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Spectral Analysis 

It is easy enough to measure the frequency of a clean sinusoid, assuming 
that we have seen enough of the signal for its frequency to be determinable. 
For more complex signals the whole concept of frequency becomes more 
complex. We previously saw two distinct meanings, the spectrum and the 
instantaneous frequency. The concept of spectrum extends the single fre- 
quency of the sinusoid to a simultaneous combination of many frequencies 
for a general signal; as we saw in Section 4.5 the power spectral density 
(PSD) defines how much each frequency contributes to the overall signal. 
Instantaneous frequency takes the alternative approach of assuming only one 
frequency at any one time, but allowing this frequency to vary rapidly. The 
tools that enable us to numerically determine the instantaneous frequency 
are the Hilbert transform and the differentiation filter. 

There is yet a third definition about which we have not spoken until now. 
Model based spectral estimation methods assume a particular mathematical 
expression for the signal and estimate the parameters of this expression. This 
technique extends the idea of estimating the frequency of a signal assumed 
to be a perfect sinusoid. The difference here is that the assumed functional 
form is more complex. One popular model is to assume the signal to be one 
or more sinusoids in additive noise, while another takes it to be the output 
of a filter. This approach is truly novel, and the uncertainty theorem does 
not directly apply to its frequency measurements. 

This chapter deals with the practical problem of numerically estimating 
the frequency domain description of a signal. We begin with simple methods 
and cover the popular FFT-based methods. We describe various window 
functions and how these affect the spectral estimation. We then present 
Pisarenko’s Harmonic Decomposition and several related super-resolution 
methods. We comment on how it is possible to break the uncertainty barrier. 
We then briefly discuss ARMA (maximum entropy) models and how they 
are fundamentally different from periodogram methods. We finish off with 
a brief introduction to wavelets. 
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13.1 Zero Crossings 

Sophisticated methods of spectral estimation are not always necessary. Per- 
haps the signal to noise ratio is high, or we don’t need very high accuracy. 
Perhaps we know that the signal consists of a single sinusoid, or are only in- 
terested in the most important frequency component. Even more frequently 
we don’t have the real-time to spare for computationally intensive algo- 
rithms. In such cases we can sometimes get away with very simple methods. 

The quintessence of simplicity is the zero crossing detector. The fre- 
quency of a clean analog sinusoid can be measured by looking for times 
when it crosses the t axis (zero signal value). The interval between two suc- 
cessive zero crossings represents a half cycle, and hence the frequency is half 
the reciprocal of this interval. Alternatively, we can look for zero crossings 
of the same type (i.e., both ‘rising’ or both ‘falling’). The reciprocal of the 
time interval between two rising (or falling) zero crossings is precisely the 
frequency. Zero crossings can be employed to determine the basic frequency 
even if the signal’s amplitude varies. 

In practice there are two distinct problems with the simple implementa- 
tion of zero crossing detection. First, observing the signal at discrete times 
reduces the precision of the observed zero crossing times; second, any amount 
of noise makes it hard to accurately pin down the exact moment of zero 
crossing. Let’s deal with the precision problem first. Using only the sign of 
the signal (we assume any DC has been removed), the best we can do is 
to say the zero is somewhere between time n and time n + 1. However, by 
exploiting the signal values we can obtain a more precise estimate. The sim- 
plest approach assumes that the signal traces a straight line between the two 
values straddling the zero. Although in general sinusoids do not look very 
much like straight lines, the approximation is not unreasonable near the zero 
crossings for a sufficiently high sampling rate (see Figure 13.1). It is easy 
to derive an expression for the fractional correction under this assumption, 
and expressions based on polynomial interpolation can be derived as well. 

Returning to the noise problem, were the signal more ‘observable’ the 
Robins-Munro algorithm would be helpful. For the more usual case we need 
to rely on stationarity and ergodicity and remove the noise through a suitable 
averaging process. The simplest approach is to average interpolated time 
intervals between zero crossings. 

The time duration between zero crossings predicts the basic frequency, 
only assuming this basic frequency is constant. If it does vary, but sufficiently 
slowly, it makes sense to monitor the so-called ‘zero crossing derivative’, 
the sequence of time differences between successive zero crossing intervals. 
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Figure 13.1: Zero crossing detector for clean sinusoid with no DC offset. The sampling 
rate is about double Nyquist (four samples per period). Note that the linear approximation 
is reasonable but not perfect. 

Given the signal we first compute the sequence of interpolated zero cross- 
ing instants to, tl, tf~, t3 . . . and then compute the zero crossing intervals by 
subtraction of successive times (the finite difference sequence) A, =tl - to, 
A2 = t2 - tl, A3 = t3 - t2 and so on. Next we find the zero crossing derivative 
as the second finite difference A2 [21=A2-Al,A~1=A3-A2,A~=A4-A3 
etc. If the underlying frequency is truly constant the A sequence averages 
to the true frequency reciprocal and the A['] sequence is close to zero. FYe- 
quency variations show up in the derivative sequence. 

This is about as far as it is worth going in this direction. If the zero 
crossing derivatives are not sufficient then we probably have to do some- 
thing completely different. Actually zero crossings and their derivatives are 
frequently used to derive features for pattern recognition purposes but al- 
most never used as frequency estimators. As feature extractors they are 
relatively robust, fast to calculate, and contain a lot of information about 
the signal. As frequency estimators they are not reliable in noise, not par- 
ticularly computationally efficient, and cannot compete with the optimal 
methods we will present later on in this chapter. 

EXERCISES 

13.1.1 What is the condition for two signal values sn and sn+i to straddle a rising 
zero crossing? A falling zero crossing? Any zero crossing? 

13.1.2 Assume that we have located a rising zero crossing between times n and n+ 1. 
Derive an expression for St, the fractional correction to be added to t = n, 
assuming that the signal traces a straight line between sn and sn+r. Extend 
to an arbitrary (rising or falling) zero crossing. 
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13.2 Bank of Filters 

The zero crossing approach is based on the premise of well-defined instan- 
taneous frequency, what we once called the ‘other meaning’ of frequency. 
Shifting tactics we return to the idea of a well-defined spectrum and seek an 
algorithm that measures the distribution of energy as a function of frequency. 
The simplest approach here is the ‘bank of filters’, inspired by the analog 
spectrum analyzer of that name. Think of the frequency band of interest, 
let’s say from 0 to F Hz, as being composed of N equal-size nonoverlapping 
frequency subbands. Employing iV band-pass filters we extract the signal 
components in these subbands, which we denote s”’ through gN-? We have 
thus reduced a single signal of bandwidth F into N signals each of bandwidth 
$; see Figure 13.2. 

ii0 5’ s’N- 1 

A- -- . . . - 
= BPF -s”’ 

s = 
. . . . . . 

BPF -+--iN-’ 

Figure 13.2: A bank of filters dividing the frequency band from 0 to F into N subbands, 
each containing a band-pass signal. On the left the spectrum is depicted, while the right 
shows the bank of filters that accomplishes this division. 

At this point we could simply add the filter outputs s” together and 
reconstruct the original signal s; thus the set of signals 5’ contains all the 
information contained in the original signal. Such an equivalent way of en- 
coding the information in a signal is called a representation. The original 
signal s is the time domain representation, the spectrum is the frequency 
domain representation, and this new set of signals is the subband represen- 
tation. Subband representations are useful in many contexts, but for now we 
will only compute the energies of all the subband signals 9”, obtaining an 
estimate of the power spectrum. The precision of this estimate is improved 
when using a larger number of subbands, but the computational burden goes 
up as well. 

The bank of filters approach to the PSD does not differentiate between 
a clean sinusoid and narrow-band noise, as long as both are contained in the 
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same subband. Even if the signal is a clean sinusoid this approach cannot 
provide an estimate of its frequency more precise than the bandwidth of the 
subband. 

We have taken the subbands to be equal in size (i.e., we have divided 
the total spectral domain into N equal parts), but this need not be the case. 
For instance, speech spectra are often divided equally on a logarithmic scale, 
such that lower frequencies are determined more precisely than higher ones. 
This is no more difficult to do, since it only requires proper design of the 
filters. In fact it is computationally lighter if we build up the representation 
recursively. First we divide the entire domain in two using one low-pass 
and one high-pass filter. The energy at the output of the high-pass filter is 
measured, while the signal at the output of the low-pass filter is decimated 
by two and then input to a low-pass and a high-pass filter. This process is 
repeated until the desired precision of the lowest-frequency bin is attained. 

