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Filters 

In everyday parlance a ‘filter’ is a device that removes some component 
from whatever is passed through it. A drinking-water filter removes salts 
and bacteria; a coffee filter removes coffee grinds; an air filter removes pol- 
lutants and dust. In electronics the word ‘filter’ evokes thoughts of a system 
that removes components of the input signal based on frequency. A notch 
filter may be employed to remove a narrow-band tone from a received trans- 
mission; a noise filter may remove high-frequency hiss or low-frequency hum 
from recordings; antialiasing filters are needed to remove frequencies above 
Nyquist before A/D conversion. 

Less prevalent in everyday usage is the concept of a filter that empha- 
sizes components rather than removing them. Colored light is created by 
placing a filter over a white light source; one filters flour retaining the finely 
ground meal; entrance exams filter to find the best applicants. The electronic 
equivalent is more common. Radar filters capture the desired echo signals; 
deblurring filters are used to bring out unrecognizable details in images; 
narrow-band audio filters lift Morse code signals above the interference. 

In signal processing usage a filter is any system whose output spectrum 
is derived from the input’s spectrum via multiplication by a time-invariant 
weighting function. This function may be zero in some range of frequencies 
and as a result remove these frequencies; or it may be large in certain spectral 
regions, consequently emphasizing these components. Or it may half the 
energy of some components while doubling others, or perform any other 
arbitrary characteristic. 

However, just as a chemical filter cannot create gold from lead, a signal 
processing filter cannot create frequency components that did not exist in 
the input signal. Although definitely a limitation, this should not lead one to 
conclude that filters are uninteresting and their output trivial manipulation 
of the input. To do so would be tantamount to concluding that sculptors 
are not creative because the sculpture preexisted in the stone and they only 
removed extraneous material. 
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In this chapter we will learn how filters are specified in both frequency 
and time domains. We will learn about fundamental limitations that make 
the job of designing a filter to meet specifications difficult, but will not cover 
the theory and implementation of filter design in great detail. Whole books 
are devoted to this subject and excellent software is readily available that 
automates the filter design task. We will only attempt to provide insight 
into the basic principles of the theory so that the reader may easily use any 
of the available programs. 

7.1 Filter Specification 

Given an input signal, different filters will produce different output signals. 
Although there are an infinite number of different filters, not every output 
signal can be produced from a given input signal by a filter. The restrictions 
arise from the definition of a filter as a linear time-invariant operator. Filters 
never produce frequency components that did not exist in the input signal, 
they merely attenuate or accentuate the frequency components that exist in 
the input signal. 

Low-pass filters are filters that pass DC and low frequencies, but block or 
strongly attenuate high frequencies. High-pass filters pass high frequencies 
but block or strongly attenuate low frequencies and DC. Band-pass filters 
block both low and high frequencies, passing only frequencies in some ‘pass- 
band’ range. Band-stop filters do the opposite, passing everything not in a 
defined ‘stop-band’. Notch filters are extreme examples of band-stop filters, 
they pass all frequencies with the exception of one well defined frequency 
(and its immediate vicinity). All-pass filters have the same gain magnitude 
for all frequencies but need not be the identity system since phases may still 
be altered. 

The above definitions as stated are valid for analog filters. In order to 
adapt them for DSP we need to specify that only frequencies between zero 
and half the sampling rate are to be considered. Thus a digital system that 
blocks low frequencies and passes frequencies from quarter to half the sam- 
pling frequency is a high-pass filter. 

An ideal filter is one for which every frequency is either in its pass- 
band or stop-band, and has unity gain in its pass-band and zero gain in 
its stop-band. Unfortunately, ideal filters are unrealizable; we can’t buy one 
or even write a DSP routine that implements one. The problem is caused 
by the sharp jump discontinuities at transitions in the frequency domain 
that cannot be precisely implemented without peeking infinitely into the 
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Figure 7.1: Frequency response of ideal and nonideal filters. In (A) we see the low-pass 
filters, in (B) the high-pass filters, in (C) the band-pass filters and in (D) the band-stop 
(notch) filters. 

future. On the left side of Figure 7.1 we show the frequency response of 
ideal filters, while the right side depicts more realistic approximations to 
the ideal response. Realistic filters will always have a finite transition region 
between pass-bands and stop-bands, and often exhibit ripple in some or all 
of these areas. When designing a filter for a particular application one has 
to specify what amount of ripple and how much transition width can be 
tolerated. There are many techniques for building both analog and digital 
filters to specification, but all depend on the same basic principles. 

Not all filters are low-pass, high-pass, band-pass, or band-stop, any fre- 
quency dependent gain is admissible. The gain of a pre-emphasis filter in- 
creases monotonically with frequency, while that of a de-emphasis filter de- 
creases monotonically. Such filters are often needed to compensate for or 
eliminate the effects of various other signal processing systems. 

Filtering in the analog world depends on the existence of components 
whose impedance is dependent on frequency, usually capacitors and induc- 
tors. A capacitor looks like an open circuit to DC but its impedance de- 
creases with increasing frequency. Thus a series-connected capacitor effec- 
tively blocks DC current but passes high frequencies, and is thus a low-pass 
filter. A parallel-connected capacitor short circuits high frequencies but not 
DC or low frequencies and is thus a high-pass filter. The converse can be 
said about series- and parallel-connected inductors. 

Filtering in DSP depends on mathematical operations that remove or 
emphasize different frequencies. Averaging adjacent signal values passes DC 
and low frequencies while canceling out high frequencies. Thus averaging 
behaves as a low-pass filter. Adding differences of adjacent values cancels 
out DC and low frequencies but will pass signals with rapidly changing 

signs. Thus such operations are essentially high-pass filters. 
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One obvious way to filter a digital signal is to ‘window’ it in the fre- 
quency domain. This requires transforming the input signal to the frequency 
domain, multiplying it there by the desired frequency response (called a ‘win- 
dow function’), and then transforming back to the time domain. In practice 
the transformations can be carried out by the FFT algorithm in O(N log N) 
time (N being the number of signal points), while the multiplication only 
requires O(N) operations; hence this method is 0( N log N) in complexity. 
This method as stated is only suitable when the entire signal is available in a 
single, sufficiently short vector. When there are too many points for a single 
DFT computation, or when we need to begin processing the signal before it 
has completely arrived, we may perform this process on successive blocks of 
the signal. How the individually filtered blocks are recombined into a single 
signal will be discussed in Section 15.2. 

The frequency domain windowing method is indeed a straightforward 
and efficient method of digital filtering, but not a panacea. The most sig- 
nificant drawback is that it is not well suited to real-time processing, where 
we are given a single input sample, and are expected to return an output 
sample. Not that it is impossible to use frequency domain windowing for 
real-time filtering. It may be possible to keep up with real-time constraints, 
but a processing delay must be introduced. This delay consists of the time it 
takes to fill the buffer (the buffer delay) plus the time it takes to perform the 
FFT, multiplication, and iFFT (the computation delay). When this delay 
cannot be tolerated there is no alternative to time domain filtering. 

EXERCISES 

7.1.1 Classify the following filters as low-pass, high-pass, band-pass, or notch. 
1. Human visual system, which has a persistence of $ of a second 
2. Human hearing, which cannot hear under 30 Hz or above 25KHz 
3. Line noise filter used to remove 50 or 60 Hz AC hum 
4. Soda bottle amplifying a specific frequency when air is blown above it 
5. Telephone line, which rejects below 200 Hz and above 3800 Hz 

7.1.2 Design an MA filter, with an even number of coefficients N, that passes a 
DC signal (a, a, a,. . .) unchanged but completely kills a maximal frequency 
signal (a, -a, a, -a,. . .). For example, for N = 2 you must find two numbers 
gr and g2 such that gia + g2a = a but gas + 92(-u) = 0. Write equations 
that the gi must obey for arbitrary N. Can you find a solution for odd N? 

7.1.3 Design a moving average digital filter, with an even number of coefficients N, 
that passes a maximal frequency signal unchanged but completely kills DC. 
What equations must the gi obey now? What about odd N? 
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7.1.4 The squared frequency response of the ideal low-pass filter is unity below the 
cutoff frequency and zero above. 

What is the full frequency response assuming a delay of N samples? 

7.1.5 Show that the ideal low-pass filter is not realizable. To do this start with the 
frequency response of the previous exercise and find the impulse response 
using the result from Section 6.12 that the impulse response is the FT of the 
frequency response. Show that the impulse response exists for negative times 
(i.e., before the impulse is applied), and that no amount of delay will make 
the system causal. 

7.1.6 Show that results similar to that of the previous exercise hold for other ideal 
filter types. (Hint: Find a connection between the impulse response of ideal 
band-pass or band-stop filters and that of ideal low-pass filters.) 

7.1.7 The Paley-Wiener theorem states that if the impulse response h, of a filter 
has a finite square sum then the filter is causal if and only if J 1 In [H(w) 1 dw is 
finite. Use this theorem to prove that ideal low-pass filters are not realizable. 

7.1.8 Prove the converse to the above, namely that any signal that is nonzero 
some time can’t be band-limited. 

over 

7.2 Phase and Group Delay 

The previous section concentrated on the specification of the magnitude of 
the frequency response, completely neglecting its angle. For many applica- 
tions power spectrum specification is sufficient, but sometimes the spectral 
phase can be important, or even critical. A signal’s phase can be used for 
carrying information, and passing such a phase-modulated signal through 
a filter that distorts phase may cause this information to be lost. There 
are even many uses for all-pass filters, filters that have unity gain for all 
frequencies but varying spectral phase! 

Let’s return to fundamentals. The frequency response H(w) is defined 

by the relation 

which means that 

Y(u) = H(w)X(w) 

LY(w) = LX(w) + m(w) 
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or in words, the input spectral magnitude at each frequency is multiplied by 
the frequency response gain there, while the spectral phase is delayed by the 
angle of the frequency response at each frequency. If the spectral phase is 
unchanged by the filter, we say that the filter introduces no phase distortion; 
but this is a needlessly harsh requirement. 

For example, consider the simple delay yn = znern. This FIR filter is all- 
pass (i.e., the absolute value of its frequency response is a constant unity), 
but delaying sinusoids effectively changes their phases. By how much is the 
phase delayed? The sinusoid z,Asin(wn) becomes 

Yn = Xn-m = Asin ( w(n - mO = A sin(wn - wm) 

so the phase delay is wm, which is frequency-dependent. When the signal 
being delayed is composed of many sinusoids, each has a phase delay pro- 
portional to its frequency, so the simple delay causes a spectral phase shift 
proportional to frequency, a characteristic known as linear phase. 

