
Ali H. Sayed, et. Al. “Recursive Least-Squares Adaptive Filters.”
2000 CRC Press LLC. <http://www.engnetbase.com>.

Recursive Least-Squares Adaptive
Filters

Ali H. Sayed
University of California,
Los Angeles

Thomas Kailath
Stanford University

21.1 Array Algorithms
Elementary Circular Rotations • Elementary Hyperbolic Ro-
tations • Square-Root-Free and Householder Transformations
• A Numerical Example

21.2 The Least-Squares Problem
Geometric Interpretation • Statistical Interpretation

21.3 The Regularized Least-Squares Problem
Geometric Interpretation • Statistical Interpretation

21.4 The Recursive Least-Squares Problem
Reducing to the Regularized Form • Time Updates

21.5 The RLS Algorithm
Estimation Errors and the Conversion Factor • Update of the
Minimum Cost

21.6 RLS Algorithms in Array Forms
Motivation • A Very Useful Lemma • The Inverse QR Algo-
rithm • The QR Algorithm

21.7 Fast Transversal Algorithms
The Prewindowed Case • Low-Rank Property • A Fast Array
Algorithm • The Fast Transversal Filter

21.8 Order-Recursive Filters
Joint Process Estimation • The Backward Prediction Error Vec-
tors • The Forward Prediction Error Vectors • A Nonunity
Forgetting Factor • The QRD Least-Squares Lattice Filter •
The Filtering or Joint Process Array

21.9 Concluding Remarks
References

The central problem in estimation is to recover, to good accuracy, a set of unobservable parameters
from corrupted data. Several optimization criteria have been used for estimation purposes over the
years, but the most important, at least in the sense of having had the most applications, are criteria
that are based on quadratic cost functions. The most striking among these is the linear least-squares
criterion, which was perhaps first developed by Gauss (ca. 1795) in his work on celestial mechanics.
Since then, it has enjoyed widespread popularity in many diverse areas as a result of its attractive
computational and statistical properties. Among these attractive properties, the most notable are the
facts that least-squares solutions:

• can be explicitly evaluated in closed forms;

• can be recursively updated as more input data is made available, and

c©1999 by CRC Press LLC

• are maximum likelihood estimators in the presence of Gaussian measurement noise.

The aim of this chapter is to provide an overview of adaptive filtering algorithms that result when
the least-squares criterion is adopted. Over the last several years, a wide variety of algorithms in this
class has been derived. They all basically fall into the following main groups (or variations thereof):
recursive least-squares (RLS) algorithms and the corresponding fast versions (known as FTF and
FAEST), QR and inverse QR algorithms, least-squares lattice (LSL), and QR decomposition-based
least-squares lattice (QRD-LSL) algorithms.

Table 21.1 lists these different variants and classifies them into order-recursive and fixed-order
algorithms. The acronyms and terminology are not important at this stage and will be explained
as the discussion proceeds. Also, the notation O(M) is used to indicate that each iteration of an
algorithm requires of the order of M floating point operations (additions and multiplications). In
this sense, some algorithms are fast (requiring only O(M)), while others are slow (requiring O(M2)).
The value of M is the filter order that will be introduced in due time.

TABLE 21.1 Most Common RLS Adaptive

Schemes
Adaptive Order Fixed Cost per

Algorithm Recursive Order Iteration

RLS x O(M2)

QR and Inverse QR x O(M2)
FTF, FAEST x O(M)

LSL x O(M)
QRD-LSL x O(M)

It is practically impossible to list here all the relevant references and all the major contributors to
the rich field of adaptive RLS filtering. The reader is referred to some of the textbooks listed at the
end of this chapter for more comprehensive treatments and bibliographies.

Here we wish to stress that, apart from introducing the reader to the fundamentals of RLS filtering,
one of our goals in this exposition is to present the different versions of the RLS algorithm in
computationally convenient so-called array forms. In these forms, an algorithm is described as a
sequence of elementary operations on arrays of numbers. Usually, a prearray of numbers has to be
triangularized by a rotation, or a sequence of elementary rotations, in order to yield a postarray of
numbers. The quantities needed to form the next prearray can then be read off from the entries of
the postarray, and the procedure can be repeated. The explicit forms of the rotation matrices are not
needed in most cases.

Such array descriptions are more truly algorithms in the sense that they operate on sets of numbers
and provide other sets of numbers, with no explicit equations involved. The rotations themselves can
be implemented in a variety of well-known ways: as a sequence of elementary circular or hyperbolic
rotations, in square-root- and/or division-free forms, as Householder transformations, etc. These
may differ in computational complexity, numerical behavior, and ease of hardware (VLSI) imple-
mentation. But, if preferred, explicit expressions for the rotation matrices can also be written down,
thus leading to explicit sets of equations in contrast to the array forms.

For this reason, and although the different RLS algorithms that we consider here have already been
derived in many different ways in earlier places in the literature, the derivation and presentation in
this chapter are intended to provide an alternative unifying exposition that we hope will help a reader
get a deeper appreciation of this class of adaptive algorithms.

c©1999 by CRC Press LLC

Notation

We use small boldface letters to denote column vectors (e.g., w) and capital boldface letters to
denote matrices (e.g., A). The symbol In denotes the identity matrix of size n × n, while 0 denotes
a zero column. The symbol T denotes transposition. This chapter deals with real-valued data. The
case of complex-valued data is essentially identical and is treated in many of the references at the end
of this chapter.

Square-Root Factors

A symmetric positive-definite matrix A is one that satisfies A = AT and xT Ax > 0 for
all nonzero column vectors x. Any such matrix admits a factorization (also known as eigen-
decomposition) of the form A = U6UT , where U is an orthogonal matrix, namely a square matrix
that satisfies UUT = UT U = I, and 6 is a diagonal matrix with real positive entries. In particular,
note that AU = U6, which shows that the columns of U are the right eigenvectors of A and the
entries of 6 are the corresponding eigenvalues.

Note also that we can write A = U61/2(61/2)T UT , where 61/2 is a diagonal matrix whose entries
are (positive) square-roots of the diagonal entries of6. Since61/2 is diagonal, (61/2)T = 61/2. If we
introduce the matrix notation A1/2 = U61/2, then we can alternatively write A = (A1/2)(A1/2)T .

This can be regarded as a square-root factorization of the positive-definite matrix A. Here, the
notation A1/2 is used to denote one such square-root factor, namely the one constructed from the
eigen-decomposition of A.

Note, however, that square-root factors are not unique. For example, we may multiply the diagonal
entries of 61/2 by ±1′s and obtain a new square-root factor for 6 and, consequently, a new square-
root factor for A.

Also, given any square-root factor A1/2, and any orthogonal matrix 2 (satisfying 22T = I) we
can define a new square-root factor for A as A1/22 since

(A1/22)(A1/22)T = A1/2(22T)(A1/2)T = A .

Hence, square factors are highly nonunique. We shall employ the notation A1/2 to denote any such
square-root factor. They can be made unique, e.g., by insisting that the factors be symmetric or that
they be triangular (with positive diagonal elements). In most applications, the triangular form is
preferred. For convenience, we also write(

A1/2
)T = AT/2,

(
A1/2

)−1 = A−1/2,
(
A−1/2

)T = A−T/2 .

Thus, note the expressions A = A1/2AT/2 and A−1 = A−T/2A−1/2.

21.1 Array Algorithms

The array form is so important that it will be worthwhile to explain its generic form here.
An array algorithm is described via rotation operations on a prearray of numbers, chosen to obtain

a certain zero pattern in a postarray. Schematically, we write


x x x x

x x x x

x x x x

x x x x


 2 =




x 0 0 0
x x 0 0
x x x 0
x x x x


 ,

where 2 is any rotation matrix that triangularizes the prearray. In general, 2 is required to be
a J−orthogonal matrix in the sense that it should satisfy the normalization 2J2T = J, where J

c©1999 by CRC Press LLC

is a given signature matrix with ±1′s on the diagonal and zeros elsewhere. The orthogonal case
corresponds to J = I since then 22T = I.

A rotation 2 that transforms a prearray to triangular form can be achieved in a variety of ways: by
using a sequence of elementary Givens and hyperbolic rotations, Householder transformations, or
square-root-free versions of such rotations. Here we only explain the elementary forms. The other
choices are discussed in some of the references at the end of this chapter.

21.1.1 Elementary Circular Rotations

An elementary 2 × 2 orthogonal rotation 2 (also known as Givens or circular rotation) takes a row
vector

[
a b

]
and rotates it to lie along the basis vector

[
1 0

]
. More precisely, it performs the

transformation [
a b

]
2 =

[
±√|a|2 + |b|2 0

]
. (21.1)

The quantity ±√|a|2 + |b|2 that appears on the right-hand side is consistent with the fact that the

prearray,
[

a b
]
, and the postarray,

[
±√|a|2 + |b|2 0

]
, must have equal Euclidean norms

(since an orthogonal transformation preserves the Euclidean norm of a vector).
An expression for 2 is given by

2 = 1√
1 + ρ2

[
1 −ρ

ρ 1

]
, ρ = b

a
, a 6= 0. (21.2)

In the trivial case a = 0 we simply choose 2 as the permutation matrix,

2 =
[

0 1
1 0

]
.

The orthogonal rotation (21.2) can also be expressed in the alternative form:

2 =
[

c −s

s c

]
,

where the so-called cosine and sine parameters, c and s, respectively, are defined by

c = 1√
1 + ρ2

, s = ρ√
1 + ρ2

.

The name circular rotation for 2 is justified by its effect on a vector; it rotates the vector along the
circle of equation x2 + y2 = |a|2 + |b|2, by an angle θ that is determined by the inverse of the above
cosine and/or sine parameters, θ = tan−1 ρ, in order to align it with the basis vector

[
1 0

]
. The

trivial case a = 0 corresponds to a 90 degrees rotation in an appropriate clockwise (if b ≥ 0) or
counterclockwise (if b < 0) direction.

21.1.2 Elementary Hyperbolic Rotations

An elementary 2 × 2 hyperbolic rotation 2 takes a row vector
[

a b
]

and rotates it to lie either
along the basis vector

[
1 0

]
(if |a| > |b|) or along the basis vector

[
0 1

]
(if |a| < |b|). More

precisely, it performs either of the transformations[
a b

]
2 =

[
±√|a|2 − |b|2 0

]
if |a| > |b| , (21.3)

c©1999 by CRC Press LLC

[
a b

]
2 =

[
0 ±√|b|2 − |a|2

]
if |a| < |b|. (21.4)

The quantity
√±(|a|2 − |b|2) that appears on the right-hand side of the above expressions is con-

sistent with the fact that the prearray,
[

a b
]
, and the postarrays must have equal hyperbolic

“norms.” By the hyperbolic “norm” of a row vector xT we mean the indefinite quantity xT Jx, which
can be positive or negative. Here,

J =
[

1 0
0 −1

]
= (1 ⊕ −1) .

An expression for a hyperbolic rotation 2 that achieves (21.3) or (21.4) is given by

2 = 1√
1 − ρ2

[
1 −ρ

−ρ 1

]
, (21.5)

where

ρ =



b
a

when a 6= 0 and |a| > |b|
a
b

when b 6= 0 and |b| > |a|
The hyperbolic rotation (21.5) can also be expressed in the alternative form:

2 =
[

ch −sh

−sh ch

]
,

where the so-called hyperbolic cosine and sine parameters, ch and sh, respectively, are defined by

ch = 1√
1 − ρ2

, sh = ρ√
1 − ρ2

.

The name hyperbolic rotation for 2 is again justified by its effect on a vector; it rotates the original
vector along the hyperbola of equation x2 −y2 = |a|2 −|b|2, by an angle θ determined by the inverse
of the above hyperbolic cosine and/or sine parameters, θ = tanh−1[ρ], in order to align it with
the appropriate basis vector. Note also that the special case |a| = |b| corresponds to a row vector[

a b
]

with zero hyperbolic norm since |a|2 − |b|2 = 0. It is then easy to see that there does not
exist a hyperbolic rotation that will rotate the vector to lie along the direction of one basis vector or
the other.

