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76.1 Introduction

The past 20 years witnessed an expansion of power spectrum estimation techniques, which have
proved essential in many applications, such as communications, sonar, radar, speech/image process-
ing, geophysics, and biomedical signal processing [13, 11, 7]. In power spectrum estimation the
process under consideration is treated as a superposition of statistically uncorrelated harmonic com-
ponents. The distribution of power among these frequency components is the power spectrum. As
such, phase relations between frequency components are suppressed. The information in the power
spectrum is essentially present in the autocorrelation sequence, which would suffice for the complete
statistical description of a Gaussian process of known mean. However, there are applications where
one would need to obtain information regarding deviations from the Gaussianity assumption and
presence of nonlinearities. In these cases power spectrum is of little help, and one would have to
look beyond the power spectrum or autocorrelation domain. Higher-Order Spectra (HOS) (of order
greater than 2), which are defined in terms of higher-order cumulants of the data, do contain such
information [16]. The third-order spectrum is commonly referred to as bispectrum, the fourth-order
one as trispectrum, and in fact, the power spectrum is also a member of the higher-order spectral
class; it is the second-order spectrum.

HOS consist of higher-order moment spectra, which are defined for deterministic signals, and
cumulant spectra, which are defined for random processes. In general, there are three motivations
behind the use of HOS in signal processing: (1) to suppress Gaussian noise of unknown mean and
variance; (2) to reconstruct the phase as well as the magnitude response of signals or systems; and
(3) to detect and characterize nonlinearities in the data.

The first motivation stems from the property of Gaussian processes to have zero higher-order
spectra. Due to this property, HOS are high signal-to-noise ratio domains, in which one can perform
detection, parameter estimation, or even signal reconstruction even if the time domain noise is
spatially correlated. The same property of cumulant spectra can provide means of detecting and
characterizing deviations of the data from the Gaussian model.

c©1999 by CRC Press LLC



The second motivation is based on the ability of cumulant spectra to preserve the Fourier-phase
of signals. In the modeling of time series, second-order statistics (autocorrelation) have been heavily
used because they are the result of least-squares optimization criteria. However, an accurate phase
reconstruction in the autocorrelation domain can be achieved only if the signal is minimum phase.
Nonminimum phase signal reconstruction can be achieved only in the HOS domain, due to the HOS
ability to preserve phase. Figure 76.1 shows two signals, a nonminimum phase and a minimum
phase, with identical magnitude spectra but different phase spectra. Although power spectrum
cannot distinguish between the two signals, the bispectrum that uses phase information can.

Being nonlinear functions of the data, HOS are quite natural tools in the analysis of nonlinear
systems operating under a random input. General relations for arbitrary stationary random data
passing through an arbitrary linear system exist and have been studied extensively. Such expression,
however, are not available for nonlinear systems, where each type of nonlinearity must be studied
separately. Higher-order correlations between input and output can detect and characterize certain
nonlinearities [34], and for this purpose several higher-order spectra-based methods have been
developed.

The organization of this chapter is as follows. First the definitions and properties of cumulants and
higher-order spectra are introduced. Then two methods for the estimation of HOS from finite length
data are outlined and the asymptotic statistics of the obtained estimates are presented. Following
that, parametric and nonparametric methods for HOS-based identification of linear systems are
described, and the use of HOS in the identification of some particular nonlinear systems is briefly
discussed. The chapter concludes with a section on applications of HOS and available software.

76.2 Definitions and Properties of HOS

In this chapter we will consider random one-dimensional processes only. The definitions can be
easily extended to the two-dimensional case [15].