Returning to the case of equal size subbands, we note that although all 
the signals go through S N-1 have equal bandwidth, there is nonetheless a 
striking lack of equality. The lowest subband so is a low-pass signal, exist- 
ing in the range from 0 to 5. It can be easily sampled and stored using 
the low-pass sampling theorem. All the other S’c are band-pass signals and 
hence require special treatment. For example, were we required to store the 
signal in the subband representation rather than merely compute its power 
spectrum, it would be worthwhile to downmix all the band-pass signals to 
the frequency range of 0 to $. Doing this we obtain a new set of signals we 
now call simply Sk; so is exactly go, while all the other sk are obtained from 
the respective s”’ by mixing down by F. This new set of signals also con- 
tains all the information of the original signal, and is thus a representation 
as well. We cm call it the low-pass subband representation to be contrasted 
with the previous band-pass subband representation. The original signal s is 
reconstructed by mixing up each subband to its proper position and then 
summing as before. The power spectrum is computed exactly as before since 
the operation of mixing does not affect the energy of the subband signals. 

The low-pass subband representation of a signal can be found without 
designing and running N different band-pass filters. Rather than filtering 
with band-pass filters and then downmixing, one can downmix first and then 
low-pass filter the resulting signals (see Figure 13.3). In sequential computa- 
tion this reduces to a single mixer-filter routine called N times on the same 
input with different downmix frequencies. This is the digital counterpart of 
the swept-frequency spectral analyzer that continuously sweeps in sawtooth 
fashion the local oscillator of a mixer, plotting the energy at the output of 
a low-pass filter as a function of this frequency. 
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Figure 13.3: Two equivalent implementations of a bank of filters dividing the frequency 
range into N low-pass signals. In (A) the band-pass signals are band-pass filtered and then 
downmixed using a real mixer, while in (B) the input signal is downmixed by a complex 
mixer and then low-pass filtered. 

Although the two methods of computing the band-pass representation 
provide exactly the same signals sk, there is an implementational differ- 
ence between them. While the former method employed band-pass filters 
with real-valued multiplications and a real mixer (multiplication by a sine 
function), the latter requires a complex mixer (multiplication by a complex 
exponential) and then complex multiplications. The complex mixer is re- 
quired in order to shift the entire frequency range without spectral aliasing 
(see Section 8.5). Once such a complex mixer is employed the signal be- 
comes complex-valued, and thus even if the filter coefficients are real two 
real multiplications are needed. 

Since all our computation is complex, we can just as easily input complex- 
valued signals, as long as we cover the frequency range up to the sampling 
frequency, rather than half fs. For N subbands, the analog downmix fre- 
quencies for such a complex input are 0, k, p, . . . I-, and therefore 
the digital complex downmixed signals are 

s ,-ijfkn 
n = s,wgk for k = 0. . . N - 1 

where WN is the Nth root of unity (see equation (4.30)). These products 
need to be low-pass filtered in order to build the sk. If we choose to imple- 
ment the low-pass filter as a causal FIR filter, what should its length be? 
From an information theoretic point of view it is most satisfying to choose 
length N, since then N input samples are used to determine N subband 
representation values. Thus we find that the kth low-pass signal is given by 

N-l N-l 
k s, = c 

h s 
nn 

,-i$kn = 
c hnsn WEk (13.1) 

n=O n=O 
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which looks somewhat familiar. In fact we can decide to use as our low- 
pass filter a simple moving average with all coefficients equal to one (see 
Section 6.6). Recall that this is a low-pass filter; perhaps not a very good 
one (its frequency response is a sine), but a low-pass filter all the same. Now 
we can write 

N-l N-l 

(13.2) 
n=O n=O 

which is, of course, precisely the DFT. However, instead of thinking of the 
DFT as providing the frequency domain representation of a signal, here 
we consider it as calculating the low-pass subband representation. In this 
fashion the DFT becomes a tool for efficiently simultaneously downmixing 
and filtering the signal. The mixers are easily seen in the definition of the 
DFT; the filtering is implicit in the sum over N input values. 

We have to acclimate ourselves to this new interpretation of the DFT. 
Rather than understanding Sk to be a frequency component, we interpret sk 
as a time domain sample of a subband signal. For instance, an input signal 
consisting of a few sinusoids corresponds to a spectrum with a few discrete 
lines. All subband signals corresponding to empty DFT bins are correctly 
zero, while sinusoids at bin centers lead to constant (DC) subband signals. 
So the interpretation is consistent for this case, and we may readily convince 
ourselves that it is consistent in general. 

We have seen that in our bank of filters approach to computing the power 
spectrum we actually indirectly compute the DFT. In the next section we 
take up using the DFT to directly estimate the power spectrum. 

EXERCISES 

13.2.1 The low-pass subband representation can be useful in other contexts as well. 
Can you think of any? (Hint: FDM.) 

13.2.2 Why does the bank of filters approach become unattractive when a large 
number of filters must be used? 

13.2.3 Compare the following three similar spectral analysis systems: (1) a bank of 
N + 1 very steep skirted analog band-pass filters spaced at Af from 0 to 
F = NAf; (2) a similar bank of N + 1 digital filters; (3) a single DFT with 
bin size Af. We inject a single sinusoid of arbitrary frequency into each of 
the three systems and observe the output signal (note that we do not observe 
only the energy). Do the three give identical results? If not, why not? 

13.2.4 Compare the computational complexity of the recursive method of finding 
the logarithmic spectrum with the straightforward method. 
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13.2.5 Prove that the energy of a band-pass signal is unchanged when it is mixed 
to a new frequency range. 

13.2.6 We saw that the DFT downmixes the subbands before filtering, and we know 
that a mixer is not a filter. In what sense is the DFT equivalent to a bank 
of filters? How can we empirically measure the frequency response of these 
filters? 

13.2.7 Build a bank of filters spectrum analyzer using available filter design or FFT 
software. Inject static combinations of a small number of sinusoids. Can you 
always determine the correct number of signals? Plot the outputs of the filters 
(before taking the energy). Do you get what you expect? Experiment with 
different numbers of bins. Inject a sinusoid of slowly varying frequency. Can 
you reconstruct the frequency response of the filters? What happens when 
the frequency is close to the border between two subbands? 

13.3 The Periodogram 

In 1898, Sir Arthur Schuster published his investigations regarding the ex- 
istence of a particular periodic meteorological phenomenon. It is of little 
interest today whether the phenomenon in question was found to be of con- 
sequence; what is significant is the technique used to make that decision. 
Schuster introduced the use of an empirical STFT in order to discover hidden 
periodicities, and hence called this tool the periodogram. Simply put, given 
N equally spaced data points $0.. . sNal, Schuster recommended computing 
(using our notation) 

1 N-l 
P(w) = N C sneeiwn 

I I 

2 

n=O 
(13.3) 

for a range of frequencies w and looking for peaks-peaks that represent hid- 
den periodicities. We recognize this as the DFT power spectrum evaluated 
for the available data. 

Many of today’s DSP practitioners consider the FFT-based periodogram 
to be the most natural power spectral estimator. Commercially available 
hardware and software digital spectrum analyzers are almost exclusively 
based on the FFT. Indeed DFT-based spectral estimation is a powerful 
and well-developed technique that should probably be the first you explore 
when a new problem presents itself; but as we shall see in later sections it 
is certainly not the only, and often not even the best technique. 
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What is the precise meaning of the periodogram’s P(w)? We would like 
for it to be an estimate of the true power spectral density, the PSD that 
would be calculated were an infinite amount of data (and computer time) 
to be available. Of course we realize that the fact that our data only covers 
a finite time duration implies that the measurement cannot refer to an in- 
finitesimal frequency resolution. So the periodogram must be some sort of 
average PSD, where the power is averaged over the bandwidth allowed by 
the uncertainty theorem. 

What is the weighting of this average? The signal we are analyzing is 
the true signal, which exists from the beginning of time until its end, multi- 
plied by a rectangular window that is unity over the observed time interval. 
Accordingly, the FT in the periodogram is the convolution of the true FT 
with the FT of this window. The FT of a rectangular window is given by 
equation (4.22), and is sine shaped. This is a major disappointment! Not 
only do frequencies far from the minimum uncertainty bandwidth ‘leak’ into 
the periodogram PSD estimate, the strength of these distant components 
does not even monotonically decrease. 