21.1.3 Square-Root-Free and Householder Transformations

We remark that the above expressions for the circular and hyperbolic rotations involve square-root
operations. In many situations, it may be desirable to avoid the computation of square-roots because
it is usually expensive. For this and other reasons, square-root- and division-free versions of the
above elementary rotations have been developed and constitute an attractive alternative.

Therefore one could use orthogonal or J−orthogonal Householder reflections (for given J) to
simultaneously annihilate several entries in a row, e.g., to transform

[
x x x x

]
directly to the

form
[

x′ 0 0 0
]
. Combinations of rotations and reflections can also be used.

We omit the details here but the idea is clear. There are many different ways in which a prearray
of numbers can be rotated into a postarray of numbers.

c©1999 by CRC Press LLC

21.1.4 A Numerical Example

Assume we are given a 2 × 3 prearray A,

A =
[

0.875 0.15 1.0
0.675 0.35 0.5

]
, (21.6)

and wish to triangularize it via a sequence of elementary circular rotations, i.e., reduce A to the form

A2 =
[

x 0 0
x x 0

]
. (21.7)

This can be obtained, among several different possibilities, as follows. We start by annihilating the
(1, 3) entry of the prearray (21.6) by pivoting with its (1, 1) entry. According to expression (21.2),
the orthogonal transformation 21 that achieves this result is given by

21 = 1√
1 + ρ2

1

[
1 −ρ1
ρ1 1

]
=

[
0.6585 −0.7526
0.7526 0.6585

]
, ρ1 = 1

0.875
.

Applying 21 to the prearray (21.6) leads to (recall that we are only operating on the first and third
columns, leaving the second column unchanged):

[
0.875 0.15 1
0.675 0.35 0.5

] 
 0.6585 0 −0.7526

0 1 0
0.7526 0 0.6585


 =

[
1.3288 0.1500 0.0000
0.8208 0.3500 −0.1788

]
. (21.8)

We now annihilate the (1, 2) entry of the resulting matrix in the above equation by pivoting with
its (1, 1) entry. This requires that we choose

22 = 1√
1 + ρ2

2

[
1 −ρ2
ρ2 1

]
=

[
0.9937 −0.1122
0.1122 0.9937

]
, ρ2 = 0.1500

1.3288
. (21.9)

Applying 22 to the matrix on the right-hand side of (21.8) leads to (now we leave the third column
unchanged)

[
1.3288 0.1500 0.0000
0.8208 0.3500 0.1788

] 
 0.9937 −0.1122 0

0.1122 0.9937 0
0 0 1


 =

[
1.3373 0.0000 0.0000
0.8549 0.2557 0.1788

]
.

(21.10)
We finally annihilate the (2, 3) entry of the resulting matrix in (21.10) by pivoting with its (2, 2)

entry. In principle this requires that we choose

23 = 1√
1 + ρ2

3

[
1 −ρ3
ρ3 1

]
=

[
0.8195 0.5731

−0.5731 0.8195

]
, ρ3 = 0.1788

−0.2557
, (21.11)

and apply it to the matrix on the right-hand side of (21.10), which would then lead to

[
1.3373 0.0000 0.0000
0.8549 −0.2557 0.1788

] 
 1 0 0

0 0.8195 0.5731
0 −0.5731 0.8195


 =

[
1.3373 0.0000 0.0000
0.8549 −0.3120 0.0000

]
.

(21.12)

c©1999 by CRC Press LLC

Alternatively, this last step could have been implemented without explicitly forming 23. We simply
replace the row vector

[−0.2557 0.1788
]
, which contains the (2, 2) and (2, 3) entries of the

prearray in (21.12), by the row vector
[

±√
(−0.2557)2 + (0.1788)2 0.0000

]
, which is equal to[±0.3120 0.0000

]
. We choose the positive sign in order to conform with our earlier convention

that the diagonal entries of triangular square-root factors are taken to be positive. The resulting
postarray is therefore [

1.3373 0.0000 0.0000
0.8549 0.3120 0.0000

]
. (21.13)

We have exhibited a sequence of elementary orthogonal transformations that triangularizes the
prearray of numbers (21.6). The combined effect of the sequence of transformations {21, 22, 23}
corresponds to the orthogonal rotation 2 required in (21.7). However, note that we do not need to
know or to form 2 = 212223.

It will become clear throughout our discussion that the different adaptive RLS schemes can be de-
scribed in array forms, where the necessary operations are elementary rotations as described above.
Such array descriptions lend themselves rather directly to parallelizable and modular implementa-
tions. Indeed, once a rotation matrix is chosen, then all the rows of the prearray undergo the same
rotation transformation and can thus be processed in parallel. Returning to the above example, where
we started with the prearray A, we see that once the first rotation is determined, both rows of A are
then transformed by it, and can thus be processed in parallel, and by the same functional (rotation)
block, to obtain the desired postarray. The same remark holds for prearrays with multiple rows.

21.2 The Least-Squares Problem

Now that we have explained the generic form of an array algorithm, we return to the main topic
of this chapter and formulate the least-squares problem and its regularized version. Once this is
done, we shall then proceed to describe the different variants of the recursive least-squares solution
in compact array forms.

Let w denote a column vector of n unknown parameters that we wish to estimate, and consider a
set of (N +1) noisy measurements {d(i)} that are assumed to be linearly related to w via the additive
noise model

d(j) = uT
j w + v(j) ,

where the {uj } are given column vectors. The (N + 1) measurements can be grouped together into
a single matrix expression: 


d(0)

d(1)
...

d(N)




︸ ︷︷ ︸
d

=




uT
0

uT
1
...

uT
N




︸ ︷︷ ︸
A

w +




v(0)

v(1)
...

v(N)




︸ ︷︷ ︸
v

,

or, more compactly, d = Aw + v. Because of the noise component v, the observed vector d does not
lie in the column space of the matrix A. The objective of the least-squares problem is to determine
the vector in the column space of A that is closest to d in the least-squares sense.

More specifically, any vector in the range space of A can be expressed as a linear combination of
its columns, say Aŵ for some ŵ. It is therefore desired to determine the particular ŵ that minimizes
the distance between d and Aŵ,

min
w

‖d − Aw‖2 . (21.14)

c©1999 by CRC Press LLC

The resulting ŵ is called the least-squares solution and it provides an estimate for the unknown w.
The term Aŵ is called the linear least-squares estimate (l.l.s.e.) of d.

The solution to (21.14) always exists and it follows from a simple geometric argument. The

orthogonal projection of d onto the column span of A yields a vector d̂ that is the closest to d in

the least-squares sense. This is because the resulting error vector (d − d̂) will be orthogonal to the
column span of A.

In other words, the closest element d̂ to d must satisfy the orthogonality condition

AT (d − d̂) = 0.

That is, and replacing d̂ by Aŵ, the corresponding ŵ must satisfy

AT Aŵ = AT d .

These equations always have a solution ŵ. But while a solution ŵ may or may not be unique

(depending on whether A is or is not full rank), the resulting estimate d̂ = Aŵ is always unique
no matter which solution ŵ we pick. This is obvious from the geometric argument because the
orthogonal projection of d onto the span of A is unique.

If A is assumed to be a full rank matrix then AT A is invertible and we can write

ŵ = (AT A)−1AT d . (21.15)

21.2.1 Geometric Interpretation

The quantity Aŵ provides an estimate for d; it corresponds to the vector in the column span of A
that is closest in Euclidean norm to the given d. In other words,

d̂ = A
(
AT A

)−1
AT · d

1= PA · d ,

where PA denotes the projector onto the range space of A. Figure 21.1 is a schematic representation
of this geometric construction, where R(A) denotes the column span of A.

FIGURE 21.1: Geometric interpretation of the least-squares solution.

21.2.2 Statistical Interpretation

The least-squares solution also admits an important statistical interpretation. For this purpose,
assume that the noise vector v is a realization of a vector-valued random variable that is normally
distributed with zero mean and identity covariance matrix, written v ∼ N [0, I]. In this case, the
observation vector d will be a realization of a vector-valued random variable that is also normally

c©1999 by CRC Press LLC

distributed with mean Aw and covariance matrix equal to the identity I. This is because the random
vectors are related via the additive model d = Aw + v. The probability density function of the
observation process d is then given by

1√
(2π)(N+1)

· exp

{
−1

2
(d − Aw)T (d − Aw)

}
. (21.16)

It follows, in this case, that the least-squares estimator ŵ is also the maximum likelihood (ML)
estimator because it maximizes the probability density function over w, given an observation vector
d.

21.3 The Regularized Least-Squares Problem

A more general optimization criterion that is often used instead of (21.14) is the following

min
w

[
(w − w̄)T 5−1

0 (w − w̄) + ‖d − Aw‖2
]

. (21.17)

This is still a quadratic cost function in the unknown vector w, but it includes the additional term

(w − w̄)T 5−1
0 (w − w̄) ,

where 50 is a given positive-definite (weighting) matrix and w̄ is also a given vector. Choosing
50 = ∞ · I leads us back to the original expression (21.14).

A motivation for (21.17) is that the freedom in choosing 50 allows us to incorporate additional a
priori knowledge into the statement of the problem. Indeed, different choices for 50 would indicate
how confident we are about the closeness of the unknown w to the given vector w̄.

Assume, for example, that we set 50 = ε · I, where ε is a very small positive number. Then the
first term in the cost function (21.17) becomes dominant. It is then not hard to see that, in this case,
the cost will be minimized if we choose the estimate ŵ close enough to w̄ in order to annihilate the
effect of the first term. In simple words, a “small” 50 reflects a high confidence that w̄ is a good and
close enough guess for w. On the other hand, a “large” 50 indicates a high degree of uncertainty in
the initial guess w̄.

Onewayof solving the regularizedoptimizationproblem(21.17) is to reduce it to the standard least-
squares problem (21.14). This can be achieved by introducing the change of variables w′ = w − w̄
and d′ = d − Aw̄. Then (21.17) becomes

min
w′

[
(w′)T 5−1

0 w′ + ∥∥d′ − Aw′∥∥2
]

,

which can be further rewritten in the equivalent form

min
w′

∥∥∥∥
[

0
d′

]
−

[
5

−1/2
0
A

]
w′

∥∥∥∥2

.

This is now of the same form as our earlier minimization problem (21.14), with the observation
vector d in (21.14) replaced by [

0
d′

]
,

and the matrix A in (21.14) replaced by [
5

−1/2
0
A

]
.

c©1999 by CRC Press LLC

21.3.1 Geometric Interpretation

The orthogonality condition can now be used, leading to the equation

[
5

−1/2
0
A

]T ([
0
d′

]
−

[
5

−1/2
0
A

]
ŵ′

)
= 0 ,

which can be solved for the optimal estimate ŵ,

ŵ = w̄ +
[
5−1

0 + AT A
]−1

AT
[
d − Aw̄

]
. (21.18)

TABLE 21.2 Linear Least-Squares Estimation
Optimization / Problem Solution

{w, d}
minw ‖d − Aw‖2 ŵ = (AT A)−1AT d
A full rank
{w, d, w̄, 50}
minw

[
(w − w̄)T 5−1

0 (w − w̄) + ‖d − Aw‖2
]

ŵ = w̄ +
[
5−1

0 + AT A
]−1

AT
[
d − Aw̄

]
50 positive-definite Min. value = (d − Aw̄)T [I + A50AT]−1(d − Aw̄)

Comparing with the earlier expression (21.15), we see that instead of requiring the invertibility

of AT A, we now require the invertibility of the matrix
[
5−1

0 + AT A
]
. This is yet another reason in

favor of the modified criterion (21.17) because it allows us to relax the full rank condition on A.
The solution (21.18) can also be reexpressed as the solution of the following linear system of

equations: [
5−1

0 + AT A
]

︸ ︷︷ ︸
8

(ŵ − w̄) = AT
[
d − Aw̄

]︸ ︷︷ ︸
s

, (21.19)

where we have denoted, for convenience, the coefficient matrix by 8 and the right-hand side by s.
Moreover, it further follows that the value of (21.17) at the minimizing solution (21.18), denoted

by Emin, is given by either of the following two expressions:

Emin = ‖d − Aw̄‖2 − sT (ŵ − w̄) (21.20)

= (d − Aw̄)T
[
I + A50AT

]−1
(d − Aw̄).

