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29.1 Introduction

Image recovery constitutes a significant portion of the inverse problems in image processing. Here,
by image recovery we refer to two classes of problems, image restoration and image reconstruction. In
image restoration, an estimate of the original image is obtained from a blurred and noise-corrupted
image. In image reconstruction, an image is generated from measurements of various physical
quantities, such as X-ray energy in CT and photon counts in single photon emission tomography
(SPECT) and positron emission tomography (PET). Image restoration has been used to restore
pictures in remote sensing, astronomy, medical imaging, art history studies, e.g., see [1], and more
recently, it has been used to remove picture artifacts due to image compression, e.g., see [2] and [3].
While primarily used in biomedical imaging [4], image reconstruction has also found applications
in materials studies [5].

Due to the inherent randomness in the scene and imaging process, images and noise are often
best modeled as multidimensional random processes called random fields. Consequently, image
recovery becomes the problem of statistical inference. This amounts to estimating certain unknown
parameters of a probability density function (pdf) or calculating the expectations of certain random
fields from the observed image or data. Recently, the maximum-likelihood estimate (MLE) has begun
to play a central role in image recovery and led to a number of advances [6, 8]. The most significant
advantage of the MLE over traditional techniques, such as the Wiener filtering, is perhaps that it can
work more autonomously. For example, it can be used to restore an image with unknown blur and
noise level by estimating them and the original image simultaneously [8, 9]. The traditional Wiener
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filter and other LMSE (least mean square error) techniques, on the other hand, would require the
knowledge of the blur and noise level.

In the MLE, the likelihood function is the pdf evaluated at an observed data sample conditioned
on the parameters of interest, e.g., blur filter coefficients and noise level, and the MLE seeks the
parameters that maximize the likelihood function, i.e., best explain the observed data. Besides being
intuitively appealing, the MLE also has several good asymptotic (large sample) properties [10] such
as consistency (the estimate converges to the true parameters as the sample size increases). However,
for many nontrivial image recovery problems, the direct evaluation of the MLE can be difficult, if not
impossible. This difficulty is due to the fact that likelihood functions are usually highly nonlinear
and often cannot be written in closed forms (e.g., they are often integrals of some other pdf ’s). While
the former case would prevent analytic solutions, the latter case could make any numerical procedure
impractical.

The EM algorithm, proposed by Dempster, Laird, and Rubin in 1977 [11], is a powerful iterative
technique for overcoming these difficulties. Here, EM stands for expectation-maximization. The
basic idea behind this approach is to introduce an auxiliary function (along with some auxiliary
variables) such that it has similar behavior to the likelihood function but is much easier to maximize.
By similar behavior, we mean that when the auxiliary function increases, the likelihood function also
increases. Intuitively, this is somewhat similar to the use of auxiliary lines for the proofs in elementary
geometry.

The EM algorithm was first used by Shepp and Verdi [7] in 1982 in emission tomography (medical
imaging). It was first used by Katsaggelos and Lay [8] and Lagendijk et al. [9] for simultaneous image
restoration and blur identification around 1989. The work of using the EM algorithm in image
recovery has since flourished with impressive results. A recent search on the Compendex data base
with key words “EM” and “image” turned up more than 60 journal and conference papers, published
over the two and a half year period from January, 1993 to June, 1995.

Despite these successes, however, some fundamental problems in the application of the EM algo-
rithm to image recovery remain. One is convergence. It has been noted that the estimates often do not
converge, converge rather slowly, or converge to unsatisfactory solutions (e.g., spiky images) [12, 13].
Another problem is that, for some popular image models such as Markov random fields, the condi-
tional expectation in the E-step of the EM algorithm can often be difficult to calculate [14]. Finally,
the EM algorithm is rather general in that the choice of auxiliary variables and the auxiliary function
is not unique. Is it possible that one choice is better than another with respect to convergence and
expectation calculations [17]?

The purpose of this chapter is to demonstrate the application of the EM algorithm in some typical
image recovery problems and survey the latest research work that addresses some of the fundamental
problems described above. The chapter is organized as follows. In section 29.2, the EM algorithm is
reviewed and demonstrated through a simple example. In section 29.3, recent work in convergence,
expectation calculation, and the selection of auxiliary functions is discussed. In section 29.4, more
complicated applications are demonstrated, followed by a summary in section 29.5. Most of the
examples in this chapter are related to image restoration. This choice is motivated by two consider-
ations — the mathematical formulations for image reconstruction are often similar to that of image
restoration and a good account on image reconstruction is available in Snyder and Miller [6].

29.2 The EM Algorithm

Let the observed image or data in an image recovery problem be denoted by y. Suppose that y can
be modeled as a collection of random variables defined over a lattice S with y = {yi, i ∈ S}. For
example, S could be a square lattice of N2 sites. Suppose that the pdf of y is py(y|θ), where θ is a
set of parameters. In this chapter, p(·) is a general symbol for pdf and the subscript will be omitted
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whenever there is no confusion. For example, when y and x are two different random fields, their
pdf ’s are represented as p(y) and p(x), respectively.

29.2.1 The Algorithm

Under statistical formulations, image recovery often amounts to seeking an estimate of θ , denoted
by θ̂ , from an observed y. The MLE approach is to find θ̂ML such that

θ̂ML = arg max
θ

p
(
y|θ) = arg max

θ
logp

(
y|θ)

, (29.1)

where p(y|θ), as a function of θ , is called the likelihood. As described previously, a direct solution
of (29.1) can be difficult to obtain for many applications. The EM algorithm attempts to overcome
this problem by introducing an auxiliary random field x with pdf p(x|θ). Here, x is somewhat “more
informative” [17] than y in that it is related to y by a many-to-one mapping

y = H(x) . (29.2)

That is, y can be regarded as a partial observation of x, or incomplete data, with x being the complete
data.

The EM algorithm attempts to obtain the incomplete data MLE of (29.1) through an iterative
procedure. Starting with an initial estimate θ0, each iteration k consists of two steps:

• The E-step: Compute the conditional expectation1 〈logp(x|θ)|y, θk〉. This leads to a
function of θ , denoted by Q(θ |θk), which is the auxiliary function mentioned previously.

• M-step: Find θk+1 from

θk+1 = arg max
θ

Q
(
θ |θk

)
. (29.3)

It has been shown that the EM algorithm is monotonic [11], i.e., logp(y|θk) ≥ logp(y|θk+1).
It has also been shown that under mild regularity conditions, such as that the true θ must lie in the
interior of a compact set and that the likelihood functions involved must have continuous derivatives,
the estimate of θ from the EM algorithm converges, at least to a local maxima of p(y|θ) [20, 21].
Finally, the EM algorithm extends easily to the case in which the MLE is used along with a penalty
or a prior on θ . For example, suppose that q(θ) is a penalty to be minimized. Then, the M-step is
modified to maximizing Q(θ |θk) − q(θ) with respect to θ .

29.2.2 Example: A Simple MRF

As an illustration of the EM algorithm, we consider a simple image restoration example. Let S
be a two-dimensional square lattice. Suppose that the observed image y and the original image
u = {ui, i ∈ S} are related through

y = u + w , (29.4)

where w = {ui, i ∈ S} is an i.i.d. additive zero-mean white Gaussian noise with variance σ 2. Suppose
that u is modeled as a random field with an exponential or Gibbs pdf

p(u) = Z−1e−βE(u) (29.5)

1 In this chapter, we use 〈·〉 rather than E[·] to represent expectations since E is used to denote energy functions of the
MRF.
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where E(u) is an energy function with

E(u) = 1

2

∑
i

∑
j∈Ni

φ
(
ui, uj

)
(29.6)

and Z is a normalization factor
Z =

∑
u

e−βE(u) (29.7)

called the partition function whose evaluation generally involves all possible realizations of u. In
the energy function, Ni is a set of neighbors of i (e.g., the nearest four neighbors) and φ(·, ·) is a
nonlinear function called the clique function. The model for u is a simple but nontrivial case of the
Markov random field (MRF) [22, 23] which, due to its versatility in modeling spatial interactions, has
emerged as a powerful model for various image processing and computer vision applications [24].

