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Fig. 6.17 Reciprocal of mean-square error, Butterworth spectra: 

(a) realizable; (b) unrealizable 
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Thus the ratio is 
5 un A 1 -=- 
e Pn 1 + Bh, In (1 + &)’ (162) 

For yt = 00 we achieve appreciable improvement for large A, by allowing 
delay. 

Case 2. Gaussian Family. A second family of spectra is given by 

S,(w :n) = 
2PG l?(n) 1 d 

kdi Iyn - +) (1 + w2/nk21n n (1 + &&2)“. (163) 

obtained by passing white noise through yt isolated one-pole filters. In the 
limit as n -+ 00, we have a Gaussian spectrum 

lim S,(o: n) = 
24 

n+m TTPe-W2’k2* (164) 

The family of Gaussian spectra is shown in Fig. 6.18. Observe that for 
n = 1 the two cases are the same. 

The expressions for the two errors of interest are 

and 

6 
1 

s 
ao dw d 

= - 
-m 

un P -CO 27~ (1 + w2/nk2)“” + (2/N,)d, (166) 

To evaluate tpn we rewrite (165) in the form of (150). For this case the 
evaluation of ai and pt is straightforward [53]. The results for n = 1,2,3, 
and 5 are shown in Fig. 6.19~~. For n = 00 the most practical approach is 
to perform the integration numerically. We evaluate (166) by using a 
partial fraction expansion. Because we have already found the ai and fir, 
the residues follow easily. The results for n = 1, 2, 3, and 5 are shown in 
Fig. 6.19b. For n = a the result is obtained numerically. By comparing 
Figs. 6.17 and Fig. 6.19 we see that the Gaussian spectrum is more difficult 
to filter than the bandlimited spectrum. Notice that the limiting spectra in 
both families were nonrational (they were also not factorable). 

In this section we have applied some of the closed-form results for the 
special case of filtering in the presence of additive white noise. We now 
briefly consider some other related problems. 

Colored Noise and Linear Operations. The advantage of the error 
expression in (152) was its simplicity. As we proceed to more complex 
noise spectra, the results become more complicated. In almost all cases 
the error expressions are easier to evaluate than the expression obtained 
from the conventional Wiener approach. 
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Fig. 6.18 Gaussian family. 

For our purposes it is adequate to list a number of cases for which 
answers have been obtained. The derivations for some of the results are 
contained in the problems (see Problems 6.2.20 to 6.2.26). 

1. The message a(t) is transmitted. The additive noise has a spectrum 
that contains poles but not zeros. 

2. The message a(t> is passed through a linear operation whose transfer 
function contains only zeros before transmission. The additive noise is 
white. 

3. The message a(t) is transmitted. The noise has a polynomial spectrum 

WJ) = No + N202 + N404 + l .  l + N2n02n. 

4. The message a(t) is passed through a linear operation whose transfer 
function contains poles only. The noise is white. 
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We observe that Cases 2 and 4 will lead to the same error expression as 
Cases 1 and 3, respectively. 

To give an indication of the form of the answer we quote the result for 
typical problems from Cases 1 and 4. 

Example (from Case 1). Let the additive noise n(r) be uncorrelated with the message 
and have a spectrum, 

S*(w) = $+* (167) 
Then 5P = 1 O” 

an2 exp - -2 ( s [ 
&W dw 

0, -W w4 ln 1 + S&) 1 ) s l 

This result is derived in Problem 6.2.20. 

Example (from Case 4). The message a(t) is integrated before being transmitted. 

Then 

t 
r(t) = a(u) du + w(t). (16% 

-W 

4% = + II3 + I2, (170) 

II = 
s [ 

w ln 
-w 

l+s]$ 
77 (171) 

I2 = 2/Iw W21n [l + F]ge (1W 

This result is derived in Problem 6.2.25. 

It is worthwhile to point out that the form of the error expression 
depends only on the form of the noise spectrum or the linear operation. 
This allows us to vary the message spectrum and study the effects in an 
easy fashion. 

As a final topic in our discussion of Wiener filtering, we consider 
optimum feedback systems. 

6.2.5 Optimum Feedback Systems 

One of the forms in which optimum linear filters are encountered in the 
sequel is as components in a feedback system. The modification of our 
results to include this case is straightforward. 

We presume that the assumptions outlined at the beginning of Section 
6.2 (pp. 481-482) are valid. In addition, we require the linear processor to 
have the form shown in Fig. 6.20. Here gl(T) is a linear filter. We are 
allowed to choose g1(7) to obtain the best d(t). 

System constraints of this kind develop naturally in the control system 
context (see [9]). In Chapter 11.2 we shall see how they arise as linearized 
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Fig. 6.20 Feedback system. 

versions of demodulators. Clearly, we want the closed loop transfer 
function to equal H&U). We denote the loop filter that accomplishes this 
as G&U). Now, 

H,&) = Glo(jw) 
1 + G,oCjw) 

(173) 

Solving for G,,(&J), 

C,,(&J) = 1 f$$ ). (174) 
0 OJ 

For the general case we evaluate Ho(&) by using (78) and substitute 
the result into (174). 

For the special case in Section 6.2.4, we may write the answer directly. 
Substituting (141) into (174), we have 

We observe that G,,(&J) has the same poles as G+ @J) and is therefore a 
stable, realizable filter. We also observe that the poles of G+Cjw) (and 
therefore the loop filter) are just the left-half-s-plane poles of the message 
spectrum. 

We observe that the message can be visualized as the output of a linear 
filter when the input is white noise. The general rational case is shown in 
Fig. 6.21a. We control the power by adjusting the spectral height of u(t): 

E[u(t) u(7)] n q a(? - 7). (176) 
The message spectrum is 

I bn-&u)n-l + l l l + b, 

wJ) =4 (@)”  +pn-l(jgn-l-+...+po 

2* (177) 
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Fig. 6.21 Filters: (a) message generation; (b) canonic feedback filter. 

The numerator must be at least one degree less than the denominator to 
satisfy the finite power assumption in Section 6.2.4. From (175) we see 
that the optimum loop filter has the same poles as the filter that could be 
used to generate the message. Therefore the loop filter has the form shown 
in Fig. 6.21b. It is straightforward to verify that the numerator of the loop 
filter is exactly one degree less than the denominator (see Problem 6.2.27). 
We refer to the structure in Fig. 6.216 as the canonic feedback realization 
of the optimum filter for rational message spectra [21]. In Section 6.3 we 
shall find that a general canonic feedback realization can be derived by for 
nonstationary processes and finite observation intervals. 

