
Digital Signal Processors

Until now we have assumed that all the computation necessary for DSP ap-
plications could be performed either using pencil and paper or by a general-
purpose computer. Obviously, those that can be handled by human calcu-
lation are either very simplistic or at least very low rate. It might surprise
the uninitiated that general-purpose computers suffer from the same limita-
tions. Being ‘general-purpose’, a conventional central processing unit (CPU)
is not optimized for DSP-style ‘number crunching’, since much of its time
is devoted to branching, disk access, string manipulation, etc. In addition,
even if a computer is fast enough to perform all the required computation
in time, it may not be able to guarantee doing so.

In the late 197Os, special-purpose processors optimized for DSP appli-
cations were first developed, and such processors are still multiplying to-
day (pun definitely intended). Although correctly termed ‘Digital Signal
Processors’, we will somewhat redundantly call them ‘DSP processors’, or
simply DSPs. There are small, low-power, inexpensive, relatively weak DSPs
targeted at mass-produced consumer goods such as toys and cars. More capa-
ble fixed point processors are required for cellular phones, digital answering
machines, and modems. The strongest, often floating point, DSPs are used
for image and video processing, and server applications.

DSP processors are characterized by having at least some of the fol-
lowing special features: DSP-specific instructions (most notably the MAC),
special address registers, zero-overhead loops, multiple memory buses and
banks, instruction pipelines, fast interrupt servicing (fast context switch),
specialized ports for input and output, and special addressing modes (e.g.,
bit reversal).

There are also many non-DSP processors of interest to the DSP imple-
mentor. There are convolution processors and FFT processors devoted to
these tasks alone. There are systolic arrays, vector and superscalar proces-
sors, RISC processors for embedded applications, general-purpose processors
with multimedia extensions, CORDIC processors, and many more varieties.

619

Digital Signal Processing: A Computer Science Perspective
Jonathan Y. Stein
Copyright  2000 John Wiley & Sons, Inc.
Print ISBN 0-471-29546-9 Online ISBN 0-471-20059-X

620 DIGITAL SIGNAL PROCESSORS

DSP ‘cores’ are available that can be integrated on a single chip with other
elements such as CPUs, communications processors, and IO devices. Al-
though beyond the scope of our present treatment the reader would be well
advised to learn the basic principles of these alternative architectures.

In this chapter we will study the DSP processor and how it is optimized
for DSP applications. We will discuss general principles, without considering
any specific DSP processor, family of processors, or manufacturer. The first
subject is the MAC operation, and how DSPs can perform it in a single
clock cycle. In order to understand this feat we need to study memory ar-
chitectures and pipelines. We then consider interrupts, ports, and the issue
of numerical representation. Finally, we present a simple, yet typical exam-
ple of a DSP program. The last two sections deal with the practicalities of
industrial DSP programming.

17.1 Multiply-and-Accumulate (MAC)

DSP algorithms tend to be number-crunching intensive, with computational
demands that may exceed the capabilities of a general-purpose CPU. DSP
processors can be much faster for specific tasks, due to arithmetic instruction
sets specifically tailored to DSP needs. The most important special-purpose
construct is the MAC instruction; accelerating this instruction significantly
reduces the time required for computations common in DSP.

Convolutions, vector inner products, correlations, difference equations,
Fourier transforms, and many other computations prevalent in DSP all share
the basic repeated MAC computation.

loop
update j , update Ic
a + U-l-XjYk

For inner products, correlations, and symmetric or coefficient-reversed FIR
filters the updating of indices j and k both involve incrementation; for con-
volutions one index is incremented while the other is decremented.

First consider the outside of the loop. When a general-purpose CPU
executes a fixed-length loop such as

for i t 1 to N
statements

there is a lot of overhead involved. First a register must be provided to store
the loop index i, and it must be properly initialized. After each execution of

17.1. MULTIPLY-AND-ACCUMULATE (MAC) 621

the calculation the loop index register must be incremented, and checked for
termination. Of course if there are not enough registers the loop index must
be retrieved from memory, incremented and checked, and then stored back
to memory. Except for the last iteration, a ‘branch’ or ‘jump’ instruction
must be performed to return execution to the top of the loop.

DSP processors provide a zero-overhead hardware mechanism (often
called repeat or do) that can repeat an instruction or number of instructions
a prespecified number of times. Due to hardware support for this repeat in-
struction no clocks are wasted on branching or incrementing and checking
the loop index. The maximum number of iterations is always limited (64K is
common, although some processors have low limits such as 128) and many
processors limit the number of instructions in the loop (1, 16), but these
limitations fall into the envelope of common DSP operations. Some proces-
sors allow loop nesting (since the FFT requires 3 loops, this is a common
limit), while for others only the innermost loop can be zero overhead.

Now let’s concentrate on the computations inside the loop. How would
a general-purpose CPU carry out the desired computation? We assume that
x and y are stored as arrays in memory, so that xj is stored j locations after
x0, and similarly for yk. Furthermore, we assume that the CPU has at least
two pointer registers (that we call j and k) that can be directly updated
(incremented or decremented) and used to retrieve data from memory. Fi-
nally, we assume the CPU has at least two arithmetic (floating point or
fixed point) registers (x and y) that can be used as operands of arithmetic
operations, a double-length register (z) that can receive a product, and an
accumulator (a) for summing up values.

Assuming that the loop has been set up (i.e., the counter loaded, the
base pointers for Xj and yk set, and the automatic updating of these pointers
programmed in), the sequence of operations for computation of the contents
of the loop on a general-purpose CPU will look something like this.

update pointer to Xj

update

load Zj
pointer to yk

into register x
load ok into register y
fetch operation (multiply)

decode operation (multiply)
multiply x by y storing the result in register z
fetch operation (add)
decode operat i on (add)
add register z to accumulat or a

622 DIGITAL SIGNAL PROCESSORS

We see that even assuming each of the above lines takes the same amount
of time (which is dubious for the multiplication), the computation requires
about 10 instruction times to complete. Of course different CPUs will have
slightly different instruction sets and complements of registers, but similar
principles hold for all CPUs.

