
Katsaggelos, A.K. “Iterative Image Restoration Algorithms”
Digital Signal Processing Handbook
Ed. Vijay K. Madisetti  and  Douglas B. Williams
Boca Raton: CRC Press LLC, 1999

c©1999 by CRC Press LLC



34
Iterative Image Restoration

Algorithms

Aggelos K. Katsaggelos
Northwestern University

34.1 Introduction
34.2 Iterative Recovery Algorithms
34.3 Spatially Invariant Degradation

Degradation Model • Basic Iterative Restoration Algorithm •
Convergence • Reblurring

34.4 Matrix-Vector Formulation
Basic Iteration • Least-Squares Iteration

34.5 Matrix-Vector and Discrete Frequency Representations
34.6 Convergence

Basic Iteration • Iteration with Reblurring

34.7 Use of Constraints
The Method of Projecting Onto Convex Sets (POCS)

34.8 Class of Higher Order Iterative Algorithms
34.9 Other Forms of 8(x)

Ill-Posed Problems and Regularization Theory • Constrained
Minimization Regularization Approaches • Iteration Adap-
tive Image Restoration Algorithms

34.10 Discussion
References

34.1 Introduction

In this chapter we consider a class of iterative restoration algorithms. If y is the observed noisy and
blurred signal, D the operator describing the degradation system, x the input to the system, and n

the noise added to the output signal, the input-output relation is described by [3, 51]

y = Dx + n. (34.1)

Henceforth, boldface lower-case letters represent vectors and boldface upper-case letters represent a
general operator or a matrix. The problem, therefore, to be solved is the inverse problem of recovering
x from knowledge of y, D, and n. Although the presentation will refer to and apply to signals of any
dimensionality, the restoration of greyscale images is the main application of interest.

There are numerous imaging applications which are described by Eq. (34.1) [3, 5, 28, 36, 52].
D, for example, might represent a model of the turbulent atmosphere in astronomical observations
with ground-based telescopes, or a model of the degradation introduced by an out-of-focus imaging
device. D might also represent the quantization performed on a signal, or a transformation of it, for
reducing the number of bits required to represent the signal (compression application).
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The success in solving any recovery problem depends on the amount of the available prior infor-
mation. This information refers to properties of the original signal, the degradation system (which
is in general only partially known), and the noise process. Such prior information can, for example,
be represented by the fact that the original signal is a sample of a stochastic field, or that the signal
is “smooth,” or that the signal takes only nonnegative values. Besides defining the amount of prior
information, the ease of incorporating it into the recovery algorithm is equally critical.

After the degradation model is established, the next step is the formulation of a solution approach.
This might involve the stochastic modeling of the input signal (and the noise), the determination
of the model parameters, and the formulation of a criterion to be optimized. Alternatively it might
involve the formulation of a functional to be optimized subject to constraints imposed by the prior
information. In the simplest possible case, the degradation equation defines directly the solution
approach. For example, if D is a square invertible matrix, and the noise is ignored in Eq. (34.1),
x = D−1y is thedesiredunique solution. Inmost cases, however, the solutionofEq. (34.1) represents
an ill-posed problem [56]. Application of regularization theory transforms it to a well-posed problem
which provides meaningful solutions to the original problem.

There are a large number of approaches providing solutions to the image restoration problem. For
recent reviews of such approaches refer, for example, to [5, 28]. The intention of this chapter is to
concentrate only on a specific type of iterative algorithm, the successive approximation algorithm,
and its application to the signal and image restoration problem. The basic form of such an algorithm
is presented and analyzed first in detail to introduce the reader to the topic and address the issues
involved. More advanced forms of the algorithm are presented in subsequent sections.

34.2 Iterative Recovery Algorithms

Iterative algorithms form an important part of optimization theory and numerical analysis. They
date back at least to the Gauss years, but they also represent a topic of active research. A large
part of any textbook on optimization theory or numerical analysis deals with iterative optimization
techniques or algorithms [43, 44]. In this chapter we review certain iterative algorithms which have
been applied to solving specific signal recovery problems in the last 15 to 20 years. We will briefly
present some of the more basic algorithms and also review some of the recent advances.

Avery comprehensivepaperdescribing the various signal processing inverseproblemswhich canbe
solvedby the successive approximations iterative algorithmis thepaperbySchafer et al. [49]. Thebasic
idea behind such an algorithm is that the solution to the problem of recovering a signal which satisfies
certain constraints from its degraded observation can be found by the alternate implementation
of the degradation and the constraint operator. Problems reported in [49] which can be solved
with such an iterative algorithm are the phase-only recovery problem, the magnitude-only recovery
problem, the bandlimited extrapolation problem, the image restoration problem, and the filter design
problem [10]. Reviews of iterative restoration algorithms are also presented in [7, 25]. There are
certain advantages associated with iterative restoration techniques, such as [25, 49]: (1) there is no
need to determine or implement the inverse of an operator; (2) knowledge about the solution can
be incorporated into the restoration process in a relatively straightforward manner; (3) the solution
process can be monitored as it progresses; and (4) the partially restored signal can be utilized in
determining unknown parameters pertaining to the solution.