Some time delay is often unavoidable; the noncausal FIR filter y = h * x 
with coefficients 

h-L, h-L+l, . . . h-1, ho, hl, . . . hL-1, hL 

introduces no time delay since the output yn corresponds to the present 
input xn. If we require this same filter to be causal, we cannot output yn 
until the input XL is observed, and so a time delay of L, half the filter length, 
is introduced. 

90 = h-L, gl = h-L+,, gL = ho, . . . g2L = h, 

This type of delay is called bufler delay since it results from buffering the 
inputs. 

It is not difficult to show that if the impulse response is symmetric (or 
antisymmetric) then the linear phase shift resulting from buffer delay is the 
only phase distortion. Applying the symmetric noncausal FIR filter with an 
odd number of coefficients 

hL, h,-,, . . . hl,ho,hl,. . . hl;-l,hr, 

to a complex exponential eiwn we get 

+L L 

Yn = c 
h,,, ,idn-m) = hoeiwn + 2eiwn c hi,1 cos(mw) 

m=-L m=l 
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so that the frequency response is real and thus has zero phase delay. 

L 

We can force this filter to be causal by shifting it by L 

g,,=hL, gl=hL.vl, . . . gL=ho, . . . gzL=hL 

and the symmetry is now somewhat hidden. 

90 = 92L, 91 = Q2L-1, . . + gm  = Q2L-m 

Once again applying the filter to a complex exponential leads to 

Yn = 5 gmeW-4 
L-l 

= 9s i4n-L) + 2eiQne-iuL C gm cos(mw) 

so that the frequency response is 

H(w) = 
( 
gr, + 2 ‘2 gm COS(WW) 

) 

esiwL = (H(u)le-iWL 

m=O 

(the important step is isolating the imaginary portion) and the filter is seen 
to be linear-phase, with phase shift corresponding to a time delay of L. 

The converse is true as well, namely all linear-phase filters have impulse 
responses that are either symmetric or antisymmetric. We can immediately 
conclude that causal IIR filters cannot be linear-phase, since if the impulse 
response continues to the end of time, and must be symmetric, then it must 
have started at the beginning of time. This rules out the filter being causal. 

From now on we will not consider a linear phase delay (constant time 
delay) to be phase ‘distortion’. True phase distortion corresponds to nonlin- 
earities in the phase as a function of frequency. To test for deviation from 
linearity it is useful to look at the first derivative, since linear phase response 
will have a constant derivative, and deviations from linearity will show up as 
deviations from a constant value. It is customary to define the group delay 

T(W) = -$LH(w) (7 1) . 

where the phase must be unwrapped (i.e., the artificial discontinuities of 27r 
removed) before differentiation. What is the difference between phase delay 
and group delay? 
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Figure 7.2: The difference between phase delay and group delay. In (A) we see the input 
signal, consisting of the sum of two sinusoids of nearly the same frequency. (B) depicts 
the output of a filter with unity gain, phase delay of vr, and zero group delay, while the 
graph in (C) is the output of a filter with unity gain, no phase delay, but nonzero group 
delay. Note that the local phase in (C) is the same as that of the input, but the position 
of the beat amplitude peak has shifted. 

In Figure 7.2 we see the effect of passing a signal consisting of the sum of 
two sinusoids of nearly the same frequency through two filters. Both filters 
have unity gain in the spectral area of interest, but the first has maximal 
phase delay and zero derivative (group delay) there. The second filter has 
zero phase delay but a group delay of one-half the beat period. Both filters 
distort phase, but the phase distortions are different at the frequency of the 
input signal. 

EXERCISES 

7.2.1 Show that an antisymmetric FIR filter (h, = -Ln) has zero phase and 
when made causal has linear phase. 

7.2.2 Prove that all linear-phase filters have impulse responses that are either sym- 
metric or antisymmetric. 

7.2.3 Assume that two filters have phase delay as a function of frequency @i(w) 
and @Q(W). What is the phase delay of the two filters in series? What about 
the group delay? 

7.2.4 In a non-real-time application a nonlinear-phase filter is run from the end of 
the signal buffer toward the beginning. What phase delay is introduced? 
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7.2.5 Stable IIR filters cannot be truly linear-phase. How can the result of the 
previous exercise be used to create a filter with linear phase based on IIR 
filtering? How can this technique be used for real-time linear-phase IIR fil- 
tering with delay? (Hint: Run the filter first from the beginning of the buffer 
to the end, and then back from the end toward the beginning.) 

7.2.6 What is the phase delay of the IIR filter of equation (6.39)? What is the 
group delay? 

7.2.7 Can you think of a use for all-pass filters? 

7.3 Special Filters 

From the previous section you may have received the mistaken impression 
that all filters are used to emphasize some frequencies and attenuate others. 
In DSP we use filters to implement almost every conceivable mathematical 
operation. Sometimes we filter in order to alter the time domain character- 
istics of a signal; for example, the simple delay is an FIR filter, although 
its specification is most natural in the time domain. The DSP method of 
detecting a narrow pulse-like signal that may be overlooked is to build a 
filter that emphasizes the pulse’s particular shape. Conversely, a signal may 
decay too slowly and be in danger of overlapping other signals, in which case 
we can narrow it by filtering. In this section we will learn how to implement 
several mathematical operations, such as differentiation and integration, as 
filters. 

A simple task often required is smoothing, that is, removing extraneous 
noise in order to recover the essential signal values. In the numerical analysis 
approach smoothing is normally carried out by approximating the data by 
some appropriate function (usually a polynomial) and returning the value 
of this function at the point of interest. This strategy works well when the 
chosen function is smooth and the number of free parameters limited so that 
the approximation is not able to follow all the fluctuations of the observed 
data. Polynomials are natural in most numeric analysis contexts since they 
are related to the Taylor expansion of the function in the region of interest. 
Polynomials are not as relevant to DSP work since they have no simple 
frequency domain explanation. The pertinent functional form is of course 
the sum of sinusoids in the Fourier expansion, and limiting the possible 
oscillation of the function is equivalent to requiring these sinusoids to be of 
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low frequency. Hence the task of smoothing is carried out in DSP by low- 
pass filtering. The new interpretation of smoothing is that of blocking the 
high-frequency noise while passing the signal’s energy. 

The numerical analysis and DSP approaches are not truly incompatible. 
For the usual case of evenly sampled data, polynomial smoothing can be 
implemented as a filter, as was shown for the special case of a five-point 
parabola in exercise 6.6.5. For that case the smoothed value at time n was 
found to be the linear combination of the five surrounding input values, 

Yn = 612Xn-2 + alx n-l + aoxn + al%+1 + a2%+2 

which is precisely a symmetric MA filter. Let’s consider the more general 
case of optimally approximating 2L + 1 input points xn for n = 4. . . + L 
by a parabola in discrete time. 

Yn = a2n2 + aln + a0 

For notational simplicity we will only consider retrieving the smoothed value 
for n = 0, all other times simply requiring shifting the time axis. 

The essence of the numerical analysis approach is to find the coefficients 
a2, al, and a0 that make yn as close as possible to the 2L + 1 given xn 

( 72 = --A.. +L). Th is is done by requiring the squared error 

+L +L 
E= C( Yn - Xn)2 = C ( a2n2 + a172 + a0 - 2n)2 

n=-L n=-L 

to be minimal. Differentiating with respect to a, b, and c and setting equal 
to zero brings us to three equations, known as the normal equations 

B00a0 + B0m + B02a2 = CO 

&0a0 + &la1 + &2a2 = Cl (7 2) . 

B20a0 + B2m + B22a2 = C2 

where we have defined two shorthand notations. 

+L 
Bij = C ,i+.i and 

n=- L 72=-L 

The B coefficients are universal, i.e., do not depend on the input xn, 
and can be precalculated given L. It is obvious that if the data are evenly 
distributed around zero (n = -L, -L + 1,. . . - 1,0, +l, . . . L - 1, L) then 
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Bij = 0 when i + j is odd, and the other required values can be looked up 
in a good mathematical handbook. 

Boo = c,‘=“-, 1 = 2L + 1 z x3() 

B02 = B2o = B11 = c,‘=“-,n2 = m + l)W + 1) = B2 
3 - 

B22 = C,‘=“-, n4 = 
L(L +1)(2L+ 1)(3L2 + 3L - 1) ~ a 

15 
4 

The three C values are simple to compute given the inputs. 

+L 
Cl = c n% n=- L 

+L 

c2 = c n2Xn 

n=-L 

In matrix notation the normal equations are now 

(7 3) . 

and can be readily solved by inverting the matrix 

(z)=(z 4 7-)( ;) (7.4) 

and the precise expressions for the D elements are also universal and can be 
found by straightforward algebra. 

vo = y- 

v1 = 
1 

ig 

a2 
D2 = -2 

D 
x3oB2 

v3 = 7 
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Now that we have found the coefficients ao, al, and a2, we can finally 
find the desired smoothed value at n = 0 

+L 

YO = a2 = V&O + D&2 = c (Do + Dzn2)3h 
n=-L 

which is seen to be a symmetric MA filter. So the numerical analysis ap- 
proach of smoothing by parabolic approximation is equivalent to a particular 
symmetric MA filter, which has only a single adjustable parameter, L. 

Another common task is the differentiation of a signal, 

Y@> = 
d 

,,m (7 5) . 

a common use being the computation of the instantaneous frequency from 
the phase using equation (4.67). The first approximation to the derivative 
is the finite difference, 

Yn = Xn - h-1 

but for signals sampled at the Nyquist rate or only slightly above the sample 
times are much too far apart for this approximation to be satisfactory. The 
standard numerical analysis approach to differentiation is derived from that 
for smoothing; first one approximates the input by some function, and then 
one returns the value of the derivative of that function. Using the formal- 
ism developed above we can find that in the parabolic approximation, the 
derivative at n = 0 is given by 

n=- L 

which is an antisymmetric MA filter, with coefficients proportional to Inl! 
The antisymmetry is understandable as a generalization of the finite differ- 
ence, but the idea of the remote coefficients being more important than the 
adjacent ones is somewhat hard to embrace. In fact the whole idea of as- 
suming that values of the derivative to be accurate just because we required 
the polynomial to approximate the signal values is completely ridiculous. If 
we do not require the derivative values to be close there is no good reason 
to believe that they will be; quite the contrary, requiring the polynomial 
approximation to be good at sampling instants will cause the polynomial to 
oscillate wildly in between these times, resulting in meaningless derivative 
estimates. 
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Figure 7.3: Frequency and impulse responses of the ideal differentiation filter. 

