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Graphical Techniques 

Digital signal processing means algorithmic processing, representing signals 
as streams of numbers that can be manipulated by a programmable com- 
puter. Since DSP algorithms are programmed, standard computer languages 
may be used in principle for their implementation. In particular, block dia- 
grams, that are conventionally used to help one grasp the essential elements 
of complex conventional computer programs, may be useful as DSP descrip- 
tion and specification tools as well. 

It is difficult for people to capture and comprehend the structure of 
large pieces of algorithmic code, with the difficulty increasing rapidly with 
the length of uninterrupted code, the number of conditionals and branches, 
and the inherent complexity of the algorithm. In block diagrams, rectangles 
represent calculations the program may perform, straight lines represent pos- 
sible paths between the calculations, and there are also special symbols for 
control structures. The proponents of block diagrams claim that by looking 
at a skillfully prepared block diagram the program structure becomes clear. 
Detractors say that these diagrams are useful only for a certain paradigm of 
programming that went out with the ‘goto’; and that they only describe the 
control structures and not the data structures. Both sides agree that they 
are essentially a second language (in addition to the language in which the 
program is coded) to describe the same functionality, and as such the task 
of keeping them up to date and accurate is arduous. 

In computer science the use of block diagrams was once pervasive but has 
gone out of style. In DSP flow gruphs, which are similar to block diagrams, 
are still very popular. This is not because DSP is old-fashioned or less devel- 
oped than computer science. This is not because DSP lacks other formalisms 
and tools to describe signals and systems. It is simply because the block di- 
agram is a much more useful tool in DSP than it ever was in programming. 
DSP flow graphs graphically depict a DSP system’s signal structure; rect- 
angles and circles represent systems and directed lines represent signals. We 
thus capture the dual nature of systems and signals in one graphic portrait. 
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In addition, many common DSP tasks are highly structured in time and/or 
frequency; this results in DSP block diagrams that have easily perceived 
geometric structure. Finally, an algebra of graphic transformations can be 
developed that allow one to simplify DSP block diagrams. Such transforma- 
tions often result in reductions in computational complexity that would be 
hard to derive without the graphical manipulations. 

In this chapter we will consider DSP graphical techniques. The word 
graphical is not used here as in ‘computer graphics’ (although we advocate 
the use of graphical displays for depicting DSP graphs), rather as in graph 
theory. The term graph refers to a collection of points and lines between these 
points. We start with a historical introduction to graph theory. Thereafter 
we learn about DSP flow graphs and how to manipulate them. RAX is a 
visual programming block diagram system. We describe the operation and 
internals of RAX in order to acquaint the reader with this important class 
of DSP tools. 

12.1 Graph Theory 

Graphic representations have doubtless been used in science and technology 
for as long as humankind has pursued these subjects. The earliest uses were 
probably simple geometric constructions; it is easy to envision chief engi- 
neers in primitive civilizations making rough drawings before embarking on 
major projects; we can imagine sages in ancient civilizations studying figures 
and charts and then surprising kings with their predictions. We know that 
thousands of years ago diagrams were used for engineering and education. 
What the ancients grasped was that one can capture the essential elements 
of a complex problem using simple graphical representations. 

A diagram obviously does not capture all the features of the original. 
A map of a city is not of the original size nor does it reveal the wonders 
of architecture, the smells of the restaurants, the sounds of honking horns, 
etc. Still the map is extremely useful when navigating around town, even 
if it omits which streets are one-way and which tend to have traffic jams. 
Maps of the entire world are even more abstract representations since the 
world is spherical and the map is flat. Yet maps can be designed to correctly 
portray distances between cities, or bearing from one spot to another (but 
not both). As long as one realizes that a diagram can only capture certain 
elements of the original, and selects a diagrammatic method that captures 
the elements needed to solve the problem at hand, diagrams can be helpful. 
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In Euclidean geometry we consider two triangles to be equivalent if one 
could slide one on top of the other and they would coincide. The color or 
line width of such triangles is not taken into account, and neither is their 
orientation or position on the page. The transformations that are considered 
unimportant include arbitrary translations and rotations. When two trian- 
gles are related by such a transformation they are considered to be the same 
triangle. Much of high school geometry deals with methods to show two 
triangles are equivalent in this sense. A simple extension would be to allow 
transformations that include a change of scale. This would make a triangle 
on a map equivalent to the triangle on the ground. In this type of geometry 
any two triangles are considered equivalent if all of their angles are the same. 
In affine geometry even more general transformations are allowed, namely 
those which scale the x axis and y axis differently. In affine geometry all 
triangles are the same, but they are different from all the rectangles (which 
are all equivalent to each other). 

Topology is even more general than affine geometry. It allows completely 
arbitrary transformations as long as they do not rip apart the plane or glue 
it different points together. You can think of this as drawing the figure on 
a sheet of rubber and stretching it however you want-as long as it doesn’t 
rip or stick to another part of itself. In topology a triangle is equivalent to 
a rectangle or a circle, but different from a figure-eight. Graph theory is the 
study of points and the lines between them in topological space. In graph 
theory almost all the original geometry is thrown away, and we are left with 
a single abstraction, the graph. 

The word gruph as used in graph theory means a collection of points 
and lines that connect these points. In the mathematical terminology the 
points are called vertices and the lines edges; in computer science the desig- 
nations nodes and arcs are more common. We shall require arcs to connect 
distinct nodes (no arc loops back to the same node) and rule out multiple 
arcs between identical nodes. The distances between nodes, the lengths or 
thicknesses of the arcs, and the geometric orientations are meaningless in 
graph theory. All that counts is which nodes are connected to which. 

In Figure 12.1 we see all possible types of graphs with up to four nodes. 
Two nodes are said to be ‘adjacent’ if they are connected by an arc. A 
‘path’ is a disjoint collection of arcs that leads from one node to another. 
For example, in Gi there is a path of length 2 from the top-left node to 
the bottom-right, but no path to the top-right node. A ‘cycle’ is a path that 
leads from a node to itself. In G$ there is a cycle, but not in G!. The number 
of arcs emanating from a given node is called its degree; there are always an 
even number of nodes of odd degree. 
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G; . 

Figure 12.1: All graphs with up to 
nodes and disallow self connections. 

four nodes. We only allow arcs connecting distinct 

Many of the most interesting problems in graph theory involve the num- 
ber of graphs of a certain kind. A graph in which there is a path from 
any node to every other node (e.g., Gi, G& Gi, G& G& G;f, G$, Gf,, G&) is 
called ‘connected’, while one that has all nodes connected to all others (e.g., 
Gi , Gi, Gi, G&) is called complete. 