In the following we first present the development and analysis of two simple iterative restoration
algorithms. Such algorithms are based on a simpler degradation model, when the degradation is
linear and spatially invariant, and the noise is ignored. The description of such algorithms is intended
to provide a good understanding of the various issues involved in dealing with iterative algorithms.
We then proceed to work with the matrix-vector representation of the degradation model and the
iterative algorithms. The degradation systems described now are linear but not necessarily spatially
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invariant. The relation between the matrix-vector and scalar representation of the degradation
equation and the iterative solution is also presented. Various forms of regularized solutions and the
resulting iterations are briefly presented. As it will become clear, the basic iteration is the basis for
any of the iterations to be presented.

34.3 Spatially Invariant Degradation

34.3.1 Degradation Model

Let us consider the following degradation model

y(i, j) = d(i, j) ∗ x(i, j) , (34.2)

where y(i, j) and x(i, j) represent, respectively, the observed degraded and original image, d(i, j)

the impulse response of the degradation system, and ∗ denotes two-dimensional (2D) convolution.
We rewrite Eq. (34.2) as follows

8(x(i, j)) = y(i, j) − d(i, j) ∗ x(i, j) = 0. (34.3)

The restoration problem, therefore, of finding an estimate of x(i, j) given y(i, j) and d(i, j) becomes
the problem of finding a root of 8(x(i, j)) = 0.

34.3.2 Basic Iterative Restoration Algorithm

The following identity holds for any value of the parameter β

x(i, j) = x(i, j) + β8 (x(i, j)) . (34.4)

Equation (34.4) forms the basis of the successive approximation iteration by interpreting x(i, j) on
the left-hand side as the solution at the current iteration step and x(i, j) on the right-hand side as
the solution at the previous iteration step. That is,

x0(i, j) = 0

xk+1(i, j) = xk(i, j) + β8 (xk(i, j))

= βy(i, j) + (δ(i, j) − βd(i, j)) ∗ xk(i, j) , (34.5)

where δ(i, j) denotes the discrete delta function and β the relaxation parameter which controls the
convergence as well as the rate of convergence of the iteration. Iteration (34.5) is the basis of a
large number of iterative recovery algorithms, some of which will be presented in the subsequent
sections [1, 14, 17, 31, 32, 38]. This is the reason it will be analyzed in quite some detail. What
differentiates the various iterative algorithms is the form of the function 8(x(i, j)). Perhaps the
earliest reference to iteration (34.5) was by Van Cittert [61] in the 1930s. In this case the gain β was
equal to one. Jansson et al. [17] modified the Van Cittert algorithm by replacing β with a relaxation
parameter that depends on the signal. Also Kawata et al. [31, 32] used Eq. (34.5) for image restoration
with a fixed or a varying parameter β.
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34.3.3 Convergence

Clearly if a root of 8(x(i, j)) exists, this root is a fixed point of iteration (34.5), that is xk+1(i, j) =
xk(i, j). It is not guaranteed, however, that iteration (34.5) will converge even if Eq. (34.3) has
one or more solutions. Let us, therefore, examine under what conditions (sufficient conditions)
iteration (34.5) converges. Let us first rewrite it in the discrete frequency domain, by taking the 2D
discrete Fourier transform (DFT) of both sides. It should be mentioned here that the arrays involved
in iteration (34.5) are appropriately padded with zeros so that the result of 2D circular convolution
equals the result of 2D linear convolution in Eq. (34.2). The required padding by zeros determines
the size of the 2D DFT. Iteration (34.5) then becomes

X0(u, v) = 0

Xk+1(u, v) = βY(u, v) + (1 − βD(u, v)) Xk(u, v) , (34.6)

where Xk(u, v), Y (u, v), and D(u, v) represent respectively the 2D DFT of xk(i, j), y(i, j), and
d(i, j), and (u, v) the discrete 2D frequency lattice. We express next Xk(u, v) in terms of X0(u, v).
Clearly,

X1(u, v) = βY(u, v)

X2(u, v) = βY(u, v) + (1 − βD(u, v)) βY (u, v)

=
1∑

`=0

(1 − βD(u, v))` βY (u, v)

· · · · · · · · · · · ·
Xk(u, v) =

k−1∑
`=0

(1 − βD(u, u))` βY (u, v)

= 1 − (1 − βD(u, v))k

1 − (1 − βD(u, v))
βY (u, v)

= (1 − (1 − βD(u, v))k)X(u, v) (34.7)

if D(u, v) 6= 0. For D(u, v) = 0,

Xk(u, v) = k · βY(u, v) = 0, (34.8)

since Y (u, v) = 0 at the discrete frequencies (u, v) for which D(u, v) = 0. Clearly, from Eq. (34.7)
if

|1 − βD(u, v)| < 1 , (34.9)

then
lim

k→∞ Xk(u, v) = X(u, v) . (34.10)

Having a closer look at the sufficient condition for convergence, Eq. (34.9), it can be rewritten as

|1 − βRe{D(u, v)} − βIm{D(u, v)}|2 < 1

⇒ (1 − βRe{D(u, v)})2 + (βIm{D(u, v)})2 < 1 . (34.11)

Inequality (34.11) defines the region inside a circle of radius 1/β centered at c = (1/β, 0) in the
(Re{D(u, v)}, Im{D(u, v)}) domain, as shown in Fig. 34.1. From this figure it is clear that the left
half-plane is not included in the region of convergence. That is, even though by decreasing β the size
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FIGURE 34.1: Geometric interpretation of the sufficient condition for convergence of the basic
iteration, where c = (1/β, 0).

of the region of convergence increases, if the real part of D(u, v) is negative, the sufficient condition
for convergence cannot be satisfied. Therefore, for the class of degradations that this is the case, such
as the degradation due to motion, iteration (34.5) is not guaranteed to converge.

