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Digital Filter Implementation 

In this chapter we will delve more deeply into the practical task of using 
digital filters. We will discuss how to accurately and efficiently implement 
FIR and IIR filters. 

You may be asking yourself why this chapter is important. We already 
know what a digital filter is, and we have (or can find) a program to find the 
coefficients that satisfy design specifications. We can inexpensively acquire 
a DSP processor that is so fast that computational efficiency isn’t a concern, 
and accuracy problems can be eliminated by using floating point processors. 
Aren’t we ready to start programming without this chapter? 

Not quite. You should think of a DSP processor as being similar to a jet 
plane; when flown by a qualified pilot it can transport you very quickly to 
your desired destination, but small navigation errors bring you to unexpected 
places and even the slightest handling mistake may be fatal. This chapter is 
a crash course in digital filter piloting. 

In the first section of this chapter we discuss technicalities relating to 
computing convolutions in the time domain. The second section discusses 
the circular convolution and how it can be used to filter in the frequency 
domain; this is frequently the most efficient way to filter a signal. Hard 
real-time constraints often force us to filter in the time domain, and so we 
devote the rest of the chapter to more advanced time domain techniques. 
We will exploit the graphical techniques developed in Chapter 12 in order 
to manipulate filters. The basic building blocks we will derive are called 
structures, and we will study several FIR and IIR structures. More complex 
filters can be built by combining these basic structures. 

Changing sampling rate is an important application for which special 
filter structures known as polyphuse filters have been developed. Polyphase 
filters are more efficient for this application than general purpose structures. 

We also deal with the effect of finite precision on the accuracy of filter 
computation and on the stability of IIR filters. 
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15.1 Computation of Convolutions 

We have never fully described how to properly compute the convolution sum 
in practice. There are essentially four variations. Two are causal, as required 
for real-time applications; the other two introduce explicit delays. Two of the 
convolution procedures process one input at a time in a real-time-oriented 
fashion (and must store the required past inputs in an internal FIFO), the 
other two operate on arrays of inputs. 

First, there is the causal FIFO way 

L-l 

Yn = c al Xn-1 
l=O 

(15.1) 

which is eminently suitable for real-time implementation. We require two 
buffers of length L-one constant buffer to store the filter coefficients, and a 
FIFO buffer for the input samples. The FIFO is often unfortunately called 
the static bufler; not that it is static---it is changing all the time. The name 
is borrowed from computer languages where static refers to buffers that 
survive and are not zeroed out upon each invocation of the convolution 
procedure. We usually clear the static buffer during program initialization, 
but for continuously running systems this precaution is mostly cosmetic, 
since after L inputs all effects of the initialization are lost. Each time a 
new input arrives we push it into the static buffer of length L, perform 
the convolution on this buffer by multiplying the input values by the filter 
coefficients that overlap them, and accumulating. Each coefficient requires 
one multiply-and-accumulate (MAC) operation. A slight variation supported 
by certain DSP architectures (see Section 17.6), is to combine the push 
and convolve operations. In this case the place shifting of the elements in 
the buffer occurs as part of the overall convolution, in parallel with the 
computation. 

In equation (15.1) the index of summation runs over the filter coefficients. 
We can easily modify this to become the causal array method 

n 

Yn = c an-i Xi 

i=n-(L-l) 

(15.2) 

where the index i runs over the inputs, assuming these exist. This variation 
is still causal in nature, but describes inputs that have already been placed in 
an array by the calling application. Rather than dedicating further memory 
inside our convolution routine for the FIFO buffer, we utilize the existing 
buffering and its indexation. This variation is directly suitable for off-line 
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computation where we compute the entire output vector in one invocation. 
When programming we usually shift the indexes to the range 0 . . . L - 1 or 
1 L. . . . 

In off-line calculation there is no need to insist on explicit causality since 
all the input values are available in a buffer anyway. We know from Chapter 6 
that the causal filter introduces a delay of half the impulse response, a delay 
that can be removed by using a noncausal form. Often the largest filter 
coefficients are near the filter’s center, and then it is even more natural 
to consider the middle as the position of the output. Assuming an odd 
number of taps, it is thus more symmetric to index the L = 2X + 1 taps 
as (2-A.. .a(). . . a~, and the explicitly noncausal FIFO procedure looks like 
this. 

A 

Yn = c Wh-1 (15.3) 
1=-X 

The corresponding noncausal arraybased procedure is obtained, once again, 
by a change of summation variable 

n-l-X 

Yn = c an-i Xi (15.4) 
i=n-X 

assuming that the requisite inputs exist. This symmetry comes at a price; 
when we get the n th input, we can compute only the (n- X) th output. This 
form makes explicit the buffer delay of X between input and output. 

In all the above procedures, we assumed that the input signal existed 
for all times. Infinite extent signals pose no special challenge to real-time 
systems but cannot really be processed off-line since they cannot be placed 
into finite-length vectors. When the input signal is of finite time duration and 
has only a finite number N of nonzero values, some of the filter coefficients 
will overlap zero inputs. Assume that we desire the same number of outputs 
as there are inputs (i.e., if there are N inputs, n = 0,. . . N - 1, we expect N 
outputs). Since the input signal is identically zero for n < 0 and n 2 N, the 
first output, yo, actually requires only X + 1 multiplications, namely uoxo, 
~1x1, through U-XXX, since al through a~ overlap zeros. 

a A ax-1 . . . a2 al ~0 a-1 a-2 . . . a-A+1 a-A 
0 0 . . . 0 0 x0 Xl x2 . . . xx-1 xx Xx+1.. . 

Only after X shifts do we have the filter completely overlapping signal. 

aA aA- aA- . . . al a0 a-1 . . . a-A+1 a-A 

x0 Xl x2 . . . xx-1 xx xx+1 l ** X2X-l x2x 52x+1 **a 
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Likewise the last X outputs have the filter overlapping zeros as well. 

. . . a A ax-1 . . . a2 al a0 a-1 a-2 . . . a-x+1 a-A 

. . . XN-1 XN-2 . . . 2N-2 XN-1 XN 0 0 . . . 0 0 
The programming of such convolutions can take the finite extent into ac- 
count and not perform the multiplications by zero (at the expense of more 
complex code). For example, if the input is nonzero only for N samples 
starting at zero, and the entire input array is available, we can save some 
computation by using the following sums. 

min(N-1,n) min(N-l,n+X) 

Yn = c an-iXi = c an-iXi (15.5) 
i=max(O,n-(l-l)) i=max(O,n-A) 

The improvement is insignificant for N >> L. 
We have seen how to compute convolutions both for real-time-oriented 

cases and for off-line applications. We will see in the next section that these 
straightforward computations are not the most efficient ways to compute 
convolutions. It is almost always more efficient to perform convolution by 
going to the frequency domain, and only harsh real-time constraints should 
prevent one from doing so. 

EXERCISES 

15.1.1 Write two routines for array-based noncausal convolution of an input signal 
x by an odd length filter a that does not perform multiplications by zero. 
The routine convolve (N, L, x, a, y> should return an output vector y of 
the same length N as the input vector. The filter should be indexed from 0 
to L- 1 and stored in reverse order (i.e., a0 is stored in a [L-II ) . The output 
yi should correspond to the middle of the filter being above xi (e.g., the first 
and last outputs have about half the filter overlapping nonzero input signal 
values). The first routine should have the input vector’s index as the running 
index, while the second should use the filter’s index. 