The beginnings of graph theory are usually traced back to 1736. In that 
year the famous mathematician, Leonhard Euler, considered the father of 
analysis, published his solution to a puzzle that he had been working on. 
Euler, who was born in Switzerland, was professor of mathematics at the 
academy of St. Petersburg (founded in 1725 by Catherine, the wife of Peter 
the Great). The cold weather so adversely affected his eyesight that in 1736 
we find him living in the capital of East Prussia, Kiinigsberg (German for 
‘the Kings city’). This city, founded in 1255 by Teutonic knights, was the 
seat of the dukes of Prussia from 1525 through 1618. After World War II 
the city was annexed to the USSR and renamed Kaliningrad (Russian for 
‘Kalinin’s city’) after the Soviet leader M.I. Kalinin. Today it is the capital 
of the Kaliningrad Oblast and is Russia’s sole port that does not freeze-over 
in winter. 
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Kijnigsberg’s topography is even more interesting than its history. The 
Pregel river (Pregolya in Russian) flows through the city from east to west, 
on its way to the Frisches Haff (German for ‘freshwater bay’, called Wislany 

Zalew in Polish, and Vistula in Lithuanian), a lagoon of the Baltic Sea, Not 
only does the river divide the city in two, but the river itself splits into 
northern and southern branches that later reconverge, forming an island in 
the center of town. The island is connected to the other parts of town by 
seven bridges. The question that puzzled Euler was this, Is it possible to 
leave your home for a walk, cross all the bridges exactly once, and return 
home? In terms of graph theory the question is, ‘Is it possible to start at 
some node, traverse all the arcs exactly once, returning to the initial node?’ 
If possible, such a path is called an Euler cycle. Euler recognized the puzzle 
as being a specific example of a general question-does a given graph have 
an Euler cycle or not? Today we call such graphs Eulerian. 

It is obvious that the distance between the nodes of the graph do not 
affect the answer to this question; this is truly a topological problem. What 
Euler discovered is that degree is important. A connected graph is ‘Eulerian’ 
if and only if every node has even degree. Only Eulerian graphs have paths 
of the desired type. With this insight Euler simultaneously founded the 
disciplines of graph theory and topology. 

We pick up our story once again 120 years later in Great Britain. Sir 
William Rowan Hamilton, well known for his extensive contributions to 
physics (the Hamiltonian function, the Hamilton-Jacobi equation) and math- 
ematics (complex numbers, vector algebra, group theory, ‘quaternions’), was 
also studying a puzzle. This puzzle involved the nodes of the regular dodec- 
ahedron (a solid with twelve regular pentagonal faces). Unlike Euler’s prob- 
lem where each m-c of a graph must be traversed exactly once, in Hamilton’s 
puzzle one is required to visit each node exactly once. A graph is ‘Hamil- 
tonian’ if and only if it contains a Hamiltonian cycle, that is, a cycle that 
contains each node exactly once. What Hamilton discovered is that the do- 
decahedron is Hamiltonian, that is, there is a path from node to node that 
returns to the starting point after visiting each node exactly once. Hamilton 
considered finding this path so challenging that he attempted to market the 
puzzle. The determination of necessary and sufficient conditions for a graph 
to be Hamiltonian turned out to be even more challenging; it remains one 
of the major unsolved problems in graph theory. 

‘Directed graphs’ or ‘digraphs’ are just like graphs, only the arcs have an 
associated direction (which we depict with an arrow). In Figure 12.2 we see 
all possible types of digraphs with one or two nodes. Nodes in digraphs have 
in-degree and out-degree (also called fan-in and fan-out), and two nodes may 
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Figure 12.2: All digraphs with up to two nodes. 

be connected by two directed arcs in opposite directions. Paths and cycles 
must traverse arcs in the direction of the arrows. 

A digraph is a ‘forest’ if it does not contain a cycle. For forests the 
direction of the arrow dictates a certain priority, so rather than saying that 
connecting nodes are adjacent, we speak of parent and child nodes. The pre- 
arc node is the parent while the post-arc one is the child. All nodes that can 
be reached from a given node are called descendants and the original node 
the ancestor. Since forests do not have cycles we never have to worry about 
a node being its own ancestor. A forest that has a single ancestor node (the 
‘root’) from which all other nodes descend is called a tree. Actually it is 
easier to think of the tree as being the basic graph and the forest as being 
a collection of trees. 

Digraphs are the basis of a computational model used extensively in DSP 
called the flow graph (or ‘flow diagram ‘, ‘dataflow network’, ‘DSP block dia- 
gram’, ‘graphical flow programming’, ‘visual programming language’, etc.). 
The directed arcs of the digraph represent signals while the nodes stand for 
processing subsystems. If the digraph is a forest we say that the system is a 
feedfomoard system, while digraphs with cycles are called feedback systems. 
The study of flow graphs will be the subject of the next section. 

EXERCISES 

12.1.1 Special types of graphs are used in electronics (schematic diagrams), physics 
(Feynman diagrams), computer science (search trees), and many other fields. 
Research and explain at least three such uses. 

12.1.2 Why isn’t K on the list of graphs with four nodes? What about w ? 

12.1.3 How many different kinds of graphs are there for five nodes? 

12.1.4 Draw all digraphs for 3 nodes. 

12.1.5 Explain Euler’s rule intuitively. 

12.1.6 A graph is called nonplanar if it cannot be drawn on a piece of paper without 
arcs crossing each other. Draw a nonplanar graph. 
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12.1.7 An Euler path is similar to an Euler cycle except that one needn’t return to 
the same node. Similarly we can define a Hamiltonian path. Draw Euler and 
Hamilton path for points on a two-dimensional grid. Which paths are cycles? 
Find Euler paths that are not Hamilton paths and vice versa. 

12.1.8 A trellis is a digraph created by mapping possible transitions between N 
states as a function of time. Conventionally the time axis is from left to right 
and the N states are drawn vertically. There is an arc between each state 
at time t and a several possible states at time t + 1. Assume a trellis with 
four states (called 0, 1, 2 and 3) with states 0 and 1 at time n being able to 
transition to even states at time n + 1, while 2 and 3 can only transition to 
odd states. Draw this trellis from time n = 0 through 4. How many different 
trellises of length L are there? How may a trellis be stored in a file? What 
data structure may be used in a program? 

12.2 DSP Flow Graphs 

Superficially DSP flow graphs look similar to the block diagrams used to de- 
scribe algorithms in computer science. In computer science the arcs indicate 
control paths, and computation is performed or decisions taken at nodes. De- 
pending on decisions taken the processing will continue down different arcs 
to different computational nodes. Thus by the use of this graphical tech- 
nique we can capture the control structure of computer programs. Other 
aspects of the program, such as data types and memory requirements, are 
not captured in these diagrams, and must be documented in some other way. 

