
Realtime Operating Systems

Concepts and Implementation of Microkernels

for Embedded Systems

Dr. Jürgen Sauermann, Melanie Thelen

2

....v

...vi

.....1

.....3

......3

.....3

......4
.....5

.....7

.....7

....7

...11
..12
...12
....14
...16
....19
.....21
....26
...26
...28
...29
...30

.33
...33
...34
.....34
...35
....35
...36
.....36
...39
.....46
.....46
Contents

List of Figures...

List of Tables ..

Preface ...

1 Requirements ...
1.1 General Requirements ...
1.2 Memory Requirements ...
1.3 Performance...
1.4 Portability ...

2 Concepts ..
2.1 Specification and Execution of Programs...
2.1.1 Compiling and Linking ...
2.2 Loading and Execution of Programs ..
2.3 Preemptive Multitasking..
2.3.1 Duplication of Hardware ..
2.3.2 Task Switch ...
2.3.3 Task Control Blocks ...
2.3.4 De-Scheduling ...
2.4 Semaphores ..
2.5 Queues ...
2.5.1 Ring Buffers ...
2.5.2 Ring Buffer with Get Semaphore ...
2.5.3 Ring Buffer with Put Semaphore ...
2.5.4 Ring Buffer with Get and Put Semaphores ..

3 Kernel Implementation ..
3.1 Kernel Architecture ..
3.2 Hardware Model...
3.2.1 Processor ..
3.2.2 Memory Map..
3.2.3 Peripherals ...
3.2.4 Interrupt Assignment ..
3.2.5 Data Bus Usage ..
3.3 Task Switching ...
3.4 Semaphores ..
3.4.1 Semaphore Constructors...

ii

....46
.....46
....48
....49
....51
...51
..52
.....53
...53
...54
...59
....62
....63
...65
...69
....71
..71
...73
...77
....79
....79
....80

...81
...81
....81
....87
.....87
....89
...92
....92

.95

...95
..95
...98
102

107
..107
.107
..109
3.4.2 Semaphore Destructor ...
3.4.3 Semaphore P() ..
3.4.4 Semaphore Poll() ...
3.4.5 Semaphore V() ..
3.5 Queues ...
3.5.1 Ring Buffer Constructor and Destructor ..
3.5.2 RingBuffer Member Functions..
3.5.3 Queue Put and Get Functions...
3.5.4 Queue Put and Get Without Disabling Interrupts...................................
3.6 Interprocess Communication..
3.7 Serial Input and Output ..
3.7.1 Channel Numbers ..
3.7.2 SerialIn and SerialOut Classes and Constructors/Destructors
3.7.3 Public SerialOut Member Functions ..
3.7.4 Public SerialIn Member Functions...
3.8 Interrupt Processing...
3.8.1 Hardware Initialization..
3.8.2 Interrupt Service Routine ...
3.9 Memory Management ..
3.10 Miscellaneous Functions ...
3.10.1Miscellaneous Functions in Task.cc ...
3.10.2Miscellaneous Functions in os.cc ...

4 Bootstrap..
4.1 Introduction ..
4.2 System Start-up ...
4.3 Task Start-up..
4.3.1 Task Parameters..
4.3.2 Task Creation...
4.3.3 Task Activation...
4.3.4 Task Deletion...

5 An Application ..
5.1 Introduction ..
5.2 Using the Monitor ...
5.3 A Monitor Session..
5.4 Monitor Implementation...

6 Development Environment ...
6.1 General ..
6.2 Terminology ...
6.3 Prerequisites ..

. iii

109
..110
..110
112
112
.113
.114
.117
.117
121

123
..123
.123
.123
..124
.125
.127

130
.130
.137
.140
..143
..145
..150
..151
..153
..157
..158
.159
.160
.166
.167
.170
..171
.175
176
177

.178

.187

..189
6.3.1 Scenario 1: UNIX or Linux Host ..
6.3.2 Scenario 2: DOS Host ...
6.3.3 Scenario 3: Other Host or Scenarios 1 and 2 Failed..............................
6.4 Building the Cross-Environment ...
6.4.1 Building the GNU cross-binutils package...
6.4.2 Building the GNU cross-gcc package ..
6.4.3 The libgcc.a library...
6.5 The Target Environment ...
6.5.1 The Target Makefile..
6.5.2 The skip_aout Utility...

7 Miscellaneous ...
7.1 General ..
7.2 Porting to different Processors ...
7.2.1 Porting to MC68000 or MC68008 Processors
7.2.2 Porting to Other Processor families...
7.3 Saving Registers in Interrupt Service Routines......................................
7.4 Semaphores with time-out..

A Appendices ...
A.1 Startup Code (crt0.S) ...
A.2 Task.hh ...
A.3 Task.cc ...
A.4 os.hh ...
A.5 os.cc ..
A.6 Semaphore.hh ...
A.7 Queue.hh ...
A.8 Queue.cc ...
A.9 Message.hh ...
A.10 Channels.hh ..
A.11 SerialOut.hh ...
A.12 SerialOut.cc ...
A.13 SerialIn.hh ...
A.14 SerialIn.cc ..
A.15 TaskId.hh ...
A.16 duart.hh ...
A.17 System.config ..
A.18 ApplicationStart.cc ...
A.19 Monitor.hh ..
A.20 Monitor.cc ..
A.21 Makefile ...
A.22 SRcat.cc ..

iv

201
Index ...

.....

..

....

.....13

.....13

...

....16

..17

.....18

......2

....24

.

......30

....33

.....36

.....40

.....42

....59

....60

.....61

81
....96

....127

..128
List of Figures

Figure 2.1 Hello.o Structure ...8

Figure 2.2 libc.a Structure..9

Figure 2.3 Hello Structure ...10

Figure 2.4 Program Execution ..

Figure 2.5 Parallel execution of two programs...

Figure 2.6 Clock ..14

Figure 2.7 Task Switch ...15

Figure 2.8 Shared ROM and RAM ..

Figure 2.9 Final Hardware Model for Preemptive Multitasking ...

Figure 2.10 Task Control Blocks and CurrentTask...

Figure 2.11 Task State Machine...1

Figure 2.12 P() and V() Function Calls ...

Figure 2.13 Ring Buffer..27

Figure 2.14 Serial Communication between a Task and a Serial Port.................................

Figure 3.1 Kernel Architecture ..

Figure 3.2 Data Bus Contention ...

Figure 3.3 Modes and Interrupts vs. Time..

Figure 3.4 Exception Stack Frame..

Figure 3.5 Serial Router (Version A) ...

Figure 3.6 Serial Router (Version B) ...

Figure 3.7 Serial Router (Version C) ..

Figure 4.1 ??? .DATA and .TEXT during System Start-Up ???
Figure 5.1 Monitor Menu Structure...

Figure 7.1 Task State Machine...

Figure 7.2 Task State Machine with new State S_BLKD..

...11

..14

.....22

...24

.25

..97

..97
List of Tables

Table 2.1 Execution of a program...

Table 2.2 Duplication of Hardware ...

Table 2.3 Semaphore States..

Table 2.4 P() and V() properties ...

Table 2.5 Typical Initial Counter Values ..

TABLE 1. Commands available in all menus ...

TABLE 2. Specific commands ..

as
o for
SCSI
only

ed
uters.

very
uters
ting
s of
s for
rating
or a

be
on a

ut at
m
vel of
his
n use

ncy
++ is
. This
has
this
hich
on a

l for
t the
ere

of
ad
Preface

Every year, millions of microprocessor and microcontroller chips are sold
CPUs for general purpose computers, such as PCs or workstations, but als
devices that are not primarily used as computers, such as printers, TV sets,
controllers, cameras, and even coffee machines. Such devices are comm
calledembedded systems. Surprisingly, the number of chips used for embedd
systems exceeds by far the number of chips used for general purpose comp

Both general purpose computers and embedded systems (except for the
simple ones) require an operating system. Most general purpose comp
(except mainframes) use either UNIX, Windows, or DOS. For these opera
systems, literature abounds. In contrast, literature on operating system
embedded systems is scarce, although many different operating system
embedded systems are available. One reason for this great variety of ope
systems might be that writing an operating system is quite a challenge f
system designer. But what is more, individually designed systems can
extended in exactly the way required, and the developer does not depend
commercial microkernel and its flaws.

The microkernel presented in this book may not be any better than others, b
least you will get to know how it works and how you can modify it. Apart fro
that, this microkernel has been used in practice, so it has reached a certain le
maturity and stability. You will learn about the basic ideas behind t
microkernel, and you are provided with the complete source code that you ca
for your own extensions.

The work on this microkernel was started in summer 1995 to study the efficie
of an embedded system that was mainly implemented in C++. Sometimes C
said to be less efficient than C and thus less suitable for embedded systems
may be true when using a particular C++ compiler or programming style, but
not been confirmed by the experiences with the microkernel provided in
book. In 1995, there was no hardware platform available to the author on w
the microkernel could be tested. So instead, the microkernel was executed
simulated MC68020 processor. This simulation turned out to be more usefu
the development than real hardware, since it provided more information abou
execution profile of the code than hardware could have done. By m
coincidence, the author joined a project dealing with automated testing
telecommunication systems. In that project, originally a V25 microcontroller h

2

, the
some
d for
the

used
old

ed on
d the
two
tem
the
This
were

in
ent
the
d.
bler

rnel
m.
been used, running a cooperative multitasking operating system. At that time
system had already reached its limits, and the operating system had shown
serious flaws. It became apparent that at least the operating system calle
major redesign, and chances were good that the performance of
microcontroller would be the next bottleneck. These problems had already ca
serious project delay, and the most promising solution was to replace the
operating system by the new microkernel, and to design a new hardware bas
a MC68020 processor. The new hardware was ready in summer 1996, an
port from the simulation to the real hardware took less than three days. In the
months that followed, the applications were ported from the old operating sys
to the new microkernel. This port brought along a dramatic simplification of
application as well as a corresponding reduction in source code size.
reduction was possible because serial I/O and interprocess communication
now provided by the microkernel rather than being part of the applications.

Although the microkernel was not designed with any particular application
mind, it perfectly met the requirements of the project. This is neither by accid
nor by particular ingenuity of the author. It is mainly due to a good example:
MIRAGE operating system written by William Dowling of Sahara Software Lt
about twenty years ago. That operating system was entirely written in assem
and famous for its real-time performance. Many concepts of the microke
presented in this book have been adopted from the MIRAGE operating syste

o be
d by
not

ent
ents

tes
the
M,
or
ges
cities
two

bout

and
ical

tely
ten
and

ime
has to

wn in
uired.
lays
se in
rious
are
ks,
1 Requirements

1.1 General Requirements

Proper software design starts with analyzing the requirements that have t
fulfilled by the design. For embedded systems, the requirements are define
the purpose of the system. General definitions of the requirements are
possible: for example, the requirements of a printer will definitely be differ
from those of a mobile phone. There are, however, a few common requirem
for embedded systems which are described in the following sections.

1.2 Memory Requirements

The first PCs of the early eighties had 40 kilobytes of ROM, 256 or 512 kiloby
of RAM, and optionally a hard disk drive with 5 or 10 megabytes capacity. In
mid-nineties, an off-the-shelf PC had slightly more ROM, 32 megabytes of RA
and a hard disk drive of 2 or 4 gigabytes capacity. Floppy disks with 360
720 kilobyte capacity, which were the standard medium for software packa
and backups, had been replaced by CD-ROM and tape streamers with capa
well above 500 megabytes. Obviously, capacity has doubled about every
years, and there is no indication that this trend will change. So why bother a
memory requirements?

A PC is an open system that can be extended both in terms of memory
peripherals. For a short while, a PC can be kept up to date with technolog
developments by adding more memory and peripherals until it is ultima
outdated. Anyway, a PC could live for decades; but its actual lifetime is of
determined by the increasing memory demands of operating systems
applications rather than by the lifetime of its hardware. So to extend the lifet
of a PC as much as possible and thus to reduce the costs, its configuration
be planned thoroughly.

For a given embedded system, in contrast, the memory requirements are kno
advance; so costs can be saved by using only as much memory as req
Unlike PCs, where the ROM is only used for booting the system, ROM size p
a major role for the memory requirements of embedded systems, becau
embedded systems, the ROM is used as program memory. For the ROM, va
types of memory are available, and their prices differ dramatically: EEPROMs
most expensive, followed by static RAMs, EPROMs, dynamic RAMs, hard dis

1.3 Performance4

ded
mic

ined
be
M

will

chip
, but
es.
ere
hip

ers

has
s to
n be
ue,
the

Z80

re,
dded
r the

se in
day
has

in
sume
t can
tions.
f big
ctice;
ode is
floppy disks, CD-ROMs, and tapes. The most economical solution for embed
systems is to combine hard disks (which provide non-volatility) and dyna
RAMs (which provide fast access times).

Generally, the memory technology used for an embedded system is determ
by the actual application: For example, for a laser printer, the RAM will
dynamic, and the program memory will be either EEPROM, EPROM, or RA
loaded from a hard disk. For a mobile phone, EEPROMs and static RAMs
rather be used.

One technology which is particularly interesting for embedded systems is on-
memory. Comparatively large on-chip ROMs have been available for years
their lack of flexibility limited their use to systems produced in large quantiti
The next generation of microcontrollers were on-chip EPROMs, which w
suitable also for smaller quantities. Recent microcontrollers provide on-c
EEPROM and static RAM. The Motorola 68HC9xx series, for example, off
on-chip EEPROM of 32 to 100 kilobytes and static RAM of 1 to 4 kilobytes.

With the comeback of the Z80 microprocessor, another interesting solution
become available. Although it is over two decades old, this chip seem
outperform its successors. The structure of the Z80 is so simple that it ca
integrated in FPGAs (Field Programmable Logic Arrays). With this techniq
entire microcontrollers can be designed to fit on one chip, providing exactly
functions required by an application. Like several other microcontrollers, the
provides a total memory space of 64 kilobytes.

Although the memory size provided on chips will probably increase in the futu
the capacities available today suggest that an operating system for embe
system should be less than 32 kilobytes in size, leaving enough space fo
application.

1.3 Performance

The increase in the PCs’ memory size is accompanied by a similar increa
performance. The first PCs had an 8 bit 8088 CPU running at 8 MHz, while to
a 32 bit CPU running at 200 MHz is recommended. So CPU performance
doubled about every two years, too. Surprisingly, this dramatic increase
performance is not perceived by the user: today’s operating systems con
even more memory and CPU performance than technological developmen
provide. So the more advanced the operating system, the slower the applica
One reason for the decreasing performance of applications and also o
operating systems might be that re-use of code has become common pra
coding as such is avoided as much as possible. And since more and more c

1. Requirements 5

ctual

se of
slow,
s are
cost

has
-chip

at a
ed in
he
ns at
ciated
8 bit
at
speed
than

ower
dded
ay’s
d is
the
ting
thus

or the
. For
s of
ppers

ast,
rical

disk
row.
rent

be
els
executed in interfaces between existing modules, rather than used for the a
problem, performance steadily deteriorates.

Typically, performance demands of embedded systems are higher than tho
general purpose computers. Of course, if a PC or embedded system is too
you could use a faster CPU. This is a good option for PCs, where CPU cost
only a minor part of the total costs. For embedded systems, however, the
increase would be enormous. So the performance of the operating system
significant impact on the costs of embedded systems, especially for single
systems.

For example, assume an embedded system requiring serial communication
speed of 38,400 Baud. In 1991, a manufacturer of operating systems locat
Redmond, WA, writes in his C/C++ Version 7.0 run-time library reference: “T
_bios_serialcom routine may not be able to establish reliable communicatio
baud rates in excess of 1,200 Baud (_COM_1200) due to the overhead asso
with servicing computer interrupts”. Although this statement assumes a slow
PC running at 8 MHz,no PC would have been able to deal with 38,400 baud
that time. In contrast, embedded systems had been able to manage that
already a decade earlier: using 8 bit CPUs at even lower clock frequencies
the PCs’.

Performance is not only determined by the operating system, but also by p
consumption. Power consumption becomes particularly important if an embe
system is operated from a battery, for example a mobile phone. For tod
commonly used CMOS semiconductor technology, the static power require
virtually zero, and the power actually consumed by a circuit is proportional to
frequency at which the circuit is operated. So if the performance of the opera
system is poor, the CPU needs to be operated at higher frequencies,
consuming more power. Consequently, the system needs larger batteries,
time the system can be operated with a single battery charge is reduced
mobile phones, where a weight of 140g including batteries and stand-by time
80 hours are state of the art, both of these consequences would be show sto
for the product. Also for other devices, power consumption is critical; and l
but not least, power consumption should be considered carefully for any elect
device for the sake of our environment.

1.4 Portability

As time goes by, the demands on products are steadily increasing. A
controller that was the fastest on the market yesterday will be slow tomor
Mainstream CPUs have a much wider performance range than the diffe
microcontroller families available on the market. Thus eventually it will
necessary to change to a different family. At this point, commercial microkern

1.4 Portability6

not
or a

s, in
to
plex

d, but
the

in
s on
sed,
. An
PU,

r a
can be a problem if they support only a limited number of microcontrollers, or
the one that would otherwise perfectly meet the specific requirements f
product. In any case, portability should be considered from the outset.

The obvious approach for achieving portability is to use high level language
particular C or C++. In principle, portability for embedded system is easier
achieve than for general purpose computers. The reason is that com
applications for general purpose computers not only depend on the CPU use
also on the underlying operating system, the window system used, and
configuration of the system.

A very small part of the microkernel presented in this book was written
Assembler; the rest was written in C++. The part of the kernel which depend
the CPU type and which needs to be ported when a different CPU family is u
is the Assembler part and consists of about 200 Assembler instructions
experienced programmer, familiar with both the microkernel and the target C
will be able to port it in less than a week.

The entire kernel, plus a simple application, fit in less than 16 kilobyte ROM fo
MC68020 CPU. Hence it is especially suitable for single chip solutions.

is

of
to be
tion

r to

as
2 Concepts

2.1 Specification and Execution of Programs

The following sections describe the structure of a program, how a program
prepared for execution, and how the actual execution of the program works.

2.1.1 Compiling and Linking

Let us start with a variant of the well known “Hello World!” program:

#include <stdio.h>

const char * Text = "Hello World\n";

char Data[] = "Hello Data\n";

int Uninitialized; // Bad Practice

int main(int argc, char * argv[])
{

printf(Text);
}

This C++ program prints “Hello World”, followed by a line feed on the screen
a computer when it is executed. Before it can be executed, however, it has
transformed into a format that is executable by the computer. This transforma
is done in two steps:compilation andlinking.

The first step, compilation, is performed by a program calledcompiler. The
compiler takes the program text shown above from one file, for exampleHello.cc,
and produces another file, for exampleHello.o. The command to compile a file is
typically something like

g++ -o Hello.o Hello.cc

The name of the C++ compiler, g++ in our case, may vary from compute
computer. TheHello.o file, also referred to asobject file, mainly consists of three
sections: TEXT, DATA, and BSS. The so-calledinclude filestdio.h is simply
copied into Hello.cc in an early execution phase of the compiler, known

2.1 Specification and Execution of Programs8

can

: it
er

the

is not
rather
data
re, we

why
preprocessing. The purpose ofstdio.h is to tell the compiler thatprintf is not a
spelling mistake, but the name of a function that is defined elsewhere. We

imagine the generation ofHello.o as shown in Figure 2.1.1

FIGURE 2.1 Hello.o Structure

Several object files can be collected in one single file, a so-calledlibrary. An
important library islibc.a (the name may vary with the operating system used)
contains the code for theprintf function used in our example, and also for oth
functions. We can imagine the generation of libc.a as shown in Figure 2.2.

1. Note: The BSS section contains space for symbols that uninitialized when starting
program. For example, the integer variableUninitialized will be included here in order to speed
up the loading of the program. However, this is bad programming practice, and the bad style
weighed up by the gain in speed. Apart from that, the memory of embedded systems is
small, and thus loading does not take long anyway. Moreover, we will initialize the complete
memory for security reasons; so eventually, there is no speed advantage at all. Therefo
assume that the BSS section is always empty, which is why it is not shown in Figure 2.1, and
it will not be considered further on.

.TEXT

.DATA

Hello.oHello.cc

#include <stdio.h>
...
...

2. Concepts 9

m is

ed
s

ect
ly.

ng
can

cord
FIGURE 2.2 libc.a Structure

The second step of transforming program text into an executable progra
linking. A typical link command is e.g.

ld -o Hello Hello.o

With the linking process, which is illustrated in Figure 2.3, all unresolv
references are resolved. In our example,printf is such an unresolved reference, a
it is used inmain(), but defined inprintf.o , which in turn is contained inlibc.a.
The linking process combines the TEXT and DATA sections of different obj
files in one single object file, consisting of one TEXT and one DTA section on
If an object file is linked against a library, only those object files containi
definitions for unresolved symbols are used. It should be noted that a linker
produce different file formats. For our purposes, the so-called Motorola S-re
format will be used.

.TEXT

.DATA

printf.o

.TEXT

.DATA

.TEXT

.DATA

foo.o

bar.o

.TEXT

.DATA

printf.o

.TEXT

.DATA

.TEXT

.DATA

foo.o

bar.o

libc.a

2.1 Specification and Execution of Programs10
FIGURE 2.3 Hello Structure

.TEXT

.DATA

printf.o

.TEXT

.DATA

.TEXT

.DATA

foo.o

bar.o

libc.a

.TEXT

.DATA

Hello.o

.TEXT

.DATA

Hello

2. Concepts 11

hile
eral
n of
and

edded

r than
2.2 Loading and Execution of Programs

After a program has been compiled and linked, it can be executed. W
compilation and linking is basically identical for embedded systems and gen
purpose computers, there are some differences regarding the executio
programs. Table 2.1 lists the steps performed during program execution
shows the differences between general purpose computers and emb
systems:

Obviously, the execution of a program in an embedded system is much easie
in a general purpose computer.

General Purpose Computer Embedded System

1 The TEXT section of the program
is loaded into the program memory
(part of the computer’s RAM).

The TEXT section is already
existing in the program memory
(EEPROM) of the embedded
system.

2 Depending on the object format
generated by the linker, the
addresses of the TEXT section may
need to be relocated. If the compiler
produced position independent
code (PIC), this step is omitted.

The addresses are computed by the
linker.

3 The DATA section of the program
is loaded into program memory
(part of the computer’s RAM).

The DATA section is already in the
EEPROM of the embedded system.

4 Depending of the object format
generated by the linker, the
addresses of the TEXT section may
need to be relocated.

The DATA section is copied as a
whole to its final address in RAM.

TABLE 2.1 Execution of a program

2.3 Preemptive Multitasking12

what
ethod

hich

ice,
).
tions
e 7.
PU,
on

. But
has

tems
2.3 Preemptive Multitasking

The previous sections described the execution of one program at a time. But
needs to be done if several programs are to be executed in parallel? The m
we have chosen for parallel processing ispreemptive multitasking. By definition,
a taskis a program that is to be executed, andmultitaskingrefers to several tasks
being executed in parallel. The termpreemptive multitaskingas such may imply a
complex concept. But it is much simpler than other solutions, as for exampleTSR
(Terminate and Stay Resident) programs in DOS, orcooperative multitasking.

To explain the concepts of preemptive multitasking, we developed a model w
is described in the following sections.

2.3.1 Duplication of Hardware

Let us start with a single CPU, with a program memory referred to asROM(Read
Only Memory), and a data memory,RAM (Random Access Memory). The CPU
may read from the ROM, as well as read from and write to the RAM. In pract
the ROM is most likely anEEPROM(Electrically Erasable Programmable ROM
The CPU reads and executes instructions from the ROM. These instruc
comprise major parts of the TEXT section in our example program on pag
Some of these instructions cause parts of the RAM to be transferred into the C
or parts of the CPU to be transferred to the RAM, as shown in Figure 2.4
page 13. For general purpose computers, the program memory is a RAM, too
in contrast to embedded systems, the RAM is not altered after the program
been loaded – except for programs which modify themselves, or paged sys
where parts of the program are reloaded at runtime.

2. Concepts 13

can
gram
on the
are
FIGURE 2.4 Program Execution

Now let us assume we have two different programs to be run in parallel. This
be achieved surprisingly easy_ by duplicating the hardware. Thus, one pro
can be executed on one system, and the second program can be executed
other system, as shown in Figure 2.5. Note that the TEXT and DATA sections
at different locations in the ROMs and RAMs of Figure 2.5.

FIGURE 2.5 Parallel execution of two programs

CPU

ROM

RAM

.TEXT

.DATA

CPU0

ROM0

RAM0

.TEXT0

.DATA0

CPU1

ROM1

RAM1

.TEXT1

.DATA1

2.3 Preemptive Multitasking14

erent
tant
the

and
AM,
t

Because of the increased hardware costs, this approach for running diff
programs in parallel is not optimal. But on the other hand, it has some impor
advantages which are listed in Table 2.2. Our goal will be to eliminate
disadvantage while keeping the benefits of our first approach.

