a pseudo-  Wigner  distribution [26]. 

Using the  notation 

M 

h(r)  &(t, r) e-jwT d r  (9.69) 

it is obvious that  the pseudo-Wigner  distribution  can  be calculated from 
W,, ( t ,  W) as 

WArW)(t, W )  = 2?rWzz(t, W )  * H ( w )  
1 

(9.70) 

with H ( w )  t) h@). This means that  the pseudo-Wigner  distribution is a 
smoothed version of the Wigner  distribution. 

9.3 General  Time-Frequency Distributions 

The previous section showed that  the Wigner  distribution is a perfect time- 
frequency analysis instrument  as  long  as  there is a linear relationship between 
instantaneous  frequency  and  time. For general signals, the Wigner  distribution 
takes on  negative values as well and  cannot  be  interpreted  as a “true” density 
function. A remedy is the  introduction of additional  two-dimensional  smooth- 
ing kernels, which guarantee for instance that  the time-frequency  distribution 
is positive for all signals. Unfortunately, depending  on the  smoothing kernel, 
other desired properties  may get lost. To illustrate  this, we will consider several 
shift-invariant and affine-invariant time-frequency  distributions. 
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9.3.1 Shift-Invariant  Time-Frequency Distributions 

Cohen  introduced a general class of time-frequency  distributions of the form 
~ 9 1  

T Z Z ( t ,  W )  = - /// ej'(u - t ,  g(v, r )  X* (U - -) ~ ( u  + -) e-JWT dv du dr.  
r r .  

2T 2 2 
(9.71) 

This class of distributions is also known as Cohen's class. Since the kernel 
g(v, r )  in (9.71) is independent of t and W ,  all time-frequency  distributions of 
Cohen's class are shift-invariant. That  is, 

By choosing g ( v ,  T) all possible shift-invariant time-frequency  distributions 
can  be  generated.  Depending  on  the  application,  one  can choose a kernel that 
yields the required properties. 

If we carry  out  the  integration over u in (9.71), we get 

T,,(t,w) = - g ( u , r )  AZZ(v,r) eCjyt eCjWT du dr .  ss (9.73) 
271 

This  means that  the time-frequency  distributions of Cohen's class are com- 
puted  as two-dimensional Fourier transforms of two-dimensionally windowed 
ambiguity functions. From (9.73) we derive the Wigner  distribution for 
g(v , r )  = I. For g(v , r )  = h(r)  we obtain  the pseudo-Wigner  distribution. 
The  product 

M(v,  .) = g(v, .) A&, .) (9.74) 

is  known as  the generalized ambiguity  function. 

Multiplying Azz(v , r )  with g(v,r) in (9.73) can also be  expressed as  the 
convolution of W,, (t,  W )  with the Fourier transform of the kernel: 

with 
G(t, W )  = - // g(v, r )  ,-jut e-jWT dv dr.  (9.76) 

1 
2T 
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That  is, all time-frequency  distributions of Cohen’s class can  be  computed 
by means of a convolution of the Wigner  distribution  with a two-dimensional 
impulse  response G(t ,  W ) .  

In general the  purpose of the kernel g(v, T )  is to suppress the interference 
terms of the ambiguity function which are  located far  from the origin of the 
T-Y plane (see Figure 9.5); this  again leads to reduced interference terms 
in the time-frequency  distribution T,,(t,w). Equation (9.75) shows that  the 
reduction of the interference terms involves “smoothing” and  thus  results in 
a  reduction of time-frequency resolution. 

Depending  on the  type of kernel, some of the desired properties of the 
time-frequency  distribution are preserved while others get lost. For example, 
if one  wants to preserve the  characteristic 

(9.77) 

the kernel must satisfy the condition 

g(u,O) = 1. (9.78) 

We realize this by substituting (9.73) into (9.77) and  integrating over dw,  dr ,  
du. Correspondingly, the kernel must satisfy the condition 

in order to preserve the  property 

(9.80) 

A real distribution, that is 

is obtained if the kernel satisfies the condition 

g(Y,T) = g*(-V, - T ) .  (9.82) 

Finally it  shall  be  noted  that  although (9.73) gives a straightforward  inter- 
pretation of Cohen’s class, the  implementation of (9.71) is more  advantageous. 
For this, we first integrate over Y in (9.71). With 

(9.83) 
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Convolution 
40 with r(4,r) 

Fouricr transform 
T, (44 

Figure 9.6. Generation  of  a  general time-frequency distribution of Cohen’s class. 

we obtain 

T,,(t, W )  = // T(U - t ,  r )  z*(u - -) z(u + -) ,-JUT du dr.  (9.84) 7- 7 ’  

2 2 

Figure 9.6 shows the corresponding  implementation. 

