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Because a(t) has a finite mean-square value, (145~) and (145b) imply that 
(144) is also valid for u = 0 and u = T. 

The resulting error for the optimum processor follows easily. It is simply 
the first term in (137). 

h,(t, u) K,(u, u) dt, du. (147) ] 
But (138) implies that the term in brackets is zero. Therefore 

For the white noise case, substitution of (144) into (148) gives 

As a final result in our present discussion of optimum linear filters, we 
demonstrate how to obtain a solution to (144) in terms of the eigenvalues 
and eigenfunctions of K#, u). We begin by expanding the message 
covariance function in a series, 

where At and dt(t) are solutions to (46) when the kernel is K&t, u). Using 
(127), we can expand the white noise component in (143) 

“N K,(t, u) = q- qt - u) = 2 $ dt(t) +$i)* 
f=l 

(151) 

To expand the white noise we need a CON set. If K,(t, u) is not positive 
definite we augment its eigenfunctions to obtain a CON set. (See Property 9 
on p. 181). 
Then 
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Because the 4*(t) are a CON set, we try a solution of the form 

hd4 u) = s h Mt> Mu)* 
i=l 

Substituting (150), (152), and (153) into (144), we find 

M4 u) = g hi +$ /2 W) 5w4 
0 

Thus the optimum linear filter can be expressed in terms of the eigen- 
functions and eigenvalues of the message covariance function. A K-term 
approximation is shown in Fig. 3.15. 

The nonrealizability could be eliminated by a T-second delay in the 
second multiplication. Observe that (154) represents a practical solution 
only when the number of significant eigenvalues is small. In most cases 
the solution in terms of eigenfunctions will be useful only for theoretical 
purposes. When we study filtering and estimation in detail in later chapters, 
we shall find more practical solutions. 

The error can also be expressed easily in terms of eigenvalues and eigen- 
functions. Substitution of (154) into (149) gives 

and 

Fig. 3.15 Optimum filter. 
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In addition to the development of a useful result, this problem has 
provided an excellent example of the use of eigenfunctions and eigenvalues 
in finding a series solution to an integral equation. It is worthwhile to re- 
emphasize that all the results in this section were based on the original 
constraint of a linear processor and that a Gaussian assumption was not 
needed. We now return to the general discussion and develop several 
properties of interest. 

3.4.6 Properties of Eigenfunctions and Eigenvalues 

In this section we derive two interesting properties that will be useful in 
the sequel. 

Monotonic PropertyJ Consider the integral equation 

UT) d*(t : T) = s T Kx(t, U) +i(U: T) dU, Ost<T - 9 (157) 
0 

where K,(t, u) is a square-integrable covariance function. [This is just (46) 
rewritten to emphasize the dependence of the solution on T.] Every eigen- 
value Xi(T) is a monotone-increasing function of the length of the interval T. 

Proof. Multiplying both sides by +i(t:T) and integrating with respect to t 
over the interval [0, T], we have, 

T 

UT) = 
ss 

$f(t: T) Kx(t, U) +i(u: T) dt do. (158) 
0 

Differentiating with respect to T we have, 

WT) 2 -c 
aT s 

T ~Mt:n~t 

T s 
TK (t +,/( .T)d x 9 i u* U 

0 0 

+ 2+i(T: T) 
s 

T K,(T, u) &(u: T) du. 
0 

Using (157), we obtain 

a\F’ = 2h,(T) ST a+i;;T) $i(t:T) dt + 2X,(T) +i2(T:T)* (160 
0 

To reduce this equation, recall that 

s 
T +*“(t:T) dt = 1. 

0 

t This result is due to R. Huang [23]. 
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Differentiation of (16 1) gives 

2 
s 

T v +i(t: T) dt + +i2(T: T) = 0. 
0 

By substituting (162) into (160), we obtain 

aAi(T> - = Ai +i2(T:T) > 0, aT (163) 

which is the desired result. 

The second property of interest is the behavior of the eigenfunctions and 
eigenvalues of stationary processes for large T. 

Asymptotic Behavior Properties. In many cases we are dealing with 
stationary processes and are interested in characterizing them over an 
infinite interval. To study the behavior of the eigenfunctions and eigen- 
values we return to (46); we assume that the process is stationary and that 
the observation i nterval is infinite. Then (46) becom es 

In order to 
linear filtering 

complete the 
problem show 

solution 
‘n in Figu 

bY 
re 3 

inspection, we recall the simple 
.16. The input is y(t), the impulse 

response is h(7), and the output is z(t). They are related by the convolution 
integral : 

s 

co z(t) = 4t - 4 Y(u> d% -m<t<oo. (165) -00 

In a comparison of (164) and (165) we see that the solution to (164) is 
simply a function that, when put into a linear system with impulse response 
KX(7), will come out of the system unaltered except for a gain change. It is 
well known from elementary linear circuit theory that complex exponen- 
tials meet this requirement. Thus 

4(t) = &Cd 9 -m < 0 < 00, wwt 

Fig. 3.16 Linear filter. 

t The function e@ +Jwjt also satisfies (165) for values of a where the exponential 
transform of h(7) exists. The family of exponentials with a = 0 is adequate for our 
purposes. This is our first use of a complex eigenfunction. As indicated at the begin- 
ning of Section 3.2, the modifications should be clear. (See Problem 3.4.11) 
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is an eigenfunction for any w  on the real line. Substituting into (164), we 
have 

Ae+j”t = c * Kx(t - u)e30u du (167) 
J --oo 

or 

A = 
s 

* K,& - u)e-ja(t-u) du = &(w). (168) -GO 

Thus the eigenvalue for a particular w  is the value of the power density 
spectrum of the process at that W. 

Now the only difficulty with this discussion is that we no longer have a 
countable set of eigenvalues and eigenfunctions to deal with and the idea 
of a series expansion of the sample function loses its meaning. There are 
two possible ways to get out of this difficulty. 

1. Instead of trying to use a series representation of the sample functions, 
we could try to find some integral representation. The transition would be 
analogous to the Fourier series-Fourier integral transition for deterministic 
functions. 

2. Instead of starting with the infinite interval, we could consider a finite 
interval and investigate the behavior as the length increases. This might 
lead to some simple approximate expressions for large T. 

In Sections 3.5 and 3.6 we develop the first approach. It is an approach 
for dealing with the infinite interval that can be made rigorous. The second, 
which we now demonstrate, is definitely heuristic but leads to the correct 
results and is easy to apply. 