2.3.2 Task Switch

The next step in developing our model is to eliminate one of the two ROMs
one of the two RAMs. To enable our two CPUs to share one ROM and one R
we have to add a new hardware device: aclock. The clock has a single outpu
producing a signal (see Figure 2.5). This signal shall be inactive (low) for 1,000 to
10,000 CPU cycles, and active (high) for 2 to 3 CPU cycles. That is, the time
while the signal is high shall be sufficient for a CPU to complete a cycle.

FIGURE 2.6 Clock

Advantages Disadvantages

The two programs are entirely
protected against each other. If one
program crashes the CPU, then the
other program is not affected by the
crash.

Two ROMs are needed (although
the total amount of ROM space is
the same).

Two RAMs are needed (although
the total amount of RAM space is
the same).

Two CPUs are needed.

The two programs cannot
communicate with each other.

TABLE 2.2 Duplication of Hardware

CLOCK

2. Concepts 15

ll be
m

task
the
ther

f the
ive,
ROM
OM
to

AM
two
The output of the clock is used to drive yet another device: thetask switch(see
Figure 2.7). The task switch has one input and two outputs. The outputs sha
used for turning on and off the two CPUs. The clock (CLK) signal turning fro
inactive to active is referred to astask switch event. On every task switch event,
the task switch deactivates the active output, OUT0 or OUT1. Then the
switch waits until the CLK signal becomes inactive again in order to allow
CPU to complete its current cycle. Finally, the task switch activates the o
output, OUT0 or OUT1.

FIGURE 2.7 Task Switch

Each of the CPUs has an input that allows the CPU to be switched on or off. I
input is active, the CPU performs its normal operation. If the input goes inact
the CPU completes its current cycle and releases the connections towards
and RAM. This way, only one CPU at a time is operating and connected to R
and RAM, while the other CPU is idle and thus not requiring a connection
ROM and RAM. Consequently, we can remove the duplicated ROM and R
from our model, and the remaining ROM and RAM can be shared by the
CPUs (see Figure 2.8).

CLOCK

OUT1
OUT0

TASK SWITCH

CLK

OUT0

OUT1

CLK

2.3 Preemptive Multitasking16

. We
nger

f the
too.
the

ould

d to
teps
one
M

CPU
FIGURE 2.8 Shared ROM and RAM

By using the shared RAM, the two CPUs can communicate with each other
have thus lost one of the advantages listed in Table 2.2: the CPUs are no lo
protected against each other. So if one CPU overwrites the DATA segment o
other CPU during a crash, then the second CPU will most likely crash,
However, the risk of one CPU going into an endless loop is yet eliminated. By
way, when using cooperative multitasking, an endless loop in one task w
suspend all other tasks from operation.

2.3.3 Task Control Blocks

The final steps to complete our model are to move the duplicated CPU, an
implement the task switch in software rather than in hardware. These two s
are closely related. The previous step of two CPUs sharing one ROM and
RAM was relatively easy to implement by using different sections of the RO
and RAM. Replacing the two CPUs by a single one is not as easy, since a

CPU0 CPU1

ROM

RAM

.TEXT1

.DATA1

.TEXT0

.DATA0

CLOCK

OUT1
OUT0

TASK SWITCH

CLK

2. Concepts 17

t us

nal
ver,

at in
PU.

on
o the
two

ing:
two
ented
d by
ware
ime
o be
in the
cannot be divided into different sections. But before discussing the details, le
have a look at the final configuration which is shown in Figure 2.9:

FIGURE 2.9 Final Hardware Model for Preemptive Multitasking

In contrast to the configuration with two CPUs shown in Figure 2.8, the fi
configuration (see Figure 2.9) has only one CPU and no task switch. Moreo
the CLK signal has been replaced by an INT signal. This signal indicates th
the final model, task switching is initiated by a regular interrupt towards the C

The final configuration is very similar to our initial model shown in Figure 2.4
page 13. We merely have added the clock device, which is now connected t
interrupt input of the CPU. Note that our final model is able to run more than
programs in parallel.

The main reason why we wanted to remove the duplicated CPU is the follow
Think of the two CPUs shown in Figure 2.8 on page 16. At any time, these
CPUs are most likely in different states. The two possible states are repres
by the internal registers of the CPU and determined by the programs execute
the CPUs. So to remove the duplicated CPU, we need to replace the hard
task switch by a software algorithm. Upon a task switch event (that is, the t
when the clock signal goes inactive, or low), the state of one CPU needs t
saved, and the state of the second CPU needs to be restored. So we obta
following algorithm:

• Save the internal registers of CPU0

• Restore the internal registers of CPU1

CPU

ROM

RAM

.TEXT1

.DATA1

.TEXT0

.DATA0

CLOCK

INT

2.3 Preemptive Multitasking18

l in
, we

isters
next
ble,

. But
in

ny

e at
However, this algorithm does not make much sense, as our final mode
Figure 2.9 on page 17 is to have only one CPU. Instead of having two CPUs
use a data structure calledTCB, Task Control Block, to represent the CPUs of the
system. These TCBs provide space for storing the contents of the CPUs’ reg
R0 to Rn. Moreover, each TCB has a pointer to the TCB that represents the
CPU. The task switch of Figure 2.8 on page 16 is replaced by a varia
CurrentTask . The TCB concept is illustrated in Figure 2.10.

FIGURE 2.10 Task Control Blocks and CurrentTask

As a result, the proper task switch algorithm, which is anInterrupt Service
Routine, ISR, is as follows:

• Reset the interrupt, if required

• Store the internal CPU registers into the TCB to which CurrentTask is
pointing

• Replace CurrentTask by NextTask pointer of the TCB to which
CurrentTask is pointing

• Restore the internal CPU registers from the TCB to which
CurrentTask points now

• Return from ISR

Not that the ISR itself does not change the CPU state during the task switch
this ISR is all we need for preemptive multitasking. By inserting further TCBs
the TCB NextTask pointer ring, the model can be extended to perform a
number of tasks.

There is an important invariant for this scheme:Whenever a task examines the
variable CurrentTask, it will find this variable pointing to its own TCB . If
CurrentTask does not point to some arbitrary task, then this task is not activ

CurrentTask NextTask

R0

Rn

...

NextTask

R0

Rn

...

2. Concepts 19

s are
PU
task

n the
f our

f the

50
r not.
e

at
ously,
that time, and thus this condition cannot be detected. In brief,for every task,
CurrentTask refers to the tasks’s own TCB.

2.3.4 De-Scheduling

Up to now, our two tasks had equal share of CPU time. As long as both task
busy with useful operations, there is no need to change the distribution of C
time. For embedded systems, however, a typical situation is as follows: each
waits for a certain event. If the event occurs, the task handles this event. The
task waits for the next event, and so on. For example, assume that each o
tasks monitors one button which is assigned to the relevant task. If one o
buttons is pressed, along and involved computation, lic, is called:

task_0_main()
{

for (;;)
if (button_0_pressed()) lic_0();

}

task_1_main()
{

for (;;)
if (button_1_pressed()) lic_1();

}

As task switching is controlled by our clock device, each task consumes
percent of the CPU time, regardless of whether a button is being pressed o
This situation is described asbusy wait. So precious CPU time is wasted by th
tasks being busy with waiting as long as thebutton_x_pressed()functions return
0. To ensure optimal exploitation of CPU time, we add aDeSchedule()function
which causes a task to release explicitly its CPU time:

task_0_main()
{

for (;;)
if (button_0_pressed()) lic_0();
else DeSchedule();

}

task_1_main()
{

for (;;)
if (button_1_pressed()) lic_1();
else DeSchedule();

}

So theDeSchedule()function initiates the same activities as our ISR, except th
there is no interrupt to be reset. Unless both buttons are pressed simultane

2.3 Preemptive Multitasking20

lly
e-
theDeSchedule()function allows to assign the CPU time to the task that actua
needs it, while still maintaining the simplicity of our model. Note that explicit d
scheduling should only be used rarely, because …(ausdrückliche Begründung
fehlt!!!) .

2. Concepts 21

task
tive
our

ming
the

at
ain
ill be

are
2.4 Semaphores

To further enhance the usage of CPU time and to reduce the time for
switching, we will make use of yet another powerful data structure of preemp
multitasking: semaphores. These semaphores allow changing the state of
tasks.

In our current model, the two tasks are permanently running and thus consu
precious CPU capacity. For this purpose, we introduce two new variables in
TCB: State andNextWaiting. For now,State is initially set to the valueRUN,
andNextWaiting is set to 0. If required,State may be set to the valueBLKD
(that is, blocked). So if we refer to the task as being RUN or BLOCKED, th
means that theStatevariable has the corresponding value. As a result, we obt
the TCB and the state machine shown in Figure 2.11. The state machine w
extended later.

FIGURE 2.11 Task State Machine

Next, we slightly modify our task switching ISR so that it ignores tasks that
not in state RUN:

• Reset the interrupt, if required

• Store the internal CPU registers into the TCB to which CurrentTask is
pointing

• Repeat
Replace CurrentTask by NextTask pointer of the TCB to which CurrentTask is
pointing

until the state of CurrentTask is RUN

• Restore the internal CPU registers from the TCB to which
CurrentTask is pointing now

• Return from ISR

NextWaiting

R0

R0

...

State

TCB

RUN

BLKD

NextTask

2.4 Semaphores22

f
sk

are

of a

s are
s are

for
urces
for

e the

. The
it
hore

a

best
There is an important invariant:Whenever a task examines the variable State,
it will find this variable set to RUN . Statemay have any value at any time; but i
State is not set toRUN, then this task is not active at that time, and thus the ta
cannot find itself in another state.

This invariant does not yet have any impact on our model, since our tasks
permanently in stateRUN. Clearly, if no task were in stateRUN, the above ISR
would loop forever. It will be the semaphores that control the state changes
task; that is, switch betweenRUN andBLKD .

A semaphore represents the number of abstract resources: if resource
available, the semaphore counts the number of resources. If no resource
available, the semaphore counts the number of tasks that are waiting
resources. The latter situation can also be expressed as the “number of reso
missing”. If there are resources missing, then the TCBs of the tasks waiting
these resources are appended to a linked list of TCBs of waiting tasks, wher
head of the list is part of the semaphore.

The semaphore consists of two variables: a counter and a pointer to a TCB
TCB pointerNextWaiting is only valid if the counter is less than 0; otherwise,
is invalid and set to 0 for clarity. The pointer represents the state of the semap
as shown in Table 2.3.

When a semaphore is created, the counter is initialized with the number N> 0 of
resources initially available, and theNextWaiting pointer is set to 0. Then tasks
may request a resource by calling a functionP(), or the tasks may release
resource by calling a functionV(). The namesP andV have been established by
Dijkstra, who invented the semaphores concept. In C++, a semaphore is
represented as an instance of a classSemaphore, while P() andV() are public
member functions of that class.

Counter
Value

NextWaiting TCB
Pointer State

N > 0 0 N resources available

N = 0 0 No resource available, and no task waiting
for a resource

-N < 0 Next task waiting for a
resource represented by
this semaphore

N tasks waiting for a resource; that is, N
resources are missing

TABLE 2.3 Semaphore States

2. Concepts 23

s
ution
gain

o
reby

t the

the
tate
t is
st
The algorithm for theP() member function is as follows:

• If Counter > 0 (i.e. if resources are available)
Decrement Counter (decrement number of resources)

• Else (i.e. if no resources are available)
Decrement Counter, (increment number of tasks waiting)

Set State of CurrentTask to BLKD

Append CurrentTask at the end of the waiting chain

DeSchedule()

The P() function examinesCounter in order to verify if there are any resource
available. If so, the number of resources is simply decremented and exec
proceeds. Otherwise, the number of waiting tasks is increased (which a
causes the counter to be decreased, since-Counter is increased), the task is
blocked and appended to the waiting chain, and finallyDeSchedule()is called to
make the blocking effective. Obviously,Counter is decremented in any case. S
decrementing the counter can be placed outside the conditional part, the
changing the comparison from > 0 to> 0. By inverting the condition from> 0 to <
0 and by exchanging the If part (which is empty now) and the Else part, we ge
following equivalent algorithm:

• Decrement Counter

• If Counter < 0
Set State of CurrentTask to BLKD

Append CurrentTask at the end of the waiting chain

DeSchedule()

The V() member function has the following algorithm:

• If Counter > 0 (i.e. if there are no tasks waiting)
Increment Counter (increment number of resources)

• Else (i.e. if there are tasks waiting)
Increment Counter, (decrement number of tasks waiting)

Set State of first waiting task to RUN

Remove first waiting task from the head of the waiting chain

The V() function examinesCounter. If V() finds thatCounter is > 0, which
means there are no tasks waiting, then it just incrementsCounter, indicating there
is one more resource available. IfV() finds thatCounter is < 0, there are tasks
waiting. The number of waiting tasks is decremented by incrementing
counter, the first task in the waiting chain is then unblocked by setting its s
back to RUN, and the task is removed from the waiting chain. The task tha
being activated had issued aP() operation before and continues execution ju
after theDeSchedule()call it made in theP() function. Figure 2.12 shows a

2.4 Semaphores24

pay
w
u
to

ain.
by
sequence ofP() function calls performed by a task T0, andV() function calls
performed by another task or ISR on the same semaphore.

FIGURE 2.12 P() and V() Function Calls

A semaphore is very similar to a bank account. There are no restrictions to
money into your account (V()) whenever you like. In contrast, you can withdra
money (P()) only if you have deposited it before. If there is no money left, yo
have to wait until somebody is kind enough to fill the account again. If you try
cheat the bank by trying to withdraw money from an empty account (P() when
Counter = 0), you go to jail (get blocked) until there is enough money ag
Unfortunately, if you are in jail, there is no way for yourself to fix the problem
depositing money, since in jail you can’t do anything at all.

As for the bank account, there are huge differences between theP() and V()
functions, see Table 2.3.

P() V()

P() must not be called in an ISR V() may be called from anywhere,
including ISR.

A P() function call may block the calling
task

A V() function call may not block any
task

TABLE 2.4 P() and V() properties

Count = 2
Count = 1
Count = 0
Count = -1

T0 RUN
T0 BLKD

P P P P PV V V V

2. Concepts 25

cs, as
Semaphores used some common initial values which have specific semanti
shown in Table 2.3.

The negative value of Counter is limited
by the number of existing tasks, since
every task is blocked at aP() call with
Counter < 0.

Any number ofV() operations may be
performed, thus increasingCounter to
arbitrarily high values.

TheP() call requires time O(N) if
Counter < 0; else, P() requires time
O(1). The time can be made constant by
using a pointer to the tail of the waiting
chain, but it is usually not worth the
effort.

TheV() call requires constant time

Initial
Counter Semantic

N > 1 The semaphore represents a pool of N resources.

N = 1 A single resource that may only be used by one task at a time; for
example, hardware devices.

N = 0 One or several resources, but none available initially; for example, a
buffer for received characters.

TABLE 2.5 Typical Initial Counter Values

P() V()

TABLE 2.4 P() and V() properties

2.5 Queues26

tive
are

d as a
f the

ory,

ry

reset
e of

a

2.5 Queues

Although semaphores provide the most powerful data structure for preemp
multitasking, they are only occasionally used explicitly. More often, they
hidden by another data structure calledqueues. Queues, also calledFIFOs (first
in, first out), are buffers providing at least two functions:Put() andGet(). The
size of the items stored in a queue may vary, thus Queue is best implemente
template class. The number of items may vary as well, so the constructor o
class will take the desired length as an argument.

2.5.1 Ring Buffers

The simplest form of a queue is a ring buffer. A consecutive part of mem
referred to as Buffer, is allocated, and two variables, theGetIndex and the
PutIndex, are initialized to 0, thus pointing to the beginning of the memo
space. The only operation performed on theGetIndex and thePutIndex is
incrementing them. If they happen to exceed the end of the memory, they are
to the beginning. This wrapping around at the end turns the straight piec
memory into a ring. The buffer is empty if and only ifGetIndex = PutIndex.
Otherwise, thePutIndex is always ahead of theGetIndex (although the
PutIndex may be less than theGetIndex if the PutIndex already wrapped
around at the end, while theGetIndex did not wrap around yet). In Figure 2.13,
ring buffer is shown both as straight memory and as a logical ring.

2. Concepts 27

the

the
FIGURE 2.13 Ring Buffer

The algorithm forPut(), which takes an item as its arguments and puts it into
ring buffer, is as follows:

• Wait as long as the Buffer is full, or return Error indicating overflow

• Buffer[PutIndex] = Item

• PutIndex = (PutIndex + 1) modulo BufferSize (increment
PutIndex, wrap
around at end)

Get(), which removes the next item from the ring buffer and returns it, has
following algorithm:

• Wait as long as Buffer is empty, or return Error indicating underflow

• Item = Buffer[GettIndex]

• GetIndex = (GetIndex + 1) modulo BufferSize(increment GetIndex,
wrap around at end)

• Return Item

Item Item ItemItem ItemItem

Get Put

Item

Item

Item
Ite

m

Item

Ite
m

Item

Item

Get Put

Buffer

2.5 Queues28

In
uffer

ers.
n is
ost

e

n this
ars

d

re
In practice, an empty buffer is much more likely than a buffer overflow.
embedded systems, an empty buffer is a sign of proper design, while a full b
usually shows that something is wrong. SoGet() andPut() can also be compared
to a bank account, which tends to be empty rather than overflow.

Assume that we don not want to return an error condition on full or empty buff
There are good reasons not to return an error condition, since this conditio
likely to disappear again, and the response to such an error condition will m
often be a retry of thePut() or Get(). That is, we assume we want to wait. Th
simplest (and worst) approach is again busy wait:

For the Get() function:

• While GetIndex = PutIndex
Do Nothing (i.e. waste time)

For the Put() function:

• While GetIndex = (PutIndex + 1) modulo BufferSize
Do Nothing (i.e. was time)

The note on bank accounts and the termbusy waitshould have reminded you of
semaphores.

2.5.2 Ring Buffer with Get Semaphore

The basic idea is to consider the items in a buffer as resources. I have see
idea for the first time in an operating system called MIRAGE about twenty ye
ago. It was used for interrupt-driven character I/O.

In addition to theGetIndex andPutIndex variables, we add a semaphore calle
GetSemaphore, which represents the items in the buffer. AsGetIndex and
PutIndex are initialized to 0 (that is, the buffer is initially empty), this semapho
is initialized with itsCounter variable set to 0.

For eachPut(), a V() call is made to this semaphoreafter the item has been
inserted into the buffer. This indicates that another item is available.

• Wait as long as the Buffer is full, or return Error indicating overflow

• Buffer[PutIndex] = Item

• PutIndex = (PutIndex + 1) modulo BufferSize(increment PutIndex,
wrap around at end)

• Call V() for GetSemaphore

2. Concepts 29

could
the

re
As
,

ce in

. To
upt-
For eachGet(), a P() call is madebeforeremoving an item from the buffer. If
there are no more items in the buffer, then the task performing theGet() and thus
the P() is blocked until someone usesPut() and thusV() to insert an item.

• Call P() for GetSemaphore

• Item = Buffer[GettIndex]

• GetIndex = (GetIndex + 1) modulo BufferSize(increment GetIndex,
wrap around at end)

• Return Item

2.5.3 Ring Buffer with Put Semaphore

Instead of considering the items that are already inserted as resources, we
as well consider the free space in the buffer as resources. In addition to
GetIndex andPutIndex variables for the plain ring buffer, we add a semapho
called PutSemaphore, which represents the free space in the buffer.
GetIndex andPutIndex are initialized to 0 (that is, the buffer is initially empty)
this semaphore (in contrast to theGetSemaphore) is initialized with itsCounter
variable set toBufferSize.

For eachPut(), a P() call is made to this semaphorebeforethe item is inserted
into the buffer and thus buffer space is reduced. If there is no more free spa
the buffer, then the task performing thePut() and thus theP() is blocked until
someone usesGet() and thusV() to increase the space again.

• Call P() for PutSemaphore

• Buffer[PutIndex] = Item

• PutIndex = (PutIndex + 1) modulo BufferSize(increment PutIndex,
wrap around at end)

For eachGet(), a P() call is madeafter removing an item from the buffer,
indicating another free position in the buffer.

• Wait as long as Buffer is empty, or return Error indicating underflow

• Item = Buffer[GettIndex]

• GetIndex = (GetIndex + 1) modulo BufferSize(increment GetIndex,
wrap around at end)

• Call V() for PutSemaphore

• Return Item

This scheme is used less often than the ring buffer with Get semaphore
understand why, let us consider a task which communicates with an interr

2.5 Queues30

the
o all
first
get

ill be
tion.
, i.e.
te

l the
re or
This
pper

the
driven serial port. For each direction, a buffer is used between the task and
serial port, as shown in Figure 2.14. Assume further that the task shall ech
characters received to the serial port, possibly running at a lower speed. At a
glance, you may expect to have the (upper) receive buffer used with a
semaphore, and the (lower) transmit buffer with a put semaphore. The task w
blocked most of the time on the get semaphore, which is a normal condi
What would happen, however, if the task would block on the put semaphore
if the transmit buffer is full? This will eventually happen if the transmit data ra
is lower than the receive data rate. In this case, one would normally signa
sender at the far end to stop transmission for a while, for example by hardwa
software handshake. A blocked task, however, would not be able to do this.
scenario is quite common, and one would use a get semaphore for the u
buffer, but a plain ring buffer for the lower one.

FIGURE 2.14 Serial Communication between a Task and a Serial Port

2.5.4 Ring Buffer with Get and Put Semaphores

The final option is to use both a get and a put semaphore. The buffer and
semaphores are initialized as described in the previous sections.

For eachPut(), aP() call is made to the put semaphorebeforethe item is inserted,
and aV() call is made to the get semaphoreafter the item is inserted:

• Call P() for PutSemaphore (block until there is space)

• Buffer[PutIndex] = Item

• PutIndex = (PutIndex + 1) modulo BufferSize

• Call V() for GetSemaphore (indicate a new item)

For eachGet(), a V() call is made on the get semaphorebefore an item is
removed, and aP() call is made on the put semaphoreafter removing an item
from the buffer.

Task

Rx

Tx

Put

PutGet

Get

Serial Port

2. Concepts 31

e is
es.

e
f put
• Call P() for GetSemaphore (block until there is an item)

• Item = Buffer[GettIndex]

• GetIndex = (GetIndex + 1) modulo BufferSize

• Call V() for PutSemaphore (indicate space available)

• Return Item

This ring buffer with get and put semaphore is optimal in the sense that no tim
wasted, and no error condition is returned on either full or empty queu
However, it cannot be used in any ISR, since both sides,Put() andGet(), use the
P() call which is forbidden for ISRs. Thus the only application for this schem
would be the communication between tasks. Moreover, the disadvantages o
semaphores apply here as well.

32

3. Kernel Implementation 33

the
t is
3 Kernel Implementation

3.1 Kernel Architecture

Figure 3.1 shows the overall architecture of the kernel implementation.

FIGURE 3.1 Kernel Architecture

The bottom part of Figure 3.1 shows the part of the kernel that is (along with
functions called from there) executed in supervisor mode. All code tha

Hardware (DUART)

ISRHardware Access P(), V(), Poll()Startup

Serial I/O

Scheduler

Task

SemaphoreQueue

Supervisor

User Mode

Kernel

Application

Queue

Application

os

crt0.S

Mode

Application
Startup

Queue

3.2 Hardware Model34

file
r
uler),
ance

d in
e,
eral

the

the

task
lass
its

class

The

tion

wing

The
executed in supervisor mode is written in assembler and is contained in the
crt0.S. The code incrt0.S is divided into the start-up code, functions fo
accessing the hardware, interrupt service routines, the task switch (sched
and the semaphore functions that are written in assembler for perform
reasons.

The middle part of Figure 3.1 shows the rest of the kernel, which is execute
user mode. Any call to the code incrt0.S requires a change to supervisor mod
i.e. every arrow from the middle to the lower part is related to one or sev
TRAP instructions which cause a change to supervisor mode. Classoscontains a
collection of wrapper functions with TRAP instructions and enables
application to access certain hardware parts. The classesSerialIn andSerialOut,
referred to asSerial I/O, require hardware access and are also accessed from
interrupt service routine. ClassTask contains anything related to task
management and uses the supervisor part of the kernel for (explicit)
switching. Task switching is also caused by the interrupt service routine. C
Semaphore provides wrapper functions to make the implementation of
member functions available in user mode. SeveralQueueclasses are used inside
the kernel and are also made available to the application; most of them use
Semaphore.

Normally, an application is not concerned with the internal kernel interfaces.
relevant interfaces towards the kernel are those defined in classesos, SerialIn,
SerialOut, Task, Queue, and sometimesSemaphore.

