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Nonfilters 

Filters have a lot going for them. In the previous chapter we have seen that 
they are simple to design, describe and implement. So why bother devoting 
an entire chapter to the subject of systems that are not filters? 

There are two good reasons to study nonfilters-systems that are ei- 
ther nonlinear, or not time-invariant, or both. First, no system in the real 
world is ever perfectly linear; all ‘linear’ analog systems are nonlinear if you 
look carefully enough, and digital signals become nonlinear due to round-off 
error and overflow. Even relatively small analog nonlinearities can lead to ob- 
servable results and unexpected major nonlinearities can lead to disastrous 
results. A signal processing professional needs to know how to identify these 
nonlinearities and how to correct them. Second, linear systems are limited 
in their capabilities, and one often requires processing functions that sim- 
ply cannot be produced using purely linear systems. Also, linear systems are 
predictable; a small change in the input signal will always lead to a bounded 
change in the output signal. Nonlinear systems, however, may behave chaot- 
ically, that is, very small changes in the input leading to completely different 
behavior! 

We start the chapter with a discussion of the effects of small nonlineari- 
ties on otherwise linear systems. Next we discuss several ‘nonlinear filters’, 
a term that is definitely an oxymoron. We define& a ‘filter’ as a linear and 
time-invariant system, so how can there be a ‘nonlinear filter’? Well, once 
again, we are not the kind of people to be held back by our own definitions. 
Just as we say delta ‘function’, or talk about infinite energy ‘signals’, we 
allow ourselves to call systems that are obviously not filters, just that. 

The mixer and the phase locked loop are two systems that are not filters 
due to not being time-invariant. These systems turn out to very important 
in signal processing for telecommunications. Our final topic, time warping, 
is an even more blatant example of the breakdown of time invariance. 
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8.1 Nonlinearities 

Let’s see what makes nonlinear systems interesting. We start by considering 
the simplest possible nonlinearity, a small additive quadratic term, which 
for analog signals reads 

y(t) = z(t) + cr2(t) w 
(assume E << 1). The spectral consequences can be made clear by considering 
an arbitrary sinusoidal input 

z(t) = Acos(wt) (8.2) 

for which the system will output 

y(t) = A cos(wt) + eA2 cos2(wt) W) 

which can be simplified by substituting from equation (A.25). 

EA2 
y(t) = Asin + 2 + &c3(2wt) (8 4) . 

We see here three terms; the first being simply the original unscathed signal, 
the other two going to zero as E + 0. The second term is a small DC 
component that we should have expected, since cos2 is always positive and 
thus has a nonzero mean. The final term is an attenuated replica of the 
original signal, but at twice the original frequency! This component is known 
as the second harmonic of the signal, and the phenomenon of creating new 
frequencies which are integer multiples of the original is called harmonic 
generation. Harmonic generation will always take place when a nonlinearity 
is present, the energy of the harmonic depending directly on the strength 
of the nonlinearity. In some cases the harmonic is unwanted (as when a 
nonlinearity causes a transmitter to interfere with a receiver at a different 
frequency), while in other cases nonlinearities are introduced precisely to 
obtain the harmonic. 

We see here a fundamental difference between linear and nonlinear sys- 
tems. Time-invariant linear systems are limited to filtering the spectrum of 
the incoming signal, while nonlinear systems can generate new frequencies. 

What would have happened had the nonlinearity been cubic rather than 
quadratic? 

y(t) = z(t) + a3(t) 
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You can easily find that there is third harmonic generation (i.e., a signal 
with thrice the original frequency appears from nowhere). A fourth order 
nonlinearity 

y(t) = 5(t) + m4(t) 

will generate both second and fourth harmonics (see equation (A.33)); and 
nth order nonlinearities generate harmonics up to order n. Of course a gen- 
eral nonlinearity that can be expanded in a Taylor expansion 

y(t) = z(t) + 62x2(t) + eg3(t) + E4X4(Q + * * * (8 5) . 

will produce many different harmonics. 
We can learn more about nonlinear systems by observing the effect of 

simple nonlinearities on signals composed of two different sinusoids. 

z(t) = A1 cos(wlt) + A2 cos(w2t) (8 6) . 

Inputing this signal into a system with a small quadratic nonlinearity 

m = Al cos(qt) + A2 cos(w2t) 

+A; cos2 (wl t) + A; cos2 (w2t) 

+2A1A2 cos(qt) cos(w2t) 

= Al cos(qt) + A2 cos(w2t) 

+A: cos2 (wl t) + A; cos2 (w2t) 

+A& cos ((WI + wz)t) 

+&A2 cos (1~1 - wit) 

we see harmonic generation for both frequencies, but there is also a new 
nonlinear term, called the inter-modulation product, that is responsible for 
the generation of sum and difference frequencies. Once again we see that 
nonlinearities cause energy to migrate to frequencies where there was none 
before. 

More general nonlinearities generate higher harmonics plus more com- 
plex intermodulation frequencies such as 

w + w2, Iwl - WZI, 

4 + 2w2, 24 + w2, 

pw - w21, pJJ2 - w, 

WI+ 3~2, 34 + w2, 

2wl + 3wz, 2W1 + 3w2, 
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This phenomenon of intermodulation can be both useful and trouble- 
some. We will see a use in Section 8.5; the negative side is that it can cause 
hard-to-locate Radio Frequency Interference (RFI). For example, a tele- 
vision set may have never experienced any interference even though it is 
situated not far from a high-power radio transmitter. Then one day a taxi 
cab passes by a rusty fence that can act as a nonlinear device, and the com- 
bination of the cab’s transmission and the radio station can cause a signal 
that interferes with TV reception. 

EXERCISES 

8.1.1 Show exactly which harmonics and intermodulation products are generated 
by a power law nonlinearity y(t) = z(t) + &(t). 

8.1.2 Assume that the nonlinearity is exponential y(t) = z(t) + ee”ct) rather than 
a power law. What harmonics and intermodulation frequencies appear now? 

8.2 Clippers and Slicers 

One of the first systems we learned about was the clipping amplifier, or peak 
clipper, defined in equation (6.1). The peak clipper is obviously strongly 
nonlinear and hence generates harmonics, intermodulation products, etc. 
What is less obvious is that sometimes we use a clipper to prevent nonlinear 
effects. For example, if a signal to be transmitted has a strong peak value 
that will cause problems when input to a nonlinear medium, we may elect 
to artificially clip it to the maximal value that can be safely sent. 