Expressions (21.19) and (21.20) are often rewritten into the so-called normal equations:[‖d − Aw̄‖2 sT

s 8

] [
1

−(ŵ − w̄)

]
=

[Emin
0

]
. (21.21)

The results of this section are summarized in Table 21.2.

21.3.2 Statistical Interpretation

A statistical interpretation for the regularized problem can be obtained as follows. Given two vector-
valued zero-mean random variables w and d, the minimum-variance unbiased (MVU) estimator of
w given an observation of d is ŵ = E(w|d), the conditional expectation of w given d. If the random

c©1999 by CRC Press LLC

variables (w, d) are jointly Gaussian, then the MVU estimator for w given d can be shown to collapse
to

ŵ = (EwdT)
(
EddT

)−1
d. (21.22)

Therefore, if (w, d) are further linearly related, say

d = Aw + v , v ∼ N(0, I) , w ∼ N(0, 50) (21.23)

with a zero-mean noise vector v that is uncorrelated with w (EwvT = 0), then the expressions for
(EwdT) and (EddT) can be evaluated as

EwdT = Ew(Aw + v)T = 50AT , EddT = A50AT + I .

This shows that (21.22) evaluates to

ŵ = 50AT (I + A50AT)−1d . (21.24)

By invoking the useful matrix inversion formula (for arbitrary matrices of appropriate dimensions
and invertible E and C):

(E + BCD)−1 = E−1 − E−1B(DE−1B + C−1)−1DE−1 ,

we can rewrite expression (21.24) in the equivalent form

ŵ = (5−1
0 + AT A)−1AT d . (21.25)

This expression coincides with the regularized solution (21.18) for w̄ = 0 (the case w̄ 6= 0 follows
from similar arguments by assuming a nonzero mean random variable w).

Therefore, the regularized least-squares solution is the minimum variance unbiased (MVU) esti-
mate of w given observations d that are corrupted by additive Gaussian noise as in (21.23).

21.4 The Recursive Least-Squares Problem

The recursive least-squares formulation deals with the problem of updating the solution ŵ of a least-
squares problem (regularized or not) when new data are added to the matrix A and to the vector
d. This is in contrast to determining afresh the least-squares solution of the new problem. The
distinction will become clear as we proceed in our discussions. In this section, we formulate the
recursive least-squares problem as it arises in the context of adaptive filtering.

Consider a sequence of (N + 1) scalar data points, {d(j)}Nj=0, also known as reference or desired

signals, and a sequence of (N + 1) row vectors {uT
j }Nj=0, also known as input signals. Each input

vector uT
j is a 1 × M row vector whose individual entries we denote by {uk(j)}Mk=1, viz.,

uT
j = [

u1(j) u2(j) . . . uM(j)
]

. (21.26)

The entries of uj can be regarded as the values of M input channels at time j : channels 1 through
M .

Consider also a known column vector w̄ and a positive-definite weighting matrix50. The objective
is to determine an M × 1 column vector w, also known as the weight vector, so as to minimize the
weighted error sum:

E(N) = (w − w̄)T
[
λ−(N+1)50

]−1
(w − w̄) +

N∑
j=0

λN−j
∣∣∣d(j) − uT

j w
∣∣∣2 , (21.27)

c©1999 by CRC Press LLC

where λ is a positive scalar that is less than or equal to one (usually 0 � λ ≤ 1). It is often called the
forgetting factor since past data is exponentially weighted less than the more recent data. The special
case λ = 1 is known as the growing memory case, since, as the length N of the data grows, the effect
of past data is not attenuated. In contrast, the exponentially decaying memory case (λ < 1) is more
suitable for time-variant environments.

Also, and in principle, the factor λ−(N+1) that multiplies 50 in the error-sum expression (21.27)
can be incorporated into the weighting matrix 50. But it is left explicit for convenience of exposition.

We further denote the individual entries of the column vector w by {w(j)}Mj=1,

w = col{w(1), w(2), . . . , w(M)} .

A schematic description of the problem is shown in Fig. 21.2. At each time instant j , the inputs of the
M channels are linearly combined via the coefficients of the weight vector and the resulting signal is
compared with the desired signal d(j). This results in a residual error e(j) = d(j)− uT

j w, for every
j , and the objective is to find a weight vector w in order to minimize the (exponentially weighted
and regularized) squared-sum of the residual errors over an interval of time, say from j = 0 up to
j = N .

The linear combiner is said to be of order M since it is determined by M coefficients {w(j)}Mj=1.

FIGURE 21.2: A linear combiner.

21.4.1 Reducing to the Regularized Form

The expression for the weighted error-sum (21.27) is a special case of the regularized cost function
(21.17). To clarify this, we introduce the residual vector eN , the reference vector dN , the data matrix
AN , and a diagonal weighting matrix 3N ,

eN =




d(0)

d(1)

d(2)
...

d(N)




︸ ︷︷ ︸
dN

−




u1(0) u2(0) . . . uM(0)

u1(1) u2(1) . . . uM(1)

u1(2) u2(2) . . . uM(2)
...

...

u1(N) u2(N) . . . uM(N)




︸ ︷︷ ︸
AN

w ,

c©1999 by CRC Press LLC

3
1/2
N =




[
λ

1
2

]N

[
λ

1
2

]N−1

. . . [
λ

1
2

]2

1




.

We now use a subscript N to indicate that the above quantities are determined by data that is available
up to time N .

With these definitions, we can write E(N) in the equivalent form

E(N) = (w − w̄)T
[
λ−(N+1)50

]−1
(w − w̄) +

∥∥∥3
1/2
N eN

∥∥∥2
,

which is a special case of (21.17) with

3
1/2
N dN and 3

1/2
N AN (21.28)

replacing
dN and AN , (21.29)

respectively, and with λ−(N+1)50 replacing 50.
We therefore conclude from (21.19) that the optimal solution ŵ of (21.27) is given by

(ŵ − w̄) = 8−1
N sN , (21.30)

where we have introduced

8N =
[
λ(N+1)5−1

0 + AT
N3NAN

]
, (21.31)

sN = AT
N3N

[
dN − AN w̄

]
. (21.32)

The coefficient matrix 8N is clearly symmetric and positive-definite.

21.4.2 Time Updates

It is straightforward to verify that 8N and sN so defined satisfy simple time-update relations, viz.,

8N+1 = λ8N + uN+1uT
N+1 , (21.33)

sN+1 = λsN + uN+1

[
d(N + 1) − uT

N+1w̄
]
, (21.34)

with initial conditions 8−1 = 5−1
0 and s−1 = 0. Note that 8N+1 and λ8N differ only by a rank-one

matrix.
The solution ŵ obtained by solving (21.30) is the optimal weight estimate based on the available

data from time i = 0 up to time i = N . We shall denote it from now on by wN ,

8N(wN − w̄) = sN .

The subscript N in wN indicates that the data up to, and including, time N were used. This is to
differentiate it from the estimate obtained by using a different number of data points.

This notational change is necessary because the main objective of the recursive least-squares (RLS)
problem is to show how to update the estimate wN , which is based on the data up to time N , to the

c©1999 by CRC Press LLC

estimate wN+1, which is based on the data up to time (N + 1), without the need to solve afresh a
new set of linear equations of the form

8N+1(wN+1 − w̄) = sN+1 .

Such a recursive update of the weight estimate should be possible since the coefficient matrices λ8N

and 8N+1 of the associated linear systems differ only by a rank-one matrix. In fact, a wide variety of
algorithms has been devised for this end and our purpose in this chapter is to provide an overview
of the different schemes.

Before describing these different variants, we note in passing that it follows from (21.20) that we
can express the minimum value of E(N) in the form:

Emin(N) =
∥∥∥3

1/2
N (dN − AN w̄)

∥∥∥2 − sT
N(wN − w̄) . (21.35)

21.5 The RLS Algorithm

The first recursive solution that we consider is the famed recursive least-squares algorithm, usually
referred to as the RLS algorithm. It can be derived as follows.

Let wi−1 be the solution of an optimization problem of the form (21.27) that uses input data up
to time (i − 1) [that is, for N = (i − 1)]. Likewise, let wi be the solution of the same optimization
problem but with input data up to time i [N = i].

The recursive least-squares (RLS) algorithm provides a recursive procedure that computes wi from
wi−1. A classical derivation follows by noting from (21.30) that the new solution wi should satisfy

wi − w̄ = 8−1
i si =

[
λ8i−1 + uiu

T
i

]−1 (
λsi−1 + ui

[
d(i) − uT

i w̄
])

,

where we have also used the time-updates for {8i, si}.
Introduce the quantities

Pi = 8−1
i , gi = 8−1

i ui . (21.36)

Expanding the inverse of [λ8i−1+uiuT
i] by using the matrix inversion formula [stated after (21.24)],

and grouping terms, leads after some straightforward algebra to the RLS procedure:

• Initial conditions: w−1 = w̄ and P−1 = 50.

• Repeat for i ≥ 0:

wi = wi−1 + gi

[
d(i) − uT

i wi−1

]
, (21.37)

gi = λ−1Pi−1ui

1 + λ−1uT
i Pi−1ui

, (21.38)

Pi = λ−1
[
Pi−1 − giu

T
i Pi−1

]
. (21.39)

• The computational complexity of the algorithm is O(M2) per iteration.

21.5.1 Estimation Errors and the Conversion Factor

With the RLS problem we associate two residuals at each time instant i: the a priori estimation error
ea(i), defined by

ea(i) = d(i) − uT
i wi−1 ,

c©1999 by CRC Press LLC

and the a posteriori estimation error ep(i), defined by

ep(i) = d(i) − uT
i wi .

Comparing the expressions for ea(i) and ep(i), we see that the latter employs the most recent weight
vector estimate.

If we replace wi in the definition for ep(i) by its update expression (21.37), say

ep(i) = d(i) − uT
i (wi−1 + gi

[
d(i) − uT

i wi−1

]
) ,

some straightforward algebra will show that we can relate ep(i) and ea(i) via a factor γ (i) known as
the conversion factor:

ep(i) = γ (i)ea(i) ,

where γ (i) is equal to

γ (i) = 1

1 + λ−1uT
i Pi−1ui

= 1 − uT
i Piui . (21.40)

That is, the a posteriori error is a scaled version of the a priori error. The scaling factor γ (i) is defined
in terms of {ui , Pi−1} or {ui , Pi}. Note that 0 ≤ γ (i) ≤ 1.

Note further that the expression for γ (i) appears in the definition of the so-called gain vector gi

in (21.38) and, hence, we can alternatively rewrite (21.38) and (21.39) in the forms:

gi = λ−1γ (i)Pi−1ui , (21.41)

Pi = λ−1Pi−1 − γ −1(i)gig
T
i . (21.42)

21.5.2 Update of the Minimum Cost

Let Emin(i) denote the value of the minimum cost of the optimization problem (21.27) with data up
to time i. It is given by an expression of the form (21.35) with N replaced by i,

Emin(i) =

 i∑

j=0

λi−j
∥∥∥d(j) − uT

j w̄
∥∥∥2


 − sT

i (wi − w̄) .