9.3.2 Examples of  Shift-Invariant  Time-Frequency 
Distributions 

Spectrogram. The best known example of a shift-invariant  time-frequency 
distribution is the spectrogram,  described  in  detail  in  Chapter 7. An interest- 
ing  relationship between the spectrogram and  the Wigner distribution  can  be 
established [26]. In order to explain this,  the  short-time  Fourier  transform is 
expressed  in the form 

F z ( t , w )  = z(t‘) h*(t - t’) ,-jut‘ dt’. 
CC 

(9.85) 
J-CC 

Then the spectrogram is 

Alternatively,  with the  abbreviation 

X&’) = X@’) h*(t - t’), (9.87) 

S,, ( W )  = l X t ( 4 I 2  . (9.88) 
(9.85) can  be  written as 

Furthermore,  the  energy  density lXt(w)12 can  be  computed from the Wigner 
distribution W,,,, (t’, W )  according to (9.31): 

(9.89) 
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Observing (9.35) and (9.65), we finally obtain from  (9.89): 

Sx(t,w) = 1 27F //Wxx(t',w') W h h ( t  - t',w -W') dt'  dw' 
(9.90) 

1 

= 2 Wzz(t,w) * *  W h h ( t , W ) .  
27F 

Thus  the  spectrogram  results  from  the  convolution of Wzz(t ,  W )  with the 
Wigner  distribution of the impulse  response h@). Therefore, the  spectrogram 
belongs to Cohen's class. The kernel g(v, r )  in (9.73) is the ambiguity function 
of the impulse  response h(t) (cf. (9.75)): 

Although the  spectrogram  has  the  properties (9.81) and (9.72), the resolution 
in the time-frequency  plane is restricted in such a way (uncertainty principle) 
that (9.77) and (9.80) cannot  be satisfied. This becomes immediately  obvious 
when we think of the  spectrogram of a time-limited signal (see also Figure 
9.2). 

Separable Smoothing Kernels. Using separable  smoothing kernels 

d v ,  = G 1  ( 4  Q2 (.l, (9.92) 

means that smoothing  along  the  time  and  frequency axis is carried out 
separately. This becomes obvious in (9.75), which  becomes 

1 
21r 

1 
21r 

Tzz(t, W )  = - G(t, W )  * * wzz(t, W )  

(9.93) 

= - g 1 ( t )  * [ Gz(w) * wzz(t, W )  ] 

where 

G ( ~ , w )  = g 1 ( t )  GZ(W) ,  g 1 ( t )  W GI(w),  G ( w )  gz ( t ) .  (9.94) 

From (9.83) and (9.84) we derive the following formula  for  the time-frequency 
distribution, which can  be  implemented efficiently: 

Txx(t1w) = / [/ Z*(U - 5) Z(U + 5) g l ( u  - t )  du g 2 ( T )  ,-jwT dT. 1 7 7 

(9.95) 
Time-frequency  distributions which are  generated by means of a convolution 
of a Wigner  distribution  with  separable  impulse  responses  can also be  un- 
derstood  as  temporally  smoothed  pseudo-Wigner  distributions.  The window 
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gZ(T) in (9.95) plays the role of h ( ~ )  in (9.68). Temporal  smoothing is achieved 
by filtering with g1 ( t ) .  

An often used  smoothing kernel (especially in speech analysis) is the 
Gaussian 

g ( v , T )  = - e -a2u2/4 e-p2~2/4,  f f ,p  E R, f f ,p  > 0. (9.96) 
2 

Thus we derive the  distribution 

r r 
2 2 

z*(u - -) z(u + -) du dT. 

