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65.1 Introduction

This article (see also [1, 2]) considers new methods for multiple electromagnetic source localization
using sensorswhoseoutput is a vector corresponding to the complete electric andmagneticfields at the
sensor. These sensors, which will be called vector sensors, can consist for example of two orthogonal
triads of scalar sensors that measure the electric and magnetic field components. Our approach is in
contrast to other articles in this chapter that employ sensor arrays in which the output of each sensor
is a scalar corresponding, for example, to a scalar function of the electric field. The main advantage
of the vector sensors is that they make use of all available electromagnetic information and hence
should outperform the scalar sensor arrays in accuracy of direction of arrival (DOA) estimation.
Vector sensors should also allow the use of smaller array apertures while improving performance.

1This work was supported by the U.S. Air Force Office of Scientific Research under Grant no. F49620-97-1-0481, the Office
of Naval Research under Grant no. N00014-96-1-1078, the National Science Foundation under Grant no. MIP-9615590,
and the HTI Fellowship.
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(Note that we use the term “vector sensor” for a device that measures a complete physical vector
quantity.)

Section 65.2 derives the measurement model. The electromagnetic sources considered can origi-
nate from two types of transmissions: (1) Single signal transmission (SST), in which a single signal
message is transmitted, and (2) dual signal transmission (DST), in which two separate signal messages
are transmitted simultaneously (from the same source), see for example [3, 4]. The interest in DST
is due to the fact that it makes full use of the two spatial degrees of freedom present in a transverse
electromagnetic plane wave. This is particularly important in the wake of increasing demand for
economical spectrum usage by existing and emerging modern communication technologies.

Section 65.3 analyzes the minimum attainable variance of unbiased DOA estimators for a general
vector sensor array model and multi-electromagnetic sources that are assumed to be stochastic and
stationary. A compact expression for the corresponding Cramér-Rao bound (CRB) on the DOA
estimation error that extends previous results for the scalar sensor array case in [5] (see also [6]) is
presented.

A significant property of the vector sensors is that they enable DOA (azimuth and elevation)
estimation of an electromagnetic source with a single vector sensor and a single snapshot. This result
is explicitly shown by using the CRB expression for this problem in Section 65.4. A bound on the
associated normalized mean-square angular error (MSAE, to be defined later) which is invariant to
the reference coordinate system is used for an in-depth performance study. Compact expressions for
this MSAE bound provide physical insight into the SST and DST source localization problems with
a single vector sensor.

The CRB matrix for an SST source in the sensor coordinate frame exhibits some nonintrinsic
singularities (i.e., singularities that are not inherent in the physical model while being dependent on
the choice of the reference coordinate system) and has complicated entry expressions. Therefore, we
introduce a new vector angular error defined in terms of the incoming wave frame. A bound on the
normalized asymptotic covariance of the vector angular error (CVAE) is derived. The relationship
between the CVAE and MSAE and their bounds is presented. The CVAE matrix bound for the SST
source case is shown to be diagonal, easy to interpret, and to have only intrinsic singularities.

Wepropose a simple algorithmfor estimating the sourceDOAwitha single vector sensor, motivated
by the Poynting vector. The algorithm is applicable to various types of sources (e.g., wide-band and
non-Gaussian); it does not require a minimization of a cost function and can be applied in real time.
Statistical performance analysis evaluates the variance of the estimator under mild assumptions and
compares it with the MSAE lower bound.

Section 65.5 extends these results to the multi-source multi-vector sensor case, with special atten-
tion to the two-source single-vector sensor case. Section 65.6 summarizes the main results and gives
some ideas of possible extensions.

The main difference between the topics of this article and other articles on source direction estima-
tion is in our use of vector sensors with complete electric and magnetic data. Most papers have dealt
with scalar sensors. Other papers that considered estimation of the polarization state and source
direction are [7]–[12]. Reference [7] discussed the use of subspace methods to solve this problem
using diversely polarized electric sensors. References [8]–[10] devised algorithms for arrays with two
dimensional electric measurements. Reference [11] provided performance analysis for arrays with
two types of electric sensor polarizations (diversely polarized). An earlier reference, [12], proposed
an estimation method using a three-dimensional vector sensor and implemented it with magnetic
sensors. All these references used only part of the electromagnetic information at the sensors, thereby
reducing the observability of DOAs. In most of them, time delays between distributed sensors played
an essential role in the estimation process.

For a plane wave (typically associated with a single source in the far-field) the magnitude of the
electric and magnetic fields can be found from each other. Hence, it may be felt that one (complete)
field is deducible from the other. However, this is not true when the source direction is unknown.
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Additionally, the electric and magnetic fields are orthogonal to each other and to the source DOA
vector, hence measuring both fields increases significantly the accuracy of the source DOA estimation.
This is true in particular for an incoming wave which is nearly linearly polarized, as will be explicitly
shown by the CRB (see Table 65.1).

The use of the complete electromagnetic vector data enables source parameter estimation with a
single sensor (even with a single snapshot) where time delays are not used at all. In fact, this is shown
to be possible for at least two sources. As a result, the derived CRB expressions for this problem
are applicable to wide-band sources. The source DOA parameters considered include azimuth and
elevation. This section also considers direction estimation to DST sources, as well as the CRB on wave
ellipticity and orientation angles (to be defined later) for SST sources using vector sensors, which
were first presented in [1, 2]. This is true also for the MSAE and CVAE quality measures and the
associated bounds. Their application is not limited to electromagnetic vector sensor processing.

We comment that electromagnetic vector sensors as measuring devices are commercially available
and actively researched. EMC Baden Ltd. in Baden, Switzerland, is a company that manufactures
them for signals in the 75 Hz to 30 MHz frequency range, and Flam and Russell, Inc. in Horsham,
Pennsylvania, makes them for the 2 to 30 MHz frequency band. Lincoln Labs at MIT has performed
some preliminary localization tests with vector sensors [13]. Some examples of recent research on
sensor development are [14] and [15].

Following the recent impressive progress in the performance of DSP processors, there is a trend
to fuse as much data as possible using smart sensors. Vector sensors, which belong to this category
of sensors, are expected to find larger use and provide important contribution in improving the
performance of DSP in the near future.

65.2 The Measurement Model

This section presents the measurement model for the estimation problems that are considered in the
latter parts of the article.

65.2.1 Single-Source Single-Vector Sensor Model

Basic Assumptions

Throughout the article it will be assumed that the wave is traveling in a nonconductive, homo-
geneous, and isotropic medium. Additionally, the following will be assumed:

A1: Plane wave at the sensor: This is equivalent to a far-field assumption (or maximum wave-
length much smaller than the source to sensor distance), a point source assumption (i.e.,
the source size is much smaller than the source to sensor distance) and a point-like sensor
(i.e., the sensor’s dimensions are small compared to the minimum wave-length).

A2: Band-limited spectrum: The signal has a spectrum including only frequenciesω satisfying
ωmin ≤ |ω| ≤ ωmax where 0 < ωmin < ωmax < ∞. This assumption is satisfied in
practice. The lower and upper limits on ω are also needed, respectively, for the far-field
and point-like sensor assumptions.

Let E(t) and H(t) be the vector phasor representations (or complex envelopes, see e.g., [16, 17]
and [1, Appendix A]) of the electric and magnetic fields at the sensor. Also, let u be the unit vector
at the sensor pointing towards the source, i.e.,

u =

 cosθ1 cosθ2

sinθ1 cosθ2
sinθ2


 (65.1)
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where θ1 and θ2 denote, respectively, the azimuth and elevation angles of u, see Fig. 65.1. Thus,
θ1 ∈ [0, 2π) and |θ2| ≤ π/2.

FIGURE 65.1: The orthonormal vector triad (u, v1, v2).

In [1, Appendix A] it is shown that for plane waves Maxwell’s equations can be reduced to an
equivalent set of two equations without any loss of information. Under the additional assumption
of a band-limited signal, these two equations can be written in terms of phasors. The results are
summarized in the following theorem.