The opposite of this type of clipper is the center clipper, which zeros out 
signal values smaller than some threshold. 

{ 
0 1x1 < 8 

y=C&)= 2 else (8 7) . 

The center clipper is also obviously nonlinear, and although at first sight 
its purpose is hard to imagine, it has several uses in speech processing. The 
first relates to the removal of unwanted zero crossings. As we will see in 
Section 13.1 there are algorithms that exploit the number of times a signal 
crosses the time axis, and/or the time between two such successive zero 
crossings. These algorithms work very well on clean signals, but fail in the 
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presence of noise that introduces extraneous zero crossings. The problem is 
not severe for strong signals but when the signal amplitude is low the noise 
may dominate and we find many extraneous zero crossings. Center clipping 
can remove unwanted zero crossings, restoring the proper number of zero 
crossings, at the price of introducing uncertainty in the precise time between 
them. In fact center clipping has become so popular in this scenario that it 
is used even when more complex algorithms, not based on zero crossings, 
are employed. 

A related application is motivated by something we will learn in Chap- 
ter 11, namely that our hearing system responds approximately logarith- 
mically to signal amplitude. Thus small amounts of noise that are not no- 
ticeable when the desired signal is strong become annoying when the signal 
is weak or nonexistent. A case of particular interest is echo over long dis- 
tance telephone connections; linear echo cancellers do a good job at removing 
most of the echo, but when the other party is silent we can still hear our own 
voice returning after the round-trip delay, even if it has been substantially 
suppressed. This small but noticeable residual echo can be removed by a 
center clipper, which in this application goes under the uninformative name 
of NonLinear Processor (NLP). Unfortunately this leaves the line sounding 
too quiet, leading one to believe that the connection has been lost; this de- 
fect can be overcome by injecting artificial ‘comfort noise’ of the appropriate 
level. 

The peak clipper and center clipper are just two special cases of a more 
general nonfilter called a slicer. Consider a signal known to be restricted to 
integer values that is received corrupted by noise. The obvious recourse is to 
clip each real signal value to the closest integer. This in effect slices up the 
space of possible received values into slices of unity width, the slice between 
n-- i and 72 + 3 being mapped to n. The nonlinear system that performs 
this function is called a slicer. 

Up to now we have discussed slicers that operate on a signal’s amplitude, 
but more general slicers are in common use as well. For example, we may 
know that a signal transmitted to us is a sinusoid of given frequency but 
with phase of either +n or -7r. When measuring this phase we will in general 
find some other value, and must decide on the proper phase by slicing to the 
closest allowed value. Even more complex slicers must make decisions based 
on both phase and amplitude values. Such slicers are basic building blocks 
of modern high-speed modems and will be discussed in Section 18.18. You 
may wish to peek at Figure 18.26 to see the complexity of some slicers. 
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EXERCISES 

8.2.1 Apply a center clipper with a small threshold to clean sampled speech. Do 
you hear any effect? What about noisy speech? What happens as you increase 
the threshold? At what point does the speech start to sound distorted? 

8.2.2 Determine experimentally the type 
clipper and the center clipper. 

of harmonic generation performed by the 

8.2.3 There is a variant of the center clipper with continuous output as a function 
of input, but discontinuous derivative. Plot the response of this system. What 
are its advantages and disadvantages? 

8.2.4 When a slicer operates on sampled values a question arises regarding values 
exactly equidistant between two integer values. Discuss possible tactics. 

8.2.5 A ‘resetting filter’ is a nonlinear system governed by the following equations. 

Yn = Xn+Wn 

1 

-8 yn < -8 
rn = ; IYnkQ 

Yn > Q 

%a = $/n-l -rn-1 

Explain what the resetting filter does and how it can be used. 

8.3 Median Filters 

Filters are optimal at recovery of signals masked by additive Gaussian noise, 
but less adept at removing other types of unwanted interference. One case 
of interest is that of unreliable data. Here we believe that the signal samples 
are generally received without additive noise, but now and then may be 
completely corrupted. For example, consider what happens when we send 
a digital signal as bits through a unreliable communications channel. Every 
now and then a bit is received incorrectly, corrupting some signal value. If 
this bit happens to correspond to the least significant bit of the signal value, 
this corruption may not even be detected. If, however, it corresponds to the 
most significant bit there is a isolated major disruption of the signal. Such 
isolated incorrect signal values are sometimes called outliers. 

An instructive example of the destructive effect of outliers is depicted 
in Figure 8.1. The original signal was a square wave, but four isolated sig- 
nal values were strongly corrupted. Using a low-pass filter indeed brings the 
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Figure 8.1: Comparison of a linear filter with a median filter. In (A) we have the orig- 
inal corrupted square wave signal; in (B) the signal has been filtered using a symmetric 
noncausal FIR low-pass filter; and in (C) we see the effect of a median filter. 

corrupted signal values closer to their correct levels, but also changes sig- 
nal values that were not corrupted at all. In particular, low-pass filtering 
smooths sharp transitions (making the square wave edges less pronounced) 
and disturbs the signal in the vicinity of the outlier. The closer we wish the 
outlier to approach its proper level, the stronger this undesirable smoothing 
effect will be. 

An alternative to the low-pass filter is the median filter, whose effect is 
seen in Figure 8.1.C. At every time instant the median filter observes signal 
values in a region around that time, similar to a noncausal FIR filter. How- 
ever, instead of multiplying the signal values in this region by coefficients, 
the median filter sorts the signal values (in ascending order) and selects ‘me- 
dian’, i.e., the value precisely in the center of the sorted buffer. For example, 
if a median filter of length five overlaps the values 1,5,4,3,2, it sorts them 
into 1,2,3,4,5 and returns 3. In a more typical case the median filter over- 
laps something like 2,2,2,15,2, sorts this to 2,2,2,2,15 and returns 2; and 
at the next time instant the filter sees 2,2,15,2,2 and returns 2 again. Any 
isolated outlier in a constant or slowly varying signal is completely removed. 

