
Representations of Random 
Processes 

3.1 INTRODUCTION 

In this chapter we discuss briefly some of the methods of characterizing 
random processes that we need for the remainder of the book. The essential 
idea that we want to emphasize is straightforward. There are many alter- 
nate ways of characterizing waveforms and random processes, but the best 
depends heavily on the problem that we are trying to solve. An intelligent 
characterization frequently makes the problem solution almost trivial. 

Several methods of characterizing signals come immediately to mind. 
The first is a time-domain characterization. A typical signal made up of 
pulses of various heights is shown in Fig. 3.1. A time-domain characteriza- 
tion describes the signal shape clearly. 

Is it a good representation ? To answer this question we must specify 
what we are going to do with the signal. In Fig. 3.2 we illustrate two 
possible cases. In the first we pass the signal through a limiter and want to 
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A typical signal. 
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Fig. 3.2 Operations on signals 

calculate the output. The time domain characterization enables us to find 
the output by inspection. In the second we pass the signal through an ideal 
low-pass filter and want to calculate the energy in the output. In this case 
a time-domain approach is difficult. If, however, we take the Fourier 
transform of s(t), 

s 
co S(ja) = me -iat dt 9 (1) --co 

the resulting problem is straightforward. The energy in u(t) is Eg, where 

s 

2nw 

Ey = 2 
0 

(2) 

Thus, as we well know, both the time-domain and frequency-domain 
descriptions play an important role in system analysis. The point of the 
example is that the most efficient characterization depends on the problem 
of interest. 

To motivate another method of characterization consider the simple 
communication systems shown in Fig. 3.3. When hypothesis 1 is true, the 
deterministic signal s#) is transmitted. When hypothesis 0 is true, the 
signal s2(t) is transmitted. The particular transmitted waveforms are 
different in systems A, B, and C. The noise in each idealized system is 
constructed by multiplying the two deterministic waveforms by inde- 
pendent, zero-mean, Gaussian random variables and adding the resulting 
waveforms. The noise waveform will have a different shape in each system. 
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Fig. 3.3 Three hypothetical communication systems. 

The receiver wants to decide which hypothesis is true. We see that the trans- 
mitted signal and additive noise are appreciably different waveforms in 
systems A, B, and C. In all cases, however, they can be written as 

h(t) = &(t), O<t<T - 
dt) = &(t>, 0 < t < T’ - (3) 
n(t) = WM) + WM), 0 < t 5 i 9 

where the functions $l(t) and $z(t) are orthonormal; that is, 

+i(t) #j(t) dt = aij, i, j = 1, 2. (4) 
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The functions +#) and +&) are different in the three systems. It is clear 
that because 

49 = ($1 + nl) dl(O + R2 d2(0, Ost<T:H,, 

r(t) = WMO + (sz + %I MO, O<t<T:H,, - (5) 

we must base our decision on the observed value of the coefficients of the 
two functions. Thus the test can be viewed as 

This, however, is just a problem in classical detection that we encountered 
in Chapter 2. 

The important observation is that any pair of orthonormal functions 
+&) and &(t) will give the same detection performance. Therefore either 
a time-domain or frequency-domain characterization will tend to obscure 
the significant features of this particular problem. We refer to this third 
method of characterization as an orthogonal series representation. 

We develop this method of characterizing both deterministic signals and 
random processes 
ministic signals. 

in this chapter. In the next section we discuss 

3.2 DETERMINISTIC FUNCTIONS: ORTHOGONAL REPRESENTATIONS 

Consider the function x(t> which is defined over the interval [0, T] as 
shown in Fig. 3.4. We assume that the energy in the function has some 
finite value Ex. 

s 

T  
Ex = x”(t) dt < a. (7) 

0 

Now the sketch implies one way of specifying x(t>. For every t we know 
the value of the function x(t). Alternately, we may wish to specify x(t) by 
a countable set of numbers. 

The simple example in the last section suggests writing 

m = 2 xi MO, 
i= 1 

c9t 

t Throughout most of our discussion we are concerned with expanding real wave- 
forms using real orthonofmal functions and real coefficients. The modifications to 
include complex orthonormal functions and coefficients are straightforward. 
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Fig. 3.4 A time-limited function. 

where the &(t) are some set of orthonormal functions. For example, we 
could choose a set of sines and cosines 

+2(t) = (g cos (; t)9 

O,<t,<T. (9 
+3(t) = ($j” sin ($ t), 

#zn(t) = ($)% cos (f nt)* 

Several mathematical and practical questions come to mind. The mathe- 
matical questions are the following: 

1. Because it is only practical to use a finite number (N) of coefficients, 
how should we choose the coefficients to minimize the mean-square 
approximation (or representation) error? 

2. As N increases, we would like the mean-square approximation error 
to go to zero. When does this happen? 

The practical question is this: 

If we receive x(t) as a voltage waveform, how can we generate the 
coefficients experimentally? 

First we consider the mathematical questions. The representation error is 

edt 1 = x(t) - 2 xi MO9 
f=l 

(10) 

when we use N terms. The energy in the error is 

E,(N) 4 
s 

’ eN2(t) dt (10 
0 
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We want to minimize this energy for any N by choosing the xi appro- 
priately. By differentiating with respect to some particular xj, setting the 
result equal to zero, and solving, we obtain 

Because the second derivative is a positive constant, the X~ given by (12) 
provides an absolute minimum. The choice of coefficient does not 
as N is increased because of the orthonormality of the functions. 

change 

Finally, we look at the energy in the representation error as N --+ 00. 

s T 

E,(w n eN2(t) dt = 
0 

i=l 

Because the xi2 are nonnegative, the error is a monotone-decreasing 
function of N. 

If 9 lim E,(N) = 0 (14) 

for all x(t) with finite energy,Nwe@say that the &(t), i = 1, . . . , are a complete 
orthonormal (CON) set over the interval [0, T] for the class of functions 
with finite energy. The importance of completeness is clear. If we are 
willing to use more coefficients, the representation error decreases. In 
general, we want to be able to decrease the energy in the error to any 
desired value by letting N become large enough. 

We observe that for CON sets al 
Ex = c xi2. (1% 

f=l 

Equation 15 is just Parseval’s theorem. We also observe that xi2 repre- 
sents the energy in a particular component of the signal. 

Two possible ways of generating the coefficients are shown in Fig. 3.5. 
In the first system we multiply x(t) by +i(t) and integrate over [0, T]. 
This is referred to as a correlation operation. In the second we pass x(t) 
into a set of linear filters with impulse responses hi(T) = q$(T - 7) and 
observe the outputs at time T. We see that the sampled output of the ith 
filter is 

s 

T 
X(T) hi( T - 7) d7. 