A restoration that is optimal in the sense of minimum mean square error is

û = 〈u|y〉 =
∫

up(u|y) du . (29.8)

If parameters β and σ 2 are known, the above expectation can be computed, at least approximately
(see Conditional Expectation Calculations in section 29.3 for details). To estimate the parameters,
now denoted by θ = (β, σ 2), one could use the MLE. Since u and w are independent,

p(y|θ) =
∫

pu(v|θ)pw(y − v|θ) dv = (pu ∗ pw) (y|θ) , (29.9)

where ∗ denotes convolution, and we have used some subscripts to avoid ambiguity. Notice that
the integration involved in the convolution generally does not have a closed-form expression. Fur-
thermore, for most types of clique functions, Z is a function of β and its evaluation is exponentially
complex. Hence, direct MLE does not seem possible.

To try with the EM algorithm, we first need to select the complete data. A natural choice here, for
example, is to let

x = (u, w) (29.10)

y = H(x) = H(u, w) = u + w . (29.11)

Clearly, many different x can lead to the same y. Since u and w are independent, p(x|θ) can be found
easily as

p(x|θ) = p(u)p(w) . (29.12)

However, as the reader can verify, one encounters difficulty in the derivation of p(x|y, θk) which is
needed for the conditional expectation of the E-step. Another choice is to let

x = (u, y) (29.13)

y = H(u, y) = y (29.14)

The log likelihood of the complete data is

logp(x|θ) = logp(y, u|θ)

= logp(y|u, θ)p(u|θ)

= c −
∑

i

(yi − ui)
2

2σ 2
− logZ(β) − β

2

∑
i

∑
j∈Ni

φ
(
ui, uj

)
, (29.15)
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where c is a constant. From this we see that in the E-step, we only need to calculate three types
of terms, 〈ui〉, 〈u2

i 〉, and 〈φ(ui, uj )〉. Here, the expectations are all conditioned on y and θk . To
compute these expectations, one needs the conditional pdf p(u|y, θk) which is, from Bayes’ formula,

p
(
u|y, θk

)
= p

(
y|u, θk

)
p

(
u|θk

)
p

(
y|θk

)
=

[
2πσ 2

]−||S||/2
e− ∑

i (yi−ui)
2/2

(
σ2

)k
Z−1e−βkE(u)

[
p

(
y|θk

)]−1
. (29.16)

Here, the superscript k denotes the kth iteration rather than the kth power. Combining all the
constants and terms in the exponentials, the above equation becomes that of a Gibbs distribution

p
(
u|y, θk

)
= Z−1

1

(
θk

)
e−E1

(
u|y,θk

)
(29.17)

where the energy function is

E1

(
u|y, θk

)
=

∑
i


 (yi − ui)

2

2
(
σ 2

)k
+ βk

2

∑
j∈Ni

φ
(
ui, uj

) . (29.18)

Even with this, the computation of the conditional expectation in the E-step can still be a difficult
problem due to the coupling of the ui and uj in E1. This is one of the fundamental problems of the
EM algorithm that will be addressed in section 29.3. For the moment, we assume that the E-step can
be performed successfully with

Q
(
θ |θk

)
= 〈logp(x|θ)|y, θk〉

= c −
∑

i

〈(yi − xi)
2〉k

2σ 2
− logZ(β) − β

2

∑
i

∑
j∈Ni

〈φ (
ui, uj

)〉k , (29.19)

where 〈·〉k is an abbreviation for 〈·|y, θk〉. In the M-step, the update for θ can be found easily by
setting

∂

∂σ 2
Q

(
θ |θk

)
= 0 ,

∂

∂β
Q

(
θ |θk

)
= 0 . (29.20)

From the first of these, (
σ 2

)k+1 = ||S||−1
∑

i

〈(yi − ui)
2〉k (29.21)

The solution of the second equation, on the other hand, is generally difficult due to the well-known
difficulties of evaluating the partition function Z(β) (see also Eq. (29.7)) which needs to be dealt
with via specialized approximations [22, 25]. However, as demonstrated by Bouman and Sauer [26],
some simple yet important cases exist in which the solution is straightforward. For example, when
φ(ui, uj ) = (ui − uj )

2, Z(β) can be written as

Z(β) =
∫

e
− β

2

∑
i

∑
j∈Ni

(ui−uj )
2

du

= β−||S||/2
∫

e
− 1

2

∑
i

∑
j∈Ni

(vi−vj )
2

dv = β−||S||/2Z(1) . (29.22)

Here, we have used a change of variable, vi = √
βui . Now, the update of β can be found easily as

βk+1 = ||S||−1
∑

i

∑
j∈Ni

〈(ui − uj

)2〉k . (29.23)
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This simple technique applies to a wider class of clique functions characterized by φ(ui, uj ) =
|ui − uj |r with any r > 0 [26].

29.3 Some Fundamental Problems

As is in many other areas of signal processing, the power and versatility of the EM algorithm has been
demonstrated in a large number of diverse image recovery applications. Previous work, however,
has also revealed some of its weaknesses. For example, the conditional expectation of the E-step can
be difficult to calculate analytically and too time-consuming to compute numerically, as is in the
MRF example in the previous section. To a lesser extent, similar remarks can be made to the M-step.
Since the EM algorithm is iterative, convergence can often be a problem. For example, it can be
very slow. In some applications, e.g., emission tomography, it could converge to the wrong result —
the reconstructed image gets spikier as the number of iterations increases [12, 13]. While some of
these problems, such as slow convergence, are common to many numerical algorithms, most of their
causes are inherent to the EM algorithm [17, 19].

In previous work, the EM algorithm has mostly been applied in a “natural fashion” (e.g., in
terms of selecting incomplete and complete data sets) and the problems mentioned above were dealt
with on an ad hoc basis with mixed results. Recently, however, there has been interest in seeking
more fundamental solutions [14, 19]. In this section, we briefly describe the solutions to two major
problems related to the EM algorithm, namely, the conditional expectation computation in the E-step
when the data is modeled as MRF’s and fundamental ways of improving convergence.

29.3.1 Conditional Expectation Calculations

When the complete data is an MRF, the conditional expectation of the E-step of the EM algorithm
can be difficult to perform. For instance, consider the simple MRF in section 29.2, where it amounts
to calculating 〈ui〉, 〈u2

i 〉, and 〈φ(ui, uj )〉 and the expectations are taken with respect to p(u|y, θk)

of Eq. (29.17). For example, we have

〈ui〉 = Z−1
1

∫
uie

−E1(u) du (29.24)

Here, for the sake of simplicity, we have omitted the superscript k and the parameters, and this is done
in the rest of this section whenever there is no confusion. Since the variables ui and uj are coupled in
the energy function for all i and j that are neighbors, the pdf and Z1 cannot be factored into simpler
terms, and the integration is exponentially complex, i.e., it involves all possible realizations of u.
Hence, some approximation scheme has to be used. One of these is the Monte Carlo simulation. For
example, Gibbs samplers [23] and Metropolis techniques [27] have been used to generate samples
according to p(u|y, θk) [26, 28]. A disadvantage of these is that, generally, hundreds of samples of
u are needed and if the image size is large, this can be computation intensive. Another technique is
based on the mean field theory (MFT) of statistical mechanics [25]. This has the advantage of being
computationally inexpensive while providing satisfactory results in many practical applications. In
this section, we will outline the essentials of this technique.