Why doesn’t a median filter smooth a sharp transition between two 
constant plateaus ? As long as more than half the signal values belong to 
one side or the other, the median filter returns the correct value. Using an 
odd-order noncausal filter ensures that the changeover happens at precisely 
the right time. 

What happens when the original signal is not constant? Were the lin- 
early increasing signal . . . 1,2,3,4,5,6,7,8,9,10.. . to become corrupted to 
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. . . 1,2,3,4,99,6,7,8,9,10 ,..., a median filter of length 5 would be able to 
correct this to . . . 1,2,3,4,6,7,8,8,9,10, . . . by effectively skipping the cor- 
rupted value and replicating a later value in order to resynchronize. Similarly, 
were the corrupted signal to be . . . 1,2,3,4, -99,6,7,8,9,10, . . . , the median 
filter would return the sequence . . .1,2,2,3,4,6,7,8,9,10, . . . replicating a 
previous value and skipping to catch up. Although the corrupted value never 
explicitly appears, it leaves its mark as a phase shift that lasts for a short 
time interval. 

What if there is additive noise in addition to outliers? The simplest thing 
to do is to use a median filter and a linear low-pass filter. If we apply these 
as two separate operations we should probably first median filter in order 
to correct the gross errors and only then low-pass to take care of the noise. 
However, since median filters and FIR filters are applied to the input signal 
in similar ways, we can combine them to achieve higher computational ef- 
ficiency and perhaps more interesting effects. One such combination is the 
outlier-trimmed FIR filter. This system sorts the signal in the observation 
window just like a median filter, but then removes the m highest and low- 
est values. It then adds together the remaining values and divides by their 
number returning an MA-smoothed result. More generally, an order statistic 
filter first sorts the buffer and then combines the sorted values as a weighted 
linear sum as in an FIR filter. Usually such filters have their maximal co- 
efficient at the center of the buffer and decrease monotonically toward the 
buffer ends. 

The novelty of the median filter lies in the sorting operation, and we 
can exploit this same idea for processing other than noise removal. A dila- 
tion filter outputs the maximal value in the moving buffer, while an erosion 
filter returns the minimal value. These are useful for emphasizing constant 
positive-valued signals that appear for short time durations, over a back- 
ground of zero. Dilation expands the region of the signal at the expense of 
the background while erosion eats away at the signal. Dilation and erosion 
are often applied to signals that can take on only the values 0 or 1. Dilation 
is used to fill in holes in long runs of 1s while erosion clips a single spike 
in the midst of silence. For very noisy signals with large holes or spikes di- 
lation or erosion can be performed multiple times. We can also define two 
new operations. An opening filter is an erosion followed by a dilation while a 
closing filter is a dilation followed by an erosion. The names are meaningful 
for holes in 0, l-valued signals. These four operations are most commonly 
used in image processing, where they are collectively called morphological 
processing. 
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EXERCISES 

8.3.1 Prove that the median filter is not linear. 

8.3.2 Median filtering is very popular in image processing. What properties of com- 
mon images make the median filter more appropriate than linear filtering? 

8.3.3 The conditional median filter is similar to the median filter, but only replaces 
the input value with the median if the difference between the two is above 
a threshold, otherwise it returns the input value. Explain the motivation 
behind this variant. 

8.3.4 Graphically explain the names dilation, erosion, opening, and closing by con- 
sidering 0, l-valued signals. 

8.3.5 Explain how morphological operations are implemented for image processing 
of binary images (such as fax documents). Consider ‘kernels’ of different 
shapes, such as a 3*3 square and a 5-pixel cross. Program the four operations 
and show their effect on simple images. 

8.4 Multilayer Nonlinear Systems 

Complex filters are often built up from simpler ones placed in series, a pro- 
cess known as cascading. For example, if we have a notch filter with 10 dB 
attenuation at the unwanted frequencies, but require 40 dB attenuation, the 
specification can be met by cascading four identical filters. Assume that each 
of N cascaded subfilters is a causal FIR filter of length L, then the combined 
filter’s output at time n depends on its input at time n - NL. For example, 
assume that a finite duration signal xn is input to a filter h producing yn 
that is input into a second filter g resulting in 2,. Then 

Yn = hoxn + hlxn-1 + hzxn-2 +. . . + hL-IxL-1 

&a = SOYn + SlYn-1 + g2Yn-2 +. . l + QL-1X&1 

= go (hoxn + hlx n-1 + h2xn-2 + . . . + hL-1xL-1) 

+ gl (hxn-1 + hlxn-2 + h2xn-3 + l . . + hL-2xL-1) 

= dWJn + (gohI+ glho) xn-1 + (goh2 + glhl + gaho) xn-2 + . . . 

which is equivalent to a single FIR filter with coefficients equal to the con- 
volution g t h. 

In order for a cascaded system to be essentially different from its con- 
stituents we must introduce nonlinearity. Augmenting the FIR filter with a 
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hard limiter we obtain a ‘linear threshold unit’ known more commonly as 
the binary perceptron 

/ \ 

(8 8) . 

while using a less drastic smooth nonlinearity we obtain the sigmoid percep- 
tron. 

y,=tanh /3x 
( n wnxn) 

As ,0 increases the sigmoid perceptron approaches the threshold one. In some 
applications 0,l variables are preferable to &l ones, and so we use the step 
function 

Yn=@ CWnXn 
( ) n 

or the smooth version 

Yn = 0 
( ) 

c Wn% 
n 

where we defined the ‘logistic sigmoid’ . 

a(x) f e” = 
1 + ex 

l+$tanhx 

(8.10) 

(8.11) 

(8.12) 

Cascading these nonlinear systems results in truly new systems; a single 
perceptron can only approximate a small fraction of all possible systems, 
while it can be shown that arbitrary systems can be realized as cascaded 
sigmoid perceptrons. 

In Figure 8.2 we depict a MultiLayer Perceptron (MLP). This particular 
MLP has two ‘layers’; the first computes L weighted sum of the N input 
values and then hard or soft limits these to compute the values of L ‘hidden 
units’, while the second immediately thereafter computes a single weighted 
sum over the L hidden units, creating the desired output. To create a three- 
layer perceptron one need only produce many second-layer sigmoid weighted 
sums rather than only one, and afterward combine these together using one 
final perceptron. A theorem due to Kolmogorov states that three layers are 
sufficient to realize arbitrary systems. 