Is the situation really as bad as it seems? To find out let’s take 64 
samples of a sinusoid with digital frequency 15/64, compute the FFT, take 
the absolute square for the positive frequencies, and convert to dB. The 
analog signal, the samples, and the PSD are shown in Figure 13.4.A. All 
looks fine; there is only a single spectral line and no leakage is observed. 
However, if we look carefully at the sine function weighting we will see that 
it has a zero at the center of all bins other than the one upon which it is 
centered. Hence there is never leakage from a sinusoid that is exactly centered 
in some neighboring bin (i.e., when its frequency is an integer divided by 
the number of samples). So let’s observe what happens when the digital 
frequency is slightly higher (e.g., fd = 15.04/64) as depicted in Figure 13.4.B. 
Although this frequency deviation is barely noticeable in the time domain, 
there is quite significant leakage into neighboring bins. Finally, the worst- 
case is when the frequency is exactly on the border between two bins, for 
example, fd = 15.5/64 as in Figure 13.4.C. Here the leakage is already 
intolerable. 

Why is the periodogram so bad? The uncertainty theorem tells us that 
short time implies limited frequency resolution but DSP experience tells us 
that small buffers imply bothersome edge effects. A moment’s reflection is 
enough to convince you that only when the sinusoid is precisely centered in 
the bin are there an integer number of cycles in the DFT buffer. Now recall 
that the DFT forces the signal to be periodic outside the duration of the 
buffer that it sees; so when there are a noninteger number of cycles the signal 
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Figure 13.4: Leakage in the spectrum of a single sinusoid. In (A) precisely 15 cycles of 
the sinusoid fit into the buffer of length 64 samples and thus its periodogram contains a 
single line. In (B) 15.04 cycles fit into the buffer and thus there is a small discontinuity 
at the edge. The periodogram displays leakage into neighboring bins. In (C) 14; cycles fit 
and thus the discontinuity and leakage are maximal. Note also that the two equal bins are 
almost 4 dB lower than the single maximal bin in the first case, since the Parseval energy 
is distributed among many bins. 

Figure 13.5: The effect of windowing with a noninteger number of cycles in the DFT 
buffer. Here we see a signal with 43 cycles in the buffer. After replication to the left and 
right the signal has the maximum possible discontinuity. 
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effectively becomes discontinuous. For example, a signal that has 4i cycles in 
the DFT buffer really looks like Figure 13.5 as far as the DFT is concerned. 
The discontinuities evident in the signal, like all discontinuities, require a 
wide range of frequencies to create; and the more marked the discontinuity 
the more frequencies required. Alternatively, we can explain the effect in 
terms of the Gibbs phenomenon of Section 3.5; the discontinuity generated 
by the forced periodicity causes ripples in the spectrum that don’t go away. 

Many ways have been found to fix this problem, but none of them are 
perfect. The most popular approaches compel continuity of the replicated 
signal by multiplying the signal in the buffer by some window function wn. 
A plethora of different functions 20~ have been proposed, but all are basi- 
cally positive valued functions defined over the buffer interval 0. . . N - 1 
that are zero (or close to zero) near the edges we M 0, WN x 0, but unity (or 
close to unity) near the middle wN/2 x 1. Most window functions (as will 
be discussed in more detail in Section 13.4) smoothly increase from zero to 
unity and then decrease back in a symmetric fashion. The exception to this 
smoothness criterion is the rectangular window (i.e., the default practice of 
not using a window at all, multiplying all signal values outside the buffer by 
zero, and all those inside by unity). For nondefault window functions, the 
new product signal sk = wnsn for which we compute the DFT is essentially 
zero at both ends of the buffer, and thus its replication contains no discon- 
tinuities. Of course it is no longer the same as the original signal s,, but for 
good window functions the effect on the power spectrum is tolerable. 

Why does multiplication by a good window function not completely dis- 
tort the power spectrum? The effect can be best understood by considering 
the half-sine window wn = sin( 7r j$ ) (which, incidentally, is the one window 
function that no one actually uses). Multiplying the signal by this window is 
tantamount to convolving the signal spectrum with the window’s spectrum. 
Since the latter is highly concentrated about zero frequency, the total effect 
is only a slight blurring. Sharp spectral lines are widened, sharp spectral 
changes are smoothed, but the overall picture is relatively undamaged. 

Now that we know how to correctly calculate the periodogram we can 
use it as a mowing power spectrum estimator for signals that vary over time. 
We simply compute the DFT of a windowed buffer, shift the buffer forward 
in time, and compute again. In this way we can display a sonogram (Sec- 
tion 4.6) or average the periodograms in order to reduce the variance of the 
spectral estimate (Section 5.7). The larger the buffer the better the frequency 
resolution, and when computing the DFT using the FFT we almost always 
want the buffer length to be a power of two. When the convenient buffer 
length doesn’t match the natural data buffer, we can zero-pad the buffer. 
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Although this zero-padding seems to increase the frequency resolution it 
obviously doesn’t really add new information. We often allow the buffers to 
overlap (half-buffer overlap being the most prevalent choice). The reason is 
that the windowing reduces the signal amplitude over a significant fraction 
of the time, and we may thus miss important phenomena. In addition, the 
spectral estimate variance is reduced even by averaging overlapped buffers. 

EXERCISES 

13.3.1 Show directly, by expressing the sample s~N+~ outside the buffer in terms 
of the complex DFT coefficients sk, that computing the N-point DFT corre- 
sponds to replicating the signal in the time domain. 

13.3.2 Plot the energy in a far bin as a function of the size of the discontinuity. (It’s 
enough to use a cosine of digital frequency a and observe the DC.) Why isn’t 
it practical to use a variable-length rectangular window to reduce leakage? 

13.3.3 Is signal discontinuity really a necessary condition for leakage? If not, what 
is the exact requirement? (Hint: Try the sinusoid sin(27r(lc + i)/N).) 

13.3.4 As the length of the buffer grows the number of discontinuities per time 
decreases, and thus we expect the spectral SNR to improve. Is this the case? 

13.3.5 In the text we discussed the half-sine window function. Trying it for a fre- 
quency right on a bin boundary (i.e., maximal discontinuity) we find that it 
works like a charm, but not for other frequencies. Can you explain why? 

13.4 Windows 

In Sections 4.6 and 13.3 we saw the general requirements for window func- 
tions, but the only explicit examples given were the rectangular window and 
the somewhat unusual half-sine window. In this section we will become ac- 
quainted with many more window functions and learn how to ‘window shop’, 
that is, to choose the window function appropriate to the task at hand. 

Windows are needed for periodograms, but not only for periodograms. 
Windows are needed any time we chop up a signal into buffers and the signal 
is taken to be periodic (rather than zero) outside the observation buffer. This 
is a very frequent occurrence in DSP! When calculating autocorrelations (see 
Chapter 9) the use of windows is almost universal; a popular technique of 
designing FIR filters is based on truncating the desired impulse response 
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by a window (see Section 7.8); sample buffers are windowed before LPC 
analysis (see Section 9.9); and the list goes on and on. Yet windowing as 
a preprocessing stage for the periodogram is probably the best known use, 
and we will concentrate on it here. Recalling the interpretation of the FT 
as a bank of FIR band-pass filters, we will see that the frequency response 
of these filters is directly determined by the window function used. 

We must, once again, return to the issue of buffer indexing. The com- 
puter programming convention that the buffer index runs from 0 to N - 1 
is usually used with a window that obeys w. = 0 and 20~ = 0. In this fash- 
ion the first point in the output buffer is set to zero but the last point is 
not (the N th point, which is zero, belongs to the next buffer). Some people 
cannot tolerate such asymmetry and make either both w. = 0, wNwl = 0 or 
w-1 = 0,WN = 0. These conventions should be avoided! The former implies 
two zeroed samples in the replicated signal, the latter none. In theoretical 
treatments the symmetric buffer indexation 44. . . M with M E g is com- 
mon, and here only one of the endpoints is to be considered as belonging to 
the present buffer. To make things worse the buffer length may be even or 
odd, although FFT buffers will usually be of even length. As a consequence 
you should always check your window carefully before looking through it. 
We will present expressions in two formats, the practical 0. . . N - 1 with 
even N and w. = 0, WN = 0 and the symmetric odd length -M . . . M with 
w&m = 0 and thus N = 2M + 1. To differentiate we will use an index n for 
the former case and m for the latter. 

