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61.1 Introduction

Systems designed to receive spatially propagating signals often encounter the presence of interference
signals. If the desired signal and interferers occupy the same temporal frequency band, then temporal
filtering cannot be used to separate signal from interference. However, desired and interfering signals
often originate from different spatial locations. This spatial separation can be exploited to separate
signal from interference using a spatial filter at the receiver.

A beamformer is a processor used in conjunction with an array of sensors to provide a versatile
form of spatial filtering. The term beamforming derives from the fact that early spatial filters were
designed to form pencil beams (see polar plot in Fig. 61.5(c)) in order to receive a signal radiating from
a specific location and attenuate signals from other locations. “Forming beams” seems to indicate
radiation of energy; however, beamforming is applicable to either radiation or reception of energy.
In this section we discuss formation of beams for reception, providing an overview of beamforming
from a signal processing perspective. Data independent, statistically optimum, adaptive, and partially
adaptive beamforming are discussed.
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Implementing a temporal filter requires processing of data collected over a temporal aperture.
Similarly, implementing a spatial filter requires processing of data collected over a spatial aperture.
A single sensor such as an antenna, sonar transducer, or microphone collects impinging energy over
a continuous aperture, providing spatial filtering by summing coherently waves that are in phase
across the aperture while destructively combining waves that are not. An array of sensors provides
a discrete sampling across its aperture. When the spatial sampling is discrete, the processor that
performs the spatial filtering is termed a beamformer. Typically a beamformer linearly combines
the spatially sampled time series from each sensor to obtain a scalar output time series in the same
manner that an FIR filter linearly combines temporally sampled data. Two principal advantages of
spatial sampling with an array of sensors are discussed below.

Spatial discrimination capability depends on the size of the spatial aperture; as the aperture in-
creases, discrimination improves. The absolute aperture size is not important, rather its size in
wavelengths is the critical parameter. A single physical antenna (continuous spatial aperture) capa-
ble of providing the requisite discrimination is often practical for high frequency signals because the
wavelength is short. However, when low frequency signals are of interest, an array of sensors can
often synthesize a much larger spatial aperture than that practical with a single physical antenna.

A second very significant advantage of using an array of sensors, relevant at any wavelength, is
the spatial filtering versatility offered by discrete sampling. In many application areas, it is necessary
to change the spatial filtering function in real time to maintain effective suppression of interfering
signals. This change is easily implemented in a discretely sampled system by changing the way in
which the beamformer linearly combines the sensor data. Changing the spatial filtering function of
a continuous aperture antenna is impractical.

This section begins with the definition of basic terminology, notation, and concepts. Succeeding
sections cover data-independent, statistically optimum, adaptive, and partially adaptive beamform-
ing. We then conclude with a summary.

Throughout this section we use methods and techniques from FIR filtering to provide insight
into various aspects of spatial filtering with beamformer. However, in some ways beamforming
differs significantly from FIR filtering. For example, in beamforming a source of energy has several
parameters that can be of interest: range, azimuth and elevation angles, polarization, and temporal
frequencycontent. Different signals areoftenmutually correlatedasa resultofmultipathpropagation.
The spatial sampling is often nonuniform and multidimensional. Uncertainty must often be included
in characterization of individual sensor response and location, motivating development of robust
beamforming techniques. These differences indicate that beamforming represents a more general
problem than FIR filtering and, as a result, more general design procedures and processing structures
are common.

61.2 Basic Terminology and Concepts

In this section we introduce terminology and concepts employed throughout. We begin by defining
the beamforming operation and discussing spatial filtering. Next we introduce second order statistics
of the array data, developing representations for the covariance of the data received at the array and
discussing distinctions between narrowband and broadband beamforming. Last, we define various
types of beamformers.

61.2.1 Beamforming and Spatial Filtering

Figure 61.1 depicts two beamformers. The first, which samples the propagating wave field in space,
is typically used for processing narrowband signals. The output at time k, y(k), is given by a linear
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combination of the data at the J sensors at time k :

y(k) =
J∑

l=1

w∗
l xl(k) (61.1)

where ∗ represents complex conjugate. It is conventional to multiply the data by conjugates of the
weights to simplify notation. We assume throughout that the data and weights are complex since in
many applications a quadrature receiver is used at each sensor to generate in phase and quadrature (I
and Q) data. Each sensor is assumed to have any necessary receiver electronics and an A/D converter
if beamforming is performed digitally.

FIGURE 61.1: A beamformer forms a linear combination of the sensor outputs. In (a), sensor
outputs are multiplied by complex weights and summed. This beamformer is typically used with
narrowband signals. A common broadband beamformer is illustrated in (b).

The second beamformer in Fig. 61.1 samples the propagating wave field in both space and time
and is often used when signals of significant frequency extent (broadband) are of interest. The output
in this case can be expressed as

y(k) =
J∑

l=1

K−1∑
p=0

w∗
l,pxl(k − p) (61.2)

where K − 1 is the number of delays in each of the J sensor channels. If the signal at each sensor is
viewed as an input, then a beamformer represents a multi-input single output system.

It is convenient to develop notation that permits us to treat both beamformers in Fig. 61.1 simul-
taneously. Note that Eqs. (61.1) and (61.2) can be written as

y(k) = wH x(k) (61.3)

byappropriatelydefiningaweightvectorw anddatavectorx(k). Weuse loweranduppercaseboldface
to denote vector and matrix quantities, respectively, and let superscript H represent Hermitian
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(complex conjugate) transpose. Vectors are assumed to be column vectors. Assume that w and x(k)

are N dimensional; this implies thatN = KJ when referring to Eq. (61.2) and N = J when referring
to Eq. (61.1). Except for Section 61.5 on adaptive algorithms, we will drop the time index and assume
that its presence is understood throughout the remainder of the paper. Thus, Eq. (61.3) is written
as y = wH x. Many of the techniques described in this section are applicable to continuous time as
well as discrete time beamforming.

The frequency response of an FIR filter with tap weights w∗
p, 1 ≤ p ≤ J and a tap delay of T

seconds is given by

r(ω) =
J∑

p=1

w∗
pe−jωT (p−1) . (61.4)

Alternatively
r(ω) = wH d(ω) (61.5)

where wH = [w∗
1 w∗

2 ...w∗
J ] and d(ω) = [1 ejωT ejω2T ...ejω(J−1)T ]H . r(ω) represents the

response of the filter1 to a complex sinusoid of frequency ω and d(ω) is a vector describing the phase
of the complex sinusoid at each tap in the FIR filter relative to the tap associated with w1.