The perceptron was originally proposed as a classifier, that is, a system 
with a single signal as input and a logical output or outputs that identify 
the signal as either belonging to a certain class. Consider classifying spoken 
digits as belonging to one of the classes named 0, 1,2. . .9. Our MLP could 
look at all the nonzero speech signal samples, compute several layers of 
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Xn 

Yn 

Figure 8.2: A general nonlinear two-layer feedforward system. Although not explicitly 
shown, each connection arc represents a weight. NL stands for the nonlinearity, for exam- 
ple, the sgn or tanh function. 

hidden values, and finally activate one of 10 output units, thereby expressing 
its opinion as to the digit that was uttered. Since humans can perform 
this task we are confident that there is some system that can implement 
the desired function from input samples to output logical values. Since the 
aforementioned theorem states that (assuming a sufficient number of hidden 
units) three-layer MLPs can implement arbitrary systems, there must be a 
three-layer MLP that imitates human behavior and properly classifies the 
spoken digits. 

How are MLP systems designed? The discussion of this topic would lead 
us too far astray. Suffice it to say that there are training algorithms that 
when presented with a sufficient amount of data can accomplish the required 
system identification. The most popular of these algorithms is ‘backpropaga- 
tion’, (‘backprop’) which iteratively presents an input, computes the present 
output, corrects the internal weights in order to decrease the output error, 
and then proceeds to the next input-output pair. 

How many hidden units are needed to implement a given system? There 
are few practical rules here. The aforementioned theorem only says that 
there is some number of hidden units that allows a given system to be 
emulated; it does not inform us as to the minimum number needed for all 
specific cases, or whether one, two, or three layers are needed. In practice 
these architectural parameters are often determined by trial and error. 



332 NONFILTERS 

EXERCISES 

8.4.1 Using linear threshold units we can design systems that implement various 
logic operations, where signal value 0 represents ‘false’ and 1 ‘true’. Find 
parameters wi, ~2, and cp such that y = 0 (~1x1 + ~2x2 - cp) implements 
the logical AND and logical OR operations. Can we implement these logical 
operations with linear systems? 

8.4.2 Of the 16 logical operations between two logical variables, which can and 
which can’t be implemented? 

8.4.3 Find a multilayer system can implements XOR. 

8.4.4 What is the form of curves of equal output for the perceptron of equa- 
tion (8.9)? What is the form of areas of the same value of equation (8.8)? 
What is the form of these areas for multilayer perceptrons formed by AND 
or OR of different simple perceptrons? What types of sets cannot be imple- 
mented? How can this limitation be lifted? 

8.4.5 What are the derivatives of the sigmoid functions (equations (8.11) and 
(8.9))? Show that a’(x) = c(x) (1 - g(x)). Can you say something similar 
regarding the tanh sigmoid? 

8.4.6 Another nonlinear system element is y(x) = ep~n(z~-P~)2, known as the 
Gaussian radial unit. What is the form of curves of equal output for this 
unit? What can be said about implementing arbitrary decision functions by 
radial units? 

8.5 Mixers 

A mixer is a system that takes a band-pass signal centered around some fre- 
quency fo, and moves it along the frequency axis (without otherwise chang- 
ing it) until it is centered around some other frequency fi. Some mixers 
may also invert the spectrum of the mixed signal. In Figures 8.3 and 8.4 we 
depict the situation in stylized fashion, where the triangular spectrum has 
become prevalent in such diagrams, mainly because spectral inversions are 
obvious. In older analog signal processing textbooks mixing is sometimes 
called ‘heterodyning’. In many audio applications the term ‘mixing’ is used 
when simple weighted addition of signals is intended; thus when speaking 
to audio professionals always say ‘frequency mixing’ when you refer to the 
subject of this section. 
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Figure 8.3: The effect of mixing a narrow-band analog signal without spectral inversion. 
In (A) we see the spectrum of the original signal centered at frequency fc, and in (B) that 
of the mixed signal at frequency fi. 

Figure 8.4: The effect of mixing a narrow-band analog signal with spectral inversion. In 
(A) we see the spectrum of the original signal centered at frequency fe, and in (B) the 
mixed and inverted signal at frequency fr. Note how the triangular spectral shape assists 
in visualizing the inversion. 

It is obvious that a mixer cannot be a filter, since it can create frequencies 
where none existed before. In Section 8.1 we saw that harmonics could be 
generated by introducing nonlinearity. Here there is no obvious nonlinearity; 
indeed we expect that shifting the frequency of a sum signal will result in 
the sum of the shifted components. Thus we must conclude that a mixer 
must be a linear but not a time-invariant system. 

Mixers have so many practical applications that we can only mention a 
few of them here. Mixers are crucial elements in telecommunications systems 
which transmit signals of the form given in equation (4.66) 

s(t) = A(t) sin (2rfCt + 4(t)) 

where the frequency fC is called the carrier frequency. The information to be 
sent is contained either in the amplitude component A(t), the phase compo- 
nent 4(t), or both; the purpose of a receiver is to recover this information. 



334 NONFILTERS 

Many receivers start by mixing the received signal down by fC to obtain the 
simpler form of equation (4.65) 

s(t) = A(t) sin (4(t)) 

from which the amplitude and phase can be recovered using the techniques 
of Section 4.12. 

The phase is intimately connected with the carrier frequency so that the 
mixing stage is obviously required for proper phase recovery. Even were there 
to be a mixer but its frequency to be off by some small amount Af the phase 
would be misinterpreted as 2nA f t+#(t) along with the unavoidable jumps of 
27r. The amplitude signal is apparently independent of the carrier frequency; 
can we conclude that no mixer is required for the recovery of amplitude- 
modulated signals? No, although mistuning is much less destructive. The 
reason a mixer is required is that the receiver sees many possible transmitted 
signals, each with its own carrier frequency fc. Isolation of the desired signal 
is accomplished by downmixing it and injecting it into a narrow low-pass 
filter. The output of this filter now contains only the signal of interest and 
demodulation can continue without interference. When you tune an AM or 
FM radio in order to hear your favorite station you are actually adjusting 
a mixer. Older and simpler receivers allow this downmix frequency to be 
controlled by a continuously rotatable (i.e., analog) knob, while more modern 
and complex receivers use digital frequency control. 