Observe that to find the numerator we must still perform a factoring 
operation (see Problem 6.2.27). We can also show that the first coefficient 
in the numerator is 2&/N, (see Problem 6.2.28). 

A final question about feedback realizations of optimum linear filters 
concerns unrealizable filters. Because we have seen in Sections 6.2.2 and 
6.2.3 [(108b) and (127)] that using an unrealizable filter (or allowing delay) 
always improves the performance, we should like to make provision for it 
in the feedback configuration. Previously we approximated unrealizable 
filters by allowing delay. Looking at Fig. 6.20, we see that this would not 
work in the case of gl(T) because its output is fed back in real time to 
become part of its input. 

If we are willing to allow a postloop filter, as shown in Fig. 6.22, we 
can consider unrealizable operations. There is no difficulty with delay in 
the postloop filter because its output is not used in any other part of the 
system. 
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Fig. 6.22 Unrealizable postloop filter. 

The expression for the optimum unrealizable postloop filter G,,,(@) 
follows easily. Because the cascade of the two systems must correspond to 
&diw> and the closed loop to H,(&), it follows that 

The resulting transfer function can be approximated arbitrarily closely by 
allowing delay. 

6.2.6 Comments 

In this section we discuss briefly some aspects of linear processing that 
are of interest and summarize our results. 

Related Topics. Multidimensional Problem. Although we formulated the 
vector problem in Section 6.1, we have considered only the solution 
technique for the scalar problem. For the unrealizable case the extension 
to the vector problem is trivial. For the realizable case in which the 
message or the desired signal is a vector and the received waveform is a 
scalar the solution technique is an obvious modification of the scalar 
technique. For the realizable case in which the received signal is a vector, 
the technique becomes quite complex. Wiener outlined a solution in [I] 
which is quite tedious. In an alternate approach we factor the input spectral 
matrix. Techniques are discussed in [lo] through [ 191. 

Nonrational Spectra. We have confined our discussion to rational 
spectra. For nonrational spectra we indicated that we could use a rational 
approximation. A direct factorization 

We can show that a n ecessary and 
is not al 

sufficient cond 
ways possi 

ition 
ble . 
for factorability 

is that the integral 00 s I log sd0) du -00 1 + (4271y 
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must converge. Here &(w) is the spectral density of the entire received 
waveform. This condition i s derived and the implications are discussed 
in [l]. It is referred to as the Paley-wiener criterion. 

If this condition is not satisfied, r(t) is termed a deterministic waveform. 
The adjective deterministic is used because we can predict the future of 
r(t) exactly by using a linear operation on only the past data. A simple 
example of a deterministic waveform is given in Problem 6.2.39. 

Both limiting message spectra in the examples in Section 6.2.4 were 
deterministic. This means, if the noise were zero, we would be able to 
predict the future of the message exactly. We can study this behavior easily 
by choosing some arbitrary prediction time a and looking at the prediction 
error as the index yt --, co. For an arbitrary a we can make the mean-square 
prediction error less than any positive number by letting yt become 
sufficiently large (see Problem 6.2.41). 

In almost all cases the spectra of interest to us will correspond to non- 
deterministic waveforms. In particular, inclusion of white noise in r(t) 
guarantees factorability. 

Sensitiuity. In the detection and parameter estimation areas we discussed 
the importance of investigating how sensitive the performance of the 
optimum system was with respect to the detailed assumptions of the model. 
Obviously, sensitivity is also important in linear modulation. In any 
particular case the technique for investigating the sensitivity is straight- 
forward. Several interesting cases are discussed in the problems (6.2.31- 
6.2.33). 

In the scalar case most problems are insensitive to the detailed assump- 
tions. In the vector case we must exercise more care. 

As before, a general statement is not too useful. The important point to 
re-emphasize is that we must always check the sensitivity. 

Colored and White Noise. When trying to estimate the message a(t) in 
the presence of noise containing both white and colored components, there 
is an interesting interpretation of the optimum filter. 

Let 

r(t) = a(t) + n&) + w(t), (179) 
and 

40 = a(t). (180) 

Now, it is clear that if we knew nc(t) the optimum processor would be 
that shown in Fig. 6.23a. Here h,(T) is just the optimum filter for r’(t) 
=a(t) + w(t), which we have found before. 

We do not know nc(t) because it is a sample function from a random 
process. A logical approach would be to estimate n,(t), subtract the 
estimate from r(t), and pass the result through h,(T), as shown in Fig. 6.233. 
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Fig. 6.23 Noise estimation. 

We can show that the optimum system does exactly this (see Problem 
6.2.34). (Note that b(t) and fi&) are coupled.) This is the same kind of 
intuitively pleasing result that we encountered in the detection theory area. 
The optimum processor does exactly what we would do if the disturbances 
were known exactly, only it uses estimates. 

Linear Operations and Filters. In Fig. 6.1 we showed a typical estimation 
problem. With the assumptions in this section, it reduces to the problem 
shown in Fig. 6.24. The general results in (78), (119), and (122) are applic- 
able. Because most interesting problems fall into the model in Fig. 6.24, 
it is worthwhile to state our results in a form that exhibits the effects of 
k&) and k,(7) explicitly. The desired relations for uncorrelated message 
and noise are 

Fig. 6.24 Typical unmodulated estimation problem. 
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In the realizable filtering case we must use (181) whenever d(t) # a(t). 
By a simple counterexample (Problem 62.38) we can show that linear 
filtering and optimum realizable estimators do not commute in general. 
In other words, a<t) does not necessarily equal 

k 0 d - T) &) dr 

This result is in contrast to that obtained for MAP interval estimators. 
On the other hand, comparing (119) with (182), we see that linear filtering 
and opti 
error in 

mum unrealizable (T/ = co) estimators do commute. The resulting 
the unrealizable case when &(&) = 1 is 

This expression is obvious. For other &djw) see Problem 6.2.35. Some 
implications of (183) with respect to the prefiltering problem are discussed 
in Problem 6.2.36. 

