
Sayed, A.H. & Rupp, M. “Robustness Issues in Adaptive Filtering”
Digital Signal Processing Handbook
Ed. Vijay K. Madisetti  and  Douglas B. Williams
Boca Raton: CRC Press LLC, 1999

c©1999 by CRC Press LLC



20
Robustness Issues in Adaptive

Filtering

Ali H. Sayed
University of California, Los Angeles

Markus Rupp
Bell Laboratories
Lucent Technologies

20.1 Motivation and Example
20.2 Adaptive Filter Structure
20.3 Performance and Robustness Issues
20.4 Error and Energy Measures
20.5 Robust Adaptive Filtering
20.6 Energy Bounds and Passivity Relations
20.7 Min-Max Optimality of Adaptive Gradient Algorithms
20.8 Comparison of LMS and RLS Algorithms
20.9 Time-Domain Feedback Analysis

Time-Domain Analysis • l2−Stability and the Small Gain Con-
dition • Energy Propagation in the Feedback Cascade • A De-
terministic Convergence Analysis

20.10Filtered-Error Gradient Algorithms
20.11References and Concluding Remarks

Adaptive filters are systems that adjust themselves to a changing environment. They are designed
to meet certain performance specifications and are expected to perform reasonably well under the
operating conditions for which they have been designed. In practice, however, factors that may have
been ignored or overlooked in the design phase of the system can affect the performance of the
adaptive scheme that has been chosen for the system. Such factors include unmodeled dynamics,
modeling errors, measurement noise, and quantization errors, among others, and their effect on
the performance of an adaptive filter could be critical to the proposed application. Moreover, tech-
nological advancements in digital circuit and VLSI design have spurred an increase in the range of
new adaptive filtering applications in fields ranging from biomedical engineering to wireless com-
munications. For these new areas, it is increasingly important to design adaptive schemes that are
tolerant to unknown or nontraditional factors and effects. The aim of this chapter is to explore and
determine the robustness properties of some classical adaptive schemes. Our presentation is meant
as an introduction to these issues, and many of the relevant details of specific topics discussed in this
section, and alternative points of view, can be found in the references at the end of the chapter.

20.1 Motivation and Example

A classical application of adaptive filtering is that of system identification. The basic problem for-
mulation is depicted in Fig. 20.1, where z−1 denotes the unit-time delay operator. The diagram
contains two system blocks: one representing the unknown plant or system and the other containing
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FIGURE 20.1: A system identification example.

a time-variant tapped-delay-line or finite-impulse-response (FIR) filter structure. The unknown
plant represents an arbitrary relationship between its input and output. This block might implement
a pole-zero transfer function, an all-pole or autoregressive transfer function, a fixed or time-varying
FIR system, a nonlinear mapping, or some other complex system. In any case, it is desired to de-
termine an FIR model for the unknown system of a predetermined impulse response length M , and
whose coefficients at time i − 1 are denoted by {w1,i−1, w2,i−1, . . . , wM,i−1}. The unknown system
and the FIR filter are excited by the same input sequence {u(i)}, where the time origin is at i = 0.

Ifwecollect theFIRcoefficients intoacolumnvector, saywi−1 = col{w1,i−1, w2,i−1, . . . , wM,i−1},
and define the state vector of the FIR model at time i as ui = col{u(i), u(i − 1), . . . , u(i − M + 1)},
then the output of the FIR filter at time i is the inner product uT

i wi−1. In principle, this inner product
should be compared with the output y(i) of the unknown plant in order to determine whether or not
the FIR output is a good enough approximation for the output of the plant and, therefore, whether
or not the current coefficient vector wi−1 should be updated.

In general, however, we do not have direct access to the uncorrupted output y(i) of the plant but
rather to a noisy measurement of it, say d(i) = y(i) + v(i). The purpose of an adaptive scheme
is to employ the output error sequence {e(i) = d(i) − uT

i wi−1}, which measures how far d(i) is
from uT

i wi−1, in order to update the entries of wi−1 and provide a better model, say wi , for the
unknown system. That is, the purpose of the adaptive filter is to employ the available data at time
i, {d(i), wi−1, ui}, in order to update the coefficient vector wi−1 into a presumably better estimate
vector wi .

In this sense, we may regard the adaptive filter as a recursive estimator that tries to come up
with a coefficient vector w that “best” matches the observed data {d(i)} in the sense that, for all i,
d(i) ≈ uT

i w + v(i) to good accuracy. The successive wi provide estimates for the unknown and
desired w.

20.2 Adaptive Filter Structure

We may reformulate the above adaptive problem in mathematical terms as follows. Let {ui} be a
sequence of regression vectors and let w be an unknown column vector to be estimated or identified.
Given noisy measurements {d(i)} that are assumed to be related to uT

i w via an additive noise model
of the form

d(i) = uT
i w + v(i) , (20.1)
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we wish to employ the given data {d(i), ui} in order to provide recursive estimates for w at successive
time instants, say {w0, w1, w2, . . .}. We refer to these estimates as weight estimates since they provide
estimates for the coefficients or weights of the tapped-delay model.

Most adaptive schemes perform this task in a recursive manner that fits into the following general
description: starting with an initial guess for w, say w−1, iterate according to the learning rule(

new weight
estimate

)
=
(

old weight
estimate

)
+
(

correction
term

)
,

where the correction term is usually a function of {d(i), ui , old weight estimate}. More compactly,
we may write wi = wi−1 + f [d(i), ui , wi−1], where wi denotes an estimate for w at time i and f

denotes a function of the data {d(i), ui , wi−1} or of previous values of the data, as in the case where
only a filtered version of the error signal d(i) − uT

i wi−1 is available. In this context, the well-known
least-mean-square (LMS) algorithm has the form

wi = wi−1 + µ · ui · [d(i) − uT
i · wi−1] , (20.2)

where µ is known as the step-size parameter.

20.3 Performance and Robustness Issues

The performance of an adaptive scheme can be studied from many different points of view. One
distinctive methodology that has attracted considerable attention in the adaptive filtering literature
is based on stochastic considerations that have become known as the independence assumptions. In
this context, certain statistical assumptions are made on the natures of the noise signal {v(i)} and
of the regression vectors {ui}, and conclusions are derived regarding the steady-state behavior of the
adaptive filter.