0 

For the particular impulse response used this is xi, 

xi = 
s 

TX(T)+i(T)dTy i= 1,2,...,N. w  
0 
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w 

Fig. 3.5 Generation of expansion coefficients: (a) correlation operation; 
(6) filter operation. 

In Chapter 2 we saw that it was convenient to consider N observations 
as a point in an N-dimensional space. We shall find that it is equally useful 
to think of the N coefficients as defining a point in a space. For arbitrary 
signals we may need an infinite dimensional space. Thus any finite energy 
signal can be represented as a vector. In Fig. 3.6 we show two signals- 
sl(t> and s&): 

Q(t) = 6 Sli 5w 
i= 

82(t) = i S2i +i(t>* 

(1w 

i=l 
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Fig. 3.6 Representation of a signal as a vector. 

The corresponding signal vectors are 

811 

A Sl - [I s12 = 2 wh, 
i=l 

s13 

A s2 - 

Several observations follow immediately : 

1. The length of the signal vector squared equals the energy in the signal. 

I I Sl 
2 

= El, 

1 I s2 = 2. 2 E 

2. The correlation coefficient between two signals is defined as 

Substituting (174 into (19), we have 

P12 = 

(18) 
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Using the orthonormality of the coordinate functions the integral 
reduces to 

3 

2 S1tS22 

p12 = ** (21) 

The numerator is just the dot product of s1 and s2. Using (18) in the 
denominator, we obtain, 

Sl'S2 

p12 = IS1]* (22) 

The obvious advantage of the vector space interpretation is that it enables 
us to use familiar geometric ideas in dealing with waveforms. 

We now extend these ideas to random waveforms. 

3.3 RANDOM PROCESS CHARACTERIZATION 

We begin our discussion in this section by reviewing briefly how random 
processes are conventionally defined and characterized. 

3.3.1 Random Processes: Conventional Characterizations 

The basic idea of a random process is familiar. Each time we conduct an 
experiment the outcome is a function over an interval of time instead of 
just a single number. Our mathematical model is illustrated in Fig. 3.7. 
Each point in the sample space 0 maps into a time function. We could 
write the function that came from CC)~ as x(t, WJ to emphasize its origin, but 
it is easier to denote it simply as x(t). The collection of waveforms gener- 
ated from the points in Q are referred to as an ensemble. If we look down the 
ensemble at any one time, say tl, we will have a random variable xt, 6! 
x(tl, 0). Similarly, at other times tl we have random variables xt,. 

Clearly, we could characterize any particular random variable xt, by its 
probability density. A more difficult question is how to characterize the 
entire process. There is an obvious property that this characterization 
should have. If we consider a set of times tl, t2, . . . , t, in the interval in 
which the process is defined, there are n random variables xtl, xt,, +, . . . , 
xt,. Any complete characterization should be able to specify the joint 
density Pxllx~2...xJx,, x29 l l l 9 XJ. Furthermore, it should be able to 
specify this density for any set of n times in the interval (for any finite n). 

Unfortunately, it is not obvious that a characterization of this kind will 
be adequate to answer all questions of interest about a random process. 
Even if it does turn out to be adequate, there is a practical difficulty in 
actually specifying these densities for an arbitrary random process. 
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Sample space 

Outcome of 
first experiment 

Outcome of 
second experiment 

Outcome of 
jfhexperiment 

Fig. 3.7 An ensemble of sample functions. 

There are two common ways of handling this difficulty in specifying the 
nth-order density. 

Structured Processes. We consider only those processes in which any 
&h-order density has a certain structure that can be produced by using 
some low-order density and a known algorithm. 

Example. Consider the probability density at the ordered set of times 

the process is called a Markov process. Here knowledge of the second-order density 
enables us to construct the nth order density (e.g., [2,p. 441 or Problems 3.3.9 and 
3.3.10). Other structured processes will appear naturally as our discussion proceeds. 

Partial Characterization. We now consider operations on the random 
process that can be studied without actually completely characterizing the 
process. For these operations we need only a partial characterization. A 
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large number of partial characterizations are possible. Two of the most 
widely used are the following: 

1. Single-time characterizations. 
2. Second-moment characterizations. 

In a single-time characterization we specify only px,(X), the first-order 
probability density at time t. In general, it will be a function of time. A 
simple example illustrates the usefulness of this characterization. 

Example. Let 
r(t) = x(t) + n(t). (24) 

Assume that JQ and nt are statistically independent and p%,(X) and p,JN) are 
known. We operate on r(t) with a no-memory nonlinear device to obtain a minimum 
mean square error estimate of x(t) which we denote by R(t). 

From Chapter 2, i(t) is just the conditional mean. Because we are constrained to a 
no-memory operation, we can use only r(t). Then 

R(t) = s Fc) Xpxt,rtWtlRt) d&v 4 f(Rt). (25) 
-CO 

If xt is Gaussian, N(0, Q), and nt is Gaussian, N(0, on), it is a simple exercise (cf. 
Problem 3.3.2) to show that 

f(R,) = + Rt, 
OX on 

(26) 

so that the no-memory device happens to be linear. Observe that because we allowed 
only a no-memory device a complete characterization of the process was not necessary. 

In a second-m 
moments of the 

oment chara 
process. We 

cterization we specify only the fi rst and second 
define the mean-value function of the process 

(27) 

In general, this is a function of time. The correlation function is defined as 

The covariance function is defined as 

This partial characterization is well suited to linear operations on 
random processes. This type of application is familiar (e.g., [ 11, pp. 171- 
185) 

The covariance function has several properties of interest to us. Looking 
at the definition in (29), we see that it is symmetric: 

K&9 4 = K,(u, t). (30) 
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If we multiply a sample function x(t) by some deterministic square- 
integrable functionf(t) and integrate over the interval [0, T], we obtain a 
random variable : 

A T 
Xf - 

s 
x0 f(t) dL (30 

0 

The mean of this random variable is 
T 

E(x,) = xf Li E 
s 

x(t) f(t) dt = 
0 s 

T  

mm f(t) d4 (32) 
0 

and the variance is 

Var (x,) n E[(x, - Zf)“] 

Bringing the expectation inside the integral, we have 

The variance must be greater than or equal to zero. Thus, we have shown 
that 

T 

ss 
f(t) K,(t, u) f(u) dt du > 0 

0 

(35) 

for any f(t) with finite energy. We call this property nonnegative definite- 
ness. If the inequality is strict for everyf(t) with 
say that K,(t, U) is positive definite. We shall need 

nonzero finite energy, we 
the two properties in (30) 

and (35) in the next section. 
If the process is defined over an infinite interval and the covariance 

function depends only on 1 t - ~1 and not t or u individually, we say that 
the process is covarialzce-statiortary and write 