A major distinction between a general-purpose CPU and a DSP is that
the latter can perform a MAC in a single instruction time. Indeed this feature
is of such importance that many use it as the definition of a DSP. The
main purpose of this chapter is explain how this miracle is accomplished.
In particular it is not enough to simply add a MAC instruction to the set
of opcodes; such an ‘MAC-augmented CPU’ would still have to perform the
following steps

update pointer to zj
update pointer to yk
load z~j into register x
load yk into register y
fetch operation (MAC)
decode operation (MAC)
MAC a +- x * y

for a total of seven instruction times. We have managed to save a few clocks
but are still far from our goal. Were the simple addition of a MAC instruction
all a DSP processor had to offer, it would probably not be worth devoting
precious silicon real-estate to the special MAC hardware. In order to build
a DSP we need more imagination than this.

The first step in building a true DSP is to note that the pointers to xj and
$fk are independent and thus their updating can be performed in parallel. To
implement this we need new hardware; we need to add two address updating
units to the hardware complement of our hypothetical DSP processor. Using
the symbol 11 to signify two operations that are performed in parallel, the
MAC now looks like this:

update pointer to zj 11 update pointer to $)k
load Xj into register x
load yk into register y
fetch operation (MAC)
decode operation (MAC)
MAC a t x * y

We have obviously saved at least the time of one instruction, since the xj and
yk pointers are now updated simultaneously, but even though we no longer

17.2. MEMORY ARCHITECTURE 623

require use of the CPU’s own adder it does not seem possible to further
exploit this in order to reduce overall execution time. It is obvious that we
cannot proceed to load values into the x and y registers until the pointers
are ready, and we cannot perform the MAC until the registers are loaded.
The next steps in optimizing our DSP call for more radical change.

EXERCISES

17.1.1 For the CPU it would be clearer to have j and k stored in fixed point registers
and to retrieve zz;j by adding j to the address of ~0. Why didn’t we do this?

17.1.2 Explain in more detail why it is difficult for two buses to access the same
memory circuits.

17.1.3 Many DSP processors have on-chip ROM or RAM memory. Why?

17.1.4 Many CPU architectures use memory caching to keep critical data quickly
accessible. Discuss the advantages and disadvantages for DSP processors.

17.1.5 A processor used in personal computers has a set of instructions widely ad-
vertised as being designed for multimedia applications. What instructions are
included in this set? Can this processor be considered a DSP?

17.1.6 Why does the zero-overhead loop only support loops with a prespecified
number of iterations (for loops)? What about while (condition) loops?

17.2 Memory Architecture

A useful addition to the list of capabilities of our DSP processor would
be to allow ~j and yk to be simultaneously read from memory into the
appropriate registers. Since ~j and yk are completely independent there is
no fundamental impediment to their concurrent transfer; the problem is that
while one value is being sent over the ‘data bus’ the other must wait. The
solution is to provide two data buses, enabling the two values to be read
from memory simultaneously. This leaves us with a small technical hitch; it
is problematic for two buses to connect to the same memory circuits. The
difficulty is most obvious when one bus wishes to write and the other to
read from precisely the same memory location, but even accessing nearby
locations can be technically demanding. This problem can be solved by using
so-called ‘dual port memories’, but these are expensive and slow.

624 DIGITAL SIGNAL PROCESSORS

The solution here is to leave the usual model of a single linear memory,
and to define multiple memory banks. Different buses service different mem-
ory banks, and placing the zj and yk arrays in separate banks allows their
simultaneous transfer to the appropriate registers. The existence of more
than one memory area for data is a radical departure from the memory
architecture of a standard CPU.

update pointer to xj 11 update pointer to yk
load q into register x 11 load yk into register y
fetch operation (MAC)
decode operation (MAC)
MAC a t x * y

The next step in improving our DSP is to take care of the fetch and
decode steps. Before explaining how to economize on these instructions we
should first explain more fully what these steps do. In modern CPUs and
DSPs instructions are stored sequentially in memory as opcodes, which are
binary entities that uniquely define the operation the processor is to perform.
These opcodes typically contain a group of bits that define the operation
itself (e.g., multiply or branch), individual bit parameters that modify the
meaning of the instruction (multiply immediate or branch relative), and
possibly bits representing numeric fields (multiply immediate by 2 or branch
relative forward by 2). Before the requested function can be performed these
opcodes must first be retrieved from memory and decoded, operations that
typically take a clock cycle each.

We see that a nonnegligible portion of the time it takes to execute an
instruction is actually devoted to retrieving and decoding it. In order to
reduce the time spent on each instruction we must find a way of reducing this
overhead. Standard CPUs use ‘program caches’ for this purpose. A program
cache is high speed memory inside the CPU into which program instructions
are automatically placed. When a program instruction is required that has
already been fetched and decoded, it can be taken from the program cache
rather than refetched and redecoded. This tends to significantly speed up
the execution of loops. Program caches are typically rather small and can
only remember the last few instructions; so loops containing a large number
of instructions may not benefit from this tactic. Similarly CPUs may have
‘data caches’ where the last few memory locations referenced are mirrored,
and redundant data loads avoided.

Caches are usually avoided in DSPs because caching complicates the
calculation of the time required for a program to execute. In a CPU with

17.2. MEMORY ARCHITECTURE 625

caching a set of instructions requires different amounts of run-time depend-
ing on the state of the caches when it commences. DSPs are designed for
real-time use where the prediction of exact timing may be critical. So DSPs
must use a different trick to save time on instruction fetches.

Why can’t we perform a fetch one step before it is needed (in our case
during the two register loads)? Once again the fundamental restriction is
that we can’t fetch instructions from memory at the same time that data is
being transferred to or from memory; and the solution is, once again, to use
separate buses and memory banks. These memory banks are called program
memory and data memory respectively.

Standard computers use the same memory space for program code and
data; in fact there is no clear distinction between the two. In principle the
same memory location may be used as an instruction and later as a piece
of data. There may even be self-modifying code that writes data to memory
and later executes it as code. This architecture originated in the team that
built one of the first digital computers, the lB,OOO-vacuum-tube ENIAC
(Electronic Numerical Integrator and Computer) designed in the early forties
at the University of Pennsylvania. The main designers of this machine were
J. W. Mauchly and J. Presper Eckert Jr. and they relied on earlier work
by J.V. Atanasoff. However, the concept of a single memory for program
and data is named after John von Neumann, the Hungarian-born German-
American mathematician-physicist, due to his 1945 memo and 1946 report
summarizing the findings of the ENIAC team regarding storing instructions
in binary form. The single memory idea intrigued von Neumann because of
his interest in artificial intelligence and self-modifying learning programs.