Remember that we assumed that kd(r) represents an “allowable” 
operation in the mean-square sense; for example, if the desired operation 
is a differentiation, we assume that a(t) is a mean-square differentiable 
process (see Problem 6.2.37 for an example of possible difficulties when 
this assumption is not true). 

Summary. We have discussed in some detail the problem of linear 
processing for stationary processes when the infinite past was available. 
The principal results are the following: 

1. A constructive solution to the problem is given in (78): 

2. The effect of delay or prediction on the resulting error in an 
optimum linear processor is given in (108b). In all cases there is a monotone 
improvement as more delay is allowed. In many cases the improvement is 
sufficient to justify the resulting complexity. 

3. The importance of the idea that an unrealizable filter can be approxi- 
mated arbitrarily closely by allowing a processing delay. The advantage of 
the unrealizable concept is that the answer can almost always be easily 
obtained and represents a lower bound on the MMSE in any system. 
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4. A closed-form expression for the error in the presence of white noise 
is given in (152), 

5. The canonic filter structure for white noise shown in Fig. 6.21 enables 
us to relate the complexity of the optimum filter to the complexity of the 
message spectra by inspection. 

We now consider another approach to the point estimation problem. 

6.3 KALMAN-BUCY FILTERS 

Once again the basic problem of interest is to operate on a received 
waveform T(U), 7’* s u 5 t, to obtain a minimum mean-square error point 
estimate of some desired waveform d(t). In a simple scalar case the 
received waveform is 

r(u) = c(u) a(u) + n(u), Ti < u < - t 9 w4) 

where a(t) and n(t) are zero-mean random processes with covariance 
functions K&t, U) and (&/2) s(t - u), respectively, and d(t) = a(t). The 
problem is much more general than this example, but the above case is 
adequate for motivation purposes. 

The optimum processor consists of a linear filter that satisfies the 
equation 

In Section 6.2 we discussed a special case in which Tt = -oo and the 
processes were stationary. As part of the solution procedure we found a 
function G+(&). We observed that if we passed white noise through a 
linear system whose transfer function was G+(jw) the output process had 
a spectrum S,(w). We also observed that in the white noise case, the filter 
could be realized in what we termed the canonic feedback filter form. The 
optimum loop filter had the same poles as the linear system whose output 
spectrum would equal S,(W) if the input were white noise. The only 
problem was to find the zeros of the optimum loop filter. 

For the finite interval it is necessary to solve (185). In Chapter 4 we dealt 
with similar equations and observed that the conversion of the integral 
equation to a differential equation with a set of boundary conditions is a 
useful procedure. 
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We also observed in several examples that when the message is a 
scalar Markov process [recall that for a stationary Gaussian process this 
implies that the covariance had the form A exp (-Bit - ul)] the results 
were simpler. These observations (plus a great deal of hindsight) lead us to 
make the following conjectures about an alternate approach to the problem 
that might be fruitful: 

1. Instead of describing the processes of interest in terms of their 
covariance functions, characterize them in terms of the linear (possibly 
time-varying) systems that would generate them when driven with white 
n0ise.t 

2. Instead of describing the linear system that generates the message in 
terms of a time-varying impulse response, describe it in terms of a differen- 
tial equation whose solution is the message. The most convenient descrip- 
tion will turn out to be a first-order vector differential equation. 

3. Instead of specifying the optimum estimate as the output of a linear 
system which is specified by an integral equation, specify the optimum 
estimate as the solution to a differential equation whose coefficients are 
determined by the statistics of the processes. An obvious advantage of this 
method of specification is that even if we cannot solve the differential 
equation analytically, we can always solve it easily with an analog or 
digital computer. 

In this section we make these observations more precise and investigate 
the results. 

First, we discuss briefly the state-variable representation of linear, time- 
varying systems and the generation of random processes. Second, we 
derive a differential equation which is satisfied by the optimum estimate. 
Finally, we discuss some applications of the technique. 

The original work in this area is due to Kalman and Bucy [23]. 

6.3.1 Differential Equation Representation of Linear Systems and Random 
Process Generationg 

I n our previous d iscussions we have cha racterized linear systems by 
an impulse respon se h(t, 2.4) [or simply 4 1 7 in the time-invariant case]. 

t The advantages to be accrued by this characterization were first recognized and 
exploited by Dolph and Woodbury in 1949 [22]. 
$ In this section we develop the background needed to solve the problems of im- 
mediate interest. A number of books cover the subject in detail (e.g., Zadeh and 
DeSoer [24], Gupta [25], Athans and Falb [26], DeRusso, Roy, and Close [27] and 
Schwartz and Friedland [28]. Our discussion is self-contained, but some results are 
stated without proof. 
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Implicit in this description was the assumption that the input was known 
over the interval -- < t < 00. Frequently this method of description is 
the most convenient. Alternately, we can represent many systems in terms 
of a differential equation relating its input and output. Indeed, this is the 
method by which one is usually introduced to linear system theory. The 
impulse response h(t, u) is just the solution to the differential equation 
when the input is an impulse at time U. 

Three ideas of importance in the differential equation representation are 
presented in the context of a simple example. 

The first idea of importance to us is the idea of initial conditions and . 
state variables in dynamic systems. If we want to find the output over some 
interval to 5 t < tl, we must know not only the input over this interval 
but also a certain number of initial conditions that must be adequate to 
describe how any past inputs (t < to) affect the output of the system in the 
interval t 2 to. 

We define the state of the system as the minimal amount of information 
about the effects of past inputs necessary to describe completely the out- 
put for t > to. The variables that contain this information are the state 
variables? There must be enough states that every input-output pair can 
be accounted for. When stated with more mathematical precision, these 
assumptions imply that, given the state of the system at to and the input 
from to to tl, we can find both the output and the state at tl. Note that our 
definition implies that the dynamic systems of interest are deterministic 
and realizable (future inputs cannot affect the output). If the state can be 
described by a finite-dimensional vector, we refer to the system as a 
finite-dimensional dynamic system. In this section we restrict our atten- 
tion to finite-dimensional systems. 

We can illustrate this with a simple example: 

Example 1. Consider the RC circuit shown in Fig. 6.25. The output voltage y(t) is 
related to the input voltage u(t) by the differential equation 

VW P(t) + YW = w. (186) 

To find the output y(t) in the interval t >, to we need to know u(t), t >, to, and the 
voltage across the capacitor at to. Thus a suitable state variable is y(t). 