3.2 Hardware Model

In order to understand the kernel implementation, we need some informa
about the underlying hardware:

• Which processor type is used?

• How is the memory of the processor mapped?

• Which peripherals are used?

• Which interrupt assignment of the peripherals are used?

• How do the peripherals use the data bus?

For the implementation discussed here, the hardware described in the follo
sections is assumed.

3.2.1 Processor

We assume that any processor of the Motorola MC68000 family is used.
implementation works for the following processors:

3. Kernel Implementation 35

. For

the

eral

ART
• MC68000

• MC68008

• MC68010

• MC68012

• MC68020

• MC68030

• MC68040

• CPU32

Note that out of this range of processors, only the MC68020 has been tested
use of other chips, see also Section 3.2.5.

3.2.2 Memory Map

We assume the following memory map for the processor:

• (E)EPROM at address 0x00000000..0x0003FFF

• RAM at address 0x20000000..0x2003FFF

• DUART at address 0xA0000000..A000003C

The EPROM and RAM parts of the memory map are specified in
System.config file.

 1 #define ROMbase 0x00000000
 2 #define ROMsize 0x00040000
 3 #define RAMbase 0x20000000
 4 #define RAMsize 0x00040000

3.2.3 Peripherals

We assume a MC68681 DUART with two serial ports, a timer, and sev
general purpose input and output lines.

The DUART base address, along with the addresses of the various DU
registers, is contained in the fileduart.hh.

 5 #define DUART 0xA0000000

3.2 Hardware Model36

ther
ctor

and
rn-off
her
as

to
n the
or

y of
bus
ip
tly
3.2.4 Interrupt Assignment

We assume the DUART may issue interrupts at level 2 to the CPU. We fur
assume that the interrupt vector is determined by the interrupt level (i.e. the ve
is a so called autovector) rather than by the DUART.

3.2.5 Data Bus Usage

We assume the DUART is connected to data lines D16..D23 of a MC68020,
that it indicates WORD size for read accesses because of the considerable tu
time of 150 nS for the data bus of the MC68681 as well as for many ot
peripherals. For a MC68020 running at 20 MHz, the timing to deal with is
shown in Figure 3.2.

FIGURE 3.2 Data Bus Contention

After deasserting the DUART’s chip select, the DUART needs a long time
three-state its data bus. This causes contention on the data bus betwee
DUART and the device addressed with the next cycle, which is usually a ROM
RAM. Adding wait states does not help here: this way, theCSDUART would
merely be extended, while the contention remains as it is. The standard wa
dealing with this contention is to separate the DUART from the CPU’s data
by means of a bidirectional driver, which is switched on with the DUART’s ch
selectCSDUART. But this solution requires an additional driver, and frequen
cost limits, PCB space, or components do not allow for this.

CLK

AS

CSDUART

DATA DUART

T = 0 100 150 250

CSROM

DATA ROM

3. Kernel Implementation 37

by
nly.

a
For

ay

ove
NG
RD
ycle
my
the
l is
SIZ0
, this

not
size
SIZ1
oded
the
ne

s for
NG

splits
ly,
es an

8000
data
ide the
n the
t in
ts,
ut
, i.e
M

For the MC68000 family, this problem can also be solved in a different way:
generating two read cycles towards the DUART instead of one read cycle o
However, only in the first cycle, aCSDUART is generated, while the second is
dummy cycle allowing the DUART to completely three-state its data bus.
higher speeds, the dummy cycle can be extended by wait states.

As the CPUs of the MC68000 family have different memory interfaces, the w
to implement such a dummy cycle depends on the CPU used.

For MC68020, MC68030, and MC68040 CPUs, the CPU executes a LONG m
from the peripheral. This causes the CPU’s SIZ0 and SIZ1 to request a LO
read cycle from the peripheral. The peripheral would, however, indicate a WO
size at the end of the cycle. The CPU then automatically initiates another c
with size WORD in order to get the missing data. This second cycle is the dum
cycle. The actual value read by the CPU contains only one valid byte from
peripheral (in D23..D16 or D31..D24, depending on where the periphera
located on the data bus). The remaining three bytes read are invalid. If the
and SIZ1 lines are properly decoded, generating a bus error for all other sizes
method is safe even in the case of software faults.

For the MC68000, MC68010 and MC68012, such dynamic bus resizing is
possible. However, the data bus size of the peripheral is limited to WORD
anyway for these CPUs. Unfortunately, these CPUs do not provide SIZ0 and
lines to indicate the size of a cycle. Instead, the A1 address line has to be dec
in order to distinguish between the first cycle towards the peripheral and
following dummy cycle. This method is not entirely safe though: by mistake, o
might access the address for the dummy cycle first.

Finally, for the MC68008, which has a 8 bit data bus only, the same method a
the MC68000 can be used, except that a WORD read cycle instead of a LO
read cycle is executed, and address line A0 is used instead of A1. The CPU
this WORD read cycle into two BYTE read cycles automatically. Surprising
this method is safe again, because a word read to an odd address caus
address error trap.

In any case, some part of the data bus is undefined. The CPUs of the MC6
family may change their Z (zero) and N (negative) flag depending on the
read. There is a negligeable chance that these flags become metastable ins
CPU when the floating part of the data bus changes just in the moment whe
data lines are latched by the CPU. Although most likely this has no effec
practice, one should use amove instruction that does not change any status bi
for example MOVEM. It is primarily intended for moving several registers, b
can serve for this particular purpose as well. In the case of a MC68008 CPU
when using MOVEM.W, be aware of a strange inconsistency of the MOVE

3.2 Hardware Model38

into
pper
ally

0

:

instruction that causes the lower word of a data register to be sign-extended
the upper word. That is, .W refers to the source size only. Failing to save the u
word of the register is a common mistake that is hard to detect, since it usu
occurs in an interrupt service routine.

As a result,crt0.S contains the following two lines for all CPUs of the MC6800
family except for MC68008:

136 MOVEM.L rDUART_ISR, D7 | get interrupt sources
137 SWAP D7 |

For the MC68008, the above lines need to be replaced by the following code

MOVEM.W rDUART_ISR, D7 | CCAUTION: D7.W is sign-extended !!!
 ASR.W #8, D7 |

3. Kernel Implementation 39

ion

rvisor
t
de,
uted.

ns.
FC2

our
.

visor

r and
s of

and
dware
en
tely
but to

user
Such
rupt

r
in
nly

ll be
on-
th all
n
nted

bling
e

3.3 Task Switching

The MC68000 family of microprocessors which is used for our implementat
provides two basic modes of operation: theuser modeand thesupervisor mode.
(The 68020 microprocessors and higher also feature a sub-mode of the supe
mode, themaster mode, which allows for a cleaner implementation of interrup
handling. But for compatibility reasons, we did not use it here.) In user mo
only a subset of the instructions provided by the microprocessor can be exec
An attempt to execute aprivileged instruction(that is, an instruction not allowed
in user mode) causes aprivilege violation exceptionto be executed instead of the
instruction. Usually, C++ compilers do no generate any privileged instructio
The microprocessor indicates its present mode also to the hardware by its
output. This way, certain hardware parts, such as the DUART in
implementation, are protected against inadvertent accesses from user mode

One could ignore the user mode feature and run the whole system in super
mode. A task could then e.g. write to a hardware register at addressreg directly
from C++:

*(unsigned char *)reg = data;

This method is commonly used for processors that have no separate use
supervisor modes. But the price paid for this simplicity is a considerable los
protection.

The MC68000 family evolved in such a way that the distinction between user
supervisor mode could be applied to memory accesses also by using a har
memory management unit (MMU). From the MC68040 on, this MMU was ev
integrated in the microprocessor chip. By using a MMU, tasks are comple
protected against each other. Therefore, we chose not to take the easy way,
used the separate user and supervisor modes: regular task code is run in
mode, while code accessing critical resources is run in supervisor mode.
critical resources are peripherals as for example our DUART, or the inter
mask of the processor.

Sometimes, plotting the mode (U is user mode,S is supervisor mode) togethe
with the interrupt level against time proves to be useful. A typical plot is shown
Figure 3.3. In our system, we use only one interrupt at level 2. Thus the o
interrupt mask levels that make sense in our system are 0 (all interrupts wi
served), 2 (only interrupts above level 2 will be served), and 7 (only n
maskable interrupts will be served). Regular task code runs in user mode, wi
interrupts enabled (indicated byU0). In some cases, in particular whe
performing operations on queues, interrupt service routines must be preve
from changing a queue’s variables. The can be easily achieved by disa
interrupts even in user mode,U7. In user mode, other interrupt levels than th

3.3 Task Switching40

efully
ing
rone

sk

n, it
e with

e and
ur
ing
rn to
a

task
or
ode

l in
e at

ed
ones cited above are rarely used, because one would have to analyze car
which data structures could be modified at which interrupt level. Chang
interrupt levels would then mean repeating this analysis, which is an error-p
procedure.

FIGURE 3.3 Modes and Interrupts vs. Time

As shown in the above figure, the system starts atT=0 in supervisor mode, with
all interrupts disabled. After initialization, the first task (which is the idle ta
explained later) starts execution atT=1, with interrupts still disabled. The idle
task sets up other tasks and enables interrupts in the hardware. AtT=2, the idle
task wants to lower the interrupt mask to 0. Since this is a privileged instructio
has to enter supervisor mode, change interrupt mask and return to user mod
interrupts enabled atT=3. At this point, that is atT=4, interrupts from the
hardware are accepted by the CPU. The interrupt changes to supervisor mod
automatically sets the interrupt level to 2. As we will see later, in o
implementation we will always check for possible task switches before return
to user mode. This check is made with interrupts disabled. Hence every retu
user mode is fromS7. Thus atT=5, the interrupt processing is finished, and
check for task switching is made with interrupts disabled. AtT=6, this check is
finished, and the CPU returns to user mode, which may be code of the same
or a different one. AtT=7, a task performs a protected operation in supervis
mode, such as writing to a hardware register. Like before, it returns to user m
(via S7atT=8) atT=9. Next, we see a task intending to raise the interrupt leve
order to modify a critical data structure. It does so by entering supervisor mod
T=10 and returning to user mode in the usual way (viaS7 at T=11), but with
interrupts disabled, atT=12. After finishing the critical section, it enters
supervisor mode again atT=13 and returns to user mode with interrupts enabl
(via S7 atT=14) atT=15.

U7

U0

S7

S2

S0

0 1 2 3 4 5 6 7 8 9 10 11T= 1412 13 15

3. Kernel Implementation 41

ode.
ired.
task
sks
but
void
until

res,

lock,

the

n a

d
itch.
As already mentioned, we check for tasks switches at every return to user m
Instead, it would also be possible to switch tasks immediately, whenever des
However, it is of no use to switch tasks while in supervisor mode, as the
switch would come into effect only at return to user mode. Switching ta
immediately could lead to several task switches while in supervisor mode,
only one of these task switches would have any effect. It is thus desirable to a
unnecessary task switches and delay the decision whether to switch tasks
returning to user mode. Since task switching affects critical data structu
interrupts are disabled when tasks are actually switched.

As explained in Section 2.3, each task is represented by a Task Control B
TCB. This TCB is implemented as an instance of the classTask. This class
contains all functions necessary for managing tasks. For task switching,
following members of classTask are relevant:

 25 class Task
 26 {
...
 30 Task * next; // 0x00
...
 32 unsigned long Task_D0, Task_D1, Task_D2, Task_D3; // 0x08..
 33 unsigned long Task_D4, Task_D5, Task_D6, Task_D7; // 0x18..
 34 unsigned long Task_A0, Task_A1, Task_A2, Task_A3; // 0x28..
 35 unsigned long Task_A4, Task_A5, Task_A6; // 0x38..
 36 unsigned long * Task_USP; // 0x44..
 37 void (*Task_PC)(); // 0x48
 38 unsigned long TaskSleep; // 0x4C
...
 40 unsigned short priority; // 0x54
 41 unsigned char Task_CCR; // 0x56
 42 unsigned char TaskStatus; // 0x57
...
 71 static void Dsched()
 72 { asm("TRAP #1"); };
...
108 enum { RUN = 0x00,
109 BLKD = 0x01,
110 STARTED = 0x02,
111 TERMINATED = 0x04,
112 SLEEP = 0x08,
113 FAILED = 0x10,
114 };
...
132 static Task * currTask;
...
139 };

The variablesTask_D0..Task_D7, Task_A0..Task_A6, Task_USP, Task_PC
andTask_CCRprovide space for saving the corresponding CPU registers whe
task is swapped out.

TheTask pointernext is used to find the next TCB, while the task’s priority an
status are analyzed in order to find the next task to be run at a task sw

3.3 Task Switching42

is

hich

ode
th the

bel
r
ally

the
currTask points to the task currently running. This variable is static, i.e. it
shared by all instances of the classTask.

The easiest way to trigger a task switch is to explicitly de-schedule a task, w
is implemented as the inline functionDsched(). This function merely executes a
Trap #1 instruction. This instruction causes the CPU to enter supervisor m
and to continue execution at an address specified by a vector associated wi
instruction (see alsocrt0.S in Appendix A.1).

 58 .LONG _deschedule | 33 TRAP #1 vector
...
228 |---|
229 | TRAP #1 (SCHEDULER) |
230 |---|
231 |
232 _deschedule: |
233 ST _consider_ts | request task switch
234 |
235 _return_from_exception: | check for task switch
...
418 _consider_ts: .BYTE 0 | true if task switch need be checked

So executingTrap #1 causes the CPU to proceed in supervisor mode at la
_deschedule. There, a flag called_consider_tsis set, and the common code fo
all returns to user mode is executed. It is this common code that may actu
perform the task switch.

Upon entering supervisor mode, the CPU automatically creates anexception stack
frame on itssupervisor stack, as shown in Figure 3.4:

FIGURE 3.4 Exception Stack Frame

Let us have a closer look at the code after label_return_from_exception. First of
all, all interrupts are disabled, so that this code is not interrupted before
exception is completely handled:

SSP SSR

PC low

PC high

CCR

3. Kernel Implementation 43

tion
tion
until
zero
rred
0) is

urns

this

er
the

ince
store

user
235 _return_from_exception: | check for task switch
236 OR.W #0x0700, SR | disable interrupts

Then the stack frame is analyzed to determine in which mode the excep
occurred. If the supervisor bit is set (0x2000 in the SR), then the excep
occurred in supervisor mode, and the task switch shall thus be deferred
returning to user mode. If the exception occurred in user mode, but with non
interrupt level (SR & 0x0700) in user mode, then the task switch shall be defe
as well, since the task has disabled interrupts. That is, whenever (SR & 0x270
nonzero, the task switch shall not be performed, and the CPU directly ret
from the exception:

237 MOVE.W (SP), -(SP) | get status register before exception
238 AND.W #0x2700, (SP)+ | supervisor mode or ints disabled ?
239 BNE L_task_switch_done | yes dont switch task
...
304 L_task_switch_done: |
305 RTE |

Otherwise, it is checked whether a task switch is required at all. In our case,
was true, since we have unconditionally set_consider_ts. In certain situations,
_consider_tsis not set; for example when unblocking a task that has a low
priority than the current task. Then case the CPU merely returns from
exception:

240 TST.B _consider_ts | task switch requested ?
241 BEQ L_task_switch_done | no

At this point, we initiate a task switch. First,_consider_ts is reset to prevent
further task switches. Then the CPU registers are stored in the current TCB. S
we may not destroy any CPU registers here, we save A6 onto the stack and re
it back to the TCB afterwards:

242 CLR.B _consider_ts | reset task switch request
243 |
244 |---------------------------------------|
245 | swap out current task by saving
246 | all user mode registers in TCB
247 |---------------------------------------|
248 |
249 MOVE.L A6, -(SP) | save A6
250 MOVE.L __4Task$currTask, A6 |
251 MOVEM.L D0-D7/A0-A5, Task_D0(A6)| store D0-D7 and A0-A5 in TCB
252 MOVE.L (SP)+, Task_A6(A6) | store saved A6 in TCB

Swapping out the task is completed by saving the USP (i.e., A7 when in
mode), the CCR, and the PC of the current task into the TCB:

253 MOVE USP, A0 |
254 MOVE.L A0, Task_USP(A6) | save USP in TCB
255 MOVE.B 1(SP), Task_CCR(A6) | save CCR from stack in TCB
256 MOVE.L 2(SP), Task_PC(A6) | save PC from stack in TCB
257 |

3.3 Task Switching44

e to
run:

ed
for is
ate
the
e no

ority
ame
d in

t as
new

e are
Now all data belonging to the current task are saved in their TCB. We are fre
use the CPU registers from here on. The next step is to find the next task to
by chasing thenext pointer of the current task, until the current task is reach
again. We use A2 to mark where the search started. The task we are looking
the one with the highest priority in state RUN (i.e. 0). If the current task is in st
RUN, then we need not consider tasks with lower priority, which speeds up
search loop. Otherwise we make sure that at least the idle task will run in cas
other task can:

258 |---------------------------------------|
257 | find next task to run
260 | A2: marker for start of search
261 | A6: best candidate found
262 | D6: priority of task A6
263 | A0: next task to probe
264 | D0: priority of task A0
265 |---------------------------------------|
266 |
267 MOVE.L __4Task$currTask, A2 |
268 MOVE.L A2, A6 |
269 MOVEQ #0, D6 |
270 TST.B TaskStatus(A6) | status = RUN ?
271 BNE L_PRIO_OK | no, run at least idle task
272 MOVE.W TaskPriority(A6), D6 |
273 L_PRIO_OK: |
274 MOVE.L TaskNext(A6), A0 | next probe
275 BRA L_TSK_ENTRY |

The search loop skips all tasks which are not in state RUN or have a lower pri
than the last suitable task found. If several tasks in state RUN have the s
priority, the first of these tasks is chosen. The best candidate found is store
A6:

276 L_TSK_LP: |
277 TST.B TaskStatus(A0) | status = RUN ?
278 BNE L_NEXT_TSK | no, skip
277 MOVEQ #0, D0 |
280 MOVE.W TaskPriority(A0), D0 |
281 CMP.L D0, D6 | D6 higher priority ?
282 BHI L_NEXT_TSK | yes, skip
283 MOVE.L A0, A6 |
284 MOVE.L D0, D6 |
285 ADDQ.L #1, D6 | prefer this if equal priority
286 L_NEXT_TSK: |
287 MOVE.L TaskNext(A0), A0 | next probe
288 L_TSK_ENTRY: |
289 CMP.L A0, A2 |
290 BNE L_TSK_LP |
291 |

Here, A6 points to the TCB of the next task which is to run and which is se
current task. In the same way as the previous task was swapped out, the
current task is swapped in. First, the CCR and PC in the exception stack fram
replaced by that of the new current task:

3. Kernel Implementation 45

CPU
be
ave
rrent
:

292 |---------------------------------------|
293 | next task found (A6)
294 | swap in next task by restoring
295 | all user mode registers in TCB
296 |---------------------------------------|
297 |
298 MOVE.L A6, __4Task$currTask | task found.
299 MOVE.L Task_PC(A6), 2(SP) | restore PC on stack
300 MOVE.B Task_CCR(A6), 1(SP) | restore CCR on stack

Then the USP and registers for the new current task are restored, and the
returns from exception processing. This way, the execution would normally
continued where the former current task was interrupted. But since we h
replaced the return address and CCR of the stack frame by that of the new cu
task, execution proceeds where the new current task was interrupted instead

301 MOVE.L Task_USP(A6), A0 |
302 MOVE A0, USP | restore USP
303 MOVEM.L Task_D0(A6), D0-D7/A0-A6| restore D0-D7, A0-A5 (56 bytes)
304 L_task_switch_done: |
305 RTE |

3.4 Semaphores46

bler.
es is

hores
osen
n one

truct
n the
the
the
ed to

nite

is the
the

nd
3.4 Semaphores

Semaphores are declared in fileSemaphore.hh. Although they could be
implemented in C++, we will see that they are best implemented in assem
Thus, there is no Semaphore.cc file. The interface to the assembler routin
specified inline inSemaphore.hh.

3.4.1 Semaphore Constructors

One of the most common special cases for semaphores are semap
representing a single resource that is available from the outset. We have ch
this case for the default constructor. Semaphores representing 0 or more tha
resources initially can be constructed by providing the initial count:

 13 Semaphore() : count(1), nextTask(0) {};
 14 Semaphore(int cnt) : count(cnt), nextTask(0) {};

3.4.2 Semaphore Destructor

There is no destructor for semaphores. In general, it is dangerous to des
semaphores at all. If a semaphore with a counter value < 0 is deleted, the
tasks in the waiting queue would either be unblocked (although most likely
resource they are waiting for would not be available), or blocked forever. In
first case, the semaphore would need to return an error code which would ne
be checked after anyP() operation. This is not very handy, so we madeP() a
function returning no value at all. Generally, semaphores should have an infi
lifetime, i.e. they should be static.

However, sometimes dynamic semaphores can be useful. In these cases, it
responsibility of the programmer to make sure that the semaphore dies in
correct way.

3.4.3 Semaphore P()

The P() member function could be written in C++. While the semaphore a
possibly the chain of waiting tasks is modified, interrupts must be disabled:

void Semaphore::P()
{
 oldIntMask = os::set_INT_MAK(7); // disable interrupts

 counter --;

 if (counter < 0) // if no resource available
 {

3. Kernel Implementation 47

ode.
the
of
be a

l data
rvice
all

the
, so

s an
t the
 consider_ts = 1; // task switch required
 CurrentTask->Status |= BLKD; // block current task
 CurrentTask->nextWaiting = 0; // current task is end of waiting chain

 if (nextTask == 0) // no other task waiting
 {
 nextTask = CurrentTask; // head of task waiting chain
 }
 else
 {
 Task * t = nextTask;

 // find end of task waiting chain...
 while (t->nextWaiting;) t = t->nextWaiting;

 // here t is the last task in the waiting chain
 t->nextWaiting = CurrentTask;
 }
 }

 os::set_INT_MASK(oldIntMask); // restore interrupt level
 return;
}

Note that the actual task switch would happen at the secondset_INT_MASK()
call, when the corresponding exception processing changes back to user m
Disabling and enabling interrupts would cause two TRAP instructions for
set_INT_MASK() calls and for the relevant check for task switches at the end
exception processing. Compared to an assembler implementation, this would
significant overhead. Considering that semaphores are used by higher leve
structures, such as queues, as well as in every character I/O interrupt se
routine (V() only), this overhead should be avoided by implementing
Semaphoremember functions in assembler (see alsocrt0.S in Appendix A.1).
For theP() function, we use TRAP #3 to switch to supervisor mode, passing
semaphore in register A0 and telling the compiler that D0 might be changed
that we do not need to save it.

 15 void P() {
 16 asm volatile ("MOVE.L %0, A0
 17 TRAP #3" : : "g"(this) : "d0", "a0");
 18 };

In crt0.S, the TRAP #3 vector points to the actual assembler code forP():

 60 .LONG _Semaphore_P | 35 TRAP #3 vector

The assembler code is only slightly longer than the C++ code. Since this i
exception handling routine, we do not need to restore the interrupt level a
end.