The following form of (34.11) results when Im{D(u, v)} = 0, which means that d(i, j) is sym-
metric

0 < β <
2

Dmax(u, v)
, (34.12)

where Dmax(u, v) denotes the maximum value of D(u, v) over all frequencies (u, v). If we now also
take into account that d(i, j) is typically normalized, i.e.,

∑
i,j d(i, j) = 1, and represents a low pass

degradation, then D(0, 0) = Dmax(u, v) = 1. In this case (34.11) becomes

0 < β < 2 . (34.13)

From the above analysis, when the sufficient condition for convergence is satisfied, the iteration
converges to theoriginal signal. This is also the inverse solutionobtaineddirectly fromthedegradation
equation. That is, by rewriting Eq. (34.2) in the discrete frequency domain

Y (u, v) = D(u, v) · X(u, v) , (34.14)

we obtain, for D(u, v) 6= 0,

X(u, v) = Y (u, v)

D(u, v)
. (34.15)

An importantpoint tobemadehere is that, unlike the iterative solution, the inverse solution (34.15)
can be obtained without imposing any requirements on D(u, v). That is, even if Eq. (34.2) or (34.14)
has a unique solution, that is, D(u, v) 6= 0 for all (u, v), iteration (34.5) may not converge if the
sufficient condition for convergence is not satisfied. It is not, therefore, the appropriate iteration
to solve the problem. Actually iteration (34.5) may not offer any advantages over the direct imple-
mentation of the inverse filter of Eq. (34.15) if no other features of the iterative algorithms are used,
as will be explained later. The only possible advantage of iteration (34.5) over Eq. (34.15) is that
the noise amplification in the restored image can be controlled by terminating the iteration before
convergence, which represents another form of regularization. The effect of noise on the quality
of the restoration has been studied experimentally in [47]. An iteration which will converge to the
inverse solution of Eq. (34.2) for any d(i, j) is described in the next section.
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34.3.4 Reblurring

The degradation Eq. (34.2) can be modified so that the successive approximations iteration converges
for a larger class of degradations. That is, the observed data y(i, j) are first filtered (reblurred)
by a system with impulse response d∗(−i, −j), where ∗ denotes complex conjugation [33]. The
degradation Eq. (34.2), therefore, becomes

ỹ(i, j) = y(i, j) ∗ d∗(−i, −j) = d∗(−i, −j) ∗ d(i, j) ∗ x(i, j)

= d̃(i, j) ∗ x(i, j) . (34.16)

If we follow the same steps as in the previous section substituting y(i, j) by ỹ(i, j) and d(i, j) by
d̃(i, j) the iteration providing a solution to Eq. (34.16) becomes

x0(i, j) = 0

xk+1(i, j) = xk(i, j) + βd∗(−i, −j) ∗ (y(i, j) − d(i, j) ∗ xk(i, j))

= βd∗(−i, −j) ∗ y(i, j) + (δ(i, j)

− βd∗(−i, −j) ∗ d(i, j)) ∗ xk(i, j) . (34.17)

Now, the sufficient condition for convergence, corresponding to condition (34.9), becomes

|1 − β|D(u, v)|2| < 1 , (34.18)

which can be always satisfied for

0 < β <
2

maxu,v |D(u, v)|2 . (34.19)

The presentation so far has followed a rather simple and intuitive path, hopefully demonstrating
some of the issues involved in developing and implementing an iterative algorithm. We move next to
the matrix-vector formulation of the degradation process and the restoration iteration. We borrow
results from numerical analysis in obtaining the convergence results of the previous section but also
more general results.

34.4 Matrix-Vector Formulation

What became clear from the previous sections is that in applying the successive approximations
iteration the restoration problem to be solved is brought first into the form of finding the root of
a function (see Eq. (34.3)). In other words, a solution to the restoration problem is sought which
satisfies

8(x) = 0 , (34.20)

where x ∈ RN is the vector representation of the signal resulting from the stacking or ordering
of the original signal, and 8(x) represents a nonlinear in general function. The row-by-row from
left-to-right stacking of an image x(i, j) is typically referred to as lexicographic ordering.

Then the successive approximations iteration which might provide us with a solution to Eq. (34.20)
is given by

x0 = 0

xk+1 = xk + β8(xk)

= 9(xk) . (34.21)
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Clearly if x∗ is a solution to 8(x) = 0, i.e., 8(x∗) = 0, then x∗ is also a fixed point to the above
iteration since xk+1 = xk = x∗. However, as was discussed in the previous section, even if x∗ is
the unique solution to Eq. (34.20), this does not imply that iteration (34.21) will converge. This
again underlines the importance of convergence when dealing with iterative algorithms. The form
iteration (34.21) takes for various forms of the function 8(x) will be examined in the following
sections.

34.4.1 Basic Iteration

From the degradation Eq. (34.1), the simplest possible form 8(x) can take, when the noise is ignored,
is

8(x) = y − Dx . (34.22)

Then Eq. (34.21) becomes

x0 = 0

xk+1 = xk + β(y − Dxk)

= βy + (I − βD)xk

= βy + G1xk , (34.23)

where I is the identity operator.