The second idea is realizing (or simulating) a differential equation by 
using an analog computer. For our purposes we can visualize an analog 
computer as a system consisting of integrators, time-varying gains, adders, 
and nonlinear no-memory devices joined together to produce the desired 
input-output relation. 

For the simple RC circuit example an analog computer realization is 
shown in Fig. 6.26. The initial condition y(tO) appears as a bias at the 

t Zadeh and DeSoer [24] 
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Fig. 6.25 An RC circuit. 

output of the integrator. This biased integrator output is the state variable 
of the system. 

The third idea is that of random process generation. If u(t) is a random 
process or y&J is a random variable (or both), then y(t> is a random 
process. Using the system described by (186), we can generate both non- 
stationary and stationary processes. As an example of a nonstationary 
process, let y&J be N(0, oO), u(t) be zero, and k = l/RC. Then y(t) is a 
zero-mean Gaussian random process with covariance function 

Ky(f, u> = ao2e- k(t + u - 2to), 

As an example of a stationary process, consider the case in which u(t) is 
a sample function from a white noise process of spectral height 4. If the 
input starts at --a (i.e., to = -a) and y(tO) = 0, the output is a stationary 
process with a spectrum 

sy(w) = s2, VW 
where 

4 = 2ay2/k. ww 

We now explore these ideas in a more general context. Consider the 
system described by a differential equation of the form 

y’“‘(t) + pn- 1 y’” - “(t) + l l ’ + po y(t) = b, u(t), uw 

r 1 - I 
S 

Integrator 

c 

Fig. 6.26 An analog computer realization. 
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where y(“)(t) denotes the nth derivative of y(t). Recall that to specify the 
solution to an nth-order equation we need the values of y(t), . . . , ~@-l)(t) 
at to. This observation will be the key to finding the state representation 
for this system. The first step in finding an analog computer realization 
is to generate the terms on the left-hand side of the equation. This is 
shown in Fig. 6.27a. The next step is to interconnect these various quan- 
tities so that the differential equation is satisfied. The differential equation 
specifies the inputs to the summing point and gives the block diagram 
shown in Fig. 6.27b. Finally, we include the initial conditions by allowing 

pn-1 Y(“-%) pn-2 Ycnm2)Ct) POYW 

Y V V 

Fig. 6.27 Analog computer realization. 
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for a bias on the integrator outputs and obtain the realization shown in 
Fig. 6.27~. The state variables are the biased integrator outputs. 

It is frequently easier to work with a first-order vector differential 
equation than an nth-order scalar equation. For (190) the transformation 
is straightforward. Let 

Denoting 
first-order 
scalar 

xn(t) = y’” - l’(t) = A,- 1(t). 

k,(t) = y’“‘(t) = - 2 pk-ly(k-l) (0 + bo40 
k=l 

n 

=- 
c pk - lXk@) + b+)* 

k=l 

the set of x,(t> by a column matrix, we see that 
n-dimensional vector equation is equivalent to 

equation. 

F = 

and 

@$ n k(t) = Fx(t) + Gu(t), 

0 I 1 

0 ; 1 0 

-PO : -P1 -p2 -p3 l ** -pnD1 

O- 

0 

G 
. = I . . 

0 

b o- 

The vector x(t) is called the state vector 

. (194) 

for this linear system and (192) 
is called the state equation of the system. Note that the state vector x(t) 
we selected is not the only choice. Any nonsingular linear transformation 
of x(t) gives another state vector. The output y(t) is related to the state 
vector by the equation 

r(t) = c x(t), W) 

ww 

(191) 

the following 
the nth-order 
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where C is a 1 x y2 matrix 

c = [I t 0 : 0 IO* ’ l 01. w9 

Equation (195) is called the output equation of the system. The two equa- 
tions (192) and (195) completely characterize the system. 

Just as in the first example we can generate both nonstationary and 
stationary random processes using the system described by (192) and (195). 
For stationary processes it is clear (190) that we can generate any process 
with a rational spectrum in the form of 

WJ~ = 
k 

d2nw2n + d2n-2W2n-2 + l l l + do (197) 

by letting u(t) be a white noise process and to = -co. In this case the state 
vector x(t) is a sample function from a vector random process and y(t) is 
one component of this process. 

The next more general differential equation is 

J+“‘(t) + pn - 1 y’“- “(t) + ’ ’ ’ + PO y(t) 
= b n-1 U’n-l)(t) + ’ l l + b,u(t). (198) 

The first step is to find an analog computer-type realization that corre- 
sponds to this differential equation. We illustrate one possible technique 
by looking at a simple example. 

&ample 2A. Consider the case in which n = 2 and the initial conditions are zero. 
Then (198) is 

j;(t) + pl P(t) + po y(t) = b, G(t) + bo u(t). (199) 

Our first observation is that we want to avoid actually differentiating u(t) because in 
many cases of interest it is a white noise process. Comparing the order of the highest 
derivatives on the two sides of (199), we see that this is possible. An easy approach 
is to assume that a(t) exists as part of the input to the first integrator in Fig. 6.28 and 
examine the consequences. To do this we rearrange terms as shown in (200): 

[Y(t) - 61 a(t)] + pl P(t) + PO y(t) = bo u(t). (200) 

The result is shown in Fig. 6.28. Defining the state variables as the integrator outputs, 
we obtain 

x1(t) = YW (201a) 
and 

x20 1 = 3(t) - bl u(t). (2016) 

Using (200) and (201), we have 

i,(t) = x2(t) + h u(t) 

i,(t) = -po xl(t) - pl (x20) + 61 u(t)) + bo 40 

= -po xl(t) - pl x2(t) + (bo - brpd u(t). 

(202a) 

(202b) 

We can write (202) as a vector state equation by defining 

F = [-“,, -2 (203a) 
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Fig. 6.28 Analog realization. 

and 

Then 

The output equation is 

G = Lb, bt,bJ 

x(t) = F x(t) + G u(t). 

y(t) = [l : O]x(t) 4 c x(t). 

(2036) 

(204a) 

(204b) 

Equations 204a and 2046 plus the initial condition x(to) = 0 characterize the system. 

It is straightforward to extend this particular technique to the nth order 
(see Problem 6.3.1). We refer to it as canonical realization No. 1. Our 
choice of state variables was somewhat arbitrary. To demonstrate this, we 
reconsider Example 2A and develop a different state representation. 