The metaphor behind the use of DSP flow graphs is that of signals ‘flow- 
ing’ between processing subsystems. At each of the nodes input signals are 
processed to produce output signals that are passed along arcs to the fol- 
lowing nodes. Thus DSP flow graphs capture both the signal and processing 
system aspects of a problem. Since the vertices contain processing elements 
that we must identify, we will have to enrich the graphic notation of the 
previous section. 

Let’s see how to make DSP flow graphs. When a signal CC is the input to 
some system we will depict this 

and similarly we depict y as the output of a system in the following way. 
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Thus the identity system, which leaves a signal z unchanged, is depicted 

X Y 

which means precisely y = x. A hidden signal, that is, a signal that is 
neither a system input nor output, can be named by placing a symbol near 
the corresponding arc. All the above are standard digraph figures. 

As we mentioned before, nodes correspond to processing, which must be 
identified. We do this by drawing circles (for simple common processes) or 
squares (for more general processes). For example, y = f(x) is depicted 

and z = g(y) = g (f(x)) is shown 

9 *= 
Y 

x = - - f -= x 

where the hidden signal y has been identified. 
A very common operation is to multiply a signal by a real number. The 

standard digraph would have a multiplication node perform this function, 
i.e., we would expect y = Gx to be depicted something like 

X+-+-Y 

but since the operation is so common, we introduce a short-hand notation. 

G 
X Y 

Whenever a symbol appears near an arrow we understand an implicit mul- 
tiplication node y = Gx. Do not confuse this with the symbol representing 
a hidden signal that is placed close to an arc but not near an arrow. In such 
cases no multiplication is intended, and eliminating this symbol would not 
change the system’s operation at all. 

Many times we wish to have the signal x reach more than one processing 
system. In regular digraphs each arc connects a single pre-arc node with a 
unique post-arc node; in DSP we allow the connection of a single pre-arc 
node to multiple post-arc nodes with a single arc. The point where the signal 
splits into two is called a branch point or a tee connector. 
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--c 

Yl 

X 

Y2 

This means that the same signal is delivered to both nodes, yr = y2 = x. 
Of course it is meaningless to connect more than one pre-arc node to- 

gether; but we can add two signals x1 and x2 to get y = x1 + x2. This is 
depicted in the standard notation using an addition node. 

Xl 

-T- 

Y 
+ 

x2 

The small + signs mean that addition is to be performed. Subtraction y = 
Xl - x2 is depicted 

Xl-+p-Y 

and other combinations of signs are possible. 
Value-by-value multiplication y = 2122 is depicted as you would expect. 

Xl 

-r 

Y 

x2 

We can combine these basic elements in many ways. For example, the 
basic N = 2 DFT of equation (4.33) is depicted 

X0 X0 

Xl 
XL 

Xl 
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and signifies Xe = zo + zr and Xr = zo - q. 
One of the most important processing nodes is the unit delay, which is 

depicted by 2-l inscribed in a circle. 

This diagram means that the signal y is the same as the signal x delayed one 
digital unit of time, that is, yn = xn-r for all n. Often we loosely think of 
the signal value at some time n as entering the delay, and its previous value 
exiting. Since we only represent time-invariant systems with flow graphs 
this interpretation is acceptable, as long as it is remembered that this same 
operation is performed for every unit of time. Also note that we shall never 
see a z in a signal flow diagram. We represent only causal, realizable systems. 

Using the unit delay we can easily represent the simple difference ap- 
proximation to the derivative yn = A xn = xn - x,+1 

or a general single delay convolution yn = aOx, + alxnml. 

You will notice that we have drawn a small filled circle in each of these 
diagrams. This circle does not represent a processing system, rather it is a 
reminder that a memory location must be set aside to store a signal value. 
In order to continuously calculate the simple difference or single delay con- 
volution, we must store xn at every time n so that at the next time step it 
will be available as ~~-1. We do not usually explicitly mark these memory 
locations, only stressing them when the additional emphasis is desired. 
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x = 
a0 n 

/ fiY 
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17 
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A 1r 
al 

x = 
a0 f7 

+v 
t-Y 

Al 

x : 

a0 
t 

Figure 12.3: Four other ways of drawing a basic MA (FIR) block as a DSP flow graph. 

The beauty of using graphs is that we can redraw them any way we 
consider Esthetic or useful, as long as the topology stays the same. Thus, 
the basic single delay FIR block also can be drawn in the ways depicted in 
Figure 12.3 and in many other ways. 

All the different DSP graphs that depict the same DSP process are 
called implementations of this process. Note that the implementation of Fig- 
ure 12.3.A is topologically identical to the previous graph, but has the gains 
appearing more symmetrically. In Figure 12.3.B we interchanged the order 
of the gain and the delay. Thus this implementation is not identical from the 
pure graph-theoretic point of view, but is an identical DSP process since the 
gain and delay operators commute. Figure 12.3.C looks different but one can 
easily convince oneself that it too represents the same block. Figure 12.3.D 
is similar to Figure 12.3.C but with the gains positioned symmetrically. 

How can we implement the more general convolution? 

L 

?)n = c wh-2 

z=o 
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x = 

a0lr 

Y 

Figure 12.4: A straightforward implementation of the FIR filter using an adder of in- 
degree L+ 1. 

In Figure 12.4 we see a straightforward implementation, where the large 
node at the bottom is an adder of in-degree L + 1. Such an adder is not 
always available, and is not really required, since we can also implement the 
FIR filter using the standard two-input adder, as in Figure 12.5. 

Figure 12.5: A straightforward implementation of the FIR filter using standard two- 
input adders. 

This figure is worth studying. To assure yourself that you understand 
it completely, mark all the vertical arcs, especially those marked with filled 
circles. For example, the arc that descends after the first delay and then 
is summed with aoxn splits should be marked x,+1. By this we mean the 
signal that for all n is equal to the incoming signal x delayed by one time 
unit. When you consider a complex DSP graph of this type it is worthwhile 
interpreting it in two stages. First think of analog signals flowing through 
the graph. In order to assist in this interpretation assume that every process- 
ing node corresponds to a separate hardware component. Ignore any filled 
circles and treat z-l nodes as time delays that happen to correspond to the 
sampling interval t, . 
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Once you understand the graph at this level you can return to the world 
of DSP programming. The delays are now single sample delays, the pro- 
cessing nodes are computations that may all be carried out by the same 
processor, and the filled circles are memory locations. When thinking in this 
mode we often think of ‘typical values’, such as xn and ~~-1, rather than 
entire signals such as x. We implicitly allow the same computation to be 
carried out over and over by a single processor. The basic computation to 
be performed repeatedly consists of multiplication of a delayed input value 
by a filter coefficient and adding; this combination is called a Multiply-And- 
Accumulate (MAC) operation. 