(9.97) 
For the two-dimensional  impulse  response G(t ,  U )  we have 

with 
g1(t) = ; e 1 $/a2 (9.99) 

and 
Gz(w) = - e 1 - w 2 / p  

P 
(9.100) 

It can  be  shown that for arbitrary signals a positive distribution is obtained 
if [75] 

ffp 2 1.  (9.101) 

For aP = 1, T,, ( t , ~ )  is equivalent to a spectrogram  with  Gaussian 
window.  For crp > 1, T i ~ a u s B ) ( t , ~ )  is  even more  smoothed than a spectrogram. 

Since T,, ( t ,  W )  for aP 2 1 can  be  computed much more easily and more 
efficiently via a spectrogram,  computing  with  the  smoothed  pseudo-Wigner 
distribution is interesting  only for the case 

(Gauss)  

(Gauss) 

f fp  < 1.  (9.102) 

The choice of (Y and p is dependent  on the signal in question. In  order to 
give a hint, consider a signal z( t )  consisting of the  sum of two  modulated 
time-shifted Gaussians. It is obvious that smoothing  should  be carried out 
towards the direction of the  modulation of the cross term (compare  Figures 9.4 
and 9.5). Although the  modulation may  occur in any  direction, we look at 
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Examples of Time-Frequency Distributions of Cohen's Class. In 
the  literature we find many  proposals of shift-invariant time-frequency dis- 
tributions. A survey is presented in [72] for instance.  In  the following, three 
examples will  briefly be  mentioned. 

Rihaczek distribution. The Rihaczek  distribution is  defined as [l241 

T , ( f ) ( t , w )  = x * ( t )   x ( t  + r )  e-jwT d r  S (9.103) 

= x * ( t )  X ( W )  ejwt. 

This  type of distribution is of enticing simplicity, but  it is not real-valued in 
general. 

Choi- Williarns Distribution. For the Choi-Williams distribution  the fol- 
lowing product kernel is  used [24]: 

g(v, = - W ( 4 7 W ,  g > 0. (9.104) 

We see that g(v, 0) = 1 and g(0, r )  = 1 are satisfied so that  the Choi-Williams 
distribution  has  the  properties (9.77) and (9.80). 

The  quantity g in (9.104) may  be  understood  as a free parameter. If 
a  small g is chosen, the kernel concentrates  around  the origin of the r-v 
plane, except for the r and  the v axis. Thus we get a generalized ambiguity 
function M(v,  r )  = g(v, r )  A,,(v, r)  with  reduced interference terms,  and  the 
corresponding  time-frequency  distribution  has  reduced interference terms  as 
well. From (9.71),  (9.83), and (9.84) we get 

T g W )  ( t ,  W )  = e-r2a(U - t12/T2~*(u - -) ~ ( u +  -) e-J'JT du dr.  
7- r '  
2  2 

(9.105) 

Zhao-Atlas-Marks Distribution. Zhao, Atlas and Marks [l681 suggested 
the kernel 

This yields the  distribution 

(9.106) 
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9.3.3 Affine-Invariant  Time-Frequency Distributions 

Affine smoothing is an  alternative to regular smoothing of the Wigner dis- 
tribution (Cohen’s class). A time-frequency  distribution that belongs to  the 
affine class is invariant  with respect to time shift and scaling: 

Any time-frequency  distribution that satisfies (9.108) can  be  computed  from 
the Wigner  distribution by means of an affine transform [54], [126]: 

T,,(t,W) = - K(W(t‘ - ~ ) , w ’ / w )  W z z ( t ‘ , W ’ )  dt’ h‘. 
2n ‘ s s  (9.109) 

This  can  be  understood  as  correlating  the  Wigner  distribution  with kernel K 
along the  time axis. By varying W the kernel is scaled. 

Since (9.108) and (9.72) do  not  exclude  each other,  there exist other  time- 
frequency  distributions besides the Wigner  distribution which belong to  the 
shift-invariant Cohen class as well as to  the affine class. These are, for instance, 
all time-frequency  distributions that originate  from a product kernel, such as 
the Choi-Williams distribution. 

Scalogram. An example of the affine class is the scalogram, that is, the 
squared  magnitude of the wavelet transform of a signal: 

2 

with 

where 

Thus, from (9.112) we derive 

I W , ( ~ , U ) ~ ~  = L / / W $ , $  2n (-,a.‘) t’ - b Wzz(t‘,w‘) dt’ h’. 