15.1.2 Assume that a noncausal odd-order FIR filter is symmetric and rewrite the 
above routines in order to save multiplications. Is such a procedure useful for 
real-time applications? 

15.1.3 Assume that we only want to compute output values for which all the filter 
coefficients overlap observed inputs. How many output values will there be? 
Write a routine that implements this procedure. Repeat for when we want 
all outputs for which any inputs are overlapped. 
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15.2 FIR Filtering in the Frequency Domain 

After our extensive coverage of convolutions, you may have been led to be- 
lieve that FIR filtering and straightforward computation of the convolution 
sum as in the previous section were one and the same. In particular, you 
probably believe that to compute N outputs of an L-tap filter takes NL 
multiplications and N( L - 1) additions. In this section we will show how 
FIR filtering can be accomplished with significantly fewer arithmetic oper- 
ations, resulting both in computation time savings and in round-off error 
reduction. 

If you are unconvinced that it is possible to reduce the number of multi- 
plications needed to compute something equivalent to N convolutions, con- 
sider the simple case of a two-tap filter (a~, al). Straightforward convolution 
of any two consecutive outputs yn and yn+r requires four multiplications 
(and two additions). However, we can rearrange the computation 

Yn = al&a + aox,+ = a1(xn + Xn+l) - (a1 - ao)xn+1 

Yn+l = al&b+1 + aOXn+2 = ao(Xn+l + X,+2) + (al - Q~O)xn+l 

so that only three multiplications are required. Unfortunately, the number of 
additions was increased to four (al - a0 can be precomputed), but nonethe- 
less we have made the point that the number of operations may be decreased 
by identifying redundancies. This is precisely the kind of logic that led us 
to the FFT algorithm, and we can expect that similar gains can be had for 
FIR filtering. In fact we can even more directly exploit our experience with 
the FFT by filtering in the frequency domain. 

We have often stressed the fact that filtering a signal in the time domain 
is equivalent to multiplying by a frequency response in the frequency domain. 
So we should be able to perform an FFT to jump over to the frequency do- 
main, multiply by the desired frequency response, and then iFFT back to 
the time domain. Assuming both signal and filter to be of length N, straight 
convolution takes O(N2) operations, while the FFT (O(N log N)), multipli- 
cation (O(N)), and iFFT (once again 0( N log N)) clock in at 0 (N log N) . 
This idea is almost correct, but there are two caveats. The first problem 
arises when we have to filter an infinite signal, or at least one longer than 
the FFT size we want to use; how do we piece together the individual results 
into a single coherent output? The second difficulty is that property (4.47) 
of the DFT specifies that multiplication in the digital frequency domain cor- 
responds to circular convolution of the signals, and not linear convolution. 

As discussed at length in the previous section, the convolution sum con- 
tains shifts for which the filter coefficients extend outside the signal. There 
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Figure 15.1: Circular convolution for a three-coefficient filter. For shifts where the index 
is outside the range 0.. . N - 1 we assume it wraps around periodically, as if the signal 
were on a circle. 

we assumed that when a nonexistent signal value is required, it should be 
taken to be zero, resulting in what is called linear convolution. Another 
possibility is circular convolution, a quantity mentioned before briefly in 
connection with the aforementioned property of the DFT. Given a signal 
with L values x0, x1 . . . XL-~ and a set of A4 coefficients ao, al . . . aM- 1 we 
defined the circular (also called cyclic) convolution to be 

Yl =a@xf c %-II x(l-m) mod L 

m 

where mod is the integer modulus operation (see appendix A.2) that always 
returns an integer between 0 and L - 1. Basically this means that when the 
filter is outside the signal range rather than overlapping zeros we wrap the 
signal around, as depicted in Figure 15.1. 

Linear and circular convolution agree for all those output values for which 
the filter coefficients overlap true signal values; the discrepancies appear 
only at the edges where some of the coefficients jut out. Assuming we have 
a method for efficiently computing the circular convolution (e.g., based on 

the FFT), can it somehow be used to compute a linear convolution? It’s not 
hard to see that the answer is yes, for example, by zero-padding the signal 
to force the filter to overlap zeros. To see how this is accomplished, let’s take 
a length-l signal x0 . . . XL- 1, a length M filter a0 . . . aM- 1, and assume that 
M < L. We want to compute the L linear convolution outputs ye . . . y~-i. 
The L - M + 1 outputs YM-1 through y~-r are the same for circular and 
linear convolution, since the filter coefficients all overlap true inputs. The 
other M - 1 outputs yo through PM-2 would normally be different, but if we 
artificially extend the signal by x-M+1 = 0, through x-r = 0 they end up 
being the same. The augmented input signal is now of length N = L+ M - 1, 
and to exploit the FFT we may desire this N to be a power of two. 
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It is now easy to state the entire algorithm. First we append M - 1 zeros 
to the beginning of the input signal (and possibly more for the augmented 
signal buffer to be a convenient length for the FFT). We similarly zero-pad 
the filter to the same length. Next we FFT both the signal and the filter. 
These two frequency domain vectors are multiplied resulting in a frequency 
domain representation of the desired result. A final iFFT retrieves N values 
yn, and discarding the first M - 1 we are left with the desired L outputs. 

If N is small enough for a single FFT to be practical we can compute 
the linear convolution as just described. What can be done when the input 
is very large or infinite? We simply break the input signal into blocks of 
length N. The first output block is computed as described above; but from 
then on we needn’t pad with zeros (since the input signal isn’t meant to be 
zero there) rather we use the actual values that are available. Other than 
that everything remains the same. This technique, depicted in Figure 15.2, 
is called the overlap save method, since the FFT buffers contain M - 1 input 
values saved from the previous buffer. In the most common implementations 
the M - 1 last values in the buffer are copied from its end to its beginning, 
and then the buffer is filled with N new values from that point on. An even 
better method uses a circular buffer of length L, with the buffer pointer 
being advanced by N each time. 

You may wonder whether it is really necessary to compute and then dis- 
card the first M - 1 values in each FFT buffer. This discarding is discarded 
in an alternative technique called overlap add. Here the inputs are not over- 
lapped, but rather are zero-padded at their ends. The linear convolution can 
be written as a sum over the convolutions of the individual blocks, but the 
first M - 1 output values of each block are missing the effect of the previ- 
ous inputs that were not saved. To compensate, the corresponding outputs 
are added to the outputs from the previous block that corresponded to the 
zero-padded inputs. This technique is depicted in Figure 15.3. 

If computation of FIR filters by the FFT is so efficient, why is straight- 
forward computation of convolution so prevalent in applications? Why do 
DSP processors have special hardware for convolution, and why do so many 
software filters use it exclusively? There are two answers to these questions. 
The first is that the preference is firmly grounded in ignorance and laziness. 
Straightforward convolution is widely known and relatively simple to code 
compared with overlap save and add. Many designers don’t realize that sav- 
ings in real-time can be realized or don’t want to code FFT, overlap, etc. 
The other reason is more fundamental and more justifiable. In real-time ap- 
plications there is often a limitation on delay, the time between an input 
appearing and the corresponding output being ready. For FFT-based tech- 
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Figure 15.2: Overlap save method of filtering in the frequency domain. The input signal 
zn is divided into blocks of length 15, which are augmented with M - 1 values saved from 
the previous block, to fill a buffer of length N = L + M - 1. Viewed another way, the 
input buffers of length N overlap. The buffer is converted to the frequency domain and 
multiplied there by N frequency domain filter values. The result is converted back into 
the time domain, M - 1 incorrect values discarded, and L values output. 
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Figure 15.3: Overlap add method of filtering in the frequency domain. The input signal 
x,, is divided into blocks of length L, to which are added M - 1 zeros to fill a buffer of 
length N = L + M - 1. This buffer is converted to the frequency domain and multiplied 
there by N frequency domain filter values. The result is converted back into the time 
domain, M - 1 partial values at the beginning of the buffer are overlapped and then added 
to the M - 1 last values from the previous buffer. 
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niques this delay is composed of two parts. First we have to fill up the signal 
buffer (and true gains in efficiency require the use of large buffers), resulting 
in bufer delay, and then we have to perform the entire computation (FFT, 
block multiplication, iFFT), resulting in algorithmic delay. Only after all 
this computation is completed can we start to output the yn. While the 
input sample that corresponds to the last value in a buffer suffers only the 
algorithmic delay, the first sample suffers the sum of both delays. For appli- 
cations with strict limitations on the allowed delay, we must use techniques 
where the computation is spread evenly over time, even if they require more 
computation overall. 