Slightly before the ENIAC, the Mark I computer was built by a Harvard
team headed by Howard Aiken. This machine was electromechanical and was
programmed via paper tape, but the later Mark II and Mark III machines
were purely electrical and used magnetic memory. Grace Hopper coined
the term ‘bug’ when a moth entered one of the Harvard computers and
caused an unexpected failure. In these machines the program memory was
completely separate from data memory. Most DSPs today abide by this
Harvard architecture in order to be able to overlap instruction fetches with
data transfers. Although von Neumann’s name is justly linked with major
contributions in many areas of mathematics, physics, and the development
of computers, crediting him with inventing the ‘von Neumann architecture’
is not truly warranted, and it would be better to call it the ‘Pennsylvania
architecture’. Aiken, whose name is largely forgotten, is justly the father of
the two-bus architecture that posterity named after his institution. No one
said that posterity is fair.

626 DIGITAL SIGNAL PROCESSORS

In the Harvard architecture, program and data occupy different address
spaces, so that address A in program memory is completely distinct from
address A in data memory. These two memory spaces are connected to the
processor using separate buses, and may even have different access speeds
and bit widths. With separate buses we can perform the fetch in parallel
with data transfers, and no longer need to waste a clock. We will explain
the precise mechanism for overlapping these operations in the next section,
for now we will simply ignore the instruction-related operations. Our MAC
now requires only three instruction times.

update pointer to zj 11 update pointer to ok
load z:j into register x 11 load yk into register y
MAC a t x * y

We seem to be stuck once again. We still can’t load zj and yk before the
pointers are updated, or perform the MAC before these loads complete. In
the next section we take the step that finally enables the single clock MAC.

EXERCISES

17.2.1 A pure Harvard architecture does not allow any direct connection between
program and data memories, while the modified Harvard architecture contains
copy commands between the memories. Why are these commands useful?
Does the existence of these commands have any drawbacks?

17.2.2 DSPs often have many different types of memory, including ROM, on-chip
RAM, several banks of data RAM, and program memory. Explain the func-
tion of each of these and demonstrate how these would be used in a real-time
FIR filter program.

17.2.3 FIR and IIR filters require a fast MAC instruction, while the FFT needs the
butterfly

X +- x+wy

Y t X-WY

where x and y are complex numbers and W a complex root of unity. Should
we add the butterfly as a basic operation similar to the MAC?

17.2.4 There are two styles of DSP assembly language syntax. The opcode-mnemonic
style uses commands such as MPY A0 , Al, A2, while the programming style
looks more like a conventional high-level language A0 = Al * A2. Research
how the MAC instruction with parallel retrieval and address update is coded
in both these styles. Which notation is better? Take into account both algo-
rithmic transparency and the need to assist the programmer in understanding
the hardware and its limitations.

17.3. PIPELINES 627

17.3 Pipelines

In the previous sections we saw that the secret to a DSP processor’s speed
is not only special instructions, but the exploitation of parallelism. Address
registers are updated in parallel, memory retrievals are performed in parallel,
and program instructions are fetched in parallel with execution of previous
instructions. The natural extension is to allow parallel execution of any
operations that logically can be performed in parallel.

update 1 update 2 update 3 update 4 update 5

load 1 load 2 load 3 load 4 load 5
MAC 1 MAC 2 MAC 3 MAC 4 MAC 5

Figure 17.1: The pipelining of a MAC calculation. Time runs from left to right, while
height corresponds to distinct hardware units, ‘update’ meaning the updating of the xj
and yk pointers, ‘load’ the loading into x and y, and ‘MAC’ the actual computation. At
the left there are three cycles during which the pipeline is filling, while at the right there
are a further three cycles while the pipeline is emptying. The result is available seven
cycles after the first update.

The three steps of the three-clock MAC we obtained in the previous sec-
tion use different processor capabilities, and so should be allowed to operate
simultaneously. The problem is the dependence of each step on the comple-
tion of the previous one, but this can be sidestepped by using a pipeline to

overlap these operations. The operation of the pipeline is clarified in Fig-
ure 17.1. In this figure ‘update 1’ refers to the first updating of the pointers
to zj and yk; ‘load 1’ to the first loading of Xj and yk into registers x and y;
and ‘MAC 1’ means the first multiplication. As can be seen, the first load
takes place only after the first update is complete, and the MAC only after
the loads. However, we do not wait for the MAC to complete before updat-
ing the pointers; rather we immediately start the second update after the
first pointers are handed over to the loading process. Similarly, the second
load takes place in parallel with the first MAC, so that the second MAC
can commence as soon as the first is completed. In this way the MACs are
performed one after the other without waiting, and once the pipeline is filled
each MAC requires only one instruction cycle. Of course there is overhead
due to the pipeline having to fill up at the beginning of the process and
empty out at the end, but for large enough loops this overhead is negligible.
Thus the pipeline allows a DSP to perform one MAC per instruction clock
on the average.

628 DIGITAL SIGNAL PROCESSORS

Pipelines can be exploited for other purposes as well. The simplest
general-purpose CPU must wait for one basic operation (e.g., fetch, decode,
register arithmetic) to complete before embarking on the next; DSPs exploit
parallelism even at the subinstruction level. How can the different primitive
operations that make up a single instruction be performed in parallel? They
can’t; but the primitive operations that comprise successive instructions can.

Until now we have been counting ‘instructions’ and have not clarified the
connection between ‘instruction times’ and ‘clock cycles’. All processors are
fed a clock signal that determines their speed of operation. Many processors
are available in several versions differing only in the maximum clock speed
at which they are guaranteed to function. While a CPU processor is always
specified by its clock frequency (e.g., a 400 MHz CPU), DSP processors are
usually designated by clock interval (e.g., a 25 nanosecond DSP).

Even when writing low-level assembly language that translates directly
to native opcodes, a line of code does not directly correspond to a clock
interval, because the processor has to carry out many operations other than
the arithmetic functions themselves. To see how a CPU really works at the
level of individual clock cycles, consider an instruction that adds a value in
memory to a register, leaving the result in the same register. At the level of
individual clock cycles the following operations might take place.

fetch instruction
decode instruction
retrieve value from memory

perform addition

We see that a total of four clock cycles is required for this single addition,
and our ‘instruction time’ is actually four ‘clock cycles’. There might be
additional subinstruction operations as well, for instance, transfer of a value
from the register to memory. Fixed point DSP processors may include an op-
tional postarithmetic scaling (shift) operation, while for floating point there
is usually a postarithmetic normalization stage that ensures the number is
properly represented.