Telephone-quality speech requires less than 4 KHz of bandwidth, while 
telephone cables can carry a great deal more bandwidth than this. In the 
interest of economy the telephone network compels a single cable to simul- 
taneously carry many speech signals, a process known as multiplexing. It is 
obvious that we cannot simply add together all the signals corresponding to 
the different conversations, since there would be no way to separate them 
at the other end of the cable. One solution, known as Frequency Domain 
Multiplexing (FDM), consists of upmixing each speech signal by a different 
offset frequency before adding all the signals together. This results in each 
signal being confined to its own frequency band, and thus simple band-pass 
filtering and mixing back down (or mixing first and then low-pass filter- 
ing) allows complete recovery of each signal. The operation of building the 
FDM signal from its components involves upmixing and addition, while the 
extraction of a single signal requires downmixing and filtering. 

Sometimes we need a mixer to compensate for the imperfections of other 
mixers. For example, a modem signal transmitted via telephone may be 
upmixed to place it in a FDM transmission, and then downmixed before 
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delivery to the customer. There will inevitably be a slight difference between 
the frequency shifts of the mixers at the two ends, resulting in a small 
residual frequency shift. This tiny shift would never be noticed for speech, 
but modem signals use frequency and phase information to carry information 
and even slight shifts cannot be tolerated. For this reason the demodulator 
part of the modem must first detect this frequency shift and then employ a 
mixer to correct for it. 

Mixers may even appear without our explicitly building them. We saw 
in Section 8.1 that transmitted signals that pass through nonlinearities may 
give rise to intermodulation frequencies; we now realize that this is due to 
unintentional mixing. 

A first attempt at numerically implementing a mixer might be to Fourier 
analyze the signal (e.g., with the FFT), translate the signal in the frequency 
domain to its new place, and then return to the time domain with the 
iFT. Such a strategy may indeed work, but has many disadvantages. The 
digital implementation would be quite computationally intensive, require 
block processing and so not be real-time-oriented, and only admits mixing 
by relatively large jumps of the order fi. What we require is a real-time- 
oriented time-domain algorithm that allows arbitrary frequency shifts. 

As in many such cases, inspiration comes from traditional hardware im- 
plementations. Mixers are traditionally implemented by injecting the output 
of an oscillator (often called the local oscillator) and the signal to be mixed 
into a nonlinearity. This nonlinearity generates a product signal that has 
frequency components that are sums and differences of the frequencies of 
the signal to be mixed and the local oscillator. The mixer is completed by 
filtering out all components other than the desired one. The essential part 
of the technique is the forming of a product signal and then filtering. 

Consider an analog complex exponential of frequency w. 

s(t) = AeiWt 

In order to transform it into an exponential of frequency w’ 

we need only multiply it by ei(w’-w)t. 

w i(U’-Ld)t = AeiWtei(U’-W)t = AeiW’t = s/(t) 
Note that the multiplying signal is sinusoidal at the frequency shift frequency 
and thus the system is not time-invariant. 
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Similarly, a signal that is composed of many frequency components 

s(t) = c Akeiwkt 
k 

will be rigidly translated in frequency when multiplied by a complex expo- 
nential. 

me 
-iAwt = c Akei(% -AWIt 

k 

When a signal is mixed down in frequency until it occupies the range from 
DC up to its bandwidth, it is said to have been ‘downmixed to low-pass’. 
When we go even further and set the signal’s center frequency to zero, we 
have ‘downmixed to zero’. 

So it seems that mixing is actually quite simple. The problems arise when 
we try to mix real-valued signals rather than analytic ones, or digital signals 
rather than analog ones. To illustrate the problems that arise, consider first 
the mixing of real signals. Since real signals have symmetric spectra, we have 
to look at both positive and negative frequencies to understand the whole 
story. 

A I I I 
-30 0 f0 

Figure 8.5: A real signal at frequency fo, whose spectrum is depicted in (A), is moved 
to frequency fl by complex mixing. When a signal is multiplied by a complex exponential 
all frequency components are shifted in the same direction, as seen in (B). 

In Figure 8.5 we see the effect of mixing a real-valued signal using a 
complex exponential local oscillator. The mixer’s effect is precisely as before, 
but the resulting signal is no longer real! What we really want to do is to mix 
a real signal using a real oscillator, which is depicted in Figure 8.6. Here the 
mixer no longer rigidly moves the whole spectrum; rather it compresses or 
expands it around the DC. In particular we must be careful with downmixing 
signals past the DC to where the two sides overlap, as in Figure 8.7. Once 
different parts of the spectrum overlap information is irrevocably lost, and 
we can no longer reverse the operation by upmixing. 
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B I I I 
-fl 0 fl 

Figure 8.6: A real signal at frequency fe, whose spectrum is depicted in (A), is moved to 
frequency fr by real mixmg. When a real signal is multiplied by a real sinusoid its positive 
and negative frequency approach each other, as seen in (B). 

I I I 
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Figure 8.7: A real signal after destructive downmixing. Once the spectrum overlaps itself 
information is lost. 

I I I I I I I 
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Figure 8.8: A digital mixer. Here a real-valued digital signal is mixed by a complex 
digital exponential. 

What about digital signals? The spectrum of a digital signal is periodic 
and mixing moves all of the replicas, as depicted in Figure 8.8 for a real dig- 
ital signal being mixed downward in frequency by a complex exponential. 
Note that there is a new phenomenon that may occur. Even when mixing 
with a complex oscillator downmixing to zero causes other spectral compo- 
nents to enter the Nyquist spectral region. This is a kind of aliasing but is 
both reversible and correctable by appropriate filtering. 
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EXERCISES 

8.5.1 Diagram all the cases of mixing real or complex digital signals by real or 
complex oscillators. 

8.5.2 We originally claimed that a mixer generates new frequencies due to its being 
time-invariant but linear. Afterward when discussing its analog implementa- 
tion we noted that the product is generated by a time-invariant nonlinearity. 
Reconcile these two statements. 