EXERCISES 

15.2.1 Explain why circular convolution requires specification of the buffer size while 
linear convolution doesn’t. Explain why linear convolution can be considered 
circular convolution with an infinite buffer. 

15.2.2 The circular convolution yc = aeze + alzl, yi = aizo + aczl implies four 
multiplications and two additions. Show that it can be computed with two 
multiplications and four additions by precomputing Go = 3 (a0 + ai), G1 = 
$<a0 - al), and for each 20, ~1 computing zo = ~0 + ~1 and ~1 = ~0 - ~1. 

15.2.3 Convince yourself that overlap save and overlap add really work by coding 
routines for straightforward linear convolution, for OA and for OS. Run all 
three and compare the output signals. 

15.2.4 Do you expect OA/OS 
forward convolution in 

numerically to be more or less 
the time domain? 

accurate than straight- 

15.2.5 Compare the number of operations per time required for filtering an infinite 
signal by a filter of length M, using straightforward time domain convolution 
with that using the FFT. What length FFT is best? When is the FFT method 
worthwhile? 

15.2.6 One can compute circular convolution using an algorithm designed for linear 
convolution, by replicating parts of the signal. By copying the L - 2 last 
values before ~0 (the cyclic prefix) and the L - 2 first values after ZN- 1 (the 
cyclic sufix), we obtain a signal that looks like this. 

070, x N-L+l,XN-L+2,*.*XN-2,XN-l, 

x0,x1, *. * XN-2,xN-1, 

x0, Xl, * * * XL-37 XL-29 f 0,o 

Explain how to obtain the desired circular convolution. 

15.2.7 Can IIR filtering be performed in the frequency domain using techniques 
similar to those of this section? What about LMS adaptive filtering? 
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15.3 FIR Structures 

In this section we return to the time domain computation of convolution of 
Section 15.1 and to the utilization of graphic techniques for FIR filtering 
commenced in Section 12.2. In the context of digital filters, graphic imple- 
mentations are often called structures. 

Figure 15.4: Direct form implementation of the FIR filter. This form used to be known 
as the ‘tapped delay line’, as it is a direct implementation of the weighted sum of delayed 
taps of the input signal. 

In Figure 12.5, reproduced here with slight notational updating as Fig- 
ure 15.4, we saw one graphic implementation of the linear convolution. This 
structure used to be called the ‘tapped delay line’. The image to be conjured 
up is that of the input signal being delayed by having to travel with finite 
velocity along a line, and values being tapped off at various points corre- 
sponding to different delays. Today it is more commonly called the direct 
form structure. The direct form implementation of the FIR filter is so preva- 
lent in DSP that it is often considered sufficient for a processor to efficiently 
compute it to be considered a DSP processor. The basic operation in the 
tapped delay line is the multiply-and-accumulate (MAC), and the number 
of MACs per second (i.e., the number of taps per second) that a DSP can 
compute is the universal benchmark for DSP processor strength. 

Figure 15.5: Thnsposed form implementation of the FIR filter. Here the present input 
zn is multiplied simultaneously by all L filter coefficients, and the intermediate products 
are delayed and summed. 
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W 
x = - a,b = = E . c,& + y = 

L 
x.-b--p&q-WY 

Figure 15.6: Cascading simple filters. On the left the output y is created by filtering WI, 
itself the output of filtering x. On the right is the equivalent single filter system. 

Another graphic implementation of the FIR filter is the transposed struc- 
ture depicted in Figure 15.5. The most striking difference between this form 
and the direct one is that here the undelayed input xn is multiplied in par- 
allel by all the filter coefficients, and it is these intermediate products that 
are delayed. Although theoretically equivalent to the direct form the fact 
that the computation is arranged differently can lead to slightly different 
numeric results in practice. For example, the round-off noise and overflow 
errors will not be the same in general. 

The transposed structure can be advantageous when we need to partition 
the computation. For example, assume you have at your disposal digital filter 
hardware components that can compute L’ taps, but your filter specification 
can only be satisfied with L > L’ taps. Distributing the computation over 
several components is somewhat easier with the transposed form, since we 
need only provide the new input xn to all filter components in parallel, and 
connect the upper line of Figure 15.5 in series. The first component in the 
series takes no input, and the last component provides the desired output. 
Were we to do the same thing with the direct form, each component would 
need to receive two inputs from the previous one, and provide two outputs 
to the following one. 

However, if we really want to neatly partition the computation, the best 
solution would be to satisfy the filter specifications by cascading several 
filters in series. The question is whether general filter specifications can be 
satisfied by cascaded subfilters, and if so how to find these subfilters. 

In order to answer these questions, let’s experiment with cascading sim- 
ple filters. As the simplest case we’ll take the subfilters to depend on the 
present and previous inputs, and to have unity DC gain (see Figure 15.6). 

wn = axn + bxn-1 a+b=l 

Yn = Cwn + dwn-1 c+d=l (15.6) 

Substituting, we see that the two in series are equivalent to a single filter 
that depends on the present and two past inputs. 
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Yn = C(UXn + bXn--1) + d(UXn-1 + bXn-2) 

= acx, + (ad+b~)x,-.-~ + bdx,.e2 (15.7) 

= Ax, + Bx,-1 + CX~-2 

Due to the unity gain constraints the original subfilters only have one free 
parameter each, and it is easy to verify that the DC gain of the combined 
filter is unity as expected (A + B + C = 1). So we started with two free 
parameters, ended up with two free parameters, and the relationship from 
a, b, c, d to A, B, C is invertible. Given any unity DC gain filter of the form 
in the last line of equation (15.7) we can find parameters a, b, c, d such that 
the series connection of the two filters in equation (15.6) forms an equivalent 
filter. More generally, if the DC gain is nonunity we have four independent 
parameters in the cascade form, and only three in the combined form. This 
is because we have the extra freedom of arbitrarily dividing the gain between 
the two subfilters. 

This is one of the many instances where it is worthwhile to simplify 
the algebra by using the zT formalism. The two filters to be cascaded are 
described by 

Wn = (u+bz-l)x, 

Yn = (c+dz-‘)wn 

and the resultant filter is given by the product. 

Yn = (c + dz-‘)(a + bz-‘) xn 

= 
( 
UC + (ad + bc)z-’ + bdze2) xn 

= 
( 
A + Bz-’ + CzB2 xn > 

We see that the A, B, C parameters derived here by formal multiplication 
of polynomials in z-l are exactly those derived above by substitution of the 
intermediate variable wn. It is suggested that the reader experiment with 
more complex subfilters and become convinced that this is always the case. 