Differentiation is obviously a linear and time-invariant operation and 
hence it is not surprising that it can be performed by a filter. To understand 
this filter in the frequency domain note that the derivative of s(t) = eiwt 
is iws(t), so that the derivative’s frequency response increases linearly with 
frequency (see Figure 7.3.A) and its phase rotation is a constant 90”. 

H(w) = iw (7 6) . 

This phase rotation is quite expected considering that the derivative of sine 
is cosine, which is precisely such a 90” rotation. The impulse response, given 
by the iFT of the frequency response, 

i 

( 

&t 
( 

1 
> 

e-i7d 
( 

1 
= y.g -7r -- 

it 
in -it--/r--- 

in > 
) 

= 44 sin(7rt) --- 
t 7rt2 

is plotted in Figure 7.3.B. 
We are more interested in digital differentiators than in the analog one 

just derived. When trying to convert the frequency response to the digital 
domain we run into several small snags. First, from the impulse response we 
see that the ideal differentiator is unrealizable. Second, since the frequency 
response is now required to be periodic, it can no longer be strictly linear, 
but instead must be sawtooth with discontinuities. Finally, if the filter has an 
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Figure 7.4: Frequency and impulse responses of digital differentiation filters with even 
and odd numbers of coefficients. In (A) we see the frequency response of an odd length 
differentiator; note the linearity and discontinuities. (B) is the impulse response for this 
case. In (C) we see the real and imaginary parts of the frequency response of an even 
length differentiator. (D) is its impulse response; note that fewer coefficients are required. 

even number of coefficients it can never reproduce the derivative at precisely 
time t = 0, but only one-half sample before or after. The frequency response 
for a time delay of -i is 

(7 7) . 

which has both real and imaginary parts but is no longer discontinuous. We 
now need to recalculate the impulse response. 

The frequency and impulse responses for the odd and even cases are de- 
picted in Figure 7.4. We see that FIR differentiators with an even number 
of coefficients have no discontinuities in their frequency response, and hence 
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their coefficients vanish quickly. In practical applications we must truncate 
after a finite number of coefficients. For a given amount of computation an 
even-order differentiator has smaller error than an odd-order one. 

After studying the problem of differentiation it will come as no surprise 
that the converse problem of integration 

ye> - J t - X(T) dr 
-co 

(7 8) t 

can be implemented by filtering as well. Integration is needed for the re- 
covery of running phase from instantaneous frequency, and for discovering 
the cumulative effects of slowly varying signals. Integration is also a popular 
function in analog signal processing where capacitors are natural integrators; 
DSP integration is therefore useful for simulating analog circuits. 

The signal processing approach to integration starts by noting that the 
integral of s(t) = eiwt is &s(t), so that the required frequency response is 
inversely proportional to the frequency and has a phase shift of 90”. 

H(w) = J- (7 9) . 
iw 

The standard Riemann sum approximation to the integral 

J 
nT 

x(t) dt = T(xo + x1 + . . . x,-~) 
0 

is easily seen to be an IIR filter 

Yn = yn-1 + TX, (7.10) 

and we’ll take T = 1 from here on. What is the frequency response of 
this filter? If the input is xn = eiwn the output must be yn = H(w)eiwn 
where H(w) is a complex number that contains the gain and phase shift. 
Substituting into the previous equation 

H(w)eiwn = yn = yn-l + xn = H(w)eiw(n-‘) + Iawn 

we find that 

H(w) = 1 -‘,-iw 

lH(w)1* = l 
2(1 - cos(w) 

LH(w) = $(7r+w) 
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IH( 

Figure 7.5: The (squared) frequency response of integrators. The middle curve is that 
of the ideal integrator, the Riemann sum approximation is above it, and the trapezoidal 
approximation below. 

which isn’t quite what we wanted. The phase is only the desired z at DC 
4 and deviates linearly with w. For small w, where cos(w) N 1 - 2w2, the 

gain is very close to the desired 3, but it too diverges at higher frequencies 
(see Figure 7.5). What this means is that this simple numeric integration is 
relatively good when the signal is extremely oversampled, but as we approach 
Nyquist both gain and phase response strongly deviate. 

A slightly more complex numeric integration technique is the trapezoidal 
rule, which takes the average signal value (x,-r + 2,) for the Riemann 
rectangle, rather than the initial or final value. It too can be written as an 
IIR filter. 

Yn = Yn-1 + 4(%-l + %> (7.11) 

Using the same technique we find 

H(W)f2wn = Yn = yn-1 + !j(lXn-1 + 2,) = H(W)t2iw(n-1) + !j(,iw(n-l) + tZiwn) 

which means that 

LH(w) = f 

so that the phase is correct, and the gain (also depicted in Figure 7.5) is 
about the same as before. This is not surprising since previous signal values 
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contribute just as in the Riemann sum, only the first and last values having 
half weight. 

Integrators are always approximated by IIR filters. FIR filters cannot be 
used for true integration from the beginning of all time, since they forget 
everything that happened before their first coefficient. Integration over a 
finite period of time is usually performed by a ‘leaky integrator’ that grad- 
ually forgets, which is most easily implemented by an IIR filter like that of 
equation (6.39). While integration has a singular frequency response at DC, 
the frequency response of leaky integration is finite. 

Our final special filter is the Hilbert transform, which we introduced in 
Section 4.12. There are two slightly different ways of presenting the Hilbert 
transform as a filter. We can consider a real filter that operates on z(t) 
creating y(t) such that z(t) = z(t) + iy(t) is the analytic representation, or 
as a complex filter that directly creates z(t) from x(t). The first form has 
an antisymmetric frequency response 

H(w) = (7.12) 

which means IH( = 1 and its phase is A$. The impulse response for 
delay r is not hard to derive 

2sin2 @(t-T)) 
w = - t 7 (7.13) 

7r - 

except for at t = 0 where it is zero. Of course the ideal Hilbert filter is unre- 
alizable. The frequency response of the second form is obtained by summing 
X(w) with i times the above. 

H(w) = 
2 w>o 
0 WI0 

(7.14) 

The factor of two derives from our desire to retain the original energy after 
removing half of the spectral components. 

The Hilbert transform can be implemented as a filter in a variety of 
ways. We can implement it as a noncausal FIR filter with an odd number of 
coefficients arranged to be antisymmetric around zero. Its impulse response 

w 2 sin2($t) 
=- 

7r t 
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-W 

Figure 7.6: Imaginary portion of the frequency response of a realizable digital Hilbert 
filter with zero delay. The ideal filter would have discontinuities at both DC and half the 
sampling frequency. 

decays slowly due to the frequency response discontinuities at w  = 0 and 
W= 7~ With an even number of coefficients and a delay of r = -i the 
frequency response 

H(w) = -i sgn(w)eBiz 

leads to a simpler-looking expression; 

f&(t) = l 
?r(t + +) 

but simplicity can be deceptive, and for the same amount of computation 
odd order Hilbert filters have less error than even ones. 

The trick in designing a Hilbert filter is bandwidth reduction, that is, re- 
quiring that it perform the 90” phase shift only for the frequencies absolutely 
required. Then the frequency response plotted in Figure 7.6 can be used as 
the design goal, rather than the discontinuous one of equation (7.12). 

EXERCISES 

7.3.1 Generate a signal composed of a small number of sinusoids and approximate 
it in a small interval by a polynomial. Compare the true derivative to the 
polynomial’s derivative. 

7.3.2 What are the frequency responses of the polynomial smoother and differen- 
tiator? How does the filter length affect the frequency response? 

7.3.3 What is the ratio between the Riemann sum integration gain and the gain 
of an ideal integrator? Can you explain this result? 

7.3.4 Show that the odd order Hilbert filter when discretized to integer times has 
all even coefficients zero. 
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7.4 Feedback 

While FIR filters can be implemented in a feedfomvard manner, with the 
input signal flowing through the system in the forward direction, IIR filters 
employ fee&a&. Feedforward systems are simple in principle. An FIR with 
N coefficients is simply a function from its N inputs to a single output; but 
feedback systems are not static functions; they have dynamics that make 
them hard to predict and even unstable. However, we needn’t despair as 
there are properties of feedback systems that can be easily understood. 

In order to better understand the effect of feedback we will consider the 
simplest case, that of a simple amplifier with instantaneous feedback. It is 
helpful to use a graphical representation of DSP systems that will be studied 
in detail in Chapter 12; for now you need only know that in Figure 7.7 an 
arrow with a symbol above it represents a gain, and a circle with a plus sign 
depicts an adder. 

Were it not for the feedback path (i.e., were a = 0) the system would be 
a simple amplifier y = Gz; but with the feedback we have 

y=Gw (7.15) 

where the intermediate signal is the sum of the input and the feedback. 

W =x+ay (7.16) 

Substituting 
y=G(x+ay) =Gx+aGy 

and solving for the output 

G 
Y =gx (7.17) 

we see that the overall system is an amplifier like before, only the gain has 
been enhanced by a denominator. This gain obtained by closing the feedback 

Figure 7.7: The DSP diagram of an amplifier with instantaneous feedback. As will be 
explained in detail in Chapter 12, an arrow with a symbol above it represents a gain, a 
symbol above a filled circle names a signal, and a circle with a plus sign depicts an adder. 
The feedforward amplifier’s gain is G while the feedback path has gain (or attenuation) a. 
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Figure 7.8: An amplifier with delayed feedback. As will be explained in detail in Chap- 
ter 12, a circle with zWN stands for a delay of N time units. Here the feedforward amplifier’s 
gain is G while the feedback path has delay of N time units and gain (or attenuation) a. 

loop is called the closed loop gain. When a is increased above zero the closed 
loop gain increases. 

What if a takes precisely the value a = $? Then the closed loop gain 
explodes! We see that even this simplest of examples produces an instability 
or ‘pole’. Physically this means that the system can maintain a finite output 
even with zero input. This behavior is quite unlike a normal amplifier; ac- 
tually our system has become an oscillator rather than an amplifier. What 
if we subtract the feedback from the input rather than adding it? Then for 
a= $ the output is exactly zero. 

The next step in understanding feedback is to add some delay to the 
feedback path, as depicted in Figure 7.8. Now 

Yn = Gwn 

with 

Wn = Xn + a&-N 

where N is the delay time. Combining 

Yn = G(xn + aYn-zv) = Gxn + aGYn-N (7.18) 

and we see that for constant signals nothing has changed. What happens to 
time-varying signals? A periodic signal xn that goes through a whole cycle, 
or any integer number of whole cycles, during the delay time will cause 
the feedback to precisely track the input. In this case the amplification will 
be exactly like that of a constant signal. However, consider a sinusoid that 
goes through a half cycle (or any odd multiple of half cycles) during the 
delay time. Then yn-N will be of opposite sign to yn and the feedback will 
destructively combine with the input; for aG = 1 the output will be zero! 
The same is true for a periodic signal that goes through a full cycle (or 
any multiple) during the delay time, with negative feedback (i.e., when the 
feedback term is subtracted from rather than added to the input). 