Let u be an MRF with pdf
p(u) = Z−1e−βE(u) . (29.25)

For the sake of simplicity, we assume that the energy function is of the form

E(u) =
∑

i

[
hi(ui) + 1

2

∑
j∈Ni

φ
(
ui, uj

) ]
(29.26)
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where hi(·) and φ(·, ·) are some suitable, and possibly nonlinear, functions. The mean field theory
attempts to derive a pdf pMF (u) that is an approximation to p(u) and can be factored like an
independent pdf.

The MFT used previously can be divided into two classes, the local mean field energy (LMFE) and
the ones based on the Gibbs-Bogoliubov-Feynman (GBF) inequality. The LMFE scheme is based
on the idea that when calculating the mean of the MRF at a given site, the influence of the random
variables at other sites can be approximated by the influence of their means. Hence, if we want to
calculate the mean ofui , a local energy function can be constructed by collecting all the terms in (29.26)
that are related to ui and replacing the uj ’s by their mean. Hence, for this energy function we have

EMF
i (ui) = hi(ui) +

∑
i∈Ni

φ
(
ui, 〈uj 〉

)
(29.27)

pMF
i (ui) = Z−1

i e−βEMF
i (ui ) (29.28)

pMF (u) =
∏
i

pMF
i (ui) (29.29)

Using this mean field pdf, the expectation of ui and its functions can be found easily.
Again we use the MRF example from section 29.2.2 as an illustration. Its energy function is (29.18)

and for the sake of simplicity, we assume that φ(ui, uj ) = |ui − uj |2. By the LMFE scheme,

EMF
i = (yi − ui)

2

2σ 2
+

∑
j∈Ni

β
(
ui − 〈uj 〉

)2
(29.30)

which is the energy of a Gaussian. Hence, the mean can be found easily by completing the square
in (29.30) with

〈ui〉 = yi/σ
2 + 2β

∑
j∈Ni

〈uj 〉
1/σ 2 + 2β||Ni || . (29.31)

When φ(·, ·) is some general nonlinear function, numerical integration might be needed. However,
compared to (29.24) such integrals are all with respect to one or two variables and are easy to compute.

Compared to the physically motivated scheme above, the GBF is an optimization approach. Sup-
pose that p0(u) is a pdf which we want to use to approximate another pdf, p(u). According to
information theory, e.g., see [29], the directed-divergence between p0 and p is defined as

D(p0||p) = 〈logp0(u) − logp(u)〉0, (29.32)

where the subscript 0 indicates that the expectation is taken with respect to p0, and it satisfies

D(p0||p) ≥ 0 (29.33)

with equality holds if and only if p0 = p. When the pdf ’s are Gibbs distributions, with energy
functions E0 and E and partition functions Z0 and Z, respectively, the inequality becomes

logZ ≥ logZ0 − β〈E − E0〉0 = logZ0 − β〈1E〉0 , (29.34)

which is known as the GBF inequality.
Let p0 be a parametric Gibbs pdf with a set of parameters ω to be determined. Then, one can

obtain an optimal p0 by maximizing the right-hand side of (29.34). As an illustration, consider again
the MRF example in section 29.2 with the energy function (29.18) and a quadratic clique function,
as we did for the LMFE scheme. To use the GBF, let the energy function of p0 be defined as

E0(u) =
∑

i

(ui − mi)
2

2ν2
i

(29.35)

c©1999 by CRC Press LLC



where {mi, ν
2
i , i ∈ S} = ω is the set of parameters to be determined in the maximization of the GBF.

Since this is the energy for an independent Gaussian, Z0 is just

Z0 =
∏
i

√
2πν2

i . (29.36)

The parameters of p0 can be obtained by finding an expression for the right-hand side of the GBF
inequality, letting its partial derivatives (with respect to the parameters mi and ν2

i ) be zero, and
solving for the parameters. Through a somewhat lengthy but straightforward derivation, one can
find that [30]

mi = yi/σ
2 + 2β

∑
j∈Ni

〈uj 〉
1/σ 2 + 2β||Ni || . (29.37)

Since mi = 〈ui〉, the GBF produces the same result as the LMEF. This, however, is an exception rather
than the rule [30] and it is due to the quadratic structures of both energy functions.

We end this section with several remarks. First, compared to the LMFE, the GBF scheme is an
optimization scheme, hence more desirable. However, if the energy function of the original pdf
is highly nonlinear, the GBF could require the solution of a difficult nonlinear equation in many
variables (see e.g., [30]). The LMFE, though not optimal, can always be implemented relatively
easily. Secondly, while the MFT techniques are significantly more computation-efficient than the
Monte Carlo techniques and provide good results in many applications, no proof exists as yet that
the conditional mean computed by the MFT will converge to the true conditional mean. Finally, the
performance of the mean field approximations may be improved by using “high-order” models. For
example, one simple scheme is to consider LMFE’s with a pair of neighboring variables [25, 31]. For
the energy function in (29.26), for example, the “second-order” LMFE is

EMF
i,j (ui, uj ) = hi(ui) + hi(uj ) + β

∑
i′∈Ni

φ(ui, 〈ui′ 〉) + β
∑

j ′∈Nj

φ(uj , 〈uj ′ 〉) (29.38)

and

pMF (ui, uj ) = Z−1
MF e

−βEMF
i,j (ui ,uj )

, (29.39)

pMF (ui) =
∫

pMF

(
ui, uj

)
duj . (29.40)

Notice that (29.40) is not the same as (29.28) in that the fluctuation of uj is taken into consideration.

29.3.2 Convergence Problem

Research on the EM algorithm-based image recovery has so far suggested two causes for the conver-
gence problems mentioned previously. The first is whether the random field models used adequately
capture the characteristics and constraints of the underlying physical phenomenon. For example,
in emission tomography the original EM procedure of Shepp and Verdi tends to produce spikier
and spikier images as the number of iteration increases [13]. It was found later that this is due to
the assumption that the densities of the radioactive material at different spatial locations are inde-
pendent. Consequently, various smoothness constraints (density dependence between neighboring
locations) have been introduced as penalty functions or priors and the problem has been greatly
reduced. Another example is in blind image restoration. It has been found that in order for the EM
algorithm to produce reasonable estimate of the blur, various constraints need to be imposed. For
instance, symmetry conditions and good initial guesses (e.g., a lowpass filter) are used in [8] and [9].
Since the blur tends to have a smooth impulse response, orthonormal expansion (e.g., the DCT) has
also been used to reduce (“compress”) the number of parameters in its representation [15].
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The second factor that can be quite influential to the convergence of the EM algorithm, noticed
earlier by Feder and Weinstein [16], is how the complete data is selected. In their work [18], Fessler
and Hero found that for some EM procedures, it is possible to significantly increase the convergence
rate by properly defining the complete data. Their idea is based on the observation that the EM
algorithm, which is essentially a MLE procedure, often converges faster if the parameters are estimated
sequentially in small groups rather than simultaneously. Suppose, for example, that 100 parameters
are to be estimated. It is much better to estimate, in each EM cycle, the first 10 while holding the next
90 constant; then estimate the next 10 holding the remaining 80 and the newly updated 10 parameters
constant; and so on. This type of algorithm is called the SAGE (Space Alternating Generalized EM)
algorithm.