8.5.3 There are two techniques to mix a real signal down to zero. The signal can 
be converted to the analytic representation and then multiplied by a complex 
exponential, or multiplied by the same complex exponential and then low- 
pass filtered. Demonstrate the equivalence of these two methods. What are 
the practical advantages and disadvantages of each approach? 

8.6 Phase-Locked Loops 

Another common system that fulfills a function similar to that of a filter, but 
is not itself a filter, is the Phase-Locked Loop (PLL). This is a system that 
can ‘lock on’ to a sinusoidal signal whose frequency is approximately known, 
even when this signal is only a small component of the total input. Although 
the basic idea is to filter out noise and retain the sinusoidal signal of interest, 
such ‘locking on’ is definitely a nonlinear and time-variant phenomenon and 
as such cannot be performed by a filter. 

Why do we need such a system ? One common use is clock recovery 
in digital communications systems. As a simple example consider someone 
sending you digital information at a constant rate of 1 bit every T seconds 
(presumably T would be some small number so that a large number of bits 
may be sent per second). Now the transmitter has a clock that causes a bit 
to be sent every T seconds. The receiver, knowing the sender’s intentions, 
expects a bit every T seconds. However, the receiver’s clock, being an in- 
dependent electronic device, will in general run at a slightly different rate 
than that of the transmitter. So in effect the receiver looks for a bit every 
T’ seconds instead of every T seconds. This problem may not be evident at 
first, but after enough time has passed the receiver is in effect looking for 
bits at the wrong times, and will either miss bits or report extraneous ones. 
For high bit rates it doesn’t take long for this to start happening! 

In order to avoid this problem the sender can transmit a second signal, 
for example, a sinusoid of frequency f generated by the transmitter’s internal 
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clock. The receiver need only set its clock precisely according to this sinusoid 
and the discrepancy problem vanishes. This operation of matching clocks is 
called synchronization, often shortened to ‘synching’ (pronounced sinking) 
or ‘synching up’. Synchronization of the receiver’s clock to the transmitter’s 
has to be maintained continuously; even if properly initially matched, non- 
synched clocks will drift apart with time, introducing bit slips and insertions. 

The accurate synching up of the receiver’s clock depends critically on 
obtaining a clean signal from the transmitter. A naive DSP approach would 
be to use a very narrow-band band-pass filter centered on f to recover 
the clock signal and reject as much noise as possible. Such an attempt is 
doomed to failure since we don’t know f (were we to know f there wouldn’t 
be anything to do). Setting an extremely sharp band-pass filter centered on 
the receiver’s estimate f’ may leave the true f outside the filter bandwidth. 
Of course we could use a wider filter bandwidth, but that would increase the 
noise. What we really need is to find and track the received signal’s center 
frequency. That is what the PLL does. 

In order to build a PLL we first need some basic building blocks. The 
first is traditionally called a Voltage-Controlled Oscillator (VCO). Like an 
ordinary oscillator the VCO outputs a real sinusoid, but unlike the oscillators 
we have seen before the VCO has an input as well. With zero input the 
VCO oscillates at its ‘natural frequency’ wg, but with nonzero input z(t) 
the VCO output’s instantaneous frequency changes to wg + v(t). It is now 
straightforward to express the VCO output y(t) in terms of its input z(t). 

y(t) = Asih (wet i- q(t)) where dv w 
4t) = yg-- (8.13) 

The analog VCO is thus controlled by the voltage at its input, and hence its 
name; the digital version should properly be called a Numerically-Controlled 
Oscillator (NCO), but the name VCO is often used even when no voltages 
are evident. 

The next basic subsystem has two inputs where it expects two pure 
sinusoids; its output is proportional to the difference in frequency between 
the two. There are many ways to implement this block, e.g., one could use 
two frequency demodulators (Section 4.12) and an adder with one input 
negated. A more devious implementation uses a mixer, a special notch filter 
and an amplitude demodulator. The VCO output is used to downmix the 
input to zero; the mixer output is input to a filter with gain 1~1 so that 
when the input frequency matches the VCO there is no output, while as the 
deviation increases so does the amplitude; finally the amplitude demodulator 
outputs the desired frequency difference. 
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Figure 8.9: The frequency-locked loop (FLL). The output is a sinusoid that tracks the 
frequency of the input signal. 

Using the two special blocks we have defined so far we can already make a 
first attempt at a system that tracks sinusoidal components (see Figure 8.9). 
We will call this system a Frequency-Locked Loop (FLL), as its feedback 
loop causes it to lock onto the frequency of the input signal. Consider what 
happens when a sinusoid with frequency w > wg is applied to the input 
(previously zero). At first the frequency difference block outputs w - wg, 
and were this to be input to the VCO it would change its frequency from 
wo to wo + w - wo = w. Unfortunately, this correct response is just an 
instantaneous spike since the difference would then become zero and the 
VCO would immediately return to its natural frequency. The only escape 
from this predicament is to integrate the difference signal before passing it 
to the VCO. The integral maintains a constant value when the difference 
becomes zero, forcing the VCO to remain at w. 

The FLL can be useful in some applications but it has a major drawback. 
Even if the input is a pure sinusoid the FLL output will not in general 
precisely duplicate it. The reason being that there is no direct relationship 
between the input and output phases. Thus in our bit rate recovery example 
the FLL would accurately report the rate at which the bits are arriving, but 
could not tell us precisely when to expect them. In order to track the input 
signal in both frequency and phase, we need the more sensitive phase-locked 
loop. Looking carefully at our FLL we see that the frequency difference 
is integrated, returning a phase difference; the PLL replaces the frequency 
difference block of the FLL with an explicit phase difference one. 