Using the RLS update (21.37) for wi in terms of wi−1, as well as the time-update (21.34) for si in
terms of si−1, we can derive the following time-update for the minimum cost:

Emin(i) = λEmin(i − 1) + ep(i)ea(i) , (21.43)

where Emin(i − 1) denotes the value of the minimum cost of the same optimization problem (21.27)
but with data up to time (i − 1).

21.6 RLS Algorithms in Array Forms

As mentioned in the introduction, we intend to stress the array formulations of the RLS solution due
to their intrinsic advantages:

• They are easy to implement as a sequence of elementary rotations on arrays of numbers.

• They are modular and parallelizable.

• They have better numerical properties than the classical RLS description.

c©1999 by CRC Press LLC

21.6.1 Motivation

Note from (21.39) that the RLS solution propagates the variable Pi as the difference of two quantities.
This variable should be positive-definite. But due to roundoff errors, however, the update (21.39)
may not guarantee the positive-definiteness of Pi at all times i. This problem can be ameliorated
by using the so-called array formulations. These alternative forms propagate square-root factors of

either Pi or P−1
i , namely, P1/2

i or P−1/2
i , rather than Pi itself. By squaring P1/2

i , for example, we can
always recover a matrix Pi that is more likely to be positive-definite than the matrix obtained via
(21.39),

Pi = P1/2
i PT/2

i .

21.6.2 A Very Useful Lemma

The derivation of the array variants of the RLS algorithm relies on a very useful matrix result that
encounters applications in many other scenarios as well. For this reason, we not only state the result
but also provide one simple proof.

LEMMA 21.1 Given two n × m (n ≤ m) matrices A and B, then AAT = BBT if, and only if, there
exists an m × m orthogonal matrix 2 (22T = Im) such that A = B2.

PROOF 21.1 One implication is immediate. If there exists an orthogonal matrix 2 such that
A = B2 then

AAT = (B2)(B2)T = B(22T)BT = BBT .

One proof for the converse implication follows by invoking the singular value decompositions of
the matrices A and B,

A = UA

[
6A 0

]
VT

A ,

B = UB

[
6B 0

]
VT

B ,

where UA and UB are n × n orthogonal matrices, VA and VB are m × m orthogonal matrices, and
6A and 6B are n × n diagonal matrices with nonnegative (ordered) entries.

The squares of the diagonal entries of 6A (6B) are the eigenvalues of AAT (BBT). Moreover, UA

(UB) are constructed from an orthonormal basis for the right eigenvectors of AAT (BBT).
Hence, it follows from the identity AAT = BBT that we have 6A = 6B and we can choose

UA = UB . Let 2 = VBVT
A. We then obtain 22T = Im and B2 = A.

21.6.3 The Inverse QR Algorithm

We now employ the above result to derive an array form of the RLS algorithm that is known as the
inverse QR algorithm.

Let P1/2
i−1 denote a (preferably lower triangular) square-root factor of Pi−1, i.e., any matrix that

satisfies
Pi−1 = P1/2

i−1 PT/2
i−1 .

[The triangular square-root factor of a symmetric positive-definite matrix is also known as the
Cholesky factor].

c©1999 by CRC Press LLC

Now note that the RLS recursions (21.38) and (21.39) can be expressed in factored form as follows:[
1 1√

λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

] [
1 0T

1√
λ
PT/2

i−1ui
1√
λ
PT/2

i−1

]

=
[

γ −1/2(i) 0T

giγ
−1/2(i) P1/2

i

] [
γ −1/2(i) gT

i γ −1/2(i)

0 PT/2
i

]
.

To verify that this is indeed the case, we simply multiply the factors and compare terms on both sides
of the equality.

The point to note is that the above equality fits nicely into the statement of the previous lemma by
taking

A =
[

1 1√
λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
(21.44)

and

B =
[

γ −1/2(i) 0T

giγ
−1/2(i) P1/2

i

]
. (21.45)

We therefore conclude that there should exist an orthogonal matrix 2i that relates the arrays A and
B in the form [

1 1√
λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
2i =

[
γ −1/2(i) 0T

giγ
−1/2(i) P1/2

i

]
.

That is, there should exist an orthogonal 2i that transforms the prearray A into the postarray B.

Note that the prearray contains quantities that are available at step i, namely {ui , P1/2
i−1}, while the

postarray provides the (normalized) gain vector giγ
−1/2(i), which is needed to update the weight

vector estimate wi−1 into wi , as well as the square-root factor of the variable Pi , which is needed to
form the prearray for the next iteration.

But how do we determine 2i? The answer highlights a remarkable property of array algorithms.
We do not really need to know or determine 2i explicitly!

To clarify this point, we first remark from the expressions (21.44) and (21.45) for the pre and
postarrays that 2i is an orthogonal matrix that takes an array of numbers of the form (assuming a
vector ui of dimension M = 3) 


1 x x x

0 x 0 0
0 x x 0
0 x x x


 (21.46)

and transforms it to the form 


x 0 0 0
x x 0 0
x x x 0
x x x x


 . (21.47)

That is, 2i annihilates all the entries of the top row of the prearray (except for the left-most entry).
Now assume we form the prearray A in (21.44) and choose any 2i (say as a sequence of elementary

rotations) so as to reduce A to the triangular form (21.47), that is, in order to annihilate the desired
entries in the top row.

Let us denote the resulting entries of the postarray arbitrarily as:

c©1999 by CRC Press LLC

[
1 1√

λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
2i =

[
a 0T

b C

]
, (21.48)

where {a, b, C} are quantities that we wish to identify [a is a scalar, b is a column vector, and C is a
lower triangular matrix]. The claim is that by constructing 2i in this way (i.e., by simply requiring
that it achieves the desired zero pattern in the postarray), the resulting quantities {a, b, C} will be
meaningful and can in fact be identified with the quantities in the postarray B.

To verify that the quantities {a, b, C} can indeed be identified with {γ −1/2(i), giγ
−1/2(i), P1/2

i },
we proceed by squaring both sides of (21.48),

[
1 1√

λ
uT

i P1/2
i−1

0 1√
λ
P1/2

i−1

]
2i2

T
i︸ ︷︷ ︸

I

[
1 0

1√
λ
PT/2

i−1ui
1√
λ
PT/2

i−1

]
=

[
a 0T

b C

] [
a bT

0 CT

]
,

and comparing terms on both sides of the equality to get the identities:

a2 = 1 + λ−1uT
i Pi−1ui = γ −1(i) ,

ba = λ−1Pi−1ui = giγ
−1(i) ,

CCT = λ−1Pi−1 − bbT = λ−1Pi−1 − γ −1(i)gig
T
i .

Hence, as desired, we can make the identifications

a = γ −1/2(i) , b = giγ
−1/2(i) , C = P1/2

i .

In summary, we have established the validity of an array alternative to the RLS algorithm, known
as the inverse QR algorithm (also as square-root RLS). It is listed in Table 21.3. The recursions are

known as inverse QR since they propagate P1/2
i , which is a square-root factor of the inverse of the

coefficient matrix 8i .

TABLE 21.3 The Inverse QR Algorithm
Initialization. Start with w−1 = w̄ and

P
1/2
−1 = 5

1/2
0

• Repeat for each time instant i ≥ 0:
 1 1√

λ
uT
i

P
1/2
i−1

0 1√
λ

P
1/2
i−1


 2i =

[
γ −1/2(i) 0T

gi γ
−1/2(i) P

1/2
i

]

where 2i is any orthogonal rotation that
produces the zero pattern in the postarray.

The weight-vector estimate is updated via

wi = wi−1 +
[

gi
γ 1/2(i)

] [
1

γ 1/2(i)

]−1 [
d(i) − uT

i
wi−1

]

where the quantities {γ −1/2(i), gi γ
−1/2(i)} are

read from the entries of the postarray.

The computational cost is O(M2) per iteration.

c©1999 by CRC Press LLC

21.6.4 The QR Algorithm

The RLS recursion (21.39) and the inverse QR recursion of Table 21.3 propagate the variable Pi or
a square-root factor of it. The starting condition for both algorithms is therefore dependent on the

weighting matrix 50 or its square-root factor 5
1/2
0 .

This situation becomes inconvenient when the initial condition 50 assumes relatively large values,
say 50 = σ I with σ � 1. A particular instance arises, for example, when we take σ → ∞ in which
case the regularized least-squares problem (21.27) reduces to a standard least-squares problem of the
form

min
w


E(N) =

N∑
j=0

λN−j |d(j) − uT
j w|2


 . (21.49)

For such problems, it is preferable to propagate the inverse of the variable Pi rather than Pi itself.
Recall that the inverse of Pi is 8i since we have defined earlier Pi = 8−1

i .

The QR algorithm is a recursive procedure that propagates a square-root factor of 8i . Its validity
can be verified in much the same way as we did for the inverse QR algorithm. We form a prearray of
numbers and then choose a sequence of rotations that induces a desired zero pattern in the postarray.
Then by squaring and comparing terms on both sides of an equality we can identify the resulting
entries of the postarray as meaningful quantities in the RLS context. For this reason, we shall be brief
and only highlight the main points.

Let 8
1/2
i−1 denote a square-root factor (preferably lower-triangular) of 8i−1, 8i−1 = 8

1/2
i−1 8

T/2
i−1,

and define, for notational convenience, the quantity

qi−1 = 8
T/2
i−1 wi−1 . (21.50)

At time (i − 1) we form the prearray of numbers

A =



√
λ8

1/2
i−1 ui√

λqT
i−1 d(i)

0T 1


 ,

whose entries have the following pattern (shown for M = 3):

A =




x 0 0 x

x x 0 x

x x x x

x x x x

0 0 0 1


 .

Now implement an orthogonal transformation 2i that reduces A to the form

B =




x 0 0 0
x x 0 0
x x x 0
x x x x

x x x x


 =


 C 0

bT a

hT f


 ,

where the quantities {C, b, h, a, f } need to be identified. By comparing terms on both sides of the
equality


√

λ8
1/2
i−1 ui√

λqT
i−1 d(i)

0T 1


 2i2

T
i︸ ︷︷ ︸

I




√
λ8

1/2
i−1 ui√

λqT
i−1 d(i)

0T 1




T

=

 C 0

bT a

hT f





 C 0

bT a

hT f


T

,

c©1999 by CRC Press LLC

we can make the identifications:

C = 8
1/2
i , bT = qT

i , hT = uT
i 8

−T/2
i ,

a = ea(i)γ
1/2(i), f = γ 1/2(i) ,

where ea(i) = d(i)−uT
i wi−1 is the a priori estimation error. This derivation establishes the so-called

QR algorithm (listed in Table 21.4).

TABLE 21.4 The QR Algorithm

Initialization. Start with w−1 = w̄, 8
1/2
−1 = 5

−T/2
0 , q−1 = 5

−1/2
0 w̄.

• Repeat for each time instant i ≥ 0:


√
λ8

1/2
i−1 uT

i√
λqT

i−1 d(i)

0T 1


 2i =


 8

1/2
i

0

qT
i

ea(i)γ 1/2(i)

uT
i

8
−T/2
i

γ 1/2(i)




where 2i is any orthogonal rotation that produces the
zero pattern in the postarray.

The weight-vector estimate can be obtained by solving the
triangular linear system of equations

8
T/2
i

wi = qi

where the quantities {81/2
i

, qi } are available from the
entries of the postarray.

The computational complexity is still O(M2) per iteration.

The QR solution determines the weight-vector estimate wi by solving a triangular linear system of
equations, e.g., via back-substitution. A major drawback of a back-substitution step is that it involves
serial operations and, therefore, does not lend itself to a fully parallelizable implementation.