We illustrate this idea through a simple example used by Fessler and Hero [18]. Consider a simple
image recovery problem, modeled as

y = A1θ1 + A2θ2 + n . (29.41)

Column vectors θ1 and θ2 represent two original images or two data sources, A1 and A2 are two blur
functions represented as matrices, and n is an additive white Gaussian noise source. In this model,
the observed image y is the noise-corrupted combination of two blurred images (or data sources).
A natural choice for the complete data is to view n as the combination of two smaller noise sources,
each associated with one original image, i.e.,

x = [A1θ1 + n1, A2θ2 + n2]′ . (29.42)

where n1 and n2 are i.i.d additive white Gaussian noise vectors with covariance matrix σ2

2 I and ′
denotes transpose. The incomplete data y can be obtained from x by

y = [I, I]x . (29.43)

Notice that this is a Gaussian problem in that both x and y are Gaussian and they are jointly Gaussian
as well. From the properties of jointly Gaussian random variables [32], the EM cycle can be found
relatively straightforwardly as

θk+1
1 = θk

1 + (A′
1A1)

−1A′
1ε̂/2σ 2 (29.44)

θk+1
2 = θk

2 + (A′
2A2)

−1A′
2ε̂/2σ 2 (29.45)

where
ε̂ = (y − A1θ

k
1 − A2θ

k
2)/σ 2 (29.46)

The SAGE algorithm for this simple problem is obtained by defining two smaller “complete data
sets”,

x1 = A1θ1 + n , x2 = A2θ2 + n . (29.47)

Notice that now the noise n is associated “totally” with each smaller complete data set. The incomplete
data y can be obtained from both x1 and x2, e.g.,

y = x1 + A2θ2 (29.48)

The SAGE algorithm amounts to two sequential and “smaller” EM algorithms. Specifically, corre-
sponding to each classical EM cycle (29.44)-(29.46), the first SAGE cycle is a classical EM cycle with
x1 as the complete data and θ1 as the parameter set to be updated. The second SAGE cycle is a classical
EM cycle with x2 as the complete data and θ2 as the parameter set to be updated. The new update of
θ1 is also used. The specific algorithm is

θk+1
1 = θk

1 + (
A′

1A1
)−1

A′
1ε̂1/2σ 2 (29.49)

θk+1
2 = θk

2 + (
A′

2A2
)−1

A′
2ε̂2/2σ 2 (29.50)
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where

ε̂1 =
(
y − A1θ

k
1 − A2θ

k
2

)
/σ 2 (29.51)

ε̂2 =
(
y − A1θ

k+1
1 − A2θ

k
2

)
/σ 2 (29.52)

Weend this subsectionwith several remarks. First, for awide classof randomfieldmodels including
the simple one above, Fessler and Hero have shown that the SAGE converges significantly faster than
the classical EM [17]. In some applications, e.g., tomography, an acceleration of 5 to 10 times may
be achieved. Secondly, just as for the EM algorithm, various constraints on the parameters are often
needed and can be imposed easily as penalty functions in the SAGE algorithm. Finally, notice that
in (29.41), the original images are treated as parameters (with constraints) rather than as random
variables with their own pdfs. It would be of interest to investigate a Bayesian counterpart of the
SAGE algorithm.

29.4 Applications

In this section, we describe the application of the EM algorithm to the simultaneous identification
of the blur and image model and the restoration of single and multichannel images.

29.4.1 Single Channel Blur Identification and Image Restoration

Most of the work on restoration in the literature was done under the assumption that the blurring
process (usually modeled as a linear space-invariant system (LSI) and specified by its point spread
function (PSF)) is exactly known (for recent reviews of the restoration work in the literature see [8,
33]). However, this may not be the case in practice since usually we do not have enough knowledge
about the mechanism of the degradation process. Therefore, the estimation of the parameters that
characterize the degradation operator needs to be based on the available noisy and blurred data.

Problem formulation

The observed image y(i, j) is modeled as the output of a 2D LSI system with PSF {d(p, q)}. In
the following we will use (i, j) to denote a location on the lattice S, instead of a single subscript. The
output of the LSI system is corrupted by additive zero-mean Gaussian noise v(i, j) with covariance
matrix 3V, which is uncorrelated with the original image u(i, j). That is, the observed image y(i, j)

is expressed as

y(i, j) =
∑

(p,q)∈SD

d(p, q)u(i − p, j − q) + v(i, j) , (29.53)

where SD is the finite support region of the distortion filter. We assume that the arrays y(i, j), u(i, j),
and v(i, j) are of size N × N . By stacking them into N2 × 1 vectors, Eq. (29.53) can be rewritten in
matrix/vector form as [35]

y = Du + v , (29.54)

where D is an N2 × N2 matrix.
The vector u is modeled as a zero-mean Gaussian random field. Its pdf is equal to

p(u) = |2π3U|−1/2 exp

{−1

2
uH3U

−1u

}
, (29.55)

where 3U is the covariance matrix of u, H denotes the Hermitian (i.e. conjugate transpose) of a
matrix and a vector, and | · | denotes the determinant of a matrix. A special case of this representation
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is when u(i, j) is described by an autoregressive (AR) model. Then 3U can be parameterized in
terms of the AR coefficients and the covariance of the driving noise [38, 57].

Equation (29.53) can be written in the continuous frequency domain according to the convolution
theorem. Since the discrete Fourier transform (DFT) will be used in implementing convolution, we
assume that Eq. (29.53) represents circular convolution (2D sequences can be padded with zeros in
such a way that the result of the linear convolution equals that of the circular convolution, or the
observed image can be preprocessed around its boundaries so that Eq. (29.53) is consistent with the
circular convolution of {d(p, q)} with {u(p, q)} [36]). Matrix D then becomes block circulant [35].

Maximum Likelihood (ML) Parameter Identification

The assumed image and blur models are specified in terms of the deterministic parameters
θ = {3U, 3V, D}. Since u and v are uncorrelated, the observed image y is also Gaussian with pdf
equal to

p(y/θ) = |2π
(
D3UDH + 3V

) |−1/2

exp

{−1

2
yT

(
D3UDH + 3V

)−1
y

}
, (29.56)

where the inverse of the matrix (D3UDH + 3V) is assumed to be defined since covariance matrices
are symmetric positive definite.

Taking the logarithm of Eq. (29.56) and disregarding constant additive and multiplicative terms,
the maximization of the log-likelihood function becomes the minimization of the function L(θ),
given by

L(θ) = log |D3UDH + 3V| +
{
yT (

D3UDH + 3V
)−1

y
}

. (29.57)

By studying the function L(θ) it is clear that if no structure is imposed on the matrices D, 3U,
and 3V, the number of unknowns involved is very large. With so many unknowns and only one
observation (i.e., y), the ML identification problem becomes unmanageable. Furthermore, the
estimate of {d(p, q)} is not unique, because the ML approach to image and blur identification uses
only second order statistics of the blurred image, since all pdfs are assumed to be Gaussian. More
specifically, the second order statistics of the blurred image do not contain information about the
phase of the blur, which, therefore, is in general undetermined. In order to restrict the set of solutions
and hopefully obtain a unique solution, additional information about the unknown parameters needs
to be incorporated into the solution process.