The discussion in this chapter avoids statistical considerations and develops the analysis in a purely
deterministic framework that is convenient when prior statistical information is unavailable or when
the independence assumptions are unreasonable. The conclusions discussed herein highlight certain
features of the adaptive algorithms that hold regardless of any statistical considerations in an adaptive
filtering task.

Returning to the data model in (20.1), we see that it assumes the existence of an unknown weight
vector w that describes, along with the regression vectors {ui}, the uncorrupted data {y(i)}. This
assumption may or may not hold.

For example, if the unknown plant in the system identification scenario of Fig. 20.1 is itself an
FIR system of length M , then there exists an unknown weight vector w that satisfies (20.1). In this
case, the successive estimates provided by the adaptive filter attempt to identify the unknown weight
vector of the plant.

If, on the other hand, the unknown plant of Fig. 20.1 is an autoregressive model of the simple form

1

1 − cz−1
= 1 + cz−1 + c2z−2 + c3z−3 + . . .

where |c| < 1, then an infinitely long tapped-delay line is necessary to justify a model of the
form (20.1). In this case, the first term in the linear regression model (20.1) for a finite order
M cannot describe the uncorrupted data {y(i)} exactly, and thus modeling errors are inevitable.
Such modeling errors can naturally be included in the noise term v(i). Thus, we shall use the term
v(i) in (20.1) to account not only for measurement noise but also for modeling errors, unmodeled
dynamics, quantization effects, and other kind of disturbances within the system. In many cases,
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the performance of the adaptive filter depends on how these unknown disturbances affect the weight
estimates.

A second source of error in the adaptive system is due to the initial guess w−1 for the weight vector.
Due to the iterative nature of our chosen adaptive scheme, it is expected that this initial weight vector
plays less of a role in the steady-state performance of the adaptive filter. However, for a finite number
of iterations of the adaptive algorithm, both the noise term v(i) and the initial weight error vector
(w − w−1) are disturbances that affect the performance of the adaptive scheme, particularly since
the system designer often has little control over them.

The purpose of a robust adaptive filter design, then, is to develop a recursive estimator that
minimizes in some well-defined sense the effect of any unknown disturbances on the performance
of the filter. For this purpose, we first need to quantify or measure the effect of the disturbances. We
address this concern in the following sections.

20.4 Error and Energy Measures

Assuming that the model (20.1) is reasonable, two error quantities come to mind. The first one
measures how far the weight estimate wi−1 provided by the adaptive filter is from the true weight
vector w that we are trying to identify. We refer to this quantity as the weight error at time (i−1), and
we denote it by w̃i−1 = w − wi−1. The second type of error measures how far the estimate uT

i wi−1

is from the uncorrupted output term uT
i w. We shall call this the a priori estimation error, and we

denote it by ea(i) = uT
i w̃i−1. Similarly, we define an a posteriori estimation error as ep(i) = uT

i w̃i .

Comparing with the definition of the a priori error, the a posteriori error employs the most recent
weight error vector.

Ideally, one would like to make the estimation errors {w̃i , ea(i)} or {w̃i , ep(i)} as small as possible.
This objective is hindered by the presence of the disturbances {w̃−1, v(i)}. For this reason, an adaptive
filter is said to be robust if the effects of the disturbances {w̃−1, v(i)} on the resulting estimation errors
{w̃i , ea(i)} or {w̃i , ep(i)} is small in a well-defined sense. To this end, we can employ one of several
measures to denote how “small” these effects are. For our discussion, a quantity known as the energy
of a signal will be used to quantify these effects. The energy of a sequence x(i) of length N is measured
by Ex = ∑N−1

i=0 |x(i)|2. A finite energy sequence is one for which Ex < ∞ as N → ∞. Likewise, a
finite power sequence is one for which

Px = lim
N→∞

(
1

N

N−1∑
i=0

|x(i)|2
)

< ∞ .

20.5 Robust Adaptive Filtering

We can now quantify what we mean by robustness in the adaptive filtering context. Let A denote any
adaptive filter that operates causally on the input data {d(i), ui}. A causal adaptive scheme produces
a weight vector estimate at time i that depends only on the data available up to and including time i.
This adaptive scheme receives as input the data {d(i), ui} and provides as output the weight vector
estimates {wi}. Based on these estimates, we introduce one or more estimation error quantities such
as the pair {w̃i−1, ea(i)} defined above. Even though these quantities are not explicitly available
because w is unknown, they are of interest to us as their magnitudes determine how well or how
poorly a candidate adaptive filtering scheme might perform.

Figure 20.2 indicates the relationship between {d(i), ui} to {w̃i−1, ea(i)} in block diagram form.
This schematic representation indicates that an adaptive filter A operates on {d(i), ui} and that
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FIGURE 20.2: Input-output map of a generic adaptive scheme.

its performance relies on the sizes of the error quantities {w̃i−1, ea(i)}, which could be replaced
by the error quantities {w̃i , ep(i)} if desired. This representation explicitly denotes the quantities
{w̃−1, v(i)} as disturbances to the adaptive scheme.

In order to measure the effect of the disturbances on the performance of an adaptive scheme, it will
be helpful to determine the explicit relationship between the disturbances and the estimation errors
that is provided by the adaptive filter. For example, we would like to know what effect the noise terms
and the initial weight error guess {w̃−1, v(i)} would have on the resulting a priori estimation errors
and the final weight error, {ea(i), w̃N }, for a given adaptive scheme. Knowing such a relationship,
we can then quantify the robustness of the adaptive scheme by determining the degree to which
disturbances affect the size of the estimation errors.

We now illustrate how this disturbances-to-estimation-errors relationship can be determined by
considering the LMS algorithm in (20.2). Since d(i) − uT

i wi−1 = ea(i) + v(i), we can subtract w
from both sides of (20.2) to obtain the weight-error update equation

w̃i = w̃i−1 − µ · ui · [ea(i) + v(i)] . (20.3)

Assume that we run N steps of the LMS recursion starting with an initial guess w̃−1. This op-
eration generates the weight error estimates {w̃0, w̃1, . . . , w̃N } and the a priori estimation errors
{ea(0), . . . , ea(N)}.

Define the following two column vectors:

dist = col

{
1√
µ

w̃−1, v(0), v(1), . . . , v(N)

}
, error = col

{
ea(0), ea(1), . . . , ea(N),

1√
µ

w̃N

}
.