34.4.2 Least-Squares Iteration

A least-squares approach can be followed in solving Eq. (34.1). That is, a solution is sought which
minimizes

M(x) = ‖y − Dx‖2 . (34.24)

A necessary condition for M(x) to have a minimum is that its gradient with respect to x is equal to
zero, which results in the normal equations

DT Dx = DT y (34.25)

or

8(x) = DT (y − Dx) = 0 , (34.26)

where T denotes the transpose of a matrix or vector. Application of iteration (34.21) then results in

x0 = 0

xk+1 = xk + βDT (y − Dxk)

= βDT y + (I − βDT D)xk

= βDT y + G2xk . (34.27)

It is mentioned here that the matrix-vector representation of an iteration does not necessarily
determine the way the iteration is implemented. In other words, the pointwise version of the iteration
may be more efficient from the implementation point of view than the matrix-vector form of the
iteration.
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34.5 Matrix-Vector and Discrete Frequency Representations

WhenEqs. (34.22)and(34.26)areobtained fromEq. (34.2), the resulting iterations (34.23)and(34.27),
should be identical to iterations (34.5) and (34.17), respectively, and their frequency domain coun-
terparts. This issue, of representing a matrix-vector equation in the discrete frequency domain is
addressed next.

Any matrix can be diagonalized using its singular value decomposition. Finding, in general, the
singular values of a matrix with no special structure is a formidable task, given also the size of the
matrices involved in image restoration. For example, for a 256× 256image, D is of size 64K×64K.
The situation is simplified, however, if the degradation model of Eq. (34.2), which represents a special
case of the degradation model of Eq. (34.1), is applicable. In this case, the degradation matrix D is
block-circulant [3]. This implies that the singular values of D are the DFT values of d(i, j), and the
eigenvectors are the complex exponential basis functions of the DFT. In matrix form, this relationship
can be expressed by

D = WD̃W−1 , (34.28)

where D̃ is a diagonal matrix with entries the DFT values of d(i, j) and W the matrix formed by the
eigenvectors ofD. TheproductW−1z, wherez is any vector, providesuswith a vectorwhich is formed
by lexicographically ordering the DFT values of z(i, j), the unstacked version of z. Substituting D

from Eq. (34.28) into iteration (34.23) and premultiplying both sides by W−1, iteration (34.5) results.
The same way iteration (34.17) results from iteration (34.27). In this case, reblurring, as was named
when initially proposed, is nothing else than the least squares solution to the inverse problem. In
general, if in amatrix-vector equationallmatrices involvedareblock circulant, a 2Ddiscrete frequency
domain equivalent expression can be obtained. Clearly, a matrix-vector representation encompasses
a considerably larger class of degradations than the linear spatially-invariant degradation.

34.6 Convergence

In dealing with iterative algorithms, their convergence, as well as their rate of convergence, are very
important issues. Some general convergence results will be presented in this section. These results
will be presented for general operators, but also equivalent representations in the discrete frequency
domain can be obtained if all matrices involved are block circulant.

The contraction mapping theorem usually serves as a basis for establishing convergence of iterative
algorithms. According to it, iteration (34.21) converges to a unique fixed point x∗, that is, a point
such that 9(x∗) = x∗ for any initial vector if the operator or transformation 9(x) is a contraction.
This means that for any two vectors z1 and z2 in the domain of 9(x) the following relation holds

‖9(z1) − 9(z2)‖ ≤ η‖z1 − z2‖ , (34.29)

whereη is strictly less than one, and‖·‖denotes any norm. It is mentioned here that condition (34.29)
is norm dependent, that is, a mapping may be contractive according to one norm, but not according
to another.

34.6.1 Basic Iteration

For iteration (34.23) the sufficient condition for convergence (34.29) results in

‖I − βD‖ < 1, or ‖G1‖ < 1 . (34.30)

If the l2 norm is used, then condition (34.30) is equivalent to the requirement that

max
i

|σi(G1)| < 1 , (34.31)
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where |σi(G1)| is the absolute value of the i-th singular value of G1 [54].
The necessary and sufficient condition for iteration (34.23) to converge to a unique fixed point is

that
max

i
|λi(G1)| < 1, or max

i
|1 − βλi(D)| < 1 , (34.32)

where |λi(A)| represents themagnitudeof the i-th eigenvalueof thematrixA. Clearly for a symmetric
matrix D conditions (34.30) and (34.32) are equivalent. Conditions (34.29) to (34.32) are used in
defining the range of values of β for which convergence of iteration (34.23) is guaranteed.

Of special interest is the case when matrix D is singular (D has at least one zero eigenvalue), since
it represents a number of typical distortions of interest (for example, distortions due to motion,
defocusing, etc). Then there is no value of β for which conditions (34.31) or (34.32) are satisfied.
In this case G1 is a nonexpansive mapping (η in (34.29) is equal to one). Such a mapping may have
any number of fixed points (zero to infinitely many). However, a very useful result is obtained if we
further restrict the properties of D (this results in no loss of generality, as it will become clear in the
following sections). That is, if D is a symmetric, semi-positive definite matrix (all its eigenvalues are
nonnegative), then according to Bialy’s theorem [6], iteration (34.23) will converge to the minimum
norm solution of Eq. (34.1), if this solution exists, plus the projection of x0 onto the null space of
D for 0 < β < 2 · ‖D‖−1. The theorem provides us with the means of incorporating information
about the original signal into the final solution with the use of the initial condition.

Clearly, when D is block circulant the conditions for convergence shown above can be written in
the discrete frequency domain. More specifically, conditions (34.31) and (34.9) are identical in this
case.