Similarly, beamformer response is defined as the amplitude and phase presented to a complex plane
wave as a function of location and frequency. Location is, in general, a three dimensional quantity, but
often we are only concerned with one- or two-dimensional direction of arrival (DOA). Throughout
the remainder of the section we do not consider range. Figure 61.2 illustrates the manner in which
an array of sensors samples a spatially propagating signal. Assume that the signal is a complex plane
wave with DOA θ and frequency ω. For convenience let the phase be zero at the first sensor. This
implies x1(k) = ejωk and xl(k) = ejω[k−1l(θ)], 2 ≤ l ≤ J. 1l(θ) represents the time delay due to
propagation from the first to the lth sensor. Substitution into Eq. (61.2) results in the beamformer
output

y(k) = ejωk
J∑

l=1

K−1∑
p=0

w∗
l,pe−jω[1l(θ)+p] = ejωk r(θω) (61.6)

where 11(θ) = 0. r(θ, ω) is the beamformer response and can be expressed in vector form as

r(θ, ω) = wH d(θ, ω) . (61.7)

The elements of d(θ, ω) correspond to the complex exponentials ejω[1l(θ)+p] . In general it can be
expressed as

d(θ, ω) = [1 ejωτ2(θ) ejωτ3(θ) ...ejωτN (θ) ]H . (61.8)

where the τi(θ), 2 ≤ i ≤ N are the time delays due to propagation and any tap delays from the
zero phase reference to the point at which the ith weight is applied. We refer to d(θ, ω) as the array
response vector. It is also known as the steering vector, direction vector, or array manifold vector.
Nonideal sensor characteristics can be incorporated into d(θ, ω) by multiplying each phase shift by
a function ai(θ, ω), which describes the associated sensor response as a function of frequency and
direction.

The beampattern is defined as the magnitude squared of r(θ, ω). Note that each weight in w affects
both the temporal and spatial response of the beamformer. Historically, use of FIR filters has been
viewed as providing frequency dependent weights in each channel. This interpretation is somewhat

1An FIR filter is by definition linear, so an input sinusoid produces at the output a sinusoid of the same frequency. The
magnitude and argument of r(ω) are, respectively, the magnitude and phase responses.
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FIGURE 61.2: An array with attached delay lines provides a spatial/temporal sampling of propagating
sources. This figure illustrates this sampling of a signal propagating in plane waves from a source
located at DOA θ . With J sensors and K samples per sensor, at any instant in time the propagating
source signal is sampled at JK nonuniformly spaced points. T (θ), the time duration from the first
sample of the first sensor to the last sample of the last sensor, is termed the temporal aperture of
the observation of the source at θ . As notation suggests, temporal aperture will be a function of
DOA θ . Plane wave propagation implies that at any time k a propagating signal, received anywhere
on a planar front perpendicular to a line drawn from the source to a point on the plane, has equal
intensity. Propagation of the signal between two points in space is then characterized as pure delay.
In this figure, 1l(θ) represents the time delay due to plane wave propagation from the 1st (reference)
to the lth sensor.

incomplete since the coefficients in each filter also influence the spatial filtering characteristics of the
beamformer. As a multi-input single output system, the spatial and temporal filtering that occurs is
a result of mutual interaction between spatial and temporal sampling.

The correspondence between FIR filtering and beamforming is closest when the beamformer
operates at a single temporal frequency ωo and the array geometry is linear and equi-spaced as
illustrated in Fig. 61.3. Letting the sensor spacing be d , propagation velocity be c, and θ represent
DOA relative to broadside (perpendicular to the array), we have τi(θ) = (i − 1)(d/c)sinθ . In this
case we identify the relationship between temporal frequency ω in d(ω) (FIR filter) and direction θ in
d(θ, ωo) (beamformer) as ω = ωo(d/c)sinθ . Thus, temporal frequency in an FIR filter corresponds
to the sine of direction in a narrowband linear equi-spaced beamformer. Complete interchange
of beamforming and FIR filtering methods is possible for this special case provided the mapping
between frequency and direction is accounted for.

The vector notation introduced in (61.3) suggests a vector space interpretation of beamforming.
This point of view is useful both in beamformer design and analysis. We use it here in consideration
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FIGURE 61.3: The analogy between an equi-spaced omni-directional narrowband line array and a
single-channel FIR filter is illustrated in this figure.

of spatial sampling and array geometry. The weight vector w and the array response vectors d(θ, ω)

are vectors in an N-dimensional vector space. The angles between w and d(θ, ω) determine the
response r(θ, ω). For example, if for some (θ, ω) the angle between w and d(θ, ω) 90◦ (i.e., if w
is orthogonal to d(θ, ω)), then the response is zero. If the angle is close to 0◦, then the response
magnitude will be relatively large. The ability to discriminate between sources at different locations
and/or frequencies, say (θ1, ω1) and (θ2, ω2), is determined by the angle between their array response
vectors, d(θ1, ω1) and d(θ2, ω2).

The general effects of spatial sampling are similar to temporal sampling. Spatial aliasing corre-
sponds to an ambiguity in source locations. The implication is that sources at different locations have
the same array response vector, e.g., for narrowband sources d(θ1, ωo) and d(θ2, ωo). This can occur
if the sensors are spaced too far apart. If the sensors are too close together, spatial discrimination
suffers as a result of the smaller than necessary aperture; array response vectors are not well dis-
persed in the N dimensional vector space. Another type of ambiguity occurs with broadband signals
when a source at one location and frequency cannot be distinguished from a source at a different
location and frequency, i.e., d(θ1, ω1) = d(θ2, ω2). For example, this occurs in a linear equi-spaced
array whenever ω1sinθ1 = ω2sinθ2. (The addition of temporal samples at one sensor prevents this
particular ambiguity.)

A primary focus of this section is on designing response via weight selection; however, (61.7)
indicates that response is also a function of array geometry (and sensor characteristics if the ideal
omnidirectional sensor model is invalid). In contrast with single channel filtering where A/D con-
verters provide a uniform sampling in time, there is no compelling reason to space sensors regularly.
Sensor locations provide additional degrees of freedom in designing a desired response and can be
selected so that over the range of (θ, ω) of interest the array response vectors are unambiguous and
well dispersed in the N dimensional vector space. Utilization of these degrees of freedom can be-
come very complicated due to the multidimensional nature of spatial sampling and the nonlinear
relationship between r(θ, ω) and sensor locations.

