Chapter

Filter Fundamentals

Digital filters are often based upon common analog filter functions. There-
fore, a certain amount of background material concerning analog filters is a
necessary foundation for the study of digital filters. This chapter reviews the
essentials of analog system theory and filter characterization. Some common
analog filter types—Butterworth, Chebyshev, elliptical, and Bessel—are
given more detailed treatment in subsequent chapters.

1.2 Systems

Within the context of signal processing, a system is something that accepts
one or more input signals and operates upon them to produce one or more
output signals. Filters, amplifiers, and digitizers are some of the systems used
in various signal processing applications. When signals are represented as
mathematical functions, it is convenient to represent systems as operators
that operate upon input functions to produce output functions. Two alterna-
tive notations for representing a system H with input x and output y are
given in Eqgs. (2.1) and (2.2). Note that x and y can each be scalar valued or
vector valued. '

y = Hlx] (2.1)
y=Hx (2.2)

This book uses the notation of Eq. (2.1) as this is less likely to be confused
with multiplication of x by a value H.

A system H can be represented pictorially in a flow diagram as shown in
Fig. 2.1. For vector-valued x and y, the individual components are sometimes
explicitly shown as in Fig. 2.2¢ or lumped together as shown in Fig. 2.25.
Sometimes, in order to emphasize their vector nature, the input and output
are drawn as in Fig. 2.2¢.
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Figure 2.1 Pictorial representation of a Figure 2.2 Pictorial representation of a
system. system with multiple inputs and out-

puts.

In different presentations of system theory, the notational schemes used
exhibit some variation. The more precise treatments (such as Chen 1984) use
x or x(-) to denote a function of time defined over the interval (— o0, «0). A
function defined over a more restricted interval such as [t,,t,) would be
denoted as x,,,,,. The notation x(t) is reserved for denoting the value of x at
time ¢. Less precise treatments (such as Schwartz and Friedland 1965) use x(t)
to denote both functions of time defined over ( — o0, ) and the value of x at
time . When not evident from context, words of explanation must be included
to indicate which particular meaning is intended. Using the less precise
notational scheme, (2.1) could be rewritten as

¥(@®) = H[x(%)] (2.3)

While it appears that the precise notation should be the more desirable, the
relaxed conventions exemplified by (2.3) are widespread in the literature.

Linearity

If the relaxed system H is homogeneous, multiplying the input by a constant
gain is equivalent to multiplying the output by the same ¢onstant gain, and
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Figure 2.3 Homogeneous system.

the two configurations shown in Fig. 2.3 are equivalent. Mathematically
stated, the relaxed system H is homogeneous if, for constant a,

Hlax] = a H[x] (2.4)

If the relaxed system H is additive, the output produced for the sum of two
input signals is equal to the sum of the outputs produced for each input
individually, and the two configurations shown in Fig. 2.4 are equivalent.
Mathematically stated, the relaxed system H is additive if

Hix, + %] = H[x,] + H[x,] (2.5)

A system that is both homogeneous and additive is said to ‘“‘exhibit
superposition” or to “satisfy the principle of superposition.” A system that
exhibits superposition is called a linear system. Under certain restrictions,
additivity implies homogeneity. Specifically, the fact that a system H is
additive implies that

Hlux] = o« H[x] (2.6)

for any rational a. Any real number can be approxim ted with arbitrary
precision by a rational number; therefore, additivity implies homogeneity for
real a provided that

lim H[ax] = Hlax] (2.7

x—a

Time invariance

The characteristics of a time-invariant system do not change over time. A
system 1s said to be relaxed if it is not still responding to any previously
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applied input. Given a relaxed system H such that
¥(&) = H[x(?)] (2.8)
then H is time invariant if and only if
¥ —1) = H[x(t — 7] (2.9)

for any t and any x(¢). A time-invariant system is also called a fixed system or
stationary system. A system that is not time invariant is called a time-varying
system, variable system, or nonstationary system.

Causality

In a causal system, the output at time ¢ can depend only upon the input at
times ¢ and prior. Mathematically stated, a system H is causal if and only if

Hlx,(t)] = H[x,(®)] for t < t, (2.10)
given that
x,(8) = x,(t) for t <¢,

A noncausal or anticipatory system is one in which the present output de-
pends upon future values of the input. Noncausal systems occur in theory,
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but they cannot exist in the real world. This is unfortunate, since we will
often discover that some especially desirable frequency responses can be
obtained only from noncausal systems. However, causal realizations can be
created for noncausal systems in which the present output depends at most
upon past, present, and a finite extent of future inputs. In such cases, a
causal realization is obtained by simply delaying the output of the system for
a finite interval until all the required inputs have entered the system and are
available for determination of the output.

2.2 Characterization of Linear Systems

A linear system can be characterized by a differential equation, step re-
sponse, impulse response, complex-frequency-domain system function, or a
transfer function. The relationships among these various characterizations
are given in Table 2.1.