Looking closely at Figure 12.5 we see that this FIR implementation is 
based on the block from Figure 12.3.D. Several of these blocks are con- 
catenated in order to form the entire convolution. This is a widely used 
technique-after perfecting an implementation we replicate it and use it 
again and again. You can think of an implementation as being similar in 
this regard to a subroutine in standard procedural programming languages. 

-1 P aL 

Figure 12.6: An alternative way to depict the all-zero (MA) filter, 
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Of course this is not the only way to draw an FIR filter. A particularly 
interesting way to depict the same graph is shown in Figure 12.6. In this 
implementation we replicate the FIR block of Figure 12.3.A. It is easy to 
see that this graph is topologically identical to the previous one. 

Up to now we have only seen graphs without cycles, graphs that corre- 
spond to feedforward systems. The simple feedback system, yn = i&+i+zn, 
is depicted as 

while a full all-pole system 

Yn = Xn - e bmyn-m 
m=l 

can be depicted as in Figure 12.7. 

Figure 12.7: A full all-pole filter implemented using MAC operations. 

Once again it is worthwhile to carefully mark all the arcs to be sure that 
you understand how this implementation works. Don’t be concerned that 
signal values are transported backward in time and then influence their own 
values like characters in science fiction time-travel stories. This is precisely 
the purpose of using feedback (remember Section 7.4). 

Of course this is not the only way to draw this AR filter. A particu- 
larly interesting implementation is depicted in Figure 12.8.A. We purposely 
made this implementation a mirror reflection of the FIR implementation of 
Figure 12.6. Now by concatenating the MA and AR portions we can at last 
implement 

L 

Yn = c al%-l - 5 bmYn-n-l 
I=0 m=l 
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X- 

B 

-1 P 

Figure 12.8: In (A) we present an alternative graphical representation of the all-pole 
(AR) filter. (B) is an implementation of the full ARMA filter. 

the full ARMA filter. We do this in Figure 12.8.B. 
Take a few moments to appreciate this diagram. First, by its very con- 

struction, it graphically demonstrates how ARMA filters can be decomposed 
into separate MA and AR subsystems. These FIR and all-pole systems are 
seen to be quite different in character. Of course the order of the AR and 
MA subsystems are not necessarily equal; they only look the same here since 
an ellipsis can hide different heights. Second, it’s pleasingly symmetric; there 
are computational commonalities between the subsystems. Thus computa- 
tional hardware or software designed for one may be modified to compute 
the other as well. Finally, this diagram gives us a novel way of understand- 
ing filters. Looking at the analog level we cannot avoid imagining the signal 
flowing in on the left, traveling down, splitting up, and recombining with 
differently weighted and delayed versions of itself. It then enters the feed- 
back portion where it loops around endlessly, each time delayed, weighted, 
and combined with itself, until it finally exits at the right. 
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EXERCISES 

12.2.1 The following examples demonstrate simplification of diagrams with gains. 
In all cases identify the gain(s) that appear in the right diagram in terms of 
those that appear in the left diagram. 

b 
X-L-WY x 

A 
Y 

A 

X+f--J-+YX 4 Y 

C D 

12.2.2 Draw an ARMA filter with MA order 3 and AR order 4. How many memory 
locations are required? Label all the signals. 

12.2.3 A filter implementation with minimal number of memory allocations is called 
canonical. What is the number of memory locations in the canonical ARMA 
filter with MA order p and AR order q? 

12.2.4 The transposition theorem states that reversing all the arc directions, chang- 
ing adders to tee connections and vice-versa, and interchanging the input and 
output, does not alter the system’s transfer function. Prove this theorem for 
the simple case of yn = xn + by,-1. 

12.3 DSP Graph Manipulation 

Let’s summarize all that we have learned so far. Flow graphs are used to 
represent realizable, time-invariant signal processing systems. The most im- 
portant graphic elements are depicted in Figure 12.9. Combining these basic 
elements in various ways we can depict many different systems. Every DSP 
flow graph corresponds to a unique signal processing system, but every sys- 
tem can be implemented by many seemingly different graphs. 

Different implementations may have somewhat different characteristics, 
and may correspond to hardware implementations of differing cost and soft- 
ware implementations of varying complexity. It is thus useful to learn ways 
of manipulating flow graphs, that is, to change the graph without changing 
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X x is the input to a calculation 

Y y is the output from a calculation 1 
X Y Y x = 

x the hidden signal x 

a memory location 

splitting a signal y1 = x and Y2 = x 

G 
X Y a gain y = Gx 

Xl Y 
+ 

“p’ 

adding signals y = x1 + x2 

x ={q-y / / an arbitrary system y = f(x) 

Figure 12.9: The most important DSP graph elements. 
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the system implemented. Remember that a system is defined only by the 
outputs generated for all inputs. As long as these remain unchanged the 
system is unchanged, no matter what the flow diagram looks like. We will 
often call graph operations that leave the system unchanged ‘symmetries’. 

The first symmetry, which we have already stressed, is that graphs are to 
be understood topologically. Geometric quantities such as arc length, angles, 
and such are irrelevant. We can even perform mirror reflections drawing the 
whole picture backward as long as all the arrows are reversed (but please 
print the alphanumeric characters in the conventional orientation). 

Since the topology remains unchanged one can always move a gain along 
an arc to a convenient place. You will doubtless recall that we did this when 
redrawing the basic FIR block. More generally, you can move a gain along 
an arc until the first addition or nonlinear system as long as you replicate it 
at tee connectors. You can also combine consecutive gains into a single gain 
or split a single gain into two in series. 

These operations are special cases of the ‘like signal merging’ symmetry. 
Whenever we find identical hidden signals in two different places, we can 
consolidate the graph, eliminating extraneous arcs and nodes, as long as no 
input or output signals are affected. For example, consider the graph 

where we have identified the signal 4x,-r on two different arcs. We can 
consolidate everything between the input and these two signals. 
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Two signal processing systems f and g are said to ‘commute’ if one can 
interchange their order without changing the overall system. 

In particular any two linear systems, and thus any two filters commute. We 
often exploit commutation of filters to simplify DSP flow graphs. 

7, 

-bM 
. 

Figure 12.10: An alternative way to depict the ARMA filter. Here we perform the au- 
toregressive (all-pole) filter before the moving average (FIR) filter. 

As an example, let’s simplify Figure 12.8.B for the full ARMA filter. 
Note that there we actually performed the MA portion before the AR, which 
would make this an MAAR filter (were this possible to pronounce). Since 
the MA and AR subsystems are filters and thus commute we can place the 
AR portion before the MA part, and obtain Figure 12.10. 