We start with (46) and assume that the limits are - T/2 and T/2: 

s 

+ T/2 

x w = K,(t - 4 ml d4 
T T 

--St<-. 
- T/2 2 2 (169) 

We define 

f 
1 

0 = -, 
T (170) 

and try a solution of the form, 

56,(u) = e+j2nfonu, (171) 

where yt _ _ =o, +l, +2 ).... (We index over both positive and negative 
integers for convenience). 

Define 
fn = nfo* (172) 

Substituting (171) into (169), we have 

s 
T/2 h, MO = K (t x - u>e +iZnf,u & 

(173) 
- T/2 
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Now, K (t x - u) = s ,+jZnl(t-~1 df. 
-CO 

Substituting (174) into (173) and integrating with respect to U, we obtain 

(175) 

The function in the bracket, shown in Fig. 3.17, is centered at f = fn 
where its height is T. Its width is inversely proportional to T and its area 
equals one for all values of T. We see that for large T the function in the 
bracket is approximately an impulse at fne Thus 

An +n(t> 21 
s 

al S,(f) e+jznft S(f - fn) df = Sx(fn)e+j2”‘nt. (176) 
-CO 

Therefore 
h, 2i Sx(fn) = sx(nfO) (177) 

and 

(178) 

for large T. 
From (175) we see that the magnitude of T needed for the approximation 

to be valid depends on how quickly S,(f) varies near fn. 
In (156) we encountered the infinite sum of a function of the eigenvalues 

8 
No” hi 

Z 
=2T i=l hi + No/z’ c 

More generally we encounter sums of the form 

(ml 

An approximate expression for g, useful for large T follows directly 
from the above results. In Fig. 3.18 we sketch a typical spectrum and the 
approximate eigenvalues based on (177). We see that 

gA = 2 dSx(nf0)) = T 2 g(Sx(~fo))fo, 
n= -00 ?t= --a0 

(181) 

where the second equality follows from the definition in (170). Now, for 
large T we can approximate the sum by an integral, 

I 1 O” lh ET g(Sx(f )) df, 
-CO 

which is the desired result. 
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A sin nT(fn - f) 
dfra - f) 

T 

Fig. 3.17 Weighting function in (175). 

The next properties concern the size of the largest eigenvalue. 

Maximum and Minimum Properties. Let x(t> be a stationary random pro- 
cess represented over an interval of length T. The largest eigenvalue 
/\,,,(T) satisfies the inequality 

for any interval T. This result is obtained by combining (177) with the 
monotonicity property. 

Another bound on the maximum eigenvalue follows directly from 
Property 10 on p. 181. 

s 

3’12 
A,ax(T) 5 IT&, t) dt = 

-T/2 

Fig. 3.18 Approximate eigenvalues; large T. 
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A lower bound is derived in Problem 3.4.4, 

wheref(t) is any function with unit energy in the interval (- T/2, T/2). 

The asymptotic properties developed on pp. 205-207 are adequate for 
most of our work. In many cases, however, we shall want a less heuristic 
method of dealing with stationary processes and an infinite interval. 

In Section 3.6 we develop a method of characterization suitable to 
stationary processes over an infinite interval. A convenient way to approach 
this problem is as a limiting case of a periodic process. Therefore in Section 
3.5 we digress briefly and develop representations for periodic processes. 

3.5 PERIODIC PROCESSESf 

Up to this point we have emphasized the representation of processes over 
a finite time interval. It is often convenient, however, to consider the infinite 
time interval. We begin our discussion with the definition of a periodic 
process. 

Definition. A periodic process is a stationary random process whose correla- 
tion function R,(T) is periodic with period T: 

Rd7) = Rx(7 + T), for all 7. 

It is easy to show that this definition implies that almost every sample 
function is periodic [i.e., x(t) = x(t + T)]. The expectation of the 
difference is 

E[(x(t) - x(t + T))2] = 2R,(O) - 2R,(T) = 0. 

Therefore the probability that x(t) = x(t + T) is one. 
We want to represent x(t) in terms of a conventional Fourier series with 

random coefficients. We first consider a cosine-sine series and assume that 
the process is zero-mean for notational simplicity. 

Cosine-Sine Expansion. The series expansion for the process is 

x(t) = 1.i.m. 2 
N-+a i=l 

[,,icos($it) +,,isin($it)], --a<t<a, (183) 

sequel 7 Sections 3.5 and 3.6 are not essential to most of the discussions in the 
may be omitted in the first reading. 
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where 

and 

2 

s 

T/2 
x,i = - 

T - T/2 

2 
s 

T/2 
Xsf = - T - T/2 

The covariance function can be expanded as 

where 
2 

Pi = T (187) 

It follows easily that 

Thus the coefficients in the series expansion are uncorrelated random 
variables. (This means that the eigenfunctions of any periodic process for 
the interval (-T/2, T/2) are harmonically related cosines and sines.) 
Similarly, 

Observe that we have not normalized the coordinate functions. The motiva- 
tion for this is based on the fact that the power, not the energy, at a given 
frequency is the quantity of interest. By omitting the d?;in the coordinate 
functions the value (xcr2 + x,*~) represents the power and not the energy. 
The expected value of the power at frequency wf A 2-i/T Li iw, is pi. 

Complex Exponential Expansion. Alternately, we could expand the 
process by using complex exponentials : 

and 

x(t) = -oo<ttoo. 

For positive i, 
x, = 3( hi - ht), i 2 1. (192) 
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XBi = -2 Im (Xi) 

: 
I 
I 

t T 
I 

I t I 
27r 4n 67r i lO?r 

NO 

TTY&T 

Fig. 3.19 Coefficients for a typical sample function. 

The values for negative indices are conjugates of the values for positive 
indices : 

xi = x” -f9 (193) 

and 
1 

s 

T/2 
xi = - T x(0 exP 

- Tl2 
(-j$it) dt. (195) 

We see that the coefficients are uncorrelated. 
Just as in the finite interval case, every sample function is determined 

in the mean-square sense by its coefficients. We can conveniently catalog 
these coefficients as a function of O. In Fig. 3.19 we show them for a 
typical sample function. In Fig. 3.20 we show the statistical average of the 
square of the coefficients (the variance). 

: ’ I 

ii?! 
> 

6~ 107r 147r 
T  T  T  T  

0 

Fig. 3.20 Variance of coefficients: periodic process. 



212 3.6 Infinite Interval: Spectral Decomposition 

3.6 INFINITE TIME INTERVAL: SPECTRAL DECOMPOSITION 

3.6.1 Spectral Decomposition 

We now consider the effect of letting T, the period of the process, 
approach infinity. 