The phase difference subsystem expects two sinusoidal inputs of approx- 
imately the same frequency and outputs the phase difference between them. 
One could be built similarly to the frequency difference block by using two 
phase demodulators and an adder with one input negated; however, there are 
approximations that are much easier to build for analog signals and cheaper 
to compute for digital ones. The most common approximate difference block 
shifts the phase of one input by 90” and multiplies the two signals. 
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Sl (t) = sin&t + &) 

s2@> = sin(wot + 41~) 

i2(t) = cos(wot + 49) 

s1@)~2(t) = 3 ( Wh - 42) + sin(% + 41 + 42)) 

It the low-pass filters the output to remove the double frequency component. 
The filtered product is proportional to 

sin@1 - 42) N 41 - 42 

where the approximation is good for small phase differences. 
You may question the wisdom of limiting the range of the phase dif- 

ference approximation to small values, but recall that even the ideal phase 
difference is limited to fn! So the ideal phase difference block has a sawtooth 
characteristic while the approximation has a sinusoidal one. If you really pre- 
fer piecewise linear characteristics the xor phase comparator is implemented 
by hard limiting s1 and 52 before multiplying them and then averaging over 
a single cycle. When sr and s2 are precisely in phase, sr and $2 are 90” out 
of phase and thus their product is positive just as much as it is negative, 
and so averages to zero. When they move out of phase in either direction 
the duty cycle of the product becomes nonzero. The characteristics of the 
three phase difference blocks are contrasted in Figure 8.10. 

Figure 8.10: Characteristics of three phase difference blocks. The ideal phase differ- 
ence subsystem has its output vary like a sawtooth as a function of the phase difference 
A4=&-&.Th e simple product subsystem has sinusoidal characteristic, while the xor 
comparator has a triangular one. The important feature of all these blocks is that for small 
phase differences the characteristic is linear. 
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Figure 8.11: The phase-locked loop, or PLL. The output is a sinusoid that tracks the 
phase of the input signal. 

No matter how we build the phase detector, the proper way to use it 
is depicted in Figure 8.11. If the input is truly a sinusoid of the VCO’s 
natural frequency, the phase difference output causes the VCO frequency to 
momentarily increase in order to catch up with the input or decrease to let 
the input catch up. The PLL is even more useful when the input is noisy. 
In this case the phase difference varies erratically but the low-pass filter 
smooths the jumps so that the VCO only tracks the average input phase. 
Quite noisy signals can be applied provided the low-pass filter is sufficiently 
narrow. 

What if the input frequency doesn’t equal the VCO natural frequency? 
Small constant frequency differences can be thought of as constantly chang- 
ing phase differences, and the phase corrections will cause the VCO to oscil- 
late at the average input frequency. If the frequency difference is larger than 
the low-pass filter bandwidth the VCO will receive zero input and remain at 
its natural frequency, completely oblivious to the input. For input frequen- 
cies in the capture range the VCO does get some input and starts moving 
toward the input frequency. The difference then further decreases, allowing 
more energy through the filter, and the PLL ‘snaps’ into lock. Once locked 
the phase difference is DC and completely passed by the filter, thus main- 
taining lock. If the input frequency varies the VCO automatically tracks it 
as long as it remains in the tracking range. 

The low-pass filter used in the PLL is usually of the IIR type. When the 
phase detector is of the product type a single low-pass filter can be used 
both for the filtering needed for the PLL’s noise rejection and for rejecting 
the double frequency component. When the double frequency rejection is 
not required we may be able to skip the filter altogether. In this case there 
is still a feedback path provided by the PLL architecture, and so the PLL 
is said to be of first order. If the IIR filter has a single pole the additional 
pole-like behavior leads us to say that the PLL is of second order. Higher 
orders are seldom used because of stability problems. 
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EXERCISES 

8.6.1 Simulate the FLL’s frequency behavior by assuming a VCO natural fre- 
quency, inputting some other frequency, and using simple addition to in- 
tegrate. Simulate a slowly varying input frequency. How far can the input 
frequency be from the natural frequency? 

8.6.2 Adding a clipping amplifier between the frequency difference and the integra- 
tor of the FLL makes the FLL have two operating regions, acquisition and 
tracking. Analyze the behavior of the system in these two regions. 

8.6.3 Compare the PLL and FLL from the aspects of frequency acquisition range, 
steady state frequency, and steady state phase error. 

8.6.4 Explain how to use the PLL to build a frequency synthesizer, that is, an 
oscillator with selectable accurate frequency. 

8.6.5 What effect does decreasing a PLL’s low-pass filter bandwidth have on the 
capture range, the acquisition time, and robustness to noise? 

8.7 Time Warping 

Say ‘pneumonoultramicroscopicsilicovolcanoconiosis’. I bet you can’t say it 
again! I mean pronounce precisely the same thing again. It might sound 
the same to you, but that is only because your brain corrects for the phe- 
nomenon to which I am referring; but were you to record both audio signals 
and compare them you would find that your pacing was different. In the 
first recording you may have dwelled on the second syllable slightly longer 
while in the second recording the fourth syllable may have more stress. This 
relative stretching and compressing of time is called ‘time warping’, and it 
is one of the main reasons that automatic speech recognition is so difficult 
a problem. 

For sinusoidal signals making time speed up and then slow down is ex- 
actly equivalent to changing the instantaneous frequency, but for more com- 
plex signals the effect is somewhat harder to describe using the tools we 
have developed so far. A system that dynamically warps time is obviously 
not time-invariant, and hence not a filter; but we are not usually interested 
in building such a system anyway. The truly important problem is how to 
compare two signals that would be similar were it not for their undergoing 
somewhat different time warping. 

One approach to solving this problem is called Dynamic Time Warping 
(DTW). DTW is a specific application of the more general theory of dynamic 
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programming and essentially equivalent to the Viterbi algorithm that we will 
discuss in Section 18.11. In order to facilitate understanding of the basic con- 
cepts of dynamic programming we will first consider the problem of spelling 
checking. Spelling checkers have become commonplace in word processors 
as a means of detecting errant words and offering the best alternatives. We 
will assume that the checker has a precompiled word list (dictionary) and is 
presented with a string of characters. If the string is a dictionary word then 
it is returned, otherwise an error has occurred and the closest word on the 
list should be returned. 

Three types of errors may occur. First, there may be a deletion, that is, 
a character of the dictionary word may have been left out. Next there may 
be an insertion, where an extra character is added to the text. Finally there 
may be a substitution error, where an incorrect character is substituted for 
that in the dictionary word. As an example, the word digital with a single 
deletion (of the a) becomes digitl, and with an additional substitution of 
j for g becomes di j itl. Were there only substitution errors the number of 
letters would be preserved, but deletions and insertions cause the matching 
problem to be similar to DTW. 