THEOREM 65.1 Under assumption A1, Maxwell’s equations can be reduced to an equivalent set of
two equations. With the additional band-limited spectrum assumption A2, they can be written as:

u × E(t) = −ηH(t) (65.2a)

u · E(t) = 0 (65.2b)

where η is the intrinsic impedance of the medium and “×” and “·” are the cross and inner products of
R

3 applied to vectors in C
3. (That is, if v, w ∈ C

3 then v · w = ∑
i viwi . This is different than the

usual inner product of C
3).

PROOF 65.1 See [1, Appendix A]. (Note that u = −κ where κ is the unit vector in the direction
of the wave propagation).

Thus, under the plane and band-limited wave assumptions, the vector phasor equations (65.2)
provide all the information contained in the original Maxwell equations. This result will be used in
the following to construct measurement models in which the Maxwell equations are incorporated
entirely.
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The Measurement Model

Suppose that a vector sensor measures all six components of the electric and magnetic fields.
(It is assumed that the sensor does not influence the electric and magnetic fields). The measurement
model is based on the phasor representation of the measured electromagnetic data (with respect to
a reference frame) at the sensor. Let yE(t) be the measured electric field phasor vector at the sensor
at time t and eE(t) its noise component. Then the electric part of the measurement will be

yE(t) = E(t) + eE(t) (65.3)

Similarly, from Eq. (65.2a), after appropriate scaling, the magnetic part of the measurement will be
taken as

yH (t) = u × E(t) + eH (t) (65.4)

In addition to Eq. (65.3) and (65.4), we have the constraint (65.2b).
Define the matrix cross product operator that maps a vector v ∈ R

3×1 to (u × v) ∈ R
3×1 by

(u×)
1=


 0 −uz uy

uz 0 −ux

−uy ux 0


 (65.5)

whereux, uy, uz are thex, y, z componentsof thevectoru. With thisdefinition, Eqs. (65.3)and(65.4)
can be combined to [

yE(t)

yH (t)

]
=

[
I3

(u×)

]
E(t) +

[
eE(t)

eH (t)

]
(65.6)

where I3 denotes the 3 × 3 identity matrix. For notational convenience the dimension subscript of
the identity matrix will be omitted whenever its value is clear from the context.

The constraint (65.2b) implies that the electric phasor E(t) can be written

E(t) = V ξ(t) (65.7)

where V is a 3 × 2 matrix whose columns span the orthogonal complement of u and ξ(t) ∈ C
2×1.

It is easy to check that the matrix

V =

 − sinθ1 − cosθ1 sinθ2

cosθ1 − sinθ1 sinθ2
0 cosθ2


 (65.8)

whose columns are orthonormal, satisfies this requirement. We note that since‖u‖2 = 1 the columns
of V , denoted by v1 and v2, can be constructed, for example, from the partial derivatives of u with
respect to θ1 and θ2 and post-normalization when needed. Thus,

v1 = 1

cosθ2

∂u

∂θ1
(65.9a)

v2 = u × v1 = ∂u

∂θ2
(65.9b)

and (u, v1, v2) is a right orthonormal triad, see Fig. 65.1. (Observe that the two coordinate systems
shown in the figure actually have the same origin). The signal ξ(t) fully determines the components
of E(t) in the plane where it lies, namely the plane orthogonal to u spanned by v1, v2. This implies
that there are two degrees of freedom present in the spatial domain (or the wave’s plane), or two
independent signals can be transmitted simultaneously.
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Combining Eq. (65.6) and Eq. (65.7) we now have[
yE(t)

yH (t)

]
=

[
I

(u×)

]
V ξ(t) +

[
eE(t)

eH (t)

]
(65.10)

This system is equivalent to Eq. (65.6) with Eq. (65.2b).
The measured signals in the sensor reference frame can be further related to the original source

signal at the transmitter using the following lemma.

LEMMA 65.1 Every vector ξ = [ξ1, ξ2]T ∈ C
2×1 has the representation

ξ = ‖ξ‖eiϕQw (65.11)

where

Q =
[

cosθ3 sinθ3
− sinθ3 cosθ3

]
(65.12a)

w =
[

cosθ4
i sinθ4

]
(65.12b)

and where ϕ ∈ (−π, π], θ3 ∈ (−π/2, π/2], θ4 ∈ [−π/4, π/4]. Moreover, ‖ξ‖, ϕ, θ3, θ4 in
Eq. (65.11) are uniquely determined if and only if ξ2

1 + ξ2
2 6= 0.

PROOF 65.2 See [1, Appendix B].

The equality ξ2
1 + ξ2

2 = 0 holds if and only if |θ4| = π/4, corresponding to circular polarization
(defined below). Hence, from Lemma 65.1 the representation (65.11), (65.12) is not unique in this
case as should be expected, since the orientation angle θ3 is ambiguous. It should be noted that the
representation (65.11), (65.12) is known and was used (see, e.g., [18]) without a proof. However,
Lemma 65.1 of existence and uniqueness appears to be new. The existence and uniqueness properties
are important to guarantee identifiability of parameters.

The physical interpretations of the quantities in the representation (65.11), (65.12) are as follows.
‖ξ‖eiϕ : Complex envelope of the source signal (including amplitude and phase).

w: Normalized overall transfer vector of the source’s antenna and medium, i.e., from the
source complex envelope signal to the principal axes of the received electric wave.

Q: A rotation matrix that performs the rotation from the principal axes of the incoming
electric wave to the (v1, v2) coordinates.

Let ωc be the reference frequency of the signal phasor representation, see [1, Appendix A]. In the
narrow-band SST case, the incoming electric wave signal Re

{
eiωct‖ξ(t)‖eiϕ(t)Qw

}
moves on a qua-

sistationary ellipse whose semi-major and semi-minor axes’ lengths are proportional, respectively, to
cosθ4 and sinθ4, see Fig. 65.2 and [19]. The ellipse’s eccentricity is thus determined by the magnitude
of θ4. The sign of θ4 determines the spin sign or direction. More precisely, a positive (negative) θ4
corresponds to a positive (negative) spin with right-(left) handed rotation with respect to the wave
propagation vector κ = −u. As shown in Fig. 65.2, θ3 is the rotation angle between the (v1, v2)
coordinates and the electric ellipse axes (̃v1, ṽ2). The angles θ3 and θ4 will be referred to, respectively,
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FIGURE 65.2: The electric polarization ellipse.

as the orientation and ellipticity angles of the received electric wave ellipse. In addition to the electric
ellipse, there is also a similar but perpendicular magnetic ellipse.

It should be noted that if the transfer matrix from the source to the sensor is time invariant, then
so are θ3 and θ4.

The signal ξ(t) can carry information coded in various forms. In the following we discuss briefly
both existing forms and some motivated by the above representation.

Single Signal Transmission (SST) Model

Suppose that a single modulated signal is transmitted. Then, using Eq. (65.11), this is a special
case of Eq. (65.10) with

ξ(t) = Qws(t) (65.13)

where s(t) denotes the complex envelope of the (scalar) transmitted signal. Thus, the measurement
model is [

yE(t)

yH (t)

]
=

[
I

(u×)

]
V Qws(t) +

[
eE(t)

eH (t)

]
(65.14)

Special cases of this transmission are linear polarization with θ4 = 0 and circular polarization with
|θ4| = π/4.

Recall that since there are two spatial degrees of freedom in a transverse electromagnetic plane
wave, one could, in principle, transmit two separate signals simultaneously. Thus, the SST method
does not make full use of the two spatial degrees of freedom present in a transverse electromagnetic
plane wave.

Dual Signal Transmission (DST) Models

Methods of transmission in which two separate signals are transmitted simultaneously from
the same source will be called dual signal transmissions. Various DST forms exist, and all of them can
be modeled by Eq. (65.10) with ξ(t) being a linear transformation of the two-dimensional source
signal vector.