Cosine-Sine Representation. Looking at Fig. 3.19, we see that the lines 
come closer together as T increases. In anticipation of this behavior, a 
more convenient sketch might be the cumulative amplitude plot shown in 
Fig. 3.21 for a typical sample function. The function Z&J is the sum of 
the cosine coefficients from 1 through un( h nq,). 

Similarly, 

We see that because of the zero-mean assumption, 

and 

Z,(O) = Z,(O) = 0, (198) 

x(t) cos (hot) dt. (199) 

Fig. 3.21 Cumulative voltage function : periodic process. 
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Looking at (183), we see that we can write 

x(t) = 1.i.m. 5 [Z&J - ZC(wn- 1)] Cos w,t 
N+a n=l 

+ 1.i.m. 2 [Zs(WJ - Z&-1)] sin w,t. 
IV-+@ n=l 

From the way it is defined we see that 

E([ZC(~J - zc(O, - I)]~} = E([Z,(WJ - zs(O,- 1)12) = A* C201) 

We can indicate the cumulative mean power by the function G,(wn), 
where 

w4 = 2 Pi = WJnh w, > 0. 
i=l 

A typical function is shown in Fig. 3.22. 
The covariance function can be expressed in terms of G,(on) by use of 

(186) and (202). 

Kx(T) = 2 IW4J - 
n=l 

(203) 

Complex Exponential Representation. Alternately, in complex notation, 

and 

x(t) = 1.i.m. 2 [z(wn) - z(wn-Jje’wnto 
N-a n=-N 

Fig. 3.22 Cumulative power spectrum: periodic process. 
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The mean-square value of the nth coefficient is, 

E[&J,) -  Z(On-l)12] = 23 n = -00, l l 9, -  1, 1, l l 40, 
(2W 

The cumulative mean power is, 

and 

G&J= 2 59 co,>-00, 
t = --oo 

K%(T) = f$ [G(u,) - G(o,- l)]e~wC 
Tl= --a0 

Cosine-Sine Representation. We now return to the cosine-sine repre- 
sentation and look at the effect of letting T-+ 00. First reverse the order of 
summation and integration in (199). This gives 

zc(4 = 
f 

T’2 
-T/2 

2x(t) 2 cos (hot) $ dt. 
i=l 

w9 
Now let 

A0 
Af 

1 -s 
27T = T’ 

and 
0 = no0 = 0,. 

Holding ltwo constant and letting T--+ 00, we obtain 

or 

Similarly, 

m WJ~ = s o 2x(t) dt 
dw 

cos wt - 
-GO s 0 27r 

Z&) = & ja 2 v x(t) dt. 
--a0 

Z&J) = & j- 2 ’ - “p” wt x(t) dt. 
-a0 

The sum representing x(t) also becomes an integral, 

d&(w) cos cd + s 
00 x(t) a, dZ,(o) sin wt. 

0 

(211) 

We have written these integrals as Stieltjes integrals. They are defined as 
the limit of the sum in (200) as T -+ 00. It is worthwhile to note that we 
shall never be interested in evaluating a Stieltjes integral. Typical plots 
of Z&J) and Z&(O) are shown in Fig. 3.23. They are zero-mean processes 
with the following useful properties : 
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l o l o 

Fig. 3.23 Typical integrated voltage spectrum. 

1. The increments in disjoint intervals are uncorrelated ; that is, 

E([z,(w,) - z,(Wl - A~l)lEzc(~2) - z,(oz - &NI = 0 (213) 
and 

E([z,(%) - ZbJl - A~l)l[zs(~2) - mJ2 - A%)11 = 0 (214) 
if (wl - Awl, wl] and (Ok - Aw2, We] are disjoint. This result is directly 
analogous to the coefficients in a series expansion being uncorrelated. 

2. The quadrature components are uncorrelated even in the same 
interval; that is, 

E([wJ,) - z,(Ol - A,,)][Z&) - z,(w, - A&l]) = 0 (215) 

for all o1 and w2. 
3, The mean-square value of the increment variable has a simple 

physical interpretation, 

E([z,(%) - Z&l - Ao)]~} = G&J - G&l - Au). (216) 
The quantity on the right represents the mean power contained in the 

frequency interval (wl - AU, oJ. 
4. In many cases of interest the function CC(w) is differentiable. 

(The “ 2” inside the integral is present because S,(O) is a double-sided 
spectrum.) 

dw4 n 2wJ) -. 
dw - 27~ (218) 

5. If x(t) contains a periodic component of frequency o,, CC(o) will have 
a step discontinuity at O, and S,(O) will contain an impulse at w,. 

The functions Z&) and Z&J) are referred to as the integrated Fourier 
transforms of x(t). The function CC(o) is the integrated spectrum of x(t). 

A logical question is: why did we use Z&i) instead of the usual Fourier 
transform of x(t)? 
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The difficulty with the ordinary Fourier transform can be shown. We 
define 

s 

T/2 

&T@ = x(t) cos ot dt W) 
-T/2 

and examine the behavior as T-+ co. Assuming E[x(t)] = 0, 

EIX,,T@+l = 0, 

and 
(220) 

E[ 1 &(w)I ‘1 = IT” dt p, du &(t - u> cos ot cos wu* (220 
- T/2 - T/2 

It is easy to demonstrate that the right side of (221) will become arbitrarily 
large as T+ 00. Thus, for every W, the usual Fourier transform is a 
random variable with an unbounded variance. 

Complex Exponential Representation. A similar result to that in (210) 
can be obtained for the complex representation. 

and 

x(t) = 
s 

* dZ(o)eT (223) --Q) 
The expression in (222) has a simple physical interpretation. Consider the 
complex bandpass filter and its transfer function shown in Fig. 3.24. The 
impulse response is complex : 

h (0 
1 ejwd - ejamt 

9 =- 
277 jt l 

(W 

The output at t = 0 is 

y(o) = ja + ( e-jyn’--~-‘~mz)x(~) dr = z&J - Z(W& 
--oo 77 

(225) 

Fig. 3.24 A complex filter. 



Spectral Decomposition 217 

Thus the increment variables in the Z(O) process correspond to the output 
of a complex linear filter when its input is x(t). 

The properties of interest are directly analogous to (213)-(218) and are 
listed below : 

~m4 - z(w - Aw)I 2] = G(w) - G(o - Au). (226) 

If G(W) is differentiable, then 

(227) 

A typical case is shown in Fig. 3.25. 