Example 2B. Once again 

j;(t) + pl i)(t) + po y(t) = h W + bo u(t). (205) 

As a first step we draw the two integrators and the two paths caused by br and bo. 
This partial system is shown in Fig. 6.29a. We now want to introduce feedback paths 
and identify state variables in such a way that the elements in F and G will be one of 
the coefficients in the original differential equation, unity, or zero. Looking at Fig. 
6.29a, we see that an easy way to do this is to feed back a weighted version of xl(t) 
(= y(t)) into each summing point as shown in Fig. 6.296. The equations for the state 
variables are 

x10) = Y(t), (206) 

h(t) = X2(f) - p1 r(t) + hW9 (207) 

Rz(t) = -PO v(t) + bo u(t). (208) 
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l 

1 1 
s 

> 
8 

c 

0 a 

(b) 

Fig. 6.29 Analog realization of (205). 

The F matrix is 

F- [I;; +;] (209) 

and the G matrix is 

G= 
h II bo l 

(210) 
We see that the system has the desired property. 

The extension to the original nth-order differential equation is straight- 
forward. The resulting realization is shown in Fig. 6.30. The equations for 
the state variables are 

(211) 
X&) = Jt,- l(t> + PlY(t) - b(O~ 

k,(t) = -PoY(O + b40~ 
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Fig. 6.30 Canonic realization No. 2: state variables. 

The matrix for the vector differential equation is 

F = 

and 

-Pn-1 i 1 0 

-&l-2 i 0 1 () 
I I I I 1 

.  I  .  

.  .  

.  I  .  
I  

I  

I  I 0 
-p1 i 1 I ““““I”““““‘” s---s 

- -po i0 . . . 0 

G = . 

(212) 

(213) 

We refer to this realization as canonical realization No. 2. 
There is still a third useful realization to consider. The transfer function 

corresponding to (198) is 

y(s) bnelsn-l + l l l + b, -= 
x(s) 

A H(s). 
Sn + pn-lSnvl + ” ’ + PO - 

We can expand this equation in a partial fraction expansion 

(214) 
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where the At are the roots of the denominator that are assumed to be dis- 
tinct and the ai are the corresponding residues. The system is shown in 
transform notation in Fig. 6.31~1. Clearly, we can identify each subsystem 
output as a state variable and realize the over-all system as shown in 
Fig. 6.31b. The F matrix is diagonal. 

F = 
0 

. . 
hi / 

(216) 

Fig. 6.31 Canonic realization No. 3: (a) transfer function; (b) analog computer 
realization. 
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and the elements in the G matrix are the residues 

G = (217) 

Now the original output r(t) is the sum of the state variables 

where 

y(t) = 2 x*(t) = l’x(t), 
i=l 

(218a) 

lT n [I ; 1 l l l I]. (218b) 

We refer to this realization as canonical realization No. 3. (The realization 
for repeated roots is derived in Problem 6.3.2.) 

Canonical realization No. 3 requires a partial fraction expansion to 
find F and G. Observe that the state equation consists of n uncoupled first- 
order scalar equations 

i- 1,2 ,..., n. 

The solution of this set is appreciably simpler than the solution of the 
vector equation. On the other hand, finding the partial fraction expansion 
may require some calculation whereas canonical realizations No. 1 and 
No. 2 can be obtained by inspection. 

We have now developed three different methods for realizing a system 
described by an nth-order constant coefficient differential equation. In 
each case the state vector was different. The F matrices were different, but 
it is easy to verify that they all have the same eigenvalues. It is worthwhile 
to emphasize that even though we have labeled these realizations as 
canonical some other realization may be more desirable in a particular 
problem. Any nonsingular linear transformation of a state vector leads to 
a new state representation. 

We now have the capability of generating any stationary random process 
with a rational spectrum and finite variance by exciting a ny of the three 
realizations with white noise. In addition we can generate a wid .e class of 
nonstationary processes. 

Up to this point we have seen how to represent linear time-invariant 
systems in terms of a state-variable representation and the associated 
vector-differential equation. We saw that this could correspond to a 
physical realization in the form of an analog computer, and we learned 
how we could generate a large class of random processes. 
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The next step is to extend our discussion to include time-varying systems 
and m ultiple input-multiple output systems. 

For time-varying systems we co Insider the vector equations 

as the basic representation.? The matrices 
of time. By using a white noise input 

@& = F(t) x(t) + G(t) u(t), (220a) 

(220b) 

F(t) and G(t) may be functions 

we have the ability to generate some nonstationary random processes. It is 
worthwhile to observe that a nonstationary process can result even when 
F and G are constant and x(to> is deterministic. The Wiener process, 
defined on p. 195 of Chapter 3, is a good example. 

0 a 

Fig. 6.32 Generation of two messages. 

=f The canonic realizations in Figs. 6.28 and 6.30 may still be used. It is important to 
observe that they do not correspond to the same nth-order differential equation as in 
the time-invariant case. See Problem 6.3.14. 
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Example 3. Here F(t) = 0, G(t) = u, C(t) = 1, and (220) becomes 

W) - = 0 u(t). 
dt (222) 

Assuming that x(O) = 0, this gives the Wiener process. 

Other specific examples of time-varying systems are discussed in later 
sections and in the problems. 

The motivation for studying multiple input-multiple output systems 
follows directly from our discussions in Chapters 3, 4, and 5. Consider the 
simple system in Fig. 6.32 in which we generate two outputs J&) and 
y&). We assume that the state representation of system 1 is 

&(t) = F,(t) xl(t) + G,(t) ul(t), (223) 

where xl(t) is an n-dimensional state vector. Similarly, the state representa- 
tion of system 2 is 

k&) = F,(t) x&) + G,(t) u&j, (225) 

where x2(t) is an m-dimensional state vector. A more convenient way to 
describe these two systems is as a single vector system with an (n + m)- 
dimensional state vector (Fig. 6.323). x1(0 

x(t) = [ 1 ----. 9 w7) x2(0 

UlW u(t) = 
[ I 
----- 9 (230) 
u&) 

and 

YlW 

Y(f) = [ I -mm--- . (232) 

YzW 
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The resulting differential equations are 

k(t) = F(t) x(t) + G(t) u(t), (233) 

YW = C(t) x(t). (234) 

The driving function is a vector. For the message generation problem we 
assume that the driving function is a white process with a matrix 
covariance function 

I E[u(t) u+)] n Q 8(t - T), (235) 

where Q is a nonnegative definite matrix. The block diagram of the 
generation process is shown in Fig. 6.33. 