This diagram is just as symmetric as the first but seems to portray a 
different story. The signal first enters the infinite loop, cycling around and 
around inside the left subsystem, and only the signal that manages to leak 
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Figure 12.11: Yet another way to depict the ARMA filter. This graph requires the min- 
imal number of internal memory locations. 

out proceeds to the more straightforward convolution subsystem. Once again 
we suggest taking the time to label the arcs, for example, calling the output 
of the all-pole subsystem w. Comparing arcs we discover a common hidden 
signal and can consolidate to obtain the more efficient graph of Figure 12.11. 

The final symmetry we will discuss is that of grouping and ungrouping 
in hierarchical flow graphs. Up to now we have seen graphs made up of 
primitive processes such as delays, gains, and additions. Although we spoke 
of using rectangles to represent general systems, we have not yet discussed 
how these subsystems are to be specified. One way would be to describe them 
ad hoc as algorithms in pseudocode or some programming language; but a 
more consistent description would be in terms of flow graphs! For example, 
once we have presented the flow graph for a general ARMA filter, we can 
represent it from then on as a single rectangle, or ‘black box’. The processes 
of grouping elements of a flow graph together to form a new subsystem, and 
of ungrouping a black box to its lower-level components, are symmetries. 
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The grouping into higher-level subsystems results in a simplification sim- 
ilar to that of using subroutines in programming languages. Of course these 
new black boxes can be used in turn to recursively build up yet more complex 
subsystems. Such a system, built up from various levels of subsystems that 
can be graphically decomposed into simpler subsystems, is called a hierar- 
chical flow graph. Recursively applying the ungrouping symmetries reduces 
hierarchical graphs to graphs composed solely of primitive processes. 

EXERCISES 

12.3.1 Draw the basic all-pole block in four different ways. 

12.3.2 Recall that the main entity of the state-space description is the system’s 
internal state. One way to encode the internal state involves specifying hidden 
signals. Which hidden signals are required to be identified? How does the state 
thus specified evolve with time? 

12.3.3 Give an example of two systems that do not commute. 

12.3.4 Draw high-level hierarchical flow graphs for the following 
decompose the high-level description into primitives. 

systems, and then 

l a filter composed of several copies of the same FIR filter in series 

l a band-pass filter that mixes a signal down to zero frequency and then 
low-pass filters it 

l a circuit that computes the instantaneous frequency 

12.4 RAX Externals 

In the early eighties the author was working on signal analysis in a sophisti- 
cated signal processing lab. This lab, like most at that time, was composed 
largely of complex analog signal processing equipment mounted vertically in 
19-inch racks. Each rack would typically house between five and ten different 
pieces of equipment, including function generators, amplifiers, filters, preci- 
sion synthesizers, and oscilloscopes. Each piece of equipment conventionally 
had buttons and knobs on its front panel, and input and output connections 
on its back. These back panel connections would be routed to patch panels 
where the users could rapidly connect them up. 

The lab had several analysis stations, and a typical station consisted of 
two or three racks full of complex and expensive equipment. Each individual 
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piece of equipment could cost tens to hundreds of thousands of dollars, would 
have to be calibrated and serviced regularly, and would usually take about 
two to three days to master. Just mounting a new box would take several 
hours, including placing it onto slides, screwing the slides into the racks, 
routing all the cables from its back panel to the patch panels, testing these 
cables (which would always seem to fail), and properly labeling the patch 
panel connectors. While the veteran lab staff could set up quite complex 
signal processing functions in minutes, someone new to the lab would go 
through a learning process of several months before feeling confident enough 
to work alone. 

This lab was considered both modern and efficient. Outdated equipment 
was continually replaced with the most modern and sophisticated available; 
the lab staff was the most competent that could be found. However, trou- 
ble was definitely on the horizon. Maintenance costs were skyrocketing, the 
training of new lab staff was getting harder and lengthier, and even the most 
sophisticated equipment was not always sufficient for all the new challenges 
the lab faced. For these reasons we embarked on the development of an 
experimental software system. 

The system was originally called RACKS, supposedly an acronym for 
Replace Analog Components with Knowledge-based Software, but actually 
referring to the racks of equipment the system emulated. The name was 
later shortened to RAX as an acronym for Really Awesome boxes. RAX 
was a visual programming environment that simulated the operation of an 
analysis station. Using a pointing device (originally a joystick, but you can 
think of it as a mouse if you prefer), equipment could be instantly taken 
out of a virtual store room, placed into virtual racks, connected by virtual 
cables, and operated. The operation of RAX was not always real-time, but 
it enabled useful analyses to be easily performed. 

RAX was never commercially available, and is hardly state-of-the-art, 
not having been updated since its initial development. It was quite limited, 
for example, not allowing hierarchical definition of blocks. It was also not 
very run-time efficient, generally passing single samples between blocks. The 
host computer and DSP cards used as the platform for RAX are by now 
museum pieces. However, I have several reasons for expounding on it here. 
First and foremost is my own familiarity with its internals; many of the 
issues that we will examine are quite general, and I can discuss them with 
maximum knowledge regarding RAX. Second, RAX is relatively simple and 
thus easy to grasp, but at the same time general and easily extensible. Third, 
I promised my coworkers that one day I would finish the documentation, and 
better fifteen years late than never. 
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The RAX model of the world is that of racks of equipment, which are 

vertical rectangular arrays. These vertical arrays are called racks; racks are 
made up of slots, and each slot can hold a single piece of equipment. The piece 
of equipment in a specific rack and slot position is called a box, while what a 
type of equipment does is called its function. Each box has input connectors, 
output connectors, and buttons. Cables can be connected between a single 
output connector and any number of input connectors. Buttons are used 
to set internal parameters of the different boxes (e.g., input filenames and 
amplification gains). 
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Figure 12.12: The graphics screen of RAX for a simple setup. Note that this figure’s 
resolution and fonts are representative of 1983 computer graphic displays (the original 
had 16 colors). 

An example of a working RAX system is depicted in Figure 12.12. The 
resolution and fonts are representative of the technology of graphic displays 
circa 1985; the original screens had up to 16 colors, which are not observable 
here. In the figure we see a function generator, a synthesizer, an amplifier, 
and a scope connected in a frivolous way. The function generator is a box 
with no inputs and a single output. This output can be a square, triangular, 
or sawtooth wave, with buttons to select the signal type and control the 
amplitude and frequency. The synthesizer generates (real or complex) sinu- 
soids of given amplitude, frequency, and phase. The amplifier (which would 
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never actually be used in this way since the synthesizer has adjustable am- 
plitude) can take up to five inputs. Its output is the sum of these inputs, 
each multiplied by its own gain (selected by appropriate buttons). The scope 
has input channels for one or two signals to be displayed. Its other inputs 
are for external trigger and clock. The scope has no output, but buttons 
that set the volts per division, timebase, trigger mode and level, clock rate, 
number of sweeps. The scope also has a display, called CRT for Cathode 
Ray Tube. The output of the function generator is connected to channel B 
of the scope, while the synthesizer feeds the amplifier which in turn is con- 
nected to channel A of the scope. A sample scope display from this setup is 
depicted in Figure 12.13. 