One DST form uses two linearly polarized signals that are spatially and temporally orthogonal
with an amplitude or phase modulation (see e.g., [3, 4]). This is a special case of Eq. (65.10), where

c©1999 by CRC Press LLC



the signal ξ(t) is written in the form

ξ(t) = Q

[
s1(t)

is2(t)

]
(65.15)

where s1(t) and s2(t) represent the complex envelopes of the transmitted signals. To guarantee
unique decoding of the two signals (when θ3 is unknown) using Lemma 65.1, they have to satisfy
s1(t) 6= 0, s2(t)/s1(t) ∈ (−1, 1). (Practically this can be achieved by using a proper electronic
antenna adapter that yields a desirable overall transfer matrix.)

Another DST form uses two circularly polarized signals with opposite spins. In this case

ξ(t) = Q[ws̃1(t) + ws̃2(t)] (65.16a)

w = (1/
√

2)[1, i]T (65.16b)

wherew denotes the complex conjugate ofw. The signals s̃1(t), s̃2(t) represent the complex envelopes
of the transmitted signals. The first term on the r.h.s. of Eqs. (65.16) corresponds to a signal with
positive spin and circular polarization (θ4 = π/4), while the second term corresponds to a signal with
negative spin and circular polarization (θ4 = −π/4). The uniqueness of Eqs. (65.16) is guaranteed
without the conditions needed for the uniqueness of Eq. (65.15).

The above-mentioned DST models can be applied to communication problems. Assuming that
u is given, it is possible to measure the signal ξ(t) and recover the original messages as follows.
For Eq. (65.15), an existing method resolves the two messages using mechanical orientation of the
receiver’s antenna (see, e.g., [4]). Alternatively, this canbedoneelectronicallyusing the representation
of Lemma 65.1, without the need to know the orientation angle. For Eqs. (65.16), note that
ξ(t) = weiθ3̃s1(t) + we−iθ3̃s2(t), which implies the uniqueness of Eqs. (65.16) and indicates that
the orientation angle has been converted into a phase angle whose sign depends on the spin sign.
The original signals can be directly recovered from ξ(t) up to an additive constant phase without
knowledge of the orientation angle. In some cases, it is of interest to estimate the orientation
angle. Let W be a matrix whose columns are w,w. For Eqs. (65.16) this can be done using equal
calibrating signals and then premultiplying the measurement by W−1 and measuring the phase
difference between the two components of the result. This can also be used for real time estimation
of the angular velocity dθ3/dt .

In general it can be stated that the advantage of the DST method is that it makes full use of the
spatial degrees of freedom of transmission. However, the above DST methods need the knowledge
of u and, in addition, may suffer from possible cross polarizations (see, e.g., [3]), multipath effects,
and other unknown distortions from the source to the sensor.

Theuseof theproposedvector sensor canmotivate thedesignofnew improved transmission forms.
Here we suggest a new dual signal transmission method that uses on line electronic calibration in
order to resolve the above problems. Similar to the previous methods it also makes full use of the
spatial degrees of freedom in the system. However, it overcomes the need to know u and the overall
transfer matrix from source to sensor.

Suppose the transmitted signal is z(t) ∈ C
2×1 (this signal is as it appears before reaching the

source’s antenna). The measured signal is[
yE(t)

yH (t)

]
= C(t)z(t) +

[
eE(t)

eH (t)

]
(65.17)

where C(t) ∈ C
6×2 is the unknown source to sensor transfer matrix that may be slowly varying due

to, for example, the source dynamics. To facilitate the identification of z(t), the transmitter can send
calibrating signals, for instance, transmit z1(t) = [1, 0]T and z2(t) = [0, 1]T separately. Since these
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inputs are in phasor form, this means that actually constant carrier waves are transmitted. Obviously,
one can then estimate the columns of C(t) by averaging the received signals, which can be used later
for finding the original signal z(t) by using, for example, least-squares estimation. Better estimation
performance can be achieved by taking into account a priori information about the model.

The use of vector sensors is attractive in communication systems as it doubles the channel capacity
(compared with scalar sensors) by making full use of the electromagnetic wave properties. This
spatial multiplexing has vast potential for performance improvement in cellular communications.

In future research itwouldbeof interest todevelopoptimal codingmethods (modulation forms) for
maximum channel capacity while maintaining acceptable distortions of the decoded signals despite
unknown varying channel characteristics. It would also be of interest to design communication
systems that utilize entire arrays of vector sensors.

Observe that actually any combination of the variables ‖ξ‖, ϕ, θ3 and θ4 can be modulated to carry
information. A binary signal can be transmitted using the spin sign of the polarization ellipse (sign
of θ4). Lemma 65.1 guarantees the identifiability of these signals from ξ(t).

65.2.2 Multi-Source Multi-Vector Sensor Model

Suppose that waves from n distant electromagnetic sources are impinging on an array of m vector
sensors and that assumptions A1 and A2 hold for each source. To extend the model (65.10) to this
scenario we need the following additional assumptions, which imply that A1, A2 hold uniformly on
the array:

A3: Plane wave across the array: In addition to A1, for each source the array size dA has to
be much smaller than the source to array distance, so that the vector u is approximately
independent of the individual sensor positions.

A4: Narrow-band signal assumption: The maximum frequency of E(t), denoted by ωm,
satisfies ωmdA/c � 1, where c is the velocity of wave propagation (i.e., the minimum
modulating wave-length is much larger than the array size). This implies that E(t − τ) '
E(t) for all differential delays τ of the source signals between the sensors.

Note that (under the assumption ωm < ωc) sinceωm = max{|ωmin−ωc|, |ωmax−ωc|}, it follows that
A4 is satisfied if (ωmax− ωmin)dA/2c � 1 and ωc is chosen to be close enough to (ωmax+ ωmin)/2.

Let yEH (t) and eEH (t) be the 6m × 1 dimensional electromagnetic sensor phasor measurement
and noise vectors,

yEH (t)
1=

[
(y

(1)
E (t))T , (y

(1)
H (t))T , · · · , (y

(m)
E (t))T , (y

(m)
H (t))T

]T

(65.18a)

eEH (t)
1=

[
(e

(1)
E (t))T , (e

(1)
H (t))T , · · · , (e

(m)
E (t))T , (e

(m)
H (t))T

]T

(65.18b)

where y
(j)
E (t) and y

(j)
H (t) are, respectively, the measured phasor electric and magnetic vector fields at

the j th sensor and similarly for the noise components e
(j)
E (t) and e

(j)
H (t). Then, under assumptions

A3 and A4 and from Eq. (65.10), we find that the array measured phasor signal can be written as

yEH (t) =
n∑

k=1

ek ⊗
[

I3
(uk×)

]
Vkξ k(t) + eEH (t) (65.19)

where ⊗ is the Kronecker product, ek denotes the kth column of the matrix E ∈ C
m×n whose (j, k)

entry is
Ejk = e−iωcτjk (65.20)
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where τjk is the differential delay of the kth source signal between the j th sensor and the origin of
some fixed reference coordinate system (e.g., at one of the sensors). Thus, τjk = −(uk · rj )/c, where
uk is the unit vector in the direction from the array to the kth source and rj is the position vector of
the j th sensor in the reference frame. The rest of the notation in Eq. (65.19) is similar to the single
source case, cf. Eqs. (65.1), (65.8), and (65.10). The vector ξ k(t) can have either the SST or the DST
form described above.

Observe that the signal manifold matrix in Eq. (65.19) can be written as the Khatri-Rao product
(see, e.g., [20, 21]) of E and a second matrix whose form depends on the source transmission type
(i.e., SST or DST), see also later.