61.2.2 Second Order Statistics

Evaluation of beamformer performance usually involves power or variance, so the second order
statistics of the data play an important role. We assume the data received at the sensors are zero
mean throughout this section. The variance or expected power of the beamformer output is given
by E{|y|2} = wH E{x xH }w. If the data are wide sense stationary, then Rx = E{x xH }, the data
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covariance matrix, is independent of time. Although we often encounter nonstationary data, the
wide sense stationary assumption is used in developing statistically optimal beamformers and in
evaluating steady state performance.

Suppose x represents samples from a uniformly sampled time series having a power spectral density
S(ω) and no energy outside of the spectral band [ωa, ωb]. Rx can be expressed in terms of the power
spectral density of the data using the Fourier transform relationship as

Rx = 1

2π

∫ ωb

ωa

S(ω) d(ω) dH (ω) dω (61.9)

with d(ω) as defined for (61.5). Now assume the array data x is due to a source located at direction
θ . In like manner to the time series case we can obtain the covariance matrix of the array data as

Rx = 1

2π

∫ ωb

ωa

S(ω) d(θ, ω) dH (θ, ω) dω (61.10)

A source is said to be narrowband of frequency ωo if Rx can be represented as the rank one outer
product

Rx = σ 2
s d(θ, ωo) dH (θ, ωo) (61.11)

where σ 2
s is the source variance or power.

The conditions under which a source can be considered narrowband depend on both the source
bandwidth and the time over which the source is observed. To illustrate this, consider observing
an amplitude modulated sinusoid or the output of a narrowband filter driven by white noise on an
oscilloscope. If the signal bandwidth is small relative to the center frequency (i.e., if it has small
fractional bandwidth), and the time intervals over which the signal is observed are short relative
to the inverse of the signal bandwidth, then each observed waveform has the shape of a sinusoid.
Note that as the observation time interval is increased, the bandwidth must decrease for the signal to
remain sinusoidal in appearance. It turns out, based on statistical arguments, that the observation
time bandwidth product (TBWP) is the fundamental parameter that determines whether a source
can be viewed as narrowband (see Buckley [2]).

An array provides an effective temporal aperture over which a source is observed. Figure 61.2
illustrates this temporal aperture T (θ) for a source arriving from direction θ . Clearly the TBWP is
dependent on the source DOA. An array is considered narrowband if the observation TBWP is much
less than one for all possible source directions.

Narrowband beamforming is conceptually simpler than broadband since one can ignore the tem-
poral frequency variable. This fact, coupled with interest in temporal frequency analysis for some
applications, has motivated implementation of broadband beamformers with a narrowband decom-
position structure, as illustrated in Fig. 61.4. The narrowband decomposition is often performed by
taking a discrete Fourier transform (DFT) of the data in each sensor channel using an FFT algorithm.
The data across the array at each frequency of interest are processed by their own beamformer. This
is usually termed frequency domain beamforming. The frequency domain beamformer outputs can
be made equivalent to the DFT of the broadband beamformer output depicted in Fig. 61.1(b) with
proper selection of beamformer weights and careful data partitioning.

61.2.3 Beamformer Classification

Beamformers can be classified as either data independent or statistically optimum, depending on how
the weights are chosen. The weights in a data independent beamformer do not depend on the array
data and are chosen to present a specified response for all signal/interference scenarios. The weights in
a statistically optimum beamformer are chosen based on the statistics of the array data to “optimize”
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FIGURE 61.4: Beamforming is sometimes performed in the frequency domain when broadband
signals are of interest. This figure illustrates transformation of the data at each sensor into the
frequency domain. Weighted combinations of data at each frequency (bin) are performed. An
inverse discrete Fourier transform produces the output time series.

the array response. In general, the statistically optimum beamformer places nulls in the directions
of interfering sources in an attempt to maximize the signal-to-noise ratio at the beamformer output.
A comparison between data independent and statistically optimum beamformers is illustrated in
Fig. 61.5.

The next four sections cover data independent, statistically optimum, adaptive, and partially adap-
tive beamforming. Data independent beamformer design techniques are often used in statistically
optimum beamforming (e.g., constraint design in linearly constrained minimum variance beam-
forming). The statistics of the array data are not usually known and may change over time so
adaptive algorithms are typically employed to determine the weights. The adaptive algorithm is de-
signed so the beamformer response converges to a statistically optimum solution. Partially adaptive
beamformers reduce the adaptive algorithm computational load at the expense of a loss (designed to
be small) in statistical optimality.

61.3 Data Independent Beamforming

The weights in a data independent beamformer are designed so the beamformer response approx-
imates a desired response independent of the array data or data statistics. This design objective —
approximating a desired response — is the same as that for classical FIR filter design (see, for example,
Parks and Burrus [8]). We shall exploit the analogies between beamforming and FIR filtering where
possible in developing an understanding of the design problem. We also discuss aspects of the design
problem specific to beamforming.

The first part of this section discusses forming beams in a classical sense, i.e., approximating
a desired response of unity at a point of direction and zero elsewhere. Methods for designing
beamformers having more general forms of desired response are presented in the second part.

61.3.1 Classical Beamforming

Consider the problem of separating a single complex frequency component from other frequency
components using the J tap FIR filter illustrated in Fig. 61.3. If frequency ωo is of interest, then the
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desired frequency response is unity at ωo and zero elsewhere. A common solution to this problem is
to choose w as the vector d(ωo). This choice can be shown to be optimal in terms of minimizing the
squared error between the actual response and desired response. The actual response is characterized
by a main lobe (or beam) and many sidelobes. Since w = d(ωo), each element of w has unit
magnitude. Tapering or windowing the amplitudes of the elements of w permits trading of main
lobe or beam width against sidelobe levels to form the response into a desired shape. Let T be a J

by J diagonal matrix with the real-valued taper weights as diagonal elements. The tapered FIR filter
weight vector is given by T d(ωo). A detailed comparison of a large number of tapering functions is
given in [5].