The vector dist contains the disturbances that affect the performance of the adaptive filter. The initial
weight error vector is scaled by µ−1/2 for convenience. Likewise, the vector error contains the a priori
estimation errors and the final weight error vector which has also been scaled by µ−1/2. The weight
error update relation in (20.3) allows us to relate the entries of both vectors in a straightforward
manner. For example,

ea(0) = uT
0 w̃−1 =

(√
µ uT

0

)( 1√
µ

w̃−1

)
,

which shows how the first entry of error relates to the first entry of dist. Similarly, for ea(1) = uT
1 w̃0

we obtain

ea(1) =
(√

µuT
1 [I − µu0uT

0 ]
) 1√

µ
w̃−1 −

(
µuT

1 u0

)
v(0) ,
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which relates ea(1) to the first two entries of the vector dist. Continuing in this manner, we can relate
ea(2) to the first three entries of dist, ea(3) to the first four entries of dist, and so on.

In general, we can compactly express this relationship as




ea(0)

ea(1)
...

ea(N)
1√
µ

w̃N




︸ ︷︷ ︸
error

=




×
× × O

...
. . .

× × × × × ×




︸ ︷︷ ︸
T




1√
µ

w̃−1

v(0)

v(1)
...

v(N)




︸ ︷︷ ︸
dist

where the symbol × is used to denote the entries of the lower triangular mapping T relating dist to
error. The specific values of the entries of T are not of interest for now, although we have indicated
how the expressions for these × terms can be found. However, the causal nature of the adaptive
algorithm requires that T be of lower triangular form.

Given the above relationship, our objective is to quantify the effect of the disturbances on the
estimation errors. Let Ed and Ee denote the energies of the vectors dist and error, respectively, such
that

Ee = 1

µ
‖w̃N‖2 +

N∑
i=0

|ea(i)|2 and Ed = 1

µ
‖w̃−1‖2 +

N∑
i=0

|v(i)|2 ,

where ‖ · ‖ denotes the Euclidean norm of a vector. We shall say that the LMS adaptive algorithm is
robust with level γ if a relation of the form

Ee

Ed

≤ γ 2 , (20.4)

holds for some positive γ and for any nonzero, finite-energy disturbance vector dist. In other words,
no matter what the disturbances {w̃−1, v(i)} are, the energy of the resulting estimation errors will
never exceed γ 2 times the energy of the associated disturbances.

The form of the mapping T affects the value of γ in (20.4) for any particular algorithm. To see
this result, recall that for any finite-dimensional matrix A, its maximum singular value, denoted
by σ̄ (A), is defined by σ̄ (A) = maxx 6=0

‖Ax‖
‖x‖ . Hence, the square of the maximum singular value,

σ̄ 2(A), measures the maximum energy gain from the vector x to the resulting vector Ax. Therefore,
if a relation of the form (20.4) should hold for any nonzero disturbance vector dist, then it means
that

max
dist 6=0

‖ T dist ‖
‖ dist ‖ ≤ γ .

Consequently, the maximum singular value of T must be bounded by γ . This imposes a condition
on the allowable values for γ ; its smallest value cannot be smaller than the maximum singular value
of the resulting T .

Ideally, we would like the value of γ in (20.4) to be as small as possible. In particular, an algorithm
for which the value of γ is 1 would guarantee that the estimation error energy will never exceed the
disturbance energy, no matter what the natures of the disturbances are! Such an algorithm would
possess a good degree of robustness since it would guarantee that the disturbance energy will never
be unnecessarily magnified.

Before continuing our study, we ask and answer the obvious questions that arise at this point:
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• What is the smallest possible value for γ for the LMS algorithm? It turns out for the LMS
algorithm that, under certain conditions on the step-size parameter, the smallest possible
value for γ is 1. Thus, Ee ≤ Ed for the LMS algorithm.

• Does there exist any other causal adaptive algorithm that would result in a value for γ

in (20.4) that is smaller than one? It can be argued that no such algorithm exists for the
model (20.1) and criterion (20.4).

In other words, the LMS algorithm is in fact the most robust adaptive algorithm in the sense defined
by (20.4). This result provides a rigorous basis for the excellent robustness properties that the LMS
algorithm, and several of its variants, have shown in practical situations. The references at the end
of the chapter provide an overview of the published works that have established these conclusions.
Here, we only motivate them from first principles. In so doing, we shall also discuss other results
(and tools) that can be used in order to impose certain robustness and convergence properties on
other classes of adaptive schemes.

20.6 Energy Bounds and Passivity Relations

Consider the LMS recursion in (20.2), with a time-varying step-size µ(i) for purposes of generality,
as given by

wi = wi−1 + µ(i) · ui · [d(i) − uT
i · wi−1] . (20.5)

Subtracting the optimal coefficient vector w from both sides and squaring the resulting expressions,
we obtain

‖w̃i‖2 = ‖ w̃i−1 − µ(i) · ui · [ea(i) + v(i)] ‖2 .

Expanding the right-hand side of this relationship and rearranging terms leads to the equality

‖w̃i‖2 − ‖w̃i−1‖2 + µ(i) · |ea(i)|2 − µ(i) · |v(i)|2 = µ(i) · |ea(i) + v(i)|2 · [µ(i) · ‖ui‖2 − 1] .

The right-hand side in the above equality is the product of three terms. Two of these terms, µ(i) and
|ea(i)+v(i)|2, are nonnegative, whereas the term (µ(i) · ‖ui‖2 −1) can be positive, negative, or zero
depending on the relative magnitudes of µ(i) and ‖ui‖2. If we define µ̄(i) as (assuming nonzero
regression vectors):

µ̄(i) = ‖ui‖−2 , (20.6)

then the following relations hold:

‖w̃i‖2 + µ(i) |ea(i)|2
‖w̃i−1‖2 + µ(i) |v(i)|2




≤ 1 for 0 < µ(i) < µ̄(i)

= 1 for µ(i) = µ̄(i)

≥ 1 for µ(i) > µ̄(i)

The result for 0 < µ(i) ≤ µ̄(i) has a nice interpretation. It states that, no matter what the value of
v(i) is and no matter how far wi−1 is from w, the sum of the two energies ‖w̃i‖2 +µ(i) · |ea(i)|2 will
always be smaller than or equal to the sum of the two disturbance energies ‖w̃i−1‖2 + µ(i) · |v(i)|2.
This relationship is a statement of the passivity of the algorithm locally in time, as it holds for every
time instant. Similar relationships can be developed in terms of the a posteriori estimation error.