The joint moments of order r of the random variables x1, . . . , xn are given by [22]

M om
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1 , . . . , x

kn
n

]
= E{xk1

1 , . . . , x
kn
n }

= (−j)r ∂
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∂ω
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kn
n

|ω1=···=ωn=0 , (76.1)

where k1 + · · · + kn = r , and 8() is their joint characteristic function. The joint cumulants are
defined as

C um[xk1
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n ] = (−j)r ∂
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∂ω
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1 . . . ∂ω

kn
n

}|ω1=···=ωn=0 . (76.2)

For a stationary discrete time random processX(k), (k denotes discrete time), the moments of order
n are given by

mxn (τ1, τ2, . . . , τn−1) = E{X(k)X (k + τ1) · · ·X (k + τn−1)} , (76.3)

whereE{.} denotes expectation. The nth order cumulants are functions of the moments of order up
to n, i.e.,
1st order cumulants:

cx1 = mx1 = E{X(k)} (mean) (76.4)

2nd order cumulants:
cx2 (τ1) = mx2 (τ1)− (

mx1
)2

(covariance) (76.5)
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FIGURE 76.1: x(n) is a nonminimum phase signal and y(n) is a minimum phase one. Although their
power spectra are identical, their bispectra are different because they contain phase information.
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3rd order cumulants:

cx3 (τ1, τ2) = mx3 (τ1, τ2)− (
mx1

) [
mx2 (τ1)+mx2 (τ2)+mx2 (τ2 − τ1)

] + 2
(
mx1

)3
(76.6)

4th order cumulants:

cx4 (τ1, τ2, τ3) = mx4 (τ1, τ2, τ3)−mx2 (τ1)m
x
2 (τ3 − τ2)−mx2 (τ2)m

x
2 (τ3 − τ1)

−mx2 (τ3)m
x
2 (τ2 − τ1)

−mx1
[
mx3 (τ2 − τ1, τ3 − τ1)+mx3 (τ2, τ3)+mx3 (τ2, τ4)+mx3 (τ1, τ2)

]

+ (
mx1

)2 [
mx2 (τ1)+mx2 (τ2)+mx2 (τ3)+mx2 (τ3 − τ1)+mx2 (τ3 − τ2)

+ mx1 (τ2 − τ1)
] − 6

(
mx1

)4
(76.7)

where mx3(τ1, τ2) is the 3rd order moment sequence, and mx1 is the mean. The general relationship
between cumulants and moments can be found in [16].

Some important properties of moments and cumulants are summarized next.
[P1] IfX(k) is Gaussian, the cxn(τ1, τ2, . . . , τn−1) = 0 for n > 2. In other words, all the information
about a Gaussian process is contained in its first and second-order cumulants. This property can be
used to suppress Gaussian noise, or as a measure for non-Gaussianity in time series.
[P2] IfX(k) is symmetrically distributed, then cx3(τ1, τ2) = 0. Third-order cumulants suppress not
only Gaussian processes, but also all symmetrically distributed processes, such as uniform, Laplace,
and Bernoulli-Gaussian.
[P3] For cumulants additivity holds. If X(k) = S(k) + W(k), where S(k), W(k) are stationary
and statistically independent random processes, then cxn(τ1, τ2, . . . , τn−1) = csn(τ1, τ2, . . . , τn−1)+
cwn (τ1, τ2, . . . , τn−1). It is important to note that additivity does not hold for moments.

IfW(k) is Gaussian representing noise which corrupts the signal of interest, S(k), then by means
of (P2) and (P3), we get that cxn(τ1, τ2, . . . , τn−1) = csn(τ1, τ2, . . . , τn−1), for n > 2. In other words,
in higher-order cumulant domains the signal of interest propagates noise free. Property (P3) can
also provide a measure of statistical dependence of two processes.
[P4] if X(k) has zero mean, then cxn(τ1, . . . , τn−1) = mxn(τ1, . . . , τn−1), for n ≤ 3.

Higher-order spectra are defined in terms of either cumulants (e.g., cumulant spectra) or moments
(e.g., moment spectra).

Assuming that the nth order cumulant sequence is absolutely summable, the nth order cumulant
spectrum ofX(k),Cxn(ω1, ω2, . . . , ωn−1), exists, and is defined to be the (n−1)-dimensional Fourier
transform of the nth order cumulant sequence. In general, Cxn(ω1, ω2, . . . , ωn−1) is complex, i.e.,
it has magnitude and phase. In an analogous manner, moment spectrum is the multi-dimensional
Fourier transform of the moment sequence.