Impulse response

The impulse response of a system is the output response produced when a unit
impulse 8(¢) is applied to the input of a previously relaxed system. This is an
especiaily convenient characterization of a linear system, since the response

TABLE 2.1 Relationships among Characterizations of Linear Systems

Starting with Perform To obtain
Time domain differential Laplace transform Complex-frequency-domain
equation relating x(t) system function
and y(t)
Compute y(t) for Impulse response h(t)

x(t) = unit impulse

Compute y(t) for Step response a(?)
x(2) = unit step

Step response a() Differentiate with respect Impuylse response A(?)
to time i
Impulse response A(t) Integrate with respect Step;response a(t)
to time
Laplace transform Transfer function H(s)
Complex-frequency-domain Solve for Transfer function H(s)
system function
Y(s)
H(s) = —
(s) X6)

Transfer function H(s) Inverse Laplace transform Impulse response h(f)
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¥(t) to any continuous-time input signal x(¢) is given by

o0
y(@) = J x() h(t, ©) dt (2.11)
where h(¢, ) denotes the system’s response at time ¢ to an impulse applied at
time 7. The integral in (2.11) is sometimes referred to as the superposition
integral. The particular notation used indicates that, in general, the system is
time varying. For a time-invariant system, the impulse response at time ¢
depends only upon the time delay from t to ¢; and we can redefine the impulse
response to be a function of a single variable and denote it as A(t — 7).
Equation (2.11) then becomes

yU)=Jw (1) Bt — 1) de (2.12)

—

Via the simple change of variables 4 =t — 1, Eq. (2.12) can be rewritten as

— 0

yt) = jw x(t — A) h(A) dA (213)

If we assume that the input is zero for ¢t < 0, the lower limit of integration can
be changed to zero; and if we further assume that the system is causal, the
upper limit of integration can be changed to ¢, thus yielding

t t

yt) = f x() ht —1)dr = f x(t — ) h(2) dA (2.14)
0 0

The integrals in (2.14) are known as convolution integrals, and the equation

indicates that “y(f) equals the convolution of x(t) and h(t).” It is often more

compact and convenient to denote this relationship as

y(®) = x(t) @ h(t) = h(t) ® x(t) (2.15)

Various texts use different symbols, such as stars or asterisks, in place of ®
to indicate convolution. The asterisk is probably favored by most printers,
but in some contexts its usage to indicate convolution could be confused with
the complex conjugation operator. A typical system’s impulse response is
sketched in Fig. 2.5.

Step response

The step response of a system is the output signal produced when a unit step
u(t) is applied to the input of the previously relaxed system. Since the unit
step is simply the time integration of a unit impulse, it can easily be shown
that the step response of a system can be obtained by integrating the impulse
response. A typical system’s step response is shown in Fig. 2.6.
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Figure 2.5 Impulse response of a
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Figure 2.6 Step response of a typical system.

2.3 Laplace Transform

The Laplace transform is a technique that is useful for transforming differen-
tial equations into algebraic equations that can be more easily manipulated
to obtain desired results.

In most communications applications, the functions of interest will usually
(but not always) be functions of time. The Laplace transform of a time
function x(¢) is usually denoted as X(s) or £[x(¢t)] and is defined by

X(s) = L[x(1)] =J x(t)ye * dt (2.16)
The complex variable s is usually referred to as complex frequency and is of
the form ¢ + jw, where ¢ and w are real variables sometimes referred to as
neper frequency and radian frequency, respectively. The Laplace transform for
a given function x(¢) is obtained by simply evaluating the given integral.
Some mathematics texts (such as Spiegel 1965) denote the time function with
an uppercase letter and the frequency function with a lowercase letter.
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However, the use of lowercase for time functions is almost universal within
the engineering literature.

If we transform both sides of a differential equation in ¢ using the definition
(2.16), we obtain an algebraic equation in s that can be solved for the desired
quantity. The solved algebraic equation can then be transformed back into
the time domain by using the inverse Laplace transform.

The inverse Laplace transform is defined by

x(t) = ¥ X(s)] = %f X(s)es ds (2.17)
c

where C is a contour of integration chosen so as to include all singularities
of X(s). The inverse Laplace transform for a given function X(s) can be
obtained by evaluating the given integral. However, this integration is often
a major chore—when tractable, it will usually involve application of the
residue theorem from the theory of complex variables. Fortunately, in most
cases of practical interest, direct evaluation of (2.16) and (2.17) can be
avoided by using some well-known transform pairs, as listed in Table 2.2,
along with a number of transform properties presented in Sec. 2.4.