65.3 Cramér-Rao Bound for a Vector Sensor Array

65.3.1 Statistical Model

Consider the problem of finding the parameter vector θ in the following discrete-time vector sensor
array model associated with n vector sources and m vector sensors:

y(t) = A(θ)x(t) + e(t) t = 1, 2, . . . (65.21)

where y(t) ∈ C
µ×1 are the vectors of observed sensor outputs (or snapshots), x(t) ∈ C

ν×1 are the
unknown source signals, and e(t) ∈ C

µ×1 are the additive noise vectors. The transfer matrix A(θ)

∈ C
µ×ν and the parameter vector θ ∈ R

q×1 are given by

A(θ) =
[
A1(θ

(1)) · · · An(θ
(n))

]
(65.22a)

θ =
[
(θ (1))T , · · · , (θ (n))T

]T

(65.22b)

where Ak(θ
(k)) ∈ C

µ×νk and the parameter vector of the kth source θ (k) ∈ R
qk×1, thus ν = ∑n

k=1 νk

and q = ∑n
k=1 qk . The following notation will also be used:

y(t) =
[
(y(1)(t))T , · · · , (y(m)(t))T

]T

(65.23a)

x(t) =
[
(x(1)(t))T , · · · , (x(n)(t))T

]T

(65.23b)

where y(j)(t) ∈ C
µj ×1 is the vector measurement of the j th sensor, implying µ = ∑m

j=1 µj , and

x(k)(t) ∈ C
νk×1 is the vector signal of the kth source. Clearly µ and ν correspond, respectively, to

the total number of sensor components and source signal components.
The model (65.21) generalizes the commonly used multi-scalar source multi-scalar sensor one

(see, e.g., [7, 22]). It will be shown later that the electromagnetic multi-vector source multi-vector
sensor data models are special cases of Eq. (65.21) with appropriate choices of matrices.

For notational simplicity, the explicit dependence on θ and t will be occasionally omitted.
We make the following commonly used assumptions on the model (65.21):

A5: The source signal sequence {x(1), x(2), . . .} is a sample from a temporally uncorrelated
stationary (complex) Gaussian process with zero mean and

E x(t)x∗(s) = Pδt,s

E x(t)xT (s) = 0 (for all t and s).
where E is the expectation operator, the superscript “∗” denotes the conjugate transpose,
and δt,s is the Kronecker delta.
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A6: The noise e(t) is (complex) Gaussian distributed with zero mean and
E e(t)e∗(s) = σ 2Iδt,s

E e(t)eT (s) = 0 (for all t and s).
It is also assumed that the signals x(t) and the noise e(s) are independent for all t and s.

A7: The matrix A has full rank ν < µ (thus A∗A is p.d.) and a continuous Jacobian ∂A/∂θ

in some neighborhood of the true θ . The matrix APA∗ + σ 2I is assumed to be positive
definite, which implies that the probability density functions of the model are well de-
fined in some neighborhood of the true θ , P , σ 2. Additionally, the matrix in braces in
Eq. (65.24) below is assumed to be nonsingular.

The unknown parameters in the model (65.21) include the vector θ , the signal covariance matrixP ,
and the noise variance σ 2. The problem of estimating θ in (65.21) from N snapshots y(1), . . . , y(N)

and the statistical performance of estimation methods are the main concerns of this article.

65.3.2 The Cramér-Rao Bound

Consider the estimation of θ in the model (65.21) under the above assumptions and with θ , P , σ 2

unknown. We have the following theorem.

THEOREM 65.2 The Cramér-Rao lower bound on the covariance matrix of any (locally) unbiased
estimator of the vector θ in the model (65.21), under assumptions A5 through A7 with θ , P , σ 2 unknown
and νk = ν for all k, is a positive definite matrix given by

CRB(θ) = σ 2

2N

{
Re

[
btr

((
1×2U

) ·2 (
D∗5cD

)bT
)]}−1

(65.24)

where

U = P
(
A∗AP + σ 2I

)−1
A∗AP (65.25a)

5c = I − 5 (65.25b)

5 = A(A∗A)−1A∗ (65.25c)

D =
[
D

(1)
1 · · ·D(1)

q1
· · · D

(n)
1 · · ·D(n)

qn

]
(65.25d)

D
(k)
` = ∂Ak

∂θ
(k)
`

(65.25e)

and where 1 denotes a q ×q matrix with all entries equal to one, and the block trace operator btr (·), the
block Kronecker product ×2, the block Schur-Hadamard product ·2, and the block transpose operator bT

are as defined in the Appendix with blocks of dimensions ν × ν, except for the matrix 1 that has blocks
of dimensions qi × qj .

Furthermore, the CRB in Eq. (65.24) remains the same independently of whether σ 2 is known or
unknown.

PROOF 65.3 See [1, Appendix C].

Theorem65.2 canbe extended to includea larger class ofunknownsensornoise covariancematrices
(see [1, Appendix D]).
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65.4 MSAE, CVAE, and Single-Source Single-Vector Sensor
Analysis

This section introduces the MSAE and CVAE quality measures and their bounds for source direction
and orientation estimation in three-dimensional space. The bounds are applied to analyze the
statistical performance of parameter estimation of an electromagnetic source whose covariance is
unknown using a single vector sensor. Note that single vector sensor analysis is valid for wide-band
sources, as assumptions A3 and A4 are not needed.

65.4.1 The MSAE

We define the mean-square angular error which is a quality measure that is useful for gaining physical
insight into DOA (azimuth and elevation) estimation and for performance comparisons. The analysis
of this subsection is not limited to electromagnetic measurements or to Gaussian data.

The angular error, say δ, corresponding to a direction error 1u in u, can be shown to be δ =
2 arcsin(‖1u‖/2). Hence, δ2 = ‖1u‖2 + O(‖1u‖4). Since 1u =

(
∂u
∂θ1

)
1θ1 +

(
∂u
∂θ2

)
1θ2 +

O((1θ1)
2 + (1θ2)

2) where 1θ1, 1θ2 are the errors in θ1 and θ2, we have

δ2 = (cosθ2 · 1θ1)
2 + (1θ2)

2 + O(|1θ1|3 + |1θ2|3) (65.26)

We introduce the following definitions.

DEFINITION 65.1 A model will be called regular if it satisfies any set of sufficient conditions for
the CRB to hold (see, e.g., [23, 24]).

DEFINITION 65.2 The normalized asymptotic mean-square angular error of a direction estimator
will be defined as

MSAE
1= lim

N→∞

{
NE (δ2)

}
(65.27)

whenever this limit exists.

DEFINITION65.3 Adirectionestimatorwillbecalled regular if its errors satisfyE
[|1θ1|3 + |1θ2|3

] =
o(1/N), the gradient of its biaswith respect to θ1, θ2 exists and iso(1) asN → ∞, and itsMSAEexists.
(If |θ2| = π/2 then θ1 is undefined and we can use the equivalent condition E

[‖1u‖3
] = o(1/N)).

Equation (65.26) shows that under the assumptions that the model and estimator are regular we
have

E (δ)2 ≥ [cos2 θ2 · CRB(θ1) + CRB(θ2)] + o(1/N) as N → ∞ (65.28)

where CRB(θ1) and CRB(θ2) are, respectively, the Cramér-Rao bounds for the azimuth and elevation.
Using Eq. (65.28) we have the following theorem.

THEOREM 65.3 For a regular model MSAE of any regular direction estimator is bounded from below
by

MSAECR

1= N [cos2 θ2 · CRB(θ1) + CRB(θ2)] (65.29)
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Observe that MSAECR is not a function of N . Additionally, MSAECR is a tight bound if it is
attained by some second order efficient regular estimator (usually the maximum likelihood (ML)
estimator, see e.g., [25]). For vector sensor measurements this bound has the desirable property of
being invariant to the choice of reference coordinate frame, since the information content in the data
is invariant under rotational transformations. This invariance property also holds for the MSAE of
an estimator if the estimate is independent of known rotational transformations of the data.

For a regularmodel, thebound(65.29) canbeused forperformanceanalysis of any regulardirection
(azimuth and elevation) finding algorithm.

It is of interest to note that the bound (65.29) actually holds for finite data, when the estimators of
u are unbiased and constrained to be of unit norm, see [26].

65.4.2 DST Source Analysis

Assume that it is desired to estimate the direction to a DST source whose covariance is unknown
using a vector sensor. We will first present a statistical model for this problem as a special case of
Eq. (65.21) and then investigate in detail the resulting CRB and MSAE.

The measurement model for the DST case is given in Eq. (65.10). Suppose the noise vector of
Eq. (65.10) is (complex) Gaussian with zero mean and the following covariances:

E

[
eE(t)

eH (t)

] [
e∗

E
(s) , e∗

H
(s)

] =
[

σ 2
E
I3 0

0 σ 2
H
I3

]
δt,s

E

[
eE(t)

eH (t)

] [
eT

E
(s) , eT

H
(s)

] = 0 (for all t and s).