The rectangular window is really not a window function at all, but we 
consider it first for reference. Measuring analog time in units of our sampling 
interval, we can define an analog window function w(t) that is one between 
t = -M and t = +M and zero elsewhere. We know that its FT is 

W(w) = M sinc(Mw) 

and its main lobe (defined between the first zeros) is of width g. As M 
increases the main lobe becomes narrower and taller, but if we increase the 
frequency resolution, as allowed by the uncertainty theorem, we find that the 
number of frequency bins remains the same. In fact in the digital domain 
the N = 2M point FFT has a frequency resolution of J$ (the sampling 
frequency is one), and thus the main lobe is two frequency bins in width for 
all M. It isn’t hard to do all the mathematics in the digital domain either. 
The digital window is 20~ = 1 for -M 5 m 5 +M and 20~ = 0 elsewhere. 
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The DFT is given by 

M 
wk = c e -ikm = ,-ikA4 

1 _ e-ike-2ikM sin( +Nk) 

m=- M 
1 - e-ik = sin($) 

where we have used formula (A.46) for the sum of a finite geometric series, 
and substituted N = 2M + 1. 

Prom this expression we can derive everything there is to know about the 
rectangular window. Its main lobe is two bins in width, and it has an infinite 
number of sidelobes, each one bin in width. Its highest sidelobe is attenuated 
13.3 dB with respect to the main lobe, and the sidelobes decay by 6 dB per 
octave, as expected of a window with a discontinuity (see Section 4.2). 

Before we continue we need some consistent quantities with which to 
compare windows. One commonly used measure is the noise bandwidth de- 
fined as the bandwidth of an ideal filter with the same maximum gain that 
would pass the same amount of power from a white noise source. The noise 
bandwidth of the rectangular window is precisely one, but is larger than 
one for all other windows. Larger main lobes imply larger noise bandwidths. 
Another important parameter is the ripple of the frequency response in the 
pass-band. The rectangular window has almost 4 dB pass-band ripple, while 
many other windows have much smaller ripple. We are now ready to see some 
nontrivial windows. 

Perhaps the simplest function that is zero at the buffer ends and rises 
smoothly to one in the middle is the triangular window 

wn = Wm = 1-2L I I 
M+l 

(13.4) 

which is also variously known as the Bartlett window, the Fejer window, the 
Parzen window, and probably a few dozen more names. This window rises 
linearly from zero to unity and then falls linearly back to zero. If the buffer 
is of odd length there is a point in the middle for which the window function 
is precisely unity, for even length buffers all values are less than one. The 
highest sidelobe of the triangular window is 26 dB below the main lobe, and 
the sidelobes decay by 12 dB per octave, as expected of a window with a 
first derivative discontinuity. However, the noise bandwidth is 1.33, because 
the main lobe has increased in width. 

The Harming window is named after the meteorologist Julius von Hann. 

for n =O...N- 1 (13.5) 
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Apparently the verb form ‘to Hann the data’ was used first; afterward people 
started to speak of ‘Hanning the signal’, and in the end the analogy with the 
Hamming window (see below) caused the adoption of the misnomer ‘Hanning 
window’. The Hanning window is also sometimes called the ‘cosine squared’, 
or ‘raised cosine’ window (use the ‘m’ index to see why). The Hanning 
window’s main lobe is twice as wide as that of the rectangular window, and 
at least three spectral lines will always be excited, even for the best case. 
The noise bandwidth is 1.5, the highest sidelobe is 32 dB down, and the 
sidelobes drop off by 18 dB per octave. 

The Hamming window is named in honor of the applied mathematician 
Richard Wesley Hamming, inventor of the Hamming error-correcting codes, 
creator of one of the first programming languages, and author of texts on 
numerical analysis and digital filter design. 

w,=0.54-0.46(1-cos(2+)) for n=O...iV-1 (13.6) 

The Hamming window is obtained by modifying the coefficients of the Han- 
ning window in order to precisely cancel the first sidelobe, but suffers from 
not becoming precisely zero at the edges. For these reasons the Hamming 
window has its highest sidelobe 42 dB below the main lobe, but asymptot- 
ically the sidelobes only decay by 6 dB per octave. The noise bandwidth is 
1.36, close to that of the triangular window. 

Continuing along similar lines one can define the Blackman-Harris family 
of windows 

Wn =,-~,cos(2~~)+.,cos(2++z~cos(2*~)... (13.7) 

and optimize the parameters in order to minimize sidelobes. More complex 
window families include the Kaiser and Dolph-Chebyshev windows, which 
have a free parameter that can be adjusted for the desired trade-off between 
sidelobe height and main-lone width. We superpose several commonly used 
windows in Figure 13.6. 

Let’s see how these windows perform. In Figure 13.7 we see the pe- 
riodogram spectral estimate of a single worst-case sinusoid using several 
different windows. We see that the rectangular window is by far the worst, 
and that the triangular and then the Hanning windows improve upon it. 



510 SPECTRAL ANALYSIS 

h 

cl 16 32 43 84 

Figure 13.6: Various window functions. Depicted are 64-point rectangular, triangular, 
Hanning, Hamming, Blackman, and Kaiser wkdows. - 
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Figure 13.7: Periodogram of worst-case single sinusoids using various window functions, 
namely (A) rectangular, (B) triangular, (C) Harming, (D) Hamming, (E) Blackman-Harris, 
and (F) Kaiser, Each periodogram is normalized such that its maximum height corresponds 
to 0 dB. 
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Afterward the choice is not clear cut. The Blackman and Kaiser windows 
reduce the sidelobe height, but cannot simultaneously further reduce the 
main lobe width. The Hamming window attempts to narrow the main lobe, 
but ends up with higher distant sidelobes. Not shown is a representative of 
the Dolph-Chebyshev family, which as can be assumed for anything bearing 
the name Chebyshev, has constant-height sidelobes. 

Which window function is best? It all depends on what you are trying to 
do. Rectangular weighting could be used for sinusoids of precisely the right 
frequencies, but don’t expect that to ever happen accidentally. If you are 
reasonably sure that you have a single clean sinusoid, this may be verified 
and its frequency accurately determined by using a mixer and a rectangular 
window STFT; just remember that the signal’s frequency is the combination 
of the bin’s frequency and the mixer frequency. An even trickier use of the 
rectangular window is for the probing of linear systems using synthetically 
generated pseudorandom noise inputs (see Section 5.4). By using a buffer 
length precisely equal to the periodicity of the pseudorandom signal we 
can ensure that all frequencies are just right and the rectangular weighted 
STFT spectra are beautiful. Finally, rectangular windows should be used 
when studying transients (signals that are nonxero only for a short time). 
We can then safely place the entire signal inside the buffer and guarantee 
zero signal values at the buffer edges. In such cases the rectangular window 
causes the least distortion and requires the least computation. 

For general-purpose frequency displays the Hanning and Hamming win- 
dows are often employed. They have lower sidebands and lower pass-band 
ripple than the rectangular window. The coefficients of the Hanning window 
needn’t be stored, since they are derivable from the FFT’s twiddle factor 
tables. Another trick is to overlap and average adjacent buffers in such a 
way that the time weighting becomes constant. 

A problem we haven’t mentioned so far is twc>-tone separability. We 
sometimes need to separate two closely spaced tones, with one much stronger 
than the other. Because of main lobe width and sidelobe height, the weaker 
tone will be covered up and not noticeable unless we choose our window 
carefully. For such cases the Blackman, Dolph-Chebyshev, or Kaiser windows 
should be used, but we will see stronger methods in the following sections. 
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EXERCISES 

13.4.1 Convert the Hanning and Hamming windows to symmetric ‘m’ notation and 
explain the names ‘cosine squared’ and ‘raised cosine’ often applied to the for- 
mer. Express the Hanning window as a convolution in the frequency domain. 
What are the advantages of this approach? 

13.4.2 Plot the periodograms for the same window functions as in Figure 13.7, but 
for a best-case sinusoid (e.g., for N = 64, a sinusoid of frequency 15/64). 