TABLE 2.2 Laplace Transform Pairs

Ref. no. x(t) X(s)
1
1 1 -
s
1
2 u;(t) -
s
3 (1) 1
4 t !
s2
n!
5 t sn+1
6 in ot 2
sin @
s2+w?
7 ¢ 5
cos
@ 82+ w?
1
8 e %
s+a
w
9 e~ % sin wt

(s +a)?+ w?
s+a

10 e % cos wt —_—
s +a)?+ w?
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Example 2.1 Find the Laplace transform of x(t) = e ~*.

solution X(s) = J e~“e—stdt (2.18)
o
=J otk gy (2.19)
o
1
= (2.20)

Notice that this result agrees with entry 8 in Table 2.2.

Background

The Laplace transform defined by Eq. (2.16) is more precisely referred to as
the one-sided Laplace transform, and it is the form generally used for the
analysis of causal systems and signals. There is also a two-sided transform
that is defined as

Lulx®)] = f x(t) e dt (2.21)
The Laplace transform is named for the French mathematician Pierre Simon
de Laplace (1749-1827).

2.4 Properties of the Laplace Transform

Some properties of the Laplace transform are listed in Table 2.3. These
properties can be used in conjunction with the transform pairs presented in
Table 2.2, to obtain most of the Laplace transforms that will ever be needed
in practical engineering situations. Some of the entries in the table require
further explanation, which is provided below.

Time shifting

Consider the function f(¢) shown in Fig. 2.7a. The function has nonzero
values for ¢ <0, but since the one-sided Laplace transform integrates only
over positive time, these values for ¢ < 0 have no impact gn the evaluation of
the transform. If we now shift f(¢) to the right by 1 units as shown in Fig. 2.7b,
some of the nonzero values from the left of the origin will be moved to the
right of the origin, where they will be included in the| evaluation of the
transform. The Laplace transform’s properties with reghrd to a time-shift
right must be stated in such a way that these previously unincluded values
will not be included in the transform of the shifted function either. This can
be easily accomplished through multiplying the shifted function f(t — 1) by a
shifted unit step function u,(¢ — ) as shown in Fig. 2.7c. Thus we have

Llu, ¢ —)ft—1)] =e = F(s) a>0 (2.22)
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TABLE 2.3 Properties of the Laplace Transform

Property Time function Transform
1. Homogeneity a f(t) a F(s)
2. Additivity @) + g@t) F(s) + G(s)
3. Linearity af(t) +bg@t) a F(s) + b G(s)
4. First derivative %f(t) s F(s) - f(0)
. d? d
5. Second derivative o f@® s F(s) -8 f(0) — X (0
‘ d® k-1
6. kth derivative o f® skF(g) = Y st—1-nfm™ (0)
n=0
t F t]
7. Integration J £() dr Fe) +1< @) dt)
— o 8 8 - 00 t=0
¢ F
f f(2) dr Fee)
N s
8. Frequency shift e % f() X(s +a)
9. Time shift right u,t—1)ft—1) e~ F(s) a>0
10. Time shift left fE+r),f®)=0 forO<t<z e™ F(s)
t]
11. Convolution ¥t) =J‘ h(t — 1) x(t) dt Y(s) = H(s) X(s)
o
1 ¢ + jao
12. Multiplication f@) g®) F(s —r)G(r)dr

27[.] ¢ — joo
0'3<C<0'—0',

Notes: f™®(t) denotes the kth derivative of f(¢). fO(t) = f(2).

Consider now the case when f(t) is shifted to the right. Such a shift will move
a portion of f(t) from positive time, where it is included in the transform
evaluation, into negative time, where it will not be included in the transform
evaluation. The Laplace transform’s properties with regard to a time shift left
must be stated in such a way that all included values from the unshifted
function will likewise be included in the transform of the shifted function.
This can be accomplished by requiring that the original function be equal to
zero for all values of ¢ from zero to t, if a shift to the left by 7 units is to be
made. Thus for a shift left by t units

Zlfit+1)] =F(s)e™ if f(¢) =0 for0<t<r (2.23)

Multiplication

Consider the product of two time functions f(t) and g(¢). The transform of the
product will equal the complex convolution of F(s) and G(s) in the frequency
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(a) (1)

(b) f(t- 1)

(c) ut-7) f(t-7)

Figure 2.7 Signals for explanation of the Laplace transform’s “time-shift-right”
property.

domain.

ZIf(t) g)] = % J‘ij F(s -G dr o,<c<o—0; (229)

¢ — joo

2.5 Transfer Functions

The transfer function H(s) of a system is equal to the Laplace transform of the
output signal divided by the Laplace transform of the input signal:

_Y(s) _ Z[y®] (2.25)

H®) = %) = 2lx)

It can be shown that the transfer function is also equal to the Laplace
transform of the system’s impulse response:

H(s) = Z[h(?)] (2.26)



46 Chapter Two

Therefore, ¥y@) =L " H{H@E) L)} (2.27)

Equation (2.27) presents an alternative to the convolution defined by Eq.
(2.14) for obtaining a system’s response y(f) to any input x(f), given the
impulse response A(f). Simply perform the following steps:

Compute H(s) as the Laplace transform of A(¢).
Compute X(s) as the Laplace transform of x(t).
Compute Y(s) as the product of H(s) and X(s).