Our assumption that the noise components are statistically independent stems from the fact that
they are created separately at different sensor components (even if the sensor components belong to
a vector sensor). Note that under assumption A1 the measurement includes a source plane wave
component and sensor self noise.

To relate the model (65.10) to (65.21), define a scaled measurement y(t)
1= [

ryT
E
(t), yT

H
(t)

]T
where r

1= σH/σE is assumed to be known. (The results of this section actually hold also when r

is unknown as is explained in [1]). The resulting scaled noise vector e(t)
1= [

reT
E
(t), eT

H
(t)

]T
then

satisfies assumption A6 with σ = σH . Assume further that the signal ξ(t) satisfies assumption A5
with x(t) = ξ(t). Then, under these assumptions, the scaled version of the DST source (65.10) can
be viewed as a special case of Eq. (65.21) with m = n = 1 and

A =
[

rV

(u×)V

]
x(t) = ξ(t) σ 2 = σ 2

H

θ = [
θ1 , θ2

]T
(65.30)

where the unknown parameters are θ , P , σ 2. The parameter vector of interest is θ while P and σ 2

are the so-called nuisance parameters.
The above discussion shows that the CRB expression (65.24) is applicable to the present problem

with the special choice of variables in Eq. (65.30), thus n = 1 and q = 2. The computation of the
CRB is given in [1]. The result is independent of whether r is known or unknown.

Using the CRB results of [1] we find that MSAECR for the present DST problem is

MSAED

CR
=

(
σ 2

E
+ σ 2

H

)
σ 2

E
σ 2

H
tr U

2
[
σ 2

Eσ 2
H (tr U)2 + (

σ 2
E − σ 2

H

)2
det(Re U)

] (65.31)

Observe that MSAED
CR

is symmetric with respect to σE, σH , as should be expected from the Maxwell
equations. MSAED

CR
is not a function of θ1, θ2, θ3, as should be expected since for vector sensor
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measurements the MSAE bound is by definition invariant to the choice of coordinate system. Note
that MSAED

CR
is independent of whether σE and σH are known or unknown.

65.4.3 SST Source (DST Model) Analysis

Consider the MSAE for a single signal transmission source when the estimation is done under the
assumption that the source is of a dual signal transmission type. In this case, the model (65.10) has
to be used but with a signal in the form of (65.13). The signal covariance is then

P = σ 2
s Qw(Qw)∗ (65.32)

where σ 2
s = E s2(t) and Q and w are defined in Eq. (65.12). Thus, rank P = 1 and P has a unit

norm eigenvector Qw with an eigenvalue σ 2
s .

Let

σ 2
‖

1= σ 2
E

· σ 2
H

σ 2
E + σ 2

H

(65.33)

The varianceσ 2
‖ can be viewed as an equivalent noise variance of two measurements with independent

noise variances σ 2
E

and σ 2
H

. Define % , σ 2
s /σ 2

‖ , which is an effective SNR.
Using the analysis of U in [1] and expression (65.31) we find that

MSAES

CR
= (1 + %)(σ 2

E
+ σ 2

H
)2

2%2
[
σ 2

Eσ 2
H + (σ 2

E − σ 2
H )2 sin2 θ4 cos2 θ4

]
= (1 + %)(1 + r2)2

2%2
[
r2 + (1 − r2)2 sin2 θ4 cos2 θ4

] (65.34)

where MSAES
CR

denotes the MSAECR bound for the SST problem under the DST model. (It will be
shown later that the same result also holds under the SST model.) Observe that MSAES

CR
is symmetric

with respect to σE, σH . It is also independent of whether σH and σE are known or unknown, as can be
shown from Theorem 65.2 and [1, Appendix D]. Also, MSAES

CR
is not a function of θ1, θ2, θ3, since

for vector sensor measurements the MSAE bound is invariant under rotational transformations of
the reference coordinate system. On the other hand, MSAES

CR
is influenced by the ellipticity angle θ4

through the difference in the electric and magnetic noise variances.
Table 65.1 summarizes several special cases of the expression (65.34) for MSAES

CR
. The elliptical

polarization column corresponds to an arbitrary polarization angle θ4 ∈ [−π/4, π/4]. The circu-
lar and linear polarization columns are obtained, respectively, as special cases of Eq. (65.34) with
|θ4| = π/4 and θ4 = 0. The row of precise (noise-free) electric measurement (with noisy magnetic
measurements) is obtained by substituting σ 2

E
= 0 in (65.34). The row of electric measurement only

is obtained by deriving the corresponding CRB and MSAES
CR

. Alternatively, MSAES
CR

can be found
for this case by taking the limit of Eq. (65.34) as σ 2

H
→ ∞.

Observe from Eq. (65.34) that when σ 2
H

6= σ 2
E

, MSAES
CR

is minimized for circular polarization
and maximized for linear polarization. This result is illustrated in Fig. 65.3, which shows the square
root of MSAES

CR
as a function of r = σH/σE for three types of polarizations (θ4 = 0, π/12, π/4).

The equivalent signal-to-noise ratio SNR = σ 2
s /σ 2

‖ is kept at one, while the individual electric and
magnetic noise variances are varied to give the desired value of r . As r becomes larger or smaller
than one, MSAES

CR
increases more significantly for sources with polarization closer to linear.

When the electric (or magnetic) field is measured precisely and the source polarization is circular or
elliptical, the MSAES

CR
is zero (i.e., no angular error), while for linearly polarized sources it remains

positive. In the latter case, the contribution to MSAES
CR

stems from the magnetic (or electric)
noisy measurement. When only the electric (or magnetic) field is measured, MSAES

CR
increases as
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TABLE 65.1 MSAE Bounds for a Single Signal Transmission Source
Elliptical Circular Linear

General MSAES
CR

(65.34)
2(1 + %)

%2

(1 + %)(σ2
E

+ σ2
H

)

2%σ2
s

Precise electric measurement 0 0
σ2
H

2σ2
s

Electric measurement only
σ2
E

(σ2
E

+ σ2
s )

2σ4
s sin2 θ4 cos2 θ4

2σ2
E

(σ2
E

+ σ2
s )

σ4
s

∞

FIGURE 65.3: Effect of change in r = σH/σE on MSAES
CR

for three types of polarizations (θ4 =
0, π/12, π/4). A single SST source, SNR = σ 2

s /σ 2
‖ = 1.

the polarization changes from circular to linear. In the linear polarization case, MSAES
CR

tends to
infinity. In this case, it is impossible to uniquely identify the source direction u from the electric field
only, since u can then be anywhere in the plane orthogonal to the electric field vector.

The immediate conclusion is that as the sourcebecomes closer tobeing linearlypolarized it becomes
more important to measure both the electric and magnetic fields to get good direction estimates using
a single vector sensor.

These results are illustrated in Fig. 65.4, which shows the square root of MSAES
CR

as a function
of σ 2

H
and three polarization types (θ4 = 0, π/12, π/4). The standard deviations of the signal and

electric noise are σs = σE = 1. The left side of the figure corresponds to (nearly) precise magnetic
measurement, while the right side to (nearly) electric measurement only.

65.4.4 SST Source (SST Model) Analysis

Suppose that it is desired to estimate the direction to an SST source whose variance is unknown using
a single vector sensor, and the estimation is done under the correct model of an SST source. In the
following, the CRB for this problem will be derived and it will be shown that the resulting MSAE
bound remains the same as when the estimation was done under the assumption of a DST source.
That is, knowledge of the source type does not improve the accuracy of its direction estimate.
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FIGURE 65.4: Effect of change in magnitude of σ 2
H

on MSAES
CR

for three types of polarizations
(θ4 = 0, π/12, π/4). A single SST source, σs = σE = 1.