13.4.3 Plot periodograms of the logistics signal for various 1 5 X < 3.57, as was 
done in Section 5.5. Which window is best? Now use X that give for 3, 5, and 
6 cycles. Which window should be used now? 

13.4.4 Try to separate two close sinusoids, both placed in worst-case positions, and 
one much stronger than the other. Experiment with different windows. 

13.5 Finding a Sinusoid in Noise 

As we mentioned above, frequency estimation is simplest when we are given 
samples of a single clean sinusoid. Perhaps the next simplest case is when 
we are told that the samples provided are of a single sinusoid with additive 
uncorrelated white noise; but if the SNR is low this ‘simple’ case is not 
so simple after all. To use averaging techniques as discussed in Section 5.3 
one would have to know a priori how to perform the registration in time 
before averaging. Unfortunately, this would require accurate knowledge of 
the frequency, which is exactly what we are trying to measure in the first 
place! We could perform an FFT, but that would only supply us with the 
frequency of the nearest bin; high precision would require using a large 
number of signal points (assuming the frequency were constant over this 
time interval), and most of the computation would go toward finding bins of 
no interest. We could calculate autocorrelations for a great number of lags 
and look for peaks, but the same objections hold here as well. 

There are more efficient ways of using the autocorrelations. Pisarenko 
discovered one method of estimating the frequencies of p sinusoids in additive 
white noise using a relatively small number of autocorrelation lags. This 
method, called the Pisarenko Harmonic Decomposition (PHD), seems to 
provide an infinitely precise estimate of these frequencies, and thus belongs 
to the class of ‘super-resolution’ methods. Before discussing how the PHD 
circumvents the basic limitations of the uncertainty theorem, let’s derive it 
for the simple case of a single sinusoid (p = 1). 
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We assume that our signal is exactly of the form 

sn = Asin(wn + 4) -I- vn (13.8) 

where u is the uncorrelated white noise. Its autocorrelations are easily de- 
rived 

Cs(m) = (SnSn+m) 
A2 

= 2 cos(wm) + 0$5~,0 

and the first few lags are given by the following. 

(13.9) 

A2 
G(O) = T+o; 

G(l) = 
A2 
-yj- cos(w) 

G(2) = 
A2 A2 
2 cos(2w) = 2 (2co4w) - 1) 

The noise only influences the lag zero term (energy) due to the assumption 
of white noise. Any deviation from whiteness causes the other lags to acquire 
noise-related terms as well. 

Were the noise to be zero, we could simply calculate 

W 
cm = cos-l - ( > cs (0) 

but this fails miserably when noise is present. Can we find an expression that 
uses only nonzero lags, and is thus uninfluenced by the noise? Pisarenko’s 
method uses only the two lags m = 1 and m = 2. Using the trigonometric 
identity cos(2w) = 2cos2(w) - 1 it is easy to show that 

2Cs(l)c2 - Cs(2)c - Cs(1) = 0 

where we have denoted c = cos(w). This is a simple quadratic, with solutions 

W) & L cm + 2 
“=EJi) 24c,2(1) \i (13.10) 

only one of which leads to the correct solution (see exercise 13.5.2). We thus 
find 

w = cos-l cs (2) 
- 
4c, (1) 

+ &gn (G(l)) (13.11) 
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which is the PHD estimate for the digital angular frequency (the analog 
frequency is obtained by dividing by 27r and multiplying by the sampling 
frequency). 

The PHD expression we have just found is not a frequency estimate at 
all. Assuming the noise is perfectly white, it is an infinitely precise mea- 
surement of the frequency. Of course there is no problem with this infinite 
precision since we assumed that we have exact values for the two autocorre- 
lation lags C9(1) and Cs (2). Obtaining these exact values requires knowing 
the signal over all time, and therefore the uncertainty theorem does allow 
infinitely precise predictions. However, even when we use empirical autocor- 
relations (equation (9.11)) calculated using only N samples the prediction 
still seems to be perfectly precise. Unlike periodogram methods there is no 
obvious precision reduction with decreasing N; but the accuracy of the pre- 
diction decreases. It is straightforward, but somewhat messy, to show that 
the variance of the PHD estimator is inversely proportional to the size of 
the buffer and the square of the SNR (SNR = $). Y 

co424 + cos2(w) 1 
&UI = sin2(w)(cos(2ti) + 2)2 N SNR2 

The somewhat complex frequency-dependent prefactor means that the esti- 
mate is more accurate near DC (w = 0) and Nyquist (w = 7r), and there is 
a small dip near the middle of the range. More interesting is the N depen- 
dence; the proper Af is the standard deviation, and so we have a strange 
(Af)2At uncertainty product. Even more disturbing is the SNR dependence; 
as the SNR increases the error decreases even for small AL It is obvious that 
this error only reflects better noise cancellation with more data points, and 
not true uncertainty theorem constraints. 

So it seems that the PHD really does beat the uncertainty theorem. The 
explanation is, however, deceptively simple. We made the basic assumption 
that the signal was exactly given by equation (13.8). Once the parameters of 
the sinusoid are known, the signal (without the noise) is known for all times. 
The uncertainty product effectively has At = co and can attain infinitesimal 
frequency precision. This is the idea behind all model-based super-resolution 
methods. The data is used to find the parameters of the model, and the 
model is assumed to hold for all time. Thus, assuming that the assumption 
holds, the uncertainty theorem is robbed of its constraining influence. 
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EXERCISES 

13.5.1 Derive the expression (13.9) for the autocorrelation (use exercise 9.2.12). 

13.5.2 Exploiting the fact that we want 0 5 w < x show that the proper solution of 
the quadratic has the sign of C8 (1). 

13.5.3 In the text we quoted the variance of the error of the PHD estimation. What 
about its bias? Find this numerically for various buffer sizes. 

13.5.4 The PHD is a second-order frequency estimator in the sense that the highest 
autocorrelation lag it utilizes is m = 2. Using the trigonometric identity 
cos(w) + cos(3w) = 2 cos(clr) cos(2w) prove that Cs(l) - 2C,(2)c + C8(3) = 0. 
Show that this leads to the following third-order estimator. 

w = cos-l ( G(l) + G(3) 
2G (2) > 

13.5.5 Compare the third-order estimator of the previous exercise with the PHD by 
generating sinusoids in various amonnts of white noise and estimating their 
frequencies. Which is better for low SNR? High SNR? Small buffer size? 
Large buffer size? 

13.6 Finding Sinusoids in Noise 

The previous section dealt with the special case of a single sinusoid in noise. 
Here we extend the PHD to multiple sinusoids. The needed formalism is a 
bit more mathematically demanding (involving the roots of functions that 
are derived from the eigenvector of the signal covariance matrix belonging 
to the smallest eigenvalue), so we approach it cautiously. 

In order to derive the PHD for the sum of p sinusoids in uncorrelated 
white noise, 

sn = 2 Ai sin(tiin) + V, 
i=l 

we first rederive the p = 1 case in a different way. Recall that exponentials 
and sinusoids obey difference equations; those of real exponentials involve a 
single previous value, while sinusoids obey recursions involving two previous 
values. From equation (6.52) we know that a clean sinusoid X~ = A sin(wn) 
obeys the following recursion 

Xn = al%--1 + C12Xn-2 where 
Ul = 2cos(w) 
u2 = -1 

(13.12) 
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(we have simply defined al = -cl and a2 = -0~). We will call al and 
a2 recursion coeficients. Given the recursion coefficients we can write the 
equation 

1 - a& - a22 -2=0 or 22-2cos(w)z+1=o (13.13) 

which has the following solutions. 

x = i 
( 

2cos(w) ZIZ JZ$$Z 
> 

= cos(w) & isin = efiw 

Thus those z that solve equation (13.13) (i.e., the roots of the polynomial 
therein specified) are on the unit circle, and their angles are the frequencies 
(both positive and negative) of the original signal. This is a link between 
the recursion coefficients and the frequencies of the signal that obeys the 
recursion. 