307 |---|
308 | TRAP #3 (Semaphore P operation) |
309 |---|
310 |
311 _Semaphore_P: | A0 -> Semaphore

3.4 Semaphores48

the
312 OR #0x0700, SR | disable interrupts
313 SUBQ.L #1, SemaCount(A0) | count down resources
314 BGE _return_from_exception | if resource available
315 ST _consider_ts | request task switch
316 MOVE.L SemaNextTask(A0), D0 | get waiting task (if any)
317 BNE.S Lsp_append | got a waiting task
318 MOVE.L __4Task$currTask, D0 | get current Task
319 MOVE.L D0, SemaNextTask(A0) | store as first waiting
320 MOVE.L D0, A0 |
321 BSET #0, TaskStatus(A0) | block current task
322 CLR.L TaskNextWaiting(A0) | say this is last waiting
323 BRA _return_from_exception | done
324 |
325 Lsp_append: | goto end of waiting list
326 MOVE.L D0, A0 |
327 MOVE.L TaskNextWaiting(A0), D0 | get next waiting (if any)
328 BNE.S Lsp_append | if not last waiting
329 |
330 MOVE.L __4Task$currTask, D0 | get current task
331 MOVE.L D0, TaskNextWaiting(A0) | store as last waiting
332 MOVE.L D0, A0 |
333 BSET #0, TaskStatus(A0) | block current task
334 CLR.L TaskNextWaiting(A0) | say this is last waiting
335 BRA _return_from_exception | done
336 |

3.4.4 Semaphore Poll()

ThePoll() member function is the simplest semaphore. In C++ we would have
following lines of code:

void Semaphore::Poll()
{
int result = 1; // assume no resource avaliable

 oldIntMask = os::set_INT_MAK(7); // disable interrupts

 if (counter > 0)
 {
 counter--;
 result = 0;
 }

 os::set_INT_MASK(oldIntMask); // restore interrupt level
 return result;
}

Like for P(), we implement this in assembler, using TRAP #5:

 23 int Poll() {
 24 int r;
 25
 26 asm volatile ("MOVE.L %1, A0
 27 TRAP #5
 28 MOVE.L D0, %0"
 29 : "=g"(r) : "g"(this) : "d0", "a0");
 30 return r;
 31 };

3. Kernel Implementation 49

r
ain
In crt0.S, the TRAP #5 vector points to the actual assembler code forPoll():

 62 .LONG _Semaphore_Poll | 37 TRAP #5 vector

And the code is straightforward:

363 |---|
364 | TRAP #5 (Semaphore Poll operation) |
365 |---|
366 |
367 _Semaphore_Poll: | A0 -> Semaphore
368 OR #0x700, SR | disable interrupts
369 MOVEQ #1, D0 | assume failure
370 TST.L SemaCount(A0) | get count
371 BLE _return_from_exception | failure
372 SUBQ.L #1, SemaCount(A0) |
373 MOVEQ #0, D0 | success
374 BRA _return_from_exception | check for task switch
375 |

3.4.5 Semaphore V()

The last member function required isV(). Again, we provide a C++
implementation first to understand the assembler code:

void Semaphore::V()
{
 oldIntMask = os::set_INT_MAK(7); // disable interrupts

 counter ++;

 if (counter <= 0) // if any task waiting
 {
 Task * head = nextTask

 nextTask = head->nextWaiting; // remove head of waiting chain
 head>Status &= ~BLKD; // unblock head of waiting chain

 if (CurrentTask->priority < head->priority)
 consider_ts = 1; // task switch required
 }

 os::set_INT_MASK(oldIntMask); // restore interrupt level
 return;
}

The comparison(CurrentTask->priority < head->priority) is crucial for the entire
system performance. If we always setconsider_ts, then e.g. any characte
received, for which a lower priority task is waiting, would swap out and in ag
every higher priority task. In contrast toP(), V() may be used in interrupt service
routines. Thus performance is even more critical, andV() is implemented in
assembler:

3.4 Semaphores50

it is
 19 void V() {
 20 asm volatile ("MOVE.L %0, A0
 21 TRAP #4" : : "g"(this) : "d0", "a0");
 22 };

This time, TRAP #4 is used:

 61 .LONG _Semaphore_V | 36 TRAP #4 vector

The assembler code forV() is as follows:

337 |---|
338 | TRAP #4 (Semaphore V operation) |
339 |---|
340 |
341 _Semaphore_V: | A0 -> Semaphore
342 OR #0x0700, SR | disable interrupts
343 ADDQ.L #1, SemaCount(A0) |
344 BLE.S Lsv_unblock | unblock waiting task
345 CLR.L SemaNextTask(A0) |
346 BRA _return_from_exception | done
347 |
348 Lsv_unblock: |
349 EXG D0, A1 |
350 MOVE.L SemaNextTask(A0), A1 | get next waiting task
351 MOVE.L TaskNextWaiting(A1), SemaNextTask(A0)
352 MOVE.L A1, A0 |
353 EXG D0, A1 |
354 BCLR #0, TaskStatus(A0) | unblock the blocked task
355 CLR.L TaskNextWaiting(A0) | just in case
356 MOVE.W TaskPriority(A0), D0 | get priority of unblocked Task
357 MOVE.L __4Task$currTask, A0 | get current Task
358 CMP.W TaskPriority(A0), D0 | current prio >= unblocked prio ?
359 BLS _return_from_exception | yes, done
360 ST _consider_ts | no, request task switch
361 BRA _return_from_exception | done
362 |

Up to now, we have presented almost all of the code written in assembler. So
time to relax by looking at some simple C++ code.

3. Kernel Implementation 51

here
e we
s are
late

a

3.5 Queues

As we already saw, there are different kinds of queues, depending on w
semaphores are used. But common to all queues is a ring buffer. Henc
implement ring buffers as a separate class from which the different queue
derived. Since a ring buffer may contain any kind of items, we make a temp
class calledRingBuffer.

 1 // Queue.hh
...
 12 template <class Type> class RingBuffer
 13 {
 14 public:
 15 RingBuffer(unsigned int Size);
 16 ~RingBuffer();
 17
 18 int IsEmpty() const { return (count) ? 0 : -1; };
 19 int IsFull() const { return (count < size) ? 0 : -1; };
 20
 21 int Peek(Type & dest) const;
 22
 23 protected:
 24 enum { QUEUE_OK = 0, QUEUE_FAIL = -1 };
 25
 26 virtual int PolledGet(Type & dest) = 0;
 27 virtual int PolledPut(const Type & dest) = 0;
 28 inline void GetItem(Type & source);
 29 inline void PutItem(const Type & src);
 30
 31 unsigned int size;
 32 unsigned int count;
 33
 34 private:
 35 Type * data;
 36 unsigned int get;
 37 unsigned int put;
 38 };

3.5.1 Ring Buffer Constructor and Destructor

The constructor initializes theput andget indices to 0, thecount of items in the
buffer to 0, and stores thesize of the buffer. Then the constructor allocates
buffer big enough to storesize instances of classType.

 1 // Queue.cc
...
 9 template <class Type> RingBuffer<Type>::RingBuffer(unsigned int Size)
 10 : size(Size), get(0), put(0), count(0)
 11
 12 {
 13 data = new Type[size];
 14 :

The destructor releases the memory allocated for the buffer.

 1 // Queue.cc

3.5 Queues52

it
.
le

k into
t

ny

d,
not
phores
neral
hese
...
 16 template <class Type> RingBuffer<Type>::~RingBuffer()
 17 {
 18 delete [] data;
 19 }

3.5.2 RingBuffer Member Functions

The member functionsIsEmpty() and IsFull() are self-explanatory.Peek(Type
& dest) returnsQUEUE_FAIL (i.e. nonzero) if the queue is empty. Otherwise,
stores the next item in the queue indest, but without removing it from the queue
The Peek() function is useful for scanners which usually require a sing
character look-ahead. Traditionally, a character looked ahead is pushed bac
a queue by means of a functionunput(char) if the character is not required. Bu
this solution causes several problems.??? Which problems ???So providing a
look-ahead function likePeek() is the better solution, as it does not remove a
item from the queue.

 1 // Queue.cc
...
 21 template <class Type> int RingBuffer<Type>::Peek(Type & dest) const
 22 {
 23 int ret = QUEUE_FAIL;
 24
 25 {
 26 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 27 if (count) { dest = data[get]; ret = QUEUE_OK; }
 28 os::set_INT_MASK(old_INT_MASK);
 29 }
 30 return ret;
 31 }

The member functionPutItem() inserts, andGetItem() removes an item from the
queue. However,PutItem() assumes that the queue is not full when it is calle
and GetItem() assumes that the queue is not empty. This condition is
checked, because the check as such is different for queues that use sema
and queues that do not use semaphores. Apart from that, interrupts are in ge
to be disabled when these functions are called. To avoid direct usage of t
functions, they are made protected so that only classes derived fromRingBuffer
can use them.

 33 template <class Type> inline void RingBuffer<Type>::GetItem(Type & dest)
 34 {
 35 dest = data[get++];
 36 if (get >= size) get = 0;
 37 count--;
 38 }
...

3. Kernel Implementation 53

eue,

ores

ll in

med
cant
rvice
r that

r less

r
is
ost
e the
r one

r such
 40 template <class Type> inline void RingBuffer<Type>::PutItem(const Type &src)
 41 {
 42 data[put++] = src;
 43 if (put >= size) put = 0;
 44 count++;
 45 }

Finally, it has shown to be useful to provide polled access to both ends of a qu
even if semaphores are used. For this purpose, the member functionsPolledGet()
andPolledPut() are used. Their implementation depends on where semaph
are used; thus they are purely virtual.

3.5.3 Queue Put and Get Functions

The polled and semaphore-controlledPut() andGet() for the four possible types
of queues result in a total of 12 functions. Rather than explaining them a
detail, we only present the basic principles:

• Interrupts are disabled while the ring buffer is accessed.

• For polled operation, if a semaphore is used at the polled end of the
queue, the semaphore is polled as well in order to keep the semaphore
synchronized with the item count.

• It is always checked if the queue is full before PutItem is called, and if
the queue is empty before GetItem is called. This check is explicit if no
semaphore is used at the respective ends, or implicit by polling the
semaphore.

3.5.4 Queue Put and Get Without Disabling Interrupts

In the implementation shown, the manipulation of the queue is always perfor
with interrupts enabled. Considering the short code, this causes a signifi
overhead. Often interrupts are already disabled anyway, e.g. in interrupt se
routines. In those cases, one can derive other queue classes from RingBuffe
do not disable interrupts.

It should also be noted that the get and put ends of the queue are more o
independent of each other. As we have seen inPutItem() and GetItem(), the
count is always modifiedafter putting or getting an item. If incrementing o
decreasingcount is atomic (which is the case for most compilers), and if there
only one task or interrupt service routine at all (which is the case for m
queues), then it is not necessary at all to disable interrupts. It may as well b
case that interrupts need to be disabled only at one end of a queue, e.g. fo
task that receives messages from several other tasks. A good candidate fo
optimizations are the character input and output queues for serial I/O.

3.6 Interprocess Communication54

other.
hange
hare
s that
ging
to
n is

d by
hich
to
ck to
eans

ging
s are
has

gers,
ters

r the
y in
lease
ry is
the
know
ry is
t back
ence,

nient
ned in
3.6 Interprocess Communication

So far, we have considered different tasks as being independent of each
Most often, however, some of the tasks in an embedded system have to exc
information. The simplest way for the tasks to enable this exchange is to s
memory. One task updates a variable in the memory while another task read
variable. Although shared memory is considered as the fastest way of exchan
information, this is only true for the information exchange as such. In addition
exchanging the information, the tasks have to coordinate when the informatio
valid (i.e. when it is provided by the sending task) and how long it is processe
the receiving task. This coordination could be implemented as a valid flag, w
is initially set to invalid. After a task has provided information, it sets the flag
valid. The receiving task then processes the information and sets the flag ba
invalid, so that the memory can be used again. Obviously, this procedure m
busy wait for both tasks involved and is thus inefficient.

A much better way is to use queues containing messages for exchan
information. To avoid busy waiting at either end, both put and get semaphore
used. If the queue is full, the sending task is blocked until the receiving task
removed items. For small information quantities, such as characters or inte
the information can be stored in the message itself; for larger quantities, poin
to the information are used. This way, the performance of shared memory fo
information exchange as such can be maintained. Using pointers is trick
detail, since it needs to be defined whether the receiver or the sender must re
the memory. For example, the receiver must release the memory if the memo
allocated with thenew operator. The sender has to release the memory, e.g. if
memory is allocated on the senders stack; in this case, the sender needs to
when the receiver has finished processing of the message. If the memo
released by the sender, then the receiver typically sends an acknowledgmen
to the sender to indicate that the memory is no longer needed. As a consequ
the receiver needs to know which task has sent the message.

Rather than defining a specific queue for each particular purpose, it is conve
to have the same data structure for messages in the whole system, as defi
Message.hh (see also Appendix A.9).

 1 // Message.hh
...
 5 class Message
 6 {
 7 public:
 8 Message() : Type(0), Body(0), Sender(0) {};
 9 Message(int t, void * b) : Type(t), Body(b), Sender(0) {};
 10 int Type;
 11 void * Body;
 12 const Task * Sender;
 13 };

3. Kernel Implementation 55

y that
inter

ith a

order

us a

osing

have it

is,

e.g. to

d
safe to
This data structure contains a type that indicates the kind of message, a bod
is optionally used for pointers to larger data structures, and a task po
identifying the sender of the task.

Communication between tasks being so common, every task is provided w
message queue:

// Task.hh
 25 class Task
 26 {
...
138 Queue_Gsem_Psem<Message> msgQ;
139 };

The size of the message queue can be specified individually for each task in
to meet the task’s communication requirements.

 1 // Task.cc
...
 33 Task::Task(void (*main)(),
...
 35 unsigned short qsz,
...
 38)
 39 : US_size(usz),
...
 44 msgQ(qsz),

As we know by now, every task executing code must be the current task. Th
message sent is always sent byCurrentTask . SinceMessageitself is a very small
data structure, we can copy the Type, Body and Sender members without lo
much of the performance. This copy is made by thePut() function for queues.
The code for sending a message becomes so short that it makes sense to
inline.

// Task.hh
 96 void SendMessage(Message & msg)
 97 { msg.Sender = currTask; msgQ.Put(msg); };

Note thatSendMessage()is a non-static member function of class task. That
the instance of the class for whichSendMessage()is called is the receiver of the
message, not the sender. In the simplest case, only a message type is sent,
indicate that an event has occurred:

void informReceiver(Task * Receiver, int Event)
{
 Message msg(Event, 0);
 Receiver->SendMessage(msg);
}

The sender may return frominformReceiver() before the receiver has receive
the message, since the message is copied into the message queue. It is also

3.6 Interprocess Communication56

is

t is

o the
sage.

s

e
e
d by
h is
and 2
send pointers to the.TEXT section of the program to the receiver (unless this
not prevented by hardware memory management):

void sayHello(Task * Receiver)
{
 Message msg(0, "Hello");
 Receiver->SendMessage(msg);
}

This ??? structure/function/code ???is valid since “Hello” has infinite
lifetime. It is illegal, however, to send dangling pointers to the receiver; as i
illegal to use dangling pointers in general:

void DONT_DO_THIS(Task * Receiver)
{

 char hello[6] = "Hello";
 Message msg(0, hello);
 Receiver->SendMessage(msg); // DON’T DO THIS !!!
}

After the above function has returned, the pointer sent to the receiver points t
stack of the sender which is not well defined when the receiver gets the mes

The receiving task may callGetMessage()in order to get the next message it ha
been sent. This function is even shorter, so it is declared inline as well:

// Task.hh
 56 static void GetMessage(Message & msg)
 57 { currTask->msgQ.Get(msg); };

The receiver usesGetMessage() as follows:

void waitForMessage()
{
 Message msg();
 Task::GetMessage(msg);

 switch(msg.Type)
 {
 ...
 }

}

This usage pattern of theMessageclass explains its two constructors: th
constructor withType and Body arguments is used by the sender, while th
receiver uses the default constructor without any arguments that is update
GetMessage()later on. A scenario where the sender allocates memory whic
released by the receiver could be as follows: the sender sends integers 0, 1
to the receiver. The memory is allocated by new, rather than??? pointing ???
on the stack like in the bad example above.

void sendData(Task * Receiver)
{

3. Kernel Implementation 57

age:

e for
data

for
dded
sets

ay of
the
n is
is
rtly

bove
s
after
 int * data = new int[3];

 data[0] = 0; data[1] = 1; data[2] = 2;
 Message msg(0, data);
 Receiver->SendMessage(msg);
}

The receiver would then release the memory after having received the mess

void receiveData()
{
 Message msg();
 Task::GetMessage(msg);

 ...
 delete [] (int *)(msg.Body);

}

If a system uses hardware memory management (which is rarely the cas
embedded systems today, but may be used more frequently in the future), the
transmitted must of course be accessible by both tasks.

The last scenario using new/delete is safe and provides sufficient flexibility
large data structures. Unfortunately, using new/delete is a bad idea for embe
systems in general. While resetting a PC twice a day is not uncommon, re
cannot be accepted for a robot on the mars. The safest but least flexible w
allocating memory is by means of static variables. Automatic allocation on
stack is a bit more risky, because the stack might overflow; but this solutio
much more flexible. The ultimate flexibility is provided by new/delete, but it
rather difficult to determine the memory requirements beforehand, which is pa
due to the fragmentation of the memory. The problem in the bad example a
was the lifetime of the variablehello, which was controlled by the sender. Thi
problem can be fixed by using a semaphore that is unlocked by the receiver
having processed the message:

class DataSemaphore
 {
 public:
 DataSemaphore() : sem(0) {}; // resource not available
 int data[3];
 Semaphore sem;
 }

void sendMessageAndWait(Task * Receiver)
{

 DataSemaphore ds;
 Message msg(0, ds);

 ds.data[0] = 0; ds.data[1] = 1; ds.data[2] = 2;
 Receiver->SendMessage(msg);

 ds.sem.P();
}

3.6 Interprocess Communication58

ore was
not

es the

rfect
s not
e a
ceiver
for

et of
hem
The sender is blocked as soon as it has sent the message, since the semaph
initialized with its counter set to 0, indicating that the resource (i.e. the data) is
available. The receiver processes the message and unlocks it, which caus
sender to proceed:

void receiveDataAndUnlock()
{
 Message msg();
 Task::GetMessage(msg);

 ...
 ((DataSemaphore *)msg.Body).V();

}

Unfortunately, blocking the sender is a disadvantage of this otherwise pe
method. The sender may, however, proceed its operation as long as it doe
return from the function. This is also one of the very few examples wher
semaphore is not static. It does work here because both sender and re
cooperate in the right way. Although we have not shown any perfect solution
any situation of interprocess communication, we have at least seen a s
different options with different characteristics. Chances are good that one of t
will suit the particular requirements of your application.

3. Kernel Implementation 59

ction
ions
ntrol
nd

f the

; the
serial
. But
l.

ce of
erial
rts.

d

3.7 Serial Input and Output

The basic model for serial input and output has already been discussed in Se
2.5.3 and presented in Figure 2.14. In principle, the input and output direct
are completely independent of each other, except for the software flow co
(e.g. XON/XOFF protocol) at the hardware side of the receive buffer, a
possibly line editing functions (e.g. echoing of characters) at the task side o
receive buffer.

This section deals with the task side of both the receive and transmit buffers
hardware side is discussed in Section 3.8. Strictly speaking, the aspects of
input and output discussed here are not part of the operating system itself
they are so commonly used that it is appropriate to include them in the kerne

Several tasks sharing one serial input or output channel is a common sour
trouble. A typical example is a router that receives data packets on several s
ports and transmits them (after possibly modifying them) on other serial po
??? What is the trouble ???An implementation with three serial ports coul
be as shown in Figure 3.5.

FIGURE 3.5 Serial Router (Version A)

Rx T0Rx Buf 0 Tx Buf 0Tx T0

Rx T1Rx Buf 1 Tx Buf 1Tx T1

Rx T2Rx Buf 2 Tx Buf 2Tx T2

Packet
Handler

Queue of idle Packet Handlers

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

3.7 Serial Input and Output60

es a
acket
other

ueue
their
d by

vel.
uences
ks are
gard

im a
that
d as
For each serial port, there is a receive task (RX T0..2) that receives characters
from its serial port. If a complete packet is received, the receive task fetch
pointer to an idle packet handler task and sends a message containing the p
to that task. The packet handler task processes the packet and may create
packets that are sent as messages to some of the transmit tasks (Tx T0..2). When
a packet handler has finished processing a packet, it puts itself back into the q
of idle packet handlers. The transmit tasks merely send the packets out on
respective serial outputs. In this implementation, each serial input is handle
one taskRx Ti , and each serial output is handled by a taskTx Ti dedicated to that
port. The main purpose of these tasks is to maintain atomicity at packet le
That is, these tasks are responsible for assembling and de-assembling seq
of characters into packets and vice versa. Since the receive and transmit tas
statically bound to their serial ports, there is no conflict between tasks with re
to ports.

Now assume there is some mechanism by which a task can temporarily cla
serial input and output port for a period of time so that no other task can use
port at the same time. Then the number of tasks involved could be reduce
shown in Figure 3.6.

FIGURE 3.6 Serial Router (Version B)

Rx Buf 0 Tx Buf 0

Rx Buf 1 Tx Buf 1

Rx Buf 2 Tx Buf 2

Packet
Handler

Queue of unserved input ports

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

3. Kernel Implementation 61

n it
laced
ueue
ved
d by
erved
arts
ived,

acket
orts,
eme
s, in
ent
ds to

put
ueue
orts

f that
at:
At the output side, a packet handler merely claims a serial output port whe
needs to transmit a packet. The queue of idle packet handlers has been rep
by a queue of input ports that have no packet handlers assigned; this q
initially contains all serial input ports. A packet handler first gets an unser
input port, so that shortly after start-up of the system each input port is serve
a packet handler; the other packet handlers are blocked at the queue for uns
inputs. A packet handler serving an input first claims that input port and st
collecting the characters of the next packet. When a complete packet is rece
the packet handler releases the input port (which causes the next idle p
server to take over that port), puts it back into the queue of unserved input p
and continues processing of the packet. Like in router version A, this sch
schedules the packet handlers between the ports in a fair way. Sometime
particular if the serial ports need to have different priorities (e.g. due to differ
communication speeds), a scheduling on a per-port basis is required. This lea
an even simpler implementation shown in Figure 3.7.

FIGURE 3.7 Serial Router (Version C)

With this implementation, one can e.g. assign different priorities to each in
port and use different numbers of packet servers. The packet servers q
themselves by claiming the input port, so that the queue of unserved input p
used in version B becomes obsolete. As a consequence, no initialization o
queue is required. The code for the packet handler becomes as simple as th

Semaphore Port_0_Input, Port_0_Output;
Semaphore Port_1_Input, Port_1_Output;
Semaphore Port_2_Input, Port_2_Output;

void packet_handler_main(Semaphore & Port_i_Input)
{

for (;;)
{
 Port_i_Input.P();

Rx Buf 0 Tx Buf 0

Rx Buf 1 Tx Buf 1

Rx Buf 2 Tx Buf 2

Packet
Handler

Packet
Handler

Packet
Handler

Packet
Handler

3.7 Serial Input and Output62

utput
t be

the
uch

uld
ing
port
ect-
an by
rial

are

er.
, in
fatal
els

be

ing
d:
 char * Packet = getPacket(port);
 Port_i_Input.V();
 handlePacket(Packet); // deletes Packet
}

}

The semaphores control the claiming and releasing of the serial input and o
ports. Using semaphores explicitly is not very elegant though. First, it mus
assured that any task using a serial port is claiming and releasing
corresponding semaphore. Also it is often desirable to have a “dummy” port (s
as/dev/nulin UNIX) that behaves like a real serial port. Such a dummy port co
be used e.g. to turn logging information on and off. But claiming and releas
dummy ports makes little sense. In general, the actual implementation of a
should be hidden from the interface using the port. Thus for a clean obj
oriented design, the semaphores should be maintained by the port rather th
an application using the port. This leads to the kernel implementation of se
input and output described in the following sections.

3.7.1 Channel Numbers

It is convenient to refer to serial ports by channel numbers. In our hardw
model, we assumed one DUART with two serial ports, which we callSERIAL_0
and SERIAL_1. These are normally operated in an interrupt-driven mann
Sometimes however, it is required to have a polled operation available
particular before the interrupt system has been initialized, and in the case of
system errors. For achieving this polled operation, the chann
SERIAL_0_POLLED and SERIAL_1_POLLED are provided. Finally, the
DUMMY_SERIAL channel is used when the actual serial output needs to
suppressed.

 1 // Channels.hh
...
 5 enum Channel {
 6 SERIAL_0 = 0,
 7 SERIAL_1 = 1,
 8 SERIAL_0_POLLED = 4,
 9 SERIAL_1_POLLED = 5,
 10 DUMMY_SERIAL = 8,
 11 };

Often, one would like to turn the serial output on and off, e.g. for debugg
purposes. Therefore, channel variables rather than explicit channels are use

 1 // Channels.hh
...
 13 extern Channel MonitorIn;
 14 extern Channel MonitorOut;
 15 extern Channel ErrorOut;

3. Kernel Implementation 63

ut

d

y are
similar,

rial
is

ation
riod

e
the
 16 extern Channel GeneralOut;

If the variableErrorOut is used for e.g. debugging information, then this outp
can be suppressed or directed to any serial port by setting theErrorOut variable
to DUMMY_SERIAL or SERIAL_0/1. This can be done in a dynamic way an
can be extended to several debugging levels by introducing newChannel
variables in accordance with the various debugging levels.

3.7.2 SerialIn and SerialOut Classes and Constructors/Destructors

Since the serial input and output are mainly independent of each other, the
implemented as separate classes. The constructors and destructors are so
however, that they are described together.