Since this relationship holds for each time instant i, it also holds over an interval of time such that

‖w̃N‖2 + ∑N
i=0 |ēa(i)|2

‖w̃−1‖2 +∑N
i=0 |v̄(i)|2 ≤ 1 , (20.7)

where we have introduced the normalized a priori residuals and noise signals

ēa(i) = √
µ(i) ea(i) and v̄(i) = √

µ(i) v(i) ,
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respectively. Equation (20.7) states that the lower-triangular matrix that maps the normalized noise
signals {v̄(i)}Ni=0 and the initial uncertainty w̃−1 to the normalized a priori residuals {ēa(i)}Ni=0 and
the final weight error w̃N has a maximum singular value that is less than one. Thus, it is a contraction
mapping for 0 < µ(i) ≤ µ̄(i). For the special case of a constant step-size µ, this is the same mapping
T that we introduced earlier (20.4).

In the above derivation, we have assumed for simplicity of presentation that the denominators of all
expressions are nonzero. We can avoid this restriction by working with differences rather than ratios.
Let 1N(w−1, v(·)) denote the difference between the numerator and the denominator of (20.7), such
that

1N(w−1, v(·)) =
{

‖w̃N‖2 +
N∑

i=0

|ēa(i)|2
}

−
{

‖w̃−1‖2 +
N∑

i=0

|v̄(i)|2
}

. (20.8)

Then, a similar argument that produced (20.7) can be used to show that for any {w−1, v(·)},
1N(w−1, v(·)) ≤ 0 . (20.9)

20.7 Min-Max Optimality of Adaptive Gradient Algorithms

The property in (20.7) or (20.9) is valid for any initial guess w−1 and for any noise sequence v(·), so
long as the µ(i) are properly bounded by µ̄(i). One might then wonder whether the bound in (20.7)
is tight or not. In other words, are there choices {w−1, v(·)} for which the ratio in (20.7) can be made
arbitrarily close to one or 1N in (20.9) arbitrarily close to zero? We now show that there are. We can
rewrite the gradient recursion of (20.5) in the equivalent form

wi = wi−1 + µ(i) · ui · [ea(i) + v(i)] . (20.10)

Envision a noise sequence v(i) that satisfies v(i) = −ea(i) at each time instant i. Such a sequence
may seem unrealistic but is entirely within the realm of our unrestricted model of the unknown
disturbances. In this case, the above gradient recursion trivializes to wi = wi−1 for all i, thus leading
to wN = w−1. Thus, 1N in (20.8) will be zero for this particular experiment. Therefore,

max
{w−1,v(·)}

{1N(w−1, v(·))} = 0 .

We now consider the following question: how does the gradient recursion in (20.5) compare with
other possible causal recursive algorithms for the update of the weight estimate? Let A denote any
given causal algorithm. Suppose that we initialize algorithm A with w−1 = w, and suppose the noise
sequence is given by v(i) = −ea(i) for 0 ≤ i ≤ N . Then, we have

N∑
i=0

|v̄(i)|2 =
N∑

i=0

|ēa(i)|2 ≤ ‖w̃N‖2 +
N∑

i=0

|ēa(i)|2 ,

no matter what the value of w̃N is. This particular choice of initial guess (w−1 = w) and noise
sequence {v(·)} will always result in a nonnegative value of 1N in (20.8), implying for any causal
algorithm A that

max
{w−1,v(·)}

{1N(w−1, v(·))} ≥ 0 .

For the gradient recursion in (20.5), the maximum has to be exactly zero because the global prop-
erty (20.9) provided us with an inequality in the other direction. Therefore, the algorithm in (20.5)
solves the following optimization problem:

min
Algorithm

{
max

{w−1,v(·)}
1N(w−1, v(·))

}
,
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FIGURE 20.3: Singular value plot.

and the optimal value is equal to zero. More details and justification can be found in the references
at the end of this chapter, especially connections with so-called H∞ estimation theory.

As explained before, 1N measures the difference between the output energy and the input energy
of the algorithm mapping T . The gradient algorithm in (20.5) minimizes the maximum possible
difference between these two energies over all disturbances with finite energy. In other words, it
minimizes the effect that the worst-possible input disturbances can have on the resulting estimation-
error energy.

20.8 Comparison of LMS and RLS Algorithms

To illustrate the ideas in our discussion, we compare the robustness performance of two classical
algorithms: the LMS algorithm (20.2) and the recursive least-squares (RLS) algorithm. More details
on the example given below can be found in the reference section at the end of the chapter.

Consider the data model in (20.1) where ui is a scalar that randomly assumes the values +1and −1
with equal probability. Let w = 0.25, and let v(i) be an uncorrelated Gaussian noise sequence with
unit variance. We first employ the LMS recursion in (20.2) and compute the initial 150 estimates wi ,
starting with w−1 = 0 and using µ = 0.97. Note that µ satisfies the requirement µ ≤ 1/‖ui‖2 = 1
for all i. We then evaluate the entries of the resulting mapping T , now denoted by Tlms , that we
defined in (20.4). We then compute the corresponding Trls for the recursive-least-squares (RLS)
algorithm for these signals, which for this special data model can be expressed as

wi+1 = wi + piui

1 + pi

[d(i) − uT
i wi−1] , pi+1 = pi

1 + pi

.

The initial condition chosen for pi is p0 = µ = 0.97.
Figure 20.3 shows a plot of the 150 singular values of the resulting mappings Tlms and Trls . As

predicted from our analysis, the singular values of Tlms , indicated by an almost horizontal line at
unity, are all bounded by one, whereas the maximum singular value of Trls is approximately 1.65.
This result indicates that the LMS algorithm is indeed more robust than the RLS algorithm, as is
predicted by the earlier analysis.

Observe, however, that most of the singular values of Trls are considerably smaller than one,
whereas the singular values of Tlms are clustered around one. This has an interesting interpretation
that we explain as follows. An N ×N-dimensional matrix A has N singular values {σi} that are equal
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to the positive square-roots of the eigenvalues of AAT . For each σi , there exists a unit-norm vector
xi such that the energy gain from xi to Axi is equal to σ 2

i , i.e., σi = ‖Axi‖/‖xi‖. The vector xi can
be chosen as the ith right singular vector of A. Now, recall that Tlms and Trls are finite-dimensional
matrices that map a disturbance vector dist to the estimation-errors vector error. Considering the
plot of the singular values of Trls , we see that if the disturbance vector dist happens to lie in the range
space of the right singular vectors associated with the smaller singular values in this plot, then its effect
will be significantly attenuated. This fact indicates that while the performance of the LMS algorithm
guards against worst-case disturbances, the RLS algorithm is likely to have a better performance than
the LMS algorithm on average, as is well-known.