In spatial filtering one is often interested in receiving a signal arriving from a known location
point θo. Assuming the signal is narrowband (frequency ωo), a common choice for the beamformer
weight vector is the array response vector d(θo, ωo). The resulting array and beamformer is termed
a phased array because the output of each sensor is phase shifted prior to summation. Figure 61.5(b)
depicts the magnitude of the actual response when w = Td(θo, ωo), where T implements a common
Dolph-Chebyshev tapering function. As in the FIR filter discussed above, beam width and sidelobe
levels are the important characteristics of the response. Amplitude tapering can be used to control the
shape of the response, i.e., to form the beam. The equivalence of the narrowband linear equi-spaced
array and FIR filter (see Fig. 61.3) implies that the same techniques for choosing taper functions are
applicable to either problem. Methods for choosing tapering weights also exist for more general array
configurations.

61.3.2 General Data Independent Response Design

The methods discussed in this section apply to design of beamformers that approximate an arbitrary
desired response. This is of interest in several different applications. For example, we may wish to
receive any signal arriving from a range of directions, in which case the desired response is unity
over the entire range. As another example, we may know that there is a strong source of interference
arriving from a certain range of directions, in which case the desired response is zero in this range.
These two examples are analogous to bandpass and bandstop FIR filtering. Although we are no
longer “forming beams”, it is conventional to refer to this type of spatial filter as a beamformer.

Consider choosing w so the actual response r(θ, ω) = wH d(θ, ω) approximates desired response
rd(θ, ω). Ad hoc techniques similar to those employed in FIR filter design can be used for selecting
w. Alternatively, formal optimization design methods can be employed (see, for example, Parks and
Burrus [8]). Here, to illustrate the general optimization design approach, we only consider choosing
w to minimize the weighted averaged square of the difference between desired and actual response.

Consider minimizing the squared error between the actual and desired response at P points
(θi, ωi), 1 < i < P . If P > N , then we obtain the overdetermined least squares problem

min
w

|AH w − rd |2 (61.12)

where
A = [d(θ1, ω1), d(θ2, ω2)...d(θP , ωP )] ; (61.13)

rd = [rd(θ1, ω1), rd(θ2, ω2)...rd(θP , ωP )]H . (61.14)

Provided AAH is invertible (i.e., A is full rank), then the solution to Eq. (61.12) is given as

w = A+rd (61.15)

where A+ = (AAH )−1A is the pseudo-inverse of A.
A note of caution is in order at this point. The white noise gain of a beamformer is defined as the

output power due to unit variance white noise at the sensors. Thus, the norm squared of the weight
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FIGURE 61.5: Beamformers come in both data independent and statistically optimum varieties. In
(a) through (e) of this figure we consider an equi-spaced narrowband array of 16 sensors spaced
at one-half wavelength. In (a), (b), and (c) the magnitude of the weights, the beampattern, and
the beampattern, in polar coordinates are shown, respectively, for a Dolph-Chebyshev beamformer
with -30 dB sidelobes. In (d) and (e) beampatterns are shown of statistically optimum beamformers
which were designed to minimize output power subject to a constraint that the response be unity for
an arrival angle of 18◦. Energy is assumed to arrive at the array from several interference sources.
In (d) several interferers are located between −20◦ and −23◦, each with power of 30 dB relative to the
uncorrelated noise power at a single sensor. Deep nulls are formed in the interferer directions. The
interferers in (e) are located between 20◦ and 23◦, again with relative power of 30 dB. Again deep nulls
are formed at the interferer directions; however, the sidelobe levels are significantly higher at other
directions. (f) depicts the broadband LCMV beamformer magnitude response at eight frequencies on
the normalized frequency interval [2π/5, 4π/5] when two interferers arrive from directions −5.75◦
and −17.5◦ in the presence of white noise.
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FIGURE 61.5: (continued) The interferers have a white spectrum on [2π/5, 4π/5] and have powers
of 40 dB and 30 dB relative to the white noise, respectively. The constraints are designed to present a
unit gain and linear phase over [2π/5, 4π/5] at a DOA of 18◦. The array is linear equi-spaced with
16 sensors spaced at one-half wavelength for frequency 4π/5 and five tap FIR filters are used in each
sensor channel.
c©1999 by CRC Press LLC



TABLE 61.1 Summary of Optimum Beamformers
Type MSC Reference signal Max SNR LCMV

Definitions xa — auxiliary data x — array data x = s + x — array data x — array data
ym — primary data yd — desired signal s — signal component C — constraint matrix

rma = E{xay∗
m} rxd = E{xy∗

d
} n — noise component f — response vector

Ra = E{xaxH
a } Rx = E{xxH } Rs = E{ssH } Rx = E{xxH }

output: y = ym − wH
a xa output: y = wH x Rn = E{nnH } output: y = wH x

output: y = wH x

Criterion min
wa

E{|ym − wH
a xa |2} min

w
E{|y − yd |2} max

w
wH Rsw
wH Rnw

min
w

{wH Rxw}s.t.CH w = f

Optimum
weights

wa = R−1
a rma wa = R−1

x rrd R−1
n Rsw = λmaxw w = R−1

x C[CH R−1
x C]−1f

Advantages Simple Direction of
desired signal can be
unknown

True maximization of SNR Flexible and general constraints

Disadvantages Requires absence of desired
signal from auxiliary chan-
nels for weight determina-
tion

Mustgenerate reference
signal

Must know Rs and Rn

Solve generalized eigenprob-
lem for weights

Computation of
constrained weight vector

References Applebaum [1976] Widrow [1967] Monzingo and Miller [1980] Frost [1972]

vector, wH w, represents the white noise gain. If the white noise gain is large, then the accuracy by
which w approximates the desired response is a moot point because the beamformer output will
have a poor SNR due to white noise contributions. If A is ill-conditioned, then w can have a very
large norm and still approximate the desired response. The matrix A is ill-conditioned when the
effective numerical dimension of the space spanned by the d(θi, ωi), 1 ≤ i ≤ P , is less than N . For
example, if only one source direction is sampled, then the numerical rank of A is approximately given
by the TBWP for that direction. Low rank approximates of A and A+ should be used whenever the
numerical rank is less than N . This ensures that the norm of w will not be unnecessarily large.

Specific directions and frequencies can be emphasized in Eq. (61.12) by selection of the sample
points (θi, ωi) and/or unequally weighting of the error at each (θi, ωi). Parks and Burrus [8] discuss
this in the context of FIR filtering.

61.4 Statistically Optimum Beamforming

In statistically optimum beamforming, the weights are chosen based on the statistics of the data
received at the array. Loosely speaking, the goal is to “optimize” the beamformer response so the
output contains minimal contributions due to noise and interfering signals. We discuss several
different criteria for choosing statistically optimum beamformer weights. Table 61.1 summarizes
these different approaches. Where possible, equations describing the criteria and weights are confined
to Table 61.1. Throughout the section we assume that the data is wide-sense stationary and that its
second order statistics are known. Determination of weights when the data statistics are unknown
or time varying is discussed in the following section on adaptive algorithms.