An alternative procedure for computing the estimate wi can be obtained by appending one more
block row to the arrays of the QR algorithm, leading to the equations:




√
λ8

1/2
i−1 ui√

λqT
i−1 d(i)

0T 1
1√
λ
8

−T/2
i−1 0


 2i =




8
1/2
i 0

qT
i ea(i)γ

1/2(i)

uT
i 8

−T/2
i γ 1/2(i)

8
−T/2
i −giγ

−1/2(i)


 . (21.51)

In this case, the last row of the postarray provides the gain vector gi that can be used to update the
weight-vector estimate as follows:

wi = wi−1 +
[

gi

γ 1/2(i)

] [
ea(i)γ

1/2(i)
]

.

Note, however, that the pre- and postarrays now propagate both 8
1/2
i and its inverse, which may lead

to numerical difficulties.

c©1999 by CRC Press LLC

21.7 Fast Transversal Algorithms

The earlier recursive least-squares solutions require O(M2) floating point operations per iteration,
where M is the size of the input vector ui .

uT
i = [

u1(i) u2(i) . . . uM(i)
]

.

It often happens in practice that the entries of ui are time-shifted versions of each other. More
explicitly, if we denote the value of the first entry of ui by u(i) [instead of u1(i)], then ui will have
the form

uT
i = [

u(i) u(i − 1) . . . u(i − M + 1)
]
. (21.52)

This has the pictorial representation shown in Fig. 21.3. The term z−1 represents a unit-time delay.
The structure that takes u(j) as an input and provides the inner product

∑M
k=1 u(j + 1− k)w(k) as

an output is known as a transversal or FIR (finite-impulse response) filter.

FIGURE 21.3: A linear combiner with shift structure in the input channels.

The shift structure in ui can be exploited in order to derive fast variants to the RLS solution that
would require O(M) operations per iteration rather than O(M2). This can be achieved by showing
that, in this case, the M ×M variables Pi that are needed in the RLS recursion (21.39) exhibit certain
matrix structure that allows us to replace the RLS recursions by an alternative set of recursions that
we now motivate.

21.7.1 The Prewindowed Case

We first assume that no input data is available prior to and including time i = 0. That is, u(i) = 0
for i ≤ 0. In this case, the values at time 0 of the variables {ui , gi , γ (i), Pi} become:

u0 = 0, g0 = 0, γ (0) = 1, P0 = λ−1P−1 = λ−150 .

It then follows that the following equality holds:[
P0 0
0T 0

]
−

[
0 0T

0 P−1

]
=

[
λ−150 0

0T 0

]
−

[
0 0T

0 50

]

Note that we have embedded P0 and P−1 into larger matrices [of size (M + 1) × (M + 1) each] by
adding one zero row and one zero column. This embedding will allow us to suggest a suitable choice

c©1999 by CRC Press LLC

for the initial weighting matrix 50 in order to enforce a low-rank difference matrix on the right-hand
side of the above expression. In so doing, we guarantee that (P0 ⊕0) can be obtained from (0⊕P−1)

via a low rank update.
Strikingly enough, the argument will further show that because of the shift structure in the input

vectorsui , if this low-rankpropertyholds for the initial time instant then it alsoholds for the successive
time instants! Consequently, the successive matrices (Pi ⊕ 0) will also be low rank modifications of
earlier matrices (0 ⊕ Pi−1).

In this way, a fast procedure for updating the Pi can be developed by replacing the propagation of
Pi via (21.39) by a recursion that instead propagates the low rank factors that generate the Pi . We
will verify that this procedure also allows us to update the weight vector estimates rapidly (in O(M)

operations).

21.7.2 Low-Rank Property

Assume we choose 50 in the special diagonal form

50 = δ · diagonal {λ2, λ3, . . . , λM+1}, (21.53)

where δ is a positive quantity (usually much larger than one, δ � 1). In this case, we are led to a
rank-two difference of the form

[
λ−150 0

0T 0

]
−

[
0 0T

0 50

]
= δ · λ ·


 1

0
−λM


 ,

which can be factored as [
P0 0
0T 0

]
−

[
0 0T

0 P−1

]
= λ · Ł̄0S0Ł̄

T
0 , (21.54)

where Ł̄0 is (M + 1) × 2 and S0 is a 2 × 2 signature matrix that are given by

Ł̄0 = √
δ ·


 1 0

0 0

0 λ
M
2


 , S0 =

[
1 0
0 −1

]
.

21.7.3 A Fast Array Algorithm

We now argue by induction, and by using the shift property of the input vectors ui , that if the low-rank
property holds at a certain time instant i, say[

Pi 0
0T 0

]
−

[
0 0T

0 Pi−1

]
= λ · Ł̄iSi Ł̄

T
i , (21.55)

then three important facts hold:

• The low-rank property also holds at time i + 1, say[
Pi+1 0
0T 0

]
−

[
0 0T

0 Pi

]
= λ · Ł̄i+1Si+1Ł̄

T
i+1 ,

• There exists an array algorithm that updates Ł̄i to Ł̄i+1. Moreover, the algorithm also
provides the gain vector gi that is needed to update the weight-vector estimate in the RLS
solution.

c©1999 by CRC Press LLC

• The signature matrices {Si , Si+1} are equal! That is, all successive low-rank differences
have the same signature matrix as the initial difference and, hence,

Si = S0 =
[

1 0
0 −1

]
for all i .

To verify these claims, consider (21.55) and form the prearray

A =




γ −1/2(i)
[

u(i + 1) uT
i

]
Ł̄i[

0
giγ

−1/2(i)

]
Ł̄i


 .

For M = 3, the prearray has the following generic form (recall that L̄i is (M + 1) × 2):

A =




x x x

0 x x

x x x

x x x

x x x


 .

Now let 2i be a matrix that satisfies

2i


 1

1
−1


 2T

i =

 1

1
−1


 =

[
1

Si

]
,

and such that it transforms A into the form

B =




x 0 0
x x x

x x x

x x x

x x x


 =

[
a 0T

b C

]
.

That is, 2i annihilates two entries in the top row of the prearray. This can be achieved by employing
a circular rotation that pivots with the left-most entry of the first row and annihilates its second entry.
We then employ a hyperbolic rotation that pivots again with the left-most entry and annihilates the
last entry of the top row.

The unknown entries {a, b, C} can be identified by resorting to the same technique that we em-
ployed earlier during the derivation of the QR and inverse QR algorithms. By comparing entries on
both sides of the equality

A

[
1

Si

]
AT =

[
a 0T

b C

] [
1

Si

] [
a 0T

b C

]T

we obtain several equalities. For example, by equating the (1, 1) entries we obtain the following
relation:

γ −1(i) + [
u(i + 1) uT

i

]
Ł̄iSi Ł̄

T
i

[
u(i + 1)

ui

]
= a2 . (21.56)

By using (21.55) for Ł̄iSi Ł̄i and by noting that we can rewrite the vector
[

u(i + 1) uT
i

]
in two

equivalent forms (due to its shift structure):[
u(i + 1) uT

i

] = [
uT

i+1 u(i − M + 1)
]

, (21.57)

c©1999 by CRC Press LLC

we readily conclude that (21.56) collapses to

γ −1(i) + λ−1uT
i+1Piui+1 − λ−1uT

i Pi−1ui = a2 .

But γ −1(i) = 1 + λ−1uT
i Pi−1ui . Therefore,

a2 = 1 + λ−1uT
i+1Piui+1 = γ −1(i + 1),

which shows that we can identify a as

a = γ −1/2(i + 1).

A similar argument allows us to identify b. By comparing the (2, 1) entries we obtain

ab =
[

0
giγ

−1(i)

]
+ Ł̄iSi Ł̄

T
i

[
u(i + 1)

ui

]
. (21.58)

Again, by (21.55) for Ł̄iSi Ł̄
T
i , (21.57) for the vector

[
u(i + 1) uT

i

]
, and by noting from the

definition of gi that [
0

giγ
−1(i)

]
=

[
0

λ−1Pi−1ui

]
we obtain

b =
[

gi+1γ
−1/2(i + 1)

0

]
.

Finally, for the last term C we compare the (2, 2) entries to obtain

CSiC
T =

[
Pi+1 0
0T 0

]
−

[
0 0T

0 Pi

]
.

The difference on the right-hand side is by definition λŁ̄i+1Si+1Ł̄
T
i+1. This shows that we can make

the identifications
C = √

λ · Ł̄i+1 , Si+1 = Si .

In summary, we have established the validity of the array algorithm shown in Table 21.5, which
minimizes the cost function (21.27) in the prewindowed case and for the special choice of 50 in
(21.53).

Note that this fast procedure computes the required gain vectors gi without explicitly evaluating the
matrices Pi . Instead, the low-rank factors Ł̄i are propagated, which explains the lower computational
requirements.

21.7.4 The Fast Transversal Filter

The fast algorithm of the last section is an array version of fast RLS algorithms known as FTF (Fast
Transversal Filter) and FAEST (Fast A posteriori Error Sequential Technique). In contrast to the
above array description, where the transformation 2i that updates the data from time i to time
(i + 1) is left implicit, the FTF and FAEST algorithms involve explicit sets of equations.

The derivation of these explicit sets of equations can be motivated as follows. Note that the
factorization (21.54) is highly nonunique. What is special about (21.54) [and also (21.55)] is that
we have forced S0 to be a signature matrix, i.e., a matrix with ±1′s on its diagonal. More generally,
we can allow for different factorizations with an S0 that is not restricted to be a signature matrix.
Different choices lead to different sets of equations.

c©1999 by CRC Press LLC

TABLE 21.5 A Fast Array Algorithm
Input. Prewindowed data {d(j), u(j)} for j ≥ 1 and 50 as in (21.53) in the cost (21.27).

Initialization. Set
w−1 = w̄, γ −1/2(0) = 1

Ł̄0 = √
δ ·


 1 0

0 0

0 λ
M
2


 , S0 =

[
1 0
0 −1

]

Repeat for each time instant i ≥ 0:




γ −1/2(i)
[

u(i + 1) uT
i

]
Ł̄i[

0
gi γ

−1/2(i)

]
Ł̄i


 2i =




γ −1/2(i + 1) 0T

[
gi+1γ −1/2(i + 1)

0

] √
λ Ł̄i+1




where 2i is any (1 ⊕ S0)−orthogonal matrix that produces the zero pattern in the
postarray, and Ł̄i is a two-column matrix.

The weight-vector estimate is updated via:

wi = wi−1 +
[

gi
γ 1/2(i)

] [
γ −1/2(i)

]−1 [
d(i) − uT

i
wi−1

]
The computational cost is O(M) per iteration.

More explicitly, assume we factor the difference matrix in (21.55) as[
Pi 0
0T 0

]
−

[
0 0T

0 Pi−1

]
= λ · ŁiMiŁ

T
i , (21.59)

where Łi is an (M+1)×2matrix and Mi is a 2×2matrix that is not restricted to be a signature matrix.
[We already know from the earlier array-based argument that this difference is always low-rank.]

Given the factorization (21.59), it is easy to verify that two successive gain vectors satisfy the relation:[
gi+1γ

−1(i + 1)

0

]
=

[
0

giγ
−1(i)

]
+ ŁiMiŁ

T
i

[
u(i + 1)

ui

]
.

This is identical to (21.58) except that Si is replaced by Mi and Ł̄i is replaced by Łi . The fast array
algorithm of the previous section provides one possibility for enforcing this relation and, hence, of
updating gi to gi+1 via updates of Ł̄i .

The FTF and FAEST algorithms follow by employing one such alternative factorization, where the
two columns of the factor Łi turn out to be related to the solution of two fundamental problems in
adaptive filter theory: the so-called forward and backward prediction problems. Moreover, the Mi

factor turns out to be diagonal with entries equal to the so-called forward and backward minimum
prediction energies. An explicit derivation of the FTF equations can be pursued along these lines. We
omit the details and continue to focus on the square-root formulation. We now proceed to discuss
order-recursive adaptive filters within this framework.