Wn = Xn - a&-N (7.19) 



7.4. FEEDBACK 291 

So feedback with delay causes some signals to be emphasized and others 
to be attenuated, in other words, feedback can fdter. When the feedback 
produces a pole, that pole corresponds to some frequency, and only that 
frequency will build up without limit. When a ‘zero’ is evoked, no matter 
how much energy we input at the particular frequency that is blocked, no 
output will result. Of course nearby frequencies are also affected. Near a 
pole sinusoids experience very large but finite gains, while sinusoids close to 
a zero are attenuated but not eliminated. 

With unity gain negative feedback it is possible to completely block a 
sinusoid; can this be done with aG # l? For definiteness let’s take G = 
1,a = i. Starting at the peak of the sinusoid zo = 1 the feedback term to be 
subtracted a cycle later is only ay,-~ = i. Subtracting this leads to w = f , 
which a cycle later leads to the subtraction of only a?.&+N = f . In the steady 
state the gain settles down to i, the prediction of equation (7.17) with a 
taken to be negative. So nonunity gain in the negative feedback path causes 
the sinusoid to be attenuated, but not notched out. You may easily convince 
yourself that the gain can only be zero if aG = 1. Similarly nonunity gain 
in a positive feedback path causes the sinusoid to be amplified, but not by 
an infinite amount. 

So a sinusoid cannot be completed blocked by a system with a delayed 
negative feedback path and nonunity feedback gain, but is there a nonsinu- 
soidal signal that is completely notched out? The only way to compensate 
for nonunity gain in the feedback term to be subtracted is by having the sig- 
nal vary in the same way. Hence for aG > 1 we need a signal that increases 
by a factor of aG after the delay time N, i.e., 

sn = e 

while for aG < 1 the signal needs to decrease in the same fashion. This 
is a general result; when the feedback gain is not unity the signals that 
are optimally amplified or notched are exponentially growing or damped 
sinusoids. 

Continuing our argument it is easy to predict that if there are several de- 
layed feedback paths in parallel then there will be several frequency regions 
that are amplified or attenuated. We may even put filters in the feedback 
path, allowing feedback at certain frequencies and blocking it at others. In- 
deed this is the way filters are designed in analog signal processing; feedback 
paths of various gains and phases are combined until the desired effect is 
approximated. 
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Figure 7.9: The general feedback amplifier. The boxes represent general filters, with 
transfer functions as marked. The amplifier’s transfer function is H while that of the 
feedback path is F. 

In the most general setting, consider a digital system with transfer func- 
tion H(z-l) to which we add a feedback loop with transfer function F(z-l), 
as depicted in Figure 7.9. The closed loop transfer function is given by 

H(z-l) 
H’(z-l) = 1 _ J’(z-l)H(z-l) (7.20) 

which has a pole whenever the denominator becomes zero (i.e., for those z 
for which F(z-l) H (z-1> = 1). The value of z determines the frequency of 
the oscillation. 

EXERCISES 

7.4.1 When the microphone of an amplification system is pointed toward the 
speaker a squealing noise results. What determines the frequency of the 
squeal? Test your answer. What waveform would you expect? 

7.4.2 A feedback pole causes an oscillation with frequency determined by the delay 
time. This oscillation is sustained even without any input. The system is 
linear and time-invariant, and so is a filter; as a filter it cannot create energy 
at a frequency where there was no energy in the input. Resolve this paradox. 

7.4.3 What is the effect of a delayed feedback path with unity gain on a sinusoid of 
frequency close, but not equal, to the instability? Plot the gain as a function 
of frequency (the frequency response). 

7.4.4 Find a signal that destabilizes a system with a delayed positive feedback path 
and nonunity feedback gain. 

7.4.5 Show that for G = ’ ?, a = 1 a sinusoid of frequency corresponding to the 
delay is amplified by the gain predicted by equation (7.17). 
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7.4.6 What is the effect of a delayed feedback path with nonunity gain G on a 
sinusoid of frequency corresponding to the delay? Plot the effective gain as a 
function of G. 

7.4.7 Simulate a system that has a causal MA filter in the feedback path. Start 
with a low-pass filter, then a high-pass, and finally a band-pass. Plot the 
frequency response. 

7.5 The ARMA Transfer Function 

In Section 6.14 we defined the transfer function of a filter. The transfer 
function obeys 

Y(z) = H(z)X(z) 

where X(z) is the zT of the input to the filter and Y(z) is the zT of the 
output. Let’s find the transfer function of an ARMA filter, The easiest way 
to accomplish this is to take the z transform of both sides of the general 
ARMA filter in the symmetric form (equation (6.46)) 

M L 

cp mYn-m = c QlXn-1 
m=O l=O 

the zT of the left side being 

00 M 

= (c 
Pmyn-m Zen = 5 &, E 

1 
Yn--mX -n = 

n=-ca m=O m=O n=-00 

M 00 

cp mZarn C yviZev = 
m=O u=--00 

{ ~04,z~m} y(z) 

and similarly that of the right side. 

l=O u=--00 

Putting these together 

/M 

! cp mZAm 
m=O ) 

Y(z) = 
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and comparing with equation (6.65) we find that the transfer function is the 
ratio of two polynomials in 2-l. 

(7.21) 

This can be also expressed in terms of the coefficients in equation (6.45) 

-1 

H(z) = = - iL_0 w  
1 - C,M,i b,x-m 

(7.22) 

a form that enables one to build the transfer function ‘by inspection’ from 
the usual type of difference equation. 

For an AR filter L = 0 and neglecting an uninteresting gain (i.e., taking 
a0 = 1) 

H(z) = 
1 

1 - C,M,r bmxBrn 
(7.23) 

while for an MA filter all the bm are zero and the transfer function is a 
polynomial. 

H(z) = ea& (7.24) 
l=O 

It is often burdensome to have to deal with polynomials in z-l, so we 
express the transfer function in terms of .Z instead. 

L-l 
H(z) = x M-L c,“=, al2 

C,M,o PrnzMsrn 
(7.25) 

We see that H(z) is a rational function of 2. 
The fact that the transfer function H(z) of the general ARMA filter is 

a rational function, has interesting and important ramifications. The funda- 
mental theorem of algebra tells us that any polynomial of degree M can be 
completely factored over the complex numbers 

D 

c CiXi = G fi(x - Ci) 
i=o i=l 

where the D roots <i are in general complex numbers. When the coefficients 
ci are real, the sum itself is always real, and so the roots must either be 
real, or appear in complex conjugate pairs. Thus we can rewrite the transfer 
function of the general ARMA filter as 

(7.26) 



7.5. THE ARMA TRANSFER FUNCTION 295 

where the roots of the numerator <i are called ‘zeros’ of the transfer function, 
and the roots of the denominator 7rr, its ‘poles’. So other than an simple 
overall gain G, we need only specify the zeros and poles to completely de- 
termine the transfer function; no further information is needed. 

From equations 7.23 and 7.24 we see that the transfer function of the 
MA filter has zeros but no poles while that of the AR filter has poles but no 
zeros. Hence the MA filter is also called an all-zero filter and the AR filter 
is called an all-pole filter. 

What is the meaning of these zeros and poles? A zero of the transfer 
function is a complex number c = reiw that represents a complex (possibly 
decaying or increasing) exponential signal that is attenuated by the ARMA 
filter. Poles 7r represent complex exponential signals that are amplified by 
the filter. If a zero or pole is on the unit circle, it represents a sinusoid that 
is either completely blocked by the filter or destabilizes it. 

Since the positions in the complex plane of the zeros and poles provide a 
complete description of the transfer function of the general ARMA system, 
it is conventional to graphically depict them using a pole-zero plot. In such 
plots the position of a zero is shown by a small filled circle and a pole is 
marked with an X. Poles or zeros at x = 0 or x = co that derive from the 
xMdL factor in equation (7.25) are not depicted, but multiple poles and/or 
zeros at the same position are. This single diagram captures everything one 
needs to know about a filter, except for the overall gain. 

A few examples are in order. First consider the causal equally weighted 
L+ l-point average MA filter (since we intend to discard the gain we needn’t 
normalize the sum). 

L 

Yn = c G-1 
I=0 

By inspection the transfer function is 

1 _ x-1-L-’ 

H(z) = + = 1 _ z-l $ z”:l, l =- 

z=o 

and we seem to see L poles at the origin, the L+ 1 zeros of xLfl - 1 and a pole 

at x = 1. The zeros are the L + 1 roots of unity, z = e i2x*, one of which 
is x = 1 itself; hence that zero cancels the putative pole at z = 1. The L 
poles at the origin are meaningless and may be ignored. We are therefore left 
with L zeros equally spaced around the unit circle (not including x = l), as 
displayed in Figure 7.10.A. It is not difficult to verify that the corresponding 
sinusoids are indeed blocked by the averaging MA filter. 
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Figure 7.10: The pole-zero plots of two simple systems. In (A) we see the pole-zero plot 
for the MA filter that averages with equal weights eight consecutive input values. In (B) 
is the simple AR low-pass filter y,, = (1 - p)sn + fly,+ 1. 

Our second example is our favorite AR filter of equation (6.39). 

Yn = Cl- p>Gz + PYn-1 o<p<1 

By inspection we can write 

H(z) (1 -PI 1-P 
= 1 - pz-1 = zz-p 

which has a trivial zero at the origin and a single pole at p, as depicted in 
Figure 7.10.B. 

As our last 
ARMA system 

This is a useful 

example we choose a general first-order section, that is, an 
with a single zero and a single pole. 

Yn = aoxn + alxn-1 + blyn-1 

system since by factorization of the polynomials in both the 
numerator and denominator of the transfer function we can break down any 
ARMA filter into a sequence of first-order sections in cascade. By inspection 
the transfer function 

a0 + alz-l 
H(z) = 1 b + = aoT 

- 1 z- 

has its zero at z = -2 and its pole at z = bl. To find the frequency response 

we substitute x = elw 

H(w)= a0 + ale+ 

1 - bleviw 
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which at DC is e and at Nyquist w  = 7r is w. To find the impulse 
response we need the inverse zT, which generally is difficult to calculate. 
Here it can be carried out using a trick 

H(z) = a0 
(z - h) + (2 + h) 

z- h 

’ + 1 -b z-L’ 
(2 + h)z 

1 

and the desired result is obtained. 

h, = a0 n=O 

(a+ aoh)b, ~4 n#O 

EXERCISES 

7.5.1 Sometimes it is useful to write difference equations as yn = Gx, +C ulxn-l + 
C b,y,-, where G is called the gain. Write the transfer function in rational- 
function- and factored-form for this case. 