I PM3E 1 CRT 1 SCOPECP.lI <15.559,2.490> 

IlS.940 

Figure 12.13: The graphics screen of the scope for the simple RAX setup depicted in 
the previous figure. The small + represents the position of the pointing device, and this 
position is indicated in the message window. 

Although completely general, for reasons of efficiency RAX boxes are 
usually relatively high-level functions. For example, an FIR filter would be 
hand coded and called as a box, and not built up from individual multipliers 
and adders. It is relatively easy to add new functions as required; one need 
only code them using special conventions and link them into RAX. Compu- 
tationally demanding functions may actually run on DSP processors, if they 
have been coded to exploit such processors and the processors are available. 
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RAX can be integrated into the real world in two ways. For non-real-time 
use there are ‘input file’ and ‘output file’ boxes. These boxes are stream- 
oriented, reading and writing as required. The input file box has one output 

and a button with which the user specifies the name of the file to read. 
Similarly, the output file box has a single input and a button to specify the 
file to write. For simple processing, or when DSP processors are used, there 
are also A/D and D/A boxes that stream to and from the true devices. 

In RAX the same piece of equipment can be placed into many differ- 
ent rack-slot positions, which is interpreted as different boxes that happen 
to have the function. Boxes are identified by giving the function, the rack 
number, and the slot number (e.g., SCOPE [2,1] ). Connectors and buttons 
have their own notations. When the pointing device enters a rack-slot that 
houses a piece of equipment its identifier is displayed in the message area at 
the upper right. When the pointer is close enough to a button or connector, 
its identifier is displayed as well. Pressing the pointer’s actuator (similar 
to clicking a mouse) over a button causes a pop-up menu to appear where 
the user can edit the corresponding parameter. Pressing the actuator near 
a connector causes a ‘rubber band line’ to be drawn from that connector to 
the pointer, which can then be placed near another connector and pressed 
again. If the connection is valid the rubber band line disappears and in its 
place a connection route is drawn. Valid connections connect a single output 
to any number of inputs. The connection route is drawn to avoid existing 
routes, and is color coded for optimal distinguishability. 

After bringing up the application, the user specifies the number of racks 
and the number of slots per rack. These numbers can be changed at any time, 
with the restriction that no mounted equipment should fall onto the floor. 
Next the user opens the store room and drags pieces of equipment from there, 
placing them into rack-slots. The user can then connect output connectors 
to input connectors and set parameters using the buttons. When satisfied 
the user points and depresses the run button. At that point time starts to 
run and the signal processing begins. The user may at any time select any 
display (e.g., from a scope, spectrum analyzer, or voltmeter) and view the 
graphic results. When such a display is active, the message area continuously 
displays the pointer’s coordinates, for example, volts and time for the scope. 
To return to the racks display the user can then press the return button, 
and equipment buttons can be adjusted while time is running. To stop time 
from running there is a stop button. If the user considers the setup to be 
useful it can be saved to a netlist file, from which it can be loaded at some 
later date. The netlist for the simple setup of Figure 12.12 is printed out as 
Figure 12.14. 
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SAMPLING FREQUENCY = 100.00000 
RACK 1 

SLOT 1 GENERATOR 
FUNC=SQUARE 
FREQ=l 
VOLT=1 
OUT>SCOPE[2,l].CHANB 

SLOT 2 SYNTHESIZER 
FREQ=l 
VOLT=1 
PHASE=1 
COMPL=REAL 
OUT>AMPLIFIER[2,2].IN 

RACK 2 
SLOT 1 SCOPE 

SLOT 2 AMPLIFIER 

VOLTDIV=l 
TIMEBASE=l 
TRIGMODE=FREE 
CLOCK=0 
SWEEPS=1 
TRIGLEV=O 
CHANA<AMPLIFIER[2,2].OUT 
CHANB<GENERATOR[l,l] .OUT 

GAIN=1 
GAIN2=0 
GAINS=0 
GAIN4=0 
GAINS=0 
IN<SYNTHESIZER[l,2].OUT 
OUT>SCOPE[2,l].CHANA 

Figure 12.14: The netlist of the simple example. 

EXERCISES 

12.4.1 RAX is a ‘clock-driven’ system, meaning that some external concept of 
time causes the scheduler to operate. Alternatives include ‘data-driven’ and 
‘control-driven’ systems. In the former, external inputs are the trigger for 
everything to happen; each input is followed through causing box after box 
to operate in turn. In the latter, whenever a box cannot run due to an in- 
put not being ready, the box connected to it is run in order to generate 
that input (and recursively all boxes before it). Discuss the advantages and 
disadvantages of these three techniques. 
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12.4.2 Observe in Figure 12.12 that different cables never overlap, at most they 
cross at a point. Give a simple algorithm for accomplishing this. 

12.4.3 Find some visual programming language to experiment with. How is it similar 
to and how is it different from RAX? 

12.4.4 What are RAX’s main functional deficiencies? 

12.5 RAX Internals 

Now let’s start to peek behind the scenes to see how RAX accomplishes 
its magic. The first thing we must explain is that RAX is an interpreter 
rather than a compiler. The entire RAX run-time system must be present 
for anything to happen and the GUI, IO, signal display, task scheduling, and 
processing are all supplied by RAX itself. Modern systems will usually allow 
the user to operate in interpreted mode in order to debug the system and 
then to compile to some standalone language such as C or DSP assembly 
language. This point understood, let us proceed to the program’s structure. 

The main program looks like this in pseudocode: 

initializations 
main loop 

handle user events 
update graphics 
if RunMode 

schedule tasks 
increment time 

finalizations 

where initializations and finalizations refer to the opening and closing of 
files, allocation and deallocation of memory, starting and terminating the 
graphics environment, and other mundane computer tasks. Handling user 
events refers to checking for motion of the pointing device and updating the 
message area accordingly; and checking for pointer device button presses or 
keyboard entry and the corresponding changing of parameters and program 
modes. RunMode is true whenever the user has pressed the START button, 
and stays true until the STOP button is pressed. 

In the analog world every box is operating all the time. This has to be 
emulated in RAX since the main and all the boxes run on a single CPU. 
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This is the responsibility of the task scheduler. The scheduler runs through 
every piece of equipment in the racks, and decides whether it is ready to 
run. This decision is based on continuity of time and an assumption of 
causality. Each box remembers when it last ran, and each input to each box 
contains a time-stamped value. A box can run only when the present time 
is strictly after the time it last ran, and only when the time is not before 
the time of its inputs. Assuming a box can run, the scheduler is responsible 
for loading the box state, connecting input and output cables, calling the 
proper task (perhaps running on a DSP), and storing the new state. These 
duties determine the context switch time, the minimum time it takes to 
switch from running one box to another. RAX was somewhat wasteful in 
this regard, having originally been designed for simulation purposes and only 
later being retrofitted with DSP boards for real-time use. An alternative 
strategy (one that was employed for the DSP code) is for each box to keep 
its state information internally. This cannot be done using static arrays for 
host code since one equipment type can be used multiple times in a single 
setup. 