K%(t) 24) = K,(t - u) = KJ7). mt 

Similarly, if the correlation function depends only on 1 t - ~1, we say that 
the process is correlation-stationLzry and write 

R,(t, u) = R,(t - 24) = R,(7). (37) 

t It is important to observe that although K&t, u) is a function of two variables and 
&(T) of only one variable, we use the same notation for both. This economizes on 
symbols and should cause no confusion. 
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For stationary processes, a characterization using the power density 
spectrum &(w) is equivalent to the correlation function characterization 

and 

As already pointed out, these partial characterizations are useful 
when the operations performed on the random process are constrain 

only 
.ed to 

have a certain form. A much more useful representation for the problems 
of interest to us is a characterization in terms of an orthogonal series ex- 
pansion. In the next section we use a series expansion to develop a second- 
moment characterization. In the succeeding section we extend it to provide 
a complete characterization for a particular process of interest. It is worth- 
while to observe that we have yet to commit ourselves in regard to a com- 
plete characterization of a random process. 

3.3.2 Series Representation of Sample Functions of Random Processes 

In Section 3.2 we saw how we could represent a deterministic waveform 
with finite energy in terms of a series expansion. We now want to extend 
these ideas to include sample functions of a random process. We start off 
by choosing an arbitrary complete orthonormal set: +&), +&), . . . . For 
the moment we shall not specify the exact form of the #i(t). To expand 
x(t) we write 

x(t) = lim 2 wbi(O, 0 < t < T, 
N-*aJ f=l 

(39) 
where 

A T 
xi - 

s 
x(t) h(t) dL (40) 

0 

We have not yet specified the type of convergence required of the sum 
on the right-hand side. Various types of convergence for sequences of 
random variables are discussed in the prerequisite references [ 1, p. 631 
or [29]. 

An ordinary limit is not useful because this would require establishing 
conditions on the process to guarantee that every sample function could be 
represented in this manner. 

A more practical type of convergence is mean-square convergence: 

x(t) = 1.i.m. 2 Xf w, Ost<T -  l 

N+* i=l 



Karhunen-Lo&e Expansion I79 

The notation “ 1.i.m.” denotes limit in the mean (e.g., [ 1, p. 631) which is 
defined as, 

(42) 

For the moment we assume that we can find conditions on the process 
to guarantee the convergence indicated in (42). 

Before doing so we discuss an appropriate choice for the orthonormal 
set. In our discussions of classical detection theory our observation space 
was finite dimensional and usually came with a built-in coordinate system. 
In Section 2.6 we found that problems were frequently easier to solve if we 
used a new coordinate system in which the random variables were un- 
correlated (if they happened to be Gaussian variables, they were also 
statistically independent). In dealing with continuous waveforms we have 
the advantage that there is no specified coordinate system, and therefore 
we can choose one to suit our purposes. From our previous results a logical 
choice is a set of $r(t> that leads to uncorrelated coefficients. 

If 

E(x*) A mi, (43) 
we would like 

EK xi - mfX% - mj)] = AiSfj. (44) 

For simplicity we assume that mi = 0 for all i. 
worthwhile : 

Several observations are 

1. The value xl2 has a simple physical interpretation. It corresponds to 
the energy along the coordinate function di(t) in a particular sample 
function. 

2. Similarly, E(xi2) = & corresponds to the expected value of the energy 
along 4*(t), assuming that mi = 0. Clearly, hi > 0 for all i. 

3. If &(t, U) is positive definite, every h, is greater than zero. This 
follows directly from (35). A little later it will be easy to show that if 
K,(t, U) is not positive definite, at least one X, must equal zero. 

We now want to determine what the requirement in (44) implies about 
the complete orthogonal set. Substituting (40) into (44) and bringing the 
expectation inside the integral, we obtain 

h*s,f = E(x,x,) = E x(t> +*w dl 
s 

T 

W Mu) d” 
0 1 

= s,’ 4*(t) dt JOT KJt, u> +j(u) du, for all i andj. (45) 
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In order that (45) may hold for all choices of i and a particular j, it is 
necessary and sufficient that the inner integral equal Xj +j(t): 

The functions +i(t) are called eigenfunctions and the numbers hi are called 
eigenvalues. 

Therefore we want to demonstrate that for some useful class of random 
processes there exist solutions to (46) with the desired properties. The 
form of (46) is reminiscent of the equation that specified the eigenvectors 
and eigenvalues in Section 2.6 (2-363), 

w = mb, (47) 
where K, was a symmetric, nonnegative definite matrix. This was a set of 
N simultaneous homogeneous linear equations where iV was the dimen- 
sionality of the observation space. Using results from linear equation 
theory, we saw that there were N real, nonnegative values of h for which 
(47) had a nontrivial solution. Now the coordinate space is infinite and we 
have a homogeneous linear integral equation to solve. 

The function K,(t, u) is called the kernel of the integral equation, and 
because it is a covariance function it is symmetric and nonnegative 
definite. We restrict our attention to processes with a finite mean-square 
value [E(x2(t)) < oo]. Their covariance functions satisfy the restriction 

T 

Is [s 

T 

1 
2 

K*2(t, 24) dt du < E[x2(t)] dt < 00, 
0 

0 

(48) 

where T is a finite number. 
The restrictions in the last paragraph enable us to employ standard 

results from linear integral equation theory? (e.g., Courant and Hilbert [3], 
Chapter 3 ; Riesz and Nagy [4] ; Lovitt [5] ; or Tricomi [6]). 

Properties of Integral Equations 

1. There exist at least one square-integrable function 4(t) and real 
number h # 0 that satisfy (46). 

It is clear that there may not be more than one solution. For example, 

has only one nonzero eigenvalue and one normalized eigenfunction. 
2. By looking at (46) we see that if $j(t) is a solution then c+j(t) is also 

a solution. Therefore we can always normalize the eigenfunctions. 

t Here we follow Davenport and Root [l], p. 373. 
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3. If $&) and +&) are eigenfunctions associated with the same eigen- 
value A, then cl+&) + &(t> is also an eigenfunction associated with A. 

4. The eigenfunctions corresponding to different eigenvalues are ortho- 
gonal. 

5. There is at most a countably infinite set of eigenvalues and all are 
bounded. 

6. For any particular A there is at most a finite number of linearly 
independent eigenfunctions. [Observe that we mean algebraic linear 
independence; f(t) is linearly independent of the set +*(t), i = 1,2, . . . , K, 
if it cannot be written as a weighted sum of the 4*(t).] These can always be 
orthonormalized (e.g., by the Gram-Schmidt procedure; see Problem 4.2.7 
in Chapter 4). 