34.6.2 Iteration with Reblurring

The convergence results presented above also holds for iteration (34.27), by replacing G1 by G2 in
expressions (34.30) to (34.32). If DT D is singular, according to Bialy’s theorem, iteration (34.27)
will converge to the minimum norm least squares solution of (34.1), denoted by x+, for 0 < β <

2 · ‖D‖−2, since DT y is in the range of DT D.
The rate of convergence of iteration (34.27) is linear. If we denote by D+ the generalized inverse of

D, that is, x+ = D+y, then the rate of convergence of (34.27) is described by the relation [26]

‖xk − x+‖
‖x+‖ ≤ ck+1 , (34.33)

where
c = max{ |1 − β‖D‖2|, |1 − β‖D+‖−2| } . (34.34)

Theexpression forc in (34.34)will alsobeused inSection34.8, wherehigherorder iterative algorithms
are presented.

34.7 Use of Constraints

Iterative signal restoration algorithms regained popularity in the 1970s due to the realization that
improved solutions can be obtained by incorporating prior knowledge about the solution into the
restoration process. For example, we may know in advance that x is bandlimited or space-limited,
or we may know on physical grounds that x can only have nonnegative values. A convenient way of
expressing such prior knowledge is to define a constraint operator C, such that

x = Cx , (34.35)
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if and only if x satisfies the constraint. In general, C represents the concatenation of constraint
operators. With the use of constraints, iteration (34.21) becomes [49]

x0 = 0,

x̃k = Cxk,

xk+1 = 9(x̃k) . (34.36)

The already mentioned recent popularity of constrained iterative restoration algorithms is also due
to the fact that solutions to a number of recovery problems, such as the bandlimited extrapolation
problem [48, 49] and the reconstruction from phase or magnitude problem [49, 57], were provided
with theuseofalgorithmsof the form(34.36)byappropriatelydescribing thedistortionandconstraint
operators. These operators are defined in the discrete spatial or frequency domains. A review of the
problems which can be solved by an algorithm of the form of (34.36) is presented by Schafer et al. [49].

The contraction mapping theorem can again be used as a basis for establishing convergence of
constrained iterative algorithms. The resulting sufficient condition for convergence is that at least
one of the operators C and 9 is contractive while the other is nonexpansive. Usually it is harder to
prove convergence and determine the convergence rate of the constrained iterative algorithm, taking
also into account that some of the constraint operators are nonlinear, such as the positivity constraint
operator.

34.7.1 The Method of Projecting Onto Convex Sets (POCS)

The method of POCS describes an alternative approach in incorporating prior knowledge about the
solution into the restoration process. It reappears in the engineering literature in the early 1980s [64],
and since then it has been successfully applied to the solution of different restoration problems (from
the reconstruction from phase or magnitude [52] to the removal of blocking artifacts [62, 63], for
example). According to the method of POCS the incorporation of prior knowledge into the solution
can be interpreted as the restriction of the solution to be a member of a closed convex set that is
defined as the set of vectors which satisfy a particular property. If the constraint sets have a nonempty
intersection, then a solution that belongs to the intersection set can be found by the method of POCS.
Indeed, any solution in the intersection set is consistent with the a priori constraints and, therefore,
it is a feasible solution.

More specifically, let Q1, Q2, · · · , Qm be closed convex sets in a finite dimensional vector space,
with P 1, P 2, · · · , P m their respective projectors. Then, the iterative procedure,

xk+1 = P 1P 2 · · ·P mxk , (34.37)

converges to a vector which belongs to the intersection of the sets Qi, i = 1, 2, · · · , m, for any starting
vector x0. It is interesting to note that the resulting set intersection is also a closed convex set.

Clearly, the application of a projection operator P and the constraint C, discussed in the previous
section, express the same idea. Projection operators represent nonexpansive mappings.

34.8 Class of Higher Order Iterative Algorithms

One of the drawbacks of the iterative algorithms presented in the previous sections is their linear rate
of convergence. In [26] a unified approach is presented in obtaining a class of iterative algorithms
with different rates of convergence, based on a representation of the generalized inverse of a matrix.
That is, the algorithm,

x0 = βDT y

c©1999 by CRC Press LLC



D0 = βDT D

�k+1 =
p−1∑
i=0

(I − Dk)
i

Dk+1 = �kDk

xk+1 = �kxk , (34.38)

converges to the minimum norm least squares solution of Eq. (34.1), with n = 0. If iteration (34.38)
is thought of as corresponding to iteration (34.27), then an iteration similar to (34.38) which corre-
sponds to iteration (34.23) has also been derived [26, 41].

Algorithm (34.38) exhibits a p-th order of convergence. That is, the following relation holds [26]

‖xk − x+‖
‖x+‖ ≤ cpk

, (34.39)

where the convergence factor c is described by Eq. (34.34).
It is observed that the matrix sequences {�k} and Dk can be computed in advance or off-line.

When D is block circulant, substantial computational savings result with the use of iteration (34.38)
over the linear algorithms. Questions dealing with the best order p of algorithm (34.38) to be used
in a given application, as well as comparisons of the trade-off between speed of computation and
computational load, are addressed in [26]. One of the drawbacks of the higher order algorithms is
that the application of constraints may lead to erroneous results. Combined adaptive or nonadaptive
linear and higher order algorithms have been proposed in overcoming this difficulty [11, 26].