The structure we are imposing on 3U and 3V results from the commonly used assumptions in
the field of image restoration [35]. First we assume that the additive noise v is white, with variance
σ 2

V, that is,

3V = σ 2
VI . (29.58)

Further we assume that the random process u is stationary which results in 3U being a block Toeplitz
matrix [35]. A block Toeplitz matrix is asymptotically equivalent to a block circulant matrix as the
dimension of the matrix becomes large [37]. For average size images, the dimensions of 3U are
large indeed; therefore, the block circulant approximation is a valid one. Associated with 3U are
the 2D sequences {lU(p, q)}. The matrix D in Eq. (29.54) was also assumed to be block circulant.
Block circulant matrices can be diagonalized with a transformation matrix constructed from discrete
Fourier kernels [35]. The diagonal matrices corresponding to 3U and D are denoted respectively by
QU and QD. They have as elements the raster scanned 2D DFT values of the 2D sequences {lU(p, q)}
and {d(p, q)}, denoted respectively by SU(m, n) and 1(m, n).
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Due to the above assumptions Eq. (29.57) can be written in the frequency domain as

L(θ) =
N−1∑
m=0

N−1∑
n=0{

log
(
|1(m, n)|2SU(m, n) + σ 2

V

)
+ |Y (m, n)|2

|1(m, n)|2SU(m, n) + σ 2
V

}
, (29.59)

where Y (m, n) is the 2D DFT of y(i, j). Equation (29.59) more clearly demonstrates the already
mentioned nonuniqueness of the ML blur solution, since only the magnitude of 1(m, n) appears
in L(θ). If the blur is zero-phase, as is the case with D modeling atmospheric turbulence with
long exposure times and mild defocussing ({d(p, q)} is 2D Gaussian in this case), then a unique
solution may be obtained. Nonuniqueness of the estimation of {d(p, q)} can in general be avoided
by enforcing the solution to satisfy a set of constraints. Most PSFs of practical interest can be assumed
to be symmetric, i.e., d(p, q) = d(−p, −q). In this case the phase of the DFT of {d(p, q)} is zero
or ±π . Unfortunately, uniqueness of the ML solution is not always established by the symmetry
assumption, dueprimarily to thephase ambiguity. Therefore, additional constraintsmayalleviate this
ambiguity. Such additional constraints are the following: (1) The PSF coefficients are nonnegative,
(2) the support SD is finite, and (3) the blurring mechanism preserves energy [35], which results in

∑
(i,j)∈SD

d(i, j) = 1 . (29.60)

The EM Iterations for the ML Estimation of θ

The next step to be taken in implementing the EM algorithm is the determination of the
mapping H in Eq. (29.2). Clearly Eq. (29.54) can be rewritten as

y = [
0 I

] [
u
y

]
= [

D I
] [

u
v

]
= [

I I
] [

Du
v

]
, (29.61)

where 0 and I represent the N2 × N2 zero and identity matrices, respectively. Therefore, according
to Eq. (29.61), there are three candidates for representing the complete data x, namely, {u, y}, {u, v},
and {Du, v}. All three cases are analyzed in the following. However, as it will be shown, only the
choice of {u, y} as the complete data fully justifies the term “complete data”, since it results in the
simultaneous identification of all unknown parameters and the restoration of the image.

For the case when H in Eq. (29.2) is linear, as are the cases represented by Eq. (29.61), and the
data y is modeled as a zero-mean Gaussian process, as is the case under consideration expressed by
Eq. (29.56), the following general result holds for all three choices of the complete data [38, 39, 57].

The E-step of the algorithm results in the computation of Q(θ/θk) =constant−F(θ/θk) where

F(θ/θk) = log |3X| + tr
(
3−1

X Ck
X|y

)
= log |3X| + tr

(
3−1

X 3k
X|y

)
+ µ

(k)H

X|y
3−1

X µk
X|y , (29.62)

where 3X is the covariance of the complete data x which is also a zero-mean Gaussian process,

Ck
X|y = 〈xxH |y; θk〉 = 3k

X|y + µk
X|yµ

(k)H

X|y
,

µk
X|y = 〈x|y; θk〉 = 3XY3−1

Y y = 3XHH
(
H3H

XH

)−1
y , (29.63)
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and

3X|y = 〈(x − µX|y
) (

x − µX|y
)H |y; θk〉 = 3X − 3XY3−1

Y 3YX

= 3X − 3XHH
(
H3XHH

)−1
H3X . (29.64)

The M-step of the algorithm is described by the following equation

θ(k+1) = arg

{
min{θ} F(θ/θk)

}
. (29.65)

In our formulation of the identification/restoration problem the original image is not one of the
unknown parameters in the set θ . However, as it will be shown in the next section, the restored image
will be obtained in the E-step of the iterative algorithm.

{ u,y} as the complete data (CD uy algorithm)
Choosing the original and observed images as the complete data, we obtain H = [0 I] and x =

[uH yH ]H . The covariance matrix of x takes the form

3X = 〈xxH 〉 =
[

3U 3UDH

D3U D3UDH + 3V

]
, (29.66)

and its inverse is equal to [40]

3−1
X =

[
3−1

U + DH 3−1
V D −DH 3−1

V
−3−1

V D 3−1
V

]
. (29.67)

Substituting Eqs. (29.66) and (29.67) into Eqs. (29.62), (29.63), and (29.64), we obtain

F(θ/θk) = log |3U| + log |3V| + tr
{(

3−1
U + DH 3−1

V D
)

3k
U|y

}
+ µ

(k)H
U|y

(
3−1

U + DH 3−1
V D

)
µk

U|y

− 2yH 3−1
V Dµk

U|y + yH 3−1
V y , (29.68)

where

µk
U|y = 3k

UD(k)H
(
Dk3k

UD(k)H + 3k
V

)−1
y , (29.69)

and

3k
U|y = 3k

U − 3k
UD(k)H

(
Dk3k

UD(k)H + 3k
V

)−1
Dk3k

U . (29.70)

Due to the constraints on the unknown parameters described in the subsection Eq. (29.62) can be
written in the discrete frequency domain, as follows

F(θ/θk) = N2 logσ 2
V

+ 1

σ 2
V

N−1∑
m=0

N−1∑
n=0

{
|1(m, n)|2

(
Sk

U|y(m, n) + 1

N2
|Mk

U|y(m, n)|2
)

+ 1

N2

(
|Y (m, n)|2 − 2Re

[
Y ∗(m, n)1(m, n)Mk

U|y(m, n)
])}

+
N−1∑
m=0

N−1∑
n=0

{
logSU(m, n) + 1

SU(m, n)

(
Sk

U|y(m, n)

+ 1

N2
|Mk

U|y(m, n)|2
)}

(29.71)
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where

Mk
U|y(m, n) = 1(k)∗(m, n)Sk

U(m, n)

|1k(m, n)|2Sk
U(m, n) + σ

2(p)
V

Y (m, n) , (29.72)

Sk
U|y(m, n) = Sk

U(m, n)σ
2(k)
V

|1k(m, n)|2Sk
U(m, n) + σ

2(k)
V

. (29.73)

In Eq. (29.71), Y (m, n) is the 2D DFT of the observed image y(i, j) and Mk
U|y

(m, n) is the 2D

DFT of the unstacked vector µk
U|y

into an N × N array. Taking the partial derivatives of F(θ/θk)

with respect to SU(m, n) and 1(m, n) and setting them equal to zero, we obtain the solutions that

minimize F(θ/θk), which represent S
(k+1)
U (m, n) and 1(k+1)(m, n). They are equal to

S
(k+1)
U (m, n) = Sk

U|y(m, n) + 1

N2
|Mk

U|y(m, n)|2 , (29.74)

1(k+1)(m, n) = 1

N2

Y (m, n)M
(k)∗
U|y

(m, n)