61.4.1 Multiple Sidelobe Canceller

The multiple sidelobe canceller (MSC) is perhaps the earliest statistically optimum beamformer. An
MSC consists of a “main channel” and one or more “auxiliary channels” as depicted in Fig. 61.6(a).
The main channel can be either a single high gain antenna or a data independent beamformer (see
Section 61.3). It has a highly directional response, which is pointed in the desired signal direction.
Interfering signals are assumed to enter through the main channel sidelobes. The auxiliary channels
also receive the interfering signals. The goal is to choose the auxiliary channel weights to cancel the
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main channel interference component. This implies that the responses to interferers of the main
channel and linear combination of auxiliary channels must be identical. The overall system then has
a response of zero as illustrated in Fig. 61.6(b). In general, requiring zero response to all interfering
signals is either not possible or can result in significant white noise gain. Thus, the weights are usually
chosen to trade off interference suppression for white noise gain by minimizing the expected value
of the total output power as indicated in Table 61.1.

Choosing theweights tominimizeoutputpower cancause cancellationof thedesired signal because
it also contributes to total output power. In fact, as the desired signal gets stronger it contributes to
a larger fraction of the total output power and the percentage cancellation increases. Clearly this is
an undesirable effect. The MSC is very effective in applications where the desired signal is very weak
(relative to the interference), since the optimum weights will not pay any attention to it, or when the
desired signal is known to be absent during certain time periods. The weights can then be adapted
in the absence of the desired signal and frozen when it is present.

FIGURE 61.6: The multiple sidelobe canceller (MSC) consists of a main channel and several auxiliary
channels as illustrated in (a). The auxiliary channel weights are chosen to “cancel” interference
entering through sidelobes of the main channel. (b) Depicts the main channel, auxiliary branch, and
overall system response when an interferer arrives from direction θI .

61.4.2 Use of a Reference Signal

If the desired signal were known, then the weights could be chosen to minimize the error between the
beamformer output and the desired signal. Of course, knowledge of the desired signal eliminates the
need for beamforming. However, for some applications, enough may be known about the desired
signal to generate a signal that closely represents it. This signal is called a reference signal. As indicated
in Table 61.1, the weights are chosen to minimize the mean square error between the beamformer
output and the reference signal.
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The weight vector depends on the cross covariance between the unknown desired signal present
in x and the reference signal. Acceptable performance is obtained provided this approximates the
covariance of the unknown desired signal with itself. For example, if the desired signal is amplitude
modulated, then acceptable performance is often obtained by setting the reference signal equal to the
carrier. It is also assumed that the reference signal is uncorrelated with interfering signals in x. The
fact that the direction of the desired signal does not need to be known is a distinguishing feature of
the reference signal approach. For this reason it is sometimes termed “blind” beamforming. Other
closely related blind beamforming techniques choose weights by exploiting properties of the desired
signal such as constant modulus, cyclostationarity, or third and higher order statistics.

61.4.3 Maximization of Signal-to-Noise Ratio

Here the weights are chosen to directly maximize the signal-to-noise ratio (SNR) as indicated in
Table 61.1. A general solution for the weights requires knowledge of both the desired signal, Rs , and
noise, Rn, covariance matrices. The attainability of this knowledge depends on the application. For
example, in an active radar system Rn can be estimated during the time that no signal is being trans-
mitted and Rs can be obtained from knowledge of the transmitted pulse and direction of interest. If
the signal component is narrowband, of frequency ω, and direction θ , then Rs = σ 2d(θ, ω)dH (θ, ω)

from the results in Section 61.2. In this case, the weights are obtained as

w = αR−1
n d(θ, ω) (61.16)

where the α is some non-zero complex constant. Substitution of Eq. (61.16) into the SNR expression
shows that the SNR is independent of the value chosen for α.

61.4.4 Linearly Constrained Minimum Variance Beamforming

In many applications none of the above approaches is satisfactory. The desired signal may be of
unknown strength and may always be present, resulting in signal cancellation with the MSC and
preventing estimation of signal and noise covariance matrices in the maximum SNR processor. Lack
of knowledge about the desired signal may prevent utilization of the reference signal approach. These
limitations can be overcome through the application of linear constraints to the weight vector. Use of
linear constraints is a very general approach that permits extensive control over the adapted response
of the beamformer. In this section we illustrate how linear constraints can be employed to control
beamformer response, discuss the optimum linearly constrained beamforming problem, and present
the generalized sidelobe canceller structure.

The basic idea behind linearly constrained minimum variance (LCMV) beamforming is to con-
strain the responseof thebeamformer so signals fromthedirectionof interest arepassedwith specified
gain and phase. The weights are chosen to minimize output variance or power subject to the response
constraint. This has the effect of preserving the desired signal while minimizing contributions to
the output due to interfering signals and noise arriving from directions other than the direction of
interest. The analogous FIR filter has the weights chosen to minimize the filter output power subject
to the constraint that the filter response to signals of frequency ωo be unity.

In Section 61.2 we saw that the beamformer response to a source at angle θ and temporal frequency
ω is given by wH d(θ, ω). Thus, by linearly constraining the weights to satisfy wH d(θ, ω) = g where
g is a complex constant, we ensure that any signal from angle θ and frequency ω is passed to the
output with response g. Minimization of contributions to the output from interference (signals not
arriving from θ with frequency ω) is accomplished by choosing the weights to minimize the output
power or variance E{|y|2} = wH Rxw. The LCMV problem for choosing the weights is thus written

min
w

wH Rxw subject to dH (θ, ω)w = g∗ . (61.17)
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The method of Lagrange multipliers can be used to solve Eq. (61.17) resulting in

w = g∗ R−1
x d(θ, ω)

dH (θ, ω)R−1
x d(θ, ω)

. (61.18)

Note that, in practice, the presence of uncorrelated noise will ensure that Rx is invertible. If g = 1,

thenEq. (61.18) is often termed theminimumvariancedistortionless response (MVDR)beamformer.
It can be shown that Eq. (61.18) is equivalent to the maximum SNR solution given in Eq. (61.16)
by substituting σ 2d(θ, ω)dH (θ, ω) + Rn for Rx in Eq. (61.18) and applying the matrix inversion
lemma.