Finally, when all boxes have run for the specified time, the time is incre- 
mented according to the present sampling rate. One of the major limitations 
of RAX is the use of a single sampling rate. Although the sampling rate can 
be changed, there cannot be simultaneously more than one rate, and all 
boxes must use the same clock. This is both an efficiency problem (some 
processes might only need updating very infrequently, but must be sched- 
uled every time) and a real constraint (resampling processes, such as those 
required for modems, cannot be implemented). This problem could be fixed 
by simulating real time using a common multiple of all desired sampling rates 
and dividing as required. Hardware systems commonly implement this same 
policy by using a high-frequency crystal oscillator and various frequency 
dividers. 

Behind the simple description of the handling of user events and sched- 
uler are a plethora of infrastructure functions. For example, there is a func- 
tion that given the rack and slot numbers determines whether the rack-slot 
is occupied, and if so retrieves the type of equipment. Another, given a type 
of equipment, finds the meaning of the inputs or buttons. Given a cable 
identifier, the output number, origin rack-slot that feeds it, and all inputs it 
feeds can be found. Given an entire configuration, the minimum number of 
racks and slots may be calculated. Of course there are functions to place a 
piece of equipment in a given position, to remove a piece of equipment, to 
connect a cable between connectors, etc. 
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Behind every graphics display (scope, spectrum analyzer, etc.) there is a 
‘display list’ that contains all lines drawn to that display. Whenever the dis- 
play is to be shown the display list lines are translated into screen coordinates 
and plotted. Every motion of the pointer device in such a screen requires 
translation from screen coordinates back to world coordinates. 

Now let’s discuss how rack-slots are populated and how equipment is 
described. Every box placed in a rack-slot position is assigned a unique 
identification number, starting from 1 and reaching the total number of 
occupied positions. This identifier is used by the scheduler, which loops 
from 1 to the total number of boxes in its main loop. There is a vector of 
this length that holds the position and an equipment pointer, this pointer in 
turn bringing us to the equipment type, state, parameters, cabling, time last 
run, processor (0 for host, otherwise DSP number), and equipment function. 

How is this function defined? When we wish to add a new function we 
must define a constructor that returns the allocated and initialized state, 
buttons, inputs, and outputs; and a destructor that undoes all of the above. 
Then we write the run routine. This routine takes the state, buttons, and 
inputs, and returns the updated state, and outputs (and possibly updates 
the graphic display). All run routines tend to have the same form. First 
the buttons are read. Then the inputs are checked for correctness and type 
(since boxes react differently depending on type, for example, amplification 
of a complex input returns a complex output, while a real returns a real). 
One time step is then performed, generating values that are placed into the 
appropriate outputs. If there is a graphics display, its display list is updated. 
Finally, the state and time variables are updated, and control is returned to 
the scheduler. 

Functions that run on DSP processors are built slightly differently. These 
functions store their state locally and are not as tightly controlled as their 
native counterparts. For them the constructor consists of downloading the 
object code to the appropriate processor and noting this fact. The run rou- 
tine on the host simply passes the inputs to the processor through shared 
memory (SHAM) and collects the outputs. The DSP code is written as an 
infinite loop that checks for the appearance of new inputs in the SHAM, 
processes, and copies the outputs to the SHAM. 

How are all the disjoint entities coupled to make a single coherent sys- 
tem? This is a general problem in systems with many functional parts, and 
there are in general four possibilities. These possibilities are usually known 
as compile-time, link-time, download-time, and run-time bonding. The sim- 
plest method is to gather all the program code for all the different kinds 
of equipment together into a single file, and compile this file together. In 
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such an implementation there can be one global constructor and destruc- 
tor procedure, which allocates and deallocates all memory required for all 
boxes. Such compile-time bonding results in very fast run-time code, but is 
extremely inefficient from the memory utilization point of view. The object 
code for every sort of equipment is present even if we need only a few boxes, 
although in modern paging virtual memory systems this may not actually 
impact performance. A more serious design flaw is the complexity and lack 
of flexibility of the code. 

The next possibility is link-time bonding. Here each function is defined 
in a separate file that is separately compiled into an object file. The linker is 
responsible for bonding all the object files together. Simple link-time bond- 
ing may still waste memory for unused functions, but with proper operating 
system support the unused functions may take up executable file size but 
not actually sit in run-time memory. Also, the reduction of the interde- 
pendence of the different functions reduces system complexity by forcing 
object-oriented techniques. 

Download-time bonding involves compiling and linking each function 
into a separately executable program. When the system is run the con- 
trol system selects which function programs need to be downloaded and 
launched, and then either the control system, the operating system, or hard- 
ware are responsible for moving data between these programs. For example, 
the data may be passed between these programs using ‘interprocess commu- 
nications’ or ‘sockets’ or ‘pipes’, or each program may run on separate DSP 
processors with hardware communications links between them. 

The most complex and most memory-efficient form of bonding is run- 
time, also known as dynamic allocation. Like download-time bonding, each 
function is a separate program unit. However, functions may be loaded and 
launched during the running of the system. This is a particularly useful 
feature when the functioning of the system depends on the input signal. 
For example, consider a voicemail system that must decode DTMF tones, 
compress and store speech, and demodulate, decode, and store facsimile 
transmissions. Since DTMF tones are used to control the system and may 
be used at any time, the DTMF decoder must be continuously available. 
When a session commences the speech function may be loaded by default, 
but upon detection of fax tones the facsimile function must take its place. 

In the original implementation of RAX the host code for each piece 
of equipment was compiled separately, but the entire program was linked 
together before execution. This link-time bonding was chosen since the pro- 
gramming system used did not support dynamic allocation for user routines. 
The DSP code, however, was compiled into individually executable pro- 
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grams, and downloaded upon pressing START. This download-time bonding 
could be efficiently performed since it only required loading the appropriate 
DSP code and data, and releasing the processor. 

The full algorithm for bonding went something like this. Each function 
for which there was DSP code was assigned a complexity number between 
1 and 10; functions with no DSP code received a zero. For example, the N 
sample delay had complexity 0, the amplifier was given a 1, while the spec- 
trum analyzer (which had to window, perform FFT, square, average, take 
logarithms, perform graphics, etc.) rated a 10. In no case did the functions 
exceed the capabilities of a single DSP processor. Whenever the configura- 
tion changed and START was pressed, the functions with nonzero complex- 
ity were sorted in descending order of complexity. Assuming there were P 
available processors, the first P functions would be downloaded to DSPs, 
while the rest of the functions would run on the host processor. 