If v(k) is a stationary non-Gaussian process with zero mean and nth order cumulant sequence

cvn(τ1, . . . , τn−1) = γ vn δ(τ1, . . . , τn−1) , (76.8)

where δ(.) is the delta function, v(k) is said to be nth order white. Its nth order cumulant spectrum
is then flat and equal to γ vn .

Cumulant spectra are more useful in processing random signals than moment spectra since they
posses properties that the moment spectra do not share: (1) the cumulants of the sum of two inde-
pendent random processes equals the sum of the cumulants of the process; (2) cumulant spectra of
order> 2 are zero if the underlying process in Gaussian; (3) cumulants quantify the degree of statis-
tical dependence of time series; and (4) cumulants of higher-order white noise are multidimensional
impulses, and the corresponding cumulant spectra are flat.
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76.3 HOS Computation from Real Data

The definitions of cumulants presented in the previous section are based on expectation operations,
and they assume infinite length data. In practice we always deal with data of finite length; therefore,
the cumulants can only be approximated. Two methods for cumulants and spectra estimation are
presented next for the third-order case.
Indirect Method :

Let X(k), k = 1, . . . , N be the available data.

1. Segment the data into K records of M samples each. LetXi(k), k = 1, . . . ,M , represent
the ith record.

2. Subtract the mean of each record.

3. Estimate the moments of each segmentsXi(k) as follows:

m
xi
3 (τ1, τ2) = 1

M

l2∑
l=l1

Xi(l)Xi (l + τ1)X
i (l + τ2) ,

l1 = max(0,−τ1,−τ2), l2 = min(M − 1,M − 2),

|τ1| < L, |τ2| < L, i = 1,2, . . . , K . (76.9)

Since each segment has zero mean, its third-order moments and cumulants are identical,
i.e., cxi3 (τ1, τ2) = m

xi
3 (τ1, τ2).

4. Compute the average cumulants as:

ĉx3 (τ1, τ2) = 1

K

K∑
i=1

m
xi
3 (τ1, τ2) (76.10)

5. Obtain the third-order spectrum (bispectrum) estimate as

Ĉx3 (ω1, ω2) =
L∑

τ1=−L

L∑
τ2=−L

ĉx3 (τ1, τ2) e
−j(ω1τ1+ω2τ2)w (τ1, τ2) , (76.11)

where L < M − 1, and w(τ1, τ2) is a two-dimensional window of bounded support,
introduced to smooth out edge effects. The bandwidth of the final bispectrum estimate
is1 = 1/L.

A complete description of appropriate windows that can be used in (76.11) and their properties
can be found in [16]. A good choice of cumulant window is:

w (τ1, τ2) = d (τ1) d (τ2) d (τ1 − τ2) , (76.12)

where

d(τ) =



1
π
| sin πτ

L
| + (1 − |τ |

L
) cosπτ

L
|τ | ≤ L

0 |τ | > L

(76.13)

which is known as the minimum bispectrum bias supremum [17].
Direct Method

Let X(k), k = 1, . . . , N be the available data.

c©1999 by CRC Press LLC



1. Segment the data into K records of M samples each. LetXi(k), k = 1, . . . ,M , represent
the ith record.

2. Subtract the mean of each record.

3. Compute the Discrete Fourier TransformF ix(k) of each segment, based onM points, i.e.,

F ix(k) =
M−1∑
n=0

Xi(n)e−j
2π
M
nk, k = 0,1, . . . ,M − 1, i = 1,2, . . . , K . (76.14)

4. The third-order spectrum of each segment is obtained as

C
xi
3 (k1, k2) = 1

M
Fix(k1)F

i
x(k2)F

i
x

∗
(k1 + k2), i = 1, . . . , K . (76.15)

Due to the bispectrum symmetry properties, Cxi3 (k1, k2) need to be computed only in
the triangular region 0 ≤ k2 ≤ k1, k1 + k2 < M/2.