20.9 Time-Domain Feedback Analysis

Robust adaptive filters are designed to induce contractive mappings between sequences of numbers.
This fact also has important implications on the convergence performance of a robust adaptive
scheme. In the remaining sections of this chapter, we discuss the combined issues of robustness and
convergence from a deterministic standpoint. In particular, the following issues are discussed:

• We show that each step of the update equation of the gradient algorithm in (20.5) can be
described in terms of an elementary section that possesses a useful feedback structure.

• The feedback structure provides insights into the robust and convergence performance
of the adaptive scheme. This is achieved by studying the energy flow through a cascade
of elementary sections and by invoking a useful tool from system theory known as the
small gain theorem.

• The feedback analysis extends to more general update relations. The example considered
here is filtered-error LMS algorithm, although the methodology can be extended to other
structures such as perceptrons. Details can be found in the references at the end of this
chapter.

20.9.1 Time-Domain Analysis

From the update equation in (20.5), w̃i satisfies

w̃i = w̃i−1 − µ(i) · ui · [ea(i) + v(i)] . (20.11)

If we multiply both sides of (20.11) by uT
i from the left, we obtain the following relation among

{ep(i), ea(i), v(i)}:
ep(i) =

(
1 − µ(i)

µ̄(i)

)
ea(i) − µ(i)

µ̄(i)
v(i) , (20.12)

where µ̄(i) is given by (20.6). Using (20.12), (20.5) can be rewritten in the equivalent form

wi = wi−1 + µ̄(i) · ui · [ea(i) − ep(i)] ,

= wi−1 + µ̄(i) · ui · [ea(i) + r(i)] , (20.13)

where we have defined the signal r(i) = −ep(i) for convenience. The expression (20.13) shows that
(20.5) can be rewritten in terms of a new step-size µ̄(i) and a modified “noise” term r(i).

Therefore, if we follow arguments similar to those prior to (20.6), we readily conclude that for
algorithm (20.5) the following equality holds for all {µ(i), v(i)}:

‖w̃i‖2 + µ̄(i) |ea(i)|2
‖w̃i−1‖2 + µ̄(i) |r(i)|2 = 1 . (20.14)
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This relation establishes a lossless map (denoted by T i) from the signals {w̃i−1,
√

µ̄(i) r(i)} to
the signals {w̃i ,

√
µ̄(i) ea(i)}. Correspondingly, using (20.12), the map from the original weighted

disturbance
√

µ̄(i)v(i) to the weighted estimation error signal
√

µ̄(i)ea(i) can be expressed in terms
of the feedback structure shown in Fig. 20.4.

FIGURE 20.4: A time-variant lossless mapping with gain feedback for gradient algorithms. c© IEEE
1996. (Source: Rupp, M. and Sayed, A.H., A time domain feedback analysis of filtered-error adaptive
gradient algorithms, IEEE Trans. Signal Process. 44(6): 1428–1439, June 1996. With permission.)

The feedbackdescriptionprovidesuseful insights into thebehaviorof the adaptive scheme. Because
the map T i in the feedforward path is lossless or energy-preserving, the design and analysis effort
can be concentrated on the terms contained in the feedback path. This feedback block controls:

• How much energy is fed back into the input of each section and whether energy magni-
fication or demagnification may occur (i.e., stability).

• How sensitive the estimation error is to noise and disturbances (i.e., robustness).

• How fast the estimation error energy decays (i.e., convergence rate).

20.9.2 l2−Stability and the Small Gain Condition

We start by reconsidering the robustness issue. Recall that if the step-sizes µ(i) are chosen such that
µ(i) ≤ µ̄(i), then robustness is guaranteed in that the ratio of the energies of the signals in (20.7)
will be bounded by one.

The condition on µ(i) can be relaxed at the expense of guaranteeing energy ratios that are bounded
by some other positive number, say

weighted estimation error energy

weighted disturbance energy
≤ γ 2 , (20.15)

for some constant γ to be determined. This is still a desirable property because it means that the
disturbance energy will be, at most, scaled by a factor of γ . This fact can in turn lead to useful
convergence conclusions, as argued later.

In order to guarantee robustness conditions according to (20.15), for some γ , we rely on the
observation that feedback configurations of the form shown in Fig. 20.4 can be analyzed using a
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tool known in system theory as the small gain theorem. In loose terms, this theorem states that the
stability of a feedback configuration such as that in Fig. 20.4 is guaranteed if the product of the norms
of the feedforward and the feedback mappings are strictly bounded by one. Since the feedforward
mapping T i has a norm (or maximum singular value) of one, the norm of the feedback map needs
to be strictly bounded by one for stability of this system.

To illustrate these concepts more fully, consider the feedback structure in Fig. 20.5 that has a
lossless mapping T in its feedforward path and an arbitrary mapping F in its feedback path. The
input/output signals of interest are denoted by {x, y, r, v, e}. In this system, the signals x, v play the
role of the disturbances.

FIGURE 20.5: A feedback structure.

The losslessness of the feedforward path implies conservation of energy such that

‖y‖2 + ‖e‖2 = ‖x‖2 + ‖r‖2 .

Consequently, ‖e‖ ≤ ‖x‖ + ‖r‖. On the other hand, the triangle inequality of norms implies that

‖r‖ ≤ ‖v‖ + ‖F‖ · ‖e‖ ,

where the notation ‖F‖ denotes the maximum singular value of the mapping F . Provided that the
small gain condition ‖F‖ < 1 is satisfied, we have

‖e‖ ≤ 1

1 − ‖F‖ · [ ‖x‖ + ‖v‖ ] . (20.16)

Thus, a contractive F guarantees a robust map from {x, v} to {e} with a robustness level that is
determined by the factor 1/(1 − ‖F‖). In this case, we shall say that the map from {x, v} to {e} is
l2−stable.

FIGURE 20.6: Plot of the l2−gain.

A plot of the factor 1/(1 − ‖F‖), as a function of ‖F‖, is shown in Fig. 20.6. It can be seen that
the smaller the value of ‖F‖:
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• The smaller the effect of {x, v} on {e}.
• The smaller the upper bound on ‖e‖.