Not only is the multiplication of polynomials simpler than the substitu- 
tion, the zT formalism has further benefits as well. For example, it is hard 
to see from the substitution method that the subfilters commute, that is, 
had we cascaded 

vn = cxn + dxn-1 c+d=l 

Vn = awn + bwn-1 u+b=l 
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Figure 15.7: Cascade form implementation of the FIR filter. Here the input is filtered 
successively by M ‘second-order sections’, that is, simple FIR filters that depend on the 
present input and two past inputs. The term ‘second-order’ refers to the highest power of 
z -’ being two, and ‘section’ is synonymous with what we have been calling ‘subfilter’. If 
C m = 0 the section is first order. 

we would have obtained the same filter. However, this is immediately obvious 
in the zT formalism, from the commutativity of multiplication of polynomi- 
als. 

(c + cEz-l)(a + bz-l) = (a + bz-‘)(c + dz-l) 

Even more importantly, in the zT formalism it is clear that arbitrary filters 
can be decomposed into cascades of simple subfilters, called sections, by 
factoring the polynomial in zT. The fundamental theorem of algebra (see 
Appendix A.6) guarantees that all polynomials can be factored into linear 
factors (or linear and quadratic if we use only real arithmetic); so any filter 
can be decomposed into cascades of ‘first-order’ and ‘second-order’ sections. 

ho + h1z-l h() + h1z-l+ h2z-2 

The corresponding structure is depicted in Figure 15.7. 
The lattice structure depicted in Figure 15.8 is yet another implemen- 

tation that is built up of basic sections placed in series. The diagonal lines 
that give it its name make it look very different from the structures we 
have seen so far, and it becomes even stranger once you notice that the two 
coefficients on the diagonals of each section are equal. This equality makes 
the lattice structure numerically robust, because at each stage the numbers 
being added are of the same order-of-magnitude. 
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. . . 

. . . 

Figure 15.8: Lattice form implementation of the FIR filter. Here the input is filtered 
successively by M lattice stages, every two of which is equivalent to a direct form second- 
order section. 

In order to demonstrate that arbitrary FIR filters can be implemented 
as lattices, it is sufficient to show that a general second-order section can be. 
Then using our previous result that general FIR filters can be decomposed 
into second-order sections the proof is complete. A second-order section has 
three free parameters, but one degree of freedom is simply the DC gain. For 
simplicity we will use the following second-order section. 

Yn = Xn + hlxn-1 + h2xn-2 

A single lattice stage has only a single free parameter, so we’ll need two 
stages to emulate the second-order section. Following the graphic imple- 
mentation for two stages we find 

Yn = xn + hxn-1 + k2(klxn-l+ xn-2) 

= xn + kl(1 + k2)xn-l+ ksxn-2 

and comparing this with the previous expression leads to the connection 
between the two sets of coefficients (assuming h2 # -1). 

h = kl(l+ka) kl = & 
h2 = k2 k2 = h2 

EXERCISES 

15.3.1 Consider the L-tap FIR filter hu = 1, hi = X, h2 = X2,. , . hL-1 = XL-l. 
Graph the direct form implementation. How many delays and how many 
MACS are required? Find an equivalent filter that utilizes feedback. How 
many delays and arithmetic operations are required now? 

15.3.2 Why did we discuss series connection of simple FIR filter sections but not 
parallel connection? 
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15.3.3 We saw in Section 7.2 that FIR filters are linear-phase if they are either 
symmetric h-, = h, or antisymmetric h-, = -h,. Devise a graphic imple- 
mentation that exploits these symmetries. What can be done if there are an 
even number of coefficients (half sample delay)? What are the advantages of 
such a implementation? What are the disadvantages? 

15.3.4 Obtain a routine for factoring polynomials (these are often called polynomial 
root finding routines) and write a program that decomposes a general FIR 
filter specified by its impulse response h, into first- and second-order sections. 
Write a program to filter arbitrary inputs using the direct and cascade forms 
and compare the numeric results. 

15.4 Polyphase Filters 

The structures introduced in the last section were general-purpose (i.e., ap- 
plicable to most FIR filters you may need). In this section we will discuss 
a special purpose structure, one that is applicable only in special cases; 
but these special cases are rather prevalent, and when they do turn up the 
general-purpose implementations are often not good enough. 

Consider the problem of reducing the sampling frequency of a signal 
to a fraction & of its original rate. This can obviously be carried out by 
decimation by M, that is, by keeping only one sample out of each M and 
discarding the rest. For example, if the original signal sampled at fS is 

. . . X-12, X-11, X-10, X-9, X-8, X-7, X-6, X-5, 

X-4, X-3, X-2, X-l, x0, Xl, X2, X3, 

X4, x5, X6, X7, x0, x9, X10, X11, *a’ 

decimating by 4 we obtain a new signal yn with sampling frequency 4. 

Yn = . . . X-12, X-8, X-4, x0, X4, X8, l -- 

Of course 

Yn = . . . x-11, X-7, X-3, Xl, X5, xg, . . . 

Yn = l l l x-10, X-6, X-2, X2, X6, X10, * *. 

yn = l . . 
x-9, X-5, X-l, X3, X7, X11, l ’ * 

corresponding to different phases of the original signal, would be just as 
good. 
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Actually, just as bad since we have been neglecting aliasing. The original 
signal x can have energy up to $‘, while the new signal y must not have 
appreciable energy higher than A. In order to eliminate the illegal compo- 
nents we are required to low-pass filter the original signal before decimating. 
For definiteness assume once again that we wish to decimate by 4, and to 
use a causal FIR antialiasing filter h of length 16. Then 

wo = hoxo + hlxel + h2xv2 + h3xe3 + . . . + h15xs15 
Wl = hoxl + hlxo + f-w-1 + h3x-2 + . . . + h15x-14 
w2 = km + hm + h2xo + hzx-1 + . . . + h15x-13 (15.8) 

w3 = hox3 + hm + h2xl + h3xo + l . l + hisx-12 
w4 = hox4 + hlxs + h2x2 + h3x1 + . . . + h15x-ll 

but since we are going to decimate anyway 

yn = . . . w-12, ‘w-0, ‘w-4, wo, w4, w3, - * l 

we needn’t compute all these convolutions. Why should we compute wr, 
~2, or ws if they won’t affect the output in any way? So we compute only 

wo,w4,w,‘*~, each requiring 16 multiplications and 15 additions. 
More generally, the proper way to reduce the sample frequency by a 

factor of M is to eliminate frequency components over & using a low-pass 
filter of length L. This would usually entail L multiplications and additions 
per input sample, but for this purpose only L per output sample (i.e., only an 
average of h per input sample are really needed). The straightforward real- 
time implementation cannot take advantage of this savings in computational 
complexity. In the above example, at time 72 = 0, when x0 arrives, we need 
to compute the entire 16-element convolution. At time n = 1 we merely 
collect xi but need not perform any computation. Similarly for 72 = 2 and 
YL = 3 no computation is required, but when x4 arrives we have to compute 
another 16-element convolution. Thus the DSP processor must still be able 
to compute the entire convolution in the time between two samples, since 
the peak computational complexity is unchanged. 