34.9 Other Forms of 8(x)

34.9.1 Ill-Posed Problems and Regularization Theory

The two most basic forms of the function 8(x) have only been considered so far. These two forms are
represented by Eqs. (34.22) and (34.26), and are meaningful when the noise in Eq. (34.1) is not taken
into account. Without ignoring the noise, however, the solution of Eq. (34.1) represents an ill-posed
problem. If the image formation process is modeled in a continuous infinite dimensional space, D

becomes an integral operator and Eq. (34.1) becomes a Fredholm integral equation of the first kind.
Then the solution of Eq. (34.1) is almost always an ill-posed problem [42, 45, 59, 60]. This means
that the unique least-squares solution of minimal norm of (34.1) does not depend continuously on
the data, or that a bounded perturbation (noise) in the data results in an unbounded perturbation
in the solution, or that the generalized inverse of D is unbounded [42]. The integral operator D

has a countably infinite number of singular values that can be ordered with their limit approaching
zero [42]. Since the finite dimensional discrete problem of image restoration results from the dis-
cretization of an ill-posed continuous problem, the matrix D has (in addition to possibly a number
of zero singular values) a cluster of very small singular values. Clearly, the finer the discretization (the
larger the size of D) the closer the limit of the singular values is approximated. Therefore, although
the finite dimensional inverse problem is well posed in the least-squares sense [42], the ill-posedness
of the continuous problem translates into an ill-conditioned matrix D.

A regularization method replaces an ill-posed problem by a well-posed problem, whose solution
is an acceptable approximation to the solution of the given ill-posed problem [39, 56]. In general,
regularization methods aim at providing solutions which preserve the fidelity to the data but also
satisfy our prior knowledge about certain properties of the solution. A class of regularization methods
associatesboth the classof admissible solutions and theobservationnoisewith randomprocesses [12].
Another class of regularization methods regards the solution as a deterministic quantity. We give
examples of this second class of regularization methods in the following.
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34.9.2 Constrained Minimization Regularization Approaches

Most regularization approaches transform the original inverse problem into a constrained optimiza-
tion problem. That is, a functional needs to be optimized with respect to the original image and
possibly other parameters. By using the necessary condition for optimality, the gradient of the func-
tional with respect to the original image is set equal to zero, therefore determining the mathematical
form of 8(x). The successive approximations iteration becomes in this case a gradient method with
a fixed step (determined by β). We briefly mention next the general form of some of the commonly
used functionals.

Set Theoretic Formulation

With this approach the problem of solving Eq. (34.1) is replaced by the problem of searching
for vectors x which belong to both sets [21, 25, 27]

‖Dx − y‖ ≤ ε , (34.40)

and
‖Cx‖ ≤ E , (34.41)

where ε is an estimate on the data accuracy (noise norm), E a prescribed constant, and C a high-
pass operator. Inequality (34.41) constrains the energy of the signal at high frequencies, therefore
requiring that the restored signal is smooth. On the other hand, inequality (34.40) requires that the
fidelity to the available data is preserved.

Inequalities (34.40) and (34.41) can be respectively rewritten as [25, 27]

(
x − x+)T DT D

ε2

(
x − x+) ≤ 1 , (34.42)

and

xT CT C

E2
x ≤ 1 , (34.43)

where x+ = D+y. That is, each of them represents an N-dimensional ellipsoid, where N is the
dimensionality of the vectors involved. The intersection of the two ellipsoids (assuming it is not
empty) is also a convex set but not an ellipsoid. The center of one of the ellipsoids which bounds
the intersection can be chosen as the solution to the problem [50]. Clearly, even if the intersection is
not empty, the center of the bounding ellipsoid may not belong to the intersection, and, therefore, a
posterior test is required. The equation the center of one of the bounding ellipsoids is satisfying is
given by [25, 27]

8(x) =
(
DT D + αCT C

)
x − DT y = 0 , (34.44)

where α, the regularization parameter, is equal to (ε/E)2.

Projection Onto Convex Sets (POCS) Approach

Iteration(34.37)canalsobeapplied infindingasolutionwhichbelongs tobothellipsoids (34.42)
and (34.43). The respective projections P1x and P2x are defined by [25]

P1x = x + λ1(I + λ1D
T D)−1DT (y − Dx) (34.45)

P2x = [I − λ2(I + λ2C
T C)−1CT C]x, (34.46)

where λ1 and λ2 need to be chosen so that conditions (34.42) and (34.43) are satisfied, respectively.
Clearly, a number of other projection operators can be used in (34.37) which force the signal to
exhibit certain known a priori properties expressed by convex sets.
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A Functional Minimization Approach

The determination of the value of the regularization parameter is a critical issue in regularized
restoration. A number of approaches for determining its value are presented in [13]. If only one of
the parameters ε or E in (34.40) and (34.41) is known, a constrained least-squares formulation can be
followed [9, 15]. With it, the size of one of the ellipsoids is minimized, subject to the constraint that
the solution belongs to the surface of the other ellipsoid (the one defined by the known parameter).
Following the Lagrangian approach, which transforms the constrained optimization problem into
an unconstrained one, the following functional is minimized

M(α, x) = ‖Dx − y‖2 + α‖Cx‖2 . (34.47)

The necessary condition for a minimum is that the gradient of M(α, x) is equal to zero. That is, in
this case

8(x) = ∇xM(α, x) =
(
DT D + αCT C

)
x − DT y , (34.48)

which is identical to (34.44), with the only difference that α now is not known, but needs to be
determined.