The single linear constraint in Eq. (61.17) is easily generalized to multiple linear constraints for
added control over the beampattern. For example, if there is fixed interference source at a known
direction φ, then it may be desirable to force zero gain in that direction in addition to maintaining
the response g to the desired signal. This is expressed as

[
dH (θ, ω)

dH (φ, ω)

]
w =

[
g∗
0

]
. (61.19)

If there are L < N linear constraints on w, we write them in the form CH w = f where the N

by L matrix C and L dimensional vector f are termed the constraint matrix and response vector.
The constraints are assumed to be linearly independent so C has rank L. The LCMV problem and
solution with this more general constraint equation are given in Table 61.1.

Several different philosophies can be employed for choosing the constraint matrix and response
vector. Specifically point, derivative, and eigenvector constraint approaches are popular. Each linear
constraint uses one degree of freedom in the weight vector so with L constraints there are only
N − L degrees of freedom available for minimizing variance. See Van Veen and Buckley [11] or Van
Veen [12] for a more in-depth discussion on this topic.

Generalized Sidelobe Canceller. The generalized sidelobe canceller (GSC) represents an alternative
formulation of the LCMV problem, which provides insight, is useful for analysis, and can simplify
LCMV beamformer implementation. It also illustrates the relationship between MSC and LCMV
beamforming. Essentially, the GSC is a mechanism for changing a constrained minimization problem
into unconstrained form.

Suppose we decompose the weight vector w into two orthogonal components wo and −v (i.e.,
w = wo − v) that lie in the range and null spaces of C, respectively. The range and null spaces of a
matrix span the entire space so this decomposition can be used to represent any w. Since CH v = 0,
we must have

wo = C(CH C)−1f (61.20)

if w is to satisfy the constraints. Equation (61.20) is the minimum L2 norm solution to the underde-
termined equivalent of Eq. (61.12). The vector v is a linear combination of the columns of an N by M

(M = N −L) matrix Cn (i.e., v = CnwM ) provided the columns of Cn form a basis for the null space
of C. Cn can be obtained from C using any of several orthogonalization procedures such as Gram-
Schmidt, QR decomposition, or singular value decomposition. The weight vector w = wo − CnwM

is depicted in block diagram form in Fig. 61.7. The choice for wo and Cn implies that w satisfies the
constraints independent of wM and reduces the LCMV problem to the unconstrained problem

min
wM

[wo − CnwM ]H Rx[wo − CnwM ] . (61.21)

The solution is
wM = (CH

n RxCn)
−1CH

n Rxwo . (61.22)
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The primary implementation advantages of this alternate but equivalent formulation stem from the
facts that the weights wM are unconstrained and a data independent beamformer wo is implemented
as an integral part of the optimum beamformer. The unconstrained nature of the adaptive weights
permits much simpler adaptive algorithms to be employed and the data independent beamformer is
useful in situations where adaptive signal cancellation occurs (see Section 61.4.5).

FIGURE 61.7: The generalized sidelobe canceller (GSC) represents an implementation of the LCMV
beamformer in which the adaptive weights are unconstrained. It consists of a preprocessor composed
of a fixed beamformer wo and a blocking matrix Cn, and a standard adaptive filter with unconstrained
weight vector wM .

As an example, assume the constraints are as given in Eq. (61.17). Equation (61.20) implies
wo = g∗d(θ, ω)/[dH (θ, ω)d(θ, ω)]. Cn satisfies dH (θ, ω)Cn = 0 so each column [Cn]i; 1 < i <

N − L, can be viewed as a data independent beamformer with a null in direction θ at frequency
ω: dH (θ, ω)[Cn]j = 0. Thus, a signal of frequency ω and direction θ arriving at the array will be
blocked or nulled by the matrix Cn. In general, if the constraints are designed to present a specified
response to signals from a set of directions and frequencies, then the columns of Cn will block those
directions and frequencies. This characteristic has led to the term “blocking matrix” for describing
Cn. These signals are only processed by wo and since wo satisfies the constraints, they are presented
with the desired response independent of wM . Signals from directions and frequencies over which
the response is not constrained will pass through the upper branch in Fig. 61.7 with some response
determined by wo. The lower branch chooses wM to estimate the signals at the output of wo as a
linear combination of the data at the output of the blocking matrix. This is similar to the operation
of the MSC, in which weights are applied to the output of auxiliary sensors in order to estimate the
primary channel output (see Fig. 61.6).

61.4.5 Signal Cancellation in Statistically Optimum Beamforming

Optimum beamforming requires some knowledge of the desired signal characteristics, either its
statistics (for maximum SNR or reference signal methods), its direction (for the MSC), or its response
vector d(θ, ω) (for the LCMV beamformer). If the required knowledge is inaccurate, the optimum
beamformer will attenuate the desired signal as if it were interference. Cancellation of the desired
signal is often significant, especially if the SNR of the desired signal is large. Several approaches have
been suggested to reduce this degradation (e.g., Cox et al. [3]).

A second cause of signal cancellation is correlation between the desired signal and one or more
interference signals. This can result either from multipath propagation of a desired signal or from
smart (correlated) jamming. When interference and desired signals are uncorrelated, the beam-
former attenuates interferers to minimize output power. However, with a correlated interferer the
beamformer minimizes output power by processing the interfering signal in such a way as to cancel
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the desired signal. If the interferer is partially correlated with the desired signal, then the beamformer
will cancel the portion of the desired signal that is correlated with the interferer. Methods for reducing
signal cancellation due to correlated interference have been suggested (e.g., Widrow et al. [13], Shan
and Kailath [10]).

61.5 Adaptive Algorithms for Beamforming

The optimum beamformer weight vector equations listed in Table 61.1 require knowledge of second
order statistics. These statistics are usually not known, but with the assumption of ergodicity, they
(and therefore the optimum weights) can be estimated from available data. Statistics may also change
over time, e.g., due to moving interferers. To solve these problems, weights are typically determined
by adaptive algorithms.

There are two basic adaptive approaches: (1) block adaptation, where statistics are estimated
from a temporal block of array data and used in an optimum weight equation; and (2) continuous
adaptation, where the weights are adjusted as the data is sampled such that the resulting weight
vector sequence converges to the optimum solution. If a nonstationary environment is anticipated,
block adaptation can be used, provided that the weights are recomputed periodically. Continuous
adaptation is usually preferred when statistics are time-varying or, for computational reasons, when
the number of adaptive weights M is moderate to large; values of M > 50are common.