E{ ]z(w) - z(w - Aco)~“} = & Im S,(w) dw. (228) 
O-AC0 

If o3 > w2 > wl, then 

In other words, the increment variables are uncorrelated. These proper- 
ties can be obtained as limiting relations from the exponential series or 
directly from (225) using the second-moment relations for a linear 
system. 

Several observations will be useful in the sequel: 

1. The quantity dZ(&) plays exactly the same role as the Fourier trans- 
form of a finite energy signal. 

For example, consider the linear system shown in Fig. 3.26. Now, 

or 

= 
s 

* Hcjw) dZ,(w)eiwt. (232) --oo 

Fig. 3.25 An integrated power spectrum and a power spectrum. 
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Linear filter. 

Thus 
d-Z,(o) = H(jw) dZx(o) (233) 

and 
w-4 = I W&J) I “U&)* (234) 

2. If the process is Gaussian, the random variables [Z(W~) - Z(W~ - Aw)] 
and [Z(wz> - Z(w2 - AU)] are statistically independent whenever the 
intervals are disjoint. 

We see that the spectral decompositiont of the process accomplishes the 
same result for stationary processes over the infinite interval that the 
Karhunen-Loeve decomposition did for the finite interval. It provides us 
with a function Z(W) associated with each sample function. Moreover, we 
can divide the w  axis into arbitrary nonoverlapping frequency intervals; 
the resulting increment random variables are uncorrelated (or statistically 
independent in the Gaussian case). 

To illustrate the application of these notions we consider a simple 
estimation problem. 

3.6.2 An Application of Spectral Decomposition: MAP Estimation of a 
Gaussian Process 

Consider the simple system shown in Fig. 3.27: 

r(t) = a(t) + n(t), -oo<t<m. (239 
We assume that a(t) is a message that we want to estimate. In terms of the 
integrated transform, 

Z(o) = z(0) + zzw -00 < 0 < 00. (236) 

r(t) ) a(t) & 

Fig. 3.27 System for estimation example. 

t Further discussion of spectral decomposition is available in Gnedenko [27] or 
Bartlett ( [28], Section 6-2). 
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Assume that a(t) and n(t) are sample functions from uncorrelated zero- 
mean Gaussian random processes with spectral densities &(o) and &(w), 
respectively. Because Z&) and Z&J) are linear functionals of a Gaussian 
process, they also are Gaussian processes. 

If we divide the frequency axis into a set of disjoint intervals, the incre- 
ment variables will be independent. (See Fig. 3.28.) Now consider a 
particular interval (0 - dw, W] whose length is do. Denote the increment 
variables for this interval as dZ,(o) and dZ,(w). Because of the statistical 
independence, we can estimate each increment variable, dZ&), separately, 
and because MAP and MMSE estimation commute over linear trans- 
formations it is equivalent to estimating a(t). 

The a posteriori probability of dZ&), given that dZ,(o) was received, 
is just 

= kexp 1 Idz,W - amI -2 
S,(w) do/2rr (237) 

[This is simply (2-141) with N = 2 because dZ,(o) is complex.] 
Because the a posteriori density is Gaussian, the MAP and MMSE 

estimates coincide. The solution is easily found by completing the square 
and recognizing the conditional mean. This gives 

Therefore the minimum-mean square 
passing r(t) through a hear jilter, 

(238) 

w4 
Hoc4 = S&J) + S,(w)’ 

estimate is obtained bY 

(239) 

We see that the Gaussian assumption and MMSE criterion lead to a 
linear filter. In the model in Section 3.4.5 we required linearity but did not 
assume Gaussianness. Clearly, the two filters should be identical. To 
verify this, we take the limit of the finite time interval result. For the 
special case of white noise we can modify the result in (154) to take in 
account the complex eigenfunctions and the doubly infinite sum. The 
result is, 

Using (177) and (178), we have 00 
lim h,(t, u> = 2 m4 dw 

TdW s (241) 0 s,(w) + No/2 cos o(t - u, 2rr) 

which corresponds to (239). 
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Difference is Z,(o) 

Fig. 3.28 Integrated transforms of a(t) and r(t). 

In most of our developments we consider a finite time interval and use 
the orthogonal series expansion of Section 3.3. Then, to include the infinite 
interval-stationary process case we use the asymptotic results of Section 
3.4.6. This leads us heuristically to the correct answer for infinite time. A 
rigorous approach for the infinite interval would require the use of the 
integrated transform technique we have just developed. 

Before summarizing the results in this chapter, we discuss briefly how 
the results of Section 3.3 can be extended to vector random processes. 

3.7 VECTOR RANDOM PROCESSES 

In many cases of practical importance we are concerned with more than 
one random process at the same time; for example, in the phased arrays 
used in radar systems the input at each element must be considered. 
Analogous problems are present in sonar arrays and seismic arrays in 
which the received signal has a number of components. In telemetry 
systems a number of messages are sent simultaneously. 

In all of these cases it is convenient to work with a single vector random 
process x(t) whose components are the processes of interest. If there are 
N processes, xl(t), x2(t)* l XC&), we define x(t) as a column matrix, 

x(t) n (242) 
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The dimension N may be finite or countably infinite. Just as in the single 
process case, the second moment properties are described by the process 
means and covariance functions. In addition, the cross-covariance 
functions between the various processes must be known. The mean value 
function is a vector 

mx(t) n E 
x2(t) 

. . . 

XN(O. 

(243) 

and the covariances may be described by an N x N matrix, K,(t, u), whose 
elements are 

We 
There 

want to derive a series expansion for the vector random process x(t). 
several possible representations, but two seem particularly 

efficient. In the first method we use a set of vector functions as coordinate 
functions and have scalar coefficients. In the second method we use a set 
of scalar functions as coordinate functions and have vector coefficients. 
For the first method and finite N, the modification of the properties on 
pp. 180-M is straightforward. For infinite N we must be more careful. 
A detailed derivation that is valid for infinite N is given in [24]. In the 
text we go through some of the details for finite N. In Chapter II-5 we 
use the infinite N result without proof. For the second method, additional 
restrictions are needed. Once again we consider zero-mean processes. 

Method 1. Vector Eigenfunctions, Scalar Eigenvalues. Let 

X(t) = 1.i.m. 2 Xl+i(t), (245) 
N-+a f=l 

Xi = c * +i*( t) X(t) dt = X’(t) ei(t) dt = 2 IT Xk(f) 4*“(t) dt, (246) 

and 

is chosen to satisfy 

h+iCt> = 
s 

* Kx(t9 U) Mu) d”9 
0 

(247) 

O<t<T -  l 
wo 
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Observe that the eigenfunctions are vectors but that the eigenvalues are 
still scalars. 