Using a subinstruction pipeline we needn’t count four clock cycles per
instruction. While we are performing the arithmetic portion of an instruc-
tion, we can already be decoding the next instruction, and fetching the one
after that! The number of overlapable operations of which an instruction is
comprised is known as the depth of the pipeline. The minimum depth is three
(fetch, decode, execute), typical values are four or five, but by dividing the
arithmetic operation into stages the maximum depth may be larger. Recent
DSP processors have pipeline depths as high as 11.

17.3. PIPELINES 629

fetch 1 fetch 2 fetch 3 fetch 4 fetch 5
decode 1 decode 2 decode 3 decode 4 decode 5

get 1 get 2 get 3 get 4 get 5
add 1 add2 add3 add4 add5

Figure 17.2: The operation of a depth-four pipeline. Time runs from left to right, while
height corresponds to distinct hardware units. At the left there are three cycles during
which the pipeline is filling, while at the right there are three cycles while the pipeline is
emptying. The complete sum is available eight cycles after the first fetch.

As an example, consider a depth-four pipeline that consists of fetch, de-
code, load data from memory, and an arithmetic operation, e.g., an addition.
Figure 17.2 depicts the state of a depth-four pipeline during all the stages
of a loop adding five numbers. Without pipelining the summation would
take 5 * 4 = 20 cycles, while here it requires only eight cycles. Of course
the pipeline is only full for two cycles, and were we to sum 100 values the
pipelined version would take only 103 cycles. Asymptotically we require only
a single cycle per instruction.

The preceding discussion was based on the assumption that we know
what the next instruction will be. When a branch instruction is encoun-
tered, the processor only realizes that a branch is required after the decode
operation, at which point the next instruction is already being fetched. Even
more problematic are conditional branches, for which we only know which
instruction is next after a computation has been performed. Meanwhile the
pipeline is being filled with erroneous data. Thus pipelining is useful mainly
when there are few (if any) branches. This is the case for many DSP algo-
rithms, while possibly unjustified for most general-purpose programming.

As discussed above, many processor instructions only return results after
a number of clocks. Attempting to retrieve a result before it is ready is a
common mistake in DSP programming, and is handled differently by differ-
ent processors. Some DSPs assist the programmer by locking until the result
is ready, automatically inserting wait states. Others provide no locking and
it is entirely the programmer’s responsibility to wait the correct number of
cycles. In such cases the NOP (no operation) opcode is often inserted to
simply waste time until the required value is ready. In either case part of
the art of DSP programming is the rearranging of operations in order to
perform useful computation rather than waiting with a NOP.

630 DIGITAL SIGNAL PROCESSORS

EXERCISES

17.3.1 Why do many processors limit the number of instructions in a repeat loop?

17.3.2 What happens to the pipeline at the end of a loop? When a branch is taken?

17.3.3 There are two styles of DSP assembly language syntax regarding the pipeline.
One emphasizes time by listing on one line all operations to be carried out
simultaneously, while the other stresses data that is logical related. Consider
a statement of the first type

where Al, A2, A3, A4 are accumulators and Rl, R2 pointer registers. Explain
the relationship between the contents of the indicated registers. Next consider
a statement of the second type

AO=AO+(*Rl++**R2++)

and explain when the operations are carried out.

17.3.4 It is often said that when the pipeline is not kept filled, a DSP is slower than
a conventional processor, due to having to fill up and empty out the pipeline.
Is this a fair statement?

17.3.5 Your DSP processor has 8 registers RI, R2, R3, R4, R5, R6, R7, R8, and
the following operations

l load register from memory: Rn + location

0 store register to memory: location t Rn

l single cycle no operation: NOP

0 negate: Rn +- - Rn [l cycle latency]

l add: Rn +- Ra + Rb [2 cycle latency]

l subtract: Rn +-- Ra - Rb [2 cycle latency]

l multiply: Rn + Ra . Rb [3 cycle latency]

l MAC: Rn + Rn + Ra . Rb [4 cycle latency]

where the latencies disclose the number of cycles until the result is ready to
be stored to memory. For example,

RI t Rl + R2 . R3

answer + RI

does not have the desired effect of saving the MAC in answer, unless four
NOP operations are interposed. Show how to efficiently multiply two complex
numbers. (Hint: First code operations with enough NOP operations, and then
interchange order to reduce the number of NOPs.)

17.4. INTERRUPTS, PORTS 631

17.4 Interrupts, Ports

When a processor stops what it has been doing and starts doing something
else, we have a context switch. The name arises from the need to change the
run-time context (e.g, the pointer to the next instruction, the contents of
the registers). For example, the operating system of a time-sharing computer
system must continually force the processor to jump between different tasks,
performing numerous context switches per second. Context switches can be
initiated by outside events as well (e.g., keyboard presses, mouse clicks,
arrival of signals). In any case the processor must be able to later return to
the original task and continue as if nothing had happened.

Were the software responsible for initiating all externally driven context
switches, it would need to incessantly poll all the possible sources of such
requests to see whether servicing is required. This would certainly be a
waste of resources. All processors provide a hardware mechanism called the
interrupt. An interrupt forces a context switch to a predefined routine called
the interrupt handler for the event in question. The concept of an interrupt
is so useful that many processors provide a ‘software interrupt’ (sometimes
called a trap) by which the software itself can instigate a context switch.

One of the major differences between DSPs and other types of CPUs is
the speed of the context switch. A CPU may have a latency of dozens of
cycles to perform a context switch, while DSPs always have the ability to
perform a low-latency (perhaps even zero-overhead) interrupt.

Why does a DSP need a fast context switch? The most important rea-
son is the need to capture interrupts from incoming signal values, either
immediately processing them or at least storing them in a buffer for later
processing. For the latter case this signal value capture often occurs at a high
rate and should only minimally interfere with the processing. For the former
case delay in retrieving an incoming signal may be totally unacceptable.