As we already saw, a mechanism allowing a task to exclusively claim a se
(input or output) port for a certain period of time is required. Clearly, th
mechanism will be based on a semaphore. A particularly elegant implement
of this mechanism is to create an object with a lifetime that is exactly the pe
during which the port is being claimed. The lifetime of an object is the tim
between the construction and the destruction of the object. Thus if we perform
semaphoreP() operation inside the constructor and theV() operation inside the
destructor,??? was dann ???. For theSerialOut class, we get the following
constructor:

 1 /* SerialOut.cc */
...
 16 Semaphore SerialOut::Channel_0;
 17 Semaphore SerialOut::Channel_1;
...
 20 SerialOut::SerialOut(Channel ch) : channel(ch)
 21 {
 22 switch(channel)
 23 {
 24 case SERIAL_0:
 25 if (Task::SchedulerRunning()) Channel_0.P();
 26 else channel = SERIAL_0_POLLED;
 27 return;
 28
 29 case SERIAL_1:
 30 if (Task::SchedulerRunning()) Channel_1.P();
 31 else channel = SERIAL_1_POLLED;
 32 return;
 33
 34 case SERIAL_0_POLLED:
 35 case SERIAL_1_POLLED:
 36 return;
 37
 38 default:
 39 channel = DUMMY_SERIAL; // dummy channel

3.7 Serial Input and Output64

t
do not

(i.e.
s the

ores:

l
nly

re is
ite
 40 return;
 41 }
 42 }

Basically, the constructor performs aP() operation on theChannel_0/1
semaphore associated with the channel. If another task tries to create aSerialOut
object, then that task is blocked until the task that created theSerialOut object
first has destroyed it again. TheSerialOut object also stores for which channel i
has been constructed, so that subsequent changes e.g. of a channel variable
affect aSerialOut object. Note that theP() operation is only performed for those
channels that are subject to access conflicts. If multitasking is not yet in effect
during system start-up), the construction is creating a polled serial port. Thu
code creating aSERIAL_0/1 object will work even at system start-up.

The semaphores must be static and private to prevent abuse of the semaph

 1 /* SerialOut.hh */
...
 12 class SerialOut
 13 {
...
 23 private:
...
 36 static Semaphore Channel_0;
 37 static Semaphore Channel_1;
...
 44 };

The destructor performs theV() operation only for those ports for which the
constructor has performed aP() operation. Thus if aSERIAL_0/1 object is
created before multitasking has started, thenchannel is mapped to a polled port
in the constructor, and the destructor will not perform aV() operation on the
semaphore later on.

 1 /* SerialOut.cc */
...
 44 SerialOut::~SerialOut()
 45 {
 46 switch(channel)
 47 {
 48 case SERIAL_0: Channel_0.V(); return;
 49 case SERIAL_1: Channel_1.V(); return;
 50 }
 51 }

The constructor and destructor for theSerialIn class are conceptionally identica
to those of theSerialOut class, so that we do not repeat them here. The o
difference is a simplification in theSerialIn constructor: it does not check
whether multitasking is already running, because during system start-up, the
typically no serial input, while serial output for debugging purposes is qu

3. Kernel Implementation 65

e
r the

the

pts
n is
n

common. It would do no harm, however, to make theSerialIn constructor
identical to that ofSerialOut.

3.7.3 Public SerialOut Member Functions

The simplest public member function of theSerialOut class is Putc(int
character). The purpose ofPutc() is to transmit its argument character on th
channel. Since the way how this transmission has to be done is different fo
channels (interrupt driven forSERIAL_0/1, polled forSERIAL_0/1_POLLED,
or just discarding the character forDUMMY_SERIAL), Putc() simply decodes
the channel and then calls the appropriate function that actually transmits
character.

 1 /* SerialOut.cc */
...
104 void SerialOut::Putc(int c)
105 {
106 switch(channel)
107 {
108 case SERIAL_0: Putc_0(c); return;
109 case SERIAL_1: Putc_1(c); return;
110 case SERIAL_0_POLLED: Putc_0_polled(c); return;
111 case SERIAL_1_POLLED: Putc_1_polled(c); return;
112 case DUMMY_SERIAL: return;
113 default: return;
114 }
115 }

ThusPutc() provides a unified interface towards the different channels.

If a channel is interrupt driven (as forSERIAL_0/1), then the character is put into
the corresponding output buffer. As we will see in Section 3.8, transmit interru
need to be disabled if the output queue becomes empty. If this situatio
indicated by theTxEnabled_0/1variable, then the interrupts must be turned o
again by writing a certain command into the DUART.

 1 /* SerialOut.cc */
...
 53 void SerialOut::Putc_0(int c)
 54 {
 55 unsigned char cc = c;
 56
 57 outbuf_0.Put(cc);
 58 if (!TxEnabled_0)
 59 {
 60 TxEnabled_0 = 1;
 61 os::writeRegister(wDUART_CR_A, CR_TxENA); // enable Tx
 62 }
 63 }

3.7 Serial Input and Output66

olls

nt

the
nt to

the

for
c

If a channel is polled, then the polledPutc() function makes sure that the
initialization of the hardware has reached a sufficient level (Polled_IO, i.e. the
DUART has been initialized, but interrupts are not yet enabled), and then it p
the DUART’s status register until it is able to accept a new character.

 1 /* SerialOut.cc */
...
 77 void SerialOut::Putc_0_polled(int c)
 78 {
 79 if (os::initLevel() < os::Polled_IO) os::init(os::Polled_IO);
 80
 81 while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /**/ ;
 82
 83 os::writeRegister(wDUART_THR_A, c);
 84
 85 while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /**/ ;
 86 }

In the case of theDUMMY_SERIAL channel, the correspondingPutc()
function does not do anything.

 1 /* SerialOut.cc */
...
 99 void SerialOut::Putc_dummy(int)
100 {
101 // dummy Putc to compute length
102 }

Although Putc_dummy() is not called inPutc(), it will be required later on,
where any of the above specificPutc_() functions will be passed as an argume
to a print function discussed below.

Note that in the case of interrupt-driven serial output, thePutc() function may
return long before the character has been transmitted by the DUART, since
Putc() only places the character into the output buffer. Sometimes we also wa
know if the character has indeed been transmitted. For this purpose,
IsEmpty() function returns true if the output buffer of a channel is empty.

Based on thePutc() function, we can implement more sophisticated functions
formatted output similar to thefprintf() in C libraries. There are both a stati
Print() function taking a channel as an argument and a non-staticPrint()
function.

 1 /* SerialOut.hh */
...
 12 class SerialOut
 13 {
...
 18 static int Print(Channel, const char *, ...);
...
 21 int Print(const char *, ...);

3. Kernel Implementation 67

t

at

at
...
 44 };

The staticPrint() function creates aSerialOut object for the channel and then
proceeds exactly like the non-staticPrint() function.

 1 /* SerialOut.cc */
...
132 int SerialOut::Print(Channel channel, const char * format, ...)
133 {
134 SerialOut so(channel);
...

The SerialOut object is automatic in the staticPrint() function so that it is
automatically destructed whenPrint() returns. This way it is ensured tha
anything being printed is not interrupted by other tasks calling aPrint() function
for the same channel.

The non-staticPrint() function selects the properPutc_() function for its channel
and either calls thisPutc_() function (for those characters of the format string th
are to be copied to the output), or callsprint_form() for format characters. The
implementation ofprint_form() is straightforward, but somewhat lengthy, so th
we skip it here and refer to Appendix A.12. Any of thePrint() functions return
the number of characters printed on the channel.

 1 /* SerialOut.cc */
...
159 int SerialOut::Print(const char * format, ...)
160 {
161 void (*putc)(int);
162 const unsigned char ** ap = (const unsigned char **)&format;
163 const unsigned char * f = *ap++;
164 int len = 0;
165 int cc;
166
167 switch(channel)
168 {
169 case SERIAL_0: putc = Putc_0; break;
170 case SERIAL_1: putc = Putc_1; break;
171 case SERIAL_0_POLLED: putc = Putc_0_polled; break;
172 case SERIAL_1_POLLED: putc = Putc_1_polled; break;
173 case DUMMY_SERIAL: putc = Putc_dummy; break;
174 default: return 0;
175 }
176
177 while (cc = *f++)
178 if (cc != '%') { putc(cc); len++; }
179 else len += print_form(putc, ap, f);
180
181 return len;
182 }

3.7 Serial Input and Output68

at
ble
same

k is

ives
asks

its
So, why are two differentPrintf() functions needed? The reason is th
sometimes not all information to be printed together is easily availa
beforehand. Consider two tasks running the same code and using the
channel:

void task_main(Channel ch)
{

for (;;)
{
 Message msg;
 char * p = (char *)(msg.Body);
 Task::GetMessage(msg);
 for (unsigned int i = 0; msg.Body[i]; i++)

 SerialOut::Print(ch,"%c ",p[i]);
}

}

In this example, each message character with its trailing blank from any tas
printed as a whole, since the lifetime of theSerialOut objects created
automatically by the staticPrint() function is basically the time it takes for the
print function to execute. If one task receives “AAA” and the other tasks rece
“BBB” as the body of a message at the same time, then the lines of both t
may be intermixed, producing e.g. the following output:

A A B B B A

In contrast, the output

A AB B B A

would never be produced, since the trailing blank is always “bound” to
preceding character by the single invocation of the staticPrint() function. If we
want to print a whole message, i.e. produce e.g.A A A B B B instead of A A B B
B A, then we have to extend the lifetime of theSerialOut object. This is where
the non-staticPrint() function is used, like in the following code:

void task_main(Channel ch)
{

for (;;)
{
 Message msg;
 char * p = (char *)(msg.Body);
 Task::GetMessage(msg);

3. Kernel Implementation 69

ter

while

ilable,
In
t

{
 SerialOut so(ch);
 for (unsigned int i = 0; msg.Body[i]; i++)
 so.Print(ch,"%c ",p[i]);
}

}
}

Now there is only oneSerialOut object instead of one for each message charac
which causes an entire message to be printed. Thus the staticPrint() is typically
used when the item to be printed can be expressed by a single format string,
the non-staticPrint() is used otherwise.

3.7.4 Public SerialIn Member Functions

The simplest public member function of theSerialIn class isGetc() which
returns the next character received on a channel. If no characters are ava
then the task callingGetc() is blocked until the next character is received.
contrast to theSerialOut class,Getc() returns useful results only for interrup
driven I/O and indicates EOF (-1) otherwise.Getc() returnsint rather thanchar
in order to distinguish the EOF condition from the regularchar 0xFF (i.e. -1).

 1 /* SerialIn.cc */
...
 34 int SerialIn::Getc()
 35 {
 36 unsigned char cc;
 37
 38 switch(channel)
 39 {
 40 case SERIAL_0: inbuf_0.Get(cc); return cc;
 41 case SERIAL_1: inbuf_1.Get(cc); return cc;
 42 default: return -1;
 43 }
 44 }

If it is not desired to block the task,Pollc() can be used instead.Pollc() returns
EOF whenPutc() would block the task.

 1 /* SerialIn.cc */
...
 46 int SerialIn::Pollc()
 47 {
 48 unsigned char cc;
 49
 50 switch(channel)
 51 {
 52 case SERIAL_0: return inbuf_0.PolledGet(cc) ? -1 : cc;
 53 case SERIAL_1: return inbuf_1.PolledGet(cc) ? -1 : cc;
 54 default: return -1;
 55 }

3.7 Serial Input and Output70

ting
as a

easily

not
are

utput
the

to
an
 56 }

Often one wants to receive characters up to, but not including a termina
character; e.g. if decimal numbers of unknown length are entered. UNIX h
unputc() function which undoes the lastputc(). We have not adopted this
scheme, but instead provide a functionPeekc()which works likePollc(), but does
not remove the character from the receive queue. Both theunputc() approach and
thePeekc()approach have their advantages and disadvantages, and one can
implementunputc() in the SerialIn class.

 1 /* SerialIn.cc */
...
 58 int SerialIn::Peekc()
 59 {
 60 unsigned char cc;
 61
 62 switch(channel)
 63 {
 64 case SERIAL_0: return inbuf_0.Peek(cc) ? -1 : cc;
 65 case SERIAL_1: return inbuf_1.Peek(cc) ? -1 : cc;
 66 default: return -1;
 67 }
 68 }

GetDec() and GetHex() are based on thePollc() and Peekc() functions and
collect decimal (’0’..’9’) or hexadecimal (’0’..’9’,’A’..’F’ and ’a’..’f’) sequences
of characters, and return the resulting integer value. These functions do
necessarily belong to an operating system, but are provided since they
commonly required.

For serial output, characters can never get lost, since tasks performing o
would block before the transmit buffer overflows. For serial input however,
receive buffer may overflow, e.g. if no task is performingGetc() for some time.
The functiongetOverflowCounter() returns the number of characters lost due
buffer overflow, and 0 for polled or dummy serial input where this condition c
not be easily detected.

3. Kernel Implementation 71

RT
ctor
in
pts

look

the

The
n

,
tly

he
t-up,
3.8 Interrupt Processing

As shown in Section 3.2.4, the only device generating interrupts is the DUA
using interrupt level 2, which corresponds to autovector #2 in the CPU’s ve
table. After reset, interrupts from the DUART are disabled in the DUART, and
addition, the CPU’s interrupt mask is set to level 7, thus preventing interru
from the DUART. Before discussing the interrupt processing, we shall have a
at the hardware initialization.

3.8.1 Hardware Initialization

Hardware initialization is performed in two steps, which are controlled by
variableos::init_level and by the functionos::init() which performs initialization
up to a requested level.

 1 /* os.hh */
...
 18 class os
 19 {
...
 30 enum INIT_LEVEL {
 31 Not_Initialized = 0,
 32 Polled_IO = 1,
 33 Interrupt_IO = 2
 34 };
 35
 36 static void init(INIT_LEVEL new_level);
...
 49 static INIT_LEVEL init_level;
...
 88 };

After RESET, theinit_level is Not_initialized. The Polled_IO level refers to a
hardware state, where the DUART is initialized, but interrupts are masked.
final level isInterrupt_IO , where interrupts are also enabled. If an initializatio
to Interrupt_IO is requested, then the initialization for levelPolled_IO is
automatically performed by theos:init() function. During normal system start-up
the Polled_IO level is never requested; instead, the initialization jumps direc
from Not_initialized to Interrupt_IO . This happens at a rather late stage in t
start-up of the system. If debugging printouts are inserted during system star
then thePutc_0/1_polled() functions request initialization to levelPolled_IO.

128 void os::init(INIT_LEVEL iLevel)
129 {
130 enum { green = 1<<7 }; // green LED, write to BCLR turns LED on
131
132 if (init_level < Polled_IO)
133 {
134 initDuart(DUART, CSR_9600, CSR_9600);
135 init_level = Polled_IO;
136 }
137

3.8 Interrupt Processing72

for
the
this

ed.
are
all

uffer
the
to

upt

s the
o

138 if (iLevel == Interrupt_IO && init_level < Interrupt_IO)
139 {
140 readDuartRegister (rDUART_STOP); // stop timer
141 writeRegister(xDUART_CTUR, CTUR_DEFAULT); // set CTUR
142 writeRegister(xDUART_CTLR, CTLR_DEFAULT); // set CTLR
143 readDuartRegister(rDUART_START); // start timer
144
145 writeRegister(wDUART_IMR, INT_DEFAULT);
146 init_level = Interrupt_IO;
147 }
148 }

Initialization to levelPolled_IO basically sets the baud rate and data format
both DUART channels to 9600 Baud, 8 data bits, two stop bits, and enables
receivers and transmitters of both serial channels. Thus after reaching
initialization level, the DUART can be operated in a polled mode.

Initialization to level Interrupt_IO programs the DUART timer to generate
interrupts every 10ms. This is the rate at which task scheduling is perform
Then interrupts from all internal interrupt sources of the DUART that are used
enabled: the timer interrupt as well as receive and transmit interrupts for
channels. These interrupts are never turned off afterwards. If a transmit b
gets empty, then the corresponding transmit interrupt is disabled by disabling
transmitter rather than masking its interrupt (otherwise, one would need
maintain a copy of the interrupt mask register, which would be less elegant).

At this point, the interrupts are enabled in the DUART, but the CPU’s interr
mask is still at level 7, so that interrupts have no effect yet.

 1 // Task.cc
 78 void main()
 79 {
 80 if (Task::SchedulerStarted) return -1;
 81
 82 for (int i = 0; i < TASKID_COUNT; i++) Task::TaskIDs[i] = 0;
 83 setupApplicationTasks();
 84
 85 for (Task * t = Task::currTask->next; t != Task::currTask; t = t->next)
 86 t->TaskStatus &= ~Task::STARTED;
 87
 88 Task::SchedulerStarted = 1;
 89 os::init(os::Interrupt_IO); // switch on interrupt system
 90 os::set_INT_MASK(os::ALL_INTS);
 91
 92 Task::Dsched();
 93
 94 for (;;) os::Stop();
 95
 96 return 0; /* not reached */
 97 }

The initialization to levelInterrupt_IO is done in functionmain(). This function
first sets up all tasks that are supposed to run after systems start-up, initialize
hardware to levelInterrupt_IO, and finally lowers the CPU’s interrupt mask s

3. Kernel Implementation 73

idle
are

an
pport
ding

this

is
h is
stack

s) of

on the
the
that all interrupts are accepted. Themain() function is actually executed by the
idle task, which deschedules itself and then enters an infinite loop. Since the
task has the lowest priority of all tasks, it only executes if all other tasks
blocked. It thus stops the CPU until the next interrupt occurs.

3.8.2 Interrupt Service Routine

As we already saw, the only interrupt that could occur in our system is
autolevel 2 interrupt. Of course, the system can be easily extended to su
more peripherals. Thus if an interrupt occurs, the CPU fetches the correspon
interrupt vector and proceeds at the address_duart_isr, where the interrupt
service routine for the DUART starts. The CPU is in supervisor mode at
point.

 1 | crt0.S
...
 52 .LONG _duart_isr | 26 level 2 autovector
...

The CPU first turns on a LED. This LED is turned off each time the CPU
stopped. The brightness of the LED thus shows the actual CPU load, whic
very useful sometimes. The CPU then saves its registers onto the system
and reads the interrupt status from the DUART which indicates the source(
the interrupt.

...
133 _duart_isr: |
134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L D0-D7/A0-A6, -(SP) | save all registers
136 MOVEM.L rDUART_ISR, D7 | get interrupt sources
137 SWAP D7 |
138 MOVE.B D7, _duart_isreg |
139 |
...

If the interrupt is caused by the receiver forSERIAL_0, then the received
character is read from the DUART and put into the receive queue ofSERIAL_0.
This queue has a get semaphore, so that as a consequence, a task blocked
receive queue may be unblocked. Reading the received character from
DUART automatically clears this interrupt.

...
140 BTST #1, _duart_isreg | RxRDY_A ?
141 BEQ LnoRxA | no
142 MOVEM.L rDUART_RHR_A, D0 | get char received
143 MOVE.L D0, -(SP) |
144 PEA 1(SP) | address of char received
145 PEA __8SerialIn$inbuf_0 | inbuf_0 object
146 JSR _PolledPut__t10Queue_Gsem1ZUcRCUc
147 LEA 12(SP), SP | cleanup stack
148 LnoRxA: |
149 |

3.8 Interrupt Processing74

the

ot
his
...

The same applies for an interrupt from the receiver forSERIAL_1.

...
150 BTST #5, _duart_isreg | RxRDY_B ?
151 BEQ LnoRxB | no
152 MOVEM.L rDUART_RHR_B, D0 | get char received
153 MOVE.L D0, -(SP) |
154 PEA 1(SP) | address of char received
155 PEA __8SerialIn$inbuf_1 | inbuf_1 object
156 JSR _PolledPut__t10Queue_Gsem1ZUcRCUc
157 LEA 12(SP), SP | cleanup stack
158 LnoRxB: |
159 |
...

If the interrupt is caused by the transmitter forSERIAL_0, then the next
character from the transmit queue forSERIAL_0 is fetched. The transmit queue
may be empty, however; in this case, the transmitter is disabled to clear
interrupt. This is also indicated towards thePutc_0() function by the
SerialOut::TxEnabled_0 variable (see also Section 3.7.3). If the queue is n
empty, then the next character is written to the DUART which clears t
interrupt.

...
160 BTST #0, _duart_isreg | TxRDY_A ?
161 BEQ LnoTxA | no
162 LEA -2(SP), SP | space for next char
163 PEA 1(SP) | address of char received
164 PEA __9SerialOut$outbuf_0 | outbuf_0 object
165 JSR _PolledGet__t10Queue_Psem1ZUcRUc
166 LEA 8(SP), SP | cleanup stack
167 MOVE.W (SP)+, D1 | next output char (valid if D0 = 0)
168 TST.L D0 | char valid ?
169 BEQ Ld1i11 | yes
170 CLR.L __9SerialOut$TxEnabled_0| no, disable Tx
171 MOVE.B #0x08, wDUART_CR_A | disable transmitter
172 BRA LnoTxA |
173 Ld1i11: MOVE.B D1, wDUART_THR_A | write char (clears int)
174 LnoTxA: |
175 |
...

The same is true for an interrupt from the transmitter forSERIAL_1.

...
176 BTST #4, _duart_isreg | TxRDY_B ?
177 BEQ LnoTxB | no
178 LEA -2(SP), SP | space for next char
179 PEA 1(SP) | address of char received
180 PEA __9SerialOut$outbuf_1 | outbuf_1 object
181 JSR _PolledGet__t10Queue_Psem1ZUcRUc
182 LEA 8(SP), SP | cleanup stack
183 MOVE.W (SP)+, D1 | next output char (valid if D0 = 0)
184 TST.L D0 | char valid ?
185 BEQ Ld1i21 | yes
186 CLR.L __9SerialOut$TxEnabled_1| no, disable Tx

3. Kernel Implementation 75

ting
tem
tem

r to
ate

ches
s

this
rvice
The
ning.
187 MOVE.B #0x08, wDUART_CR_B | disable transmitter
188 BRA LnoTxB |
189 Ld1i21: MOVE.B D1, wDUART_THR_B | write char (clears int)
190 LnoTxB: |
191 |
...

The last option is a timer interrupt. In this case, the interrupt is cleared by wri
to the DUART’s stop/start registers. Next, a pair of variables indicating the sys
time since power on in milliseconds is updated. This implements a simple sys
clock:

...
192 BTST #3, _duart_isreg | timer ?
193 BEQ LnoTim | no
194 MOVEM.L rDUART_STOP, D1 | stop timer
195 MOVEM.L rDUART_START, D1 | start timer
196 |
197 | increment system time
198 ADD.L #10, _sysTimeLo | 10 milliseconds
199 BCC.S Lsys_time_ok |
200 ADDQ.L #1, _sysTimeHi |
201 Lsys_time_ok: |
202 |
...

A common problem is to poll a peripheral (e.g. a switch) in regular intervals o
wait for certain period of time. Neither blocking a task or busy wait is appropri
for this purpose. Instead, we implement a functionTask::Sleep()which will be
explained later on. ThisSleep() function uses a variableTaskSleepCountfor
each task which is decremented with every timer interrupt. If the variable rea
0, the task return to stateRUN by clearing a particular bit in the task’s statu
register.

...
203 MOVE.L __4Task$currTask, D1 |
204 MOVE.L D1, A0 |
205 L_SLEEP_LP: | decrement sleep counters...
206 SUBQ.L #1, TaskSleepCount(A0) |
207 BNE L_NO_WAKEUP |
208 BCLR #3, TaskStatus(A0) | clear sleep state
209 L_NO_WAKEUP: |
210 MOVE.L TaskNext(A0), A0 |
211 CMP.L A0, D1 |
212 BNE L_SLEEP_LP |
213 ST _consider_ts | request task switch anyway
214 LnoTim: |
215 |
...

Now all interrupt sources causing the present interrupt are cleared. During
process, new interrupts may have occurred. In that case, the interrupt se
routine will be entered again when returning from exception processing.
interrupt processing is finished by restoring the interrupts saved at the begin

3.8 Interrupt Processing76

pt

n
t for
The variable_consider_tsmay or may not have been set during the interru
service routine. The final step is to proceed at label_return_from_exception.

...
216 MOVEM.L (SP)+, D0-D7/A0-A6 | restore all registers
217 BRA _return_from_exception |

The processing at label_return_from_exception has already been described i
Section 3.3, i.e. it will be checked whether a task switch is required. Note tha
the code starting at_return_from_exception it makes no difference whether a
task switch was caused by an interrupt or not.

3. Kernel Implementation 77

++

d to
e. It
and

BSS
by

,
or not
y to

n be
next
s, a
with
mory
r, the

it

A

3.9 Memory Management

As we will see in Section 6.4, a librarylibgcc2has to be provided in order to link
the kernel. This library contains in particular the code for the global C
operatorsnew and delete. The code inlibgcc2 basically calls two functions,
malloc() (for operatornew) andfree() (for operatordelete).

One way to provide these functions is to compile the GNU malloc package an
link it to the kernel. But this method consumes considerable memory spac
should also be noted that the malloc package contains uninitialized variables
would thus result in a non-empty BSS section. Since we do not use the
section, the source code of the malloc package needs to be modified
initializing all uninitialized variables to 0.