7.5.2 Derive equation (7.21) more simply than in the text by using the time shift 
relation for the zT. 

7.5.3 Consider the system with a single real pole or zero. What signal is maximally 
amplified or attenuated? Repeat for a complex pole or zero. 

7.5.4 Calculate the transfer function H(z) for the noncausal MA system of equa- 
tion (6.35). Relate this to the transfer function of the causal version and to 
the frequency response (equation (6.36)) previously calculated. 

7.5.5 Show that stable ARMA filters have all their poles inside the unit circle. 

7.5.6 Prove that real all-pass filters 
locations. 

have poles and zeros in conjugate reciprocal 

7.5.7 Show that the first-order section is stable when Ibi) < 1 both by considering 
the pole and by checking the impulse response. 

7.5.8 Plot the absolute value of the frequency response of the first-order section 
for frequencies between DC and Nyquist. When is the filter low-pass (passes 
low frequencies better than highs)? 

7.5.9 If the maximum input absolute value is 1, what is the maximal output abso- 
lute value for the first-order section? If the input is white noise of variance 
1, what is the variance of the output of the first-order section? 
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7.5.10 In general, when breaking down ARMA systems into first-order sections the 
zeros and poles may be complex. In such cases we most often use real-valued 
second-order sections instead. 

W) = 
a0 + alz-l + a2zm2 

1 _ b-l 
1 - b2r2 

What is the frequency 
conjugate poles? 

response for the second-order section with complex 

7.6 Pole-Zero Plots 

The main lesson from the previous section was that the positions of the 
zeros and poles of the transfer function determine an ARMA filter to within 
a multiplicative gain. The graphical depiction of these positions such as 
in Figure 7.10 is called a pole-zero plot. Representing filters by pole-zero 
plots is analogous to depicting signals by the z-plane plots introduced in 
Section 4.10. Indeed there is a unique correspondence between the two since 
z-plane plots contain a complete frequency domain description of signals, 
and filters are specified by their effect in the frequency domain. 

The pole-zero plot completely specifies an ARMA filter except for the 
overall gain. At first sight it may seem strange that the positions of the 
zeros and poles are enough to completely specify the transfer function of an 
ARMA filter. Why can’t there be two transfer functions that have the same 
zeros and poles but are different somewhere far from these points? The fact 
is that were we to allow arbitrary systems then there could indeed be two 
different systems that share zeros and poles; but the transfer function of 
an ARMA filter is constrained to be a rational function and the family of 
rational functions does not have that much freedom. For instance, suppose 
we are given the position of the zeros of an MA filter, <I, 52 . . . CL. Since the 
transfer function is a polynomial, is must be 

since any other polynomial will have different zeros. 
In addition to being mathematically sufficient, pole-zero plots are graph- 

ically descriptive. The pole-zero plot provides the initiated at a glance ev- 

erything there is to know about the filter. You might say that the pole-zero 
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plot picture is worth a thousand equations. It is therefore worthwhile to 
become proficient in ‘reading’ pole-zero plots. 

We can place restrictions on the poles and zeros before we even start. 
Since we wish real inputs to produce real outputs, we require all the co&i- 
cients of the ARMA filter to be real. Now real-valued rational functions will 
have poles and zeros that are either real valued, or that come in complex 
conjugates. For example, the three zeros 1, 1 + i and 1 - i form the real 
polynomial (x - 1) (z - i) (z + i) = x3 - z2 + z - 1, while were the two complex 
zeros not complex conjugates the resulting polynomial would be complex! 
So the pole-zero plots of ARMA systems with real-valued coefficients are 
always mirror-symmetric around the real axis. 

What is the connection between the pole-zero plots of a system and its 
inverse? Recall from equation (6.17) that when the output of a system is 
input to its inverse system the original signal is recovered. In exercise 6.14.3 
we saw that the transfer function of the concatenation of two systems is the 
product of their respective transfer functions. So the product of the transfer 
functions of a system and its inverse must be unity, and hence the transfer 
functions reciprocals of each other. Hence the pole-zero plot of the inverse 
system is obtained by replacing all poles with zeros and all zeros with poles. 
In particular it is easy now to see that the inverse of an all-zero system is 
all-pole and vice versa. 

In Section 7.4 we saw what it means when a pole or a zero is on the 
unit circle. A zero means that the frequency in question is swallowed up by 
the system, and nearby frequencies are attenuated. A pole means that the 
system is capable of steady state output without input at this frequency, 
and nearby frequencies are strongly amplified. For this reason poles on the 
unit circle are almost always to be avoided at all costs. 

What if a pole or zero is inside the unit circle? Once again Section 7.4 
supplied the answer. The signal that is optimally amplified or blocked is a 
damped sinusoid, exactly the basic signal represented by the pole or zero’s 
position in the z-plane. If the pole or zero is outside the unit circle the signal 
most affected is the growing sinusoid represented by that point. Although 
we don’t want poles on the unit circle, we want them even less outside it. A 
pole corresponding to an exponentially growing sinusoid would mean that 
we have an unstable system that could explode without notice. Thus IIR 
system designers must always ensure that all poles are inside the unit circle. 
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The pole-zero plot directly depicts the transfer function, but the fre- 
quency response is also easily inferred. Think of the unit circle as a circular 
railroad track with its height above sea level representing the gain at the 
corresponding frequency. In this analogy poles are steep mountains and ze- 
ros are craters. As the train travels around the track its height increases and 
decreases because of proximity to a mountain or crater. Of course at any 
position there may be several poles and/or craters nearby, and the overall 
height is influenced by each of them according to its distance from the train. 
Now let’s justify this analogy. Substituting x = &’ into equation (7.26) we 
find that the frequency response of an ARMA systems is 

rI~l@~ - c> 
H(w) = Gn~=l(,i~ _ n,) (7.27) 

with magnitude and angle given by the following. 

kl m=l 

The Zth factor in the numerator of the magnitude is the distance between 
the point on the unit circle and the Zth zero, and the mth factor in the 

denominator is the distance to the mth pole. The magnitude is seen to be 
the product of the distances to all the zeros divided by the product to all 
the poles. If one of the zeros or poles is very close it tends to dominate, but 
in general the train’s height is influenced by all the mountains and craters 
according to their distances from it. The Zth term in the numerator of the 
angle is the direction of the vector between the point on the unit circle and 

the lth zero and the mth term in the denominator is the angle to the mth 
pole. Therefore the phase of the frequency response is seen to be the sum 
of the angles to all the zeros minus the sum of the angles to the poles. If 
one of the zeros or poles is very close its angle changes rapidly as the train 
progresses, causing it to dominate the group delay. 

Suppose we design a filter by some technique and find that a pole is 
outside the unit circle. Is there some way to stabilize the system by moving 
it back inside the unit circle, without changing the frequency response? 
The answer is affirmative. Let the pole in question be ~0 = PC?. You can 
convince yourself that the distance from any point on the unit circle to ~0 is 
exactly P2 times the distance to ;~rb = $ele, the point along the same radius 
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but with reciprocal magnitude. Thus to within a gain term (that we have 
been neglecting here) we can replace any pole outside the unit circle with 
its ‘reciprocal conjugate’ 7r&. This operation is known as ‘reflecting a pole’. 
We can also reflect a zero from outside the unit circle inward, or from the 
inside out if we so desire. For real filters we must of course reflect both the 
pole and its complex conjugate. 

Let’s see how the concept of a pole-zero plot enables us to design some 
useful filters. Assume we want a DC blocker, that is, a filter that blocks DC 
but passes AC frequencies. A first attempt might be to simply place a zero 
at DC 

H(z) = x - 1 = z(1 - z-l) =k- Yn = Xn - Xn-1 

discarding the term representing a zero at z = 0; but this filter is simply the 
finite difference, with frequency response 

IH( = II- e-iw(2 = 2(1- cosw) 

not corresponding to a sharp notch. We can sharpen the response by placing 
a pole on the real axis close to, but inside, the unit circle. The reasoning 
behind this tactic is simple. The zero causes the DC frequency response to 
be zero, but as we move away from w  = 0 on the unit circle we immediately 
start feeling the effects of the pole. 

H(z) = 5 = 1’ -$ * Yn = PYn-1 + (Xn - Xn-1) 
- z 

Here p < 1 but the closer ,0 is to unity the sharper the notch will be. There 
is a minor problem regarding the gain of this filter. We would like the gain to 
be unity far away from DC, but of course pole-zero methods cannot control 
the gain. At x = -1 our DC blocker has a gain of 

z- 1 -1-1 1 -z-z 
x- P -1-p 1-g 

where we defined the small positive number QI via ,0 = 1 - Q. We can com- 
pensate for this gain by multiplying the x terms by a factor g = 1 - f. 

Yn = (1 - a) Yn-1 + (1 - ia) (xn - xn-l) 

In addition to a DC blocker we can use the same technique to make a 
notch at any frequency R. We need only put a conjugate pair of zeros on the 
unit circle at angles corresponding to 44 and a pair of poles at the same 
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angles but slightly reduced radius. We can also make a sharp band-pass filter 
by reversing the roles of the zeros and poles. Wider band-pass or band-stop 
filters can be approximated by placing several poles and/or zeros along the 
desired band. Every type of frequency-selective filter you can imagine can 
be designed by careful placement of poles and zeros. 

EXERCISES 

7.6.1 Although practically every filter you meet in practice is ARMA, they are 
not the most general LTI system. Give an example of a linear time-invariant 
system that is not ARMA. 

7.6.2 Make a pole-zero plot for the system 

H(z) = 
(z - 4(x - ;I 
( 2 - ?Yl)(z - 5) 

. 
where CL = em and T 2 1. Sketch the frequency response. What kind of filter 
is this? 

7.6.3 Why did we call XL the reciprocal conjugate? Prove that the distance from 
any point on the unit circle to ~0 is exactly P2 times the distance to the 
reciprocal conjugate 7rb. 

7.6.4 A stable system whose inverse is stable as well is said to be minimum phase. 
What can you say about the pole-zero plot of a minimum phase system? 