Why do CPU context switches take so many clock cycles? Upon restora-
tion of context the processor is required to be in precisely the same state it
would have been had the context switch not occurred. For this to happen
many state variables and registers need to be stored for the context being
switched out, and restored for the context being switched in. The DSP fast
interrupt is usually accomplished by saving only a small portion of the con-
text, and having hardware assistance for this procedure. Thus if the context
switch is for the sole purpose of storing an incoming sample to memory, the
interrupt handler can either not modify unstored registers, or can be coded
to manually restore them to their previous state.

632 DIGITAL SIGNAL PROCESSORS

All that is left is to explain how signal values are input to and output
from the DSP. This is done by ports, of which there are several varieties.
Serial ports are typically used for low-rate signals. The input signal’s bits
are delivered to the DSP one at a time and deposited in an internal shift
register, and outputs are similarly shifted out of the DSP one bit per clock.
Thus when a 16-bit A/D is connected to a serial port it will send the sample
as 16 bits, along with a bit clock signal telling the DSP when each bit is
ready. The bits may be sent MSB first or LSB first depending on the A/D
and DSP involved. These bits are transferred to the DSP’s internal serial
port shift register. Each time the A/D signals that a bit is ready, the DSP
serial port shift register shifts over one bit and receives the new one. Once
all 16 bits are input the A/D will assert an interrupt requesting the DSP to
store the sample presently in the shift register to memory.

Parallel ports are faster than serial ports but require more pins on the
DSP chip itself. Parallel ports typically transfer eight or sixteen bits at a
time. In order to further speed up data transfer Direct Memory Access
(DMA) channels are provided that can transfer whole blocks of data to or
from the DSP memory without interfering with the processing. Typically
once a DMA transfer is initiated, only a single interrupt is required at the
end to signal that the transfer is complete.

Finally, communications ports are provided on those DSPs that may be
interconnected with other DSPs. By constructing arrays of DSPs processing
tasks may be divided up between processors and such platforms may attain
processing power far exceeding that available from a single processor.

EXERCISES

17.4.1 How does the CPU know which interrupt handler to call?

17.4.2 Some DSPs have ‘internal peripherals’ that can generate interrupts. What
can these be used for?

17.4.3 What happens when an interrupt interrupts an interrupt?

17.4.4 When a DSP is on a processing board inside a host computer there may be a
method of input and output other than ports-shared memory. Discuss the
pros and cons of shared memory vs. ports.

17.5. FIXED AND FLOATING POINT 633

17.5 Fixed and Floating Point

The first generation of DSP processors were integer-only devices, and even
today such fixed point DSPs flourish due to their low cost. This seems para-
doxical considering that DSP tasks are number-crunching intensive. You
probably wouldn’t consider doing serious numeric tasks on a conventional
CPU that is not equipped with floating point hardware. Yet the realities
of speed, size, power consumption, and price have compelled these incon-
venient devices on the DSP community, which has had to develop rather
intricate numeric methods in order to use them. Today there are floating
point DSPs, but these still tend to be much more expensive, more power
hungry, and physically larger than their fixed point counterparts. Thus ap-
plications requiring embedding a DSP into a small package, or where power
is limited, or price considerations paramount, still typically utilize fixed point
DSP devices. Fixed point DSPs are also a good match for A/D and D/A
devices, which are typically unsigned or two’s-complement integer devices.

The price to be paid for the use of fixed point DSPs is extended develop-
ment time. After the required algorithms have been simulated on computers
with floating point capabilities, floating point operations must then be care-
fully converted to integer ones. This involves much more than simple round-
ing. Due to the limited dynamic range of fixed point numbers, resealing must
be performed at various points, and special underflow and overflow handling
must be provided. The exact placement of the resealings must be carefully
chosen in order to ensure the maximal retention of signal vs. quantization
noise, and often extensive simulation is required to determine the optimal
placement. In addition, the precise details of the processor’s arithmetic may
need to be taken into account, especially when interoperability with other
systems is required. For example, standard speech compression algorithms
are tested by providing specified input and comparing the output bit stream
to that specified in the standard. The output must be exact to the bit, even
though the processor may compute using any number of bits. Such bit-exact
implementations may utilize a large fraction of the processor’s MIPS just to
coerce the fixed point arithmetic to conform to that of the standard.

The most common fixed point representation is 16-bit two’s complement,
although longer registers (e.g., 24- or 32-bit) also exist. In fixed point DSPs
this structure must accommodate both integers and real numbers; to repre-
sent the latter we multiply by some large number and round. For example, if
we are only interested in real numbers between -1.0 and +l .O we multiply
by 215 and think of the two’s-complement number as a binary fraction.

634 DIGITAL SIGNAL PROCESSORS

When two 16-bit integers are added, the sum can require 17 bits; when
multiplied, the product can require 32 bits. Floating point hardware takes
care of this bit growth by automatically discarding the least significant bits,
but in fixed point arithmetic we must explicitly handle the increase in preci-
sion. CPUs handle addition by assuming that the resultant usually does fit
into 16 bits; if there is an overflow a flag is set or an exception is triggered.
Products are conventionally stored in two registers, and the user must de-
cide what to do next based on the values in the registers. These strategies
are not optimal for DSP since they require extra operations for testing flags
or discarding bits, operations that would break the pipeline.

Fixed point DSPs use one of several strategies for handling the growth of
bits without wasting cycles. The best strategy is for the adder of the MAC
instruction to use an accumulator that is longer than the largest possible
product. For example, if the largest product is 32 bits the accumulator could
have 40 bits, the extra bits allowing eight MACs to be performed without any
possibility of overflow. At the end of the loop a single check and possible
discard can be performed. The second strategy is to provide an optional
scaling operation as part of the MAC instruction itself. This is basically a
right shift of the product before the addition, and is built into the pipeline.
The least satisfactory way out of the problem, but still better than nothing, is
the use of ‘saturation arithmetic’. In this case a hard limiter is used whenever
an overflow occurs, the result being replaced by the largest representable
number of the appropriate sign. Although this is definitely incorrect, the
error introduced is smaller than that caused by straight overflow.

Other than these surmountable arithmetic problems, there are other pos-
sible complications that must be taken into account when using a fixed point
processor. As discussed in Section 15.5, after designing a digital filter its co-
efficients should not simply be rounded; rather the best integer coefficients
should be determined using an optimization procedure. Stable IIR filters
may become unstable after quantization, due to poles too close to the unit
circle. Adaptive filters are especially sensitive to quantization. When bits
are discarded, overflows occur, or limiting takes place, the signal processing
system ceases to be linear, and therefore cycles and chaotic behavior become
possible (see Section 5.5).