21.8 Order-Recursive Filters

The RLS algorithms that were derived in the previous sections are all fixed-order solutions of (21.27)
in the sense that they recursively evaluate successive weight estimates wi that correspond to a fixed-
order combiner of order M . This form of computing the minimizing solution wN is not convenient
from an order-recursive point of view. In other words, assume we pose a new optimization problem
of the same form as (21.27) but where the vectors {w, uj } are now of order (M + 1) rather than M .
How do the weight estimates of this new higher-dimensional problem relate to the weight estimates
of the lower dimensional problem?

c©1999 by CRC Press LLC

Before addressing this issue any further, it is apparent at this stage that we need to introduce a
notational modification in order to keep track of the proper sizes of the variables. Indeed, from
now on, we shall explicitly indicate the size of a variable by employing an additional subscript. For
example, we shall write {wM, uM,j } instead of {w, uj } to denote vectors of size M .

Returning to the point raised in the previous paragraph, let wM+1,N denote the optimal solution of
the new optimization problem (with (M + 1)−dimensional vectors {wM+1, uM+1,j }. The adaptive
algorithms of the previous sections give an explicit recursive (time-update) relation between wM,N

andwM,N−1. But theydonotprovidea recursive (order-update) relationbetween wM,N andwM+1,N .

There is an alternative to the FIR implementation of Fig. 21.3 that allows us to easily carry over the
information from previous computations for the order M filter. This is the so-called lattice filter.

From now on we assume, for simplicity of presentation, that the weighting matrix 50 in (21.27) is
very large, i.e., 50 → ∞I. This assumption reduces (21.27) to a standard least-squares formulation:

min
wM


 N∑

j=0

λN−i |d(j) − uT
M,j wM |2


 . (21.60)

The order-recursive filters of this section deal with this kind of minimization.

Now suppose that our interest in solving (21.60) is not to explicitly determine the weight estimate
wM,N , but rather to determine estimates for the reference signals {d(·)}, say

dM(N) = uT
M,NwM,N = estimate of d(N) of order M.

Likewise, for the higher-order problem,

dM+1(N) = uT
M+1,NwM+1,N = estimate of d(N) of order M + 1.

The resulting estimation errors will be denoted by

eM(N) = d(N) − dM(N), eM+1(N) = d(N) − dM+1(N).

The lattice solution allows us to update eM(N) to eM+1(N) without explicitly computing the weight
estimates wM,N and wM+1,N .

The discussion that follows relies heavily on the orthogonality property of least-squares solutions
and, therefore, serves as a good illustration of the power and significance of this property. It will
further motivate the introduction of the forward and backward prediction problems.

21.8.1 Joint Process Estimation

For the sake of illustration, and without loss of generality, the discussion in this section assumes
particular values for M and λ, say M = 3 and λ = 1. These assumptions simplify the exposition
without affecting the general conclusions. In particular, a nonunity λ can always be incorporated
into the discussion by properly normalizing the vectors involved in the derivation [cf. (21.28) and
(21.29)] and we will do so later. We continue to assume prewindowed data (i.e., the data is zero for
time instants i ≤ 0).

To begin with, assume we solve the following problem [as suggested by (21.60)]: minimize over

c©1999 by CRC Press LLC

w3 the cost function

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




0
d(1)

d(2)

.

.

.

d(N)




︸ ︷︷ ︸
dN

−




0 0 0
u(1) 0 0
u(2) u(1) 0

.

.

.
.
.
.

.

.

.

u(N) u(N − 1) u(N − 2)




︸ ︷︷ ︸
A3,N


 w3(1)

w3(2)

w3(3)




︸ ︷︷ ︸
w3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(21.61)

where dN denotes the vector of desired signals up to time N , and A3,N denotes a three-column matrix
of input data {u(·)}, also up to time N .

The optimal solution is denoted by w3,N . The subscript N indicates that it is an estimate based
on the data u(·) up to time N . Determining w3,N corresponds to determining the entries of a 3-
dimensional weight vector so as to approximate the column vector dN by the linear combination
A3,Nw3,N in the least-squares sense (21.61). We thus say that expression (21.61) defines a third-
order estimator for the reference sequence {d(·)}. The resulting a posteriori estimation error vector
is denoted by

e3,N = dN − A3,Nw3,N ,

where, for example, the last entry of e3,N is given by

e3(N) = d(N) − uT
3,Nw3,N ,

and it denotes the a posteriori estimation error in estimating d(N) from a linear combination of the
three most recent inputs.

We already know from the orthogonality property of least-squares solutions that the a posteriori
residual vector e3,N has to be orthogonal to the data matrix A3,N , viz.,

AT
3,Ne3,N = 0.

We also know that the optimal solution w3,N provides an estimate vector A3,Nw3,N that is the closest
element in the column space of A3,N to the column vector dN .

Now assume that we wish to solve the next higher order problem, viz., of order M = 4: minimize
over w4 the cost function ∥∥dN − A4,Nw4

∥∥2
, (21.62)

where

A4,N =




0 0 0 0
u(1) 0 0 0
u(2) u(1) 0 0

...
...

...
...

u(N − 1) u(N − 2) u(N − 3) u(N − 4)

u(N) u(N − 1) u(N − 2) u(N − 3)




, w4 =




w4(1)

w4(2)

w4(3)

w4(4)


 .

This statement is very close to (21.61) except for an extra column in the data matrix A4,N : the first
three columns of A4,N coincide with those of A3,N , while the last column of A4,N contains the extra
new data that are needed for a fourth-order estimator. More specifically, A3,N and A4,N are related

c©1999 by CRC Press LLC

as follows:

A4,N =




0
0
0

A3,N

...

u(N − 4)

u(N − 3)




. (21.63)

The problem in (21.62) requires us to linearly combine the four columns of A4,N in order to
compute the fourth-order estimates of {0, d(1), d(2), . . . , d(N)}. In other words, it requires us to
determine the closest element in the column space of A4,N to the same column vector dN .

Wealreadyknowwhat is the closest element todN in the columnspaceof A3,N , which is a submatrix
of A4,N . This suggests that we should try to decompose the column space of A4,N into two orthogonal
subspaces, viz.,

Range(A4,N) = Range(A3,N) ⊕ Range(m) , (21.64)

where m is a column vector that is orthogonal to A3,N , AT
3,Nm = 0. The notation Range(A3,N) ⊕

Range(m) also means that every element in the column space of A4,N can be expressed as a linear
combination of the columns of A3,N and of m.

The desired decomposition motivates the backward prediction problem.

21.8.2 The Backward Prediction Error Vectors

We continue to assume λ = 1 and M = 3, and we note that the required decomposition can be
accomplished by projecting the last column of A4,N onto the column space of its first three columns
(i.e., onto the column space of A3,N) and keeping the residual vector as the desired vector m. This is
nothingbutaGram-Schmidtorthogonalizationstepand it is equivalent to the followingminimization
problem: minimize over wb

3 ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




0
0
0
...

u(N − 4)

u(N − 3)




︸ ︷︷ ︸
Last column

of A4,N

−A3,N


 wb

3(1)

wb
3(2)

wb
3(3)




︸ ︷︷ ︸
wb

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (21.65)

This is also a special case of (21.60) where we have replaced the sequence

{0, d(1), . . . , d(N)}
by the sequence

{0, 0, 0, . . . , u(N − 4), u(N − 3)}.
We denote the optimal solution by wb

3,N . The subscript N indicates that it is an estimate based on the

data u(·) up to time N . Determining wb
3,N corresponds to determining the entries of a 3-dimensional

c©1999 by CRC Press LLC

weight vector so as to approximate the last column of A4,N by a linear combination of the columns
of A3,N , viz., A3,Nwb

3,N , in the least-squares sense.

Note that theentries inevery rowof thedatamatrixA3,N are the three“future”values corresponding
to the entry in the last column of A4,N . Hence, the last element of the above linear combination
serves as a backward prediction of u(N − 3) in terms of {u(N), u(N − 1), u(N − 2)}. A similar
remark holds for the other entries. The superscript b stands for backward.

We thus say that expression (21.65) defines a third-order backward prediction problem. The
resulting a posteriori backward prediction error vector is denoted by

b3,N =




0
0
0
...

u(N − 4)

u(N − 3)




− A3,Nwb
3,N .

In particular, the last entry of b3,N is defined as the aposterioribackward prediction error in estimating
u(N − 3) from a linear combination of the future 3 inputs. It is denoted by b3(N) and is given by

b3(N) = u(N − 3) − uT
3,Nwb

3,N . (21.66)

We further know, from the orthogonality property of least-squares solutions, that the a posteriori
backward residual vector b3,N has to be orthogonal to the data matrix A3,N , AT

3,Nb3,N = 0, which
therefore implies that it can be taken as the m column that we mentioned earlier, viz., we can write

Range (A4,N) = Range (A3,N) ⊕ Range (b3,N). (21.67)

Our original motivation for introducing the a posteriori backward residual vector b3,N was the
desire to solve the fourth-order problem (21.62), not afresh, but in a way so as to exploit the solution
of lower order, thus leading to an order-recursive algorithm.

Assume now that we have available the estimation error vectors e3,N and b3,N , which are both
orthogonal to A3,N . Knowing that b3,N leads to an orthogonal decomposition of the column space
of A4,N as in (21.67), then updating e3,N into a fourth-order a posteriori residual vector e4,N , which
has to be orthogonal to A4,N , simply corresponds to projecting the vector e3,N onto the vector b3,N .
More explicitly, it corresponds to determining a scalar coefficient k3 that solves the optimization
problem

min
k3

∥∥e3,N − k3b3,N

∥∥2
. (21.68)

This is a standard least-squares problem and its optimal solution is denoted by

k3(N) = 1

bT
3,Nb3,N

bT
3,Ne3,N . (21.69)

We now know how to update e3,N into e4,N by projecting e3,N onto b3,N . In order to be able to
proceed with this order update procedure, we still need to know how to order-update the backward
residual vector. That is, we need to know how to go from b3,N to b4,N .

c©1999 by CRC Press LLC

21.8.3 The Forward Prediction Error Vectors

We continue to assume λ = 1 and M = 3. The order-update of the backward residual vector

motivates us to introduce the forward prediction problem: minimize over wf

3 the cost function∥∥∥∥∥∥∥∥∥∥∥∥∥∥




u(1)

u(2)

u(3)
...

u(N + 1)


 − A3,N


 w

f

3 (1)

w
f

3 (2)

w
f

3 (3)




︸ ︷︷ ︸
wf

3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

. (21.70)

We denote the optimal solution by wf

3,N+1. The subscript indicates that it is an estimate based on

the data u(·) up to time N + 1. Determining wf

3,N+1 corresponds to determining the entries of a
3-dimensional weight vector so as to approximate the column vector


u(1)

u(2)

u(3)
...

u(N + 1)




by a linear combination of the columns of A3,N , viz., A3,Nwf

3,N+1.
Note that the entries of the successive rows of the data matrix A3,N are the past three inputs relative

to the corresponding entries of the column vector. Hence, the last element of the linear combination

A3,Nwf

3,N+1 serves as a forward prediction of u(N + 1) in terms of {u(N), u(N − 1), u(N − 2)}. A

similar remark holds for the other entries. The superscript f stands for forward.
We thus say that expression (21.70)defines a third-order forwardpredictionproblem. The resulting

a posteriori forward prediction error vector is denoted by

f3,N+1 =




u(1)

u(2)

u(3)
...

u(N + 1)


 − A3,Nwf

3,N+1 .