7.6.5 Prove that reflecting poles (or zeros) does not change the frequency response. 

7.6.6 What can be said about the poles and zeros of an all-pass filter? What is the 
connection between this question and the previous one? 

7.6.7 A notch filter can be designed by adding the outputs of two all-pass filters 
that have the same phase everywhere except in the vicinity of the frequency 
to be blocked, where they differ by 180”. Design a notch filter of the form 
H(z) = 4 (1 + A( z)) where A(z) is the transfer function of an all-pass filter. 
How can you control the position and width of the notch? 

7.6.8 Consider the DC blocking IIR filter yh = 0.9992(x1, - 21~~1) + 0.9985yk-r. 
Draw its frequency response by inputting pure sinusoids and measuring the 
amplitude of the output. What is its pole-zero plot? 
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7.7 Classical Filter Design 

Classical filter design means analog filter design. Why are we devoting a sec- 
tion in a book on DSP to analog filter design? There are two reasons. First, 
filtering is one of the few select subjects in analog signal processing about 
which every DSP expert should know something. Not only are there always 
analog antialiasing filters and reconstruction filters, but it is often worth- 
while to perform other filtering in the analog domain. Good digital filters 
are notoriously computationally intensive, and in high-bandwidth systems 
there may be no alternative to performing at least some of the filtering using 
analog components. Second, the discipline of analog filter design was already 
well-developed when the more complex field of digital filter design was first 
developing. It strongly influenced much of the terminology and algorithms, 
although its stranglehold was eventually broken. 

IH( 
A 

Figure 7.11: Desired frequency response of the analog low-pass filter to be designed. The 
pass-band is from f = 0 to the pass-band edge fr,, the transition region from fP to fS, and 
the stop-band from the top-band edge fS to infinity. The frequency response is halfway 
between that of the pass-band and that of the stop-band at the cutoff frequency fC. The 
maximal ripple in the pass-band is 6, and in the stop-band 6,. 

We will first focus on the simplest case, that of an analog low-pass filter. 
Our ideal will be the ideal low-pass filter, but that being unobtainable we 
strive toward its best approximation. The most important specification is the 
cutoff frequency fc, below which we wish the signal to be passed, above which 
we wish the signal to be blocked. The pass-band and stop-band are separated 
by a transition region where we do not place stringent requirements on the 
frequency response. The end of the pass-band is called fp and the beginning 
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of the stop-band fS. Other specifications for a practical implementation are 
the transition width A = fS - fP, the maximal deviation from unity gain 
in the pass-band &, and the maximal amplitude in the stop-band 6,. In 
a typical analog filter design problem fc (or fP or fs) and the maximal 
allowed values for A, &, and S, are given. Figure 7.11 depicts the ideal and 
approximate analog low-pass filters with these parameters. 

Designing an analog filter essentially amounts to specifying the function 
H(f) whose square is depicted in the figure. From the figure and our previous 
analysis we see that 

jH(0)12 = 1 

lwf>12 * 1 
lwf>2 x 0 
Wf)12 + 0 

for f < fc 
for f > fc 
for f + 00 

are the requirements for an analog low-pass filter. The first functional forms 
that come to mind are based on arctangents and hyperbolic tangents, but 
these are natural when the constraints are at plus and minus infinity, rather 
than zero and infinity. Classical filter design relies on the form 

IH(f)12 = 1 +IpCf) (7.28) 

where P(f > is a polynomial that must obey 

and be well behaved. The classical design problem is therefore reduced to 
the finding of this polynomial. 

In Figure 7.11 the deviation of the amplitude response from the ideal 
response is due entirely to its smoothly decreasing from unity at f = 0 in 
order to approach zero at high frequencies. One polynomial that obeys the 
constraints and has no extraneous extrema is the simple quadratic 

which when substituted back into equation (7.28) gives the ‘slowest’ filter 
depicted in Figure 7.12. The other filters there are derived from 

P(f) = (;)2” 
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Figure 7.12: Frequency response of analog Butterworth low-pass 
top at low frequencies we have order N = 1,2,3,5,10,25,00. 

filters. From bottom to 
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and are called the Butterworth low-pass filters of order n. It is obvious from 
the figure that the higher n is the narrower the transition. 

Butterworth filters have advantages and disadvantages. The attenuation 
monotonically increases from DC to infinite frequency; in fact the first 2N- 1 
derivatives of IH(f) I2 are identically zero at these two points, a property 
known as ‘maximal flatness’. An analog Butterworth filter has only poles and 
is straightforward to design. However, returning to the design specifications, 
for the transition region A to be small enough the order N usually has to 
be quite high; and there is no way of independently specifying the rest of 
the parameters. 

In order to obtain faster rolloff in the filter skirt we have to give some- 
thing up, and that something is the monotonicity of IH(f)12. A Butterworth 
filter ‘wastes’ a lot of effort in being maximally flat, effort that could be put 
to good use in reducing the size of the transition region. A filter that is al- 
lowed to oscillate up and down a little in either the pass-band, the stop-band 
or both can have appreciably smaller A. Of course we want the deviation 
from our specification to be minimal in some sense. We could require a 
minimal squared error between the specification and the implemented filter 

e2 = 
s 

IfLp&J) - %7&4 I2 dLJ 

but this would still allow large deviation from specification at some frequen- 
cies, at the expense of overexactness at others. It makes more sense to require 
minimax error, i.e., to require that the maximal deviation from specification 
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Figure 7.13: Frequency response of low-pass equiripple designs. In (A) we see an FIR 
filter designed using the Remez algorithm for comparison purposes. In (B) we the IIR 
Chebyshev design, in (C) the inverse Chebyshev and in (D) the elliptical design. 

be minimal. Achieving true minimax approximation is notoriously diffi- 
cult in general, but approximation using Chebyshev polynomials (see Ap- 
pendix A.lO) is almost the same and straightforward to realize. This ap- 
proximation naturally leads to equiripple behavior, where the error oscillates 
around the desired level with equal error amplitude, as shown in Figure 7.13. 

The Chebyshev (also known as Chebyshev I) filter is equiripple in the 
pass-band, but maximally flat in the stop-band. It corresponds to choosing 
the polynomial , . 

and like the Butterworth approximation, the analog Chebyshev filter is all- 
pole. The inverse Chebyshev (or Chebyshev II) filter is equiripple in the 
stop-band but maximally flat in the pass-band. Its polynomial is 

The Chebyshev filter minimax approximates the desired response in the 
pass-band but not in the stop-band, while the inverse Chebyshev does just 
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the opposite. For both types of Chebyshev filters the parameter S sets the 
ripple in the equiripple band. For the inverse Chebyshev, where the equirip- 
ple property holds in the stop-band, the attenuation is determined by the 
ripple; lower ripple means higher stop-band rejection. 

Finally, the elliptical filter is equiripple in both pass-band and stop- 
band, and so approximates the desired response in the minimax sense for all 
frequencies. Its ‘polynomial’ is not a polynomial at all, but rather a rational 
function UN(i). These functions are defined using the elliptical functions 
(see Appendices A.8 and A.lO). Taking the idea from equation (A.59), we 
define the function 

u dw u ( > z snk ( 
r snq -l u ( 0 (7.29) 

and when r and the complete elliptical integrals & and Kq obey certain 
relations that we will not go into here, this function becomes a rational 
function. 

(u~-u2)(u~-u2)*..(u~~~I-u2) 
(l-u:212)(1-u~u2)...(1-~~~-~~2) 

N even 
&V(u) = a2 

u(?.+-u”)(?L; -+.(u2 4) (7.30) 

(1-u;u2)(l-u~u2)~.*(l-u;~u2) 
N odd 

This rational function has several related interesting characteristics. For 
u < 1 the function lies between - 1 and +1. Next, 

1 0 1 
UN; =- 

uN (U> 

and its zeros and poles are reciprocals of each other. Choosing all the N zeros 
in the range 0 < 5 < 1 forces all N poles to fall in the range 1 < x < 00. 
Although the zeros and poles are not equally spaced, the behavior of 

IW)12 = l 1+ h(k) 
is equiripple in both the pass-band and the stop-band. 

It is useful to compare the four types of analog filter-Butterworth, 
Chebyshev, inverse Chebyshev, and elliptical. A very strong statement can 
be made (but will not be proven here) regarding the elliptical filter; given any 
three of the four parameters of interest (pass-band ripple, stop-band ripple, 
transition width, and filter order) the elliptical filter minimizes the remain- 
ing parameter. In particular, for given order N and ripple tolerances the 
elliptical filter can provide the steepest pass-band to stop-band transition. 
The Butterworth filter is the weakest in this regard, and the two Chebyshev 
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types are intermediate. The Butterworth filter, however, is the best approxi- 
mation to the Taylor expansion of the ideal response at both DC and infinite 
frequency. The Chebyshev design minimizes the maximum pass-band ripple, 
while the inverse Chebyshev maximizes the minimum stop-band rejection. 

The design criteria as we stated them do not address the issue of phase 
response, and none of these filters is linear-phase. The elliptical has the 
worst phase response, oscillating wildly in the pass-band and transition re- 
gion (phase response in the stop-band is usually unimportant). The Butter- 
worth is the smoothest in this regard, followed by the Chebyshev and inverse 
Chebyshev. 

Although this entire section focused on analog low-pass filter, the prin- 
ciples are more general. All analog filters with a single pass-band and/or 
stop-band can be derived from the low-pass designs discussed above. For 
example, we can convert analog low-pass filter designs into high-pass filters 
by the simple transformation f --$ j. Digital filters are a somewhat more 
complex issue, to be discussed in the next section. For now it is sufficient to 
say that IIR filters are often derived from analog Butterworth, Chebyshev, 
inverse Chebyshev, or elliptical designs. The reasoning is not that such de- 
signs are optimal; rather that the theory of the present section predated DSP 
and early practitioners prefered to exploit well-developed theory whenever 
possible. 

EXERCISES 

7.7.1 Show that a Butterworth filter of order N is maximally flat. 

7.7.2 All Butterworth filters have their half gain (3 dB down) point at fc. Higher 
order N makes the filter gain decrease faster, and the speed of decrease is 
called the ‘rollofl ‘, Show that for high frequencies the rolloff of the Butter- 
worth filter is 6 dB per octave (i.e., the gain decreases 6 dB for every doubling 
in frequency) or 20 dB per decade. How should N be set to meet a specifica- 
tion involving a pass-band end frequency fpr a stop-band start frequency fs, 
and a maximum error tolerance 6? 