Equation 248 can also be written as, 

r* KkJ(t, zi) +[(u) du = &bik(t), k =i 1, . . ., N, 0 < t < T. (249) 

The scalar properties carry over directly. In particular, 

and the coordinate functions are orthonormal; that is, 

Kx,kj(t, u, = k,j = 19 
i=l 

This is the multidimensional analog of (50). 
One property that makes the expansion useful is that the coefficient is a 

scalar variable and not a vector. This point is perhaps intuitively trouble- 
some. A trivial example shows how it comes about. 

Example. Let 
x1(t) = a G(t), O<tsT, 
Jcz(O = b S2(0, O&T, (W 

where a and b are independent, zero-mean 
sS( t ) are orthonormal functions 

random 

f 

T 

S*(t) b.Yj(t) dt = 8*j, i,j = 1, 2, 
0 

and sl(t) and 

(256) 

and 
Var (a) = aa2, 
Var (b) = ob2. (257) 
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We can verify that there are two vector eigenfunctions: 

41(t) = “l!) ; 
[ I 

Al = cra2, (259) 

Thus we see that in this degenerate case7 we can achieve simplicity in 
the coefficients by increasing the number of vector eigenfunctions. Clearly, 
when there is an infinite number of eigenfunctions, this is unimportant. 

A second method of representation is obtained by incorporating the 
complexity into the eigenvalues. 

Method 2. Matrix Eigenvalues, Scalar Eigenfunctions 
In this approach we let 

and 

x(t) = 5 x&(t), 0 < t < T, (261) 
i=l 

We would like to find a set of Rf and $Xt) such that 

These requirements lead to the equation 

For arbitrary time intervals (265) does not have a solution except for a 
few trivial cases. However, if we restrict our attention to stationary 
processes and large time intervals then certain asymptotic results may 
be obtained. Defining 

t It is important not to be misled by this degenerate example. The useful application 
is in the case of correlated processes. Here the algebra of 
eigenfunctions is tedious but the representation is still simple. 

calculating the 
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and assuming the interval is large, we find 

*c > 
1 it N -- eiqt 

dT 
(267) 

and 
Ri 2i 

sx(wi) l 
(268) 

As before, to treat 
integrated transform 

the infinite time case rigorously we must use the 

u%) - u%) 4 s 
00 e-jo,t _ e-iw,t 

x(t) dt 
-CO -jt cwl 

and x(t) = s O” dZ,(o)eiwt. (270) --co 

The second method of representation has a great deal of intuitive appeal 
in the large time interval case where it is valid, but the first method enables 
us to treat a more general class of problems. For this reason we shall 
utilize the first representation in the text and relegate the second to the 
problems. 

It is difficult to appreciate the importance of the first expansion until we 
get to some applications. We shall then find that it enables us to obtain 
results for multidimensional problems almost by inspection. The key to 
the simplicity is that we can still deal with scalar statistically independent 
random variables. 

It is worthwhile to re-emphasize that we did not prove that the expan- 
sions had the desired properties. Specifically, we did not demonstrate that 
solutions to (248) existed and had the desired properties, that the multi- 
dimensional analog for Mercer’s theorem was valid, or that the expansion 
converged in the mean-square sense ([24] does this for the first expansion). 

3.8 SUMMARY 

In this chapter we developed means of characterizing random processes. 
The emphasis was on a method of representation that was particularly well 
suited to solving detection and estimation problems in which the random 
processes were Gaussian. For non-Gaussian processes the representation 
provides an adequate second-moment characterization but may not be 
particularly useful as a complete characterization method. 

For finite time intervals the desired representation was a series of ortho- 
normal functions ‘whose coefficients were uncorrelated random variables. 
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The choice of coordinate functions depended on the covariance function of 
the process through the integral equation 

The eigenvalues X corresponded physically to the expected value of the 
energy along a particular coordinate function +(t). We indicated that this 
representation was useful for both theoretical and practical purposes. 
Several classes of processes for which solutions to (271) could be obtained 
were discussed in detail. One example, the simple Wiener process, led us 
logically to the idea of a white noise process. As we proceed, we shall find 
that this process is a useful tool in many of our studies. 

To illustrate a possible application of the expansion techniques we solved 
the optimum linear filtering problem for a finite interval. The optimum 
filter for the additive white noise case was the solution to the integral 
equation 

$ h,(t, u) + 
s 

Tf &(t, z) h&, u> dz = K,(t, a), Ti < t, u < Tfe (272) 
Tt 

The solution could be expressed in terms of the eigenfunctions and 
eigenvalues. 

For large time intervals we found that the eigenvalues of a stationary 
process approached the power spectrum of the process and the eigen- 
functions became sinusoids. Thus for this class of problem the expansion 
could be interpreted in terms of familiar quantities. 

For infinite time intervals and stationary processes the eigenvalues were 
not countable and no longer served a useful purpose. In this case, by 
starting with a periodic process and letting the period go to infinity, we 
developed a useful representation. Instead of a series representation for 
each sample function, there was an integral representation, 

x(t) = s O” dZ&)eiwt. (273) 
-CO 

The function Z,(W) was the integrated transform of x(t). It is a sample 
function of a random process with uncorrelated increments in frequency. 
For the Gaussian process the increments were statistically independent. 
Thus the increment variables for the infinite interval played exactly the 
same role as the series coefficients in the finite interval. A simple example 
showed one of the possible applications of this property. 

Finally, we extended these ideas to vector random processes. The 
significant result here was the ability to describe the process in terms of 
scalar coefficients. 
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In Chapter 4 we apply these representation techniques to solve the 
detection and estimation problem. 

3.9 PROBLEMS 

Many of the problems in Section P3.3 are of a review nature and may be 
omitted by the reader with an adequate random process background. 
Problems 3.3.19-23 present an approach to the continuous problem which 
is different from that in the text. 

Section P3.3 Random Process Characterizations 

SECOND MOMENT CHARACTERIZATIONS 

Problem 3.3.1. In chapter 1 we formulated 
maximize the output signal-to-noise ratio. 

the problem of choosing a linear filter to 

a [so’ h(T - r) S(T) d7] 2 

’ NO/2 f; h2(r) d7 

1. Use the Schwarz inequality to find 
2. Sketch h(7) for some typical s(t). 

the h(r) maximizes (S/N),. 

Comment. The resulting filter is called a matched filter and was first derived by 
North [34]. 

Problem 3.3.2. Verify the result in (3-26). 

Problem 3.3.3. [l]. The input to a stable linear system with a transfer function W(jw) 
is a zero-mean process x(t) whose correlation function is 

R,(T) = 2 S(T). 