Moreover, we shall argue that smaller values of‖F‖ are associated with faster convergence. Therefore,
controlling the norm of F , is important for both the robustness and convergence performance of an
adaptive algorithm. In most cases, the feedback filter F will depend on several quantities, such as
the step-sizes {µ(i)} and the data vectors {ui} (as in Fig. 20.4). It may also depend on error filters
and on regression filters that appear in more general adaptive schemes.

Referring to Fig. 20.4, define

η(N) = max
0≤i≤N

∣∣∣∣1 − µ(i)

µ̄(i)

∣∣∣∣ and ξ(N) = max
0≤i≤N

µ(i)

µ̄(i)
.

That is, η(N) is the maximum absolute value of the gain of the feedback loop over the interval of
time 0 ≤ i ≤ N , and ξ(N) is the maximum value of the scaling factor µ(i)/µ̄(i) at the input of
the feedback interconnection. In this context, the small gain condition requires that η(N) < 1.
This condition is equivalent to choosing the step-size parameter µ(i) such that 0 < µ(i) < 2µ̄(i).
Under this condition, the general relation (20.16) can be used to deduce either of the following two
relationships:√√√√ N∑

i=0

µ̄(i) |ea(i)|2 ≤ 1

1 − η(N)


 ‖w̃−1‖ + ξ(N)

√√√√ N∑
i=0

µ̄(i)|v(i)|2

 (20.17)

or √√√√ N∑
i=0

µ(i) |ea(i)|2 ≤ ξ1/2(N)

1 − η(N)


 ‖w̃−1‖ + ξ1/2(N)

√√√√ N∑
i=0

µ(i)|v(i)|2

 . (20.18)

Note that in either case the upper bound on µ(i) is now 2µ̄(i) and the robustness level is essentially
determined by

1

1 − η(N)
or

ξ1/2(N)

1 − η(N)
,

depending on how the estimation errors {ea(i)} and the noise terms {v(i)} are normalized [by µ(·)
or µ̄(·)].

20.9.3 Energy Propagation in the Feedback Cascade

By studying the energy flow in the feedback interconnection of Fig. 20.4, we can also obtain some
physical insights into the convergence behavior of the gradient recursion (20.5).

Assume thatµ(i) = µ̄(i), such that the feedback loop of Fig. 20.4 is disconnected. In this situation,
there is no energy flowing back into the lower input of the lossless section from its lower output ea(·).
The losslessness of the feedforward path then implies that

Ew(i) = Ew(i − 1) + Ev(i) − Ee(i),

where we have defined the energy terms

Ee(i) = µ̄(i)|ea(i)|2, Ev(i) = µ̄(i)|v(i)|2, Ew(i) = ‖w̃i‖2 .

In the noiseless case where v(i) = 0, the above expression implies that the weight-error energy is a
nonincreasing function of time, i.e., Ew(i) ≤ Ew(i − 1).
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However, whathappens ifµ(i) 6= µ̄(i)? In this case, the feedbackpath is active and the convergence
speed will be affected because the rate of decrease in the energy of the estimation error will change.
Indeed, for µ(i) 6= µ̄(i) we obtain for Ev(i) = 0

Ew(i) = Ew(i − 1) −
(

1 −
∣∣∣∣1 − µ(i)

µ̄(i)

∣∣∣∣2
)

Ee(i) ,

where, due to the small gain condition, the coefficient multiplying Ee(i) can be seen to be smaller
than 1.

Loosely speaking, this energy argument indicates for v(i) = 0 that the smaller the maximum
singular value of feedback block F , for a generic feedback interconnection of the form shown in
Fig. 20.5, the faster the convergence of the algorithm will be, since less energy is fed back to the input
of each section.

20.9.4 A Deterministic Convergence Analysis

The energy argument can be pursued in order to provide sufficient deterministic conditions for the
convergence of the weight estimates wi to the true weight vector w. The argument follows as a
consequence of the energy relations (or robustness bounds) (20.17) and (20.18), which essentially
establishes that the adaptive gradient algorithm (20.5) maps a finite-energy sequence to another
finite-energy sequence.

To clarify this point, we define the quantities

η = sup
i

∣∣∣∣1 − µ(i)

µ̄(i)

∣∣∣∣ , ξ = sup
i

[
µ(i)

µ̄(i)

]
,

and note that if the step-size parameter µ(i) is chosen such that µ(i)‖ui‖2 is uniformly bounded by
2, then we guarantee ξ < 2 and η < 1. We further note that it follows from the weight-error update
relation (20.11) that w̃i satisfies

w̃i = w̃i−1 − ūT
i [ēa(i) + v̄(i)] , (20.19)

where we have defined ūi = √
µ(i) ui [likewise for ēa(i), v̄(i)]. The following conclusions can now

be established under the stated conditions.

• Finitenoise energy condition. Weassumethat thenormalizedsequence {v̄(·) = √
µ(i) v(i)}

has finite energy, i.e.,
∞∑
i=0

µ(i)|v(i)|2 < ∞ . (20.20)

This in turn implies that v̄(i) → 0 as i → ∞ (but not necessarily v(i) → 0). If the
initial weight-error vector is finite, ‖w̃−1‖ < ∞, then condition (20.20) along with the
energy bound (20.18) [as N → ∞] allows us to conclude that

∑∞
i=0 µ(i)|ea(i)|2 < ∞.

Consequently, lim i→∞ ēa(i) → 0 (but not necessarily ea(i) → 0).

• Persistent excitation condition. We also assume that the normalized vectors {ūi} are per-
sistently exciting. By this we mean that there exists a finite integer L ≥ M such that the
smallest singular value of

col {ūT
i , ūT

i+1, . . . , ūT
i+L}

is uniformly bounded from below by a positive quantity for sufficiently large i. The
persistence of excitation condition can be used to further conclude from ēa(i) → 0 that
lim i→∞ wi = w.
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The above statements can also be used to clarify the behavior of the adaptive algorithm (20.5) in
the presence of finite-power (rather than finite-energy) normalized noise sequences {v̄(·)} , i.e., for
v(·) satisfying

lim
N→∞

1

N

N−1∑
i=0

µ(i)|v(i)|2 = Pv < ∞ .

For this purpose, we divide both sides of (20.18) by
√

N and take the limit as N → ∞ to conclude
that

lim
N→∞

1

N

N−1∑
i=0

µ(i)|ea(i)|2 ≤ ξ2Pv

(1 − η)2
.