Compute y(t) as the inverse Laplace transform of Y(s). (The Heaviside
expansion presented in Sec. 2.6 is a convenient technique for performing
the inverse transform operation.)

- WD

A transfer function defined as in (2.25) can be put into the form

_PO
H(s) = aG) (2.28)

where P(s) and @Q(s) are polynomials in s. For H(s) to be stable and realiz-
able in the form of a lumped-parameter network, it can be shown (Van
Valkenburg 1974) that all of the coeflicients in the polynomials P(s) and Q(s)
must be real. Furthermore, all of the coeflicients in @(s) must be positive.
The polynomial Q(s) must have a nonzero term for each degree of s from the
highest to the lowest, unless all even-degree terms or all odd-degree terms
are missing. If H(s) is a voltage ratio or current ratio (that is, the input and
output are either both voltages or both currents), the maximum degree of s
in P(s) cannot exceed the maximum degree of s in Q(s). If H(s) is a transfer
impedance (that is, the input is a current and the output is a voltage) or a
transfer admittance (that is, the input is a voltage and the output is a
current), then the maximum degree of s in P(s) can exceed the maximum
degree of s in Q(s) by at most 1. Note that these are only upper limits on the
degree of s in P(s); in either case, the maximum degree of s in P(s) may be
as small as zero. Also note that these are necessary but not sufficient
conditions for H(s) to be a valid transfer function. A candidate H(s) satisfy-
ing all of these conditions may still not be realizable as a lumped-parameter
network.

Example 2.2 Consider the following alleged transfer functions;

$2—~25+1
H. = 2.29
1(6) §3—3s2+38s +1 (2.29)
$*+28%+ 282 —-3s +1
= 2.30
Hy©) s3+3s2+3s+2 (230
22 1
Hys) =2+ (2.31)

83+ 3241
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TABLE 2.4 System Characterizations Obtained from the Transfer Function

Starting with Perform To obtain
Transfer function H(s) Compute roots of H(s) denominator Pole locations
Compute roots of H(s) numerator Zero locations
Compute |H( jw)| over all @ Magnitude response A(w)
Compute arg[H( jw)]} over all w Phase response 8(w)
Phase response 8{(w) Divide by @ Phase delay t,(w)
Differentiate with respect to Group delay 1,(w)

Equation (2.29) is not acceptable because the coefficient of s? in the denominator is
negative. If Eq. (2.30) is intended as a voltage- or current-transfer ratio, it is not
acceptable because the degree of the numerator exceeds the degree of the denominator.
However, if Eq. (2.30) represents a transfer impedance or transfer admittance, it may be
valid since the degree of the numerator exceeds the degree of the denominator by just 1.
Equation (2.31) is not acceptable because the term for s is missing from the denominator.

A system’s transfer function can be manipulated to provide a number of
useful characterizations of the system’s behavior. These characterizations
are listed in Table 2.4 and examined in more detail in subsequent sections.

Some authors, such as Van Valkenburg (1974), use the term “network

function” in place of “transfer function.”

2.6 Heaviside Expansion

The Heaviside expansion provides a straightforward computational method
for obtaining the inverse Laplace transform of certain types of complex-
frequency functions. The function to be inverse-transformed must be ex-
pressed as a ratio of polynomials in s, where the order of the denominator

polynomial exceeds the order of the numerator polynomial. If

_w PO
Hs) = Ko i)
where @(s) = [] (5 —8)™ = (5 — 5,)™(s — )™ - - (5 — 5,)™

k=1

|
then inverse transformation via the Heaviside expansion yields
LUHEI =K, Y Y [Kut™ ~* exp(s, )]
r=1k=1

1 d®* =1 [ (s —s,)m,P(s)
(k—l)!(m,—k)!dskl[ Q(s) ]=

where K,, =

(2.32)

(2.33)

(2.34)

(2.35)

A method for computing the derivative in (2.35) can be found in Section 1.4.
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Simple pole case

The complexity of the expansion is significantly reduced for the case of Q(s)
having no repeated roots. The denominator of (2.32) is then given by

Q)= J] s—sp)=(s—8)s—8) " (s—8,) s #8#8# 5, (2.36)
k=1
Inverse transformation via the Heaviside expansion then yields

£ V[H)] = K, }"j K, et (2.37)

_[6—5)PG)
where K, = [ Q) :|s=s, (2.38)

The Heaviside expansion is named for Oliver Heaviside (1850-1925), an
English physicist and electrical engineer who was the nephew of Charles
Wheatstone (as in Wheatstone bridge).