5. In order to reduce the variance of the estimate additional smoothing over a rectangular
window of size (M3 ×M3) can be performed around each frequency, assuming that the
third-order spectrum is smooth enough, i.e.,

C̃
xi
3 (k1, k2) = 1

M2
3

M3/2−1∑
n1=−M3/2

M3/2−1∑
n2=−M3/2

C
xi
3 (k1 + n1, k2 + n2) . (76.16)

6. Finally, the third-order spectrum is given as the average over all third-order spectra, i.e.,

Ĉx3 (ω1, ω2) = 1

K

K∑
i=1

C̃
xi
3 (ω1, ω2) , ωi = 2π

M
ki, i = 1,2 . (76.17)

The final bandwidth of this bispectrum estimate is 1 = M3/M , which is the spacing
between frequency samples in the bispectrum domain.

For large N , and as long as

1 → 0, and 12N → ∞ (76.18)

[32], both the direct and the indirect methods produce asymptotically unbiased and consistent
bispectrum estimates, with real and imaginary part variances:

var
(

Re
[
Ĉx3 (ω1, ω2)

])
= var

(
Im

[
Ĉx3 (ω1, ω2)

])
(76.19)

= 1

12N
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2) =




VL2

MK
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2) indirect

M

KM2
3
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2) direct ,

where V is the energy of the bispectrum window.
From the above expressions, it becomes apparent that the bispectrum estimate variance can be

reduced by increasing the number of records, or reducing the size of the region of support of the
window in the cumulant domain (L), or increasing the size of the frequency smoothing window (M3),
etc. The relation between the parametersM, K, L, M3 should be such that (76.18) is satisfied.
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76.4 Linear Processes

Let x(k) be generated by exciting a linear time-invariant (LTI) system with frequency responseH(ω)
with a non-Gaussian process v(k). Its nth order spectrum can be written as

Cxn (ω1, ω2, . . . , ωn−1) = Cvn (ω1, ω2, . . . , ωn−1)H (ω1) · · ·H (ωn−1)H
∗ (ω1 + · · · + ωn−1) .

(76.20)
If v(k) is nth order white then (76.20) becomes

Cxn (ω1, ω2, . . . , ωn−1) = γ vn H (ω1) · · ·H (ωn−1)H
∗ (ω1 + · · · + ωn−1) , (76.21)

where γ vn is a scalar constant and equals the nth order spectrum of v(k). For a linear non-Gaussian
random processX(k), the nth order spectrum can be factorized as in (76.21) for every order n, while
for a nonlinear process such a factorization might be valid for some orders only (it is always valid for
n = 2).

If we expressH(ω) = |H(ω)| exp{jφh(ω)}, then (76.21) can be written as

∣∣Cxn (ω1, ω2, . . . , ωn−1)
∣∣ = γ vn |H (ω1)| · · · |H (ωn−1)|

∣∣H ∗ (ω1 + · · · + ωn−1)
∣∣ , (76.22)

and

∣∣ψxn (ω1, ω2, . . . , ωn−1)
∣∣ = φh (ω1)+ · · · + φh (ωn−1)− φh (ω1 + · · · + ωn−1) , (76.23)

where ψxn () is the phase of the nth order spectrum.
It can be shown easily that the cumulant spectra of successive orders are related as follows:

Cxn (ω1, ω2, . . . ,0) = Cxn−1 (ω1, ω2, . . . , ωn−2)H(0)
γ vn

γ vn−1
. (76.24)

As a result, the power spectrum of a Gaussian linear process can be reconstructed from the bispectrum
up to a constant term, i.e.,

Cx3 (ω,0) = Cx2 (ω)
γ v3

γ v2
. (76.25)

To reconstruct the phaseφh(ω) from the bispectral phaseψx3 (ω1, ω2) several algorithms have been
suggested. A description of different phase estimation methods can be found in [14] and also in [16].