The connection between this and the PHD is easiest to understand in 
vector notation. We define the vectors 

2 = ( %,%--1,%-2 > - 

a = (1 9 -al, -a2) 

so that equation (13.12) is written 

x-a=0 (13.14) - - 

i.e., the clean signal vector and the recursion coefficient vector are orthog- 
onal. Now the noisy signal is s = z + u. This signal has mean zero (since 
we assume the noise to be zer,me&) &d its covariance matrix is thus the 
signal autocorrelation matrix 

J& = (E”) = ( _ _ _ 2 2 (x + u)(d + Y )) = v +& W15) = 
where Vs is a 3-by-3 square matrix with elements V&j = C& - j). The 

first ter; Vz = ( xxt) is a symmetric Toeplitz matrix, the matrix I is the -- 
3-by-3 identity matrix, and a; is the variance of the noise. It is now%sy to 
see that 

Ku= ((&) ++= (c&g) ++=+ (13.16) 
- 

which shows that a is an eigenvector of the covariance matrix, Since eigen- 
values of Vz are n&negative, 0: must be the smallest eigenvalue of Vs. We 

E = 
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thus see that the frequency of a sinusoid in additive noise can be deter- 
mined by diagonalizing its autocorrelation matrix. This is a specific case of 
the desired formulation of the PHD. 

Theorem: The Pisarenko Harmonic Decomposition 
Given a signal s that is the sum of p sinusoids and uncorrelated white noise, 

P 

sn = 
U 

Aie 
i=l 

iw + Afe-iWn) + vn 

denote by VS the (2p + 1)-dimensional covariance matrix of this signal, and 

by a the e&vector of VS that belongs to the minimal eigenvalue. Then the - 
roots of 1 - x:=1 a&\re of the form xi = efiwi. n 

We can now understand the term decomposition that appears in the name 
PHD. The decomposition is that of the covariance matrix into signal-related 
and noise-related parts (see equation (13.15)) which implies the splitting 
of the (2p + 1)-dimensional space of signal vectors into orthogonal signal 
(equation (13.14)) and noise subspaces. 

The proof of the general p case is similar to that of the p = 1 case. The 
key idea is that signals consisting of p real exponentials or sinusoids obey 
difference equations; those of real exponentials involve p previous values, 
while p sinusoids obey recursions involving 2p previous values. It’s easier to 
understand this by first considering the exponential case. 

P 

xn = c 
Ai eQin 

i=l 

This can be expressed as the combination of p previous values. 

P 

Xn = c akxn-k (13.17) 
k=l 

Substituting the definition 

and thus 
P 

c ake-qik = 1 
k=l 
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we see that 

1 - 5 akzvk 
k=l 

has roots z = eqi. Similarly for the sum of sinusoids p . 
Xn = a Aielwn + Are -iwn 

i=l 
> 

we leave it as an exercise to show that 
2P 

Xn = c akxn-k 
k=l 

where 
2P 

1 - c a&z-’ 

(13.18) 

(13.19) 
k=l 

has roots zi = efiwi. 
In practice we do not have the real covariance matrix, and Pisarenko’s 

method uses the usual empirical estimates for Cs (0)) Cs (I), Cs (2), . . . Cs (2~). 
Once the covariance matrix has been estimated, we diagonalize it or use 
any available method for finding the eigenvector belonging to the minimal 
eigenvalue. This produces the recursion coefficients with which we can build 
the polynomial in (13.19) and find its roots numerically. Finally we obtain 
the desired frequencies from the angles of the roots. 

The PHD is only one of several frequency estimation methods that use 
eigenvector decomposition of the signal covariance matrix. Another pop- 
ular eigenvector method, called MUSIC (Multiple SIgnal Classification), 
provides a full spectral distribution, rather than the p discrete lines of the 
PHD. 

Alternative approaches are based on inverting the covariance matrix 
rather than diagonalizing it. Baron de Prony worked out such an algorithm 
for a similar problem back in 1795! Prony wanted to approximate N equally- 
spaced data points by the sum of p real exponentials (as in equation (13.17)). 
There are precisely 2p free parameters in the parametric form, so he needed 
N = 2p data points. Were the e qit factors known, finding the Ai would be 
reduced to the solution of p simultaneous linear equations; but the pi appear 
in an exponent, creating a very nonlinear situation. Prony’s idea was to find 
the qs first, using the recursion relating the data values. For exponentials the 
recursion is equation (13.17) for all n. Given N signal values, x0, xl, . . . XIV-l, 

we consider only the N - p equations for which all the required signal values 
are in the buffer. 
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xp = alxp-l + a2xp-2 + - + apx?;o 

Xp+l = a1xp + a2xp-l + - l + 
apx1 

XN-1 = a1xN-2 + a2xIG3 + l * . + apxNmpDl 

This can be written in matrix form 

/ xp-1 xp-2 xp-3 . . . x0 

ZP xp-1 xp-2 . . . Xl 
xp+I xp xp-I “0 Xl 

. . . . . . . . . l 

. . . . . 

\ XN-2 XN-3 xq+4 . . . XN-p-1 
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and for N = 2p the matrix is square Toeplitz and the equations can be 
readily solved for the ak. Once we have the al, we can find the roots of the 
polynomial, and retrieve the qi . Thereafter the Ai can be found as explained 
above. Thus Prony’s method reduces the solution of a very nonlinear prob- 
lem to the solution of two linear problems and the (nonlinear) operation of 
finding the roots of a polynomial. 

EXERCISES 

13.6.1 Why are the eigenvalues of CZ nonnegative? 

13.6.2 Complete the proof of the PHT for general p. To do this prove equation (13.18) 
and the claim about the roots. 

13.6.3 Specialize the PHD back to p = 1 and show that we obtain our previous 
PHD equation (13.11). 

13.6.4 What is the computational complexity of the PHD for general p? 

13.6.5 Prony’s method as described works only for noiseless signals. How can it be 
extended to the noisy case? 

13.6.6 Extend Prony’s method to p sinusoids. 
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13.7 IIR Methods 

Armed with the ideas acquired in the previous sections, we return to the 
problem of estimating the entire power spectral distribution from samples 
in the time domain. In Section 4.6 we saw that the DFT periodogram can 
be a powerful spectral estimator, but does not produce the exact spectrum 
due to the signal only being observed for short times. In Section 13.2 we saw 
that the STFT is essentially a bank of FIR filters. Can we improve on the 
periodograrn by using a bank of IIR filters? 

Recall that the DFT is simply the zT 

44 = zT(s,) = 5 s,z-~ 
n=--00 

calculated on the unit circle. Thus corresponding to the moving STFT there 
is a STzT 

Sm(Z) = 2 SnZBn (13.20) 
n=m-N+l 

where we have not explicitly shown a window function and have chosen the 
causal indexing convention. At time n = 0 this reduces to 

0 N-l 

SO(%) = C Sn%-n = C S-nZn (13.21) 
n=-N+l n=O 

an (N- 1) th degree polynomial in z. By comparison, the full zT is an infinite 
Laurent series, 

S(z) = E SnZwn = g S,Zmn + 2 S_,Zn 
TX=-00 n=l n=O 

and the STzT can be considered to be a polynomial approximation to these 
infinite sums. 

What kind of approximation to the infinite Laurent series is the polyno- 
mial? It is obviously an d-zero approximation since no poles in the z-plane 
can be produced, only zeros. Spectra with no discrete lines (delta functions) 
are well approximated by such polynomials, but spectra with sharp reso- 
nances are not. Sharp features such as delta functions are better captured 
by an approximation such as 

(13.22) 
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which is obviously an all-pole approximation to the full zT. All-pole ap- 
proximations may efficiently describe resonances that would take dozens of 
coefficients in the all-zero model; and like the Pisarenko estimate the fre- 
quencies of the poles may be measured to higher resolutions than the STFT 
allows. To capture both zeros and poles in the true spectrum we had best 
consider an ARMA model. 

c 
N 
n=Q %Z 

‘(‘) !a C,M,Q bmxm 
(13.23) 

In order to use the all-pole model of equation (13.22) we need a method 
of finding the coefficients b, , but these are precisely the LPC coefficients of 
Section 9.9. We saw there how to set up the Yule-Walker equations and solve 
them using the Levinson-Durbin recursion. Once we have them, what is the 
explicit connection between the LPC coefficients and the AR spectrum of 
the signal? From 

H(z) = 
G G 

1 + C:=, bmZ-m = C!fzQ b,+-m 

it is straightforward to obtain the power spectrum by restricting to the unit 
circle. 

lwJ)12 = G2 G2 

I1 + c;=, alce -iwkl2 = I & ake-iwk12 
(13.24) 

Which type of approximation is best, all-zero, all-pole, ARMA? The an- 
swer depends on the problem at hand. Speech signals tend to have spectra 
with resonant peaks called formants caused by the geometry of the vocal 
tract (see Section 19.1). Such spectra are most naturally approximated by 
all-pole models. All-zero DFT based methods are better for spectra contain- 
ing narrow valleys but no peaks, such as noise that passed through notch 
filters. In any case arbitrary spectra can be approximated by either all-pole 
or all-zero models by using high enough orders. Prom this point of view, the 
incentive behind choosing a model is one of efficiency. 