Sk
U|y

(m, n) + 1
N2 |Mk

U|y
(m, n)|2 , (29.75)

where Mk
U|y

(m, n) and Sk
U|y

(m, n) are computed by Eqs. (29.72) and (29.73). Substituting Eq. (29.75)

into Eq. (29.71) and then minimizing F(θ/θk) with respect to σ 2
V, we obtain

σ
2(k+1)
V = 1

N2

N−1∑
m=0

N−1∑
n=0

{
|1(k+1)(m, n)|2

(
Sk

U|y(m, n) + 1

N2
|Mk

U|y(m, n)|2
)

+ 1

N2

(
|Y (m, n)|2 − 2Re

[
Y ∗(m, n)1(k+1)(m, n)Mk

U|y(m, n)
])}

. (29.76)

According to Eq. (29.72) the restored image (i.e., Mk
U|y

(m, n)) is the output of a Wiener filter, based

on the available estimate of θ , with the observed image as input.
{u,v} as the complete data (CD uv algorithm)

The second choice of the complete data is x = [uH vH ]H , therefore, H = [D I]. Following
similar steps as in the previous case it has been shown that the equations for evaluating the spectrum
of the original image are the same as in the previous case, i.e., Eqs. (29.72), (29.73) and (29.74) hold
true. The other two unknowns, i.e., the variance of the additive noise and the DFT of the PSF are
given by

σ
2(k+1)
V = 1

N2

N−1∑
m=0

N−1∑
n=0

(
Sk

V|y(m, n) + 1

N
|Mk

V|y(m, n)|2
)

, (29.77)

where

Mk
V|y(m, n) = σ

2(k)
V

|1k(m, n)|2Sk
U(m, n) + σ

2(k)
V

Y (m, n) , (29.78)

Sk
V|y(m, n) = |1k(m, n)|2Sk

U(m, n)σ
2(k)
V

|1k(m, n)|2Sk
U(m, n) + σ

2(k)
V

, (29.79)

and

|1k(m, n)|2 =



1
N2 |Y (m,n)|2−σ

2(k)

V
Sk
U(m,n)

, if 1
N2 |Y (m, n)|2 > σ

2(k)
V

0, otherwise .

(29.80)
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From Eq. (29.80) we observe that only the magnitude of 1k(m, n) is available, as was mentioned
earlier. A similar observation can be made for Eq. (29.75), according to which the phase of 1(m, n)

is equal to the phase of 10(m, n).
In deriving the above expressions the set of unknown parameters θ was divided into two sets

θ1 = {3U, 3V} and θ2 = {D}. F(θ1/θ
k) was then minimized with respect to θ1, resulting in

Eqs. (29.74) and (29.77). The likelihood function in Eq. (29.59) was then minimized directly with
respect to 1(m, n) assuming knowledge of θk

1 , resulting in Eq. (29.80). The effect of mixing the
optimization procedure into the EM algorithm has not been completely analyzed theoretically. That
is, the convergence properties of the EM algorithm do not necessarily hold, although the application
of the resulting equations increases the likelihood function. Based on the experimental results, the
algorithm derived in this section always converges to a stationary point. Furthermore, the results are
comparable to the ones obtained with the CD uy algorithm.

{ Dx,v } as the complete data (CD Dx,v algorithm)
The third choice of the complete data is x = [(Du)H , vH ]H . In this case, D and x cannot be

estimated separately, since various combinations of D and u can result in the same Du. The two
quantities D and u are lumped into one quantity t = Du.

Following similar steps as in the two previous cases it has been shown [38, 39, 57] that the variance
of the additive noise is computed according to Eq. (29.77), while the spectrum of the noise-free but
blurred image t by the iterations

S
(k+1)
T (m, n) = Sk

T|y(m, n) + 1

N2
|Mk

T|y(m, n)|2, (29.81)

where

Mk
T|y(m, n) = Sk

T(m, n)

Sk
T(m, n) + σ

2(k)
V

Y (m, n), (29.82)

and

Sk
T|y(m, n) = Sk

T(m, n) − S
(k)2
T (m, n)

Sk
T(m, n) + σ

2(k)
V

Y (m, n). (29.83)

Iterative Wiener Filtering
In this subsection, wedeviate somewhat fromtheoriginal formulationof the identificationproblem

by assuming that the blur function is known. The problem at hand then is the restoration of the
noisy-blurred image. Although there are a great number of approaches that can be followed in this
case, the Wiener filtering approach represents a commonly used choice. However, in Wiener filtering
knowledge of the power spectrum of the original image (SU) and the additive noise (SV) is required.
A standard assumption is that of ergodicity, i.e., ensemble averages are equal to spatial averages.
Even in this case, the estimation of the power spectrum of the original image has to be based on the
observed noisy-blurred image, since the original image is not available. Assuming that the noise is
white, its variance σ 2

V needs also to be estimated from the observed image. Approaches, according
to which the power spectrum of the original image is computed from images with similar statistical
properties, have been suggested in the literature [35]. However, a reasonable idea is to successively
use the Wiener-restored image as an improved prototype for updating the unknown SU and σ 2

V. This
idea is precisely implemented by the CD uy algorithm.

More specifically, now that the blur function is known, Eq. (29.75) is removed from the EM itera-
tions. Thus, Eqs. (29.74) and (29.76) are used to estimate SU and σ 2

V, respectively, while Eq. (29.72)
is used to compute the Wiener-filtered image. The starting point SU

0 for the Wiener iteration can be
chosen to be equal to

S0
U(m, n) = ŜY(m, n) , (29.84)
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where ŜY(m, n) is an estimate of the power spectral density of the observed image. The value of σ
2(0)
V

can be determined from flat regions in the observed image, since this represents a commonly used
approach for estimating the noise variance.

29.4.2 Multi-Channel Image Identification and Restoration

Introduction

We use the term multi-channel images to define the multiple image planes (channels) which
are typically obtained by an imaging system that measures the same scene using multiple sensors.
Multi-channel images exhibit strong between-channel correlations. Representative examples are
multispectral images [41], microwave radiometric images [42], and image sequences [43]. In the
first case such images are acquired for remote sensing and facilities/military surveillance applications.
The channels are the different frequency bands (color images represent a special case of great interest).
In the last case the channels are the different time frames after motion compensation. More recent
applications of multi-channel filtering theory include the processing of the wavelet decomposed
single-channel image [44] and the reconstruction of a high resolution image from multiple low
resolution images [45, 46, 47, 48].

Although the problem of single channel image restoration has been thoroughly researched, sig-
nificantly less work has been done on the problem of multi-channel restoration. The multi-channel
formulation of the restoration problem is necessary when cross-channel degradations exist. It can
be useful, however, in the case when only within-channel degradations exist, since cross-correlation
terms are exploited to achieve better restoration results [49, 50]. The cross-channel degradations
may come in the form of channel crosstalks, leakage in detectors, and spectral blurs [51]. Work on
restoring multi-channel images is reported in [42, 49, 50, 51, 52, 53, 54, 55], when the within- and
cross-channel (where applicable) blurs are known.

29.4.3 Problem Formulation

The degradation process is modeled again as [35]

y = Du + v , (29.85)

where y, u, and v are the observed (noisy and degraded) image, the original undistorted image, and
the noise process, respectively, all of which have been lexicographically ordered, and D the resulting
degradation matrix. The noise process is assumed to be white Gaussian, independent of u.