To get a statistical model for the SST measurement model (65.14) as a special case of Eq. (65.21),
we will make the same assumptions on the noise and use a similar data scaling as in the above DST
source case. That will give again equal noise variances in all the sensor coordinates. Assume also that
the signal envelope s(t) satisfies assumption A5 with x(t) = s(t) in Eq. (65.14). Then the resulting
statistical model becomes a special case of Eq. (65.21) with

A =
[

rV

(u×)V

]
Qw x(t) = s(t) σ 2 = σ 2

H

θ = [
θ1 , θ2 , θ3 , θ4

]T
(65.35)

The unknown parameters are θ , P , σ 2.

The matrix expression of CRB(θ) was calculated and its entries are presented in [1, Appendix F].
The results show that the ellipticity angle θ4 is decoupled from the rest of the parameters and that
its variance is not a function of these parameters. Additionally, the parameter vector θ is decoupled
from σE and σH .

The MSAE bound for an SST source under the SST model was calculated using the analysis of [1].
The result coincides with Eq. (65.34). That is, the MSAE bound for an SST source is the same under
both the SST and the DST models.

The CRB expression in [1, Appendix F] implies that the CRB variance of the orientation angle θ3
tends to infinity as the elevation angle θ2 approaches π/2 or −π/2. This singularity is explained
by the fact that the orientation angle is a function of the azimuth (through v1, v2), and the latter
becomes increasingly sensitive to measurement errors as the elevation angle approaches the zenith
or nadir. (Note that the azimuth is undefined in the zenith and nadir elevations). However, this
singularity is not an intrinsic one, as it depends on the chosen reference system, while the information
in the vector measurement does not.
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65.4.5 CVAE and SST Source Analysis in the Wave Frame

In order to get performance results intrinsic to the SST estimation problem and thereby solve the
singularity problems associated with the above model, we choose an alternative error vector that
is invariant under known rotational transformations of the coordinate system. The details of the
following analysis appear in [1, Appendix G].

Denote by W the wave frame whose coordinate axes are (u, ṽ1, ṽ2) where ṽ1 and ṽ2 correspond,
respectively, to the major and minor axes of the source’s electric wave ellipse (see Fig. 65.2). For any
estimator θ̂i , i = 1, 2, 3 there is an associated estimated wave frame Ŵ . Define the vector angular
error φWŴ which is the vector angle by which Ŵ is (right-handed) rotated about W , and by

[
φWŴ

]
W

the representation of φWŴ in the coordinate system W (see [1, Appendix G]). The proposed vector
angular error will be

[
φWŴ

]
W

.

Observe that
[
φWŴ

]
W

depends, by definition, only on the frames W, Ŵ . Thus, for an estimator

that is independent of known rotations of the data, the estimated wave frame Ŵ , the vector angular
error and its covariance are independent of the sensor frame. We introduce the following definitions.

DEFINITION 65.4 The normalized asymptotic covariance of the vector angular error in the wave
frame is defined as

CVAE
1= lim

N→∞

{
NE

([
φWŴ

]
W

[
φWŴ

]T
W

)}
(65.36)

whenever this limit exists.

DEFINITION 65.5 A direction and orientation estimator will be called regular if its errors satisfy
E

∑3
i=1 |1θi |3 = o(1/N) and the gradient of its bias with respect to θ1, θ2, θ3 is o(1) as N → ∞.

Then we have the following theorems.

THEOREM 65.4 For a regular model the CVAE of any regular direction and orientation estimator,
whenever it exists, is bounded from below by

CVAECR

1= N · K CRB(θ1, θ2, θ3)K
T (65.37)

where

K =

 sinθ2 0 −1

− cosθ2 sinθ3 − cosθ3 0
cosθ2 cosθ3 − sinθ3 0


 (65.38)

and CRB(θ1, θ2, θ3) is the Cramér-Rao submatrix bound for the azimuth, elevation, and orientation
angles for the particular model used.

PROOF 65.4 See [1, Appendix G].

Observe that the result of Theorem 65.4 is obtained using geometrical considerations only. Hence,
it is applicable to general direction and orientation estimation problems and is not limited to the SST
problem only. It is dependent only on the ability to define a wave frame. For example, one can apply
this theorem to a DST source with a wave frame defined by the orientation angle that diagonalizes
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the source signal covariance matrix. A generalization of this theorem to estimating non-unit vector
systems is given in [26].

For vector sensormeasurements, CVAECR has thedesirablepropertyof being invariant to the choice
of reference coordinate frame. This invariance property also holds for the CVAE of an estimator if the
estimate is independent of deterministic rotational transformations of the data. Note that CVAECR

is not a function of N .

THEOREM 65.5 The MSAE and CVAE of any regular estimator are related through

MSAE = [CVAE]2,2 + [CVAE]3,3 (65.39)

Furthermore, a similar equality holds for a regular model where the MSAE and CVAE in Eq. (65.39) are
replaced by their lower bounds MSAECR and CVAECR .

PROOF 65.5 See [1, Appendix G].

In our case, CRB(θ1, θ2, θ3) is the 3 × 3 upper left block entry of the CRB matrix in the sensor
frame given in [1, Appendix F]. Substituting this block entry into Eq. (65.37) and denoting the CVAE
matrix bound for the SST problem by CVAES

CR
, we have that this matrix is diagonal with nonzero

entries given by

[
CVAES

CR

]
1,1 = (1 + %)

2%2 cos2 2θ4
(65.40a)

[
CVAES

CR

]
2,2 = (1 + %)(σ 2

E
+ σ 2

H
)

2%2[σ 2
H sin2 θ4 + σ 2

E cos2 θ4]
(65.40b)

[
CVAES

CR

]
3,3 = (1 + %)(σ 2

E
+ σ 2

H
)

2%2[σ 2
E sin2 θ4 + σ 2

H cos2 θ4]
(65.40c)

Some observations on Eqs. (65.40) are summarized in the following:

• Rotation around u: Singular only for a circularly polarized signal.

• Rotation around ṽ1 (electric ellipse’s major axis): Singular only for a linearly polarized
signal and no magnetic measurement.

• Rotation around ṽ2 (electric ellipse’s minor axis): Singular only for a linearly polarized
signal and no electric measurement.

• The rotation variances around ṽ1 and ṽ2 are symmetric with respect to the electric and
magnetic measurements.

• All the three variances in Eq. (65.40) are bounded from below by (1 + %)/2% 2 (inde-
pendent of the wave parameters).

The singular cases above are found by checking when their variances in CVAES
CR

tend to infinity (see,
e.g., [25, Theorem 6.3]). The three singular cases above should be expected as the corresponding
rotations are unobservable. These singularities are intrinsic to the SST estimation problem and
are independent of the reference coordinate system. The symmetry of the variances of the rotations
around themajor andminor axes of the ellipsewith respect to themagnetic andelectricmeasurements
should be expected as their axes have a spatial angle difference of π/2.
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The fact that the resulting singularities in the rotational errors are intrinsic (independent of the
reference coordinate system) as well as the diagonality of the CVAES

CR
bound matrix with its simple

entry expressions indicate that the wave frame is a natural system in which to do the analysis.

65.4.6 A Cross-Product-Based DOA Estimator

We propose a simple algorithm for estimating the DOA of a single electromagnetic source using the
measurements of a single vector sensor. The motivation for this algorithm stems from the average
cross-product Poynting vector. Observe that −u is the unit vector in the direction of the Poynting
vector given by [27],

S(t) = E(t) × H(t) = Re
{
eiωctE(t)

}
× Re

{
eiωctH(t)

}
= 1

2Re
{E(t) × H(t)

} + 1
2Re

{
ei2ωctE(t) × H(t)

}
where H denotes the complex conjugate of H. The carrier time average of the Poynting vector is

defined as 〈S〉t 1= 1
2Re

{E(t) × H(t)
}
. Note that unlike E(t) and H(t) this average is not a function

of ωc. Thus, it has an intrinsic physical meaning.
At this point we can see two possible ways for estimating u:

1. Phasor time averaging of 〈S〉t yielding a vector denoted by 〈S〉 with the estimated u taken
as the unit vector in the direction of −〈S〉.

2. Estimationofubyphasor timeaveragingof theunitvectors in thedirectionofRe
{E(t) × H(t)

}
.

Clearly, the first way is preferable, since then u is estimated after the measurement noise is reduced by
the averaging process, while the estimated u in the second way is more sensitive to the measurement
noises which may be magnified considerably.