Among notable adaptive algorithms proposed for beamforming are the Howells-Applebaum adap-
tive loop developed in the late 1950s and reported by Howells [7] and Applebaum [1], and the Frost
LCMV algorithm [4]. Rather than recapitulating adaptive algorithms for each optimum beamformer
listed in Table 61.1, we take a unifying approach using the standard adaptive filter configuration il-
lustrated on the right side of Fig. 61.7.

In Fig. 61.7 the weight vector wM is chosen to estimate the desired signal yd as linear combination
of the elements of the data vector u. We select wM to minimize the MSE

J (wM) = E{|yd − wH
Mu|2} = σ 2

d − wH
Mrud − rH

udwM + wH
MRuwM , (61.23)

where σ 2
d = E{|yd |2}, rud = E{u y∗

d } and Ru = E{u uH }. J (wM) is minimized by

wopt = R−1
u rud . (61.24)

Comparison of (61.23) and the criteria listed in Table 61.1 indicates that this standard adaptive filter
problem is equivalent to both the MSC beamformer problem (with yd = ym and u = xa ) and the
reference signal beamformer problem (with u = x ). The LCMV problem is apparently different.
However closer examination of Fig. 61.7 and Eqs. (61.22), and (61.24) reveals that the standard
adaptive filter problem is equivalent to the LCMV problem implemented with the GSC structure.
Setting u = CH

n x and yd = wH
o x implies Ru = CH

n RxCn and rud = CH
n Rxwo. The maximum

SNR beamformer cannot in general be represented by Fig. 61.7 and Eq. (61.24). However, it was
noted after (61.18) that if the desired signal is narrowband, then the maximum SNR and the LCMV
beamformers are equivalent.

Theblockadaptationapproach solves (61.24)using estimatesofRu and rud formed fromK samples
of u and yd : u(k), yd(k); 0 < k < K − 1. The most common are the sample covariance matrix

R̂u = 1

K

K−1∑
k=0

u(k)uH (k) (61.25)

and sample cross-covariance vector

r̂ud = 1

K

K−1∑
k=0

u(k)y∗
d (k) . (61.26)
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TABLE 61.2 Comparison of the LMS and RLS Weight Adaptation Algorithms
Algorithm LMS RLS

Initialization wM(0) = 0 wM(0) = 0
y(0) = yd (0) P(0) = δ−1I

0 < µ < 1
Trace[Ru] δ small, I identity matrix

Update wM(k) = wM(k − 1) + µu(k − 1)y∗(k − 1) v(k) = P(k − 1)u(k)

Equations y(k) = yd (k) − wH
M

(k)u(k) k(k) = λ−1v(k)

1+λ−1uH (k)v(k)

α(k) = yd (k) − wH
M

(k − 1)u(k)

wM(k) = wM(k − 1) + k(k)α∗(k)

P(k) = λ−1P(k − 1) − λ−1k(k)vH (k)

Multiplies per up-
date

2M 4M2 + 4M + 2

Performance
Characteristics

Under certain conditions, convergence of wM(k) to the
statistically optimum weight vector wopt in the mean-
square sense is guaranteed if µ is chosen as indicated
above. The convergence rate is governed by the eigen-
value spread of Ru. For large eigenvalue spread, con-
vergence can be very slow.

The wM(k) represents the least squares solution at each
instant k and are optimum in a deterministic sense.
Convergence to the statistically optimum weight vector
wopt is often faster than that obtained using the LMS
algorithm because it is independent of the eigenvalue
spread of Ru.

Performance analysis and guidelines for selecting the block size K are provided in Reed et al. [9].

Continuous adaptation algorithms are easily developed in terms of Fig. 61.7 and Eq. (61.23). Note
that J (wM) is a quadratic error surface. Since the quadratic surface’s “Hessian” Ru is the covariance
matrix of noisy data, it is positive definite. This implies that the error surface is a “bowl”. The shape
of the bowl is determined by the eigenstructure of Ru. The optimum weight vector wopt corresponds
to the bottom of the bowl.

One approach to adaptive filtering is to envision a point on the error surface that corresponds to
the present weight vector wM(k). We select a new weight vector wM(k + 1) so as to descend on the
error surface. The gradient vector

∇wM(k) = ∂

∂wM

J(wM)

∣∣∣∣
wM=wm(k)

= −2rud + 2RuwM(k) (61.27)

tells us the direction in which to adjust the weight vector. Steepest descent, i.e., adjustment in the
negative gradient direction, leads to the popular least mean-square (LMS) adaptive algorithm. The
LMS algorithm replaces ∇wM(k) with the instantaneous gradient estimate ∇̂wM(k) = −2[u(k)y∗

d (k)−
u(k)uH (k)wM(k)]. Denoting y(k) = yd(k) − wH

Mu(k), we have

wM(k + 1) = wM(k) + µ u(k) y∗(k) . (61.28)

The gain constant µ controls convergence characteristics of the random vector sequence wM(k).
Table 61.2 provides guidelines for its selection.

The primary virtue of the LMS algorithm is its simplicity. Its performance is acceptable in many
applications; however, its convergence characteristics depend on the shape of the error surface and
therefore the eigenstructure of Ru. When the eigenvalues are widely spread, convergence can be
slow and other adaptive algorithms with better convergence characteristics should be considered.
Alternative procedures for searching the error surface have been proposed in addition to algorithms
based on least squares and Kalman filtering. Roughly speaking, these algorithms trade-off compu-
tational requirements with speed of convergence to wopt . We refer you to texts on adaptive filtering
for detailed descriptions and analysis (Widrow and Stearns [14], Haykin [6], and others).

One alternative to LMS is the exponentially weighted recursive least squares (RLS) algorithm. At
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the Kth time step, wM(K) is chosen to minimize a weighted sum of past squared errors

min
wM(K)

K∑
k=0

λK−k |yd(k) − wH
M(K)u(k)|2 . (61.29)

λ is a positive constant less than one which determines how quickly previous data are deemphasized.
The RLS algorithm is obtained from (61.29) by expanding the magnitude squared and applying the
matrix inversion lemma. Table 61.2 summarizes both the LMS and RLS algorithms.

61.6 Interference Cancellation and Partially Adaptive
Beamforming

The computational requirements of each update in adaptive algorithms are proportional to either
the weight vector dimension M (e.g., LMS) or dimension squared M2 (e.g., RLS). If M is large, this
requirement is quite severe and for practical real time implementation it is often necessary to reduce
M . Furthermore, the rate at which an adaptive algorithm converges to the optimum solution may
be very slow for large M . Adaptive algorithm convergence properties can be improved by reducing
M .