Let P be the number of channels, each of size N × N . If ui , i = 0, 1, . . . , P − 1 , represents the
i-th channel. Then using the ordering of [56], the multichannel image u can be represented in vector
form as

u =
[
u1(0)u2(0) . . . uP (0)u1(1) . . . uP (1) . . . u1(N

2 − 1) . . . uP (N2 − 1)
]T

. (29.86)

Defining y and v similarly to that of Eq. (29.86), we can now use the degradation model of Eq. (29.85),
recognizing that y, u, and v are of size PN2 × 1, and D is of size PN2 × PN2.

Assuming that the distortion system is linear shift invariant, D is a PN2×PN2 matrix of the form

D =




D(0) D(1) ·· D(N2 − 1)

D(N2 − 1) D(0) ·· D(N2 − 2)
...

... ·· ...

D(1) D(2) ·· D(0)


 , (29.87)

c©1999 by CRC Press LLC



where the P × P sub-matrices (sub-blocks) have the form

D(m) =




D11(m) D12(m) ·· D1P (m)

D21(m) D22(m) ·· D2P (m)
...

... ·· ...

DP1(m) DP2(m) ·· DPP (m)


 , 0 ≤ m ≤ N2 − 1 . (29.88)

Note that Dii(m) represents the intrachannel blur, while Dij (m), i 6=j represents the interchannel
blur. The matrix D in Eq. (29.87) is circulant at the block level. However, for D to be block-circulant,
each of its subblocks D(m) also needs to be circulant, which, in general, is not the case. Matrices of
this form are called semiblock circulant (SBC) matrices [56]. The singular values of such matrices
can be found with the use of the discrete Fourier transform (DFT) kernels. Equation (29.85) can
therefore be written in the vector DFT domain [56].

Similarly, the covariance matrix of the original signal, 3U, and the covariance matrix of the
noise process, 3V, are also semiblock circulant (assuming u and v are stationary). Note that 3U is
not block-circulant because there is no justification to assume stationarity between channels (i.e.,
3UiUj

(m) = E[ui (m)uj (m)∗] is not equal to 3Ui+pUj+p
(m) = E[ui+p(m)uj+p(m)∗] [50], where

3UiUj
(m) is the (i, j)th submatrix of 3U). However, 3U and 3V are semiblock circulant because

ui and vi are assumed to be stationary within each channel.

29.4.4 The E-Step

We follow here similar steps to the ones presented in the previous section. We choose [uH yH ]H as
the complete data. Since the matrices 3U , 3V , and D, are assumed to be semi-block circulant, the
E-step requires the evaluation of

F
(
θ; θk

)
=

N−1∑
m=0

N−1∑
n=0

J (m, n) , (29.89)

where

J (m, n) = log |2U(m, n)| + log |2V(m, n)| + tr
{(

2−1
U (m, n)

+ 2H
D (m, n)2−1

V (m, n)2D(m, n)
)

2k
U|y(m, n)

}
+ 1

N2
tr

{[
2−1

U (m, n) + 2H
D (m, n)2−1

V (m, n)2D(m, n)
]

× Mk
U|y(m, n)M(k)H

U|y
(m, n)

}
− 1

N2

(
YH (m, n)2−1

V (m, n)2D(m, n) Mk
U|y(m, n)

+ M(k)H

U|y
(m, n)2H

D (m, n)2−1
V (m, n)Y(m, n)

)
+ 1

N2
YH (m, n)2−1

V (m, n)Y(m, n) . (29.90)

The derivation of Eq. (29.90) is presented in detail in [48, 57, 58]. Equation (29.89) is the corre-
sponding equation to Eq. (29.71) for the multichannel case.

In Eq. (29.90), 2U(m, n) is the (m, n)-th component matrix of 2U, which is related to 3U by
a similarity transformation using two-dimensional discrete Fourier kernels [56, 57]. To be more
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specific, for P = 3, the matrix,

2U(m, n) =

 S11(m, n) S12(m, n) S13(m, n)

S21(m, n) S22(m, n) S23(m, n)

S31(m, n) S32(m, n) S33(m, n)


 , (29.91)

consists of all the (m, n)-th component of the power and cross power spectra of the original color
image (without loss of generality in the subsequent discussion three-channel examples will be used).
It is worthwhile noting here that the power spectra Sii(m, n), i = 1, 2, 3, which are the diagonal
entries of 2U(m, n), are real-valued, while the cross power spectra (the off-diagonal entries) are
complex. This illustrates one of the main differences between working with multichannel images
as opposed to single-channel images. In addition to each frequency component being a P × P

matrix versus a scalar quantity for the single-channel case, the cross power spectra is complex versus
being real for the single-channel case. Similarly, the (m, n)-th component of the inverse of the noise
spectrum matrix is given by

2V
−1(m, n) =


 z11(m, n) z12(m, n) z13(m, n)

z21(m, n) z22(m, n) z23(m, n)

z31(m, n) z32(m, n) z33(m, n)


 . (29.92)

One simplifying assumption that we can make about Eq. (29.92) is that the noise is white within
channels and zero across channels. This results in 2V(m, n) being the same diagonal matrix for all
(m, n).

2D(m, n) in Eq. (29.90) is equal to

2D(m, n) =

 111(m, n) 112(m, n) 113(m, n)

121(m, n) 122(m, n) 123(m, n)

131(m, n) 132(m, n) 133(m, n)


 , (29.93)

where 1ij (m, n) is the within-channel (i = j) or cross-channel (i 6= j) frequency response of the
blur system, and Y(m, n) is the (m, n)-th component of the DFT of the observed image. 2k

U|y
(m, n)

and Mk
U|y

(m, n) are the (m, n)-th frequency component matrix and vector of the multichannel

counterparts of 3U|y and µU|y , respectively, computed by

2k
U|y(m, n) = 2k

U(m, n) − 2k
U(m, n)2

(k)H
D (m, n)

[
2k

V(m, n)

+ 2k
D(m, n)2k

U(m, n)2
(k)H
D (m, n)

]−1
2k

D(m, n)2k
U(m, n)

(29.94)

and

Mk
U|y(m, n) = 2k

U(m, n)2
(k)H
D (m, n)

[
2k

V(m, n)

+ 2k
D(m, n)2k

U(m, n)2
(k)H
D (m, n)

]−1
Y(m, n) . (29.95)

29.4.5 The M-Step

The M-step requires the minimization ofJ (m, n)with respect to2U(m, n), 2V(m, n) and2D(m, n).

The resulting solutions become 2
(k+1)
U (m, n), 2(k+1)

V (m, n) and 2
(k+1)
D (m, n), respectively.

The minimization of J (m, n) with respect to 2U is straightforward, since 2U is decoupled from
2V(m, n) and 2D. An equation similar to Eq. (29.74) results. The minimization of J (m, n) with
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respect to 2D is not as straightforward; 2D is coupled with 2V. Therefore, in order to minimize
J (m, n) with respect to 2D, 2V must be solved first in terms of 2D, substituted back into Eq. (29.90),
and then minimized with respect to 2D.

It is shown in [48, 58] that two conditions must be met in order to obtain explicit equations for
the blur. First, the noise spectrum matrix, 2V(m, n), must be a diagonal matrix, which is frequently
encountered in practice. Second, all of the blurs must be symmetric, so that there is no phase when
working in the discrete frequency domain. The first condition arises from the fact that 2V(m, n) and
2D(m, n) are coupled. The second condition arises from the Cauchy-Riemann theorem, and must
be satisfied in order to guarantee the existence of a derivative at every point.

With these conditions, the iterations for 1(m, n) and σV(m, n) are derived in [48, 58], which are
similar respectively to Eqs. (29.75) and (29.76). Special cases are also analyzed in [48, 58], when
the number of unknowns is reduced. For example, if 2D is known, the multichannel Wiener filter
results.