Spatially Adaptive Iteration

Spatially adaptive image restoration is the next natural step in improving the quality of the
restored images. There are various ways to argue the introduction of spatial adaptivity, the most com-
monly used ones being the nonhomogeneity or nonstationarity of the image field and the properties
of the human visual system. In either case, the functional to be minimized takes the form [22, 23, 34]

M(α, x) = ‖Dx − y‖2
W 1

+ α‖Cx‖2
W 2

, (34.49)

in which case

8(x) = ∇xM(α, x) =
(
DT W T

1 W1D + αCT W T
2 W2C

)
x − DT W1y . (34.50)

The choice of the diagonal weighting matrices W1 and W2 can be justified in various ways.
In [16, 22, 23, 25] both matrices are determined by the noise visibility matrix V [2, 46]. That is,
W1 = V T V and W2 = I − V T V . The entries of V take values between 0 and 1. They are equal to
0 at the edges (noise is not visible), equal to 1 at the flat regions (noise is visible) and take values in
between at the regions with moderate spatial activity. A study of the mapping between the level of
spatial activity and the values of the visibility function appears in [11]. The weighting matrices can
also be defined by considering the relationship of the restoration approach presented here to the MAP
restoration approach [30]. Then, the weighting matrices W1 and W2 contain information about the
nonstationarity and/or the nonwhiteness of the high-pass filtered image and noise, respectively.

Robust Functionals

Robust functionals can be employed for the representation of both the noise and the signal
statistics. They allow for the efficient suppression of a wide variety of noise processes and permit the
reconstruction of sharper edges than their quadratic counterparts. In a robust set-theoretic set-up a
solution is sought by minimizing [65]

M(α, x) = Rn(y − Dx) + αRx(Cx) . (34.51)

Rn() and Rx() are referred to as the residual and stabilizing functionals, respectively, and they are
defined in terms of their kernel functions. The derivative of the kernel function is called the influence
function.
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8(x) in this caseequals thegradientofM(α, x) inEq. (34.51). A largenumberof robust functionals
have been proposed in the literature. The properties of potential functions to be used in robust
Bayesian estimation are listed in [35]. A robust maximum absolute entropy and a robust minimum
absolute-information functionals are introduced in [65]. Clearly since the functionals Rn() and Rx()

are typically nonlinear and may not be convex, the convergence analysis of iteration (34.21) or (34.36)
is considerably more complicated.

34.9.3 Iteration Adaptive Image Restoration Algorithms

As it has become clear by now there are various pieces of information needed by any regularization
algorithms in determining the unknown parameters. In the context of deterministic regularization,
the most commonly needed parameter is the regularization parameter. Its determination depends
on the noise statistics and the properties of the image. With the set theoretic regularization approach,
it is required that the original image is smooth, in which case a bound on the energy of the high-pass
filtered image is needed. This bound is proportional to the variance of the image in a stochastic
context. In addition, knowledge of the noise variance is also required. In a MAP framework such
parameters are called hyperparameters [8, 40]. Clearly, such parameters are not typically available
and need to be estimated from the available noisy and blurred data. Various techniques for estimating
the regularization parameter are discussed, for example, in [13].

In the following we briefly describe a new paradigm we have introduced in the context of iterative
image restoration algorithms [18, 19, 20, 29, 30]. According to it, the required information by
the deterministic regularization approach is updated at each restoration step, based on the partially
restored image.

Spatially Adaptive Algorithm

For the spatially adaptive algorithm we mentioned above, the proposed general form of the
weighted smoothing functional whose minimization will result in a restored image is written as

Mw (λw(x) , x) = ‖y − Dx‖2
A(x)

+ λw(x)‖Cx‖2
B(x)

= ‖n‖2
A(x)

+ λw(x)‖Cx‖2
B(x)

, (34.52)

where the weighting matrices A(x) and B(x), both functions of the original image, are used to
incorporate noise and image characteristics into the restoration process, respectively. The regular-
ization parameter, also a function of x, is defined in such a way as to make the smoothing functional
in (34.52) convex with a unique global minimizer.

One of the λw(x) we have proposed is given by

λw(x) =
‖y − Dx‖2

A(x)

(1/γ ) − ‖Cx‖2
B(x)

, (34.53)

where the parameter γ is determined from the convergence and convexity analyses.
The main objective with this approach is to employ an iterative algorithm to estimate the regu-

larization parameter and the proper weighting matrices at the same time with the restored image.
The available estimate of the restored image at each iteration step will be used for determining the
value of the regularization parameter. That is, the regularization parameter is defined as a function
of the original image (and eventually in practice of an estimate of it). Of great importance is the
form of this functional, so that the smoothing functional to be minimized preserves its convexity and
exhibits a global minimizer. λw(x) maps a vector x onto the positive real line. Its purpose is as before
to control the relative contribution of the error term ‖y − Dx‖2

A(x)
, which enforces “faithfulness”
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to the data, and the stabilizing functional ‖Cx‖2
B(x)

, which enforces smoothness on the solution.

Its dependency, however, on the original image, as well as the available data, is explicitly utilized.
This dependency on the other hand is implicitly utilized in the constrained least-squares approach,
according to which the minimization of Mw(λw(x), x) and the determination of the regularization
parameter λw(x) are completely separate steps. The desired properties of λw(x) and Mw(λw(x), x)

are analyzed in [20]. The relationship of the resulting forms to the hierarchical Bayesian approach
towards image restoration and estimation of the regularization parameters is explored in [40].