The concept of “degrees of freedom” is much more relevant to this discussion than the number of
weights. The expression degrees of freedom refers to the number of unconstrained or “free” weights
in an implementation. For example, an LCMV beamformer with L constraints on N weights has
N − L degrees of freedom; the GSC implementation separates these as the unconstrained weight
vector wM . There are M degrees of freedom in the structure of Fig. 61.7. A fully adaptive beamformer
uses all available degrees of freedom and a partially adaptive beamformer uses a reduced set of degrees
of freedom. Reducing degrees of freedom lowers computational requirements and often improves
adaptive response time. However, there is a performance penalty associated with reducing degrees of
freedom. A partially adaptive beamformer cannot generally converge to the same optimum solution
as the fully adaptive beamformer. The goal of partially adaptive beamformer design is to reduce
degrees of freedom without significant degradation in performance.

The discussion in this section is general, applying to different types of beamformers although we
borrow much of the notation from the GSC. We assume the beamformer is described by the adaptive
structure of Fig. 61.7 where the desired signal yd is obtained as yd = wH

o x and the data vector u
as u = TH x. Thus, the beamformer output is y = wH x where w = wo − TwM. In order to
distinguish between fully and partially adaptive implementations, we decompose T into a product of
two matrices CnTM . The definition of Cn depends on the particular beamformer and TM represents
the mapping which reduces degrees of freedom. The MSC and GSC are obtained as special cases of
this representation. In the MSC wo is an N vector that selects the primary sensor, Cn is an N by
N − 1 matrix that selects the N − 1 possible auxiliary sensors from the complete set of N sensors,
and TM is an N − 1 by M matrix that selects the M auxiliary sensors actually utilized. In terms of
the GSC, wo and Cn are defined as in Section 61.4.4 and TM is an N − L by M matrix that reduces
degrees of freedom (M < N − L).

The goal of partially adaptive beamformer design is to choose TM (or T) such that good interference
cancellation properties are retained even though M is small. To see that this is possible in principle,
consider theproblemof simultaneouslycancelling twonarrowbandsources fromdirectionθ1 andθ2 at
frequency ωo. Perfect cancellation of these sources requires wH d(θ1, ωo) = 0 and wH d(θ2, ωo) = 0
so we must choose wM to satisfy

wH
M [TH d(θ1, ωo) TH d(θ2, ωo)] = [g1, g2] (61.30)
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wheregi = wH
o d(θi, ωo) is the responseof thewo branch to the ith interferer. Assuming TH d(θ1, ωo)

and TH d(θ2, ωo) are linearly independent and nonzero, and provided M ≥ 2, then at least one wM

exists that satisfies (61.30). Extending this reasoning, we see that wM can be chosen to cancel M nar-
rowband interferers (assuming the TH d(θi, ωo) are linearly independent and nonzero), independent
of T. Total cancellation occurs if wM is chosen so the response of T wM perfectly matches the wo

branch response to the interferers. In general, M narrowband interferers can be cancelled using M

adaptive degrees of freedom with relatively mild restrictions on T.
No such rule exists in the broadband case. Here complete cancellation of a single interferer requires

choosing T wM so that the response of the adaptive branch, wH
MTH d(θ1, ω), matches the response of

the wo branch, wH
o d(θ1, ω), over the entire frequency band of the interferer. In this case, the degree

of cancellation depends on how well these two responses match and is critically dependent on the
interferer direction, frequency content, and T. Good cancellation can be obtained in some situations
when M = 1, while in others even large values of M result in poor cancellation.

A variety of intuitive and optimization-based techniques have been proposed for designing TM

that acheive good interference cancellation with relatively small degrees of freedom. See Van Veen
and Buckley [11] and Van Veen [12] for further review and discussion.

61.7 Summary

A beamformer forms a scalar output signal as a weighted combination of the data received at an
array of sensors. The weights determine the spatial filtering characteristics of the beamformer and
enable separation of signals having overlapping frequency content if they originate from different
locations. The weights in a data independent beamformer are chosen to provide a fixed response
independent to the received data. Statistically optimum beamformers select the weights to optimize
the beamformer response based on the statistics of the data. The data statistics are often unknown
and may change with time so adaptive algorithms are used to obtain weights that converge to the
statistically optimum solution. Computational and response time considerations dictate the use of
partially adaptive beamformers with arrays composed of large numbers of sensors.

61.8 Defining Terms

Beamformer: A device used in conjunction with an array of sensors to separate signals and
interference on the basis of their spatial characteristics. The beamformer output is usually
given by a weighted combination of the sensor outputs.

Array response vector: Vector describing the amplitude and phase relationships between prop-
agating wave components at each sensor as a function of spatial direction and temporal
frequency. Forms the basis for determining the beamformer response.

Beampattern: The magnitude squared of the beamformer’s spatial filtering response as a func-
tion of spatial direction and possibly temporal frequency.

Data independent, statistically optimum, adaptive, and partially adaptive beamformers: The
weights in a data independent beamformer are chosen independent of the statistics of
the data. A statistically optimum beamformer chooses its weights to optimize some sta-
tistical function of the beamformer output, such as signal-to-noise ratio. An adaptive
beamformer adjusts its weights in response to the data to accomodate unknown or time
varying statistics. A partially adaptive beamformer uses only a subset of the available
adaptive degrees of freedom to reduce the computational burden or improve the adaptive
convergence rate.

Multiple sidelobe canceller: Adaptive beamformer structure in which the data received at low
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gain auxiliary sensors is used to adaptively cancel the interference arriving in the mainlobe
or sidelobes of a spatially high gain sensor.

Linearly constrained minimum variance (LCMV) beamformer: Beamformer inwhich theweights
are chosen to minimize the output power subject to a linear response constraint. The
constraint preserves the signal of interest while power minimization optimally attenuates
noise and interference.

Minimum variance distortionless response (MVDR) beamformer: A form of LCMV beam-
former employing a single constraint designed to pass a signal of given direction and
frequency with unit gain.

Generalized sidelobe canceller: Structure for implementing LCMV beamformers that sepa-
rates the constrained and unconstrained components of the adaptive weight vector. The
unconstrained components adaptively cancel interference that leaks through the sidelobes
of a data independent beamformer designed to satisfy the constraints.
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