1. Find an expression for the variance of the output y(t). 
2. The noise bandwidth of a network is defined as 

B A ‘“CO IH(jw)12 dw’2fl N- (double sided in cps) 
I&ax12 ’ - ’ 

Verify that 
2 cTy = N&vIN,,,l” 

2 ’ 

Problem 3.3.4. [ 11. Consider the fixed-parameter linear system defined by the equation 

VW = x(t - 6) - x(t) 
and 

y(t) 1 
t 

= v(u) du. 
--Q) 

1. Determine the impulse response relating the input x(t) and output y(t). 
2. Determine the system function. 
3. Determine whether the system is stable. 
4. Find BN. 
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Problem 3.3.5. [l]. The transfer function of an RC network is 

The input consists of a noise which is a sample function of a stationary random process 
with a flat spectral density of height NO/2, plus a signal which is a sequence of constant- 
amplitude rectangular pulses. The pulse duration is 6 and the minimum interval 
between pulses is T, where 6 <I T. 

A signal-to-noise ratio at the system output is defined here as the ratio of the 
maximum amplitude of the output signal with no noise at the input to the rms value 
of the output noise. 

1. Derive an expression relating the output signal-to-noise ratio as defined above 
to the input pulse duration and the effective noise bandwidth of the network. 

2. Determine what relation should exist between the input pulse duration and the 
effective noise bandwidth of the network to obtain the maximum output signal-to- 
noise. 

ALTERNATE REPRESENTATIONS AND NON-GAUSSIAN PROCESE~ 

Problem 3.3.6. (sampling representation). When the observation interval is infinite 
and the processes of concern are bandlimited, it is sometimes convenient to use a 
sampled representation of the process. Consider the stationary process x(t) with the 
spectrum shown in Fig. P3.1. Assume that x(t) is sampled every l/2 IV seconds. 
Denote the samples as x(i/2W), i = - 00, . . . , 0, . . . . 

1. Prove 

x(t) = 
sin 27r W(t - i/2 W) 

- i/2W) l 

2. Find E[x(i/2 W)x(j/2 W)]. 

&IL., 
W 

Fig. P3.1 

Problem 3.3.7 (continuation). Let 

4*(t) = dDi+“, 2gy,g.j!!‘~ --oo<t<oo. 
n 

Define 
K 

x(t) = 1.i.m. 2 xi d*(t)- 
K-+a f=-K 

Prove that if 

then 
E(xixJ = Pat, for all i, j, 

lfl s w* 
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Problem 3.3.8. Let x(t) be a bandpass process “centered” around fc. 

Sx(f 1 = 0, If-4 > w, f>O, 
lf+fcl > w, f<O. 

We want to represent x(t) in terms of two low-pass processes xc(t) and x&). Define 

2(t) = ei xc(t) cos (27&t) + lCi x*(t) sin (27rf,t), 

where xc(t) and xs(t) are obtained physically as shown in Fig. P3.2. 

*sin ;Tfc(t) 

Fig. P3.2 

1. Prove 
E{[x(t) - 2(t)l”} = 0. 

2. Find &,(f ), L,(f ), and sxcx,(f ). 
3. What is a necessary and sufficient condition for SX,Xs( f) = O? 

Observe that this enables us to replace any bandpass process by two low-pass 
processes or a vector low-pass process. 

x(t) = xc(t) [ 1 XsW 
Problem 3.3.9. Show that the n-dimensional probability density of a Markov process 
can be expressed as 

I-E=2 Pxtk- ,xtJ&- 19 m 
pxtl*-xtn W t1* l l *A,) = 

I-E = ; Pxtk(XtJ ’ 
n > 3. 

Problem 3.3.10. Consider a Markov process at three ordered time instants, tl < t2 < t3. 
Show that the conditional density relating the first and third time must satisfy the 
following equation : 

Pxt3,rtlMt3 I x,,) = J~x2Pxt~,Jct2(x~ I Xt2)Pxt2,xtlwt2 I w  

Problem 3.3.11. A continuous-parameter random process is said to have independent 
increments if, for all choices of indices to < tl . l l < t,, the n random variables 

x01) -  X(&J), l l -9 x(h) - x&a-1) 



Random Process Characterizations 229 

are independent. Assuming that x(to) = 0, show that 

M XtlXt 2”’ xtn J ( ‘v I, . . -3 A) = Mxtl( jvl + iv2 + .  9 l + it),,) fi M+ - + _ 1( jvk + l . l + jv,). 

k=O 

GAUSSIAN PROCESSES 

Problem 3.3.12. (Factoring of higher order moments). Let x(t), t E T be a Gaussian 
process with zero mean value function 

E[x(t)] = 0. 

1. Show that all odd-order moments of x(t) vanish and that the even-order 
moments may be expressed in terms of the second-order moments by the following 
formula : 

Let n be an even integer and let tl, . . ., t,, be points in T, some of which may coin- 
cide. Then 

E[x(t,) l l l x&J] = 1 Eb(tr,) x(tr2)l EMtr , )  x(ti,)l 0 l l EEx(tr, _ 1) x(ti,)l, 

in which the sum is taken over all possible ways of dividing the n points into n/2 
combinations of pairs. The number of terms in the sum is equal to 

1*34= l l (n - 3)(n - 1); 
for example, 

EMh) ~02) X(h) x(td = EMhI 4fdlEWd &dl + EMtl) ~(fdE[~(td dfdl 
+ EIx(tl) &JlE[x(td x(ts)l. 

Hint. Differentiate the characteristic function. 

2. Use your result to find the fourth-order correlation function 

R&l, f2, ta, ta) = E[x(tl) X02) X03) 4tdl 
of a stationary Gaussian process whose spectral density is 

S,(f) = 29 Ifl 5 WY 

= 0, elsewhere. 
What is Jim* R&, t2, t3, ta)? + 

Problem 3.3.13. Let x(t) be a sample function of a stationary real Gaussian random 
process with a zero mean and finite mean-square value. Let a new random process be 
defined with the sample functions 

Show that 
Y(t) = x”(t). 

e/w = Rx2(0) + 2Rx2( 7). 