76.4.1 Nonparametric Methods

Consider x(k) generated as shown in Fig. 76.2. The system transfer function can be written as

H(z) = cz−r I
(
z−1

)
O(z) = cz−r 5i(1 − aiz

−1)

5i(1 − biz−1)
5i(1 − ciz), |ai |, |bi |, |ci | < 1 , (76.26)

where I (z−1) and O(z) are the minimum and maximum phase parts of H(z), respectively; c is a
constant; and r is an integer. The output nth order cumulant equals [2]

cxn (τ1, . . . , τn−1) = c
y
n (τ1, . . . , τn−1)+ cwn (τ1, . . . , τn−1)

= c
y
n (τ1, . . . , τn−1) (76.27)

= γ vn

∞∑
k=0

h(k)h (k + τ1) · · ·h (k + τn−1) , n ≥ 3 (76.28)
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FIGURE 76.2: Single channel model.

where the noise contribution in (76.27) was zero due to the Gaussianity assumption. The Z-domain
equivalent of (76.28) for n = 3 is

Cx3 (z1, z2) = γ v3H (z1)H (z2)H
(
z−1

1 z−1
2

)
. (76.29)

Taking the logarithm of Cx3 (z1, z2) followed by an inverse 2-D Z-transform we obtain the output
bicepstrum bx(m, n). The bicepstrum of linear processes is nonzero only along the axes (m = 0, n =
0) and the diagonalm = n [21]. Along these lines the bicepstrum is equal to the complex cepstrum,
i.e.,

bx(m, n) =




ĥ(m) m 6= 0, n = 0
ĥ(n) n 6= 0, m = 0
ĥ(−n) m = n, m 6= 0
ln(cγ vn ) m = n = 0,
0 elsewhere

(76.30)

where ĥ(n) denotes complex cepstrum [20]. From (76.30), the system impulse response h(k) can
be reconstructed from bx(m,0) (or bx(0, m), or bx(m,m)), within a constant and a time delay, via
inverse cepstrum operations. The minimum and maximum phase parts ofH(z) can be reconstructed
by applying inverse cepstrum operations on bx(m,0)u(m) and bx(m,0)u(−m), respectively, where
u(m) is the unit step function.

To avoid phase unwrapping with the logarithm of the bispectrum which is complex, the bicepstrum
can be estimated using the group delay approach:

bx(m, n) = 1

m
F−1{F

[
τ1c

x
3(τ1, τ2)

]
Cx3 (ω1, ω2)

}, m 6= 0 (76.31)

with bx(0, n) = bx(n,0), and F {·} and F−1{·} denoting 2-D Fourier transform operator and its
inverse, respectively.

The cepstrum of the system can also be computed directly from the cumulants of the system output
based on the equation [21]:

∞∑
k=1

kĥ(k)
[
cx3(m− k, n)− cx3(m+ k, n+ k)

] + kĥ(−k) [cx3(m− k, n− k)− cx3(m+ k, n)
]

= mcx3(m, n) (76.32)

If H(z) has no zeros on the unit circle its cepstrum decays exponentially, thus (76.32) can be
truncated to yield an approximate equation. An overdetermined system of truncated equations can
be formed for different values of m and n, which can be solved for ĥ(k), k = . . . ,−1,1, . . .. The
system response h(k) then can be recovered from its cepstrum via inverse cepstrum operations.
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The bicepstrum approach for system reconstruction described above led to estimates with smaller
bias and variance than other parametric approaches at the expense of higher computational com-
plexity [21]. The analytic performance evaluation of the bicepstrum approach can be found in [25].

The inverse Z-transform of the logarithm of the trispectrum (fourth-order spectrum), or otherwise
tricepstrum, tx(m, n, l), of linear processes is also zero everywhere except along the axes and the
diagonal m = n = l. Along these lines it equals the complex cepstrum, thus h(k) can be recovered
from slices of the tricepstrum based on inverse cepstrum operations.