Thus, the proposed algorithm computes

ŝ = 1

N

N∑
t=1

Re
{
yE(t) × yH (t)

}
(65.41a)

û = ŝ/‖̂s‖ (65.41b)

This algorithm and some of its variants have been patented [28].
The statistical performance of this estimator û is analyzed in [1, Appendix H] under the previous

assumptions on ξ(t), eE(t), eH (t), except that the Gaussian assumption is omitted. The results are
summarized by the following theorem.

THEOREM 65.6 The estimator û has the following properties (for both DST and SST sources):

a) If ‖ξ(t)‖2, ‖eE(t)‖, ‖eH (t)‖ have finite first order moments, then û → u almost surely.

b) If ‖ξ(t)‖2, ‖eE(t)‖, ‖eH (t)‖ have finite second order moments, then
√

N(̂u−u) is asymp-
totically normal.

c) If ‖ξ(t)‖2, ‖eE(t)‖, ‖eH (t)‖ have finite fourth order moments, then the MSAE is

MSAE = 1
2%−1

(
1 + 4%−1

) (
r + r−1

)2
(65.42)

where % = tr (P )/σ 2
‖ = SNR.
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d) Under the conditions of (c), Nδ2 is asymptotically χ2 distributed with two degrees of freedom.

PROOF 65.6 See [1, Appendix H].

For the Gaussian SST case, the ratio between the MSAE of this estimator to MSAES
CR

in Eq. (65.34)
is

eff
1= MSAE

MSAES
CR

= % + 4

% + 1

[
1 + (r − r−1)2 sin2 θ4 cos2 θ4

]
(65.43)

Hence, this estimator is nearly efficient if the following two conditions are met:

% � 1 (65.44a)

r ' 1 or θ4 ' 0 (65.44b)

Figure 65.5 illustrates these results using plots of the efficiency factor (65.43) as a function of the
ellipticity angle θ4 for SNR = % = 10 and three different values of r .

FIGURE 65.5: The efficiency factor (65.43) of the cross-product-based direction estimator as a
function of the normalized ellipticity angle for three values of r = σH/σE . A single source, SNR = 10.

The estimator (65.41) can be improved using a weighted average of cross products between all
possible pairs of real and imaginary parts of yE(t) and yH (s) taken at arbitrary times t and s. (Note
that these cross products have directions nearly parallel to the basic estimator û in Eq. (65.41);
however, before averaging, these cross products should be premultiplied by +1 or −1 in accordance
with the direction of the basic estimator û). A similar algorithm suitable for real time applications
can also be developed in the time domain without preprocessing needed for phasor representation.
It can be extended to nonstationary inputs by using a moving average window on the data. It is of
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interest to find the optimal weights and the performances of these estimators.
The main advantages of the proposed cross-product-based algorithm (65.41) or one of its variants

above are

• It can give a direction estimate instantly, i.e., with one time sample.

• It is simple to implement (does not require minimization of a cost function) and can be
applied in real time.

• It is equally applicable to sources of various types, including SST, DST, wide-band, and
non-Gaussian.

• Its MSAE is nearly optimal in the Gaussian SST case under Eq. (65.44).

• It does not depend on time delays and therefore does not require data synchronization
among different sensor components.

65.5 Multi-Source Multi-Vector Sensor Analysis

Consider the case in which it is desired to estimate the directions to multiple electromagnetic sources
whose covariance is unknown using an array of vector sensors. The MSAECR and CVAECR bound
expressions in Eqs. (65.29) and (65.37) are applicable to each of the sources in the multi-source multi-
vector sensor scenario. Suppose that the noise vector eEH (t) in Eq. (65.19) is complex white Gaussian
with zero mean and diagonal covariance matrix (i.e., noises from different sensors are uncorrelated)
and with electric and magnetic variances σ 2

E
and σ 2

H
, respectively. Suppose also that r = σH/σE is

known. Similarly to the single sensor case, multiply the electric measurements in Eq. (65.19) by r to
obtain equal noise variances in all the sensor coordintates. The resulting models then become special
cases of Eq. (65.21) as follows.

For DST signals, the block columns Ak ∈ C
6m×2 and the signals x(t) ∈ C

2n×1 are

Ak = ek ⊗
[

rI3
(uk×)

]
Vk (65.45a)

x(t) =
[
ξT

1 (t), · · · , ξT
n (t)

]T

(65.45b)

The parameter vector of the kth source includes here its azimuth and elevation.
For the SST case, the columns Ak ∈ C

6m×1 and the signals x(t) ∈ C
n×1 are

Ak = ek ⊗
[

rI3
(uk×)

]
VkQkwk (65.46a)

x(t) = [s1(t), · · · , sn(t)]
T (65.46b)

The parameter vector of the kth source includes here its azimuth, elevation, orientation, and ellipticity
angles.

The matrices A whose (block) columns are given in Eqs. (65.45a) and (65.46a) are the Khatri-
Rao products (see, e.g., [20, 21]) of the two matrices whose (block) columns are the arguments of
the Kronecker products in these equations.

Mixed single and dual signal transmissions are also special cases of Eq. (65.21) with appropriate
combinations of the above expressions.
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65.5.1 Results for Multiple Sources, Single-Vector Sensor

We present several results for the multiple-source model and a single-vector sensor. It is assumed that
the signal and noise vectors satisfy, respectively, assumptions A5 and A6. The results are applicable
to wide-band sources since a single vector sensor is used and thus A3 and A4 are not needed.

We first present results obtained by numerical evaluation concerning the localization of two un-
correlated sources, assuming r is known:

1. When only the electric field is measured, the information matrix is singular.

2. When the electric measurement is precise, the CRB variances are generally nonzero.

3. The MSAES
CR

can increase without bound with decreasing source angular separation for
sources with the same ellipticity and spin direction, but remarkably it remains bounded
for sources with different ellipticities or opposite spin directions.

Properties 1 and 2 are, in general, different from the single source case. Property 1 shows that it is
necessary to include both the electric and magnetic measurements to estimate the direction to more
than one source. Property 3 demonstrates the great advantage of using the electromagnetic vector
sensor, in that it allows high resolution of sources with different ellipticities or opposite spins. Note
that this generally requires a very large aperture using a scalar sensor array.

The above result on the ability to resolve two sources that are different only in their ellipticity or
spin direction appears to be new. Note also the analogy to Pauli’s “exclusion principle”, as in our case
two narrow-band SST sources are distinguishable if and only if they have different sets of parameters.
The set in our case includes wave-length, direction, ellipticity, and spin sign.

Now we present conditions for identifiability of multiple SST (or polarized) sources and a single
vector sensor, which are analytically proven in [29] and [30], assuming the noise variances are
known:

1. A single source is always identifiable.

2. Two sources that are not fully correlated are identifiable if they have different DOAs.

3. Two fully correlated sources are identifiable if they have different DOAs and ellipticities.

4. Three sources that are not fully correlated are identifiable if they have different DOAs and
ellipticities.

Note that by identifiability we refer to both the DOA and polarization parameters.
Figures 65.6 and 65.7 illustrate the resolution of two uncorrelated equal power SST sources with

a single electromagnetic vector sensor. The figures show the square root of the MSAES
CR

of one
of the sources for a variety of spin directions, ellipticities, and orientation angles, as a function of
the separation angle between the sources. (The MSAES

CR
values of the two sources are found to be

equal in all the following cases.) The covariances of the signals and noise are normalized such that
P = I2, σE = σH = 1. The azimuth angle of the first source and the elevation angles of the two

sources are kept constant (θ(1)
1 = θ

(1)
2 = θ

(2)
2 = 0). The second source’s azimuth is varied to give

the desired separation angle 1θ1 , θ
(2)
1 . In Fig. 65.6, the cases shown are of same spin directions

(θ(1)
4 = θ

(2)
4 = π/12) and opposite spin directions (θ(1)

4 = −θ
(2)
4 = π/12), same orientation angles

(θ(1)
3 = θ

(2)
3 = π/4) and different orientation angles (θ(1)