2.7 Poles and Zeros

As pointed out previously, the transfer function for a realizable linear
time-invariant system can always be expressed as a ratio of polynomials in s:

P(s)

H(s) = — 2.39
(s) ) (2.39)

The numerator and denominator can each be factored to yield

(s —2)(8 —2,)(s —23) (s — 2p)

H(s) = H, 2.40
& = o6 =P o) (6 —pu) (240
Where the roots z,, 2,,...,2, of the numerator are called zeros of the
transfer function, and the roots p,, p,, ..., p, of the denominator are called

poles of the transfer function. Together, poles and zeros can be collectively
referred to as critical frequencies. Each factor (s — z;) is called a zero factor,
and each factor (s —p;) is called a pole factor. A repeated zero appearing n
times is called either an nth-order zero or a zero of multiplicity n. Likewise,
a repeated pole appearing n times is called either an nth-order pole or a pole
of multiplicity n. Nonrepeated poles or zeros are sometimes described as
simple or distinct to emphasize their nonrepeated nature.

Example 2.3 Consider the transfer function given by

s34+ 582 +8s +4

2.41
s34+ 1352+ 59s + 87 (24D)

H(s) =
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The numerator and denominator can be factored to yield

(8+2D3(s+1)
(s+5+2)s +5—2j)s +3)

Examination of (2.42) reveals that

H(s) = (2.42)

s = —1 is a simple zero

s = —2 is a second-order zero
s= —5+ 2j is a simple pole
s= —5—2j is a simple pole

s= —3 is a simple pole

A system’s poles and zeros can be depicted graphically as locations in a
complex plane as shown in Fig. 2.8. In mathematics, the complex plane itself
is called the gaussian plane, while a plot depicting complex values as points
in the plane is called an Argand diagram or a Wessel-Argand-Gaussian
diagram. In the 1798 transactions of the Danish academy, Caspar Wessel
(1745-1818) published a techmique for graphical representation of complex
numbers, and Jean Robert Argand published a similar technique in 1806.
Geometric interpretation of complex numbers played a central role in the
doctoral thesis of Gauss.

Pole locations can provide convenient indications of a system’s behavior as
indicated in Table 2.5. Furthermore, poles and zeros possess the following
properties that can sometimes be used to expedite the analysis of a system:

1. For real H(s), complex or imaginary poles and zeros will each occur in
complex conjugate pairs that are symmetric about the ¢ axis.

0= zero

X = pole

Figure 2.8 Plot of pole and zero locations.
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TABLE 2.5 Impact of Pole Locations upon System Behavlor

Corresponding
Corresponding natural description of system
Pole type response component behavior

Single real, negative Decaying exponential Stable
Single real, positive Divergent exponential Divergent instability
Real pair, negative, unequal Decaying exponential Overdamped (stable)
Real pair, negative equal Decaying exponential Critically damped (stable)
Complex conjugate pair Exponentially decaying Underdamped (stable)
with negative real parts sinusoid
Complex conjugate pair Sinusoid Undamped (marginally
with zero real parts stable)
Complex conjugate pair Exponentially saturating Oscillatory instability
with positive real parts sinusoid

2. For H(s) having even symmetry, the poles and zeros will exhibit symmetry
about the jw axis.
3. For nonnegative H(s), any zeros on the jw axis will occur in pairs.

In many situations, it is necessary to determine the poles of a given transfer
function. For some systems, such as Chebyshev filters or Butterworth filters,
explicit expressions have been found for evaluation of pole locations. For
other systems, such as Bessel filters, the poles must be found by numerically
solving for the roots of the transfer function’s denominator polynomial.
Several root-finding algorithms appear in the literature, but I have found the
Laguerre method to be the most useful for approximating pole locations. The
approximate roots can be subjected to small-step iterative refinement or
polishing as needed.

Algorithm 2.1 Laguerre method for approximating one
root of a polynomial P(z)

step 1. Set z equal to an initial guess for the value of a root. Typically, z is
set to zero so that the smallest root will tend to be found first.

step 2. Evaluate the polynomial P(2) and its first two derivatives P’(z) and
P"(z) at the current value of z.

step 3. If P(2) evaluates to zero or to within some predefined epsilon of zero,
exit with the current value of z as the root. Otherwise, continue on to step 4.

step 4. Compute a correction term Az, using
N
Z =
F +./(N-1XNG - G»
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where F 2 P'(2)/P(z), G £ F? — P"(2)/P(z), and the sign in the denominator is
taken so as to minimize the magnitude of the correction (or, equivalently, so
as to maximize the denominator).

step 5. If the correction term Az has a magnitude smaller than some
specified fraction of the magnitude of z, then take z as the value of the root
and terminate the algorithm.

step 6. If the algorithm has been running for a while (let’s say six itera-
tions) and the correction value has gotten bigger since the previous iteration,
then take z as the value of the root and terminate the algorithm.

step 7. If the algorithm was not terminated in step 3, 5, or 6, then subtract
Az from z and go back to step 2.
A C routine laguerreMethod( ) that implements Algorithm 2.1 is pro-
vided in Listing 2.1.