(9.110) 

(9.111) 

(9.112) 

(9.113) 

(9.114) 
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The  substitutions b = t and a = wo/w finally yield 

(9.115) 
= - I W $ , $  1 (%(P - t ) ,  :U’) W,,(~’ ,W’)  dt’ h’. 

2n 

The resolution of the scalogram  is, just like that of the  spectrogram, limited 
by the  uncertainty principle. 

9.3.4 Discrete-Time Calculation of Time-Frequency 
Distributions 

If  we wish to calculate the Wigner  distribution or some other time-frequency 
distribution  on a computer we are forced to sample our signal and  the  trans- 
form kernel and to replace all integrals by sums. If the signal and  the kernel are 
bandlimited and if the sampling rate is far  above the Nyquist rate for both 
signal and kernel, we do  not face a substantial problem. However, in some 
cases, such as  the Choi-Williams distribution,  sampling  the kernel already 
poses a problem.  On the  other  hand,  the  test signal may  be discrete-time 
right away, so that discrete-time definitions of time-frequency  distributions 
are required in any case. 

Discrete-Time Wigner Distribution [26]. The discrete-time  Wigner 
distribution is  defined as 

(9.116) 
m 

Here, equation (9.116) is the discrete version of equation (9.28), which, using 
the  substitution r’ = 3-12, can  be  written as 

W 

X* (t - r‘) z ( t  + r’) e-i2wr‘ dr’. (9.117) 

As we know, discrete-time signals have a periodic spectrum, so that one 
could expect the Wigner  distribution of a discrete-time signal to have a 
periodic spectrum also. We have the following property: while the signal z(n) 
has a spectrum X ( e j w )  t) z(n) with  period 2n, the period of the discrete- 
time  Wigner  distribution is only n. Thus, 

W,, (n, ejw> = W,, (n, ejw + ), k E Z .  (9.118) 
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The reason for this is subsampling by the  factor two  with respect to T .  In 
order to avoid aliasing effects in the Wigner  distribution,  one  has to take  care 
that  the bandlimited signal z(t)  is sampled  with the  rate 

f a  2 4 f m a z  (9.119) 

and  not  with f a  2 2 f m a z ,  where 

X ( w )  = 0 for IwI > 27~ f m a z .  (9.120) 

Because of the different periodicity of X ( e j w )  and Wzz(n,ejw) it is not 
possible to transfer all properties of the continuous-time  Wigner  distribution 
to  the discrete-time Wigner  distribution. A detailed discussion of the  topic 
can  be  found in [26], Part 11. 

General Discrete-Time Time-Frequency Distributions. Analogous 
to (9.84) and (9.116), a general discrete-time time-frequency  distribution of 
Cohen’s class is  defined as 

M N  

Tzz(n, k) = 2 c c p( [ ,  m) 2 * ( C  + n - m) 2 ( C  + n + m) e-j47rkmlL. 
m=-Me=-N 

(9.121) 
Here we have  already  taken  into  account that in practical  applications  one 
would only consider discrete frequencies 2 ~ k / L ,  where L is the DFT length. 

Basically we could  imagine the  term p(C,m) in (9.121) to be a 2M + 1 X 

2 N  + 1 matrix which contains  sample values of the function ~(u, 7) in (9.84). 
However,  for kernels that  are  not  bandlimited, sampling  causes a problem. 
For example, for the discrete-time Choi-Williams distribution we therefore 
use the  matrix 

with 
N 

e-uk2/4m2, n = -N, . . . , N ,  m = -M,.  . . , M .  (9.123) 
h=-N 

The normalization C,  p(n, m)  = 1 in (9.122) is necessary in order to preserve 
the  properties [l11 

CT, (FW)(n ,k )  = IX(k)12 = IX($W”)12 (9.124) 
n 
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9.4 The Wigner-Ville Spectrum 

So far  the signals analyzed  have  been  regarded as  deterministic.  Contrary to 
the previous considerations, z( t )  is henceforth defined as a stochastic process. 
We may view the  deterministic analyses considered so far  as referring to single 
sample functions of a stochastic process. In order to gain  information on 
the  stochastic process we define the so-called Wigner-Vdle spectrum as  the 
expected value of the Wigner  distribution: 

with 
~ z z ( t + - , t - - ) = E { 4 z z ( t , r ) } = E { ~ * ( t - ~ ) ~ ( t + - ) }  r r r r (9.127) 

2 2   2 -  

This  means that  the  temporal correlation function (t,  r )  is replaced by its 
expected value, which  is the  autocorrelation function rzz (t + 5,  t - 5) of the 
process z(t) .  