7. Because K,(t, U) is nonnegative definite, the kernel K,(t, U) can be 
expanded in the series 

0 < t, u < - T 9 

where the convergence is uniform for 0 < t, u < T. (This is called Mercer’s 
theorem.) 

8. If K,(t, U) is positive definite, the eigenfunctions form a complete 
orthonormal set. From our results in Section 3.2 this implies that we can 
expand any deterministic function with finite energy in terms of the 
eigenfunctions. 

9. If K,(t, u) is not positive definite, the eigenfunctions cannot form a 
complete orthonormal set. [This follows directly from (35) and (40).] 
Frequently, we augment the eigenfunctions with enough additional ortho- 
gonal functions to obtain a complete set. We occasionally refer to these 
additional functions as eigenfunctions with zero eigenvalues. 

10. The sum of the eigenvalues is the expected value of the energy of 
the process in the interval (0, T), that is, 

E[/;XZ(t) dt] = J; K,(t, t) dt = f& 

(Recall that x(t) is assumed to be zero-mean.) 

These properties guarantee that we can find a set of +i(t) that leads to 
uncorrelated coefficients. It remains to verify the assumption that we made 
in (42). We denote the expected value of the error if x(t) is approximated by 
the first N terms as &(t): 
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Evaluating the expectation, we have 

Property 7 guarantees that the sum will converge uniformly to K,(t, t) 
as N -+ 00. Therefore 

lim &(t) = 0, 0 < t < T, 
Ndoo 

(56) 

which is the desired result. (Observe that the convergence in Property 7 
implies that for any E > 0 there exists an N1 independent of t such that 
tN(t) 6 E for all N > N1). 

The series expansion we have developed in this section is generally 
referred to as the Karhunen-Loeve expansion. (Karhunen 2251, Loeve [26], 
p. 478, and [30].) It provides a second-moment characterization in terms 
of uncorrelated random variables. This property, by itself, is not too 
important. In the next section we shall find that for a particular process of 
interest, the Gaussian random process, the coefficients in the expansion are 
statistically independent Gaussian random variables. It is in this case that 
the expansion finds its most important application. 

3.3.3 Gaussian Processes 

We now return to the question of a suitable complete characterization 
of a random process. We shall confine our attention to Gaussian random 
processes. To find a suitable definition let us recall how we defined jointly 
Gaussian random variables in Section 2.6. We said that the random 
variables x1, x2, . . . , XN were jointly Gaussian if 

Y = 2 wi (57) 
f=l 

was a Gaussian random variable for any set of gt. In 2.6 N was finite and 
we required the g, to be finite. If N is countably infinite, we require the 
g, to be such that EIy2] a 00. In the random process, instead of a linear 
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transformation 
functional of a 

on a set of random variables, we are interested in a linear 
random function. This suggests the following definition : 

Definition. Let x(t) be a random process defined over some interval [T,, &] 
with a mean-value m%(t) and covariance function K,(t, u). If every linear 
functional of x(t> is a Gaussian random variable, then x(t> is a Gaussian 
random process. In other words, if 

and g(u) is any function such that E[y2] < 00. Then, in order for X(U) to be 
a Gaussian random process, y must be a Gaussian random variable for 
every g(u) in the above class. 

Several properties follow immediately from this definition. 
Property 1. The output of a linear system is a particular linear functional 
of interest. We denote the impulse response as h(t, u), the output-at time t 
due to a unit impulse input at time U. If the input is x(t> which is a sample 
function from a Gaussian random process, the output y(t) is also. 

Proof: 

y(t) = ITB h(t, u) x(u) du, T, < t < TA. (59) 
Tct 

The interval [T,, TA] is simply the range over which y(t) is defined. We 
assume that h(t, U) is such that E[y2(t)] < oo for all t in [T,, TJ. From 
the definition it is clear that yt is a Gaussian random variable. To show 
that y(t) is a Gaussian random process we must show that any linear 
functional of it is a Gaussian random variable. Thus, 

or 

must be Gaussian for every g,(t) [such that E[z2] < 001. Integrating with 
respect to t and defining the result as 

wh ich is Gaussian by definition. 

A 
s 

TA 

g(u) - 

TY 

have 

s 

TB 
z = 

Tlz 

(62) 

(6% 

Thus we have shown that if the input to a linear system is a Gaussian 
random process the output is a Gaussian random process. 
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Property 2. If 

s 

Tl3 
Yl = gdu> x(4 dz4 (64) T 

a 

Property 2. If 
Tl3 

Yl = 
s 

gdu> x(4 dz4 (64) T 
a 

and 

s s 
Ti3 Ti3 

Y2 = Y2 = g2(u) x0 d% g2(u) x0 d% 

Ta Ta 
(65) 

where x(u) is a Gaussian random process, then y1 and y2 are jointly 
Gaussian. (The proof is obvious in light of (57).) 

(65) 

where x(u) is a Gaussian random process, then y1 and y2 are jointly 
Gaussian. (The proof is obvious in light of (57).) 

Property 3. If Property 3. If 

and and 

Xf = 
s 

Tp +i(u) x(u) du (66) 
Ta 

s 
Tg Xj = +jC"> x(U) d% (67) 

Ta 

Xf = 
s 

Tp +i(U) X(U) du (66) 
Ta 

Xj = 
s Tg +jC”> x(U) d% (67) 

Ta 

where +i(U) and +j(U) are orthonormalized eigenfunctions of (46) [now 
the interval of interest is (T,, T,) instead of (0, T)] then xi and xj are stat- 
istically independent Gaussian random variables (i # j). Thus, 

where di(u) and +j(U) are orthonormalized eigenfunctions of (46) [now 
the interval of interest is (T,, T,) instead of (0, T)] then xi and xj are stat- 
istically independent Gaussian random variables (i # j). Thus, 

where where 

1 1 
P&2 = dm exp Px&G> = dm exP 

1 1 
(X (X . - . - 

m1j2 m1j2 
- - * 2hf * 2hf 1 1 9 ’ (68) (68) 

This property follows from Property 2 and (45). This property follows from Property 2 and (45). 

Property 4. For any set of times tl, t2, t3, . . . , t, in the interval [T,, T,] the Property 4. For any set of times tI, t2, t3, . . . , t, in the interval [T,, T,] the 
random variables xt,, xt2, . . . , random variables xt,, xt,, . . . , xtn are jointly Gaussian random variables. xtn are jointly Gaussian random variables. 