Observe that in general the initial conditions may be random variables. 
Then, to specify the second-moment characteristics we must know the 
covariance at the initial time 

wo, to) 4 m4td JWCJI (236) 
and the mean value E[x(t,)]. We can also generate coupled processes by 
replacing the 0 matrices in (228), (229), or (231) with nonzero matrices. 

The next step in our discussion is to consider the solution to (233). 
We begin our discussion with the homogeneous time-invariant case. Then 
(233) reduces to 

w = Fx(t), (237) 

with initial condition x(tO). If x(t) and F are scalars, the solution is 
familiar, 

x(t) = eFtt - %( to). (238) 

For the vector case we can show that (e.g. [27], [28], [29], or [Xl]) 

x(t) = eF(t-to) x(tO), (239) 

U(t) 1 X(0 r(t) 
t 

+s 
C(t) --- 

* Ti X n 
1 

Integrator Matrix 
time-varying gain time-varying gain 

!  
. F(t) 4 x(0 

Ji’X -iI 
Matrix 

time-varying gain 

Fig. 6.33 Message generation process. 
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where eFf is defined by the infinite series 

F2t2 
eFt A I + Ft + 7 +*Y - 

. (240) 

The function eFttSto) is denoted by +(t - to) 4 +(7). The function 
44 t- to) is called the state transition matrix of the system. Two properties 
can easily be verified for the time-invariant case. 

Property 1l.t The state transition matrix satisfies the equation 

or 

dW - to) 
dt 

= F+(t - to) 

‘9 = F+(T). 

[Use (240) and its derivative on both sides of (239).] 

Property 12. The initial condition 

40 0 - to) = 4(O) = I (243) 

follows directly from (239). The homogeneous solution can be rewritten 
in terms of +(t - to): 

x(t) = 4(t - to) x(t0.h (244) 

The solution to (242) is easily obtained by using conventional Laplace 
transform techniques. Transforming (242), we have 

where the identity matrix arises from the initial condition in (243). 
Rearranging terms, we have 

or 
[SI - Fj a+) = I (246) 

e(s) = @I - F)-l. (247) 

The state transition matrix is 

+(T) = F[G$Q] = C-‘&d - F)-l]. (WI 

A simple example illustrates the technique. 

Example 4. Consider 
sition matrix is, 

system described by (206210). The transform of the tran- 

t Because we have to refer back to the properties at the 
use a consecutive numbering system to avoid confusion. 

beginning of the 
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1. s+p1 -1 -l 

#(s) = 1 9 
PO S 

Q(s) = 1 

[ 

S 1 
s2 + p1s + PO -po s + PI 1 . 

(250) 

(251) 

To find e(7) we take the inverse transform. For simplicity we let p1 = 3 and 
PO = 2. Then 

2e-2' _ e-T I e-T _ e-2T 

+w = 

I 
-----------I------------ . 

2[e-2' _ e-f]j &-f - e-22 
I 

(252) 

It is important to observe that the complex natural frequencies involved 
in the solution are determined by the denominator of a(s). This is just the 
determinant of the matrix s1 - F. Therefore these frequencies are just the 
roots of the equation 

det [sI - F] = 0. (253) 

For the time-varying case the basic concept of a state-transition matrix 
is still valid, but some of the above properties no longer hold. From the 
scalar case we know that+@, to) will be a function of two variables instead 
of just the difference between t and fO. 

Definition. The state transition matrix is defined to be a function of two 
variables +(t, to) which satisfies the differential equation 

with initial condition +(to, to) = I. The solution at any time is 

x(0 = w, to) x(b)* (254b) 

An analytic solution is normally difficult to obtain. Fortunately, in most 
of the cases in which we use the transition matrix an analytic solution is 
not necessary. Usually, we need only to know that it exists and that it has 
certain properties. In the cases in which it actually needs evaluation, we 
shall do it numerically. 

Two properties follow easily : 

and 
for all to, tl, f2 (255a) 

(255b) 

For the nonhomogeneous case the equation is 

w  = F(t) x(t) + G(t) u(t). (256) 

The solution contains a homogeneous part and a particular part: 

x(t) = +(t, to) x(to) + s t +(t, 7) G(T) U(T) dn 
t0 

(257) 
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(Substitute (257) into (256) to verify that it is the solution.) The output 

YW is 
Y(t) = C(t) x(t). (258) 

In our work in Chapters 4 and 5 and Section 6.1 we characterized time- 
varying linear systems by their impulse response h(t, 7). This characteriza- 
tion assumes that the input is known from -co to t. Thus 

h(t, 7) u( 7) d7. --a0 (259) 

For most cases of interest the effect of the initial condition x( -00) will 
disappear in (257). Therefore, we may set them equal to zero and obtain, 

s 

t 
Y(t) = C(t) 444 7) G(7) u(7) d7* (260) 

--oo 

Comparing (259) and (260), we have 

WY 7) = C(t) 444 7) G(7), t 2 7, 

0, elsewhere. (261) 

It is worthwhile to observe that the three matrices on the right will depend 
on the state representation that we choose for the system, but the matrix 
impulse response is unique. As pointed out earlier, the system is realizable. 
This is reflected by the 0 in (261). 

For the time-invariant case 

Y(s) = H(s) U(s)9 (262) 
and 

H(s) = C @(s)G. (W 

Equation 262 assumes that the input has a Laplace transform. For a 
stationary random process we would use the integrated transform (Section 
3 6) . . 

Most of our discussion up to this point has been valid for an arbitrary 
driving function u(t). We now derive some statistical properties of vector 
processes x(t) and y(t) for the specific case in which u(t) is a sample 
function of a vector white noise process. 

E[u(t) u*(7)] = Q 8(t - 7). (269 
Property 13. The cross corre!ation between the state vector x(t) of a 
system driven by a zero-mean white noise u(t) and the input u(7) is 

&,(t, 7) n E[x(t) uT(7>1- W) 
It is a discontinuous function that equals 

0, 7 > t, 
Kxu(t, 7) = tW)Q, 7 = t, (266) 

44~ 7) WQ, t() < 7 < t. 
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Proof. Substituting (257) into the definition in (265), we have 

Ll(t, 7) = E Mt, to) x(&J + f +(t, 4 G(4 ~(4 da] uT(r)}- (267) 
t0 

Bringing the expectation inside the integral and assuming that the 
initial state x(to) is independent of u(r) for 7 > to, we have 

= +(t, a) G(a) Q S(a - T) da. 