The obvious remedy is to distribute the computation over all the times, 
rather than sitting idly by and then having to race through the convolution. 
We already know of two ways to do this; by partitioning the input signal or 
by decimating it. Focusing on we, partitioning the input leads to structuring 
the computation in the following way: 

wo = hoxo + hlx-1 + hp-2 + h3x-3 
+ h4x-4 + h5x-5 + h&L-6 + h7x-7 
t hgz-g t hgz-9 + box-lo + hx-11 
+ hx-12 + hw-. 13 + hx-14 + hw-15 
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Decimation implies the following order: 

wo = hoxo + h4z-4 + h8X-8 + h12x,12 
+ hlx-1 + h5x-5 + h9x-9 + hw-13 
+ hzx-2 + hjx-6 + hlox-lo + h14xv14 
+ hzx-3 + h7x-7 + hllx-ll + h15xw15 

In both cases we should compute only a single row of the above equations 
during each time interval, thus evenly distributing the computation over the 
M ‘time intervals. 

Now we come to a subtle point. In a real-time system the input signal 
x, will be placed into a buffer E. In order to conserve memory this buffer 
will usually be taken to be of length L, the length of the low-pass filter. The 
convolution is performed between two buffers of length L, the input buffer 
and the filter coefficient table; the coefficient table is constant, but a new 
input xn is appended to the input buffer every sampling time. 

In the above equations for computing wa the subscripts of xn are absolute 
time indices; let’s try to rephrase them using input buffer indices instead. 
We immediately run into a problem with the partitioned form. The input 
values in the last row are no longer available by the time we get around to 
wanting them. But this obstacle is easily avoided by reversing the order. 

wo = h12~--12 + hw--13 + h14xD14 + h15xs15 
+ h8X-8 + hgx-g + box-lo + he-11 
+ hx-4 + h5x-5 + hsX-6 + h7Xe7 
+ hoxo + hlx-1 + h2xs2 + h3xe3 

With the understanding that the input buffer updates from row to row, and 
using a rather uncommon indexing notation for the input buffer, we can now 
rewrite the partitioned computation as 

wo = h12E- 12 + hC3 + h&-l4 + h15Z15 
+ h&-g + &E--lo + hlo5s11 + hllE12 
+ h&-6 + h5E7 + h&-8 + h7Zg 
+ hoEe3 + hlZ4 + h2Z5 + h3%6 

and the decimated one as follows. 

wo = ho% 3 + h4L7 + h&l1 + h&-15 
+ hlS-3 + h5ZB7 + hgEmll + h13E15 
+ h2Z-3 + h&-7 + hloS-ll + h14E15 
+ h3Z- 3 + M-7 + hE--ll + h15Z15 
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Figure 15.9: The polyphase decimation filter. We depict the decimation of an input signal 
xn by a factor of four, using a polyphase filter. Each decimator extracts only inputs with 
index divisible by 4, so that the combination of delays and decimators results in all the 
possible decimation phases. hIk] for k = 0, 1,2,3 are the subfilters; h[‘l = (ho, hl , hz, ha), 
h[‘l = (hd, hg, he, h7), etc. 

While the partitioned version is rather inelegant, the decimated structure 
is seen to be quite symmetric. It is easy to understand why this is so. Rather 
than low-pass filtering and then decimating, what we did is to decimate and 
then low-pass filter at the lower rate. Each row corresponds to a different 
decimation phase as discussed at the beginning of the section. The low-pass 
filter coefficients are different for each phase, but the sum of all contributions 
results in precisely the desired full-rate low-pass filter. 

In the general case we can describe the mechanics of this algorithm as 
follows. We design a low-pass filter that limits the spectral components to 
avoid aliasing. We decimate this filter creating M subfilters, one for each 
of the M phases by which we can decimate the input signal. This set of M 
subfilters is called a polyphase filter. We apply the first polyphase subfilter 
to the decimated buffer; we then shift in a new input sample and apply 
the second subfilter in the same way. We repeat this procedure M times to 
compute the first output. Finally, we reset and commence the computation 
of the next output. This entire procedure is depicted in Figure 15.9. 

A polyphase filter implementation arises in the problem of interpolation 
as well. By interpolation we mean increasing the sampling frequency by an 
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integer factor N. A popular interpolation method is xero insertion, insert- 
ing N - 1 zeros between every two samples of the original signal x. If we 
interpret this as a signal of sampling rate Nf,, its spectrum under $ is the 
same as that of the original signal, but new components appear at higher 
frequencies. Low-pass filtering this artificially generated signal removes the 
higher-frequency components, and gives nonzero values to the intermediate 
samples. 

In a straightforward implementation of this idea we first build a new 
signal wn at N times the sampling frequency. For demonstration purposes 
we take N = 4. 

. . . w-16 = z-4, w-15 = 0, w-14 = 0, w-13 = 0, 

w-12 =x-3, w-11 =o, w-10 =o, w-g =o, 

W-8 =x-2, w-7=0, w-6 =o, W-5 =o, 

w-4 =x-1, w-3=0, w-2=0, w-1=0, wo=x(), . . . 

Now the interpolation low-pass filter performs the following convolution. 

Yo = howo + hw-I + hw-2 + h3w-3 + . , , + h15wS15 
Yl = howl + hlwo + &w-l + hw-2 + . . e + h15wv14 
Y2 = how + hlwl + h2wo + hw-1 + . . . + h15ws13 
Y3 = how + hlw2 + h2w + km + . . . + h15ww12 

However, most of the terms in these convolutions are zero, and we can save 
much computation by ignoring them. 

Yo = howo + hw-4 + hgww8 + h12ww12 

= hoxo + M-1 + h8x-2 + h12xs3 

Yl = hwo + bw-4 + hgws8 + h13we12 

= hxo + kz-1 + hgx-.-2 + h13x..m3 

Y2 = hzwo + hciw-4 + hlowqj + h14wD12 

= h2xo + hw-1 + h10x-2 + h14xv3 

Y3 = h3wo + hw-4 + hllw+ + h15wB12 

= h350 + hm-1 + hllxs2 + h15xv3 

Once again this is a polyphase filter, with the input fixed but the subfil- 
ters being changed; but this time the absolute time indices of the signal 
are fixed, not the buffer-relative ones! Moreover, we do not need to add the 
subfilter outputs; rather each contributes a different output phase. In actual 
implementations we simply interleave these outputs to obtain the desired 
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Figure 15.10: The polyphase interpolation filter. We depict the interpolation of an input 
signal xn by a factor of four, using a polyphase filter. Each subfilter operates on the same 
inputs but with different subfilters, and the outputs are interleaved by zero insertion and 
delay. 

interpolated signal. For diagrammatic purposes we can perform the inter- 
leaving by zero insertion and appropriate delay, as depicted in Figure 15.10. 

We present this rather strange diagram for two reasons. First, because its 
meaning is instructive. Rather than zero inserting and filtering at the high 
rate, we filter at the low rate and combine the outputs. Second, comparison 
with Figure 15.9 emphasizes the inverse relationship between decimation 
and interpolation. Transposing the decimation diagram (i.e., reversing all 
the arrows, changing decimators to zero inserters, etc.) converts it into the 
interpolation diagram. 

Polyphase structures are useful in other applications as well. Decima- 
tion and interpolation by large composite factors may be carried out in 
stages, using polyphase filters at every stage. More general sampling fre- 
quency changes by rational factors $$ can be carried out by interpolating 
by N and then decimating by M. Polyphase filters are highly desirable in 
this case as well. Filter banks can be implemented using mixers, narrow- 
band filters, and decimators, and once again polyphase structures reduce 
the computational load. 
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EXERCISES 

15.4.1 A commutator is a diagrammatic element that chooses between M inputs 
1 . . . M in order. Draw diagrams of the polyphase decimator and interpolator 
using the commutator. 