Yet there is another reason for choosing an all-pole model. The Wiener- 
Khintchine theorem relates the power spectrum to the infinite set of auto- 
correlations C&n) for all lags m. In practice we can compute only a limited 
number of autocorrelations, and would like to estimate the power spectrum 
based on these. We might assume that all unknown autocorrelations are 
exactly zero, 

S(w) = 2 C,(n-~)e-~~” + 5 Cs(m)e-imw (13.25) 
m=-co m=- M 
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which is not a bad assumption if the autocorrelations die off rapidly enough. 
This is easily seen to be an all-zero approximation, and leads to the blur- 
ring of sharp spectral lines. In 1967, John Burg introduced an alternative 
assumption, that the spectral estimate should be the most random spectrum 
consistent with the lags we do have. By ‘most random’ we mean the spec- 
trum with the highest ‘entropy’, and thus this technique is called maximum 
entropy spectral analysis. 

The reasoning behind the maximum entropy principle is easy to under- 
stand. DFT methods assume that all data that has not been observed either 
consist of periodic repetition of the data we have seen or are identically zero. 
There is usually little physical evidence for such assumptions! Maximum en- 
tropy means that we should remain as open minded as possible regarding 
unseen data. Indeed Burg’s method actually tells us to use the most unpre- 
dictable extrapolation of the data possible. There are many possible spectra 
that are consistent with the data we have collected, each corresponding to a 
different extrapolation of the data; maximum entropy insists that the most 
likely spectrum is that corresponding to the least constraints on the un- 
known data. In other words we should assume that the uncollected data is 
as random as possible. 

What type of approximation corresponds to the maximum entropy as- 
sumption? In Section 18.6 we will see, and if you have studied thermody- 
namics you already know, that maximum randomness means maximization 
of the ‘entropy’. We assume that the entropy 

HE 
J 

In S(w) dcj (13.26) 

is maximized under the constraint that the observed autocorrelation lags 
(those with lags Irn 1 2 M) do indeed obey Wiener-Khintchine. 

Cs(m) = J$ /f+)eimw (13.27) 

The integral in equation (13.26) depends on all the autocorrelations, not 
just the known ones, and the maximum we seek is for all possible values 
of the unknown autocorrelations, We differentiate with respect to all the 
autocorrelations with Irnl > M and set equal to zero. 

0 
OH J dlnS as(w) dw J 1 

= X,(m) = dS XYJm) = qqe 
-imw h 
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We see that the Fourier coefficients of the reciprocal of S(w) are zero for 
Im( > M (i.e., the inverse spectrum is a finite Fourier series). Accordingly, 
the maximum entropy power spectrum can be written as the reciprocal of a 
finite Fourier series, that is, is all-pole. 

EXERCISES 

13.7.1 Generate a signal that is the sum of a small number of sinusoids and noise. 
Find the PSD via the periodogram. Solve the LPC equations and derive the 
spectrum using equation (13.24). Compare the results. Experiment by placing 
weak spectral lines close to strong ones (recall exercise 13.4.4). 

13.7.2 Record some speech and compute its all-pole spectrum. What features do 
you observe? Can you recognize different sounds from the PSD? 

13.8 Walsh Functions 

As we saw in Section 3.4, the Fourier transform is easily computable because 
of the orthogonality of the sinusoids. The sinusoids are in some senses the 
simplest orthogonal family of functions, but there are other families that 
are simple in other ways. The Walsh functions, the first few of which are 
depicted in Figure 13.8, are an interesting alternative to the sinusoids. They 
are reminiscent of square waves, but comprise a complete orthogonal family. 
Like square waves all of the signal values are fl; due to this characteristic 
the Walsh transform can be computed without any true multiplications at 
all. 

It is conventional to define the Walsh functions recursively. For the unit 
interval 0 5 t 5 1 we define 

wall01 (t) = 1 (13.28) 

callkl (t) = wa1L2”l (t) = waP1 2t + (-1)” ( > wall’1 (2(t - a)) 

sal[“+ll(t) = wal[2k+11(t) = wall”] (2t) - (-1)” wal[“l (2(t - i)) 

and assume all of the functions to be zero to t < 0 and t < 1. After thus 
defining the functions on the unit interval we extend the definitions periodi- 
cally to the entire t axis. Note that the ‘wal’ functions are a single family like 
the complex exponentials, while the ‘Sal and ‘Cal’ functions are analogous 
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waP 3 NTqb 
salr31 

waP1 q 
sa1141 

Figure 13.8: The first eight Walsh functions in order of increasing sequency. The cal 
functions are on the left and the sal functions on the right. 

to sine and cosine. The label k equals the number of transitions in the unit 
interval and is called the sequency. 

The value-by-value product of two Walsh functions is always a Walsh 
function 

wal[‘l (t ) wal bl (t ) = walIkl (t ) 

where k is obtained by bit-by-bit xor of i and j. From this and the fact that 
all Walsh functions except wal[‘l are DC-free it is easy to prove the required 
orthonormality property. 

s 

1 
walIil (t) walli] (t) dt = 6. . 

0 
213 

There is also a discrete version of this property. 

z walIil (g) walk1 (i) = NSi,j 
= 

Analogously to the Fourier transform we can expand arbitrary signals as 
combinations of Walsh functions, thus defining the Walsh transform. Hence 
signals can be interpreted as functions in the time domain or sequency do- 
main. In DSP we are more interested in the discrete Walsh transform (DWT) 
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N-l 

& = 
c 
n=O 

Xn = j+ “c’ & w&l[k] (13.29) 
k=O 

where the normalization was chosen according to our usual convention. This 
looks very similar to the DFT. The two-point transform is identical to that 
of the DFT 

x0 = x0 + Xl 

Xl = x()-x1 

but the four-point transform is simpler. 

x0 = x0 + Xl + 52 + x3 

x1 = x0 + Xl - x2 - x3 

x2 = x0-21 -x2+x3 

x3 = x()-x1 +x2 -23 

Note that Walsh transforms are computed without nontrivial multiplica- 
tions, requiring only IV2 additions. Analogously to the FFT, a fast Walsh 
transform (FWT) can be defined, reducing this to O(N log N) additions. 

EXERCISES 

13.8.1 Plot Sal(t) and overlay it with sin(2?rt); similarly plot Cal(t) and overlay 
cos(2nt). What is the relationship? 

13.8.2 What is the connection between the Walsh functions and the Hadamard 
matrices defined in exercise 14.5.3? 

13.8.3 Find a nonrecursive formula for wallkl(t). 

13.8.4 Write a program that computes the decimation in sequency fast Walsh trans- 
form (see Section 14.3). 

13.8.5 Since the DWT can be computed without multiplications and using only real 
arithmetic, it would be useful to be able to obtain the DFT from the DWT. 
How can this be done? 

13.8.6 In the Fourier case multiplication is related to convolution. What is the 
analogous result for Walsh transforms? 
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13.8.7 Another purely real transform is the Hartley transform 

X(f) = &JW x(t) cas(wt) tit 
-W 

x(t) = 
J 

O” X(f) 44 df 
-00 

where we defined cas(t) = cos(t) + sin(t). Note that the Hartley transform is 
its own inverse (to within normalization). Similarly we can define the discrete 
Hartley transform. 

1 
N-l 

& = - 
N c 

n=O 

N-l 

2, = 
c 
k=O 

How do you retrieve the power spectrum from the Hartley transform? Ob- 
tain the DFT from the discrete Hartley transform. Develop a fast Hartley 
transform (see Section 14.3). 