Inparticular, the last entryof f3,N+1 is definedas theaposteriori forwardpredictionerror in estimating
u(N + 1) from a linear combination of the past three inputs. It is denoted by f3(N + 1) and is given
by

f3(N + 1) = u(N + 1) − u3,Nwf

3,N+1 . (21.71)

Now assume that we wish to solve the next-higher order problem, viz., of order M = 4: minimize

over wf

4 the cost function ∥∥∥∥∥∥∥∥∥∥∥




u(1)

u(2)

u(3)
...

u(N + 1)


 − A4,N




w
f

4 (1)

w
f

4 (2)

w
f

4 (3)

w
f

4 (4)




∥∥∥∥∥∥∥∥∥∥∥

2

. (21.72)

c©1999 by CRC Press LLC

We again observe that this statement is very close to (21.70) except for an extra column in the data
matrix A4,N , in precisely the same way as happened with e4,N and b3,N . We can therefore obtain
f4,N+1 by projecting f3,N+1 onto b3,N and taking the residual vector as f4,N+1,

min
k
f
3

‖f3,N+1 − k
f

3 b3,N‖2 . (21.73)

This is also a standard least-squares problem and we denote its optimal solution by k
f

3 (N + 1),

k
f

3 (N + 1) = bT
3,N f3,N+1

bT
3,Nb3,N

, (21.74)

with

f4,N+1 = f3,N+1 − k
f

3 (N + 1)b3,N . (21.75)

Similarly, the backward residual vector b3,N can be updated to b4,N+1 by projecting b3,N onto f3,N+1,

min
kb

3

∥∥∥b3,N − kb
3f3,N+1

∥∥∥2
, (21.76)

and we get, after denoting the optimal solution by kb
3(N + 1),

b4,N+1 = b3,N − kb
3(N + 1)f3,N+1 , (21.77)

where

kb
3(N + 1) = fT

3,N+1b3,N

fT
3,N+1f3,N+1

. (21.78)

Note the change in the time index as we move from b3,N to b4,N+1. This is because b4,N+1 is obtained
by projecting b3,N onto f3,N+1, which corresponds to the following definition for b4,N+1,

b4,N+1 =




0
0
0
...

u(N − 4)

u(N − 3)




− A4,N+1




wb
4,N+1(1)

wb
4,N+1(2)

wb
4,N+1(3)

wb
4,N+1(4)




︸ ︷︷ ︸
wb

4,N+1

.

Finally, in view of (21.69), the joint process estimation problem involves a recursion of the form

e4,N = e3,N − k3(N)b3,N , (21.79)

where

k3(N) = bT
3,Ne3,N

bT
3,Nb3,N

. (21.80)

c©1999 by CRC Press LLC

21.8.4 A Nonunity Forgetting Factor

For a general filter order M and for a nonunity λ, an extension of the above arguments would show
that the prediction vectors can be updated as follows:

fM+1,N+1 = fM,N+1 − k
f
M(N + 1)bM,N ,

bM+1,N+1 = bM,N − kb
M(N + 1)fM,N+1 ,

eM+1,N = eM,N − kM(N)bM,N ,

k
f
M(N + 1) = bT

M,N3N fM,N+1

bT
M,N3NbM,N

,

kb
M(N + 1) = fT

M,N+13NbM,N

fT
M,N+13N fM,N+1

,

kM(N) = bT
M,N3NeM,N

bT
M,N3NbM,N

,

where
3N = diag {λN, λN−1, . . . , λ, 1} .

For completeness, we also include the defining relations for the a priori and a posteriori prediction
errors:

βM(N) = u(N − M) − uT
M,Nwb

M,N−1 ,

bM(N) = u(N − M) − uT
M,Nwb

M,N ,

αM(N + 1) = u(N + 1) − uT
M,Nwf

M,N ,

fM(N + 1) = u(N + 1) − uT
M,Nwf

M,N+1 .

Using the definition (21.40) for a conversion factor in a least-squares formulation, it is easy to see that
the same factor converts the a priori prediction errors to the corresponding a posteriori prediction
errors. This factor will be denoted by γM(N).

TABLE 21.6 Useful Relations for the Prediction Problems
Variable Definition or Relation

A priori forward error αM(N + 1) = u(N + 1) − uT
M,N

w
f
M,N−1

A priori backward error βM(N) = u(N − M) − uT
M,N

wb
M,N−1

A posteriori forward error fM(N + 1) = u(N + 1) − uT
M,N

w
f
M,N

A posteriori backward error bM(N) = u(N − M) − uT
M,N

wb
M,N

Forward error by conversion fM(N + 1) = αM(N + 1)γM(N)
Backward error by conversion bM(N) = βM(N)γM(N)

Gain vector gM,N = 8−1
M,N

uM,N

Conversion factor γM(N) = 1 − uT
M,N

8−1
M,N

uM,N

Minimum forward-prediction error energy ξ
f
M

(N + 1) = λξ
f
M

(N) + |f̄M (N + 1)|2
Minimum backward-prediction error energy ξb

M
(N + 1) = λξb

M
(N) + |b̄M (N + 1)|2

Table 21.6 summarizes, for ease of reference, the definitions and relations that have been introduced
thus far. In particular, the last two lines of the table also provide time-update relations for the
minimum costs of the forward and backward prediction problems. These costs are denoted by

ξ
f
M(N+1) and ξb

M(N) and they are equal to the quantities fT
M,N+13N fM,N+1 and bT

M,N3NbM,N that

c©1999 by CRC Press LLC

appear in the denominators of some of the earlier expressions. The last two relations of Table 21.6 use
the result (21.43) to express the minimum costs in terms of the so-called angle-normalized prediction
errors:

f̄M(N + 1) = αM(N + 1)γ
1/2
M (N) , (21.81)

b̄M(N) = βM(N)γ
1/2
M (N) . (21.82)

We can derive, in different ways, similar update relations for the inner product terms

1M(N + 1) = fT
M,N+13NbM,N ,

ρM(N) = bT
M,N3NeM,N .

One possibility is to note, after some algebra and using the orthogonality principle, that the following
relation holds:

1M(N + 1) =
[

1 −(wf
M,N)T 0

]
8M+2,N+1


 0

−wb
M,N

1


 ,

where

8M+2,N+1 =
N+1∑
j=0

λN+1−j uM+2,j uT
M+2,j

If we now invoke the time-update expression

8M+2,N+1 = λ8M+2,N + uT
M+2,N+1uM+2,N+1,

we conclude that 1M(N + 1) satisfies the time-update formula:

1M(N + 1) = λ1M(N) + αM(N + 1)bM(N)

= λ1M(N) + fM(N + 1)bM(N)

γM(N)
.

A similar argument for ρM(N) shows that it satisfies the time-update relation

ρM(N) = λρM(N − 1) + eM(N)bM(N)

γM(N)
.

Finally, the orthogonality principle can again be invoked to derive order-update (rather than

time-update) relations for ξ
f
M(N + 1) and ξb

M(N). Indeed, using fT
M+1,N+13NbM,N = 0 we obtain

ξ
f

M+1(N + 1) = fT
M+1,N+13N fM+1,N+1 = fT

M+1,N+13N fM,N+1 ,

= ξ
f
M(N + 1) − ‖1M(N + 1)‖2

ξb
M(N)

.

Likewise,

ξb
M+1(N + 1) = ξb

M(N) − ‖1M(N + 1)‖2

ξ
f
M(N + 1)

.

Table 21.7 summarizes the order-update relations derived thus far.

c©1999 by CRC Press LLC

TABLE 21.7 Order-Update Relations

1M(N + 1) = λ1M(N) + fM(N+1)bM (N)

γM (N)

ρM(N) = λρM(N − 1) + eM (N)bM (N)

γM (N)

ξ
f
M

(N + 1) = λξ
f
M

(N) + |fM(N+1)|2
γM (N)

ξb
M

(N) = λξb
M

(N − 1) + |bM (N)|2
γM (N)

k
f
M

(N + 1) = 1M(N + 1)/ξb
M

(N)

kb
M

(N + 1) = 1M(N + 1)/ξ
f
M

(N + 1)

kM(N) = ρM(N)/ξb
M

(N)

fM+1(N + 1) = fM(N + 1) − k
f
M

(N + 1)bM(N)

bM+1(N + 1) = bM(N) − kb
M

(N + 1)fM(N + 1)

eM+1(N) = eM(N) − kM(N)bM(N)

ξ
f
M+1(N + 1) = ξ

f
M

(N + 1) − |1M(N+1)|2
ξb
M

(N)

ξb
M+1(N + 1) = ξb

M
(N) − |1M(N+1)|2

ξ
f
M

(N+1)

21.8.5 The QRD Least-Squares Lattice Filter

There are many variants of adaptive lattice algorithms. In this section we present one such variant
in square-root form. Most, if not all, other alternatives can be obtained as special cases. Some
alternatives propagate the a posteriori prediction errors {fM(N + 1), bM(N)}, while others employ
the a priori prediction errors {αM(N + 1), βM(N)}. The QRD-LSL algorithm we present here is
invariant to the particular choice of a posteriori or a priori errors because it propagates the angle
normalized prediction errors that we introduced earlier in (21.81) and (21.82), viz.,

f̄M(i + 1) = αM(i + 1)γ
1/2
M (i) = [u(i + 1) − uT

M,iw
f
M,i]γ 1/2

M (i) ,

b̄M(i) = βM(i)γ
1/2
M (i) = [u(i − M) − uT

M,iw
b
M,i−1]γ 1/2

M (i) .

The QRD-LSL algorithm can be motivated as follows. Assume we form the following two vectors
of angle normalized prediction errors:

f̄M,N+1 =




f̄M(1)

f̄M(2)
...

f̄M(N + 1)


 , b̄M,N =




b̄M(0)

b̄M(1)
...

b̄M(N)


 . (21.83)

We then conclude from the time-updates in Table 21.6 for ξ
f
M(N + 1) and ξb

M(N) that ξ
f
M(N + 1)

and ξb
M(N) are the (weighted) squared Euclidean norms of the angle normalized vectors f̄M(N + 1)

and b̄M(N), respectively. That is, ξ
f
M(N + 1) = f̄T

M,N+13N f̄M,N+1 and ξb
M(N) = b̄T

M,N3N b̄M,N .
Likewise, it follows from the time-update for 1M(N + 1) that it is equal to the inner product of the
angle normalized vectors,

1M(N + 1) = b̄T
M,N3N f̄M,N+1 . (21.84)

Consequently, the coefficients k
f
M(N + 1) and kb

M(N + 1) are also equal to the ratios of the inner

product of the angle normalized vectors to their energies. But recall that k
f
M(N +1) is the coefficient

we need in order to project fM,N+1 onto bM,N . This means that we can alternatively evaluate the same
coefficient by posing the problem of projecting f̄M,N+1 onto b̄M,N . In a similar fashion, kb

M(N + 1)

c©1999 by CRC Press LLC

can be evaluated alternatively by projecting b̄M,N onto f̄M,N+1. (The inner products and projections
are to be understood here to include the additional weighting by 3N .)

We are therefore reduced to two simple projection problems that involve projecting a vector onto
another vector (with exponential weighting). But these are special cases of standard least-squares
problems. In particular, recall that the QR solution of Table 21.4 solves the problem of projecting a
given vector dN onto the range space of a data matrix AN (whose rows are uT

j).
In a similar fashion, we can write down the QR solution that would solve the problem of projecting

f̄M,N+1 onto b̄M,N . For this purpose, we introduce the scalar variables q
f
M(N + 1) and qb

M(N + 1)

[recall the earlier notation (21.50)]:

qb
M(N + 1) = 1M(N + 1)

ξ
b/2
M (N)

, q
f
M(N + 1) = 1M(N + 1)

ξ
f/2
M (N + 1)

. (21.85)

The QR array that updates the forward prediction errors can now be obtained as follows. Form
the 3 × 2 prearray (this is a special case of the QR array of Table 21.4):

A =



√
λξ

b/2
M (N − 1) b̄M(N)√
λqb

M(N) f̄M(N + 1)

0 1




and choose an orthogonal rotation 2b
M,N that reduces it to the form

A2b
M,N =


 x 0

a b

y c


 .