7.7.3 Show that the 2N poles of IH( for the analog Butterworth filter all lie 
on a circle of radius fc in the s-plane, are equally spaced, and are symmetric 
with respect to the imaginary axis. Show that the poles of the Chebyshev I 
filter lie on an ellipse in the s-plane. 

7.7.4 The HPNA 1.0 specification calls for a pulse consisting of 4 cycles of a 7.5 
MHz square wave filtered by a five-pole Butterworth filter that extends from 
5.5 MHz to 9.5 MHz. Plot this pulse in the time domain. 
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7.7.5 The frequency response of a certain filter is given by 

where a and fc are parameters. 
meaning of the parameters? 

f,” IH( = f* 

What type of filter is this and what is the 

7.7.6 Repeat the previous exercise for these filters. 

Wf)12 = &+ 

IH( = * 
C 

7.7.7 Show that in the pass-band the Chebyshev filter gain is always between ,-& 
and h so that the ripple is about 4b2 dB. Show that the gain falls mono- 
tonically in the stop-band with rolloff 20N dB per decade but always higher 
than the Butterworth filter of the same order. 

7.7.8 We stated that an analog low-pass filter can be converted into a high-pass 
filter by a simple transformation of the frequency variable. How can band- 
pass and band-stop filters be similarly designed by transformation? 

7.8 Digital Filter Design 

We will devote only a single section to the subject of digital filter design, 
although many DSP texts devote several chapters to this subject. Although 
the theory of digital filter design is highly developed, it tends to be highly 
uninspiring, mainly consisting of techniques for constrained minimization of 
approximation error. In addition, the availability of excellent digital filter 
design software, both full graphic applications and user-callable packages, 
makes it highly unlikely that you will ever need to design on your own. The 
aim of this section is the clarification of the principles behind such programs, 
in order for the reader to be able to use them to full advantage. 

Your first reaction to the challenge of filter design may be to feel that it 
is a trivial pursuit. It is true that finding the frequency response of a given 
filter is a simple task, yet like so many other inverse problems, finding a filter 
that conforms to a frequency specification is a more difficult problem. From 
a frequency domain specification we can indeed directly derive the impulse 
response by the FT, and the numeric values of the impulse response are 
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undeniably FIR filter coefficients; but such an approach is only helpful when 
the impulse response quickly dies down to zero. Also numeric transformation 
of N frequency values will lead to a filter that obeys the specification at the 
exact frequencies we specified, but at in-between frequencies the response 
may be far from what is desired. The main trick behind filter design is how to 
constrain the frequency response of the filter so that it does not significantly 
deviate from the specification at any frequency. 

We should note that this malady is not specific to time domain filter- 
ing. Frequency domain filtering uses the FT to transfer the signal to the 
frequency domain, performs there any needed filtering operation, and then 
uses the iFT to return to the time domain. We can only numerically perform 
a DFT for a finite number of signal values, and thus only get a finite fre- 
quency resolution. Multiplying the signal in the frequency domain enforces 
the desired filter specification at these frequencies only, but at intermedi- 
ate frequencies anything can happen. Of course we can decide to double 
the number of signal times used thus doubling the frequency resolution, but 
there would still remain intermediate frequencies where we have no control. 
Only in the limit of the LTDFT can we completely enforce the filter spec- 
ification, but that requires knowing the signal values at all times and so is 
an unrealizable process. 

At its very outset the theory and practice of digital filter design splits 
into two distinct domains, one devoted to general IIR filters, and the other 
restricted to linear-phase FIR filters. In theory the general IIR problem 
is the harder one, and we do not even know how to select the minimum 
number of coefficients that meet a given specification, let alone find the 
optimal coefficients. Yet in practice the FIR problem is considered the more 
challenging one, since slightly suboptimal solutions based on the methods of 
the previous section can be exploited for the IIR problem, but not for the 
FIR one. 

Let’s start with IIR filter design. As we mentioned before we will not 
attempt to directly optimize filter size and coefficients; rather we start with 
a classical analog filter design and bring it into the digital domain. In order 
to convert a classical analog filter design to a digital one, we would like to 
somehow digitize. The problem is that the z-plane is not like the analog 
(Laplace) s-plane. From Section 4.10 we know that the sinusoids live on 
the imaginary axis in the s-plane, while the periodicity of digital spectra 
force them to be on the unit circle in the x-plane. So although the filter was 
originally specified in the frequency domain we are forced to digitize it in 
the time domain. 
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The simplest time domain property of a filter is its impulse response, 
and we can create a digital filter by evenly sampling the impulse response 
of any of the classical designs. The new digital filter’s transfer function can 
then be recovered by z transforming this sampled impulse response. It is not 
hard to show that a transfer function thus found will be a rational function, 
and thus the digital filter will be ARMA. Furthermore the number of poles 
is preserved, and stable analog filters generate stable digital filters. Unfortu- 
nately, the frequency response of the digital filter will not be identical to that 
of the original analog filter, because of aliasing. In particular, the classical 
designs do not become identically zero at high frequencies, and so aliasing 
cannot be avoided. Therefore the optimal frequency domain properties of 
the analog designs are not preserved by impulse response sampling. 

An alternative method of transforming analog filters into digital ones is 
the bilinear mapping method. The basic idea is to find a mapping from the 
s-plane to the z-plane and to convert the analog poles and zeros into the 
appropriate digital ones. For such a mapping to be valid it must map the 
imaginary axis s = iw onto the unit circle z = e iw, and the left half plane 
into the interior of the unit circle. The mapping (called ‘bilinear’ since the 
numerator and denominator are both linear in s) 

l+s 
z =- 

1-S 
(7.31) 

does just that. Unfortunately, being nonlinear it doesn’t preserve frequency, 
but it is not hard to find that the analog frequency can be mapped to the 
digital frequency by 

W 8tl8lOg = tan( qWdigit81) (7.32) 

thus compressing the analog frequency axis from -oo to 00 onto the digital 
frequency axis from --;r~ to +7r in a one-to-one manner. So the bilinear map- 
ping method of IIR filter design goes something like this. First ‘prewarp’ the 
frequencies of interest (e.g., fP, fc, fs) using equation (7.32). Then design 
an analog filter using a Butterworth, Chebyshev, inverse Chebyshev, or el- 
liptical design. Finally, transform the analog transfer function into a digital 
one by using the bilinear mapping of equation (7.31) on all the poles and 
zeros. 

FIR filters do not directly correspond to any of the classical designs, and 
hence we have no recourse but to return to first principles. We know that 
given the required frequency response of a filter we can derive its impulse 
response by taking the iLTDFT 1 IT hn = g s H(eiw)eiwn du 

-7r 
(7.33) 
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and that these h, are the coefficients of the convolution in the time do- 
main. Therefore, the theoretical frequency responses of the ideal low-pass, 
high-pass, band-pass, and band-stop filters already imply the coefficients of 
the ideal digital implementation. Assuming a noncausal filter with an odd 
number of coefficients, it is straightforward to find the following. 

GG 
low-pass: h, = 

!$ si&nw,) 
n=O 

n#O 

high-pass: h, = 
{ 

1-y n=O 
- 9 sinc(nw,) n#O 

{ 

w2-wL 
band-pass: h, = 

p sinc(nw2) If. ~ 
n=O 

* sinc(nwr) n#O 

band-stop: h, = 
l+F n=O 

F sinc(nwi) - F sinc(nw2) n # 0 

(7.34) 

Unfortunately these h, do not vanish as InI increases, so in order to imple- 
ment a finite impulse response filter we have to truncate them after some 

I I n. 
Truncating the FIR coefficients in the time domain means multiplying 

the time samples by a rectangular function and hence is equivalent to a 
convolution in the frequency domain by a sine. Such a frequency domain 
convolution causes blurring of the original frequency specification as well as 
the addition of sidelobes. Recalling the Gibbs effect of Section 3.5 and the 
results of Section 4.2 regarding the transforms of signals with discontinuities, 
we can guess that multiplying the input signal by a smooth window 

h:, = 2un h, (7.35) 

rather than by a sharply discontinuous rectangle should reduce (but not 
eliminate) the ill effects. 

What type of window should be used? In Section 13.4 we will compare 
different window functions in the context of power spectrum estimation. 
Everything to be said there holds here as well, namely that the window 
function should smoothly increase from zero to unity and thence decrease 
smoothly back to zero. Making the window smooth reduces the sidelobes of 
the window’s FT, but at the expense of widening its main lobe, and thus 
widening the transition band of the filter. From the computational complex- 
ity standpoint, we would like the window to be nonzero over only a short 
time duration; yet even nonrectangular windows distort the frequency re- 
sponse by convolving with the window’s FT, and thus we would like this FT 
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to be as narrow as possible. These two wishes must be traded off because the 
uncertainty theorem limits how confined the window can simultaneously be 
in the time and frequency domains. In order to facilitate this trade-off there 
are window families (e.g., kaiser and Dolph-Chebyshev) with continuously 
variable parameters. 

So the windowing method of FIR filter design goes something like this. 

Decide on the frequency response specification 
Compute the infinite extent impulse response 
Choose a window function: 

trade off transition width against stop-band rejection 
trade off complexity against distortion 

Multiply the infinite extent impulse response by the window 

The window design technique is useful when simple programming or 
quick results are required. However, FIR filters designed in this way are not 
optimal. In general it is possible to find other filters with higher stop-band 
rejection and/or lower pass-band ripple for the same number of coefficients. 
The reason for the suboptimality is not hard to find, as can be readily ob- 
served in Figure 7.14. The ripple, especially that of the stop-band, decreases 
as we move away from the transition. The stop-band attenuation specifica- 
tion that must be met constrains only the first sidelobe, and the stronger 
rejection provided by all the others is basically wasted. Were we able to find 

IH(f)l A IH(f)l B 
0 

-20 

40 

40 

* 

do 

-100 

T- 
0.1 0.2 

-woJ 

Figure 7.14: FIR design by window method vs. by Remez algorithm. (A) is the frequency 
response of a 71-coefficient low-pass filter designed by the window method. (B) is a 41- 
coefficient filter designed by the Remez algorithm using the same specification. Note the 
equiripple characteristic. 
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an equiripple approximation we could either reduce the maximum error or 
alternatively reduce the required number of coefficients. 

As in classical filter design the equiripple property ensures that the max- 
imal deviation from our amplitude specification be minimal. Techniques for 
solving the minimax polynomial approximation problem are reviewed in Ap- 
pendix A.12. In the early seventies McClellan, Parks, and Rabiner published 
a paper and computer program that used the Remez exchange algorithm for 
FIR design. This program has become the most widely used tool in FIR de- 
sign, and it is suggested that the reader obtain a copy (or a full up-to-date 
program with user interface and graphics based on the original program) 
and become proficient in its use. 