The  properties of the Wigner-Ville spectrum  are basically the same as 
those of the Wigner  distribution.  But by forming the expected value it 
generally contains fewer negative values than  the Wigner  distribution of a 
single sample  function. 

The Wigner-Ville spectrum is of special interest when analyzing non- 
stationary or cyclo-stationary processes because  here the  usual  terms, such 
as power spectral density, do  not give any  information  on the  temporal 
distribution of power or energy. In order to illustrate  this,  the Wigner- 
Ville spectrum will be discussed for various processes in connection  with the 
standard  characterizations. 

Stationary Processes. For stationary processes the  autocorrelation func- 
tion only  depends  on r, and  the Wigner-Ville spectrum becomes the power 
spectral density: 

W 

w,,(t,w) = S,,(w) = (9.128) 

if z(t)  is stationary. 
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Processes with  Finite Energy. If we assume that  the process z(t)  has 
finite energy, an average  energy density spectrum can  be derived from the 
Wigner-Ville spectrum  as 

rca 

For the mean  energy we then have 

E, = E {lm lz(t)I2 d t }  = 1 SW w z z ( t , w )  dw dt. (9.131) 
--m 27r -m 

Non-Stationary Processes with Infinite Energy. For non-stationary 
processes with infinite energy the power spectral density is not defined. 
However, a mean power density is  given  by 

(9.132) 

Cyclo-Stationary Processes. For cyclo-stationary processes it is  sufficient 
to integrate over one  period T in order to derive the mean power density: 

(9.133) 

Example. As a simple  example of a cyclo-stationary process, we consider 
the signal 

W 

z(t)  = c d ( i )  g(t  - iT). (9.134) 
a=-cc 

Here, g ( t )  is the impulse  response of a filter that is excited with  statistically 
independent data d ( i ) ,  i E Z. The process d ( i )  is assumed to be  zero-mean 
and  stationary.  The signal z(t)  can  be viewed as  the complex  envelope of a 
real bandpass signal. 

Now  we consider the  autocorrelation function of the process z(t) .  We 
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obtain 

r,,(t + 7, t )  = E { x * ( t ) x ( t  + T ) }  

W W  

= c c E { d * ( i ) d ( j ) }  g*(t  - iT) g( t  - jT  + T )  

i = - ~  j=-W 
W 

= c$ c g*(t  - iT) g( t  - iT + T ) .  

2 = - W  

(9.135) 
As (9.135) shows, the  autocorrelation function depends  on t and T ,  and in 
general the process ~ ( t )  is not  stationary. Nevertheless, it is cyclo-stationary, 
because the  statistical  properties  repeat periodically: 

r z z ( t + T , t ) = r z z ( t + T + e T , t + e T ) ,  e E Z .  (9.136) 

Typically, one chooses the filter g ( t )  such that  its  autocorrelation function 
r: (T )  satisfies the first Nyquist condition: 

= { 0 otherwise. 
1 for m = 0, (9.137) 

Commonly  used filters are  the so-called raised cosine filters, which are 
designed as follows.  For the energy density S,”,(w) t) r:(t) we take 

1 1 for IwTl/n 5 1 - r ,  

s,”,(w) = :[I + c o s [ g ( w ~ / r  - (1 - r ) ) ] ]  for 1 - r 5 l w ~ ~ / r  5 1 + r ,  

0 for IwTl/n 2 1 + r .  
(9.138) 

Here, r is  known as  the roll-off factor, which can  be chosen in the region 
0 5 r 5 1. For r = 0 we get the ideal lowpass. For P > 0 the energy density 
decreases in cosine form. 