Floating point DSPs avoid many of the above problems. Floating point
numbers consist of a mantissa and an exponent, both of which are signed
integers. A recognized standard details both sizes for the mantissa and ex-
ponent and rules for the arithmetic, including how exceptions are to be
handled. Not all floating point DSPs conform to this standard, but some
that don’t provide opcodes for conversion to the standard format.

17.6. A REAL-TIME FILTER 635

Unlike the computing environments to which one is accustomed in off-
line processing, even the newer floating point DSP processors do not usually
have instructions for division, powers, square root, trigonometric functions,
etc. The software libraries that accompany such processors do include such
functions, but these general-purpose functions may be unsuitable for the
applications at hand. The techniques of Chapter 16 can be used in such
cases.

EXERCISES

17.5.1 Real numbers are represented as integers by multiplying by a large number
and rounding. Assuming there is no overflow, how is the integer product
related to the real product? How is a fixed point multiply operation from
two b-bit registers to a b-bit register implemented?

17.5.2 Simulate the simple IIR filter yn = cry,-1 + xn (0 5 o. ,< 1) in floating point
and plot the impulse response for various a. Now repeat the simulation using
8-bit integer arithmetic (1 becomes 256, 0 5 a! 5 256). How do you properly
simulate 8-bit arithmetic on a 32-bit processor?

17.5.3 Design a narrow band-pass FIR filter and plot its empirical frequency re-
sponse. Quantize the coefficients to 16 bits, 8 bits, 4 bits, 2 bits, and finally a
single bit (the coefficient’s sign); for each case replot the frequency response.

17.5.4 Repeat the previous exercise for an IIR filter.

17.6 A Real-Time Filter

In this section we present a simple example of a DSP program that FIR
filters input data in real-time. We assume that the filter coefficients are
given, and that the number of coefficients is L.

Since this is a real-time task, every tS seconds a new input sample X~
appears at the DSP’s input port. The DSP must then compute

L-l

Yn = c hlxn-1
z=o

and output yn in less than t, seconds, before the next sample arrives. This
should take only somewhat more than L processor cycles, the extra cycles
being unavoidable overhead.

636 DIGITAL SIGNAL PROCESSORS

On a general purpose CPU the computation might look like this:

for 1 + 1 to (L-l)
x11-11 + xc11

x[L-11 + input

Y+-O
for 1 t- 0 to (L-1)

y + y + h[l] * x[L-l-l]
output + y

We first made room for the new input and placed it in x [L-l]. We then
computed the convolution and output the result.

There are two main problems with this computation. First we wasted
a lot of time in moving the static data in order to make room for the new
input. We needn’t physically move data if we use a circular bufler, but then
the indexation in the convolution loop would be more complex. Second, the
use of explicit indexation is wasteful. Each time we have need x [L-l-l]
we have to compute L-l-l, find the memory location, and finally retrieve
the desired data. A similar set of operations has to be performed for h Cl]
before we are at last ready to multiply, A more efficient implementation
uses ‘pointers’; assuming we initialize h and x to point to ho and ~-1-l
respectively, we have the following simpler loop:

Y+-O
repeat L times

y t y + (*h) * C*(x)
h+h+l
x+x-l

Here *h means the contents of the memory location to which the pointer
h points. We can further improve this a little by initializing y to horn and
performing one less pass through the loop.

How much time does this CPU-based program take? In the loop there is
one multiplication, two additions and one subtraction, in addition to assign-
ment statements; and the loop itself requires an additional implicit decre-
ment and comparison operation.

Now we are ready to try doing the same filtering operation on a DSP.
Figure 17.3 is a program in assembly language of an imaginary DSP. The
words starting with dots (such as . table) are ‘directives’; they direct the
assembler to place the following data or code in specific memory banks. In

17.6. A REAL-TIME FILTER 637

. table
H: ho

h

HLAST: hLsl

. data
x: (L-1) * 0
XNEW : 0

. program
START :

if (WAIT) goto START
*XNEW + INPUT
h + HLAST
x+x

y + (*h)*(*x) 11 h + h-l 11 x t x+1
repeat (L-l) times

Y + y + (*h)*(*x) 11 *(x-l> + *x 11 h t h-l II x t x+1

NOP
OUTPUT t y
goto START

Figure 17.3: A simple program to FIR filter input data in real-time.

this case the L filter coefficients ho . . . hLsl are placed in ‘table memory’; the
static buffer of length L is initialized to all zeros and placed in ‘data memory’;
and the code resides in ‘program memory’. These placements ensure that the
MAC instructions will be executable in a single cycle. The names followed
by colons (such as HLAST :) are ‘labels’, and are used to reference specific
memory lo cat ions.

The filter coefficients are stored in the following order ho, hl, . . . hL-1
with ho bearing the label H and hL-1 labeled HLAST. The static buffer is in
reversed order z,+-11, . . . xn-.r, x 72 with the oldest value bearing the label
X and the present input labeled XNEW.

The program code starts with the label START, and each nonempty line
thereafter corresponds to a single processor cycle. The first line causes the

638 DIGITAL SIGNAL PROCESSORS

processor to loop endlessly until a new input arrives. In a real program such
a tight loop would usually be avoided, but slightly looser do-nothing loops
are commonly used.

Once an input is ready it is immediately copied into the location pointed
to by XNEW, which is the end of the static buffer. Then pointer register h is
set to point to the end of the filter buffer (hi-1) and pointer x is set to point
to the beginning of that buffer (the oldest stored input).

Accumulator y is initialized to h~-r~a, the last term in the convolution.
Note that y is a numeric value, not a pointer like x. The 11 notation refers
to operations that are performed in parallel. In this line the filter buffer
pointer is decremented and the static buffer pointer is incremented. These
operations are carried out before they are next required.

The next line contains a ‘zero-overhead loop’. This loop is only executed
L-l times, since the last term of the convolution is already in the accu-
mulator. The last iteration multiplies the he coefficient by the new input.
However, something else is happening here as well. The * (x-l) + *x being
executed in parallel is a data-move that shifts the input data that has just
been used one place down; by the time the entire loop has been executed
the static buffer has all been shifted and is ready for the next iteration.