In other words, a bounded noise power leads to a bounded estimation error power.

20.10 Filtered-Error Gradient Algorithms

The feedback analysis of the former sections can be extended to gradient algorithms that employ
filtered versions of the error signal d(i) − uT

i wi−1. Such algorithms are useful in applications such
as active noise and vibration control and in adaptive IIR filters, where a filtered error signal is more
easily observed or measured. Figure 20.7 depicts the context of this problem. The symbol F denotes
the filter that operates on e(i). For our discussion, we assume that F is a finite-impulse response

filter of order MF , such that the z-transform of its impulse response is F(z) = ∑MF −1
j=0 fj z

−j .

FIGURE 20.7: Structure of filtered-error gradient algorithms. c© IEEE 1996. (Source: Rupp, M. and
Sayed, A.H., A time domain feedback analysis of filtered-error adaptive gradient algorithms, IEEE
Trans. Signal Process. 44(6): 1428–1439, June 1996. With permission.)

For purposes of discussion, we focus on one particular form of adaptive update known as the
filtered-error LMS algorithm:

wi = wi−1 + µ(i) · ui · F [d(i) − uT
i wi−1] . (20.21)

Comparing (20.21) with (20.5), the only difference between the two updates is the filter F that acts
on the error d(i) − uT

i wi−1.
Following the discussion that led to (20.13), it can be verified that (20.21) is equivalent to the

following update:

wi = wi−1 + µ̄(i) · ui · [ea(i) + r(i)] , (20.22)
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where µ̄(i) = 1/‖ui‖2, ea(i) = uT
i w̃i−1, and r(i) is defined as

µ̄(i)r(i) = µ(i)F [v(i)] − µ̄(i)ea(i) + µ(i)F [ea(i)] . (20.23)

Expression (20.22) is of the same form as (20.13), which implies that the following relation also holds:

‖w̃i‖2 + µ̄(i) |ea(i)|2
‖w̃i−1‖2 + µ̄(i) |r(i)|2 = 1 . (20.24)

This establishes that the map T i from the signals {w̃i−1,
√

µ̄(i)r(i)} to the signals {w̃i ,
√

µ̄(i)ea(i)}
is lossless. Moreover, the map from the original disturbance

√
µ̄(·)v(·) to the signal

√
µ̄(·)ea(·) can

be expressed in terms of a feedback structure, as shown in Fig. 20.8. We remark that the notation

1− µ(i)√
µ̄(i)

F [·] 1√
µ̄(i)

should be interpreted as follows. We first divide
√

µ̄(i) ea(i) by
√

µ̄(i) before

filtering it by the filter F and then scaling the result by µ(i)/
√

µ̄(i). Similarly, the term
√

µ̄(i) v(i)

is first divided by
√

µ̄(i), then filtered by F , and is finally scaled by µ(i)/
√

µ̄(i).

FIGURE 20.8: Filtered-error LMS algorithm as a time-variant lossless mapping with dynamic feed-
back. c© IEEE 1996. (Source: Rupp, M. and Sayed, A.H., A time domain feedback analysis of
filtered-error adaptive gradient algorithms, IEEE Trans. Signal Process. 44(6): 1428–1439, June 1996.
With permission.)

The feedback path now contains a dynamic system. The small gain theorem dictates that this
system will be robust if the feedback path is a contractive system. For the special case of the projection
filtered-error LMS algorithm that employs the step-size µ(i) = α µ̄(i), α > 0,

wi = wi−1 + α
ui

‖ui‖2
F [d(i) − uT

i wi−1] , (20.25)

the small-gain condition implies that the following matrix should be strictly contractive:

PN =




1 − αf0 O

−α
√

µ̄(1)√
µ̄(0)

f1 1 − αf0

−α
√

µ̄(2)√
µ̄(0)

f2 −α
√

µ̄(2)√
µ̄(1)

f1 1 − αf0

...
. . .


 .

Here, the {fi} are the coefficients of the FIR filter F . Since, in practice, the length MF of this filter is
usually much smaller than the length of the regression vector ui , the energy of the input sequence ui
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does not change very rapidly over the filter length MF , such that

µ̄(i) ≈ . . . ≈ µ̄(i − MF ) .

In this case, PN becomes
PN ≈ I − αFN , (20.26)

where FN is the lower triangular Toeplitz matrix that describes the convolution of the filter F on an
input sequence. This is generally a banded matrix since MF � M , as shown below for the special
case of MF = 3,

FN =




f0
f1 f0
f2 f1 f0

f2 f1 f0
. . .

. . .
. . .


 .

In this case, the strict contractivity of (I − αFN) can be guaranteed by choosing the step-size
parameter α such that

max
�

∣∣∣1 − αF(ej�)

∣∣∣ < 1 , (20.27)

where F(z) is the transfer function of the error filter. For better convergence performance, we may
choose α by solving the min-max problem

min
α

max
�

∣∣∣1 − αF(ej�)

∣∣∣ . (20.28)

If the resulting minimum is less than one, then the corresponding optimum value of α will result in
faster convergence, and it will also guarantee the robustness of the scheme.

We now illustrate these concepts via a simulation example. The error-path filter for this example
is

F(z) = 1 − 1.2 z−1 + 0.72z−2 .

We use an FIR filter adapted by the algorithm in (20.25), where the input signal to the adaptive filter
consists of a single sinusoid of frequency �0 = 1.2/π . In this case, if we assume that the a priori
error signal is dominated by the frequency component �0, we can solve for the optimum α via the
simpler expression [cf. (20.28)] minα

∣∣1 − αF
(
ej�o

)∣∣. The resulting optimum value of α is

αopt = Real

{
1

F(e−j�0)

}
.

This step size provides the fastest convergence speed. In addition, the stability limits for α can be
shown to be 0 < α < 2αopt using a similar procedure.