The Levenshtein distance between two character strings is defined to 
be the minimal number of such errors that must have occurred for one of 
the strings to become the other. In other words, the Levenshtein distance 
is the least number of deletions, insertions and substitutions that must be 
performed on one string to make it become the other. As we saw above 
dij it1 is distance two from digital; of course we could have arrived at 
dij it1 by two deletions and an insertion, but this would not have been 
the minimal number of operations. The Levenshtein distance is thus an 
ideal candidate for the idea of ‘closeness’ needed for our spelling checker. 
When the given string is not in the dictionary we return the dictionary 
word separated from the input string by minimal Levenshtein distance. 

In order to be able to use this distance in practice, we must now produce 
an algorithm that efficiently computes it. To see that this is not a trivial task 
let’s try to find the distance between prossesing and processing. Simple 
counting shows that it is better to substitute a c for the first s, delete the 
second and then add another s (3 operations) rather than deleting the es 
and adding ce (4 operations). But how did we come up with this set of 
operations and how can we prove that this is the best that can be done? 
The problem is that the Levenshtein distance is a cost function for changing 
an entire string into another, and thus a global optimization seems to be 
required. Dynamic programming is an algorithm that reduces this global 
optimization to a sequence of local calculations and decisions. 
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Dynamic programming is best understood graphically. Write the dictio- 
nary word from left to right at the bottom of a piece of graph paper, and 
write the input string from bottom to top at the left of the word. For our 
previous example you should get something like this. 

nl I 

SI I 
i 

e 

# 

S 

S 

01 I 
4 I 

Now we fill in each of the blank squares with the minimal cost to get 
to that square. The bottom-left square is initialized to zero since we start 
there, and all the rest of the squares will get values that can be computed 
recursively. We finally arrive at the top right square, and the value there 
will be the total cost, namely the Levenshtein distance. 

The recursive step involves comparing three components. One can enter 
a square from its left, corresponding to a deletion from the dictionary word, 
by taking the value to its left and adding one. One can enter a square 
from underneath, corresponding to an insertion into the dictionary word, 
by taking the value underneath it and incrementing. Finally, one can enter 
a square from the square diagonally to the left and down; if the letter in 
the dictionary word at the bottom of the column is the same as the letter 
in the string at the beginning of the row, then there is no additional cost 
and we simply copy the value from the diagonal square. If the letters differ, 
a substitution is needed and so we increment the value diagonally beneath. 
In this fashion each square gets three possible values, and we always choose 
the minimum of these three. 

Let’s try this out on our example. We start with the table from above, 
initialize the bottom left square, and trivially fill in the lowest row and 
leftmost column. 
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rlll I I I 
PO123456789 
Oprocessing 

Now we can continue filling in the entire table, and find (as we previously 
discovered in a rather undisciplined fashion) that the Levenshtein distance 
is indeed 3. 

n8766544435 
i7655433355 
~6544323445 
e5433233345 
~4322222345 
~3211223456 
02101234567 
r1012345678 
PO123456789 

From the table we can discover more than simply the total distance, 
we can actually reconstruct the optimal sequence of operations. Indeed the 
optimal set of deletions, insertions, and substitutions pops out to the eye as 
the path of minimal cost through the table. At first there seem to be many 
optimal paths, but quite a few of these correspond to making a deletion 
and insertion instead of some substitution. The true path segments are the 
ones that contributed the minimal cost transitions. Thus to find the true 
path you start at the end point and retrace your steps backward through 
the table; we can save redundant computation by storing in each square 
not only its cost but the previous square visited. The only ambiguities that 
remain correspond to squares where more than one transition produced the 
same minimal cost; in our example changing the dictionary c to the incorrect 
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ss could be accomplished by changing the c to s and then inserting an s, or 
by first inserting an s and then changing the c to s. 

Up to now we have assumed that all errors have the same cost, but that 
is not always the case. Some mistaken keypresses are more prevalent then 
others, and there is really very little reason to assume a deletion is as likely 
as an insertion. However, it is not difficult to generalize the Levenshtein 
distance to take this into account; one need only add specific penalties rather 
than simply incrementing by one. 

This algorithm for finding the generalized Levenshtein distance is exactly 
the DTW algorithm for comparing two spoken words. The word from the 
dictionary is placed horizontally from left to right at the bottom of a table, 
and the word to be compared is stretched vertically from bottom to top. We 
then compare short segments of the two words using some cost function (e.g., 
correlation, difference in spectral description, etc.) that is small for similar 
sounding segments. When noise contaminates a segment we may make a 
substitution error, while time warping causes deletions and insertions of 
segments. In order to identify a word we compare it to all words in the 
dictionary and return the word with the lowest Levenshtein distance. 

EXERCISES 

8.7.1 The game of doublets was invented in 1879 by Lewis Carroll (the mathe- 
matician Charles Lutwidge Dodgson 1832-1898). The aim of the game is to 
convert a word into a related word in the minimal number of substitution 
steps; However, each step must leave an actual word. For example, we can 
change hate into love, in three steps in the following way: hate have lave 
love. Show how to make a cat into a dog in three steps, how an ape can 
evolve into a man in five steps, and how to raise four to five by a seven step 
procedure. four foul fool foot fort fore fire five. How many steps 
does it take to drive the pig into the sty? 

8.7.2 In more complex implementations of spelling checkers further types of errors 
may be added (e.g., reversal of the order of two letters). Can the dynamical 
programming algorithm still be used to determine the Levenshtein distance? 

8.7.3 An alternative method for comparing time-warped signals is the Markov 
model approach. Here we assume that the signal is generated by a Markov 
model with states 01,02 . . . 0~. When the model is in state 0, it has prob- 
ability u~,~ of staying in the same state, probability u~,~+I of transitioning 
to state Om+r, and probability u~,~+z of skipping over state Om+r directly 
to state Om+2. When the model is in state 0, it outputs a characteristic 
signal segment sm. Write a program that simulates a Markov model and run 
it several times. Do you see how the time warping arises? 
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8.7.4 An extension to the above model is the Hidden Markov Model (HMM). The 
HMM states are hidden since they do not uniquely correspond to an output 
signal segment; rather when the model is in a state 0, it has probability 
b,l of outputting signal sl. Extend the program of the previous exercise to 
generate HMM signals. Why is the HMM more realistic for speech? 
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