15.4.2 Both 32 KHz and 48 KHz are common sampling frequencies for music, while 
CDs uses the unusual sampling frequency of 44.1 KHz. How can we convert 
between all these rates? 

15.4.3 The simple decimator that extracts inputs with index divisible by M is not 
a time-invariant system, but rather periodically time varying. Is the entire 
decimation system of Figure 15.9 time-invariant? 

15.4.4 Can the polyphase technique be used for IIR filters? 

15.4.5 When the decimation or interpolation factor M is large, it may be worthwhile 
to carry out the filtering in stages. For example, assume M = Ml M2, and that 
we decimate by Ml and then by M2. Explain how to specify filter responses. 

15.4.6 A half-band filter is a filter whose frequency response obeys the symmetry 
H(w) = 1 - H(w,id - w) around the middle of the band wrnid = 4. For 
every low-pass half-band filter there is a high-pass half-band filter called its 
‘mirror filter’. Explain how mirror half-band filters can be used to efficiently 
compute a bank of filters with 2m bands. 

15.5 Fixed Point Computation 

Throughout this book we stress the advantages of DSP as contrasted with 
analog processing. In this section we admit that digital processing has a dis- 
advantage as well, one that derives from the fact that only a finite number 
of bits can be made available for storage of signal values and for computa- 
tion. In Section 2.7 we saw how digitizing an analog signal inevitably adds 
quantization noise, due to imprecision in representing a real number by a 
finite number of bits. However, even if the digitizer has a sufficient number 
of bits and we ensure that analog signals are amplified such that the digi- 
tizer’s dynamic range is optimally exploited, we still have problems due to 
the nature of digital computation. 

In general, the sum of two b-bit numbers will have b + 1 bits. When 
floating point representation (see Appendix A.3) is being used, a (b + 1)-bit 
result can be stored with b bits of mantissa and a larger exponent, causing 
a slight round-off error. This round-off error can be viewed as a small ad- 
ditional additive noise that in itself may be of little consequence. However, 



15.5. FIXED POINT COMPUTATION 591 

since hundreds of computations may need to be performed the final result 
may have become hopelessly swamped in round-off noise. Using fixed point 
representation exacerbates the situation, since should b + 1 exceed the fixed 
number of bits the hardware provides, an overflow will occur. To avoid over- 
flow we must ensure that the terms to be added contain fewer bits, reducing 
dynamic range even when overflow would not have occurred. Hence fixed 
point hardware cannot even consistently exploit the bits it potentially has. 

Multiplication is even worse than addition since the product of two num- 
bers with b bits can contain 2b bits. Of course the multiply-and-accumulate 
(MAC) operation, so prevalent in DSP, is the worst offender of all, endlessly 
summing products and increasing the number of required bits at each step! 
This would certainly render all fixed point DSP processors useless, were it 
not for accumulators. An accumulator is a special register with extra bits 
that is used for accumulating intermediate results. The MAC operation is 
performed using an accumulator with sufficient bits to prevent overflow; 
only at the end of the convolution is the result truncated and stored back 
in a normal register or memory. For example, a 16-bit processor may have 
a 48-bit accumulator; since each individual product returns a 32-bit result, 
an FIR filter of length 16 can be performed without prescaling with no fear 
of overflow. 

We can improve our estimate of the required input prescaling if we know 
the filter coefficients al. The absolute value of the convolution output is 

where x,,, is the maximal absolute value the input signal takes. In order 
to ensure that y, never overflows in an accumulator of b bits, we need to 
ensure that the maximal x value does not exceed the following bound. 

2b 

xmax ’ Cl lhll 
(15.9) 

This worst-case analysis of the possibility of overflow is often too ex- 
treme. The input scaling implied for even modest filter lengths would so 
drastically reduce the SNR that we are usually willing to risk possible but 
improbable overflows. Such riskier scaling methods are obtained by replacing 
the sum of absolute values in equation (15.9) with different combinations of 
the hl coefficients. One commonly used criterion is 
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which results from requiring the output energy to be sufficiently low; another 
is 

2b 
Xmax 

’ Hmax 

where Hmax is the maximum value of the filter’s frequency response, re- 
sulting from requiring that the output doesn’t overflow in the frequency 
domain. 

When a result overflow does occur, its effect is hardware dependent. 
Standard computers usually set an overflow flag to announce that the re- 
sult is meaningless, and return the meaningless least significant bits. Thus 
the product of two positive numbers may be negative and the product of 
two large numbers may be small. Many DSP processors have a saturation 
arithmetic mode, where calculations that overflow return the largest avail- 
able number of the appropriate sign. Although noise is still added in such 
cases, its effect is much less drastic. However, saturation introduces clipping 
nonlinearity, which can give rise to harmonic distortion. 

Even when no overflow takes place, digital filters (especially IIR filters) 
may act quite differently from their analog counterparts. As an example, 
take the simple AR filter 

Yn = Xn - 0.9yn-1 (15.10) 

whose true impulse response is h, = (-0.9)‘%,. For simplicity, let’s ex- 
amine the somewhat artificial case of a processor accurate to within one 
decimal digit after the decimal point (i.e., we’ll assume that the multiplica- 
tion 0.9yn-1 is rounded to a single decimal digit to the right of the point). 
Starting with x0 = 1 the true output sequence should oscillate while de- 
caying exponentially. However, it is easy to see that under our quantized 
arithmetic -0.9 . -0.4 = +0.4 and conversely -0.9 . 0.4 = -0.4 so that 
0.4, -0.4 is a cycle, called a limit cycle. In Figure 15.11 we contrast the two 
behaviors. 

The appearance of a limit cycle immediately calls to mind our study of 
chaos in Section 5.5, and the relationship is not coincidental. The fixed point 
arithmetic transforms the initially linear recursive system into a nonlinear 
one, one whose long time behavior displays an attractor that is not a fixed 
point. Of course, as we learned in that section, the behavior could have been 
even worse! 

There is an alternative way of looking at the generation of the spurious 
oscillating output. We know that stable IIR filters have all their poles inside 
the unit circle, and thus cannot give rise to spurious oscillations. However, 
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Figure 15.11: The behavior of a simple AR filter using fixed point arithmetic. The 
decaying plot depicts the desired behavior, while the second plot is the behavior that 
results from rounding to a single digit after the decimal point. 

the quantization of the filter coefficients causes the poles to stray from their 
original positions, and in particular a pole may wander outside the unit 
circle. Once excited, such a pole causes oscillating outputs even when the 
input vanishes. 