Proof: If we denote the set by the vector xt, Proof: If we denote the set by the vector xt, ‘xt, % 

n xt - 
xt2 xt2 

[I 

9 9 . . . . . . ,Jtn Xt?l I 
(70) 

whose mean is m,, 

m m 
9 9 (71) 
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then the joint probability density is 

px,(X) = [(27+n~2~Rx~ “1 -l exp t-+(X - mJA, ‘(X - m,)] 

and the joint characteristic function is 

M,,(jv) = exp ( jvTm, - J#R,v), 

where A, is the covariance matrix of the random variables +, xt,, 
(We assume A, is nonsingular.) The ij element is 

A x,ij = EK % - mx(ti))(%, - mx(tj))l* 

This property follows by using the function 

m = 2 gi @ - t*> 
i=l 

in (58) and the result in (57). Thus we see that our definition has the de- 
sirable property suggested in Section 3.3.1, for it uniquely specifies the joint 
density at any set of times. Frequently Property 4 is used as the basic 
definition. The disadvantage of this approach is that it is more difficult to 
prove that our definition and Properties l-3 follow from (72) than vice- 
versa. 

The Gaussian process we have defined has two main virtues: 

1. The physical mechanisms that produce many processes are such that 
a Gaussian model is appropriate. 

2. The Gaussian process has many properties that make analytic 
results feasible. 

Discussions of physical mechanisms that lead logically to Gaussian 
processes are available in [7] and [8]. Other properties of the Gaussian 
process which are not necessary for our main discussion, are developed in 
the problems (cf. Problems 3.3.12-3.3.18). 

We shall encounter multiple processes that are jointly Gaussian. The 
definition is a straightforward extension of the preceding one. 

Definition. Let xl(t), x2(t), . . . , x&) be a set of random processes defined 
over the intervals (Tal, Z-&), (&, Ts,), . . . , (T,,, &J, respectively. If 
every sum of arbitrary functionals of xi(t), i = 1, . . . , N, is a Gaussian 
random variable, then the processes x1(t), x2(t), . . . , x&) are defined to 
be jointly Gaussian random processes. In other words, 

must be Gaussian for every set of g,(u) such that E[y2] < m. 
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Other properties of jointly Gaussian processes are discussed in the 
problems. 

Property 3 is the reason for our emphasis on the Karhunen-Loeve ex- 
pansion. It enables us to characterize a Gaussian process in terms of an at 
most countably infinite set of statistically independent Gaussian random 
variables. The significance of this will perhaps be best appreciated when we 
see how easy it makes our ensuing work. Observe that if we had chosen to 
emphasize Markov processes the orthogonal expansion method of charac- 
terization would not have been particularly useful. In Section 6.3 we discuss 
characterizations that emphasize the Markovian structure. 

The Karhunen-Loeve expansion is useful in two ways: 

1. Many of our theoretical derivations use it as a tool. In the majority 
of these cases the eigenfunctions and eigenvalues do not appear in the final 
result. The integral equation that specifies them (46) need never be solved. 

2. In other cases the result requires an explicit solution for one or more 
eigenfunctions and eigenvalues. Here we must be able to solve the equation 
exactly or find good approximate solutions. 

In the next section we consider some useful situations in which solutions 
can be obtained. 

3.4 HOMOGENEOUS INTEGRAL EQUATIONS AND EIGENFUNCTIONS 

In this section we shall study in some detail the behavior of the solutions 
to (46). In addition to the obvious benefit of being able to solve for an 
eigenfunction when it is necessary, the discussion serves several other 
purposes : 

1. By looking at several typical cases and finding the eigenvalues and 
eigenfunctions the idea of a coordinate expansion becomes somewhat 
easier to visualize. 

2. In many cases we shall have to make approximations to get to the 
final result. We need to develop some feeling for what can be neglected 
and what is important. 

3. We want to relate the behavior of the eigenvalues and eigenfunctions 
to more familiar ideas such as the power density spectrum. 

In Section 3.4.1 we illustrate a technique that is useful whenever the 
random process is stationary and has a rational power density spectrum. 
In Section 3.4.2 we consider bandlimited stationary processes, and in 
Section 3.4.3 we look at an important nonstationary process. Next in 
Section 3.4.4 we introduce the idea of a “white” process. In Section 3.4.5, 
we derive the optimum linear filter for estimating a message corrupted by 
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noise. Finally, in Section 3.4.6, we examine the asymptotic behavior of the 
eigenfunctions and eigenvalues for large time intervals. 

3.4.1 Rational Spectra 

The first set of random processes of interest are stati .onary 
spectra that can be written as a ratio of two polynomials in w2. 

and have 

where IV(02) is a polynomial of order 4 in w2 and O(02) is a polynomial of 
order p in w  2. Because we assume that x(t) has a finite mean-square value, 
4 < p. We refer to these spectra as rational. There is a routine but tedious 
method of solution. The basic idea is straightforward. We convert the 
integral equation to a differential equation whose solution can be easily 
found. Then we substitute the solution back into the integral equation to 
satisfy the boundary conditions. We first demonstrate the technique by 
considering a simple example and then return to the general case and form- 
alize the solution procedure. (Detailed discussions of similar problems are 
contained in Slepian [9], Youla [lo], Davenport and Root [I], Laning and 
Battin [I 11, Darlington [ 121, Helstrom [ 13, 141, or Zadeh and Ragazzini 
Lw 

Example. Let 

S&) = --iE- co2 + a2 ’ -Go<<<<, 

or 
Rx(d = Pexp (-+I), -CD<<<<. (78) 

The mean-square value of x(t) is P. The integral equation of interest is 

s T 

P exp (- alt - ul)+(u)du = A 4(t), -TstsT. (7% 
-T 

(The algebra becomes less tedious with a symmetric interval.) 

As indicated above, we solve the integral equation by finding the corresponding 
differential equation, solving it, and substituting it back into the integral equation. 
First, we rewrite (79) to eliminate the magnitude sign. 

A 4(t) = f P exp [-a(t - u)] t$(u)du + IT P exp [-a(u - t)] #(u)du. 
-T t 

Differentiating once, we have 

t X&t) = -pae-at 
s -T 

e+au +(u)du + Pae+at STeeau +(u)du. 
t (81) 
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Differentiating a second time gives 

h J(t) = Pa2 
s 

T e-alt-ul +(u) du - 2Pa +(t); 
-T 

but the first term on the right-hand side is just a2h d(t). Therefore 

or, for A # 0, 
A at> = a2h d(t) - 2Pa +(t) 

. . 
w 

a2(h = - Wa) +(t) 
x . 