From (9.138) we derive 

(9.139) 

As we see, for r > 0, r g ( t )  is a windowed  version of the impulse  response of 
the ideal lowpass. Because of the  equidistant zeros of the si-function, condition 
(9.137) is satisfied for arbitrary roll-off factors. 
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With 
(9.140) 

the required  impulse  response g ( t )  can  be  derived  from (9.138) by means of 
an inverse Fourier  transform: 

(4rtlT) cos(nt(1 + r)/T) + sin(nt(1- r)/T) 
g ( t )  = nt [l - ( 4 ~ t / T ) ~ ]  

(9.141) 

where 

g(0) = - 1 + P ( -  - 1) , T l (  = 4 ,  
(9.142) 

Figure 9.9 shows three examples of autocorrelation  functions  with  period 
T and  the corresponding Wigner-Ville spectra. We observe that for large 
roll-off factors there  are considerable  fluctuations  in power in the course of a 
period.  When stating  the mean power density  in the classical way according 
to (9.133) these effects are  not visible (cf. Figure 9-10). 

As can  be seen in  Figure 9.9, the fluctuations of power decrease  with 
vanishing roll-off factor.  In the limit,  the ideal lowpass is approached (T = 0), 
and  the process ~ ( t )  becomes wide-sense stationary.  In  order to show this,  the 
autocorrelation  function T,, (t+.r, t )  is written  as  the inverse Fourier  transform 
of a convolution of G*( -w)  and G(w) :  

e'j(W ~ W'). ~ ' jWkT h/ $.Wtd 
W .  

(9.143) 
Here the summation is to be  performed over the complex exponentials only. 
Thus, by using 

we achieve 

(9.144) 

(9.145) 



296 Chapter 9. Non-Linear  Time-Ekequency Distributions 

r =  1 

0 ‘ 0  

r = 0.5 A 

r = 0.1 /l 

‘T ‘ T  

‘0 

Figure 9.9. Periodic autocorrelation functions and  Wigner-Ville spectra (raised 
cosine  filter  design with various  roll-off factors T ) .  

Integrating over W yields 

T,, (t + 7, t )  = 

(9.146) 

If G ( w )  is bandlimited to x / T ,  only the  term for k = 0 remains, and  the 
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Figure 9.10. Mean autocorrelation functions = so r=,=,(t + 7, t)dt and 
mean power spectral density ( r  = 0.5). 

T 

(9.147) 

This shows that choosing g ( t )  to be  the ideal lowpass with  bandwidth 7r/T 
yields a Nyquist  system in which z(t)  is a wide-sense stationary process. 
However, if  we consider realizable systems we must  assume a cyclo-stationary 
process. 

Stationarity within a realizable framework  can  be  obtained by introducing 
a delay of half a sampling  period for the  imaginary  part of the signal. An 
example of such a modulation  scheme is the well-known  offset phase shift 
keying. The modified signal reads 

W 

d( t )  = c R{d(i)} g( t  - iT) + j9{d(i)} g( t  - iT - T / 2 ) .  (9.148) 
I = -  W 

Assuming that 

(9.149) 
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we have 

1 "  
TZtZ' (t + 7, t )  = 5ui c g*(t - iT)  g(t - iT + 7) 

%=-m 

l o o  T T + 50: c g * ( t - i T - - ) g ( t - i T + T - - )  
2 2 

%=-m 

- l o o  T .T $ c g*(t - i-) g ( t  + 7- - 2-) - 
2  2 

%=-m 
(9.150) 

for the  autocorrelation function. According to (9.146) this  can  be  written  as 

T,',' (t + 7, t )  = 

We see that only the  term for k = 0 remains if G(w) is bandlimited to 2lr/T, 
which  is the case for the raised cosine filters. The  autocorrelation function 
then is 

Tzlzr ( t  + 7, t )  = U d  Z 1  - T g g ( T ) .  E 
T 

(9.152) 

Hence the  autocorrelation function T,I,I (t+7-, t )  and  the mean  autocorrelation 
function are identical. Correspondingly, the Wigner-Ville spectrum equals the 
mean power spectral density. 

If we regard z'(t) as  the complex  envelope of a real bandpass process 
xBP(t), then we cannot  conclude  from the wide-sense stationarity of z'(t) 
the  stationarity of zBp(t): for this to be  true,  the  autocorrelation functions 
T,,,, ( t  + T,  t )  and rzrzr ( t  + T,  t )  would have to be identical and would have 
to be  dependent  only  on 7- (cf. Section 2.5). 