Figure20.9 shows threeconvergencecurvesof theaverage squarederrorAv[|e(i)|2] = 1
50

∑50
j=1 |ej (i)|2,

as determined from 50 simulation runs of the projection filtered-error LMS algorithm for the choices
α = 0.085, α = 0.15and α = 0.18, respectively. In this case, we have generated an input sequence
of the form u(i) = sin[1.2i + φ] for each simulation run, where φ is uniformly chosen from the
interval [−π, π] to obtain smoother learning curves after averaging, and the M = 10coefficients of
the unknown system were all set to unity. Moreover, the additive noise v(i) corrupting the signal
d(i) is uncorrelated Gaussian-distributed with a level that is −40dB below that of the input signal
power. The optimal step-size αopt in this case can be calculated to be αopt = 0.085and the stability
bounds for the system are 0 < α < 0.17. As expected, choosing α = 0.085provides the fastest
convergence speed for this situation. We also see that for values of α greater than 2αopt , the error of
the system diverges.
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FIGURE 20.9: Convergence behavior for FELMS algorithm with sinusoidal input sequence and
various step-sizes α = 0.085(a), 0.15 (b), 0.18(c). c© IEEE 1996. (Source: Rupp, M. and Sayed, A.H.,
A time domain feedback analysis of filtered-error adaptive gradient algorithms, IEEE Trans. Signal
Process. 44(6): 1428–1439, June 1996. With permission.)

20.11 References and Concluding Remarks

The intent of this chapter was to highlight certain robustness and convergence issues that arise in the
study of adaptive algorithms in the presence of uncertain data. More details, extensions, and related
discussions can be found in several of the references indicated in this section. The references are not
intended to be complete but rather indicative of the work in the different areas. More complete lists
can be found in several of the textbooks mentioned herein.

Detailed discussions on the different forms of adaptive algorithms and their potential applications
can be found in:

[1] Haykin, S., Adaptive Filter Theory, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1996.
[2] Proakis, J.G., Rader, C.M., Ling, F., and Nikias, C.L., Advanced Digital Signal Processing,

Macmillan Publishing, New York, 1992.
[3] Widrow, B. and Stearns, S.D., Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ,

1985.
[4] Sayed, A.H. and Kailath, T., A state-space approach to adaptive RLS filtering, IEEE Signal

Processing Magazine, 11(3), 18–60, July 1994.

The fundamentals of robust or H∞ design, both in filtering and control applications, can be found
in the following references:

[5] Green, M. and Limebeer, D.J.N., Linear Robust Control, Prentice-Hall, Englewood Cliffs, NJ,
1995.

[6] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Prentice Hall, Englewood
Cliffs, NJ, 1996.

[7] Khargonekar, P.P. and Nagpal, K.M., Filtering and smoothing in an H∞− setting, IEEE Trans.
on Automatic Control, 36, 151–166, 1991.

[8] Shaked, U. and Theodor, Y., H∞−optimal estimation: A tutorial, Proc. IEEE Conf. Decision
and Control, 2278–2286, Tucson, AZ, Dec. 1992.

[9] Hassibi, B., Sayed, A.H., and Kailath, T., Linear estimation in Krein spaces — Part I: Theory,
IEEE Trans. Automatic Control, 41(1), 18–33, Jan. 1996.
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[10] Hassibi, B., Sayed, A.H., and Kailath, T., Linear estimation in Krein spaces — Part II: Applica-
tions, IEEE Trans. Automatic Control, 41(1), 34–49, Jan. 1996.

The small gain analysis is a standard tool in linear and nonlinear system theory. More advanced and
detailed treatments can be found in:

[11] Khalil, H.K., Nonlinear Systems, 2nd ed., Macmillan, New York, 1996.
[12] Vidyasagar, M., Nonlinear Systems Analysis, 2nd ed., Prentice Hall, Englewood Cliffs, NJ,

1993.

The LMS algorithm usually has been presented in the literature as an instantaneous-gradient-based
approximation for the steepest descent algorithm. Its robustness properties, and the interesting
observation that it is in fact the exact solution of a min-max (or H∞) optimization problem, have
been first noted in

[13] Hassibi, B., Sayed, A.H., and Kailath, T., H∞ optimality of the LMS algorithm, IEEE Trans.
Signal Processing, 44(2), 267–280, Feb. 1996. See also Proc. CDC, 1, 74–79, 1993.

Also, more details on the example comparing the performance of LMS and RLS can be found in the
above reference. Extensions of the discussion to the backpropagation algorithm for neural network
training, and other related results in adaptive filtering and H∞ estimation and control can be found
in

[14] Hassibi, B., Sayed, A.H., and Kailath, T., LMS and backpropagation are minimax filters, in
Neural Computation and Learning, Roychowdhurys, V., Siu, K.Y., and Orlitsky, A., Eds.,
Kluwer Academic Publishers, 1994, 425–447.

[15] Hassibi, B., Indefinite Metric Spaces in Estimation, Control, and Adaptive Filtering, Ph.D.
Dissertation, Stanford University, August 1996.

[16] Hassibi, B., Sayed, A.H., and Kailath, T., Indefinite Quadratic Estimation and Control: A
Unified Approach to H2 and H∞ Theories, to be published by SIAM, Studies in Applied
Mathematics Series, 1997.

Extensions of the feedback analysis to Perceptron training in neural network can be found in

[17] Rupp, M. and Sayed, A.H., Supervised learning of perceptron and output feedback dynamic
networks: a feedback analysis via the small gain theorem, IEEE Trans. Neural Networks, 8(3),
612–622, May 1997.

A Cauchy-Schwarz argument that further highlights the robustness property of adaptive gradient
algorithms, along with other local energy bounds, are given in

[18] Sayed, A.H. and Rupp, M., Error energy bounds for adaptive gradient algorithms, IEEE Trans.
Signal Processing, 44(8), 1982–1989, Aug. 1996.

[19] Sayed, A.H. and Kailath, T., A state-space approach to adaptive RLS filtering, IEEE Signal
Processing Magazine, 11(3), 18–60, July 1994.

The time-domain feedback and small gain analyses of adaptive filters, along with extensions to
nonlinear settings and connections with Gauss-Newton updates and H∞ filters, are discussed in

[20] Rupp, M. and Sayed, A.H., A time-domain feedback analysis of filtered-error adaptive gradient
algorithms, IEEE Trans. on Signal Processing, 44(6), 1428–1439, June 1996.

[21] Rupp, M. and Sayed, A.H., Robustness of Gauss-Newton recursive methods: a deterministic
feedback analysis, Signal Processing, 50(3), 165–188, June 1996.

[22] Sayed, A.H. and Rupp, M., An l2−stable feedback structure for nonlinear adaptive filtering
and identification, Automatica, 33(1), 13–30, 1997.
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Discussions of the singular value decomposition and its properties can be found in

[23] Golub, G.H. and Van Loan, C.F., Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.
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