Problem 3.3.X [l]. Consider the system shown in Fig. P3.3. Let the input co(t) be a 
sample function of stationary real Gaussian process with zero mean and flat spectral 
density at all frequencies of interest; that is, we may assume that 

SeJf 1 = No/2 

1. Determine the autocorrelation function or the spectral density of e&J. 
2. Sketch the autocorrelation function or the spectral density of co(t), cl(t), and 

e20 Ia 
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to 
edt) 
lo 

c 
Y . Square- r 

11- 
-- c 

7 
e1w 

law 
e2W 

I 
device 

- e2 = Ae12 1 
I 

Fig. P3.3 

Problem 3.3.15. The system of interest is shown in Fig. P3.4, in which x(t) is a sample 
function from an ergodic Gaussian random process. 

Rx(r) = 1 a(~). 

The transfer function of the linear system is 

H(f) = e2jr lfl s w, 
= 0, elsewhere. 

1. Find the dc power in z(t). 
2. Find the ac power in z(t). 

z(t) = Y2(0 

x(t) Linear * 

> system I YW Square-law z(tl 

H(f) _ f device 

Fig. P3.4 

Problem 3.3.16. The output of a linear system is u(t), where 

y(t) = 

The input x(t) is a sample function from a stationary Gaussian process with correlation 
function 

Rx(r) = 8(r). 

We should like the output at a particular time tl to be statistically independent of the 
input at that time. Find a necessary and sufficient condition on h(7) for x(tl) and y(tl) 
to be statistically independent. 

Problem 3.3.17. Let x(t) be a real, wide-sense stationary, Gaussian random process 
with zero mean. The process x(t) is passed through an ideal limiter. The output 
of the limiter is the process y(t), 

where 
YW = uw1, 

u 2 0, 
u < 0. 

Show that 
formula 

the autocorrelation functions of the two processes are by the 

R,(T) =zsin-1 si . 7r [ 1 x 
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Problem 3.3.18. Consider the bandlimited Gaussian process whose spectrum is shown 
in Fig. P3.5. 

Write 

Find 
x(t) = t)(t) cos [2nfct + e(t)]. 

Are v(t) and e(t) independent random variables? 

s,(f) 
A 

I l x0/2 -  

2w 

I I 
- fc f 

,f 
C 

Fig. P3.5 

SAMPLING APPROACH TO CONTINUOUS GAUSSIAN PROCESSES-~ 

In Chapters 4, 5, and II-3 we extend the classical results to the waveform case by 
using the Karhunen-Loeve expansion. If, however, we are willing to use a heuristic 
argument, most of the results that we obtained in Section 2.6 for the general Gaussian 
problem can be extended easily to the waveform case in the following manner. 

The processes and signals are sampled every E seconds as shown in Fig. P3.6a. 
The gain in the sampling device is chosen so that 

This requires 
s 

T TIC 

m”(t) dt = lim 2 mi2. 
0 c-+0 i=l 

mi = & m(tJ. 

(1) 

(2) 
Similarly, for a random process, 

nf = 47 n(tr) (3) 
and 

Ebtnd = cE[n(tt) n&)1 = &(t~, td. (4) 
To illustrate the procedure 
continuous waveforms are 

consider the simple model shown in Fig. P3.66. The 

r(t) = m(t) + n(t), OstsT:Hl, 
40 = n(t), OrtsT:H,,, (5) 

r = m + n : HI, 
T = n : Ho, 

t We introduce the sampling approach here because of its widespread use in the 
literature and the feeling of some instructors that it is easier to understand. The 
results of these five problems are derived and discussed thoroughly later in the text. 
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where 

and N = T/E. Assuming that the noise n(t) is band-limited to l/e (double-sided, cps) 
and has a flat spectrum of N,/2, the samples are statistically independent Gaussian 
variables (Problem 3.3.7). 

E[nnT] = E[n2(t)]I = $ I 4 021. (7) 

ml 
m2 m3 LLLL E 

0 T . 

- C 
m(t) 

Sampler t 4 
with gain 

‘ 

ndt) 1 - 
Sampler 

ri = ?Tli + 72i, i= L...,N 
- T 

with gain 
. 

Fig. P3.6 

The vector problem in (6) is familiar from Section 2.6 of Chapter 2. From (2.350) 
the sufficient statistic is 

l(R) = -$ 5 mrRf. (8) 
f=l 

Using (2) and (3) in (8), we have 

m = $ y 1/i m(ti)- 47 r(ti). 
Of=1 

As E - 0, we have (letting dt = E) 

1.i.m. l(R) = go SOT m(t) r(t) dt 
E-*0 

4 wm 

which is the desired result. Some typical problems of interest are developed below. 

Problem 3.3.19. Consider the simple example described in the introduction. 
1. Show that 

d2 “N” = -, 
0 

where E is the energy in m(t). 
2. Draw a block diagram of the receiver and compare it with the result in Problem 

3.3.1. 
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Problem 3.3.20. Consider the discrete case defined by (2.328). Here 

and 
E[nnT] = K 

Q = K-l. 

1. Sample the bandlimited noise process n(t) every E seconds to obtain n(tl), 
n(t2), . . . 9 n(t,J. Verify that in the limit Q becomes a function with two arguments 
defined by the equation 

s 
T Q(t, u) K(u, z) du = iS(t - z). 
0 

. . 
Hunt: Define a function Q(ti, t,) = WE)Qw 
2. Use this result to that 

T 

1 = 

SI 
md0 Q<t, 4 44 dt du 

0 

in the limit. 
3. What is d2? 

Problem 3.3.21. In the 
covariance matrices are 
and show that 

where 

example defined in (2.387) the means are equal but the 
different. Consider the continuous waveform analog to this 

T 

1 = 

ss 
r(t) hd(t, u) r(u) dt du, 

0 

h&, 4 = Qo<t, 4 - Qdt, 4. 

Problem 3.3.22. In the linear estimation problem defined in Problem 2.6.8 the received 
vector was 

I-= a+n 
and the MAP estimate was 

K,% = K,R. 

Verify that the continuous analog to this result is 

s 

T 

Ka- l (t, u) d(u) du = 
0 I 

T 

Kr-’ (t, u) r(u) du, Ost5T. 
0 

Problem 3.3.23. Let 
r(t) = 40 + n(t), OstsT, 

where a(t) and n(t) are independent zero-mean Gaussian processes with covariance 
functions K,(t, u) and &(t, u), respectively. Consider a specific time tl in the interval. 
Find 

Pa(fl) Irw,o 5 t 1. T [At, fr(t), 0s t ,( T]. 

Hint. Sample r(t) every E seconds and then let E - 0. 