We have yet to fully explain the cable mechanism. Cables are internally 
arranged in a array, every cable having one source and any number of sinks. 
Each element in the cable array consists of three parts, namely a time, a 
type (boolean, integer, real, or complex), and a value. When a box computes 
an output value, the time, this value and its type are written into the cable 
array where they can be read by all those boxes that require it. In RAX 
only one value can be placed into a given cable at a time; once a value is 
placed in the cable it remains there until overwritten. As mentioned before, 
boxes test the time and value on the cable before using the value. 

This implementation of cables, which we call overwrite, allows multiple 
boxes to receive a single cable as input, but assumes that boxes always take 
values they will need, even if they are not yet ready to use them. For example, 
think of a Fourier analysis box that collects an entire buffer of signal values 
before calculating an entire spectrum. This box must be activated each time 
an input value appears, just in order to store away this value into its state. 
This wastes context switches, potentially slowing the system down. There 
are several alternative strategies that can be used. 

An alternative, called bufered write, would be for the cable to collect 
past values into an ordered list, and for the Fourier analysis box to be called 
only when the desired number of inputs are all ready. In such an alternative 
representation we must consider what is to be done about clearing past 
values that are no longer needed. One possibility is for cables to implement 
a fixed-length buffer, always holding some number of past values. This is 
easy to implement, for example, by a circular buffer, but has two problems. 
First it limits the generality of what a box can do, since no box can use more 
history than what the cable stores. Second many boxes might only require 
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the present value or a few past ones, and we might be wasting memory 
by storing the maximum number. Of course we could configure each cable 
differently, choosing the number of values to store according to the maximum 
needed by boxes to which the cable is connected. 

Another possibility is to allow only one box to be fed by a given cable 
and to make it that box’s responsibility to clear unneeded values from the 
cable. In such an implementation the precable box writes to the cable, and 
the post-cable box reads from it deleting the value; thus we call this method 
‘write-read’. This is similar to the mechanisms of ‘pipes’ and ‘sockets’ that 
are provided by many operating systems, and these mechanisms can be 
exploited in implementing such cables. In a system with cables that are 
written and read we could allow several boxes to write to a single cable, 
but only one box can read a cable since once a value has been read it is no 
longer available for other boxes to use. This is not really an insurmountable 
limitation since we could easily create a tee connector equipment type, which 
takes in a value from one input and makes it available on two or more 
outputs. 

We have still not completely specified what happens in systems with 
cables of the latter type. One possibility is for the read attempt to fail if 
the desired values are not ready, or equivalently, to give the reading box the 
ability to test for readiness before attempting to read from a cable. Such 
‘write-test-read’ systems can seem to act nondeterministically, even without 
explicit randomness built in. For example, consider a piece of equipment 
built to merge two inputs into a single output. This equipment checks its 
inputs until it finds one which is ready and writes its value to the output. 
It then reads and discards all other inputs that might be simultaneously 
available. Even if it always sweeps through its inputs in the same order, its 
output depends on the detailed operation of the scheduler, and thus seems 
unpredictable. A second possibility is for the reading box to become blocked 
until the desired input value is ready. Indeed the blocking mechanism can be 
used as the heart of the system instead of an explicitly encoded scheduler. All 
boxes in a ‘blocked-read’ system simply run in parallel, with the unblocked 
boxes preparing outputs that in time unblock other processes. Finally, the 
writing process may become blocked until the cable is ready to receive the 
value to be sent. Although this ‘blocked-write’ method seems strange at first, 
it shares with blocked-read the advantage of automatically synchronizing 
truly parallel processes. 

Since RAX was an ‘overwrite’ system, DSP processors could only be em- 
ployed for their relative speed as compared with the host processor available 
at that time. The potential for parallel processing could not be exploited 
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since the scheduler was responsible for sending data to each processor, wait- 
ing for it to complete its computation, and then collecting its output. In 
order to allow the processors to truly run in parallel some method of syn- 
chronization, either that inherent in blocked-read and blocked-write or an 
explicit interprocess communications method, must be employed. One model 
that has been exploited for the parallelization of DSP tasks is Hoare’s com- 
municating sequential processes. In this model a collection of computational 
processes, each of which separately runs sequentially, run truly in parallel 
and communicate via unidirectional blocked-write channels. 

This completes our description of RAX internals. While some of the 
details are specific to this system, many of the concepts are applicable to 
any visual programming system. When using such a system for simple tasks 
the analogy with analog equipment is enough to get you started, but for 
more complex problems a basic understanding of the internals may mean 
the difference between success and frustration. 

EXERCISES 

12.5.1 Write a package to implement graphics display lists as singly linked lists 
of commands. At minimum there must be MOVE (x ,y> and DRAW (x, y) 
commands, while more elaborate implementations will have other opcodes 
such as SETCOLOR c, DRAWRECTANGLE (left, right, bottom, top), and 
CIRCLE (x, y ,r> . Remember to include routines to construct a new display 
list, clear the display list (as, for example, when a scope retriggers), add a 
command to the display list (take into account that the display may or not be 
currently showing), show the display on screen, translate between real world 
coordinates and integer screen coordinates, and free the list. 

12.5.2 Write a package to handle netlist files. You will need at least one routine to 
read a netlist file and translate it into an internal representation of boxes and 
parameters and one routine to write a netlist file. 

12.5.3 Write a RAX-like GUI. 

12.5.4 Write a RAX-like scheduler. 

12.5.5 Implement a basic RAX system for functions that all run on the host. You 
should supply at least a sine wave generator, a filter, and a scope. 
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Bibliographical Notes 

A good general reference on graph theory is [91], which is a newer version of a 
classic text. 

The present author has not found any mention of the use of flow graphs for 
signal processing before the 1953 article of Mason [160, 1611. 

One of the earliest uses of visual programming in DSP was BLODI (the BLOck 
Diagram compiler), which was developed Bell Labs in late 1960. Although without 
a true graphic interface, it was said to be easier to learn than FORTRAN, and at 
times easier to use even for the experienced programmer. BLODI had blocks for IO, 
signal and noise generation, arithmetic operations between signals, delay and FIR 
filtering, sampling and quantization, and even a flip-flop. Other documented flow 
languages for signal processing include SIGNAL [88] and LUSTRE [89]. Probably 
the most popular visual programming environment for signal processing is what 
was once called BOSS (Block-Oriented System Simulator) but was later renamed 
SPW (Signal Processing WorkSystem). 

Hoare’s communicating sequential processes, presented in 11031, also motivated 
several DSP systems. For a good discussion of implementational issues for data- 
flow-oriented languages consult [2]. 