As you may have noticed, we never used thenew operator in the kernel code
except for creating new tasks and their associated stacks. The main reason f
using this operator is that in an embedded system, there is most likely no wa
deal with the situation wherenew (i.e.malloc()) fails due to lack of memory. The
malloc package allocates memory in pages (e.g. 4kByte; the page size ca
adjusted) and groups memory requests of similar size (i.e. rounded up to the
power of 2) in the same page. Thus if there are requests for different size
significant number of pages could be allocated. For conventional computers
several megabytes of memory this is a good strategy, since the waste of me
in partly used pages is comparatively small. For embedded systems, howeve
total amount of memory is typically much smaller, so that the standardmalloc() is
not the right choice.

We actually used the standardmalloc() in the early kernel versions, but replaced
later on by the following.

 1 /* os.cc */
...
 17 extern int edata;
 18 char * os::free_RAM = (char *)&edata;

The labeledata is computed by the linker and indicates the end of the .DAT
section; i.e. past the last initialized variable. The char pointerfree_RAM is thus
initialized and points to the first unused RAM location.

 21 extern "C" void * sbrk(unsigned long size)
 22 {
 23 void * ret = os::free_RAM;
 24
 25 os::free_RAM += size;
 26
 27 if (os::free_RAM > (char *)RAMend) // out of memory
 28 {
 29 os::free_RAM -= size;
 30 ret = (void *) -1;

3.9 Memory Management78

of

e,

, one
ecific

ould
the

the

ory
lly for
 31 }
 32
 33 return ret;
 34 }

The functionsbrk(unsigned long size)increases thefree_RAM pointer bysize
and returns its previous value. That is, a memory block of sizesize is allocated
and returned bysbrk().

 36 extern "C" void * malloc(unsigned long size)
 37 {
 38 void * ret = sbrk((size+3) & 0xFFFFFFFC);
 39
 40 if (ret == (void *)-1) return 0;
 41 return ret;
 42 }

Our malloc() implementation rounds the memory request size up to a multiple
four bytes so that the memory is aligned to a long word boundary.

 45 extern "C" void free(void *)
 46 {
 47 }

Finally, ourfree() functiondoes notfree the memory returned. As a consequenc
deletemust not be used. As long as tasks are not created dynamically andnew is
not used elsewhere, this scheme is most efficient and adequate. Otherwise
should use the standard malloc package or write an own version meeting sp
requirements. A better solution than the globalnew operator is to overload the
new operator for specific classes. For example, memory for certain classes c
be allocated statically and the class specific new operator (which defaults to
global new operator) could be overloaded. This gives more control over
memory allocation.

Finally, it should be noted that embedded systems with hardware mem
management need a memory management scheme that is written specifica
the memory management unit used.

3. Kernel Implementation 79

at is
and
s of
ns.

t
an
.

ck;

ask is

rom

rm

ed.

ask
3.10 Miscellaneous Functions

So far, we have discussed most of the code comprising the kernel. Wh
missing is the code for starting up tasks (which is described in Section 4.3)
some functions that are conceptually of minor importance but nevertheles
certain practical use. They are described in less detail in the following sectio

3.10.1Miscellaneous Functions in Task.cc

TheMonitor class uses member functions that are not used otherwise.Current()
returns a pointer to the current task.Dsched()explicitly deschedules the curren
task. MyName() returns a string for the current task that is provided as
argument when a task is started;Name() returns that string for any task
MyPriority() returns the priority of the current task,Priority() returns the
priority for any task.userStackBase()returns the base address of the user sta
userStackSize()returns the size of the user stack; anduserStackUsed()returns
the size of the user stack that has already been used by a task. When a t
created, its user stack is initialized to contain characters ’U’.userStackUsed()
scans the user stack from the bottom until it finds a character which differs f
’U’ and so computes the size of the used part of the stack.Status() returns the
task status bitmap.

Next() returns the next task in the ring of all existing tasks. If we need to perfo
a certain function for all tasks, we could do it as follows:

for (const Task * t = Task::Current();;)
{
 ...
 t = t->Next();
 if (t == Task::Current()) break;
}

Sleep(unsigned int ticks)puts the current task into sleep mode forticks timer
interrupts. That is, the task does not execute for a time ofticks*10ms without
wasting CPU time.

When a task is created, its state is set toSTARTED; i.e. the task is not in state
RUN. This allows for setting up tasks before multitasking is actually enabl
Start() resets the task state toRUN.

Terminate() sets a task’s state toTERMINATED . This way, the task is
prevented from execution without the task being deleted.

GetMessage(Message & dest)copies the next message sent to the current t
into dest and removes it from the task’s message queue (msgQ).

3.10 Miscellaneous Functions80

re

el,

ken
nd
e
the

.

3.10.2Miscellaneous Functions in os.cc

getSystemTime()returns the time in millisecond since system start-up (mo
precisely since multitasking was enabled) as along long. initChannel()
initializes the data format (data bits, stop bits) of a DUART chann
setBaudRate()sets??? What ???. Panic() disables all interrupts, turns on the
red LED and then continuously dumps an exception stack frame onSERIAL_0.
This function is used whenever an exception for which no handler exists is ta
(label_fatal). That is, if a fatal system error occurs, the red LED is turned on, a
we can connect a terminal toSERIAL_0. The exception stack frame can then b
analyzed, together with the map file created by the linker, to locate the fault in
source code.readDuartRegister() is called to read a DUART register
writeRegister() is used to write into a hardware (i.e. DUART) register.

: the
ned

ject
al

ring to
M.
st

t-up,
4 Bootstrap

4.1 Introduction

In this chapter, the start-up of the kernel is described. It contains two phases
initialization of the system after RESET, and the initialization of the tasks defi
in the application.

4.2 System Start-up

The compilation of the various source files and the linking of the resulting ob
files results in two files containing the .TEXT and ..DATA sections of the fin
system (see also Section 2.1.1). The linker has generated addresses refer
the .DATA section, which normally starts at the bottom of the system’s RA
After RESET, however, this RAM is not initialized. Thus the .DATA section mu
be contained in the system’s ROM and copied to the RAM during system star
??? as shown in Figure 4.1 ???

FIGURE 4.1 ??? .DATA and .TEXT during System Start-Up ???

.TEXT

.DATA

.DATA

.TEXT .TEXT

.DATA

ROM

RAM

ROM

4.2 System Start-up82

4.1
is

s of
on;

ATA
to

ted

at
, the
ranch
(in
hese

et to
The .TEXT section, in contrast, does not need any special handling. Figure
shows the output of the linker on the left. The ROM image for the system
created by appending the .DATA section after the .TEXT section. The addres
the .DATA section in ROM can be computed from the end of the .TEXT secti
this address is provided by the linker (symbol_etext). Depending on the target
system for which the linker has been installed,_etextmay need to be rounded up
(e.g. to the next 2Kbyte boundary) to determine the exact address of the .D
section in RAM. Although it is not strictly necessary, it is generally a good idea
initialize the unused part of the RAM to 0. This allows to reproduce faults crea
by uninitialized variables.

After RESET, the CPU loads its supervisor stack pointer with the vector
address 0 and its program counter with the next vector. In our implementation
vector for the supervisor stack pointer is somewhat abused, as it contains a b
to the start of the system initialization. This allows for issuing a JMP 0
supervisor mode) to restart the system, although this feature is not used yet. T
two vectors are followed by the other exception vectors. Most of them are s
label_fatal, which is the handler for all fatal system errors.

 1 | crt0.S
 37 _null: BRA _reset | 0 initial SSP (end of RAM)
 38 .LONG _reset | 1 initial PC
 39 .LONG _fatal, _fatal | 2, 3 bus error, adress error
 40 .LONG _fatal, _fatal | 4, 5 illegal instruction, divide/0
 41 .LONG _fatal, _fatal | 6, 7 CHK, TRAPV instructions
 42 .LONG _fatal, _fatal | 8, 9 privilege violation, trace
 43 .LONG _fatal, _fatal | 10,11 Line A,F Emulators
 44 |
 45 .LONG _fatal,_fatal,_fatal | 12... (reserved)
 46 .LONG _fatal,_fatal,_fatal | 15... (reserved)
 47 .LONG _fatal,_fatal,_fatal | 18... (reserved)
 48 .LONG _fatal,_fatal,_fatal | 21... (reserved)
 49 |
 50 .LONG _fatal | 24 spurious interrupt
 51 .LONG _fatal | 25 level 1 autovector
 52 .LONG _duart_isr | 26 level 2 autovector
 53 .LONG _fatal | 27 level 3 autovector
 54 .LONG _fatal, _fatal | 28,29 level 4,5 autovector
 55 .LONG _fatal, _fatal | 30,31 level 6,7 autovector
 56 |
 57 .LONG _stop | 32 TRAP #0 vector
 58 .LONG _deschedule | 33 TRAP #1 vector
 59 .LONG _fatal | 34 TRAP #2 vector
 60 .LONG _Semaphore_P | 35 TRAP #3 vector
 61 .LONG _Semaphore_V | 36 TRAP #4 vector
 62 .LONG _Semaphore_Poll | 37 TRAP #5 vector
 63 .LONG _fatal, _fatal | 38,39 TRAP #6, #7 vector
 64 .LONG _fatal, _fatal | 40,41 TRAP #8, #9 vector
 65 .LONG _fatal, _fatal | 42,43 TRAP #10,#11 vector
 66 .LONG _fatal | 44 TRAP #12 vector
 67 .LONG _set_interrupt_mask | 45 TRAP #13 vector
 68 .LONG _readByteRegister_HL | 46 TRAP #14 vector
 69 .LONG _writeByteRegister | 47 TRAP #15 vector
...

4. Bootstrap 83

the

for
ally,
e

VBR
o not

the

to
the

ion
is

s to
final
user

n
it
Thus after RESET, processing continues at label_reset. The supervisor stack
pointer is initialized to point to the top of the RAM. This is necessary because
vector for this purpose was abused for the branch to_reset. Next the vector base
register (VBR) is set to the beginning of the vector table. This applies only
MC68020 chips and above and allows for relocation of the vector table. Actu
the branch to_resetis intended for jumping to the content of the VBR so that th
system can be restarted with a relocated .TEXT section, provided that the
points to the proper vector table. For processors such as the MC68000 that d
provide a VBR, this instruction must be removed. After setting the VBR,
LEDs are turned off.

 81 _reset: |
 82 MOVE.L #RAMend, SP | since we abuse vector 0 for BRA.W
 83 LEA _null, A0 |
 84 MOVEC A0, VBR | MC68020++ only
 85 | enable cache
 86 MOVE.B #0, wDUART_OPCR | all outputs via BSET/BCLR
 87 MOVE.B #LED_ALL, wLED_OFF | all LEDs off

Then the RAM is initialized to 0. The end of the .TEXT section is rounded up
the next 2Kbyte boundary (assuming the linker was configured to round up
.TEXT section to a 2Kbyte boundary), which yields the start of the .DATA sect
in ROM. The size of the .DATA section is computed, and the .DATA section
then copied from ROM to the RAM.

 89 MOVE.L #RAMbase, A1 | clear RAM...
 90 MOVE.L #RAMend, A2 |
 91 L_CLR: CLR.L (A1)+ |
 92 CMP.L A1, A2 |
 93 BHI L_CLR |
 94 | relocate data section...
 95 MOVE.L #_etext, D0 | end of text section
 96 ADD.L #0x00001FFF, D0 | align to next 2K boundary
 97 AND.L #0xFFFFE000, D0 |
 98 MOVE.L D0, A0 | source (.data section in ROM)
 99 MOVE.L #_sdata, A1 | destination (.data section in RAM)
100 MOVE.L #_edata, A2 | end of .data section in RAM
101 L_COPY: MOVE.L (A0)+, (A1)+ | copy data section from ROM to RAM
102 CMP.L A1, A2 |
103 BHI L_COPY |

At this point, the .TEXT and .DATA sections are located at those addresse
which they had been linked. The supervisor stack pointer is set to the
supervisor stack, and the user stack pointer is set to the top of the idle task’s
stack (the code executed here will end up as the idle task).

105 MOVE.L #_SS_top, A7 | set up supervisor stack
106 MOVE.L #_IUS_top, A0 |
107 MOVE A0, USP | set up user stack

Finally (with respect tocrt0.S), the CPU enters user mode and calls functio
_main(). It is not intended to return from this call; if this would happen, then
would be a fatal system error.

4.2 System Start-up84

ed

the
the

e

d

is the

on

that
, so

he

ble
108 |
109 MOVE #0x0700, SR | user mode, no ints
110 JSR _main |
111 |
112 _fatal: |

If for any reason label_fatal is reached, then all interrupts are disabled, the r
LED is turned on, and theSERIAL_1 transmitter is enabled to allow for polled
serial output. Then the present supervisor stack pointer, which points to
exception stack frame created for the fatal system error, is saved and
supervisor stack pointer is set to the end of the RAM. Thenos::Panic() is called
forever with the saved exception stack frame as its argument.os::Panic() prints
the stack frame in a readable format on theSERIAL_1 channel, so that the caus
of the fault can easily be determined. It??? what is it ???is called forever, so
that a terminal can be connected toSERIAL_1 even after a fatal system error an
the stack frame is not lost, but repeated forever.

112 _fatal: |
113 MOVE.W #0x2700, SR |
114 MOVE.B #LED_RED, wLED_ON | red LED on
115 MOVE.B #0x04, wDUART_CR_B | enable transmitter
116 MOVE.L SP, A0 | old stack pointer
117 MOVE.L #RAMend, SP |
118 _forever: |
119 MOVE.L A0, -(SP) | save old stack pointer
120 MOVE.L A0, -(SP) | push argument
121 JSR _Panic__2osPs | print stack frame
122 LEA 2(SP), SP | remove argument
123 MOVE.L (SP)+, A0 | restore old stack pointer
124 BRA _forever |
125 |
126 _on_exit: |
127 RTS |

In general, a function name in assembler refers to a C function, whose name
same except for the leading underscore. This would mean that “JSR_main”
would call main(), which is defined inTask.cc. For the GNU C++ compiler/
linker, themain() function is handled in a special way. In this case, a functi
__main() is automatically created and called just beforemain(). This __main()
function basically calls the constructors for all statically defined objects so
these are initialized properly. The way this is done may change in future
special attention should be paid to the compiler/linker release used. The__main
function also callson_exit() (i.e. label_on_exitabove), which just returns. So the
call of main() in crt0.S basically initializes the static objects and proceeds in t
realmain().

Now the CPU is in user mode, but interrupts are still disabled. First, the varia
SchedulerStartedis checked to ensuremain() is not called by mistake; in our
caseSchedulerStarted is 0.

 1 // Task.cc
...

4. Bootstrap 85

and

ated
, but

to

tep,

vel
ules
task
ther

r and

d
upt
78 void main()
 79 {
 80 if (Task::SchedulerStarted) return -1;

Then a vector containing all tasks known at system start-up is initialized to 0
setupApplicationTasks() is called. In setupApplicationTasks(), all tasks
required by the application are created (see also Section 4.3). All tasks cre
have their status set to STARTED. That is, the task ring is completely set up
no task is in state RUN. Next, the status for each task is set from STARTED
RUN.

82 for (int i = 0; i < TASKID_COUNT; i++) Task::TaskIDs[i] = 0;
 83 setupApplicationTasks();
 84
 85 for (Task * t = Task::currTask->next; t != Task::currTask; t = t->next)
 86 t->TaskStatus &= ~Task::STARTED;

Here all tasks are in state RUN, but interrupts are still disabled. In the next s
variableSchedulerStarted is set to prevent subsequent calls tomain() (which
would have disastrous effects). Then the hardware is initialized to le
Interrupt_IO , and finally interrupts are enabled. The idle task then de-sched
itself, which causes the task with the highest priority to execute. The idle
itself goes into an infinite loop. Whenever the idle task is swapped in (i.e. no o
task is in state RUN), it callsos::Stop().

88 Task::SchedulerStarted = 1;
 89 os::init(os::Interrupt_IO); // switch on interrupt system
 90 os::set_INT_MASK(os::ALL_INTS);
 91
 92 Task::Dsched();
 93
 94 for (;;) os::Stop();
 95
 96 return 0; /* not reached */
 97 }

Functionos::Stop() merely executes TRAP #0.

 1 /* os.cc */
...
 67 void os::Stop()
 68 {
 69 asm("TRAP #0");
 70 }

The CPU thus enters supervisor mode, fetches the corresponding vecto
proceeds at label_stop.

 1 | crt0.S
...
 57 .LONG _stop | 32 TRAP #0 vector

At label _stop, the yellow LED (which is turned on at every interrupt) is turne
off. The CPU then stops execution with all interrupts enabled until an interr

4.2 System Start-up86

ped
PU

ince

and
tate
occurs. That is, the yellow LED is turned on whenever the CPU is not in stop
mode, thus indicating the CPU load. After an interrupt occurred, the C
proceeds at label_return_from_exception, where it checks if a task switch is
required. Note that the interrupt itself cannot cause a task switch directly, s
the interrupt occurs while the CPU is in supervisor mode.

223 _stop: |
224 MOVE.B #LED_YELLOW, wLED_OFF | yellow LED off
225 STOP #0x2000 |
226 BRA _return_from_exception | check for task switch
227 |

After having left supervisor mode, the idle task is again in its endless loop
stops the CPU again, provided that no other task with higher priority is in s
RUN.

4. Bootstrap 87

task
k

set to
p in
tance,

s
ight

ated

stack
task

me is
y the

y an
ge to
4.3 Task Start-up

As already mentioned in Section 4.2, a task is started in two steps. First, a
control block (i.e. an instance of classTask) is created and inserted into the tas
ring. At this point, the task status is set toSTARTED (i.e. notRUN) so that the
task exists, but may not yet execute. In the second step, the task status is
RUN. The main reason for this two-step approach is that tasks often set u
groups that cooperate by sending messages to each other. Suppose, for ins
that a taskT0 sets up two other tasksT1 andT2. Suppose further that both task
T1 andT2 send messages to each other directly after being created. It then m
happen that taskT1, provided its priority is higher than the priority ofT0,
executes before taskT2 is created by taskT0. Sending a message fromT0 to T1
would then fail. In our two-step approach, however,T2 would exist already, but
would not yet execute. Thus the message fromT1 to T2 would be delivered
correctly.

4.3.1 Task Parameters

The creation of a task is controlled by a number of parameters. A task is cre
by creating an instance of classTask:

 // Task.hh
...
 25 class Task
 26 {
...
 49 Task(void (* main)(),
 50 unsigned long userStackSize,
 51 unsigned short queueSize,
 52 unsigned short priority,
 53 const char * taskName
 54);
...
139 };

The parameters are the function to be executed by the task, the size of the
for the task, the size of the task’s message queue, the priority at which the
shall run, and a character string specifying the name of the task. The task na
useful for debug messages generated by the task and can be retrieved b
functionTask::MyName() which returns this string:

SerialOut::Print(SERIAL_0, “\nTask %s started”, Task::MyName());

So far, tasks have only been referred to byTask pointers, since the name is only
used for printing purposes. But sometimes it is convenient to refer to tasks b
integer task ID rather than by task pointers. Assume we want to send a messa
all tasks. One way of doing this is the following:

for (const Task * t = Current(); ; t = t->Next())

4.3 Task Start-up88

this
it is
se in

ase,
at
h is

ay.

:

ion,
, the
e or
even
{
 Message msg(“Hello”);
 t->SendMessage(msg);
 if (t->Next() == Current() break;
}

Unfortunately, this approach has some drawbacks. First, the order in which
loop is performed is different when executed by different tasks. Second,
assumed that all tasks are present in the task chain. Although this is the ca
our implementation, one may consider to remove tasks that are not in stateRUN
temporarily from the task chain in order to speed up task switching. In this c
only tasks in stateRUN would receive the message which is probably not wh
was desired. A better approach is to maintain a table of task pointers, whic
indexed by an integer task ID. The task IDs could be defined as follows:

 1 // TaskId.hh
 2
 3 enum { TASKID_IDLE = 0,
 4 TASKID_MONITOR,
 5 TASKID_COUNT // number of Task IDs
 6 };

More task IDs can be added before theTASK_ID_COUNT , so that
TASK_ID_COUNT always reflects the proper number of tasks handled this w
Task IDs and task pointers are mapped by a table:

1 // Task.cc
...
 13 Task * Task::TaskIDs[TASKID_COUNT];

As a matter of convenience, the task pointers can now be defined as macros

 1 // TaskId.hh
...
 8 #define IdleTask (Task::TaskIDs[TASKID_IDLE])
 9 #define MonitorTask (Task::TaskIDs[TASKID_MONITOR])

This is nearly equivalent to defining e.gMonitorTask directly as a task pointer:

Task * MonitorTask ;

The difference between using a table and direct declaration ofTask pointers is
basically that for a table, all pointers are collected while for the direct declarat
they are spread over different object files. For a reasonably smart compiler
macros can be resolved at compile time so that no overhead in execution tim
memory space is caused by the table. Instead, the code of our example is
simplified:

for (int t_ID = 0; t_ID < TASKID_COUNT; t_ID++)
{
 Message msg(“Hello”);
 TaskIDs[t_ID]->SendMessage(msg);
}

4. Bootstrap 89

d be
the

on

only

e of
k”.

t in
s not

t

TheTaskIDs table is initialized to zero in the idle task’smain() function.

4.3.2 Task Creation

As a matter of style, for each task a function that starts up the task shoul
provided. This way, the actual parameters for the task are hidden at
application start-up level, thus supporting modularity. The functi
setupApplicationTasks(), which is called by the idle task in itsmain() function,
sets the serial channels to their desired values (SERIAL_1 in this case) and then
calls the start-up function(s) for the desired tasks. In this example, there is
one application task; its start-up function is defined in classMonitor (see also
Chapter 5).

 1 // ApplicationStart.cc
...
 22 void setupApplicationTasks()
 23 {
 24 MonitorIn = SERIAL_1;
 25 MonitorOut = SERIAL_1;
 26 ErrorOut = SERIAL_1;
 27 GeneralOut = SERIAL_1;
 28
 29 Monitor::setupMonitorTask();
 30 }

The functionsetupMonitorTask() creates a new instance of classTask with task
function monitor_main, a user mode stack of 2048 bytes, a message queu
16 messages, a priority of 240, and the name of the task set to “Monitor Tas

 1 // Monitor.cc
...
 13 void Monitor::setupMonitorTask()
 14 {
 15 MonitorTask = new Task (
 16 monitor_main, // function
 17 2048, // user stack size
 18 16, // message queue size
 19 240, // priority
 20 "Monitor Task");
 21 }

The priority (240) should be higher than that of other tasks (which do not exis
the above example) so that the monitor executes even if another task doe
block. This allows for identifying such tasks??? What tasks ???. Creating a
new instance of classTask (i.e new Task(...)) returns aTask pointer which is
stored in theTaskIDs table, remembering thatMonitorTask was actually a
macro defined asTaskIDs[TASKID_MONITOR] . With the Task::Task(...)
constructor, a new task which starts the execution of a functionmonitor_main()
is created. The functionmonitor_main() itself is not of particular interest here. I

4.3 Task Start-up90

we

tion.

ce

ted

t if

e of
exit

not
mine

task.

n
eters
should be noted, however, thatmonitor_main() may return (although most task
functions will not) and that this requires special attention. For task creation,
assume that a hypothetical functionmagic() exists. This function does not
actually exist as code, but only for the purpose of explaining the task crea
Functionmagic() is defined as follows:

void magic()
{

Task::Terminate_0(monitor_main());
/* not reached */

}

Note thatTerminate_0() is actually defined to have no arguments, but sin
magic() is only hypothetically, this does no harm.

 1 // Task.cc
...
 99 void Task::Terminate_0()
100 {
101 Terminate(0);
102 }
...
104 void Task::Terminate(int ex)
105 {
106 {
107 SerialOut so(ErrorOut);
108 so.Print("\n%s Terminated", currTask->name);
109 }
110 currTask->ExitCode = ex;
111 currTask->TaskStatus |= TERMINATED;
112 Dsched();
113 }

magic()calls the task’s main function, which is provided when the task is crea
(in this casemonitor_main()), as well asTerminate_0() in case the main
function returns. Normally tasks do not return from their main functions; bu
they do, then this return is handled by theTerminate_0() function, which merely
calls Terminate(0). The functionsTerminate_0() and Terminate(int ex) may
also be called explicitly by a task in order to terminate a task; e.g. in the cas
errors. If these functions are called explicitly, then a message is printed, an
code is stored in the TCB, and the task’s state is set toTERMINATED . This
causes the task to refrain from execution forever. The TCB, however, is
deleted, and the exit code TCB may be analyzed later on in order to deter
why the task died. Setting the task status toTERMINATED does not
immediately affect the execution of the task; hence it is followed by aDsched()
call which causes the task to be swapped out.