Section P3.4 Integral equations 

Problem 3.4.1. Consider the integral equation 

s 

T 

du P exp ( - aIt - ul)h(u) = &h(t), -Trt,(T. 
-T 

1. Prove that A = 0 and h = 2P/a are not eigenvalues. 
2. Prove that al 1 values of A > 2P/a cannot be eigenval ues of the above integral 

equation. 
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Problem 3.4.2. Plot the behavior of 
Problem 3.4.1 as a function of aT. 

the eigenvalue of the integral equation in 

Problem 3.4.3. Consider the integral equation (114). 

s 

t 
A 4(t) = u2 u+(u) du + 02t u 4 1 d OstsT. 

0 

Prove that values of A 5 0 are not eigenvalues of the equation. 

Problem 3.4.4. Prove that the largest eigenvalue of the integral equation 

= &6(t) = I mt, 4 4(u) d4 -TstsT, 
-T 

satisfies the inequality. 

where f(t) is any function with unit energy in [ - T, T]. 

Problem 3.4.5. Compare the bound’in Problem 3.4.4, using the function 

f(t) 
1 

= z’ 
-TstsT, 

with the actual value found in Problem 3.4.2. 

Problem 3.4.6. [lS]. Consider a function whose total energy in the interval 
---oo<t<ooisE. 

E= 
s 

c0 If( dt* -CO 

Now, time-limitf(t), - T/2 5t5 T/2 and then band-limit the res ult to 
Call this resulting function fDB(t )* Denote the energy in f&t) as E DB* 

(- w, W) cps. 

E DB = 
s 

O” IfDdt)12 dt. 
-00 

1. Choosef(t) to maximize 

2. What is the resulting value of y when WT = 2.55 ? 

Problem 3.4.7. [15). Assume that f(t) is first band-limited. 

fB(t) = /I::, F(w) ejot $’ 

Now, time-limit fB(f), -T/2 5 t 5 T/2 and band-limit the result to (- W, W) to 
obtain fBDB(t), Repeat Problem 3.4.6 with BDB replacing DB. 

Problem 3.4.6 [35]. Consider the triangular correlation function 

ut - u) = 1 - It - ul, It - ul s 1, 
= 0, elsewhere. 

Find the eigenfunctions and eigenvalues over the interval (0, T) when T < 1. 
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Problem 3.4.9. Consider the integral equation 

where 

and 

&(t, u) = fl U?COS (F) cos (q9 

Find the eigenfunctions and eigenvalues of this equation. 

Problem 3.4.10. The input to an unrealizable linear time-invariant system is x(t) and 
the output is y(t). Thus, we can write 

We assume that 

y(t) = Ia h(T) x(t - T) dr. 
--Qo 

0 i x”(t) dt = 1. 

(ii) 

(iii) 

h(r) = + 
* UC 

EYA O” 
s 

y”(t) dt. 
-00 

1. What is the maximum value of Ey that can be obtained by using an x(t) that 
satisfies the above constraints ? 

2. Find an x(t) that gives an Eu arbitrarily close to the maximum Ey’ 
3. Generalize your answers to (1) and (2) to include an arbitrary H(jo). 

Problem 3.4.11. All of our basic derivations assumed that the coefficients and the 
coordinate functions in the series expansions of signals and processes were real. In 
this problem we want to derive the analogous relations for complex coefficients and 
coordinate functions. We still assume that the signals and processes are real. 

Derive the analogous results to those obtained in (12), (15), (18), (20), (40), (44), 
(46), (50), (128), and (154). 

Problem 3.4.12. In (180) we considered a function 

and derived its asymptotic value (181). Now consider the finite energy signal s(t) 
and define 

s 

T/2 

St a SW MO & - T/2 

where the #i(t) are the same eigenfunctions used to define (180). The function of 
interest is 

g; a f$ Sf2 go*). 
i=l 

Show that 

for large T, where the function S(jw) is the Fourier transform of s(t). 
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Section P3.5 Periodic Processes 

Problem 3.5.1. Prove that if R%(T) is periodic then almost every sample function is 
periodic. 

Problem 3.5.2. Show that if the autocorrelation Rx(r) of a random process is such that 

R,h) = Rx(O), for some r1 # 0, 
then R,(T) is periodic. 

Problem 3.5.3. Consider the random process 

x(t) = 3 an cos (nut + 0,). 
n= 1 

The a,, (n = 1, 2,. . ., N) are independent random variables: 

E(al) = E(arr) = l l l E(aN) = 0. 

Var (al), Var (a2), . . . ,Var (a,) are different. The 8, (n = 1,2, . . . , N) are identically 
distributed, independent random variables. 

1 
Pe,W = g’ 0 s 8 25 277. 

The 6, and a, are independent. 
1. Find R&, t2). 
2. Is the process wide-sense stationary? 
3. Can you make any statements regarding the structure of particular sample 

functions ? 

Section P3.6 Integrated Transforms 

Problem 3.6.1. Consider the feedback system in Fig. P3.7. The random processes a(t) 
and n(t) are statistically independent and stationary. The spectra S&J) and &(o) 
are known. 

1. Find an expression for Z&), the integrated Fourier transform of x(t). 
2. Express &(w) in terms of &(w), &(w), G&a), and G&w). 

\ 

Fig. P3.7 

Problem 3.6.2. From (221) 

E[IX,,&J)~~] = sf::, dt j;E2 du R,(t - u) cos ot cos mu. 

Prove that the right side becomes arbitrarily large as T-+ ~0. 



Section P3.7 Vector Random Processes 
Problem 3.7.1. Consider the spectral matrix 

Extend the techniques 
eigenvalues for Method 1. 

2 

ez 
--jo + k 

42k 
jw + k 

2k 
a2 + k2 

Problem 3.7.2. Investigate the asymptotic behavior (i.e., as 7’ becomes large) of the 
eigenvalues and eigenfunctions in Method 1 for an arbitrary stationary matrix kernel. 

in Section 3.4 to find the vector eigenfunctions and 
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Problem 3.7.3. Let xl(t) and x2(t) be statistically independent zero-mean random 
processes with covariance functions K&r, u) and KX2(t, u), respectively. The eigen- 
functions and eigenvalues are 

&,(t, 4:&, MO, i = 1,2, . . .) 
Kxz(t, uhi, W), i = L2, . l .- 

Prove that the vector eigenfunctions and scalar eigenvalues can always be written as 

Problem 3.7.4. Consider the vector process r(t) in which 

r(t) = a(t) + n(t), -al < t < al. 

The processes a(t) and n(t) are statistically independent, with spectral matrices 
S,(U) and Sri(w), respectively. Extend the idea of the integrated transform to the 
vector case. Use the approach in Section 3.6.2 and the differential operator introduced 
in Section 2.4.3 (2-239) to find the MAP estimate of a(t). 
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