For the case of nonlinear processes, the bicepstrum will be nonzero everywhere [4]. The distinctly
different structure of the bicepstrum corresponding to linear and nonlinear processes has led to tests
of linearity [4].

A new nonparametric method has been recently proposed in [1, 26] in which the cepstrum ĥ(k)

is obtained as:

ĥ(−k) = p̂xn
(
k; ejβ1

) − p̂xn
(
k; ejβ2

)
ej (n−2)β1k − ej (n−2)β2k

, k 6= 0, n > 2 (76.33)

where pxn
(
k; ejbi ) is the time domain equivalent of the nth order spectrum slice defined as:

Pxn

(
z; ejβi

)
= Cxn

(
z, ejβi , · · · , ejβi

)
. (76.34)

The denominator of (76.33) is nonzero if

|β1 − β2| 6= 2πl

k(n− 2)
, for every integer k and l . (76.35)

This method reconstructs a complex system using two slices of the nth order spectrum. The slices,
defined as shown above, can be selected arbitrarily as long as their distance satisfy (76.35). If the
system is real, one slices is sufficient for the reconstruction. It should be noted that the cepstra
appearing in (76.33) require phase unwrapping. The main advantage of this method is that the
freedom to choose the higher-order spectra areas to be used in the reconstruction allows one to
avoid regions dominated by noise or finite data length effects. Also, corresponding to different slice
pairs various independent representations of the system can be reconstructed. Averaging out these
representations can reduce estimation errors [26].

Along the lines of system reconstruction from selected HOS slices, another method has been
proposed in [28, 29] where the logH(k) is obtained as a solution to a linear system of equations.
Although logarithimc operation is involved, no phase unwrapping is required and the principal
argument can be used instead of real phase. It was also shown that, as long as the grid size and the
distance between the slices are coprime, reconstruction is always possible.

76.4.2 Parametric Methods

One of the popular approaches in system identification has been the construction of a white noise
driven, linear time invariant model from a given process realization.

Consider the real autoregressive moving average (ARMA) stable process y(k) given by:

p∑
i=0

a(i)y(k − i) =
q∑
j=0

b(j)v(k − j) (76.36)

x(k) = y(k)+ w(k) (76.37)

where a(i), b(j) represent the AR and MA parameters of the system, v(k) is an independent iden-
tically distributed random process, and w(k) represents zero-mean Gaussian noise.
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Equations analogous to the Yule-Walker equations can be derived based on third-order cumulants
of x(k), i.e.,

p∑
i=0

a(i)cx3(τ − i, j) = 0, τ > q , (76.38)

or
p∑
i=1

a(i)cx3(τ − i, j) = −cx3(τ, j), τ > q , (76.39)

where it was assumed a(0) = 1. Concatenating (76.39) for τ = q + 1, . . . , q + M, M ≥ 0 and
j = q − p, . . . , q, the matrix equation

Ca = c (76.40)

can be formed, whereC and c are a matrix and a vector, respectively, formed by third-order cumulants
of the process according to (76.39), and the vector a contains the AR parameters. If the AR order p
is unknown and (76.40) is formed based on an overestimate of p, the resulting matrix C always has
rank p. In this case, the AR parameters can be obtained using a low-rank approximation of C [5].

Using the estimated AR parameters, â(i), i = 1, . . . , p, a pth order filter with transfer function
Â(z) = 1+ ∑p

i=1 â(i)z
−1 can be constructed. Based on the filtered through Â(z) process x(k), i.e.,

x̃(k), or otherwise known as the residual time series [5], the MA parameters can be estimated via any
MA method [15], for example:

b(k) = cx̃3(q, k)

cx̃3(q,0)
, k = 0,1, . . . , q (76.41)

known as the c(q, k) formula [6].
Practical problems associated with the described approach are sensitivity to model order mismatch,

andARestimationerrors thatpropagate in theestimationof theMAparameters. Asignificantamount
of research has been devoted to the ARMA parameter estimation problem. A thorough review of
existing ARMA system identification methods can be found in [15, 16]; a more recent method can
be found in [24].