In this case, therefore, 8(x) = ∇xMw(λw(x), x). The successive approximations iteration after
some simplifications takes the form [20, 30]

xk+1 = xk +
[
DT A (xk) y −

(
DT A (xk) D + λw (xk) CT B (xk) C

)
xk

]
. (34.54)

The information required in defining the regularization parameter and the weights for introducing
the spatial adaptivity are defined based on the available information about the restored image at the
k-th iteration step. Clearly for all this to make sense the convergence of iteration (34.54) has to be
guaranteed. Furthermore, convergence to a unique fixed point, which removes the dependency of
the final result on the initial conditions, is also desired. These issues are addressed in detail in [20, 30].
A major advantage of the proposed algorithm is that the convexity of the smoothing functional and
the convergence of the resulting algorithm are guaranteed regardless of the choice of the weighting
matrices. Another advantageof this algorithm is that theproposedadaptive algorithmsimultaneously
determines the regularization parameter and the desirable weighting matrices based on the restored
image at each iteration step and restores the image, without any prior knowledge.

Frequency Adaptive Algorithm

Adaptivity is now introduced into the restoration process by using a constant smoothness
constraint, but by assigning a different regularization parameter at each discrete frequency location.
We can now “fine-tune” the regularization of each frequency component, thereby achieving improved
results andat the same time speedingup the convergenceof the iterative algorithm. The regularization
parameters areevaluatedsimultaneouslywith the restored imagebasedonthepartially restored image.

In this algorithm, the following two ellipsoids QEx and QEx/y are used

QEx = {
x| ‖Cx‖R ≤ ER

}
(34.55)

and

QEx/y = {
x| ‖y − Dx‖P ≤ εP

}
, (34.56)

where P and R are both block-circulant weighting matrices. Then a solution which belongs to the
intersection of QEx and QEx/y is given by

(
DT P T PD + λCT RT RC

)
x = DT P T Py , (34.57)

where λ = (εP/ER)2. Let us define P T P = B, R = PC and λCT C = A. Then Eq. (34.57) can be
written as

B
(
DT D + ACT C

)
x = BDT y , (34.58)

since all matrices are block-circulant and they therefore commute. The regularization matrix A is
defined based on the set theoretic regularization as

A = ‖y − Dx‖2[‖Cx‖2I + 1]−1 , (34.59)
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where 1 is a block-circulant matrix used to ensure convergence. B plays the role of the “shaping”
matrix [53] for maximizing the speed of convergence at every frequency component as well as for
compensating for the near-singular frequency components [19].

With the above formulation, therefore,

8(x) = B
((

DT D + ACT C
)

x − DT y
)

, (34.60)

and the successive approximations iteration (34.21) becomes

xk+1 = xk + B
[
DT y −

(
DT D + AkC

T C
)

xk

]
, (34.61)

where Ak = ‖y − Dxk‖2[‖Cxk‖2I + 1k]−1. It is mentioned here that iteration (34.61) can also be
derived from the regularized equation

(
DT D + ACT C

)
x = DT y , (34.62)

using the generalized Landweber’s iteration [53]. Since all matrices in iteration (34.61) are block-
circulant, the iteration can be written in the discrete frequency domain as

Xk+1(p) = Xk(p) + β(p)
[
D∗(p)Y (p) −

(
|D(p)|2 + λk(p)|C(p)|2

)
Xk(p)

]
, (34.63)

where p = (p1, p2), 0 ≤ p1 ≤ N − 1, 0 ≤ p2 ≤ N − 1, Xk+1(p) and Y (p) represent the 2D DFT
of the unstacked image estimate xk+1, and the noisy-blurred image y and D(p), C(p), β(p), and
λk(p) represent 2D DFTs of the 2D sequences which form the block-circulant matrices D, C, B, and
Ak , respectively. Since 1k is block-circulant λk(p) is given by

λk(p) =
∑

m |Y (m) − D(m)Xk(m)|2∑
n |C(n)Xk(n)|2 + δk(p)

, (34.64)

where δk(p) is the 2D DFT of the sequence which forms 1k .
The allowable range of each regularization and control parameter and the convergence analysis of

the iterative algorithm are developed in detail in [19]. It is shown that the algorithm has more than
two fixed points. The first fixed point is the inverse or generalized inverse solution of Eq. (34.58).
The second type of fixed points are regularized approximations to the original image. Since there
is more than one solution to iteration (34.63), the determination of the initial condition becomes
important. It has been verified experimentally [19] that if a “smooth” image is used for X0(p) almost
identical fixed points result independently of X0. The use of spectral filtering functions [53] is also
incorporated into the iteration, as shown in [19].

34.10 Discussion

In this chapter we briefly described the application of the successive approximations-based class
of iterative algorithms to the problem of restoring a noisy and blurred signal. We analyzed in
some detail the simpler forms of the algorithm, while making reference to work which deals with
more complicated forms of the algorithms. There are obviously a number of algorithms and issues
pertaining to such algorithms which have not been addressed at all. For example, iterative algorithms
with a varying relaxation parameter β, such as the steepest descent and conjugate gradient methods,
can be applied to the image restoration problem [4, 37]. The number of iterations also represents a
means for regularizing the restoration problem [55, 58]. Iterative algorithms which depend on more
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than one previous restoration steps (multi-step algorithms) have also been considered, primarily for
implementation reasons [24].

It is the hope and the expectation of the author that the material presented will form a good
introduction to the topic for the engineer or the graduate student who would like to work in this
area.
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