Now task creation mainly means setting up the TCB and the user stack of the
The user stack is created as if the task had been put in stateSTARTED after
callingTerminate_0() in magic, but before the first instruction of the task’s mai
function. First, several variables in the TCB are set up according to the param

4. Bootstrap 91

sk

cter
d

the
f the
re
ue

the
supplied to the constructor. At this point, the TCB is not yet linked into the ta
chain.

 1 // Task.cc
...
 33 Task::Task(void (*main)(),
 34 unsigned long usz,
 35 unsigned short qsz,
 36 unsigned short prio,
 37 const char * taskName
 38)
 39 : US_size(usz),
 40 priority(prio),
 41 name(taskName),
 42 TaskStatus(STARTED),
 43 nextWaiting(0),
 44 msgQ(qsz),
 45 ExitCode(0)
...

Then the user stack of the task is allocated and initialized to the chara
userStackMagic(’U’). This initialization allows to determine the stack size use
by the task later on.

46 {
 47 int i;
 48
 49 Stack = new char[US_size]; // allocate stack
 50
 51 for (i = 0; i < US_size;) Stack[i++] = userStackMagic;

The task’s program counter is set to the first instruction of its main function. If
task is swapped in later on, the execution proceeds right at the beginning o
task’s main function. Also all other registers of the CPU in the TCB a
initialized. This is not necessary, but improves reproducibility of faults, e.g. d
to dangling pointers.

53 Task_A0 = 0xAAAA5555; Task_A1 = 0xAAAA4444;
 54 Task_A2 = 0xAAAA3333; Task_A3 = 0xAAAA2222;
 55 Task_A4 = 0xAAAA1111; Task_A5 = 0xAAAA0000;
 56 Task_A6 = 0xAAAA6666;
 57 Task_D0 = 0xDDDD7777; Task_D1 = 0xDDDD6666;
 58 Task_D2 = 0xDDDD5555; Task_D3 = 0xDDDD4444;
 59 Task_D4 = 0xDDDD3333; Task_D5 = 0xDDDD2222;
 60 Task_D6 = 0xDDDD1111; Task_D7 = 0xDDDD0000;
 61 Task_PC = main;
 62 Task_CCR = 0x0000;

The user stack pointer of the task is set to the top of the user stack. Then
address ofTerminate_0() is pushed on the user stack.Task::Terminate_0() is
called in case the task’s main function returns.

64 Task_USP = (unsigned long *)(Stack + US_size);
 65 *--Task_USP = (unsigned long)Terminate_0;

4.3 Task Start-up92

CB
a
ore
first

ot be

ED

ne by

ould

the
with

ally
In
leted
If currTask is not set yet (i.e. if this is the first task that is created), then a T
for the idle task is created, andcurrTask is set to that TCB. For this purpose,
Task constructor without arguments is used. In view of this code, it seems m
reasonable to create the idle task from the outset rather than when the
application task is created.

 67 if (!currTask)
 68 currTask = new Task();

Finally, the TCB is linked into the task chain directly aftercurrTask (which may
be the idle task, as in our example, or another task). This operation must n
interrupted, so interrupts are masked here.

 70 {
 71 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 72 next = currTask->next;
 73 currTask->next = this;
 74 os::set_INT_MASK(old_INT_MASK);
 75 }
 76 }

The TCB of the newly created task is in a state as if it were put in state START
just before executing the first instruction of its main function.

4.3.3 Task Activation

After creating a number of tasks, these tasks need to be activated. This is do
changing the tasks’ state fromSTARTED to RUN.

 1 // Task.cc
...
 78 void main()
 79 {
...
 85 for (Task * t = Task::currTask->next; t != Task::currTask; t = t->next)
 86 t->TaskStatus &= ~Task::STARTED;

If an application task (rather than the idle task) creates new tasks, it sh
activate the tasks after creating them in a similar way.

4.3.4 Task Deletion

If a task terminates, its TCB still exists. Deleting TCBs largely depends on
actual application and requires great care. Since TCBs have been allocated
the new operator, they need to be deleted with thedeleteoperator. Also, if the
TaskIDs table is used for a task (which is probably not the case for dynamic
created tasks), theTask pointer needs to be removed from the table as well.
addition, it must be assured that no other task maintains a pointer to the de

4. Bootstrap 93

ry
hich

sage

. In

rst
e of
ctual

ted
ion
unt
task. Finally, use of thedelete operator requires use of themalloc package, in
contrast to the simple allocation mechanism we used by default.

An alternative to deleting tasks (which is likely to be a risk due to memo
management as discussed in Section 3.9) is to provide a pool of static tasks w
put themselves in a queue when they are idle.A task requiring a dynamic
task would get such a task out of the queue and send a mes
containing a function to be performed to it. ??? Hä ???This leads to
structures similar to those discussed for the serial router in Section 3.7
principle, static TCB can be used instead of thenew operator for TCBs. The
reason why we usednew rather than static TCBs has historical reasons. The fi
application for which our kernel was used had a DIP switch that selected on
several applications. The kernel was the same for all applications, and the a
application was selected insetupApplicationTasks()by starting different tasks
depending on the DIP switch setting. Static TCB allocation would have was
RAM for those tasks not used for a particular DIP switch setting, while allocat
by new used only those TCBs actually required, thus saving a significant amo
of RAM.

5. An Application 95

ives
same
tion
. This
lude
ing

erial

: the
enu.
enu
5 An Application

5.1 Introduction

In this chapter, we present a simple application: a monitor program that rece
commands from a serial port, executes them, and prints the result on the
serial port. The commands are mainly concerned with retrieving informa
about the running system, such as the status of tasks, or the memory used
monitor has shown to be quite useful in practice, so it is recommended to inc
it in any application. In order to use the monitor, a terminal or a computer runn
a terminal emulation, for example the kermit program, is connected to the s
port used by the monitor.

5.2 Using the Monitor

The monitor supports a collection of commands that are grouped in menus
main menu, the info menu, the duart menu, the memory menu, and the task m
Other menus can easily be added if required. The only purpose of the main m
is to enter one of the other menus.

5.2 Using the Monitor96

d, for
ivated
ase-
FIGURE 5.1 Monitor Menu Structure

In each menu, the monitor prints a prompt, such as “Main >” when the monitor is
ready to accept a command. A command consists of a single character an
some commands, of an additional argument. Some commands may be act
by different characters (e.g. H or ? for help), and commands are not c
sensitive. It is not possible to edit commands or arguments.

The two commands shown in Table 1 are valid for all menus:

Main
Menu

Task
Menu

Memory
Menu

Duart
Menu

Info
Menu

Your
Menu

Command

Command

Command

Command

Command

Command Command

Command

Command

Command

Your
Sub-menu

Command

Command

Command

Command

Command

Command

5. An Application 97

nus.
The remaining commands shown in Table 2 are only valid in their specific me

Command Action

H h ? Print Help on commands available in menu.

Q q ESC Return from this menu (ignored in main menu).

TABLE 1. Commands available in all menus

Menu Command Action Argument

Main I i Enter Info Menu -

Main D d Enter Duart Menu -

Main M m Enter Memory Menu -

Main T t Enter Task Menu -

Info O s Display Overflows -

Info S s Display Top of Memory -

Info T t Display System Time -

Duart B b Set Baud Rate Baud Rate

Duart C c Change Channel -

Duart M m Set Serial Mode Data bits and Parity

Duart T t Transmit Character Character (hex)

Memory D Display Memory Address (hex)

Memory \n Continue Display Memory -

Task S s Display all Tasks -

Task T t Display particular Task Task number

Task P p Set Task Priority Priority (decimal)

TABLE 2. Specific commands

5.3 A Monitor Session98

nted
When

urb
5.3 A Monitor Session

The commands of the monitor are best understood by looking at a comme
monitor session. Commands and arguments entered are shown in bold font.
the monitor is started, it prints a start-up message:

Monitor started on channel 1.
Type H or ? for help.
Main Menu [D I M T H]
Main >

H (or ?) shows the options available in the (main) menu:

Main > h
D - Duart Menu
I - Info Menu
M - Memory Menu
T - Task Menu

D enters the duart menu and h shows the options available:

Main > d
Duart Menu [B C M T H Q]
Duart_A > ?
B - Set Baud Rate
C - Change Channel
M - Change Mode
T - Transmit Character

B sets the baud rate of the duart channel A (SERIAL_0),Msets the data format.
The monitor itself is running on SERIAL_1 so that this setting does not dist
the monitor session.

Duart_A > b
Baud Rate ? 9600
Duart_A >
Duart_A > m
Data Bits (5-8) ? 8
Parity (N O E M S) ? n
Databits = 8 / Parity = n set.

C toggles the duart channel, which changes the prompt of the duart menu.

Duart_A > c
Duart_B >

T transmits a character. The character is entered in hex (0x44 is ASCII ’D’).

Duart_B > t 44
Sending 0x44D
Duart_B >

5. An Application 99

ress

nd

y be
ss is
The last character (’D’) in the line above is the character transmitted.Q exits the
duart menu and i enters the info menu.

Duart_B > q
Main > i
Info > ?
O - Overflows
S - System Memory
T - System Time
Info Menu [O S T H Q]

O displays the overflows of the serial input queues.

Info > o
Ch 0 in : 0
Ch 1 in : 0

S displays the top of the system RAM used. Since the RAM is starting at add
0x20000, the total amount of RAM required is slightly more than 4 kBytes:

Info > s
Top of System Memory: 20001050

T shows the time since system start-up in milliseconds (i.e. 23 seconds) aq

leaves the info menu.

Info > t
System Time: 0:23140
Info > q

M enters the memory menu and h shows the available options.

Main > m
Memory Menu [D H Q]
Memory > h
D - Dump Memory

D dumps the memory from the address specified. The memory dump ma
continued after the last address by typing return (not shown). Here, the addre
0; thus dumping the vector table at the beginning ofcrt0.S. Q leaves the memory
menu.

Memory > d Dump Mamory at address 0x 0
00000000: 6000 00FE 0000 0100 0000 0172 0000 0172 ‘..........r...r
00000010: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r...r
00000020: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r...r
00000030: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r...r
00000040: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r...r
00000050: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r...r
00000060: 0000 0172 0000 0172 0000 01A4 0000 0172 ...r...r.......r
00000070: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r...r

5.3 A Monitor Session100

f the
k ID.

160
00000080: 0000 02F6 0000 0306 0000 0172 0000 03ACr....
00000090: 0000 03FE 0000 0444 0000 0172 0000 0172D...r...r
000000A0: 0000 0172 0000 0172 0000 0172 0000 0172 ...r...r...r...r
000000B0: 0000 0172 0000 0458 0000 046A 0000 0474 ...r...X...j...t
000000C0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
000000D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
000000E0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
000000F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
Memory > q

T enters the task menu andh shows the available options.

Main > t
Task Menu [P S T H Q]
Task > h
P - Set Task Priority
S - Show Tasks
T - Show Task

S displays a list of all tasks. The current task is marked with an arrow:

Task > s Show Tasks:
--
 TCB Status Pri TaskName ID US Usage
--
--> 20000664 RUN 240 Monitor Task 1 0000014C
 20000FB4 RUN 0 Idle Task 0 000000A0
==

T shows details of a particular task. The task number entered is the position o
task in the display of the previous command, starting at 0, rather than the tas
Thus entering 1 displays the idle task rather than the monitor task.

Task > t Show Task:
Task number = 1
Task Name: Idle Task
Priority: 0
TCB Address: 20000FB4
Status: RUN
US Base: 2000020C
US Size: 00000200
US Usage: 000000A0 (31%)
Task >

Apparently the user stack of 512 bytes for the idle task could be reduced to
bytes. Finally,p sets the monitor task priority andq returns to the main menu:

Task > p Set Task Priority:
Task number = 0
Task priority = 200

5. An Application 101

. The
, is
and.
red
Set Monitor Task Priority to 200
Task >
Task > q
Main >

In some cases, an additional prompt is printed after having entered numbers
function accepting numbers waits until a non-digit, such as carriage return
entered. If this carriage return is not caught, then it is interpreted as a comm
Except for the memory menu, carriage return is not a valid command; it is igno
and a new prompt is displayed.

5.4 Monitor Implementation102

task

ctually
tor
itor
by

ts

ain
5.4 Monitor Implementation

The different monitor commands and menus are contained in a classMonitor , see
Section A.19 for details. The monitor is included in the system by creating a
for the monitor insetupApplicationStart() and setting the channelsMonitorIn
andMonitorOut to the desired serial channel, in our caseSERIAL_1.

 1 // ApplicationStart.cc
...
 22 void setupApplicationTasks()
 23 {
 24 MonitorIn = SERIAL_1;
 25 MonitorOut = SERIAL_1;
 26 ErrorOut = SERIAL_1;
 27 GeneralOut = SERIAL_1;
 28
 29 Monitor::setupMonitorTask();
 30 }

With Monitor::setupMonitorTask() , the monitor task is created:

 1 // Monitor.cc
...
 13 void Monitor::setupMonitorTask()
 14 {
 15 MonitorTask = new Task (
 16 monitor_main, // function
 17 2048, // user stack size
 18 16, // message queue size
 19 240, // priority
 20 "Monitor Task");
 21 }

FunctionsetupMonitorTask() creates a task with main functionmonitor_main,
a user stack of 2048 bytes, a message queue for 16 messages (which is a
not used), a task name of “Monitor Task”, and a priority of 240. The moni
should have a priority higher than that of all other tasks. This allows the mon
to display all tasks even if some task (of lower priority) is in busy wait (e.g
mistake) of some kind and to identify such tasks.

Functionmonitor_main(), which is the code executed by the monitor task, prin
a message that the task has started and creates an instance of classMonitor using
MonitorIn andMonitorOut as channels for the serial port and enters the m
menu of the monitor.

 1 // Monitor.cc
...
 23 void Monitor::monitor_main()
 24 {
 25 SerialOut::Print(GeneralOut,
 26 "\nMonitor started on channel %d.",
 27 MonitorOut);

5. An Application 103

hile
why

b-

nus.
acter
 28
 29 Monitor Mon(MonitorIn, MonitorOut);
 30 Mon.MonitorMainMenu();
 31 }

The constructor for classMonitor creates aSerialIn object si for its input
channel. In contrast, the output channel is merely stored, but noSerialOut object
is created. As a result, the input channel is reserved for the monitor forever, w
the output channel can be used by other tasks as well. This explains
ErrorOut and GeneralOut could have been set toSERIAL_1 as well. The
remaining data members of classMonitor are used to remember the state of su
menus even if the monitor returns from the menus.

 1 // Monitor.hh
...
 11 class Monitor
 12 {
 13 public:
 14 Monitor(Channel In, Channel Out)
 15 : si(In), channel(Out), currentChannel(0), last_addr(0) {};
...
 48 };

The code for the menus is straightforward and basically the same for all me
For instance, the main menu prints a prompt, receives the next char
(command), and calls the function corresponding to the command (if any).

 1 // Monitor.cc
...
 59 //---
 60 void Monitor::MonitorMainMenu()
 61 {
 62 SerialOut::Print(channel, "\nType H or ? for help.");
 63 SerialOut::Print(channel, "\nMain Menu [D I M T H]\n");
 64
 65 for (;;) switch(getCommand("Main"))
 66 {
 67 case 'h': case 'H': case '?':
 68 {
 69 SerialOut so(channel);
 70 so.Print("\nD - Duart Menu");
 71 so.Print("\nI - Info Menu");
 72 so.Print("\nM - Memory Menu");
 73 so.Print("\nT - Task Menu");
 74 }
 75 continue;
 76
 77 case 'd': case 'D': DuartMenu(); continue;
 78 case 'i': case 'I': InfoMenu(); continue;
 79 case 'm': case 'M': MemoryMenu(); continue;
 80 case 't': case 'T': TaskMenu(); continue;
 81 }
 82 }

5.4 Monitor Implementation104

e
can
the

sider
cter
cted.

ady
the
The same??? structure/code ???applies for all other menus. However, w
should focus on an interesting situation in the duart menu: here, the user
toggle the duart channel to which the commands of the duart menu apply with
commandC; i.e. toggle between channelsSERIAL_0 and SERIAL_1. The
actual channel chosen is displayed as the prompt of the duart menu. Now con
theT command, which reads a character to transmit (in hex), prints the chara
to be transmitted, and finally transmits the character on the duart channel sele
A naive implementation would be the following:

 case 't': case 'T':
 {
 SerialOut so(channel);
 currentChar = si.Gethex(so);

 so.Print("\nSending 0x%2X", currentChar & 0xFF);

 Channel bc;

 if (currentChannel) bc = SERIAL_1;
 else bc = SERIAL_0;

 SerialOut::Print(bc, "%c", currentChar);
 }
 continue;

Function getCurrentChannel() simply returns SERIAL_0 or SERIAL_1,
depending on what has been selected with theC command. This works fine if
SERIAL_0 is selected. But what happens otherwise, i.e. ifgetCurrentChannel()
returnsSERIAL_1? In this case, we have already created aSerialOut objectso
for channel (which is SERIAL_1), and we are about to perform a
SerialOut::Print(bc,...) with bc set toSERIAL_1 as well. This print will try to
create anotherSerialOut object for SERIAL_1. As we are already using
SERIAL_1, the task blocks itself forever, because it claims a resource it alre
owns. This is a nice example of a deadlock. The proper way of handling
situation is as follows:

226 case 't': case 'T':
227 {
228 SerialOut so(channel);
229 currentChar = si.Gethex(so);
230
231 so.Print("\nSending 0x%2X", currentChar & 0xFF);
232 }
233 {
234 Channel bc;
235
236 if (currentChannel) bc = SERIAL_1;
237 else bc = SERIAL_0;
238
239 SerialOut::Print(bc, "%c", currentChar);
240 }
241 continue;

5. An Application 105

nd
he
The lifetime of thesoobject is simply limited to merely getting the parameter a
printing the message about the character that is about to be transmitted. Tso
object is then destructed, making channelso available again. The
SerialOut::Print(bc, ...) can then use channelbc (whether it happens to be
SERIAL_1 or not) without deadlocking the monitor task.

6. Development Environment 107

his

this
s,

n this
, a

cturer
ating
stem
his

host
ur

and
d to

g
ll is a
but

ross-
are
ilers

uired.
6 Development Environment

6.1 General

In this chapter, we specify a complete development environment. T
environment is based on the GNU C++ compilergccwhich is available for a large
number of target systems (i.e. CPU families for the embedded system in
context). Thegcc is available on the WWW and several CD-ROM distribution
particularly for Linux.

6.2 Terminology

In the following sections, two terms are frequently used: ahost is a computer
system used for developing software, while atarget is a computer system on
which this software is supposed to run, in our case an embedded system. I
context, a computer system is characterized by a CPU type or family
manufacturer, and an operating system. Regarding the target, the manufa
and the operating system are of little concern, since we are building this oper
system ourselves. The basic idea here is to find an already existing target sy
that is supported bygccand as similar as possible to our embedded system. T
helps to reduce the configuration effort to the minimum.

Thus we are looking for a development environment that exactly matches our
(e.g. a workstation or a PC running DOS or Linux) and the CPU family of o
embedded system (e.g. the MC68xxx family). All of the programs required
described below will run on the host, but some of them need to be configure
generate code for the target.

A program for which host and target are identical is callednative; if host and
target are different, the prefixcross-is used. For instance, a C++ compiler runnin
on a PC under DOS and generating code to be executed under DOS as we
native C++ compiler. Another C++ compiler running on a PC under DOS,
generating code for MC68xxx processors is a cross-compiler.

Due to the large number of possible systems, there are many more c
compilers possible than native compilers. For this reason, native compilers
often available as executable programs in various places, while cross-comp
usually need to be made according to the actual host/target combination req

6.2 Terminology108

other
the
It is even possible to create the cross-environment for the host on yet an
system called thebuild machine. But in most cases, the host is the same as
build machine.

6. Development Environment 109

ired

are

ich

ake
se it
s a
6.3 Prerequisites

In order to create the development environment, the following items are requ
on the host machine:

• A suitable native C compiler, preferablygcc

• Sufficient support for native program development

• A make program, preferablygmake

The termsuitable refers to the requirements of thebinutils and gcc packages
which are stated in theREADME and INSTALL files provided with these
packages. TheINSTALL file for gcc says that “You cannot install GNU C by
itself onMSDOS; it will not compile under anyMSDOS compiler except itself”.
In such cases, you will need a nativegcc in binary form; see Section 6.3.2.

Depending on your actual host, there are mainly three scenarios which
described in the following sections.

6.3.1 Scenario 1: UNIX or Linux Host

With a UNIX or Linux host, you already have a suitable native C compiler wh
may or may not begcc. You also have several other programs such astar, sed,
andsh installed as part of the normal UNIX installation.

You also have a make program installed, but it might not be the GNU m
program. In this case, you should consider to install GNU make as well and u
for building the cross-environment. GNU make is by default installed a
program calledmake, which may conflict with an already existingmake
program. In the following, we assume that GNU make is installed asgmake
rather thanmake.

To install GNU make, proceed as follows:

• Get hold of a file calledmake-3.76.1.tar.gz and store it in a separate
directory. You can get this file either from a CD-ROM, e.g. from a Linux
distribution, or from the WWW:
ftp://prep.ai.mit.edu/pub/gnu/make-3.76.1.tar.gz or
ftp://ftp.funet.fi/pub/gnu/gnu/make-3.76.1.tar.gz

• In the separate directory, unpack the file:
> tar -xvzf make-3.76.1.tar.gz or
> zcat make-3.76.1.tar.gz | tar -xvf - if your tar program does not

support the -z option

• Change to the directory created by the tar program:

6.3 Prerequisites110

h

ss-
d

ss

ive:

hine

n.
> cd make-3.76.1

• Read the filesREADME andINSTALL for instructions particular for your
host

• Configure the package:
> ./configure

• Build the packet. This takes about 5 minutes:
> make

• Install the packet. This may require root privileges, depending on where
you want it to be installed. At this point, consider the name conflicts wit
the existing make program. Make sure that GNU make is installed as
gmake:
> make install

6.3.2 Scenario 2: DOS Host

The simplest way for aDOS host is to fetch binary versions ofgcc andgmake.
Please refer to

ftp://prep.ai.mit.edu/pub/gnu/MicrosPorts/MSDOS.gcc

for links to sites providing such binaries.

The gcc and binutils packages provide special means for building the cro
environment forDOS. Thegmake is not strictly required, since it is not neede
for building the cross-environment, and you will have to modify theMakefile for
the embedded system anyway, since mostUNIX commands are not available
underDOS. You should fetch thegmakenevertheless, because this requires le
changes for the targetMakefile.

6.3.3 Scenario 3: Other Host or Scenarios 1 and 2 Failed

If none of the above scenarios discussed above succeeds, you can still surv

• Get hold of a machine satisfying one of the above scenarios. This mac
is called thebuild machine.

• On the build machine, installgmake (not required for scenario 2) andgcc
as a native C compiler for the build machine.

• On the build machine, build the cross-environment as described later o
Observe the README and INSTALL files particularly carefully. When
configuring the packets, set the--build , --host and--target options
accordingly.

6. Development Environment 111
• Copy the cross-environment to your host.

After that, the build machine is no longer needed.

6.4 Building the Cross-Environment112

tory

d is
e for

the

are

s
the
6.4 Building the Cross-Environment

In the following, we assume that the cross-environment is created in a direc
called /CROSSon aUNIX or Linux host, which is also the build machine. In
order to perform the “make install” steps below, you either need to beroot or the
/CROSS directory exists and you have write permission for it.

Since we assume a MC68020 CPU for the embedded system, we choose asun3
machine as target. This machine has a CPU of the MC68000 family an
referred to as m68k-sun-sunos4.1 when specifying targets. The general nam
a target has the form CPU-Manufacturer-OperatingSystem.

For a DOS host, please follow the installation instructions provided with
binutils andgcc packages instead.

6.4.1 Building the GNU cross-binutils package

The GNUbinutils package contains a collection of programs, of which some
essential. The absolute minimum required is the cross-assembleras (which is
required by the GNU C++ cross-compiler) and the cross-linkerld. TheMakefile
provided in this book also uses the cross-archive programar, the name utilitynm
and theobjcopy program.

 1 # Makefile for gmake
 2 #
 3
 4 # Development environment.
 5 # Replace /CROSS by the path where you installed the environment
 6 #
 7 AR := /CROSS/bin/m68k-sun-sunos4.1-ar
 8 AS := /CROSS/bin/m68k-sun-sunos4.1-as
 9 LD := /CROSS/bin/m68k-sun-sunos4.1-ld
 10 NM := /CROSS/bin/m68k-sun-sunos4.1-nm
 11 OBJCOPY := /CROSS/bin/m68k-sun-sunos4.1-objcopy
 12 CC := /CROSS/bin/m68k-sun-sunos4.1-gcc
 13 MAKE := gmake

Since theMakefile provided with thebinutils package builds all these program
by default, there is no use at all to build only particular programs instead of
completebinutils suite.