(82) 

(83) 

(84) 

The solution to (83) has four possible forms corresponding to 

0 i 

(ii) 

h = 0; 

O<h-T a’ 

(iii) h 
2P =-• 
a’ 

w A>% 
a 

We can show that the integral equation cannot be satisfied for (i), (iii), and (iv). 
(Cf. Problem 3.4.1.) 
For (ii) we may write 

62 = - a2(h - 2P/a) 
x 

9 0 < b2 < 00. (86) 
Then 

4(t) = clefbt + c2e-jbt. 

Substituting (87) into (80) and performing the integration, we obtain 

0 eBat 
cle - (a + fb)T 

= 
a + jb 

+ 
c2e - (a - fb)T 

a 
_ jb (88) 

We can easily verify that if cl # & c2, (88) cannot be satisfied for all time. For 
Cl = - c2 we require that tan bT = -b/a. For cl = c2 we require tan bT = a/b. 
Combining these two equations, we have 

b 
tan bT + ; tan bT - % 

> 
= 0. (89) 

The values of b that satisfy (89) can be determined graphically as shown in Fig. 3.8. 
The upper set of intersections correspond to the second term in (89) and the lower set 
to the first term. The corresponding eigenvalues are 

At = 2pa l 

m+ l- 
-  1,2,.... WV 

Observe that we have ordered the solutions to (89), br < b2 < b3 < l l l . From (90) 
we see that this orders the eigenvalues AI > A2 > h3. l l . The odd-numbered solutions 
correspond to cl = c2 and therefore 

Mt 1 
1 

cos btt, - T 5 t T (i odd). (91) 
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Fig. 3.8 Graphical solution of transcendental equation. 

The even-numbered solutions correspond to cl = -c2 and therefore 

h(t) = sin bit, -TstsT (i even). (92) 

We see that the eigenfunctions are cosines and sines whose 
harmon ically related. 

frequencies are not 

Several interesting observations may be made with respect to this 
example : 

1. The eigenvalue corresponding to a particular eigenfunction is equal 
to the height of the power density spectrum at that frequency. 

2. As T increases, b, decreases monotonically and therefore h, increases 
monotonically. 

3. As bT increases, the upper intersections occur at approximately 
( i - 1) 42 [i odd] and the lower intersections occur at approximately 
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( i - 1) v/2 [i even]. From (91) and (92) we see that the higher index 
eigenfunctions are approximately a set of periodic sines and cosines. 

1 
-T<tsT 

-TstsT 

(i odd). 

(i even). 

This behavior is referred to as the asymptotic behavior. 

The first observation is not true in general. In a later section (p. 204) 
we shall show that the A, are always monotonically increasing functions 
of T. We shall also show that the asymptotic behavior seen in this example 
is typical of stationary processes. 

Our discussion up to this point has dealt with a particular spectrum. 
We now return to the general case. 

It is easy to generalize the technique to arbitrary rational spectra. First 
we write S&J) as a ratio of two polynomials, 

Looking 
explicitly 

at 
on 

(8% we see that the differential equation does not depend 
T. This independ .ence is true whenever the spectrum has the 

form in (93). Therefore we would obtain the same differential equation 
if we started with the integral equation 

By use of Fourier transforms 
mediately : 

a formal solution to this equation follows im- 

or 
0 = [hD(02) - N(02)] CD(@). (96) 

There are 2p homogeneous solutions to the differential equation corres- 
ponding to (96) for every value of X (corresponding to the roots of the 
polynomial in the bracket). We denote them as &(t, A), i = 1, . . . ,2p. 
To find the solution to (46) we substitute 

into the integral equation and solve for those values of X and af that lead 
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to a solution. There are no conceptual difficulties, but the procedure is 
tedi0us.t 

One particular family of spectra serves as a useful model for many 
physical processes and also leads to tractable solutions to the integral 
equation for the problem under discussion. This is the family described by 
the equation 

2nP sin (424 &(o:n) = - ( ) a 1 + (ct+t)““’ (98) 

It is referred to as the Butterworth family and is shown in Figure 3.9. 
When n = 1, we have the simple one-pole spectrum. As n increases, the 
attenuation versus frequency for o > a increases more rapidly. In the 

10 

7r 

2.0 

1.0 

f 
S&d in) 

Ph 

10” 

lo’* 

1o’3 
0.01 0.1 1 

I 

1 10.0 

0 ;- 
Fig. 3.9 Butterworth spectra. 

t In Appendix I of Part II we shall develop a technique due to A. Baggeroer [32, 331 
that is more efficient. At the present point in our discussion we lack the necessary 
background for the development. 



I92 3.4 Homogeneous Integral Equations and Eigenfunctions 

limit, as yt + co, we have an ideal bandlimited spectrum. In the next 
section we discuss the eigenfunctions and eigenvalues for the bandlimited 
spectrum. 

3.4.2 Bandlimited Spectra 

When the spectrum is not rational, the differential equation correspond- 
ing to the integral equation will usually have time-varying coefficients. 
Fortunately, in many cases of interest the resulting differential equation is 
some canonical type whose solutions have been tabulated. An example in 
this category is the bandlimited spectrum shown in Fig. 3.10. In this case 

79 
S&J) = 

1 
-z I I CfJ <a, 

0, 101 > a, 
or, in cycles per second, 

{ 

P 
s,(w) = 2’ lfl 5 K 

0 9 lfl ’ w, 
where 

27rW = a. 

The corresponding covariance function is 

The integral equation of interest becomes 

K,(t, u) = P 
sin a(t - U) 

a(t - U) l 

s +T/2 

x 5w> = 
p sin a(t - u) 

+w dtd* 
-T/2 a(t - U) 

ww 

[This is just (46) with the interval shifted to simplify notation.] 
Once again the procedure is to find a related differential equation and 

to examine its solution. We are, however, more interested in the results 

Fig. 3.10 Bandlimited spectrum. 
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than the detailed techniques ; therefore we merely state them ([9], [ 151, [ 161, 
[17], and [18] are useful for further study). 

The related differential equation over a normalized interval is 

(1 - t”) f(t) - 2tf(t) + (p - c2t2) f(t) = 0, -1 < t < 1, (104) 

where 

and p is the eigenvalue. This equation has continuous solutions for certain 
values of p(c). These solutions are called angular prolate spheroidalfinc- 
tions and are denoted by &,,(c, t), yt = 0, 1,2, . . . . A plot of typical 
S&c, t) is contained in [15], [16], and [17]. These functions also satisfy 
the integral equation 

4 2[R’,‘,(c, l)]” S&C, t) = 1” si$;) SO&, u> d% 
-1 

or changing variables 
-1 < t < 1, (106) 

T 
---<tt 

2 
;9 (107) 

where R~$cxT/~, 1) is a radial prolate spheroidal function. Thus the eigen- 
values are 

An=PTIR$($l)]‘, n=0,1,2 ,.... 