3 = −θ
(2)
3 = π/4). The figure shows that

the resolution of the two sources with a single vector sensor is remarkably good when the sources have
opposite spin directions. In particular, the MSAES

CR
remains bounded even for zero separation angle

and equal orientation angles! On the other hand, the resolution is not so significant when the two
sources have different orientation angles but equal ellipticity angles (then, for example, the MSAES

CR

tends to infinity for zero separation angle). In Fig. 65.7, the orientation angles of the sources is the

same (θ(1)
3 = θ

(2)
3 = π/4), the polarization of the first source is kept linear (θ(1)

4 = 0) while the
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FIGURE 65.6: MSAES
CR

for two uncorrelated equal power SST sources and a single vector sensor

as a function of the source angular separation. Upper two curves: Same spin directions (θ(1)
4 =

θ
(2)
4 = π/12). Lower two curves: Opposite spin directions (θ(1)

4 = −θ
(2)
4 = π/12). Solid curves:

Same orientation angles (θ(1)
3 = θ

(2)
3 = π/4). Dashed curves: Different orientation angles (θ(1)

3 =
−θ

(2)
3 = π/4). Remaining parameters are θ

(1)
1 = θ

(1)
2 = θ

(2)
2 = 0, 1θ1

1= θ
(2)
1 , P = I2, σE = σH =

1.

ellipticity angle of the second source is varied (|θ(2)
4 | = π/12, π/6, π/4) to illustrate the remarkable

resolvability due to different ellipticities. It can be seen that the MSAES
CR

remains bounded here even
for zero separation angle.

Thus, Figs. 65.6 and 65.7 show that with one vector sensor it is possible to resolve extremely well
two uncorrelated SST sources that have only different spin directions or different ellipticities (these
sources can have the same direction of arrival and the same orientation angle). This demonstrates
a great advantage of the vector sensor over scalar sensor arrays, in that the latter require large array
apertures to resolve sources with small separation angle.

65.6 Concluding Remarks

An approach has been presented for the localization of electromagnetic sources using vector sensors.
We summarize some of the main results of this article and give an outlook to their possible extensions.

Models: New models that include the complete electromagnetic data at each sensor have been
introduced. Furthermore, new signal models and vector angular error models in the wave frame
have been proposed. The wave frame model provides simple performance expressions that are easy
to interpret and have only intrinsic singularities. Extensions of the proposed models may include
additional structures for specific applications.

Cramér-Rao bounds and quality measures: A compact expression for the CRB for multi-vector
source multi-vector sensor processing has been derived. The derivation gave rise to new block
matrix operators. New quality measures in three-dimensional space, such as the MSAE for direction
estimation and CVAE for direction and orientation estimation, have been defined. Explicit bounds
on the MSAE and CVAE, having the desirable property of being invariant to the choice of the
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FIGURE 65.7: MSAES
CR

for two uncorrelated equal power SST sources and a single vector sensor as

a function of the source angular separation. Sources are with the same orientation angles (θ(1)
3 =

θ
(2)
3 = π/4) and different ellipticity angles (θ(1)

4 = 0 and θ
(2)
4 as shown in the figure). Remaining

parameters are as in Fig. 65.6.

reference coordinate frame, have been derived and can be used for performance analysis. Some
generalizations of the bounds appear in [26]. These bounds are not limited to electromagnetic
vector sensor processing. Performance comparisons of vector sensor processing with scalar sensor
counterparts are of interest.

Identifiablity: The derived bounds and the identifiability analysis of [29] and [30] were used to
show that the fusion of magnetic and electric data at a single vector sensor increases the number of
identifiable sources (or resolution capacity) in three-dimensional space from one source in the electric
data case to up to three sources in the electromagnetic case. For a single signal transmission source,
in order to get good direction estimates, the fusion of the complete data becomes more important
as the polarization gets closer to linear. Finding the number of identifiable sources per sensor in a
general vector sensor array is of interest. Preliminary results on this issue can be found in [29, 31].

Resolution: Source resolution using vector sensors is inherently different from scalar sensors, where
the latter case is characterized by the classical Rayleigh principle. For example, it was shown that
a single vector sensor can be used to resolve two sources in three-dimensional space. In particular,
a vector sensor exhibits remarkable resolvability when the sources have opposite spin directions or
different ellipticity angles. This is very different from the scalar sensor array case in which a plane
array with large aperture is required to achieve the same goal. Analytical results on source resolution
using vector sensor arrays and comparisons with their scalar counterparts are of interest.

Algorithms: A simple algorithm has been proposed and analyzed for finding the direction to a
single source using a single vector sensor based on the cross-product operation. It is of interest
to analyze the performance of the aformentioned variants of this algorithm and to extend them to
more general source scenarios (e.g., larger number of sources). It is also of interest to develop new
algorithms for the vector sensor array case.

Communication: The main considerations in communication are transmission of signals over
channels with limited bandwidth and their recovery at the sensor. Vector sensors naturally fit these
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considerations as they have maximum observability to incoming signals and they double the channel
capacity (compared with scalar sensors) with DST signals. This has vast potential for performance
improvement in cellular communications. Future goals will include development of optimum signal
estimation algorithms, communication forms, and coding design with vector-sensor arrays.

Implementations: The proposed methods should be implemented and tested with real data.
Sensor development: The use of complete electromagnetic data seemes to be virtually nonexistant

in the literature on source localization. It is hoped that the results of this research will motivate the
systematic development of high quality electromagnetic sensors that can operate over a broad range
of frequencies. Recent references on this topic can be found in [14] and [15].

Extensions: The vector sensor concept can be extended to other areas and open new possibilities.
An example of this can be found in [32] and [33] for the acoustic case.
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Appendix A: Definitions of Some Block Matrix Operators

This appendix defines several block matrix operators that are found to be useful in this article. The
following notation will be used for a blockwise partitioned matrix A:

A =



A<11> · · · A<1n>

...
...

A<m1> · · · A<mn>


 1= [

A<ij>

]
(A.1)
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with the block entries A<ij> of dimensions µi × νj . Define µ
1= ∑m

i=1 µi, ν
1= ∑n

j=1 νj , so A

is a µ × ν matrix. Since the block entries may not be of the same size, this is sometimes called an
unbalanced partitioning. The following definitions will be considered.

DEFINITION 65.6 Block transpose. Let A be an mµ×nν blockwise partitioned matrix, with blocks
A<ij> of equal dimensions µ × ν. Then the block transpose AbT is an nµ × mν matrix defined
through (

AbT
)

<ij>
= A<ji> (A.2)

DEFINITION 65.7 Block Kronecker product. Let A be a blockwise partitioned matrix of dimen-
sion µ × ν, with block entries A<ij> of dimensions µi × νj , and let B be a blockwise par-
titioned matrix of dimensions η × ρ, with block entries B<ij> of dimensions ηi × ρj . Also
µ = ∑m

i=1 µi, ν = ∑n
j=1 νj , η = ∑m

i=1 ηi, ρ = ∑n
j=1 ρj . Then the block Kronecker product

A×2B is an (
∑m

i=1 µiηi × ∑n
j=1 νjρj ) matrix defined through

(A×2B)<ij> = A<ij> ⊗ B<ij> (A.3)

i.e., the (i, j) block entry of A×2B is A<ij> ⊗ B<ij> of dimension µiηi × νjρj .

DEFINITION 65.8 Block Schur-Hadamard product. Let A be an mµ × nν matrix consisting of
blocks A<ij> of dimensions µ × ν, and let B be an mν × nη matrix consisting of blocks B<ij> of
dimensions ν × η. Then the block Schur-Hadamard product A ·2B is an mµ × nη matrix defined
through

(A ·2B)<ij> = A<ij>B<ij> (A.4)

Thus, each block of the product is a usual product of a pair of blocks and is of dimension µ × η.

DEFINITION 65.9 Block trace operator. Let A be an mµ × nµ matrix consisting of blocks A<ij> of
dimensions µ × µ. Then the block trace matrix operator btr[A] is an m × n matrix defined by

(btr [A])ij = tr A<ij> (A.5)
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