This idea leads us to investigate the effect of coefficient quantization on 
the position of the filter’s poles and zeros, and hence on its transfer function. 
Let’s express the transfer function 

H( ) 
z 

AW1> z-z cko a1 2 
-1 

l-g& - Cd 

B(z-l) 1 - CEcl bmrm = nf$,(~ - n,) 
(15.11) 

and consider the effect of quantizing the bm coefficients on the pole positions 
n,. The quantization introduces round-off error, so that the effective coeffi- 
cient is bm+Sbm, and assuming that this round-off error is small, its effect on 
the position of pole k may be approximated by the first-order contributions. 

m 

After a bit of calculation we can find that 

(15.12) 

i.e., the effect of variation of the m th coefficient on the k th pole depends on 
the positions of all the poles. 
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In particular, if the original filter has poles that are close together (i.e., 
for which rrl, - 7~j is small), small coefficient round-off errors can cause signif- 
icant movement of these poles. Since close poles are a common occurrence, 
straightforward implementation of IIR filters as difference equations often 
lead to instability when fixed point arithmetic is employed. The most com- 
mon solution to this problem is to implement IIR filters as cascades of sub- 
filters with poles as far apart as possible. Since each subfilter is separately 
computed, the round-off errors cannot directly interact, and pole movement 
can be minimized. Carrying this idea to the extreme we can implement IIR 
filters as cascades of second-order sections, each with a single pair of conju- 
gate poles and a single pair of conjugate zeros (if there are real poles or zeros 
we use first-order structures). In order to minimize strong gains that may 
cause overflow we strive to group together zeros and poles that are as close 
together as possible. This still leaves considerable freedom in the placement 
order of the sections. Empirically, it seems that the best strategy is to order 
sections monotonically in the radius of their poles, either from smallest to 
largest (those nearest the unit circle) or vice versa. The reasoning is not 
hard to follow. Assume there are poles with very small radius. We wouldn’t 
want to place them first since this would reduce the number of effective 
bits in the signal early on in the processing, leading to enhanced round-off 
error. Ordering the poles in a sequence with progressively decreasing radius 
ameliorates this problem. When there are poles very close to the unit circle 
placing them first would increase the chance of overflow, or require reducing 
the dynamic range in order to avoid overflow. Ordering the poles in a se- 
quence with progressively increasing radius is best in this case. When there 
are both small and large poles it is hard to know which way is better, and 
it is prudent to directly compare the two alternative orders. Filter design 
programs that include fixed point optimization routines take such pairing 
and ordering considerations into account. 

EXERCISES 

15.5.1 A pair of conjugate poles with radius r < 1 and angles 33 contribute a 
second-order section 

(2 - 79)(x - remie) = ~5’ (1 - 2r cos t9z-l + r2zw2) 

with coefficients br = 2r cos 8 and bp = -r2. If we quantize these coefficients 
to b bits each, how many distinct pole locations are possible? To how many 
bits has the radius r been quantized? Plot all the possible poles for 4-8 bits. 
What can you say about the quantization of real poles? 
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15.5.2 As we discussed in Section 14.6, fixed point FFTs are vulnerable to numer- 
ical problems as well. Compare the accuracy and overflow characteristics of 
frequency domain and time domain filtering. 

15.5.3 Develop a strategy to eliminate limit cycles, taking into account that limit 
cycles can be caused by round-off or overflow errors. 

15.5.4 Complete the derivation of the dependence of nk on &,. 

15.5.5 What can you say about the dependence of zero position cl on small changes 
in numerator coefficients al ? Why do you think fixed point FIR filters are so 
often computed in direct form rather than cascade form? 

15.5.6 We saw that it is possible to prescale the input in order to ensure that an 
FIR filter will never overflow. Is it possible to guarantee that an IIR filter 
will not overflow? 

15.5.7 In the text we saw a system whose impulse response should have decayed to 
zero, but due to quantization was a a-cycle. Find a system whose impulse 
response is a nonzero constant. Find a system with a 4-cycle. Find a system 
that goes into oscillation because of overflow. 

15.6 IIR Structures 

We return now to structures for general filters and consider the case of 
IIR filters. We already saw how to diagram the most general IIR filter in 
Figures 12.8.B and 12.11, but know from the previous section that this direct 
form of computation is not optimal from the numerical point of view. In this 
section we will see better approaches. 

The general cascade of second-order IIR sections is depicted in Fig- 
ure 15.12. Each section is an independent first- or second-order ARMA 
filter, with its own coefficients and static memory. The only question left 
is how to best implement this second-order section. There are three differ- 
ent structures in common use: the direct form (also called the direct form r) 
depicted in Figure 15.13, the canonical form (also called direct form II> de- 
picted in Figure 15.14, and the transposed form (also called transposed form 
14 depicted in Figure 15.15. Although all three are valid implementations 
of precisely the same filter, numerically they may give somewhat different 
results. 
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Figure 15.12: General cascade implementation of an IIR filter. Each section implements 
an independent (first- or) second-order section symbolized by the transfer function ap- 
pearing in the rectangle. Note that a zero in any of these subfilters results in a zero of the 
filter as a whole. 

Figure 15.13: Direct form implementation of a second-order IIR section. This structure 
is derived by placing the MA (all-zero) filter before the AR (all-pole) one. 
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Figure 15.14: Canonical form implementation of a second-order IIR section. This struc- 
ture is derived by placing the AR (all-pole) filter before the MA (all-zero) one and com- 
bining common elements. (Why didn’t we draw a filled circle for wfl”!,?) 

$L-+- 

-1 

a lkl 
n 

w’“’ la 1 

c 
-1 

Ikl 
7% 

-,lkl 

Figure 15.15: Transposed form implementation of a second-order IIR section. Here only 
the intermediate variables are delayed. Although only three adders are shown the center 
one has three inputs, and so there are actually four additions. 
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An IIR filter implemented using direct form 
follows: 

loop over time n 

xl] + x 
loop onnsaction number k + 0 to K - 

sections is computed as 

In real-time applications the loop over time will normally be an infinite loop. 
Each new input sample is first MA filtered to give the intermediate signal 
w!] 

w!l = #xn + a1 x+1+ upxn-~ PI 

and then this signal is AR filtered to give the section’s output 

YF = q&J] - g-1 yF!l - ($1 y;!2 

the subtraction either being performed once, or twice, or negative coefficients 
being stored. This section output now becomes the input to the next section 

Xi] t y!.y 

and the process repeats until all K stages are completed. The output of the 
final stage is the desired result. 

W-11 Yn = Yn 

Each direct form stage requires five multiplications, four additions, and four 
delays. In the diagrams we have emphasized memory locations that have to 
be stored (static memory) by a circle. Note that wn is generated each time 
and does not need to be stored, so that there are only two saved memory 
locations. 

As we saw in Section 12.3 we can reverse the order of the MA and AR 
portions of the second-order section, and then regroup to save memory loca- 
tions. This results in the structure known as canonical (meaning ‘accepted’ 
or ‘simplest’) form, an appellation well deserved because of its use of the least 
number of delay elements. While the direct form requires delayed versions 
of both xn and yn, the canonical form only requires storage of wn. 
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The computation is performed like this 

loop over time n 

$1 +- L-c 
loop onkxtion number k t 0 to K-l 

and once again we can either stored negative b coefficients or perform sub- 
traction(s). Each canonical form stage requires five multiplications, four ad- 
ditions, two delays, and two intermediate memory locations. 

The transposed form is so designated because it can be derived from the 
canonical form using the transposition theorem, which states that reversing 
all the arc directions, changing adders to tee connections and vice-versa, 
and interchanging the input and output does not alter the system’s transfer 
function. It is also canonical in the sense that it also uses only two delays, 
but we need to save a single value of two different signals (which we call 
u, and vn), rather than two lags of a single intermediate signal. The full 
computation is 

loop over time n 

3$ + z 
loop onnsection number k t 0 to K - 1 

?$I + apzi$ _ @&+I 

Un + U~‘Ll$’ - Jpy2”l + p1 1 
n- 

yn t y!f-l 

Don’t be fooled by Figure 15.15 into thinking that there are only three ad- 
ditions in the transposed form. The center adder is a three-input adder, 
which has to be implemented as two separate additions. Hence the trans- 
posed form requires five multiplications, four additions, two delays, and two 
intermediate memory locations, just like the canonical form. 