76.5 Nonlinear Processes

Despite the fact thatprogresshasbeenestablished indeveloping the theoretical propertiesofnonlinear
models, only a few statistical methods exist for detection and characterization of nonlinearities from
a finite set of observations. In this section, we will consider nonlinear Volterra systems excited by
Gaussian stationary inputs. Let y(k) be the response of a discrete time invariant pth order Volterra
filter whose input is x(k). Then,

y(k) = h0 +
∑
i

∑
τ1,...,τi

hi (τ1, . . . , τi) x (k − τ1) · · · x (k − τi) , (76.42)

where hi(τ1, . . . , τi) are the Volterra kernels of the system, which are symmetric functions of their
arguments; for causal systems hi(τ1, . . . , τi) = 0 for any τi < 0.

The output of a second-order Volterra system when the input is zero-mean stationary is

y(k) = h0 +
∑
τ1

h1(τ1)x(k − τ1)+
∑
τ1

∑
τ2

h2 (τ1, τ2) x (k − τ1) x (k − τ2) . (76.43)

c©1999 by CRC Press LLC



Equation (76.43) can be viewed as a parallel connection of a linear system h1(τ1) and a quadratic
system h2(τ1, τ2) as illustrated in Fig. 76.3. Let

c
xy

2 (τ ) = E
{
x(k + τ)

[
y(k)−m

y

1

]}
(76.44)

be the cross-covariance of input and output, and

c
xxy

3 (τ1, τ2) = E
{
x (k + τ1) x (k + τ2)

[
y(k)−m

y

1

]}
(76.45)

be the third-order cross-cumulant sequence of input and output.

FIGURE 76.3: Second-order Volterra system. Linear and quadratic parts are connected in parallel.

It can be shown that the system’s linear part can be identified by

H1(−ω) = C
xy

2 (ω)

Cx2 (ω)
, (76.46)

and the quadratic part by

H2 (−ω1,−ω2) = C
xxy

3 (ω1, ω2)

2Cx2 (ω1) C
x
2 (ω2)

, (76.47)

where Cxy2 (ω) and Cxxy3 (ω1, ω2) are the Fourier transforms of cxy2 (τ ) and cxxy3 (τ1, τ2), respectively.
It should be noted that the above equations are valid only for Gaussian input signals. More general
results assuming non-Gaussian input have been obtained in [9, 27]. Additional results on particular
nonlinear systems have been reported in [3, 33].

An interesting phenomenon caused by a second-order nonlinearity is the quadratic phase coupling.
There are situations where nonlinear interaction between two harmonic components of a process
contribute to the power of the sum and/or difference frequencies. The signal

x(k) = A cos(λ1k + θ1)+ B cos(λ2k + θ2) (76.48)

after passing through the quadratic system:

z(k) = x(k)+ εx2(k), ε 6= 0 . (76.49)
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contains cosinusoidal terms in (λ1, θ1), (λ2, θ2), (2λ1,2θ1), (2λ2,2θ2), (λ1 + λ2, θ1 + θ2), (λ1 −
λ2, θ1 − θ2). Such a phenomenon that results in phase relations that are the same as the frequency
relations is called quadratic phase coupling [12]. Quadratic phase coupling can arise only among
harmonically related components. Three frequencies are harmonically related when one of them is
the sum or difference of the other two. Sometimes it is important to find out if peaks at harmonically
related positions in the power spectrum are in fact phase coupled. Due to phase suppression, the
power spectrum is unable to provide an answer to this problem.