That is, it annihilates the second entry in the top row of the prearray. The scalar quantities
{a, b, c, x, y} can be identified, as before, by squaring and comparing entries of the resulting equality.
This step allows us to make the following identifications very immediately:

x = ξ
b/2
M (N) ,

a = qb
M(N + 1) ,

y = b̄M(N)ξ
−b/2
M (N) ,

bc = γ
−1/2
M (N)fM+1(N + 1) ,

b2 = |f̄M+1(N + 1)|2 ,

where for the last equality we used the following relation that follows immediately from the last two
lines of Table 21.7:∥∥∥qb

M(N + 1)

∥∥∥2 + ∥∥f̄M+1(N + 1)
∥∥2 = λ

∥∥∥qb
M(N)

∥∥∥2 + ∥∥f̄M(N + 1)
∥∥2

Therefore, b2c2 = γM+1(N)

γM(N)
|f̄M+1(N + 1)|2 and we can make the identifications:

c = γ
1/2
M+1(N)

γ
1/2
M (N)

, b = f̄M+1(N + 1) .

A similar argument leads to an array equation for the update of the backward errors. In summary,
we obtain the QRD-LSL algorithm (listed in Table 21.8) for the update of the angle-normalized

c©1999 by CRC Press LLC

forward and backward prediction errors with prewindowed data that correspond to the minimization
problem:

min
wM

N∑
j=0

λN−j |d(j) − uT
M,j wM |2 .

The recursions of the table can be shown to collapse, by squaring and comparing terms on both sides
of the resulting equality, to several lattice forms that are available in the literature. We forgo the
details here.

TABLE 21.8 The QRD Least-Squares Lattice Algorithm
Input. Prewindowed data {d(j), u(j)} for j ≥ 1.

Initialization. For each M = 0, 1, 2, . . . , Mmax set

ξ
f/2
M

(0) = 0, ξ
b/2
M

(−1) = 0, qb
M

(0) = 0 = q
f
M

(0)

• For each time instant N ≥ 0 do:

γ0(N) = 1, f̄0(N) = u(N), b̄0(N) = u(N)

• For each M = 0, 1, 2, . . . , Mmax − 1 do:




√
λξ

b/2
M

(N − 1) b̄M (N)√
λqb

M
(N) f̄M(N + 1)

0 γ
1/2
M

(N)


 2b

M,N
=


 ξ

b/2
M

(N) 0
qb
M

(N + 1) f̄M+1(N + 1)

bM(N)ξ
−b/2
M

(N) γ
1/2
M+1(N)




[√
λξ

f/2
M

(N) f̄M(N + 1)√
λq

f
M

(N) b̄M (N)

]
2

f
M,N+1 =

[
ξ
f/2
M

(N + 1) 0

q
f
M

(N + 1) b̄M+1(N + 1)

]

The orthogonal matrices 2b
M,N

and 2
f
M,N+1 are chosen so as to annihilate the

(1, 2) entries in the corresponding postarrays.
• end

� end

21.8.6 The Filtering or Joint Process Array

We now return to the estimation of the sequence {d(·)}. We argued earlier that if we are given
the backward residual vector bM,N and the estimation residual vector eM,N , then the higher-order
estimation residual vector eM+1,N can be obtained by projecting eM,N onto bM,N and using the
corresponding residual vector as eM+1,N .

Arguments similar to what we have done in the previous section will readily show that the array
for the joint process estimation problem is the following: define the angle-normalized residual

ēM(i) = eM(i)γ
−1/2
M (i) = [d(i) − uT

M,iwM,i]γ −1/2
M (i) ,

as well as the scalar quantity

qd
M(N) = ρM(N)

ξ
b/2
M (N)

.

Then the array for the filtering process is what is shown in Table 21.9. Note that it uses precisely the
same rotation as the first array in the QRD-LSL algorithm. Hence, the second line in the above array
can be included as one more line in the first array of QRD-LSL, thus completing the algorithm to
also include the joint-process estimation part.

c©1999 by CRC Press LLC

TABLE 21.9 Array for Joint Process Estimation
Input. Prewindowed data {d(j), u(j)} for j ≥ 1.

Initialization. For each M = 0, 1, 2, . . . , Mmax set

ξ
b/2
M

(−1) = 0, qd
M

(−1) = 0, qb
M

(0) = 0

• For each time instant N ≥ 0 do:

γ0(N) = 1, ē0(N) = d(N), b̄0(N) = u(N)

• For each M = 0, 1, 2, . . . , Mmax − 1 do:[√
λξ

b/2
M

(N − 1) b̄M (N)√
λqd

M
(N − 1) ēM (N)

]
2b

M,N
=

[
ξ
b/2
M

(N) 0
qd
M

(N) ēM+1(N)

]

where the orthogonal matrix 2b
M,N

is the same as in the
QRD-LSL algorithm.

• end
� end

21.9 Concluding Remarks

The intent of this chapter was to provide an overview of the fundamentals of recursive least-squares
estimation, with emphasis on array formulations of the varied algorithms (slow or fast) that are
available for this purpose. More details and related discussion can be found in several of the references
indicated in this section. The references are not intended to be complete but rather indicative of the
work in the different areas. More complete lists can be found in several of the textbooks mentioned
herein.

References

Detailed discussions on the different forms of RLS adaptive algorithms and their potential applica-
tions can be found in:

[1] Haykin, S., Adaptive Filter Theory, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1996.
[2] Proakis, J.G., Rader, C.M., Ling, F., and Nikias, C.L., Advanced Digital Signal Processing,

Macmillan, New York, 1992.
[3] Honig, M.L. and Messerschmitt, D.G., Adaptive Filters — Structures, Algorithms and Appli-

cations, Kluwer Academic Publishers, 1984.
[4] Orfanidis, S.J., Optimum Signal Processing, 2nd ed., McGraw-Hill, New York, 1988.
[5] Kalouptsidis, N. and Theodoridis, S., Adaptive System Identification and Signal Processing

Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1993.

The array formulation that we emphasized in this chapter is motivated by the state-space approach
developed in

[6] Sayed, A.H. and Kailath, T., A state-space approach to adaptive RLS filtering, IEEE Signal
Processing Magazine, 11(3), 18–60, July 1994.

This reference also clarifies the connections between adaptive RLS filtering and Kalman filter theory
and treats other forms of lattice filters.

A detailed discussion of the square-root formulation in the context of Kalman filtering can be found
in

[7] Morf, M. and Kailath, T. Square root algorithms for least squares estimation, IEEE Trans.
Automatic Control, AC-20(4), 487–497, Aug. 1975.

c©1999 by CRC Press LLC

Further motivation, and earlier discussion, on lattice algorithms can be found in several places in
the literature:

[8] Lee, D.T.L., Morf, M., and Friedlander, B., Recursive least-squares ladder estimation algorithms,
IEEE Trans. Circuits and Systems, CAS-28(6), 467–481, June 1981.

[9] Friedlander, B., Lattice filters for adaptive processing, Proc. IEEE, 70(8), 829–867, Aug. 1982.
[10] Lev-Ari, H., Kailath, T., and Cioffi, J., Least squares adaptive lattice and transversal filters: a

unified geometrical theory, IEEE Trans. Information Theory, IT-30(2), 222–236, March, 1984.

The fast fixed-order recursive least-squares algorithms (FTF and FAEST) were independently derived
in

[11] Carayannis, G., Manolakis, D., andKalouptsidis, N., A fast sequential algorithmfor least squares
filtering and prediction, IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-31(6),
1394–1402, Dec. 1983.

[12] Cioffi, J., and Kailath, T., Fast recursive-least-squares transversal filters for adaptive filtering,
IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-32, 304–337, April 1984.

These algorithms, however, suffer from numerical instability problems. Some variables that are
supposed to remain positive or bounded by one may lose this property due to roundoff errors. A
treatment of these issues appears in

[13] Slock, D.T.M. andKailath, T., Numerically stable fast transversal filters for recursive least squares
adaptive filtering, IEEE Trans. Signal Processing, SP-39(1), 92–114, Jan. 1991.

More discussion on the QRD least-squares lattice filter, including alternative derivations that are
based on the QR decomposition of certain data matrices, can be found in the references:

[14] Cioffi, J., The fast adaptive rotor’s RLS algorithm, IEEE Trans. Acoustics, Speech and Signal
Processing, ASSP-38, 631–653, 1990.

[15] Proudler, I.K., McWhirter, J.G., and Shepherd, T.J., Computationally efficient QR decomposi-
tion approach to least squares adaptive filtering, IEE Proc., 138(4), 341–353, Aug. 1991.

[16] Regalia, P.A. and Bellanger, M.G., On the duality between fast QR methods and lattice methods
in least squares adaptive filtering, IEEE Trans. Signal Processing, 39(4), 879–891, April 1991.

[17] Yang, B. and Böhme, J.F., Rotation-based RLS algorithms: unified derivations, numerical
properties, and parallel implementations, IEEE Trans. Signal Processing, SP-40(5), 1151–1167,
May 1992.

More discussion and examples of elementary and square-root free rotations and Householder trans-
formations can be found in:

[18] Golub, G.B. and Van Loan, C.F., Matrix Computations, 2nd ed., The Johns Hopkins University
Press, Baltimore, MD, 1989.

[19] Rader, C.M. and Steinhardt, A.O., Hyperbolic householder transformations, IEEE Trans.
Acoustics, Speech and Signal Processing, ASSP-34(6), 1589–1602, Dec. 1986.

[20] Bojanczyk, A.W. and Steinhardt, A.O., Stabilized hyperbolic householder transformations,
IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-37(8), 1286–1288, Aug. 1989.

[21] Hsieh, S.F., Liu, K.J.R., and Yao, K., A unified square-root-free approach for QRD-based re-
cursive least-squares estimation, IEEE Trans. Signal Processing, SP-41(3), 1405–1409, March
1993.

Fast fixed-order adaptive algorithms that consider different choices of the initial weighting matrix
50, and also the case of data that is not necessarily prewindowed, can be found in:

c©1999 by CRC Press LLC

[22] Houacine, A., Regularized fast recursive least squares algorithms for adaptive filtering, IEEE
Trans. Signal Processing, SP-39(4), 860–870, April 1991.

Gauss’ original exposition of the least-squares criterion can be found in:

[23] Gauss, C.F., Theory of the Motion of Heavenly Bodies, Dover, New York, 1963 (English trans-
lation of Theoria Motus Corporum Coelestium, 1809).

c©1999 by CRC Press LLC

	Recursive Least-Squares Adaptive Filters
	Array Algorithms
	Elementary Circular Rotations
	Elementary Hyperbolic Rotations
	Square-Root-Free and Householder Transformations
	A Numerical Example

	The Least-Squares Problem
	Geometric Interpretation
	Statistical Interpretation

	The Regularized Least-Squares Problem
	Geometric Interpretation
	Statistical Interpretation

	The Recursive Least-Squares Problem
	Reducing to the Regularized Form
	Time Updates

	The RLS Algorithm
	Estimation Errors and the Conversion Factor
	Update of the Minimum Cost

	RLS Algorithms in Array Forms
	Motivation
	A Very Useful Lemma
	The Inverse QR Algorithm
	The QR Algorithm

	Fast Transversal Algorithms
	The Prewindowed Case
	Low-Rank Property
	A Fast Array Algorithm
	The Fast Transversal Filter

	Order-Recursive Filters
	Joint Process Estimation
	The Backward Prediction Error Vectors
	The Forward Prediction Error Vectors
	A Nonunity Forgetting Factor
	The QRD Least-Squares Lattice Filter
	The Filtering or Joint Process Array

	Concluding Remarks