Once the entire convolution has been carried out we are ready to output
the result. However, in some DSP processors this output operation can only
take place once the pipeline has been emptied; for this reason we placed
a NOP (no-operation) command before copying the accumulator into the
output register. Finally, we jump back to the start of the program and wait
for the next input to arrive.

EXERCISES

17.6.1 Taking a specific number of coefficients (e.g., L=5), walk through the program
in Figure 17.3, noting at each line the values of the pointers, the state of the
static buffer, and the algebraic value in the accumulator.

17.6.2 Code a real-time FIR filter for a DSP that does not support data-move in
parallel with the MAC, but has hardware support for a circular buffer.

17.6.3 Code a real-time IIR routine similar to the FIR one given in the text. The
filter should be a cascade of N second order sections, and the main loop
should contain four lines and be executed N times.

17.6.4 Write a filtering program for a real DSP and run it in real-time.

17.7. DSP PROGRAMMING PROJECTS 639

17.7 DSP Programming Projects

DSP programming is just like any other programming, only more so. As in
any other type of programming attention to detail is essential, but for DSP
processors this may extend beyond syntax issues. For example, some proces-
sors require the programmer to ensure that the requisite number of cycles
have passed before a result is used; forgetting a NOP in such a situation cre-
ates a hard-to-locate bug. For many types of programming intimate knowl-
edge of the hardware capabilities isn’t crucial, but for DSP programming
exploitation of special-purpose low-level features may mean the difference
between success and failure. As in any other type of programming, famil-
iarity with the software development tools is indispensable, but for DSP
processors emulation, debugging and profiling may be much more difficult
and critical tasks.

In this section we present a model that you may find useful to consider
when embarking on a new DSP programming project. However, whether or
not you adhere to all the details of this model, remember that you must
always obey the golden rule of DSP programming:

Always program for correctness first, efficiency second.

All too often we are driven by the need to make our algorithms faster and
faster, and are tempted to do so at the expense of system stability or thor-
ough testing. These temptations are to be avoided at all costs.

Once this is understood I suggest that the task of implementing a new
system is CHILD’s play. Here the word CHILD is a mnemonic for:
Collect requirements and decide on architecture
High-level design
Intermediate level, simulation and porting to platform
Low-level coding and efficiency improvement
Deliver and document
We shall devote a paragraph or two to each of these stages.

The collection stage is a critical one, all too often incompletely executed.
The implementor must collect all the requirements, including the expected
range of inputs, the exact output(s) required, the overall development sched-
ule and budget, the desired end user cost, interface specifications, etc. Some-
times someone else has done the preliminary work for you and you receive a
Hardware Requirements Specification (HRS) and a Software Requirements
Specification (SRS). Remember that anything missed during the collection
stage will be difficult or impossible to reintroduce later on, One of the things
to be decided at this stage is how the final product is to be tested, and the

640 DIGITAL SIGNAL PROCESSORS

exact criteria for success. You should make sure the end users (or techni-
cal marketing personnel) ‘sign off’ on the requirement specifications and
acceptance procedures.

Between the end of the collection stage and the beginning of the high-
level design stage it is highly recommended to go on vacation.

The technical output of the high-level design stage will usually be a pair
of documents, the Hardware Design Document (HDD) and the Software
Design Document (SDD). There will also be project management litera-
ture, including various charts detailing precisely what each team member
should be doing at every time, dates by which critical tasks should be com-
pleted, milestones, etc. We will focus on the SDD. The SDD explains the
signal processing system, first in generality, and then increasingly in de-
tail. The function of each subsystem is explained and its major algorithms
noted. There are two ways to write an SDD. The first (and most commonly
encountered) is to have done something extremely similar in the past. In
this case one starts by cutting and pasting and then deleting, inserting, and
modifying until the present SRS is met. The more interesting case is when
something truly new is to be built. In this case a correct SDD cannot be
written and the project management literature should be considered science
fiction. Remember that the ‘R’ and ‘D’ in R&D are two quite different tasks,
and that a true research task cannot be guaranteed to terminate on a certain
date and in a certain way (the research would be unnecessary if it could).

Often simulations must be performed during the high-level design stage.
For these simulations efficiency is of no concern; but development speed,
ease of use and visualization ability are of the utmost importance. For this
reason special development environments with graphics and possibly visual
programming are commonly used. The output of these simulations, both
block diagrams and performance graphs, can be pasted into the design doc-
uments. The amount of memory and processing power required for each
subsystem can now be better estimated. It is best to plan on using only 50%
to 75’% of the available processing power (it will always turn out to require
a lot more than you anticipate).

At the end of the high-level design a Design Review (DR) should be
carried out. Here the HDD and SDD are explained and comments solicited.
Invite as many relevant people as possible to the DR. Remember that mis-
takes in the high-level design are extremely costly to repair later on.

The intermediate-stage may be bypassed only for very small projects.
Here the block diagrams developed in the high-level stage are fleshed out
and a complete program is written. This is often done first in a high-level
language, liberally using floating point numbers and library functions. While

17.8. DSP DEVELOPMENT TEAMS 641

the high-level software design stage is often carried out by a single person,
the intermediate stage is usually handed over to the full development team.
Once the team starts to work, the project should be placed under revision
control. Once completed and integrated the full program can be tested with
test inputs and outputs to ensure passing the final acceptance procedures.
Next the high-level language program is rewritten in a real-time style, using
the proper block lengths, converting to fixed point if required, etc. After
each major step the program behavior can be compared to that of the orig-
inal to ensure correctness. Mechanisms for debugging, exception handling,
maintainability, and extensibility should be built into the code.

The low-level programming commences as a straightforward port of the
intermediate level program to the final platform. Once again the first code
should be written to maintain correctness at the expense of efficiency. After
the first port, decisions must be made as to what can remain in a high-
level language and what must be coded in assembly language; where major
improvements in efficiency are required; where memory usage is excessive;
etc. Efficiency is increased incrementally by concentrating on areas of code
where the program spends most of its time. Various debugging tools, such
as simulators, emulators, debug ports, and real-time monitoring are used.
Eventually a correct version that is fast enough is generated.

Delivery of a version is something that no one likes doing, but the project
is not complete without it. The final version must be cleaned up and accep-
tance tests thoroughly run (preferably with the end user or disinterested
parties present). User and programmer documentation must be completed.
The former is usually written by professional publications personnel. The
latter include internal documentation (the final code should be at least 25%
comments), an updated SDD, and a Version Description Document (VDD)
that describes all limitations, unimplemented features, changes, and out-
standing problems.