These functions are tabulated in several references (e.g. [18] or [19]). 
The first several eigenvalues for various values of WT are shown in 

Figs. 3.11 and 3.12. We observe a very interesting phenomenon. For 
values of y2 > (2 WT + 1) the values of h, rapidly approach zero. We can 
check the total energy in the remaining eigenvalues, for 

K,(t, t) dt = PT. 

In Fig. 3.11, 2 WT = 2.55 and the first four eigenvalues sum to (2.54/2.55) 
PT. In Fig. 3.12, 2 WT = 5.10 and the first six eigenvalues sum to (5.09/ 
5.lO)PT. This behavior is discussed in detail in [ 171. Our example suggests 
that the following statement is plausible. When a bandlimited process 
[ - IV, W cps] is observed over a T-second interval, there are only (2TW+ 1) 
significant eigenvalues.,This result will be important to us in later chapters 
(specifically Chapters II-2 and 11-3) when we obtain approximate solutions 
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2 WT= 2.55 

X0 = 0,996 & 

x1=0.912 5 

x2= 0.519 &y 

x3=0.110 & 
_--_-------- 

x4 = 0.009 & 

x5 = 0.0004 *&- 

Fig. 3.11 Eigenvalues for a bandlimited spectrum (2WT = 2.55). 

by neglecting the higher eigenfunctions. More precise statements about the 
behavior are contained in [ 151, [ 161, and [ 171. 

x0= 1.000 & 

Xl = 0.999 & 

x2 = 0.997 & 

X3=0.961 & 

x4 = 0.748 & 

X5=0.321 *& 

ii6 = 0.061& 
-------=------ 

X7 = 0.006 & 

x8 = 0.0004 & 

2WT=5.10 

3.4.3 Nonstationary Processes 

The process of interest is the simple Wiener process. It was developed as 
a model for Brownian motion and is discussed in detail in [20] and [21]. 
A typical sample function is shown in Fig. 3.13. 

Fig. 3.12 Eigenvalues of a bandlimited spectrum (2WZ’ = 5.10). 
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Fig. 3.13 Sample function of a Wiener process. 

This process is defined for t > 0 and is characterized by the following 
properties : 

x(0) = 0, 

awl = 0, W) 
E[x2(t)] = 02t, (110) 

1 x2 
Px,wJ = gj---& exP -+t l 

( ) 
(111) 

The increment variables are independent; that is, if t3 > t2 > tl, then 
bt, - &,) and (xt, - q,) are statistically independent. In the next 
example we solve (46) for the Wiener process. 

Example. Wiener Process. Using the properties of the Wiener process, we can show 
that 

Kco, 4 = 02min (u,t) = 
C?U, u s t, 
02t 

t 5 u, 
(112) 

In this case (46) becomes 
T 

A w = 
s 

LO, 4 d(u) du, OrtrT. (113 
0 
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Substituting (112) into (113) 

t h tp(t) = u2 s o u 4(u) du + 02t u u. ) d 

Proceeding as in Section 3.4.1, we differentiate (114) and obtain, 

h h(t) = u2 s tT+t Id u u. 

(114) 

(115) 

Differentiating again, we obtain 

or, for h # 0, 
AJ(t) = - CT2 9(t), (116) 

4(t) + G+(t) = 0. (117) 

There are three possible ranges for A: 

0 i A < 0, 
(ii) h 0, WV 

(iii) h 5 0. 

We can easily verify (cf. Problem 3.4.3) that (i) and (ii) do not provide solutions that 
will satisfy the integral equation. For h > 0 we proceed exactly as in the preceding 
section and find 

An = 
U2T2 

(n - +)2732’ 
n = 1,2,- l l (119) 

and 

Mt) = (f)” sin [(n - i) gt] OSt<T. (120) 

Once again the eigenfunctions are sinusoids. 

The Wiener process is important for several reasons. 

1. A large class of processes can be transformed into the Wiener process 
2. A large class of processes can be generated by passing a Wiener 

process through a linear or nonlinear system. (We discuss this in detail 
later.) 

3.4.4 White Noise Processes 

Another interesting process can be derived from the Wiener process. 
Using (41) and (120) we can expand x(t) in a series. 

x(t) = 1.i.m. 2 
K-*m n=l 

x, @‘sin [(IZ - i) ;iTf], 

where the mean-square value of the coefficient is given by (I 19) : 

02T2 
m7a21 = (n _ 3)2m2’ (122) 
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We denote the K-term approximation as x&). 
Now let us determine what happens when we differentiate x&): 

We see that the time function inside the braces is still normalized. Thus 
we may write 

&(t) = z1 W”(1T)” cos (n - ;) ‘T t, (124) 
where 

E(Wn2) = 02. 

We observe that we have generated a process in which every eigenvalue is 
equal. Clearly, if we let K -+ 00, the series would not converge. If it did, it 
would correspond to a process with infinite energy over [0, T]. 

We canformally obtain the covariance function of this resulting process 
by differentiating K,(t, u): 

K,(t, u) = 
a2 

mu K,(t, 4 = 
a2 

mu Co2 min (4 $1 

= 028(t - u), 0 < t, u < T. - (125) 

We see that the covariance function is an impulse. Still proceeding formally, 
we can look at the 
covariance function 

solution t-o the i ntegral equation (46) for an impulse 

A $(t) = a2 s T s(t - 4 SW k 0 < t < T. 
0 

The equation is satisfied for any 4(t) with A = a2. Thus any set of ortho- 
normal functions is suitable for decomposing this process. The reason for 
the nonuniqueness is that the impulse kernel is not square-integrable. The 
properties stated on pp. 180-l 8 1 assumed square-integrability. 

We shall find the resulting process to be a useful artifice for many 
models. We summarize its properties in the following definitions. 

Definition. A Gauss& white noise process is a Gaussian process whose 
covariance function is o2 s(t - u). It may be decomposed over the interval 
[0, T] by using arty set of orthonormal functions $i(t). The coefficients 
along each coordinate function are statistically independent Gaussian 
variables with equal variance 02. 

Some related notions follow easily. 
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Property. We can write, formally 

or, 

a2 8(t - 24) = 2 a2 +*(t) #*(u), 0 < t, u < T. 
f=l 

equivalently, 

w  - 4 = 2 MO M49 
i=l 

0 < t, u < T. - 

(127) 

(128) 

Property. If the coefficients are uncorrelated, with equal variances, but not 
Gaussian, the process is referred to as a white process. 