If T > t, this expression is zero. If 7 = t and we assume that the delta 
function is symmetric because it is the limit of a covariance function, we 
pick up only one half the area at the right end point. Thus 

Km& t) = +b(t, t) G(t)Q. (269) 

Using the result following (254a), we obtain the second line in (266). 
If 7 < t, we have 

UC 4 = W, 7) WQ, 7<t (270a) 

which is the third line in (266). A special case of (270a) that we shall use 
later is obtained by letting T approach t from below. 

lim K,,(t, 7) = G(t)Q. 
t- t- 

(2706) 

The cross correlation between the output vector y(t) and u(7) follows 
easily. 

Property 14. The variance matrix of the state vector x(t) of a system 

k(t) = F(t) x(t) + G(t) u(t) (272) 

satisfies the differential equation 

ii,(t) = F(t) A,(t) + A,(t) FT(t) + G(t) Q G=(t), 

with the initial condition 

(273) 

4&> = qG3) Jwo)l* 
[Observe that R,(t) = K,(t, t).] 

Proof. 
A,(t) n E[x(t) XT(t)]. PW 
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Differentiating, we have 

d4Js0 --&- = E[yXT(f)] + E[x(tpp]* (276) 

The second term is just the transpose of the first. [Observe that x(t) is 
not mean-square differentiable: therefore, we will have to be careful when 
dealing with (276).] 

Substituting (272) into the first term in (276) gives 

E [$) XT(t)] = Euw x(t> + G(t) WI x’(t)>* (277) 

Using Property 13 on the second term in (277), we have 

E [y XT(t)] = F(t) A,(t) + *G(t) Q G*(t). (278) 

Using (278) and its transpose in (276) gives 

h,(t) = F(t) A,(t) + A,(t) P(t) + G(t) Q GT(t), (279 

which is the desired result. 
We now have developed the following ideas: 

1. State variables of a linear dynamic system ; 
2. Analog computer realizations ; 
3. First-order vector differential equations and state-transition matrices ; 
4. Random process generation. 

The next step is to apply these ideas to the linear estimation problem. 

Obsevtration Model. In this section we recast the linear modulation 
problem described in the beginning of the chapter into state-variable 
terminology. The basic linear modulation problem was illustrated in Fig. 
6.1. A state-variable formulation for a simpler special case is given in 
Fig. 6.34. The message a(t) is generated by passing y(t) through a linear 
system, as discussed in the preceding section. Thus 

and 
k(t) = F(t) x(t) + G(t) u(t) (280) 

a(t) n q(t). (281) 

For simplicity in the explanation we have assumed that the message of 
interest is the first component of the state vector. The message is then 
modulated by multiplying by the carrier c(t). In DSB-AM, c(t) would be 
a sine wave. We include the carrier in the linear system by defining 

C(t) = [ c ( t )  i 0 i 0 l l l 01. 
(282) 
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I- ----L---- --m------------q 
I 

I 
I I 
L. ____-___- --------------- 1 

Message generation 

Fig. 6.34 A simple case of linear 

Then 
v(t) 

modulation in the state-variable formulation. 

= C(t) x(t). (283) 
the modulation matrix. (In the control 

literature it is called the observation matrix.) The waveform y(t) is trans- 
mitted over an additive white noise channel. Thus 

We frequently refer to C(t) as 

where 

r(t) = r(t) + 40, Ti < t s T/ 

= C(t) x(t) + w(t), 
(284) 

Ti < t < T,, 

E[w(t) w(7)] = 2 qt - 7). (285) 
This particular model is too restrictive; therefore we generalize it in several 
different ways. Two of the modifications are fundamental and we explain 
them now. The others are deferred until Section 6.3.4 to avoid excess 
notation at this point. 

Modification No. 1: Colored Noise. In this case there is a colored noise 
component q(t) in addition to the white noise. We assume that the colored 
noise can be generated by driving a finite-dimensional dynamic system 
with white noise. 

r(t) = C,(t) x&t) + n&> + We (286) 

The subscript M denotes message. We can write (286) in the form 

r(t) = C(t) x(t) + 40 (287) 
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by augmenti .ng the message state vector to include the co1 .ored noise 
process. The new vector process x(t) con sists of two parts. One is the 
vector process x&t) corresponding to the state variables 
used to generate the message process. The second is the 
xN(t) corresponding to the state 
the colored noise process. Thus 

variables of the system used to generate 

If x,(t ) is n,-dimension .a1 and xN(t) is n,-dimensional 
(n, + nz) dimensions. The m .odulation matrix is 

x(t) a 

of the system 
vector process 

9 then x(t) has 

c(t) = [c,(t) i c,(t)] ; 

CM(t) is defined in (286) and c,(t) is chosen so that 

(289) 

nc(t) = cNtt) XN(t)* (290) 

With these definitions, we obtain (287). A simple example is appropriate 
at this point. 

Example. Let 

where 
r(t) = 42Pa(t)sin w,t + nc(t) + w(t), -m<t, WI 

saw 2kPa z-9 
o2 + ka2 (292) 

S&J) = a29 (293) 
n 

and n&L a0 1, and w(t) are uncorrelated. To obtain a state representation we let 
t() = - 00 and assume that a(- 00) = n,(- 00) = 0. We define the state vector x(t) as 

Then, 

1 0 
G(t) = [ 1 0 1’ 

(296) 

and 

2k,P, 0 

Q 
= 

’ 0 2k,P,, 1 
C(t) = [1/2Psin w,t t 11. 

(297) 
w9 

We see that F, G, and Q are diagonal because of the independence of the message 
and the colored noise and the fact that each has only one pole. In the general case of 
independent message and noise we can partition F, G, and Q and the off-diagonal 
partitions will be zero. 
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Modification No. 2: Vector Channels. The next case we need to include to 
get a general model is one in which we have multiple received waveforms. 
As we would expect, this extension is straightforward. Assuming m 
channels, we have a vector observation equation, 

r(t) = C(t) x(t) + w(t). (299) 
where r(t) is m-dimensional. An example illustrates this model. 