After delivery the boss takes the development team out to lunch, or lets
everyone take an extended weekend. The following week the whole process
starts over again.

17.8 DSP Development Teams

‘Congratulations, you’ve got the job!’ You heard those words just last week,
but you are already reporting for work as a junior DSP engineer in the ASP
(Advanced Signal Processing) division of III (Infinity Integrators Inc.). In
your previous jobs you worked by yourself or with one or two other people

642 DIGITAL SIGNAL PROCESSORS

on some really impressive DSP projects. You’ve programmed DSP boards in
PCs, completing whole applications in a week, often writing over 500 lines
of assembly language in a day. You are quite sure that this has prepared
you for this new job. Of course in a big company like III with hundreds of
engineers and programmers, working on multimillion dollar projects, there
will be more overhead, but DSP programming is DSP programming. There
is only one thing that your new boss said during your interview that you
don’t quite understand. Why do the programmers here only write an average
of ten to twenty lines of code in a day? Are they lazy or just incompetent?

Well, you’ll soon find out. Your first assignment is to understand the
system you will be working on. This system is a newer version of an older
one that has been operational for over five years. Your boss has given you
five days to come up to speed. Sounds easy.

In your cubicle you find a stack of heavy documents. The first thing you
have to learn is what a TLA is. TLA is a self referential term for Three
Letter Acronym, and the system you are going to work on is full of them.
There are several FEUs (front end units), a BEU (back end unit), and a MPC
(main processing computer) with a HIC (human interface console). You learn
all this by reading parts of two documents titled HRS and SRS, that are
followed by even larger ones marked HDD and SDD. These documents are
so highly structured that you soon understand that it would take a full five
days just to read them and follow up the cross references. There are also
countless other documents that you have been told are not as important
to you (yet), like the PMP (program management plan) that even specifies
how much time you are allotted to learn the system (5 days).

Your second day is spent trying to figure out where DSP fits in to all
this and what you are expected to do. As a shortcut you look up your tasks
in the PMP. After an hour or so you have jotted down the cross references
of tasks to which you have been assigned, and start looking up what they
are. A lot is written about when they start and end, what resources they
need, and what they hold up if not finished on time. The only explanation of
exactly what you are expected to do seems to be one-line descriptions that
are entirely incomprehensible. In fact, the only thing you think you fully
understand is the ‘handbook for the new employee’ that human resources
placed in your cubicle. Even that seems to have been written in the same
style, but at least it is one self-contained document (except the reference to
the manual for using the voicemail system).

On your third day on the job you attend your first weekly TRM (team
review meeting). The main subject seems to be when the PDR (preliminary
design review) and CDR (critical design review) will take place. Luckily

17.8, DSP DEVELOPMENT TEAMS 643

the TRM will only last about a half hour since the boss has to go to the
TLM (team leader meeting) that has to take place before the GLM (group
leader meeting) headed by the director of ASP. Any questions? Somewhat
timidly you speak up-why is it called the FEU and not the DSP? In all
the jobs you worked on up to now the module with the DSPs was simply
called the DSP. The boss explains patiently (while several coworkers smile)
that the name has been chosen to be accurate from a system point of view.
DSP stands for digital signal processing. Here the fact that the processing
is digital is irrelevant to the rest of the system; indeed in an earlier version
a lot of the processing was analog. The words signal and processing turn
out to be incorrect from a system point of view. The purpose of this unit is
acquisition of the data needed by the rest of the system, even if this data
already requires a great deal of processing from raw input.

After the meeting you spend a few hours in the library. The SDD refer-
ences a lot of international standards and each of these in turn references still
other standards. The standards documents seem even less comprehensible
than the SDD itself. You spend the next few hours by the copying machine.

On the fourth day you are invited to attend a discussion between the
hardware and software guys. Not yet having learned about the subsystem in
question you can’t quite make out what is going on, other than the hardware
guys saying it’s an obvious software bug and the software guys saying its
a hardware failure. You speak up asking why a simple test program can’t
be used to test the hardware. The hardware people explain that they had
written such a program and that is precisely how they know its a software
problem. The software people reply that the hardware test program was
unrealistically simplistic and didn’t really test this aspect of the design.
They, however, have written a simulation of the hardware, and their software
runs perfectly on it.

You glance at your watch. Although it’s after six o’clock you think you’ll
spend a few more hours reading the SDD. Just this morning you had at last
found out what the DSP processing elements were, and were beginning to
feel more confident that it was, in principle, possible to extract information
from these documents. How will you ever finish reading all this by tomorrow?

The fifth day starts auspiciously-your development system arrives. You
are given a table in the lab; its one floor down from your cubicle and you learn
to use the stairs rather than wait for the elevator. The entire morning is spent
on unpacking, reading the minimal amount of documentation, hooking up all
the cables, and configuring the software. A coworker helps you out, mostly
in order to see the improvements in the new version you have received. You
go out to lunch with your co-workers, and the entire time is spent talking

644 BIBLIOGRAPHICAL NOTES

about work. Once back you return to your cubicle only to find that someone
has ‘borrowed’ your copy of the SDD. You return to the lab only to find
that several power cables are missing as well. It’s after three and you start
to panic. Are your coworkers playing some kind of initiation prank or does
this kind of thing happen all the time?

Bibliographical Notes

Jonathan Allen from MIT gave two early, but still relevant, overviews of the basic
architecture of digital signal processors [3, 41. More modern reviews are [142, 143,
1411. In particular [61] can be used as a crash course in DSP processors: what defines
a DSP, how DSPs differ from CPUs, and how they differ one from another.

Manuals supplied by the various processor manufacturers are the best source for
information on DSP architecture and how to best exploit it. Usually each processor
has a Processor User’s Guide that details its architecture and instruction set; an
Assembly Language Reference with explanations of its programming environment;
and an Applications Library Manual with sample code and library routines for
FFTs, FIR and IIR filters, etc. For popular processors many useful DSP functions
and full applications will be available for licensing or in the public domain. The
annual EDN DSP directory [148] is a treasure-trove of information regarding all
extant DSPs.

[140] is devoted entirely to fundamentals of DSP processors, and its authors also
publish an in-depth study and comparison of available DSPs. Readers considering
implementing DSP functions in VLSI should consult [154].