As an example, consider the process [30]

X(k) =
6∑
i=1

cos(λik + φi) (76.50)

where λ1 > λ2 > 0, λ4 + λ5 > 0, λ3 = λ1 + λ2, λ6 = λ4 + λ5, φ1, . . . , φ5 are all independent,
uniformly distributed random variables over (0,2π), and φ6 = φ4 +φ5. Among the six frequencies,
(λ1, λ2, λ3) and (λ4, λ5, λ6) are harmonically related, however, onlyλ6 is the result of phase coupling
between λ4 and λ5. The power spectrum of this process consists of six impulses at λi, i = 1, . . . ,6
(see Fig. 76.4), offering no indication whether each frequency component is independent or result
of frequency coupling. On the other hand, the bispectrum of X(k), Cx3 (ω1, ω2) (evaluate in its
principal region) is zero everywhere, except at point (λ4, λ5) of the (ω1, ω2) plane, where it exhibits
an impulse (Fig. 76.4(b)). The peak indicates that only λ4, λ5 are phase coupled.

The bicoherence index, defined as

Px3 (ω1, ω2) = Cx3 (ω1, ω2)√
Cx2 (ω1) C

x
2 (ω2) C

x
2 (ω1 + ω2)

, (76.51)

has been extensively used in practical situations for the detection and quantification of quadratic
phase coupling [12]. The value of the bicoherence index at each frequency pair indicates the degree
of coupling among the frequencies of that pair. Almost all bispectral estimators can be used in (76.51).
However, estimates obtained based on parametric modeling of the bispectrum have been shown to
yield superior resolution [30, 31] than the ones obtained with conventional methods.

76.6 Applications/Software Available

Applications of HOS span a wide range of areas [19] such as oceanography (description of wave
phenomena), earth sciences (atmospheric pressure, turbulence), crystallography, plasma physics
(wave interaction, nonlinear phenomena), mechanical systems (vibration analysis, knock detection),
economic time series, biomedical signal analysis (ultrasonic imaging, detection of wave coupling)
image processing (texture modeling and characterization, reconstruction, inverse filtering), speech
processing (pitch detection, voiced/unvoiced decision), communications (equalization, interference
cancellation), array processing (direction of arrival estimation, estimation of number of sources,
beamforming, source signal estimation, source classification), harmonic retrieval (frequency estima-
tion), and time delay estimation. Over 500 references can be found in [37]. Additional references
can be found in [16, 19, 23].

A software package for signal processing with HOS is the Hi-Spec toolbox, product of Mathworks,
Inc. The functions included in Hi-Spec together with a short description are included in Table 76.1.
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FIGURE 76.4: Quadratic phase coupling. (a) The power spectrum of the process described in
Eq. (76.50) cannot determine what frequencies are coupled. (b) The corresponding magnitude
bispectrum is zero everywhere in the principle region, except at points corresponding to phase
coupled frequencies.
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TABLE 76.1 Functions Included in the Hi-Spec Package
Function name Description

AR RCEST AR parameter estimation based on cumulants
ARMA QS ARMA parameter estimation via the Q-slice algorithm
ARMA RTS ARMA parameter estimation via the residual time series method
ARMA SYN Generates ARMA synthetics
BICEPS System identification via the bicepstrum approach
BISPEC D Bispectrum estimation via the direct method
BISPEC I Bispectrum estimation via the indirect method
CUM EST Estimates 2nd, 3rd, or 4th order cumulants
CUM TRUE Computes the theoretical cumulants of an ARMA model
DOA Direction-of-arrival estimation
DOA GEN Generates synthetics for direction-of-arrival estimation
GL STAT Detection statistics for Hinich’s Gaussianity and linearity tests
HARM EST Estimates frequencies of harmonics in colored noise
HARM GEN Generates synthetics for the harmonic retrieval problem
MA EST MA parameters estimation
MATUL System identification via the Matsuoka-Ulrych algorithm
QPC GEN Simulation generator for quadratic phase coupling
QPC TOR Detects quadratic phase coupling via parametric modeling of bispectrum
RP IID Generates samples of an i.i.d. random process
TDE Estimates time delay between two signals using the parametric cross-cumulant method
TDE GEN Synthetics for time delay estimation
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