Property. If the process is defined over the infinite interval, its spectrum is 

&(w) = a2; (WI 

that is, it is constant over all frequencies. The value of each eigenvalue 
corresponds to the spectral height 02. 

The utility of a white noise process is parallel to that of an impulse 
input in the analysis of linear systems. Just as we can observe an impulse 
only after it has been through a system with some finite bandwidth, we can 
observe white noise only after it has passed through a similar system. 
Therefore, as long as the bandwidth of the noise is appreciably larger than 
that of the system, it can be considered as having an infinite bandwidth. 

To illustrate a typical application of eigenfunction expansions we con- 
sider a simple problem. 

3.4.5 The Optimum Linear Filter 

In this section we consider the problem of trying to estimate a message 
in the presence of interfering noise. Our treatment at this point is reason- 
ably brief. We return to this problem and study it in detail in Chapter 6. 
Here we have three objectives in mind: 

1. The introduction of time-varying linear filters and simple minimiza- 
tion techniques. 

2. The development of a specific result to be used in subsequent chapters; 
specifically, the integral equation whose solution is the optimum linear 
filter. 

3. The illustration of how the orthogonal expansion techniques we 
have just developed will enable us to obtain a formal solution to an 
integral equation. 

The system of interest is shown in Fig. 3.14. The message a(t) is a sample 
function from a zero-mean random process with a finite mean-square 
value and a covariance function K,(t, u). It is corrupted by an uncorrelated 
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Fig. 3.14 Linear filter problem. 

additive zero-mean noise n(t) with covariance function K,(t, u). We ob- 
serve the sum of these two processes, 

40 = a(t) + n(t), Ost<T -  l 
(130) 

We pass r(t) through a linear filter to obtain an estimate of a(t) denoted 
by d(t). 

Because a(t) is not necessarily stationary and the observation interval is 
finite, we anticipate that to obtain the best estimate we may require a time- 
varying filter. We characterize the filter by its impulse response h(t, u), 
which is the value of the output at time t when the input is an impulse at 
time u. If the system is physically realizable, then 

h(t, u) = 0, t < u, 

for the output cannot precede the input. If the system is time-invariant, 
then h(t, U) depends only on the difference (t - u). We assume that r(t) 
equals zero for t < 0 and t > T. Because the system is linear, the output 
due to r(t), 0 < t < T, can be written as 

which is an obvious generalization of the convolution integral. 
We want to choose h(t, U) to minimize the mean of the squared error 

integrated over the interval [0, T]. In other words, we want to choose 
h(t, U) to minimize the quantity 

. (132) 

Thus we are minimizing the mean-square error integrated over the interval. 
We refer to & as the interval estimation error. 

Similarly, we can define a point estimation error: 

&(t) = E{ [a(t) - JOT h(t, u) r(u) dull), 0 < t IS T. (133) 

Clearly, if we minimize the point error at each time, the total interval 
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error will be minimized. One way to solve this minimization problem is to 
use standard variational techniques (e.g., [31], Chapter 2). Our approach 
is less formal and leads directly to a necessary and sufficient condition. We 
require the filter h(t, U) to be a continuous function in both variables over 
the area 0 < t, u < Tand denote the h(t, u) that minimizes &(t) as h,(t, u). 
Any other filter function h(t, U) in the allowed class can be written as 

h(t, u) = ho(4 u) + h(t, 4, 0 < t, 2.4 < T, (134) 

where E is a real parameter and h,(t, U) is in the allowable class of filters. 
Taking the expectation of (133), substituting (134) into the result, and 
grouping terms according to the power of C, we obtain 

&(t: c) = &(t, t) - 2 s T h(t, u) K,(t, u) du 
0 

T 

s s 

T 

+ dv dzd w, v> 44 4 mu, v> 
0 0 

or 

s,(t: E) = K,(t, t) - 2 s T ho@, u> &(t, u> du 
0 

T 

+ 
1 s 

T 

dv du h,(t, u> h,(t, v) K,(w 0) 
0 0 

T 

- 2E du h&t, u) Kz(t, u) - 
s 

ho@, v) K-(u, v) dz~ 
0 I 

T + c2 h,(t, v) h,(t, u) Kr(u, v) du dv. 
0 

(136) 

If we denote the first three terms as & (t) and the last two terms as 
0 

A&t: l ), then (136) becomes 

&(t: E) = cpo(t) + A&t: E). (137) 

Now, if h,(t, u) is the optimum filter, then A&t: C) must be greater than or 
equal to zero for all allowable h,(t, u) and all c # 0. We show that a 
necessary and sufficient condition for this to be true is that 

u4 4 - h,(t, v) K,(u, v) dv = 0, 
OrtsT 
O<u<T. 

The equation for A&t: E) is 

A&t: c) = -2~ 
s 

T du h,(t, u) K&t, u) - 
0 s 

T h,(t, v) K,(u, v) dv] 
0 

T + e2 h,(t, v) h,(t, u) K,(u, v) du dv. 

0 

(138) 

(139) 
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Three observations are needed : 

1. The second term is nonnegative for any choice of h,(t, u) and l 

because K,(t, u) is nonnegative definite. 
2. Unless 

there exists for every continuous h,(t, u) a range of values of E that will 
cause A&t: E) to be negative. Specifically, A&: E) < 0 for all 

if the numerator on the right side of (141) is positive. A&t: E) is negative 
for all negative c greater than the right side of (141) if the numerator is 
negative. 

3. In order that (140) may hold, it is necessary and sufficient that the 
term in the bracket be identically zero for all 0 < u < T. Thus 

s 

T  

K&9 4 - h,(t, u) K,(u, u) du = 0, Ost<T 
O<u<T. (142) 

0 

The inequality on u is strict if there is a white noise component in r(t) 
because the second term is discontinuous at u = 0 and u = T. If (142) is 
not true, we can make the left side of (140) positive by choosing h,(t, U) > 0 
for those values of u in which the left side of (142) is greater than zero and 
h,(t, U) < 0 elsewhere. These three observations complete the proof of (138). 

The result in (138) is fundamental to many of our later problems. For the 
case of current interest we assume that the additive noise is white. Then 

NO K,(t, u) = -j- qt - u) + &(t, u>* (143) 

Substituting (143) into (138), we obtain 

9 h,(t, u) + 
s 

T  

h,(t, u) K,(u, u) dv = K,(t, ~1, 
O<tsT 

- O<u<T. (144) 
0 

Observe that h,(t, 0) and Ii&, T) are uniquely specified by the continuity 
requirement 

M, 0) = lim h,(t, U) (145a) 
u-+0+ 

4s4 T) = lim h,(t, U). (145b) 
u+T- 