The cascade forms we have just studied are numerically superior to direct 
implementation of the difference equation, especially when pole-zero pairing 
and ordering are properly carried out. However, the very fact that the signal 
has to travel through section after section in series means that round-off 
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Xn = 
aP1+,Iol,-1+,Iol,-2 

1-bpz-‘-b$-2 

a111+,[11,-1+,Pl,-2 

l-b+-I--b$-2 
; Yn 

a[K-‘I+,[K-11Z-1+,(K-11,-2 

l-b~K-‘]z-l-b~K-‘],-2 2 

Figure 15.16: Parallel form implementation of the IIR filter. In this form the subfilters 
are placed in parallel, and so round-off errors do not accumulate. Note that a pole in any 
of these subfilters results in a pole of the filter as a whole. 

errors accumulate. Parallel connection of second-order sections, depicted in 
Figure 15.16, is an alternative implementation of the general IIR filter that 
does not suffer from round-off accumulation. The individual sections can be 
implemented in direct, canonical, or transposed form; and since the outputs 
are all simply added together, it is simpler to estimate the required number 
of bits. 

The second-order sections in cascade form are guaranteed to exist by 
the fundamental theorem of algebra, and are found in practice by factoring 
the system function. Why are general system functions expressible as sums 
of second-order filters, and how can we perform this decomposition? The 
secret is the ‘partial fraction expansion’ familiar to all students of indefinite 
integration. Using partial fractions, a general system function can be written 
as the sum of first-order sections 

(15.13) 

with I’k and yk possibly complex, or as the sum of second-order sections 

H(z) = 2 AI, + Bkz-’ 

k=l I+ a& + w2 
(15.14) 
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with all coefficients real. If there are more zeros than poles in the system 
function, we need an additional FIR filter in parallel with the ARMA sec- 
tions. 

The decomposition is performed in practice by factoring the denominator 
of the system function into real first- and second-order factors, writing the 
partial fraction expansion, and comparing. For example, assume that the 
system function is 

H(z) = 
1+ az-l + bz-2 

(1 + cz-l)(l + dz-l + ezv2) 

then we write 

H(z) = 

= 

and compare. This 
and C. 

EXERCISES 

A B + Cz-l 
1 + cz-l 

+ 
1 + dz-l + eze2 

(A + B) + (Ad + Bc + C)z-’ + (Ae + Cc)ze2 

Cl+ cz-l>( 1 + dz-l + ez-2) 

results in three equations for the three variables A, B, 

15.6.1 An arbitrary IIR filter can always be factored into cascaded first-order sec- 
tions, if we allow complex-valued coefficients. Compare real-valued second- 
order sections with complex-valued first-order sections from the points of 
view of computational complexity and numerical stability. 

15.6.2 A second-order all-pass filter section has the following transfer function. 

c + dz-l + z-~ 
1 + dz-l + cz-2 

Diagram it in direct form. How many multiplications are needed? Redraw 
the section emphasizing this. 

15.6.3 Apply the transposition theorem to the direct form to derive a noncanonical 
transposed section. 

15.6.4 The lattice structure presented for the FIR filter in Section 15.3 can be 
used for IIR filters as well. Diagram a two-pole AR filter. How can lattice 
techniques be used for ARMA filters? 
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15.7 FIR vs. IIR 

Now that we have seen how to implement both FIR and IIR filters, the 
question remains as to which to use. Once again we suggest first considering 
whether it is appropriate to filter in the frequency domain. Frequency do- 
main filtering is almost universally applicable, is intrinsically stable, and the 
filter designer has complete control over the phase response. The run-time 
code is often the most computationally efficient technique, and behaves well 
numerically if the FFTs are properly scaled. Phase response is completely 
controllable. Unfortunately, it does introduce considerable buffer and algo- 
rithmic delay; it does require more complex code; and it possibly requires 
more table and scratch memory. Of course we cannot really multiply any 
frequency component by infinity and so true poles on the frequency axis 
are not implementable, but IIR filters with such poles would be unstable 
anyway. 

Assuming you have come to the conclusion that time domain filtering is 
appropriate, the next question has to do with the type of filter that is re- 
quired. Special filters (see Section 7.3) have their own special considerations. 
In general, integrators should be IIR, differentiators even order FIR (unless 
the half sample delay is intolerable), Hilbert transforms odd order FIR with 
half the coefficients zero (although IIR designs are possible), decimators and 
integrators should be polyphase FIR, etc. Time-domain filter specifications 
immediately determine the FIR filter coefficients, but can also be converted 
into an IIR design by Prony’s method (see Section 13.6). When the sole 
specification is one of the standard forms of Section 7.1, such as low-pass, 
IIR filters can be readily designed while optimal FIR designs require more 
preparation. If the filter design must be performed in run-time then this 
will often determine the choice of filter type. Designing a standard IIR filter 
reduces to a few equations, and the suboptimal windowing technique for de- 
signing FIR filters can sometimes be used as well. From now on we’ll assume 
that we have a constant prespecified frequency domain specification. 

It is important to determine whether a true linear-phase filter or only 
a certain degree of phase linearity is required (e.g., communications sig- 
nals that contain information in their phase, or simultaneous processing of 
multiple signals that will later be combined). Recall from Section 7.2 that 
symmetric or antisymmetric FIR filters are precisely linear-phase, while IIR 
filters can only approximate phase linearity. However, IIR filters can have 
their phase flattened to a large degree, and if sufficient delay is allowed 
the pseudo-IIR filter of exercise 7.2.5 may be employed for precise phase 
linearity. 
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Assuming that both FIR and IIR filters are still in the running (e.g., 
only the amplitude of the frequency response is of interest), the issue of 
computational complexity is usually the next to be considered. IIR filters 
with a relatively small number of coefficients can be designed to have very 
sharp frequency response transitions (with the phase being extremely non- 
linear near these transitions) and very strong stop-band attenuation, For a 
given specification elliptical IIR filters will usually have dramatically lower 
computational complexity than FIR filters, with the computational require- 
ments ratio sometimes in the thousands. Only if the filters are relatively 
mild and when a large amount of pass-band ripple can be tolerated will the 
computational requirements be similar or even in favor of the FIR. Cheby- 
shev IIR filters are less efficient than elliptical designs but still usually better 
performers than FIR filters. Butterworth designs are the least flexible and 
hence require the highest order and the highest computational effort. If phase 
linearity compensation is attempted for a Butterworth IIR filter the total 
computational effort may be comparable to that of an FIR filter. 

The next consideration is often numerical accuracy. It is relatively simple 
to determine the worst-case number of bits required for overflow-free FIR 
computation, and if sufficient bits are available in the accumulator and the 
quantized coefficients optimized, the round-off error will be small. Of course 
long filters and small registers will force us to prescale down filter coefficients 
or input signals causing 6 dB of SNR degradation for each lost bit. For IIR 
filters determining the required number of bits is much more complex, de- 
pending on the filter characteristics and input signal frequency components. 
FIR filters are inherently stable, while IIR filters may be unstable or may 
become unstable due to numerical problems. This is of overriding impor- 
tance for filters that must be varied as time goes on; an IIR filter must be 
continuously monitored for stability (possibly a computationally intensive 
task in itself) while FIR filters may be used with impunity. 

Finally, all things being equal, personal taste and experience comes into 
play. Each DSP professional accumulates over time a bag of fully honed and 
well-oiled tools. It is perfectly legitimate that the particular tool that ‘feels 
right’ to one practitioner may not even be considered by another. The main 
problem is that when you have only a hammer every problem looks like a 
nail. We thus advise that you work on as many different applications as 
possible, collecting a tool or two from each. 
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