29.5 Experimental Results

The effectiveness of both the single channel and multi-channel restoration and identification algo-
rithms is demonstrated experimentally. The red, green, and blue (RGB) channels of the original Lena
image used for this experiment are shown in Fig. 29.1. A 5×5 truncated Gaussian blur is used for
each channel and Gaussian white noise is added resulting in a blurred signal-to-noise ratio (SNR) of
20 dB. The degraded channels are shown in Fig. 29.2. Three different experiments were performed
with the available degraded data. The single channel algorithm of Eqs. (29.74), (29.75), and (29.76)
was first run for each of the RGB channels independently. The restored images are shown in Fig. 29.3.
The corresponding multichannel algorithm was then run, resulting in the restored channels shown
in Fig. 29.4. Finally the multichannel Wiener filter was also run, in demonstrating the upper bound
of the algorithm’s performance, since the blurs are now exactly known. The resulting restored images
are shown in Fig. 29.5. The improvement in SNR for the three experiments and for each channel is
shown in Table 29.1. According to this table, the performance of the algorithm increases from the first

TABLE 29.1 Improvement in SNR (dB)
η Decoupled EM Multichannel EM Wiener

Red 1.5573 2.1020 2.3420
Green 1.3814 2.0086 2.3181
Blue 1.1520 1.5148 1.8337

to the last experiment. This is to be expected, since in considering the multichannel algorithm over
the single channel algorithm the correlation between channels is taken into account, which brings
additional information into the problem.

A photographically blurred image is shown next in Fig. 29.6. The restorations of it by the CD uy
and CD uv algorithms are shown, respectively, in Figs. 29.7 and 29.8.

29.5.1 Comments on the Choice of Initial Conditions

The likelihood function which is optimized is highly nonlinear and a number of local minima exist.
Although the incorporation of the various constraints, discussed earlier, restricts the set of possible
solutions, a number of local minima still exist. Therefore, the final result depends on the initial
conditions. Based on our experience in implementing the EM iterations of the previous sections
for the single-channel and the multi-channel image restoration cases, the following comments and
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FIGURE 29.1: Original RGB Lena.

FIGURE 29.2: Degraded RGB Lena, intra-channel blurs only, 20 dB SNR.

FIGURE 29.3: Restored RGB by the decoupled single channel EM algorithm.

observations are in order.
It was observed experimentally that the final results are quite insensitive to variations in the values

of the noise variance(s) and the original image power spectra. An estimate of the noise variances
from flat regions of the noisy and blurred images were used as initial condition. It was observed that
using initial estimates of the noise variances larger than the actual ones produced good final results.

The final results are quite sensitive, however, to variations in the values of the PSF. Knowledge of
the support of the PSF is quite important. In [38] after convergence of the EM algorithm the estimate
of the PSF was truncated, normalized, and used as an initial condition in restarting another iteration
cycle.

29.6 Summary and Conclusion

In this chapter, we have described and illustrated how the EM algorithm can be used in image recovery
problems. The basic approach can be summarized by the following steps.
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FIGURE 29.4: Restored RGB Lena by the multi-channel EM algorithm.

FIGURE 29.5: Restored RGB Lena by the iterative multi-channel Wiener algorithm.

FIGURE 29.6: Photographically blurred image.

FIGURE 29.7: Restored image by the CD uy algorithm.
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FIGURE 29.8: Restored image by the CD uv algorithm.

1. Select a statistical model for the observed data and formulate the image recovery problem
as an MLE problem.

2. If the likelihood function is difficult to optimize directly, the EM algorithm can be used
by properly selecting the complete data.

3. Constraints on the parameters or image to be estimated, proper initial conditions, and
multiple complete data spaces can be considered to improve the uniqueness and conver-
gence of the estimates.

4. Derive the equations for the E-step and M-step.

We end this chapter with several remarks. We want to emphasize again that the EM algorithm
only guarantees convergence to a local optimum. Therefore, the initial conditions are quite critical,
as is also discussed in the previous section. Depending on the number of the unknown parameters,
one could consider evaluating in a systematic fashion the likelihood function directly at a number
of points and use as initial condition the point which results in the largest value of the likelihood
function. Improved results can be obtained potentially if the number of the unknown parameters
is reduced by parameterizing the unknown functions. For example, separable and nonseparable
exponential covariance models are used in [46, 47, 48], and an autoregressive model in [38, 57] to
model the original image, and parameterized blur models are discussed in [38]. We want to mention
also that the EM algorithm can be implemented in different domains. For example, it is implemented
in both spatial and frequency domains, respectively, in sections 29.3 and 29.4. Other domains are
also possible by applying proper transforms, e.g., the wavelet transform [59].
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[49] Hunt, B.R. and Kübler, O., Karhunen-Loeve multispectral image restoration, part I : theory,
IEEE Trans. Acoust., Speech, Signal Process., ASSP-32(3): 592–600, June, 1984.

[50] Galatsanos, N.P. and Chin, R.T., Digital restoration of multichannel images, IEEE Trans.
Acoust., Speech, Signal Process., ASSP-37(3): 415–421, March, 1989.

[51] Galatsanos, N.P. and Chin, R.T., Restoration of color images by multichannel Kalman filtering,
IEEE Trans. Signal Process., 39(10): 2237–2252, Oct., 1991.

[52] Galatsanos, N.P., Katsaggelos, A.K., Chin, R.T., and Hillery, A.D., Least squares restoration of
multichannel images, IEEE Trans. Signal Process., 39: 2222–2236, Oct., 1991.

[53] Tekalp, A.M. and Pavlovic, G., Multichannel image modeling and Kalman filtering for multi-
spectral image restoration, IEEE Trans. Signal Process., 19(3): 221–232, March, 1990.

[54] Kang, M.G. and Katsaggelos, A.K., Simultaneous multichannel image restoration and estima-
tion of the regularization parameters, IEEE Trans. Image Process., 6(5) 774–778, May, 1997.

c©1999 by CRC Press LLC



[55] Zhu, W., Galatsanos, N.P., and Katsaggelos, A.K., Regularized multichannel restoration using
cross-validation, Graph. Models Image Process., 57(1): 38–54, Jan., 1995.

[56] Katsaggelos, A.K., Lay, K.T., and Galatsanos, N.P., A general framework for frequency domain
multichannel signal processing, IEEE Trans. Image Process., 2(3): 417–420, July, 1993.

[57] Lay, K.T., Blur Identification and Image Restoration Using the EM Algorithm, Ph.D. thesis,
Northwestern University, Dept. of EECS, Dec., 1991.

[58] Tom, B.C.S., Lay, K.T., and Katsaggelos, A.K., Multi-channel image identification and restora-
tion using the expectation-maximization algorithm, Optical Engineering, Special Issue on
Visual Communications and Image Processing, 35(1): 241–254, Jan., 1996.

[59] Banham, M.R., Wavelet Based Image Restoration Techniques, Ph.D. thesis, Northwestern Uni-
versity, Dept. of EECS, June, 1994.

c©1999 by CRC Press LLC


	Digital Signal Processing Handbook
	Contents
	Image Recovery Using the EM Algorithm
	Introduction
	The EM Algorithm
	The Algorithm
	Example: A Simple MRF

	Some Fundamental Problems
	Conditional Expectation Calculations
	Convergence Problem

	Applications
	Single Channel Blur Identification and Image Restoration
	Multi-Channel Image Identification and Restoration
	Problem Formulation
	The E-Step
	The M-Step

	Experimental Results
	Comments on the Choice of Initial Conditions

	Summary and Conclusion