2.8 Magnitude, Phase, and Delay Responses

A system’s steady-state response H( jw) can be determined by evaluating the
transfer function H(s) at s = jw:

H(jo) = |H(jo)| ¢ = H(s)], . (2.43)
The magnitude response is simply the magnitude of H( jw):
|H( jw)| = ({Re[H( jo)]}* + {Im[H( jw)]}*)""* (2.44)
It can be shown that
|H( jo)|2 = HOH(—5), _ 0 (2.45)

If H(s) is available in factored form as given by

(s —2;) (8 —2)(s —23) " (s —2) (2.46)

— H,
HE) = Ho 6 —pa)s —pa) 6 — o)

then the magnitude response can be obtained by replacing each factor with
its absolute value evaluated at s = jo:

IH(](U)| = H, 'Jw “zll ) ij _zzl ) |Jw - 23| s |JCU _zm| (2.47)
|Jw _pll ’ l]a) _le : |J(U —P3| B |J‘U _Pn’
The phase response 8(w) is given by
_ Im[H(jw)]}
O(w) =tan K —— = 2.48
@ {Re[H( jo) (248)
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Phase delay
The phase delay 1,(w) of a system is defined as
-0
7, (w) = af“’) (2.49)

where 0(w) is the phase response defined in Eq. (2.48). When evaluated at any
specific frequency w,, Eq. (2.49) will yield the time delay experienced by a
sinusoid of frequency w passing through the system. Some authors define
1,(w) without the minus sign shown on the right-hand side of (2.49). As
illustrated in Fig. 2.9, the phase delay at a frequency w, is equal to the
negative slope of a secant drawn from the origin to the phase response curve

at w;.

Group delay
The group delay t,(w) of a system is defined as

—d
T.(w) = Tt 0(w) (2.50)

where f(w) is the phase response defined in (2.48). In the case of a modulated
carrier passing through the system, the modulation envelope will be delayed
by an amount that is in general not equal to the delay t,(w) experienced by
the carrier. If the system exhibits constant group delay over the entire
bandwidth of the modulated signal, then the envelope will be delayed by an
amount equal to 7,. If the group delay is not constant over the entire
bandwidth of the signal, the envelope will be distorted. As shown in Fig. 2.10,
the group delay at a frequency w, is equal to the negative slope of a tangent
to the phase response at w,. .

Assuming that the phase response of a system is sufficiently smooth, it can
be approximated as

0w + w,) =1,0, + 1,0, (2.51)

6(w)

)t ~—-=-=---=

Figure 2.9 Phase delay.
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8(w)

)t - - ——-———--~

Figure 2.10 Group delay.

If an input signal x(f) = a(t) cos w.t is applied to a system for which (2.51)
holds, the output response will be given by

¥(t) = Ka(t — 1,) cos[w (t — 1,)] (2.52)

Since the envelope a(t) is delayed by 7., the group delay is also called the
envelope delay. Likewise, since the carrier is delayed by 1, the phase delay is
also called the carrier delay.

2.9 Filter Fundamentals

Ideal filters would have rectangular magnitude responses as shown in Fig.
2.11. The desired frequencies are passed with no attenuation, while the
undesired frequencies are completely blocked. If such filters could be imple-
mented, they would enjoy widespread use. Unfortunately, ideal filters are
noncausal and therefore not realizable. However, there are practical filter
designs that approximate the ideal filter characteristics and which are
realizable. Each of the major types—Butterworth, Chebyshev, and Bessel—
optimizes a different aspect of the approximation.

Magnitude response features of lowpass filters

The magnitude response of a practical lowpass filter will fisually have one of
the four general shapes shown in Figs. 2.12 through 2.15. In all four cases the
filter characteristics divide the spectrum into three general regions as shown.
The pass band extends from direct current up to the cutoff frequency w.. The
transition band extends from w, up to the beginning of the stop band at w,,
and the stop band extends upward from w, to infinity. The cutoff frequency .
is the frequency at which the amplitude response falls to a specified fraction
(usually —3 dB, sometimes —1 dB) of the peak pass-band values. Defining the
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Figure 212 Monotonic magnitude response of a practical lowpass
filter: (a) pass band, (b) stop band, and (¢) transition band.
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Figure 213 Magnitude response of a practical lowpass filter with
ripples in the pass band: (a) pass band, (b) stop band, and (c)
transition band.

frequency w, which marks the beginning of the stop band is not quite so
straightforward. In Fig. 2.12 or 2.13 there really isn’t any particular feature
that indicates just where ®, should be located. The usual approach involves
specifying a minimum stop-band loss a, (or conversely a maximum stop-band
amplitude A,) and then defining w, as the lowest frequency at which the loss

Figure 214 Magnitude response of a practical lowpass filter with
ripples in the stop band: (a) pass band, (b) stop band, and (c) transi-
tion band.
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Figure 2.15 Magnitude response of a practical lowpass filter with
ripples in the pass band and stop band: (a) pass band, () stop band,
and (c) transition band.

exceeds and subsequently continues to exceed «,. The width W, of the
transition band is equal to w, — w,. The quantity Wy /w, is sometimes called
the normalized transition width. In the case of response shapes like those
shown in Figs. 2.14 and 2.15, the minimum stop-band loss is clearly defined by
the peaks of the stop-band ripples.