Example. A simple diversity system is shown in Fig. 6.35. Suppose a(t) is a one- 
dimensional process. Then x(t) = a(t). The modulation matrix is m x 1: 

cl(t) 

C(t) = 
c20) I 1 . 

: . 

Gn(t ) 

The channel noises are white with zero-means but may be correlated with one 
another. This correlation may be time-varying. The resulting covariance matrix is 

E[w(t) wT(u)] 4 R(t) 8(t - u), (301) 
where R(t) is positive-definite. 

In general, x(t) is an n-dimensional vector and the channel is m-dimen- 
sional so that the modulation matrix is an m x yt matrix. We assume that 
the channel noise w(t) and the white process u(t) which generates the 
message are uncorrelated. 

With these two modifications our model is sufficiently general to include 
most cases of interest. The next step is to derive a differential equation for 
the optimum estimate. Before doing that we summarize the important 
relations. 

Fig. 6.35 A simple diversity system. 
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Summary of Model 

All processes are assumed to be generated by passing white noise through 
a linear time-varying system. The processes are described by the vector- 
differential equation 

where 
- = F(t) x(t) + G(t) u(t), 

dt 

E[u(t) IP( = Q 8(t - 7). 1 (303) 
and x(to) is specified either as a deterministic vector or as a random vector 
with known second-moment statistics. 

The solution to (302) may be written in terms of a transition matrix: 

The output process y(t) is obtained by a linear transformation of the 
state vector. It is observed after being corrupted by additive white noise. 

The received signal r(t) is described by the equation 

r(t) = C(t) x(t) + w(t)* ( (305) 

The measurement noise is white and is described by a covariance matrix: 

E[w(t) wT(u)] = R(t) s(t - 7). (306) 

Up to this point we have discussed only the second-moment properties 
of the random processes generated by driving linear dynamic systems with 
white noise. Clearly, if u(t) and w(t) are jointly Gaussian vector processes 
and if x(to) is a statistically independent Gaussian random vector, then the 
Gaussian assumption on p. 471 will hold. (The independence of x(&J is 
only convenient, not necessary.) 

The next step is to show how we can modify the optimum linear filtering 
results we previously obtained to take advantage of this method of 
representation. 

6.3.2 Derivation of Estimator Equations 

In this section we want to derive a differential equation whose solution is 
the minimum mean-square estimate of the message (or messages). We 
recall that the MMSE estimate of a vector x(t) is a vector s(t) whose com- 
ponents Z*(t) are chosen so that the mean-square error in estimating each 
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component is minimized. In other words, E[(&(t) - x,(t))“], i = 1, 2, . . . , 
y1 is minimized. This implies that the sum of the mean-square errors, 
aPTw - w>1bw - WI> is also minimized. The derivation is straight- 
forward but somewhat lengthy. It consists of four parts. 

1. Starting with the vector Wiener-Hopf equation (Property 3A-V) for 
realizable estimation, we derive a differential equation in t, with 7 as a 
parameter, that the optimum filter h,(t, T) must satisfy. This is (3 17). 

2. Because the optimum estimate s(t) is obtained by passing the 
received signal into the optimum filter, (3 17) leads to a differential equation 
that the optimum estimate must satisfy. This is (320). It turns out that all 
the coefficients in this equation are known except h,(t, t). 

3. The next step is to find an expression for h&t, t). Property 4B-V 
expresses h,(t, t) in terms of the error matrix gp(t). Thus we can equally 
well find an expression for &@). To do this we first find a differential 
equation for the error x&). This is (325). 

4. Finally, because 
bw 4 mm) &W9 (307) 

we can use (325) to find a matrix differential equation that &(t) must 
satisfy. This is (330). We now carry out these four steps in detail. 

Step 1. We start with the integral equation obtained for the optimum 
finite time point estimator [Property 3A-V, (52)]. We are estimating the 
entire vector x(t) 

Kr(q cr) = C(T) Kx(q a>CT(o) + R(T) S(T - a). (309 

Differentiating both sides with respect to t, we have 

aKx;;9 O) CT(o) = h,(t, t) K,(t, 0) 

First we consider the first term on the right-hand side of (310). For a < t 
we see from (309) that 

Kr(t, 0) = C(t)[K,(t, a)CT(o)], (3 < t. (319 

The term inside the bracket is just the left-hand side of (308). Therefore, 

h,(t, 0 K&9 a) = s t h,(t, t> C(t) h&9 7> K&9 4 d7, a < t. (312) Ti 
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Now consider the first term on the left-hand side of (310), 

G ( t ,  4 

at = E[fy xT(cF)]. 

Using (302), we have 

v = F(t) K,(t, a) + G(t) K&t, o), 

(313) 

but the second term is zero for a < t [see (266)]. Using (308), we see that 

F(t) K,(t, (T) CT(o) = j-’ F(t) h,(t, T) K&, (T) dc (315) 
Ti 

Substituting (315) and (312) into (310), we have t 
0 = S[ - F(t) h&9 4 + h,(t, t ) C(t) w, 7) + 

Ti 
v] K&, a) d7, 

Ti < (T < t. (316) 

Clearly, if the term in the bracket is zero for all T, Ti 5 T < t, (3 16) will 
be satisfied. Because R(t) is positive-definite the condition is also necessary; 
see Problem 6.3.19. Thus the differential equation satisfied by the optimum 
impulse response is 

wt, 4 - = F(t) h,(t, T) 
at 

- h,(t, t)C(t> h,(t, T). (317) 

Step 2. The optimum estimate is obtained by passing the input through 
the optimum filter. Thus 

s(t) = 
s 

t h,(t, 7) r(T) dn (318) 
Ti 

We assumed in (318) that the MMSE realizable estimate of X(Ti) = 0. 
Because there is no received data, our estimate at Ti is based on our a 
priori knowledge. If X(Ti) is a random variable with a mean-value vector 
E[X(Ti)] and a covariance matrix K,(Ti, Ti), then the MMSE estimate is 

g(Ti) = E[X(Ti)]. 

If X(Ti) is a deterministic quantity, say X,(Ti), then we may treat it as a 
random variable whose mean equals x&t) 

eGi)l n %I(0 
and whose covariance matrix K,(Ti, Ti) is identically zero. 

K,(z, &) ii 0. 