13.9 Wavelets 

No modern treatment of spectral analysis could be complete without men- 
tioning wavelets. Although there were early precursors, wavelet theory orig- 
inated in the 1980s when several researchers realized that spectral analysis 
based on basis functions that are localized in both frequency and time could 
be useful and efficient in image and signal processing. 

What exactly is a wavelet? A basic wavelet is a signal $(t) of finite time 
duration. For example, a commonly used basic wavelet is the sinusoidal pulse 

Nt) = w(t) eiwot (13.30) 

where w(t) is any windowing function such as a rectangular window, a sine 
window or a raised cosine window. Such a pulse is only nonzero in the 
time domain in the vicinity of to and only nonzero in the frequency domain 
near wg. The STFT is based on just such functions with w(t) being the 
window chosen (see Section 13.4) and CJO the center of a bin. Ram the basic 
wavelet we can make scaled and translated wavelets using the following 
transformation 

(13.31) 
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where the prefactor normalizes the energy. The time translation to is simple 
to understand, it simply moves the wavelet along the time axis. The time 
duration of the wavelet is proportional to r; conversely, you can think of the 
scaling transformation compressing the time scale for r > 1 and stretching 
it for r < 1. The center frequency is inversely proportional to r (i.e., the 
frequency axis scales in the opposite way to the time axis). 

What about the wavelet’s bandwidth? Since the nonzero bandwidth re- 
sults from the finite time duration via the uncertainty theorem, the band- 
width must scale inversely to r. This last statement can be made more 
explicit by borrowing the filter design concept of the Q. 

Af Q=x (13.32) 

Since the center frequency f = 27rwo and the bandwidth both scale inversely 
with r, all the wavelets $(7(t), to, t) have the same Q. 

We can now build a transform based on these wavelets by replacing the 
infinite-duration sinusoids of the FT by finite-duration wavelets. 

(13.33) 

The essential difference between the constant Q wavelet transform and 
Fourier transform is depicted in Figure 13.9. The DFT divides the frequency 
axis into equal bandwidth bins, while the wavelet transform bins have con- 
stant Q and thus increase in bandwidth with increasing frequency. The cen- 
ter frequencies of the wavelet transform are equally spaced on a logarithmic 
frequency axis, compressive behavior much like that of our senses (see Sec- 
tion 11.2). While the STFT is matched to artificial signals engineered to 
equally partition the spectrum, the wavelet transform may be more suited 
to ‘natural’ signals such as speech. 

Are there cases where the wavelet transform is obviously more appropri- 
ate than the STFT? Assume we need to analyze a signal composed of short 
pulses superposed on sinusoids of long duration. We need to measure both 
the frequencies of the sinusoids as well as the time durations of the pulses. 
The uncertainty theorem restricts our accurately measuring the frequency 
of the pulses, but not that of the steady sinusoids; but to use the STFT we 
are forced into making a choice. If we use long windows we can accurately 
measure the frequencies, but blur the pulse time information; if we use short 
windows we can note the appearances and disappearances of the pulses, but 
our frequency resolution has been degraded. Using the wavelet transform the 
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Figure 13.9: Comparison of Fourier and wavelet transforms. The top figure depicts a 
four bin DFT while the bottom is a four-bin wavelet transform. Note that the FT bins 
have constant bandwidth while those of the wavelet transform have constant Q. For the 
purposes of illustration we have taken the basic wavelet to be rectangular in the frequency 
domain. 

time resolution gets better with higher frequency, while the frequency reso- 
lution becomes better at low frequencies (longer time durations). So using 
a single wavelet transform we can perform both measurements. 

Digital wavelet transforms can be computed efficiently (a fast wavelet 
transform) using the pyramid algorithm, which extends the recursive com- 
putation of the logarithmic spectrum discussed in Section 13.2. We employ 
a pair of filters called Quadrature Mirror Filters (QMFs). The QMF pair 
consists of a low-pass FIR filter that passes the lower half of the spectrum 
and a high-pass FIR filter that passes the upper half. The two filters are 
required to be mirror images of each other in the spectral domain, and in 
addition they must guarantee that the original signal may be recovered. 
The simplest QMF pair is (a, 4) and (3, -&, the first being low-pass, the 
second high-pass, and their sum obviously the original signal. The pyramid 
algorithm works as follows. First we apply the QMF filters to the incoming 
signal, creating two new signals of half the original bandwidth. Since these 
signals are half bandwidth, we can decimate them by a factor of two with- 
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out loss of information. The decimated output of the high-pass is retained 
as the signal of the highest bin, and the QMF filters applied to lower band 
signal. Once again both signals are decimated and the higher one retained. 
The process is repeated, halving the bandwidth at each iteration, until all 
the desired outputs are obtained. The name ‘pyramid’ refers to the graph 
depicting the hierarchical relationship between the signals. 

What is the computational complexity of the pyramid algorithm? If the 
QMF filters have M coefficients, the first iteration requires 2MN multipli- 
cations to produce N outputs. The second iteration operates on decimated 
signals and so requires only MN multiplications to produce outputs corre- 
sponding to the same time duration. Each iteration requires half the com- 
putations of the preceding, so even were we to compute an infinite number 
of iterations the number of multiplications would be 2 + 1 + i + a + . . . = 4 
times MN. So the wavelet transform is O(N) (better than the FFT), and 
no complex operations are required! 

EXERCISES 

13.9.1 Use a raised cosine times a sine as a basic wavelet and draw the scaled 
wavelets for various r. Compare these with the basis functions for the STFT. 

139.2 A digital QMF pair obeys IIOpl(f)l = II-W(~ - f)l, where H[~P]I(~) and 
I#131 (f) are the frequency responses of the low-pass and high-pass filters. 
Show that /$“I = (-l)nhpl or &?I = (-1) n [IPI h,, for odd length filters 
and similar statements for even length ones. Show that the latter form is 
consistent with the wavelets being an orthogonal basis for even length filters. 

13.9.3 Can the original signal really be recovered after QMF filtering and decimation 
have been applied? 

139.4 Derive an efficient procedure for computing the inverse digital wavelet trans- 
form. 

13.9.5 Build a signal consisting of two close sinusoids that pulse on and off. Similarly 
build a signal that consists of a single sinusoid that appears as two close 
pulses. Try to simultaneously measure frequency and time phenomena using 
the STFT and the wavelet transform. 

13.9.6 Compare the wavelet transform with the time-frequency distributions dis- 
cussed in Section 4.6. 
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Bibliographical Notes 

Kay and Marple have written a good tutorial of modern approaches to spectral 
analysis [128], and each has written a book as well [127, 1231. 

The periodogram waa first introduced by Schuster [233] and became an even 
more indispensable tool after the introduction of the FFT. Blackman and Tukey 
wrote early book on the practical calculation of power spectra [19]. The bible of 
windows was written by Harris [93]. 

As noted in the bibliographical notes to Chapter 6, Yule [289] formulated the 
Yule-Walker equations for signals containing one or two sinusoidal components in 
the late 192Os, in an attempt to explain the 11-year periodicity of sunspot num- 
bers. Walker, calling Yule’s earlier work ‘an important extension of our ideas re- 
garding periodicity’, expanded on this work, discovering that the autocorrelations 
were much smoother than the noisy signal itself, and suggesting using the ‘corre- 
lation periodogram’ as a substitute for the Schuster periodogram. He applied this 
technique to the analysis of air pressure data and could rule out as spurious various 
claimed periodicities. 

Wiener was instrumental in explaining why the Schuster periodogram did not 
work well for noisy signals [276, 2771, but this was not widely appreciated at the 
time. A highly interesting historical account is given by Robinson [223]. 

Pisarenko’s original article is [196]. Various authors have analyzed the perfor- 
mance of the PHD [227, 255, 2851. 

Officer of the U.S. Navy and Harvard mathematician Joseph Leonard Walsh 
presented his functions in 1923 [268]. The standard text is [12] and a short introduc- 
tion can be found in [13]. The conversion between DWT and DFT was expounded 
in [256, 2571. Hartley, who was in charge of telephone research at Bell Labs and 
responsible for an early analog oscillator, presented his transform in 1942 [94]. The 
DHT and FHT were published in [24, 251. The standard text is [27]. 

Wavelets already have a rich literature. For DSP purposes we recommend the 
review article by Rioul and Vetterli [221]. 