Scaling of lowpass filter responses

In plots of practical filter responses, the frequency axes are almost univer-
sally plotted on logarithmic scales. Magnitude response curves for lowpass
filters are scaled so that the cutoff frequency occurs at a convenient fre-
quency such as 1rad/s (radian per second), 1 Hz, or 1 kHz. A single set of
such normalized curves can then be denormalized to fit any particular cutoff

requirement.

Transfer functions. For common filter types such as Butterworth, Chebyshev,
and Bessel, transfer functions are usually presented in a scaled form such
that o, = 1. Given such a response normalized for w, =1, we can scale the
transfer function to yield the corresponding response for w,=a. If the
normalized response for w, =1 is given by

K, (s —2)

Hy(s) = 0. (s —p)
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then the corresponding response for w, = a is given by

KT | (s —az;)
WL (s —ap;)

H,(s) = ”

Magnitude scaling. The vertical axes of a filter’s magnitude response can be
presented in several different forms. In theoretical presentations, the magni-
tude response is often plotted on a linear scale. In practical design situations it
is convenient to work with plots of attenuation in decibels using a high-resolu-
tion linear scale in the pass band and a lower-resolution linear scale in the
stop band. This allows details of the pass-band response to be shown as well as
large attenuation values deep into the stop band. In nearly all cases, the data
are normalized to present a 0-dB attenuation at the peak of the pass band.

Phase response. The phase response is plotted as a phase angle in degrees or
radians versus frequency. By adding or subtracting the appropriate number
of full-cycle offsets (that is, 2z rad or 360°), the phase response can be
presented either as a single curve extending over several full cycles (Fig.
2.16) or as an equivalent set of curves, each extending over a single cycle
(Fig. 2.17). Phase calculations will usually yield results confined to a single
2n cycle. Listing 2.2 contains a C function, unwrapPhase( ), that can be
used to convert such data into the multicycle form of Fig. 2.16.

Step response. Normalized step response plots are obtained by computing the
step response from the normalized transfer function. The inherent scaling of
the time axis will thus depend upon the transient characteristics of the
normalized filter. The amplitude axis scaling is not dependent upon normal-
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Figure 2.18 Phase response extending over multiple cycles.
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Figure 2.17 Phase response confined to a single-cycle range.

ization. The usual lowpass presentation will require that the response be
denormalized by dividing the frequency axis by some form of the cutoff
frequency.

Impulse response. Normalized impulse response plots are obtained by comput-
ing the impulse response from the normalized-transfer function. Since an
impulse response will always have an area of unity, both the time axis and
the amplitude axis will exhibit inherent scaling that depends upon the
transient characteristics of the normalized filter. The usual lowpass presenta-
tion will require that the response be denormalized by multiplying the
amplitude by some form of the cutoff frequency and dividing the time axis by
the same factor.

Highpass filters

Highpass filters are usually designed via transformation of lowpass designs.
Normalized lowpass-transfer functions can be converted into corresponding
highpass-transfer functions by simply replacing each occurrence of s with 1/s.
This will cause the magnitude response to be “flipped” around a line at £, as
shown in Fig. 2.18. (Note that this flip works only when the frequency is
plotted on a logarithmic scale.) Rather than actually trying to draw a flipped
response curve, it is much simpler to take the reciprocals of all the important
frequencies for the highpass filter in question and then read the appropriate
response directly from the lowpass curves.

Bandpass filters

Bandpass filters are classified as wide band or narrow band based upon the
relative width of their pass bands. Different methods are used for obtaining
the transfer function for each type.

Wide-band bandpass filters. Wide-band bandpass filters can be realized by
cascading a lowpass filter and a highpass filter. This approach will be
acceptable as long as the bandpass filters used exhibit relatively sharp
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Figure 2.18 Relationship between lowpass and highpass magnitude
responses: (a) lowpass response and (b) highpass response.

transitions from the pass band to cutoff. Relatively narrow bandwidths
and/or gradual rolloffs that begin within the pass band can cause a signifi-
cant center-band loss as shown in Fig. 2.19. In situations where such losses
are unacceptable, other bandpass filter realizations must be used. A general
rule of thumb is to use narrow-band techniques for pass bands that are an

octave or smaller.