Before concluding this chapter we should answer the question that must 
have occurred to you. When should FIR filters be used and when IIR? As 
a general rule integrators are IIR, while differentiators are FIR. Hilbert 
transforms are usually FIR although IIR designs are sometimes used. As to 
frequency-selective filters, the answer to this question is often (but not al- 
ways) easy. First recall from Section 7.2 that FIR filters can be linear-phase, 
while IIR filters can only approach this behavior. Hence, if phase response is 
critical, as in many communications systems (see Chapter IS), you may be 
forced to use FIR filters (although the trick of exercise 7.2.5 may be of use). 
If phase response is not of major importance, we can generally meet a spec- 
ification using either FIR or IIR filters. From the computational complexity 
point of view, IIR filters almost always end up being significantly more ef- 
ficient, with elliptical filters having the lowest computational requirements. 
The narrower the transitions the more pronounced this effect becomes. How- 
ever, these elliptical filters also have the worst phase response, erratically 
varying in the vicinity of transitions. 

EXERCISES 

7.8.1 Some digital filter design programs assume a sampling frequency (e.g., 8000 
Hz). Can these programs be used to design filters for systems with different 
sampling frequencies? 

7.8.2 Obtain a good filter design program and design an IIR low-pass filter using 
the four classical types from Section 7.7. What happens as you force the tran- 
sition region to shrink in size? What is the effect of fp for a given transition 
region width? Plot the phase response and group delay. How can you make 
the phase response more linear? 

7.8.3 Design a low-pass FIR using the same criteria as in the previous exercise. 
Compare the amount of computation required for similar gain characteristics. 
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7.8.4 

7.8.5 

Repeat the previous two questions for a narrow band-pass filter. 

An extremely narrow FIR low-pass filter requires a large number of coeffi- 
cients, and hence a large amount of computation. How can this be reduced? 

7.8.6 The impulse responses in equations (7.34) were for odd N. For even N the 
ideal frequency responses must be shifted by a half-integer delay eig before 
applying equation (7.33). Find the ideal impulse responses for even N. 

7.8.7 What are the coefficients of the ideal differentiator and Hilbert filters for even 
and odd N? 

7.9 Spatial Filtering 

Up to now we have dealt with filters that are frequency selective-filters that 
pass or block, amplify or attenuate signals based on frequency. In some appli- 
cations there are other signal characteristics that help differentiate between 
signals, and these can be used along with frequency domain filtering, or by 
even by themselves when we need to separate signals of the same frequency. 
One such characteristic is the geographical position of the signal’s source; 
if we could distinguish between signals on that basis we could emphasize a 
specific signal while eliminating interference from others not colocated with 
it. 

A wave is a signal that travels in space as well as varying in time, and 
consequently is a function of the three-dimensional spatial coordinates s 
as well as being a function of time t. At any particular spatial coordinate 
the wave is a signal, and at any particular time we see a three-dimensional 
spatially varying function. A wave that travels at a constant velocity w 
without distortion is a function of the combination s - vt; traveling a% 
exactly the right speed you ‘move with the wave’. Thedist&nce a periodic 
wave travels during a single period is called the wavelength X. Light and 
radio waves travel at the speed of light (approximately 3 . 10’ meters per 
second), so that a wavelength of one meter corresponds to a frequency of 
300 MHz. 

Directional antennas, such as the TV antennas that clutter rooftops, 
are spatially selective devices for the reception and/or transmission of ra- 
dio waves. Using carefully spaced conducting elements of precise lengths, 
transmitted radiation can be focused in the desired direction, and received 
signals arriving from a certain direction can be amplified with respect to 
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those from other angles. The problem with such directional antennas is that 
changing the preferred direction involves physically rotating the antenna to 
point the desired way. Beamforming is a technique, mainly utilized in trans- 
mission and reception of sonar and radar signals, for focusing transmitted 
energy or amplifying received energy without having to physically rotate 
antennas. This feat is performed by combining a number of omnidirectional 
sensors (antennas, microphones, hydrophones, or loudspeakers depending on 
the type of wave). 

Figure 7.15: Beamforming to separate two sinusoidal signals of the same frequency. The 
sensor array consists of two antennas separated by the distance traveled by the wave 
during half a period. Each sensor is connected to a phase shifter and the phase shifted 
signals are summed. 

In the simplest example of the principle involved we need to discrim- 
inate between two sinusoidal waves of precisely the same frequency and 
amplitude but with two orthogonal directions of arrival (DOAs) as depicted 
in Figure 7.15. Wave x1 impinges upon the two sensors at the same time, 
and therefore induces identical signals yr and ~2. Wave x2 arrives at the 
lower sensor before the upper, and accordingly y1 is delayed with respect 
to y2 by a half period. Were the reception of wave x1 to be preferred we 
would set both phase shifters to zero shift; y1 and y2 would sum when x1 
is received, but would cancel out when x2 arrives. Were we to be interested 
in wave x2 we could set A@2 to delay y2 by one half period, while A@1 
would remain zero; in this fashion x1 would cause yr and y2 to cancel out, 
while 22 would cause them to constructively interact. For waves with DOA 
separations other than 90” the same idea applies, but different phase shifts 
need to be employed. 
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Figure 7.16: A wave impinging upon an array of M = 5 sensors spaced d apart. The 
parallel lines represent the peaks of the sinusoids and hence there is one wavelength X 
between each pair. The wave arrives at angle 0 from the normal to the line of the sensors. 
It is obvious from the geometry that when X = dsin8 the wave takes the same value at 
all of the sensors. 

The device just described is a rudimentary example of a phased ar- 
ray, and it has the advantage of eliminating mechanical motors and control 
mechanisms. Switching between different directions can be accomplished es- 
sentially instantaneously, and we may also simultaneously recover signals 
with multiple DOAs with the same array, by utilizing several different phase 
shifters. We can enhance directivity and gain of a phased array by using 
more than two sensors in the array. With an array with M sensors, as in 
Figure 7.16, at every time n we receive M signals ymn that can be considered 
a vector signal yn. To enhance a signal of frequency w  impinging at angle 19 - 
we need a phase delay of K = 27rf sin 8 between each two consecutive sen- 
sors. We could do this by successive time delays (resulting in a timed arruy) 

but in a phased array we multiply the mth component of the vector signal 

by a phase delay esiKrn before the components are combined together into 
the output xn. 

M-l 

x, = c Ymne 
-inm (7.36) 

m=O 

Forgetting the time dependence for the moment, and considering this as a 
function of the DOA variable K, this is seen to be a spatial DFT! The sensor 
number m takes the place of the time variable, and the DOA K stands in for 
the frequency. We see here the beginnings of the strong formal resemblance 
between spatial filtering and frequency filtering. 

Now what happens when a sinusoidal wave of frequency w  and DOA $ 



318 FILTERS 

IH(d12 
OA. 

-5 - 

-10 - 

.15 - 

-20 - 

-25 - 

-30 

-35 

40 

Figure 7.17: Angle response of a phased array. We depict the square of the response in 
dB referenced to the zero degree response for a phased array with A4 = 32 and ni = $. 
The phased array is pointed to 8 - - 0 and the horizontal axis is the angle 4 in degrees. 

is received? Sensor m sees at time n 

Ymn = 
A e+icp+iwn+imy sin q5 

where cp is the phase at the first sensor, and k is the DOA variable corre- 
sponding to angle 4. Substituting this into equation (7.36) 

M-l 

2, = 
c 

A ei~eiwneikme-ilcm 

m=O 
M-l 

= Aei~$wn C &(k-n)m 

m=O 

= A &&wn 
1 - ,&Wk-4 

1 - ei(k-n) 

= A &veiwnei$M(k-n),-i$(k-n) sin @!(k - K) 

sin &Jk - r;) 

where we have performed the sum using (A.48), symmetrized, and substi- 
tuted (A.8). The phased array angle response is the square of this expression 

I I 2*= sin M7rf(sin 4 - sin 0) * 

sin 7rf(sin q5 - sin 0) 
(7.37) 

and is plotted in Figure 7.17. 
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So the phased array acts as a spatial filter that is really quite similar to 
a regular frequency domain filter. The angle response of equation (7.37) is 
analogous to the frequency response of a frequency filter, and the high side- 
lobes in Figure 7.17 can be attenuated using techniques from filter design, 
such as windowing. 

Our discussion has focused on simple sinusoidal waves; what if we need 
to pull in a complex wave? If the wave consists of only two frequency com- 
ponents, we can build two separate phased arrays based on the same sensors 
and add their results, or equivalently a single phased array with two delays 
per sensor. A little thought should be sufficient to convince you that arbi- 
trary waves can be accommodated by replacing the simple phase delay with 
full FIR filters. In this way we can combine spatial and frequency filtering. 
Such a combined filter can select or reject a signal based on both its spectral 
and spatial characteristics. 

EXERCISES 

7.9.1 Direction fixing can also be performed using time of arrival (TOA) techniques, 
where the time a signal arrives at multiple sensors is compared. We use 
both phase differences and TOA to locate sound sources with our two ears, 
depending on the frequency (wavelength) of the sound. When is each used? 
How is elevation determined? (Hint: The external ear is not symmetric.) Can 
similar principles be exploited for SONAR echolocation systems? 

7.9.2 Bats use biological sonar as their primary tool of perception, and are able 
to hunt insects at night (making the expression blind as a bat somewhat 
frivolous). At first, while searching for insects, they emit signals with basic 
frequency sweeping from 28 KHz down to 22 KHz and duration of about 
10 milliseconds, Once a target is detected the sounds become shorter (about 
3 milliseconds) in duration but scan from 50 KHz down to 25 KHz. While 
attempting to capture the prey, yet a third mode appears, of lower bandwidth 
and duration of below 1 millisecond. What is the purpose of these different 
cries? Can similar nrincinles be used for fighter aircraft radar? 
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Bibliographical Notes 

Filters and filter design are covered in all standard DSP texts [186, 185, 200, 1671, 
and chapters 4 and 5 of [241], as well as books devoted specifically to the subject 
[191]. Many original papers are reprinted in [209, 40, 411. 

The original Parks-McClellan FIR design program is described and (FOR- 
TRAN) source code provided in [192, 1651. Extensions and portings of this code 
to various languages are widely available. After the original article appeared, much 
follow-on work appeared that treated the practical points of designing filters, in- 
cluding differentiators, Hilbert transforms, etc. [208, 213, 212, 78, 2071. 

Exercise 7.2.5 is based on [197]. 