Narrow-band bandpass filters. A normalized lowpass filter can be converted into
a normalized narrow-band bandpass filter by substituting [s — (1/s)] for s in

Figure 219 Center-band loss in a bandpass filter realized by cascad-
ing lowpass and highpass filters: (a¢) lowpass response, (b) highpass
response, (c) pass band of BPF, and (d) center-band loss.
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Figure 2.20 Relationship between lowpass and bandpass magnitude
responses: (a) normalized lowpass response and (b) normalized band-
pass response.
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Figure 221 Relationship between lowpass and band-stop magnitude
responses: (a) normalized lowpass response and (b) normalized band-

stop response.
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the lowpass-transfer function. The center frequency of the resulting bandpass
filter will be at the cutoff frequency of the original lowpass filter, and the
pass band will be symmetric about the center frequency when plotted on a
logarithmic frequency scale. At any particular attenuation level, the band-
width of the bandpass filter will equal the frequency at which the lowpass
filter exhibits the same attenuation (see Fig. 2.20). This particular bandpass
transformation preserves the magnitude response shape of the lowpass proto-
type but distorts the transient responses.

Bandstop filters. A normalized lowpass filter can be converted into a normal-
ized bandstop filter by substituting s/(s® —1) for s in the lowpass-transfer
function. The center frequency of the resulting bandstop filter will be at the
cutoff frequency of the original lowpass filter, and the stop band will be
symmetrical about the center frequency when plotted on a logarithmic
frequency scale. At any particular attenuation level, the width of the stop
band will be equal to the reciprocal of the frequency at which the lowpass
filter exhibits the same attenuation (see Fig. 2.21).
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Listing 2.1 laguerreMethod( )

/l*****tl‘l’*t**#*i*t***t*lt*t*tt**lt****t**X*Ittttl!/'

’ Y
/* Listing 2.1 ¥
. .
/*  laguerreflethod() *
/* >

R e ey,
%include “globDefs.h"

%include "protos.h"

extern FILE *fptr;

int laguerrellethod{
int order,
struct complex coef[],
struct complex *zz,
real epsilon,
real epsilonZ,
int maxIterations)
{
int iteration, j;
struct complex d2P_dz2, dP_dz, P, f, g, fSard, radical, cwork;
struct complex z, fPlusRad, fMinusRad, delta?;
real error, magl, oldiagl2, fwork;

double ddl, dd2;

z = ¥zz;
oldMagZ = cAbs(z);

for{ iteration=1; iteration<=maxIterations; iteration++)
{
d2P_dz2? = cmplx(8.8, 8.6);
dP_dz = capix(8.8, 8.8);
P = coeflorder];
error = cAbs(P);
mag2 = cfibs(z);

for{ j=order-1; j»=8; j--)
{
d2P_dz2 = cRdd{dP_dz, clult{z, d2P_dz2});
dP_dz = cRdd{ P, cMult{dP_dz,z));
cwork = cMultiP,z);
P = cAdd{ coefl], clult(P,z)};
error = chbs{P) + magl ¥ error;
}
error = epsilanZ * error;
d2P_dz2 = shult{2.8, d2P_dz2);
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if( chbs(P) < error)

{

*zz * 75
return 1;
}

f = ¢Div{ dP_dz,P);
fSqrd = clult{ f, f);
g = cSub{ fSqrd, cBiv{ d2P_dz2,P});
radical = cSub( shiulti {real)order, g), fSard);
fwork = (real)(order-1);
radical = cSqrt{ stult{fwork, radical));
fPlusRad = cAdd(f, radical);
fMinusRad = cSub{ f, radicall;
if{ (cAbs{fPlusRad)) > (cAbs(fMtinusAad)) )
{
delta? = cliv( caplx{ {realjorder, 8.8), fPlushad);
}
else
{
delta? = cDiv{ caplx{ (real)order, 8.8), fllinusRad);
}
z = cSub(z,delta?);
if( (iteration > 6) 88 (cAbs(deltaZ) > oldMag2) )
{
*¥zz = z;
return 2;
}
if{ cRbs(delitaz) < ( epsilon * cRbs(z))})
{
¥z = z;
return 3;
}
}
fprint f{fptr,“Laguerre method failed to converge \n");
return -1;

}
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Listing 2.2 unwrapPhase( )

/**#t******ll**t*t**#**t*#**#****t*/

/* */
/¥ Listing 2.2 */
/¥ */
/¥ unwrapPhase() X/
/% */

/**#********#tt#**‘t**********‘****/

®include <math.h>

void unerapPhase{int ix,

real *phase)
{
static real halfCircleQffset;
static real oldPhase;

if{ ix==0)
{
hatfCircleQffset = &.6;
oldPhase = *phase;
}

else

{
*phase = *phase + halflircle0ffset;

if( fabs{oldPhase - *phase) > {double)96.8)

{
i f(aldPhase < *phase)
{
*phase = *phase - 368.8;
halfCircle0ffset = halfCirclelffset - 368.8;
}
else
{

*phase = *phase + 366.8;
halfCircleOffset = halfCircle0ffset + 368.8;

}
}
oldPhase = *phase;
}
return;

}