To install the GNUbinutils package, proceed as follows:

• Get hold of a file calledbinutils-2.8.1.tar.gz and store it in a separate
directory, for instance/CROSS/src. You can get this file either from a CD-
ROM, e.g. from a Linux distribution, or from the WWW:
ftp://prep.ai.mit.edu/pub/gnu/binutils-2.8.1.tar.gz or

6. Development Environment 113

 no
eed

,
.

to
ftp://ftp.funet.fi/pub/gnu/gnu/binutils-2.8.1.tar.gz

• In the/CROSS/src directory, unpack the file:
> cd /CROSS/src
> tar -xvzf binutils-2.8.1.tar.gz or
> zcat binutils-2.8.1.tar.gz | tar -xvf - if your tar program does not

support the -z option

• Change to the directory created by thetar program:
> cd binutils-2.8.1

• Read the fileREADME for instructions particular for your host

• Configure the package. There is a period of a few minutes during which
screen output is generated. If your build machine is not the host, you n
to specify a--host= option as well:
> ./configure --target=m68k-sun-sunos4.1 \
> --enable-targets=m68k-sun-sunos4.1 \

--prefix=/CROSS

• Build the packet, which takes about 20 minutes:
> gmake all-gcc

• Install the packet, either as root or with write permission to /CROSS.
> gmake install

6.4.2 Building the GNU cross-gcc package

To install the GNUgcc package, proceed as follows:

• Get hold of a file calledgcc-2.8.1.tar.gzand store it in a separate directory
for instance./CROSS/src. You can get this file either from a CD-ROM, e.g
from a Linux distribution, or from the WWW:
ftp://prep.ai.mit.edu/pub/gnu/gcc-2.8.1.tar.gz or
ftp://ftp.funet.fi/pub/gnu/gnu/gcc-2.8.1.tar.gz

• In the/CROSS/src directory, unpack the file:
> cd /CROSS/src
> tar -xvzf gcc-2.8.1.tar.gz or
> zcat gcc-2.8.1.tar.gz | tar -xvf - if your tar program does not

support the -z option

• Change to the directory created by thetar program:
> cd gcc-2.8.1

• Read the fileINSTALL for instructions particular for your host

• Configure the package. If your build machine is not the host, you need
specify a--host= option as well:
> ./configure --target=m68k-sun-sunos4.1 \

--prefix=/CROSS \

6.4 Building the Cross-Environment114

e is

the
ding
e be
piler

the

t

--with-gnu-ld \
--with-gnu-as

• Build the C and C++ compilers, which takes about 30 minutes. This mak
supposed to fail when makinglibgcc1.cross. This is on purpose, since we
have not supplied alibgcc1.a at this point:
> make LANGUAGES=”C C++”

• Install the compilers, either as root or with write permission to/CROSS:
> make LANGUAGES=”c c++” install-common
> make LANGUAGES=”c c++” install-driver

• You may optionally install man pages and/or info files as root:
> make LANGUAGES=”c c++” install-man
> make LANGUAGES=”c c++” install-info

Note: There are some dependencies between the actualgcccompiler version and
the libgcc.a library used with it. There are also dependencies between
compiler version and the source code for the target, in particular regar
template class instantiation and support for C++ exceptions. It might therefor
necessary to change the source code provided in this book for different com
versions.

6.4.3 The libgcc.a library

The gcc compiler requires a library that contains functions generated by
compiler itself. This library is usually calledlibgcc.a. The default installation
procedure ofgcc requires that a librarylibgcc1.a is provided beforehand and
creates another librarylibgcc2.a itself. These two librarieslibgcc1.a and
libgcc2.aare then merged into the librarylibgcc.a. Since we have not provided a
libgcc1.a, the build was aborted when building the make targetlibgcc1.crossas
described in Section 6.4.2. The difference betweenlibgcc1.a and libgcc2.a
(besides the fact that they contain entirely different functions) is thatlibgcc2.a
can be compiled withgcc, while libgcc1.a functions usually cannot, at least no
without in-line assembly code.

The final step in setting up the cross-environment is to createlibgcc.a:

• Change to thegcc build directory:
> cd /CROSS/gcc-2.8.1

• Build thelibgcc2 library:
> make LANGUAGES=”c c++” libgcc2.a

• Renamelibgcc2.a to libgcc.a:
> mv libgcc2.a libgcc.a

6. Development Environment 115

r
tions

leave

, or
all

ns

as
?

an
ince

OM
tem
At this point, you have alibgcc.a, but it still lacks the functions oflibgcc1.a. The
functions inlibgcc1.aprovide multiplication, division, and modulo operations fo
32 bit and 64 bit integers. For the MC68020 and higher CPUs, these opera
are directly supported by the CPU, and thegccwill use them if the-mc68020flag
is present. In this case, there is nothing more to do and you may decide to
the libggc.aas it is. If you do so, you should always check the finalTarget.td file
for undefined symbols.

If you want to do it the proper way because you do not have a MC68020 CPU
if you want to make sure that your cross-environment works under
circumstances, you have to provide the functions forlibgcc1.ayourself. In order
to get them compiled withgcc, you are of course not allowed to use the functio
you are implementing.

As an example, we consider the function_mulsi3, which is supposed to multiply
two signed 32 bit integers and to return the result. You may implement it
follows (not tested):??? sollte das nicht besser doch getested sein ??

long _mulsi3(long p1, long p2)
{
long result;
int negative = 0;

 if (p1 < 0) { p1 = -p1; negative++; }
 if (p2 < 0) { p2 = -p2; negative++; }
 asm("
 MOVE.L %1,D1 | D1.L == p1
 MOVE.L %2,D2 | D2.L == p2
 MOVE.W D2,D0 | D0.W == p1_low
 MULU D1,D0 | D0.L == p1_low * p2_low
 MOVE.L D2,D3 | D3.L == p2
 SWAP D3 | D3.W == p2_high
 MULU D1,D3 | D3.L == p1_low * p2_high
 SWAP D1 | D1.W == p1_high
 MULU D2,D1 | D1.L == p1_high * p2_low
 ADD.L D1,D3 | D3.L == p1_low * p2_high + p1_high * p2_low
 SWAP D3 | shift D3.L 16 bits, D3.W dirty
 CLR.W D3 | D3.L == (p1_low * p2_high + p1_high * p2_low) << 16
 ADD.L D3,D0 | D0.L == p1 * p2
 MOVE.L D0,%0 | store result
 " : =g(result) : "g"(p1), "g"(p2) : "d0", "d1", "d2", "d3");

 if (negative & 1) return -result;
 else return result;
}

The libgcc.a contains several modules for C++ exception support. For
embedded system, you will most probably not use any exceptions at all, s
exceptions are fatal errors in this context. When compiling C++ programs, thegcc
enables exception processing by default. This will increase the size of the R
image by about 9 kilobytes, which is slightly less than the whole operating sys

6.4 Building the Cross-Environment116

the
without applications. You should therefore disable exception handling with
gcc option-fno-exceptions.

6. Development Environment 117

s in
es in
for

he
are

h

es are
6.5 The Target Environment

The target environment is created by installing all files listed in the appendice
a separate directory on the host. In that directory, you can compile the sourc
order to build the final ROM image, which can then be burned into an EPROM
the embedded system. Building the ROM image is achieved by entering

• > gmake

This command invokes the build process, which is controlled by theMakefile,
and creates the ROM image both in binary format (fileTartget.bin) and in
Srecord format (fileTarget).

6.5.1 The Target Makefile

The whole process of creating the ROM image is controlled by theMakefile
which is explained in this section. TheMakefile is used bygmake to start
compilers, linkers, and so on as required for building the final ROM image. T
Makefile starts with the locations where the cross-compiler and cross-binutils
installed. In our case, thegcc and binutils packages have been installed wit
prefix=/CROSS, which installed them below the/CROSS directory.

 1 # Makefile for gmake
 2 #
 3
 4 # Development environment.
 5 # Replace /CROSS by where you installed the cross-environment
 6 #
 7 CROSS-PREFIX:= /CROSS
 8 AR := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-ar
 9 AS := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-as
 10 LD := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-ld
 11 NM := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-nm
 12 OBJCOPY := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-objcopy
 13 CC := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-gcc
 14 MAKE := gmake
 15

Then the target addresses for ROM and RAM are specified. These address
used by the linker.ROM_BASE is where the.TEXT section is to be linked, and
RAM_BASE is where the.DATA section is to be linked.

16 # Target memory mapping.
 17 #
 18 ROM_BASE:= 0
 19 RAM_BASE:= 20000000

6.5 The Target Environment118

he
ssing
se a
ard
ts),

ld is

OM

ion.
lead

.hh

leted
The command line options for the assembler, linker, and compiler follow. T
assembler is instructed to allow the additional MC68020 opcodes and addre
modes. The compiler is also told to use maximum optimization and not to u
frame pointer if none is required. The linker is instructed not to use stand
libraries (remember that we did not build standard libraries for our environmen
to use the target addresses specified above for the.TEXT and .DATA sections,
and to create a map file. The map file should be checked after the bui
completed.

21 # compiler and linker flags.
 22 #
 23 ASFLAGS := -mc68020
 24 CCFLAGS := -mc68020 -O2 -fomit-frame-pointer -fno-exceptions
 25
 26 LDFLAGS := -i -nostdlib \
 27 -Ttext $(ROM_BASE) -Tdata $(RAM_BASE) \
 28 -Xlinker -Map -Xlinker Target.map

Our source files are the assembler start-up filecrt0.S and all files *.cc, assuming
that no other files with extension .cc are stored in the directory where the R
image is made.

30 # Source files
 31 #
 32 SRC_S := $(wildcard *.S)
 33 SRC_CC := $(wildcard *.cc)
 34 SRC := $(SRC_S) $(SRC_CC)

For each .cc file, the compiler creates a .d file later on, using the -MM opt
Rather than making a .cc file dependent of all header (.hh) files, which would
to re-compiling all .cc files when any header file is changed, this??? -MM
option ???only causes those .cc files to be compiled that include changed
files, which speeds up compilation.

36 # Dependency files
 37 #
 38 DEP_CC := $(SRC_CC:.cc=.d)
 39 DEP_S := $(SRC_S:.S=.d)
 40 DEP := $(DEP_CC) $(DEP_S)

The object files to be created by the assembler or the compiler:

42 # Object files
 43 #
 44 OBJ_S := $(SRC_S:.S=.o)
 45 OBJ_CC := $(SRC_CC:.cc=.o)
 46 OBJ := $(OBJ_S) $(OBJ_CC)

The files that are created by the build process and that may thus be de
without harm:

48 CLEAN := $(OBJ) $(DEP) libos.a \

6. Development Environment 119

en the

ing a
ade

le
of the
son,
g

 49 Target Target.bin \
 50 Target.td Target.text Target.data \
 51 Target.map Target.sym

The default target (all) for the Makefile is the ROM image (Target) and the
corresponding map and symbol files. Other targets areclean, which removes all
non-source files (should also be used if entire source files are deleted), andtar,
which creates a tar file containing the source files and theMakefile.

Note: Lines containing a command, like line 66,muststart with a tab, rather than
spaces.

 53 # Targets
 54 #
 55 .PHONY: all
 56 .PHONY: clean
 57 .PHONY: tar
 58
 59 all: Target Target.sym
 60
 61 clean:
 62 /bin/rm -f $(CLEAN)
 63
 64 tar: clean
 65 tar:
 66 tar -cvzf ../src.tar *

The dependency files are included to create the proper dependencies betwe
included .cc files and .hh files:

 68 include $(DEP)

How are object and dependency files made? An object file is made by compil
.cc or .S file, using the compiler flags discussed above. A dependency file is m
by compiling a .cc file using the -MM option additionally. The dependency fi
itself has the same dependencies as the object file, but the dependency
dependency file is not maintained automatically by the compiler. For this rea
the left side of a dependency (e.g.file.o:) is extended by the correspondin
dependency file (resulting infile.o file.d:). This method will not work for DOS,
because DOS does not have essential commands such assed.

 70 # Standard Pattern rules...
 71 #
 72 %.o: %.cc
 73 $(CC) -c $(CCFLAGS) $< -o $@
 74
 75 %.o: %.S
 76 $(CC) -c $(ASFLAGS) $< -o $@
 77
 78 %.d: %.cc
 79 $(SHELL) -ec '$(CC) -MM $(CCFLAGS) $< \
 80 | sed '\''s/$*\.o/$*\.o $@/'\'' > $@'

6.5 The Target Environment120

s an
files,

at
used
nto

ry
th
or to

ader
ust

fault
re
 81
 82 %.d: %.S
 83 $(SHELL) -ec '$(CC) -MM $(ASFLAGS) $< \
 84 | sed '\''s/$*\.o/$*\.o $@/'\'' > $@'

All object files are placed in a library calledlibos.a. Consequently, only the code
that is actually required is included in the ROM image. If code size become
issue, then one can break down the source files into smaller source
containing for instance only one function each. Linking is usually performed
file level, so that for files containing both used and unused functions, the un
functions are included in the final result as well. Splitting larger source files i
smaller ones can thus reduce the final code size.

 86 libos.a:$(OBJ)
 87 $(AR) -sr libos.a $?

The final ROM image,Target, is made by converting the corresponding bina
file, Target.bin, into Srecord format. Most EPROM programmers accept bo
binary and Srecord files. However, Srecord files are more convenient to read
send by mail, and they also contain checksums.

 89 Target: Target.bin
 90 $(OBJCOPY) -I binary -O srec $< $@

The fileTarget.text contains the.TEXT section of the linker’s outputTarget.td
in binary format. It is created by instructing theobjcopy to remove the.DATA
segment and to store the result in binary format.

 92 Target.text:Target.td
 93 $(OBJCOPY) -R .data -O binary $< $@

The fileTarget.data contains the.DATA section of the linker’s outputTarget.td
in binary format. It is created by instructing theobjcopy to remove the.TEXT
segment and to store the result in binary format.

 95 Target.data:Target.td
 96 $(OBJCOPY) -R .text -O binary $< $@

For the target configuration we have chosen (aout format), a 32 byte he
created is created if the.TEXT segment is linked to address 0. This header m
be removed, e.g. by a small utilityskip_aout which is described below. The file
Target.bin is created by removing this header fromTarget.text and appending
Target.data:

 98 Target.bin:Target.text Target.data
 99 cat Target.text | skip_aout | cat - Target.data > $@

The map fileTarget.sym is created by thenm utility with the linker’s output. The
nm is instructed to create a format easier to read by humans then the de
output by the option--demangle. From this output, several useless symbols a

6. Development Environment 121

stack

ed by
removed. The map file is useful to translate absolute addresses (e.g. in
dumps created in the case of fatal errors) to function names.

101 Target.sym:Target.td
102 $(NM) -n --demangle $< \
103 | awk '{printf("%s %s\n", $$1, $$3)}' \
104 | grep -v compiled | grep -v "\.o" \
105 | grep -v "_DYNAMIC" | grep -v "^U" > $@

The object file crt0.o for the start-up codecrt0.S is linked with libos.a
(containing all object files for our sources) and withlibgcc (containing all object
files required by thegcc compiler).

108 Target.td:crt0.o libos.a libgcc.a
109 $(CC) -o $@ crt0.o -L. -los -lgcc $(LDFLAGS)

6.5.2 The skip_aout Utility

As already mentioned, the.TEXT segment extracted fromTarget.td by objcopy
starts with a 32 byte header if the link address is 0. This header can be remov
the following utility skip_aout, which simply discards the first 32 bytes from
stdin and copies the remaining bytes tostdout.

// skip_aout.cc
#include <stdio.h>

enum { AOUT_OFFSET = 0x20 }; // 32 byte aout header to skip

int main(int, char *[])
{
int count, cc;

 for (count = 0; (cc = getchar()) != EOF; count++)
 if (count >= AOUT_OFFSET) putchar(cc);

 exit(count < AOUT_OFFSET ? 1 : 0);
}

7. Miscellaneous 123

tural

CPU,
de is
les

e
after
tart of

but
erted

table
ve,
r
e
d

7 Miscellaneous

7.1 General

This chapter covers topics that do not fit in the previous chapters in any na
way.

7.2 Porting to different Processors

So far, a MC68020 has been assumed as target CPU. For using a different
the assembler part of the kernel has to be rewritten. Since most of the co
specified in C++, the amount of code to be rewritten is fairly small. The fi
concerned arecrt0.S and the files containing in-line assembler code, i.e.os.cc,
os.hh, Task.hh, andSemaphore.hh.

7.2.1 Porting to MC68000 or MC68008 Processors

If the target CPU is a MC68000 or MC68008, then only one instruction incrt0.S
needs to be removed. The start-up codecrt0.S has been written so that it can b
linked not only to base address 0 (i.e. assuming the code is executed directly
a processor RESET) but also to other addresses. In this case, a jump to the s
crt0.S is required:

 1 | crt0.S
...
 37 _null: BRA _reset | 0 initial SSP (end of RAM)
 38 .LONG _reset | 1 initial PC

Normally, exception vector 0 contains the initial supervisor stack pointer,
since the supervisor stack pointer is not required from the outset, we have ins
a branch to label_reset instead. Thus aBRA _null has the same effect as a
processor RESET. The CPU needs to know, however, where the vector
(starting at label_null) is located in the memory. For MC68010 CPUs and abo
a special register, the vector base registerVBR, has been implemented. Afte
RESET, theVBR is set to 0. Ifcrt0.S is linked to a different address, then th
VBR has to be set accordingly. Incrt0.S, the vector base address is compute
automatically so that the user is not concerned with this matter:

 1 | crt0.S

7.2 Porting to different Processors124

of
000
l
ve
le

ion
ssing
If so,

s can
i.e.
as

on
rning
...
 81 _reset: |
 82 MOVE.L #RAMend, SP | since we abuse vector 0 for BRA.W
 83 LEA _null, A0 |
 84 MOVEC A0, VBR | MC68010++ only

The first instruction after label_resetsets up the SSP, which fixes the abuse
vector 0. Then the VBR is set to point to the actual vector table. For a MC68
or a MC68008, there is noVBR and the instruction would cause an illega
instruction trap at this point. For a MC68000 or MC68008 CPU, the mo
instruction to theVBR must be removed. Clearly, for such CPUs it is impossib
to locate the vector table (i.e.crt0.S) to anywhere else than address 0.

7.2.2 Porting to Other Processor families

The only specific feature of the MC68000 family we used was the distinct
between supervisor mode and user mode. At the end of an exception proce
routine, it was checked whether a change back to user mode would happen.
a pending task switch was executed.

235 _return_from_exception: | check for task switch
236 OR.W #0x0700, SR | disable interrupts
237 MOVE.W (SP), -(SP) | get status register before exception
238 AND.W #0x2700, (SP)+ | supervisor mode or ints disabled ?
239 BNE L_task_switch_done | yes dont switch task

If a processor, e.g a Z80, does not provide different modes, then these mode
be emulated by a counter which is initialized to 0. For every exception,
interrupts and also the function calls using the TRAP interface such
Semaphore::P(), this counter is incremented. At the end of every excepti
processing, the counter is decremented, and reaching 0 is equivalent to retu
to user mode.

7. Miscellaneous 125

rupt
rrupt

een
rupt
ters.

ther
gisters
ds to
. For
y the

all
nted

iler
the

k.h.

ata
oint

D1,
tion

and
d by
7.3 Saving Registers in Interrupt Service Routines

An interrupt service routine must not alter any registers. For a simple inter
service routine, this can be achieved by saving those registers that the inte
service routine uses and by restoring them after completion.

 1 | crt0.S
...
133 _duart_isr: |
134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L D0-D7/A0-A6, -(SP) | save all registers
...
216 MOVEM.L (SP)+, D0-D7/A0-A6 | restore all registers
...

This is a safe way, but not the most efficient one. Considering the code betw
line 135 and 216, only registers D0, D1, D7, and A0 are modified by the inter
service routine. So it would be sufficient to save and restore only these regis
However, the interrupt service routine calls other functions which may alter o
registers, and these need to be saved as well. In order to save only those re
changed by the interrupt service routine and the functions it calls, one nee
know which registers are altered by the functions generated by the compiler
some compilers, there is a convention such as “any function generated b
compiler may alter registers D0 through D3 and A0 through A3 and leaves
other registers intact”. The register preserving convention is usually docume
for a compiler in a chapter like “function calling conventions”. In case ofgcc,
there is a file config/<machine>/<machine>.h in the directory where the comp
sources are installed, where <machine> stands for the target for which
compiler was configured. In our case, this would be the file config/m68k/m68
In this file, a macroCALL_USED_REGISTERS is defined, which marks those
registers with 1 that are changed by a function call. The first line refers to d
registers, the next line to address registers and the third line to floating p
registers.

// config/m68k/m68k.h
...
#define CALL_USED_REGISTERS \
 {1, 1, 0, 0, 0, 0, 0, 0, \
 1, 1, 0, 0, 0, 0, 0, 1, \
 1, 1, 0, 0, 0, 0, 0, 0 }

That is, if the compiler is configured to use the file m68k.h, then registers D0,
A0, A1, A7, and floating point registers FP0 and FP1 may be altered by func
calls generated by the compiler. If the compiler uses other registers, it saves
restores them automatically. Although A7 (i.e. the SP) is altered, it is restore
the function call mechanism. With this knowledge, one could safely write

 1 | crt0.S
...
133 _duart_isr: |

7.3 Saving Registers in Interrupt Service Routines126

Since
P1)
rupt
134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L D0/D1/D7/A0/A1, -(SP) | save registers used later on
...
216 MOVEM.L (SP)+, D0/D1/D7/A0/A1 | restore registers
...

This causes only 5 instead of 15 registers to be saved and restored.
compilers tend to choose lower register numbers (D0, D1, A0, A1, FP0, and F
for registers that they may destroy, we chose a high register (D7) for the inter
status so that it does not need to be saved before C++ function calls.

7. Miscellaneous 127

not
are

nce,
d
is
by

t
sks:
ny of
for a
time-
m.
7.4 Semaphores with time-out

So far, the state machine shown in Figure 7.1 is used for the state of a task.

FIGURE 7.1 Task State Machine

Sometimes a combination of the statesSLEEP and BLKD is required. One
example is waiting for a character, but indicating a failure if the character is
received within a certain period of time. With the present state machine, there
several possibilities to achieve this, but none is perfect. We could, for insta
first Sleep() for the period and thenPoll() to check if a character has arrive
duringSleep(). This would lead to bad performance, in particular if the period
long and if time-out rarely occurs. One could increase the performance
performingSleep()andPoll() in a loop with smaller intervals, but this would cos
extra processing time. Another alternative would be to use two additional ta
one that is responsible for receiving characters, and the other for sleeping. A
these additional tasks would send an event to the task that is actually waiting
character or time-out, indicating that the character has been received or that
out has occurred. All this is significant effort for an otherwise simple proble
The best solution is to extend the task state machine by a new stateS_BLKD, as
shown in Figure 7.2.

FAILED,

BLKDRUN

SLEEP

STARTED

TERMINATED

P()

V()

Sleep()

Start()

Time-out

Terminate()
Error

7.4 Semaphores with time-out128

ore
ided

e is

ise to
FIGURE 7.2 Task State Machine with new State S_BLKD

The new stateS_BLKD combines the properties of statesSLEEP andBLKD by
returning the task to stateRUN if either the resource represented by a semaph
is available (the character is received in our example) or the time-out prov
with the callSemaphore::P_Timeout(unsigned int time)has expired. The task
calling P_Timeout() must of course be able to determine whether the resourc
available or time-out has occurred. That is,P_Timeout() will return e.g. anint
indicating the result rather thanSemaphore::P(), which returnsvoid. The new
state can be implemented as follows, where the details are left as an exerc
the reader. ??? willst Du die Lösung nicht verraten ???

• The classTask gets two new data membersint P_Timeout_Result and
Semaphore * P_Timeout_Semaphore.

• The classSemaphore is extended by a new member functionint
P_Timeout(unsigned long time). This function is similar toP() with the
following differences: If a resource is available,P_Timeout() returns 0
indicating no time-out. Otherwise it sets the current task’s member
P_Timeout_Semaphore to the semaphore on whichP_Timeout is
performed, sets the current task’s TaskSleep totime, and blocks the task by
setting both theBLKD and theSLEEP bits in the current task’s
TaskStatus. After the task has been unblocked by either aV() call or time-
out, it returnsP_Timeout_Result of the current task.

FAILED,

BLKDRUN

SLEEP

STARTED

TERMINATED

P()

V()

Sleep()

Start()

Time-out

Terminate()
Error

S_BLKD

P_Timeout()

V() or
Time-out

7. Miscellaneous 129

as

es are

ould
nted
• Semaphore::V()is modified so that it sets theP_Timeout_Resultof a task
that is unblocked to 0, indicating no time-out. That task will then return 0
the result of itsP_Timeout() function call. It also clears theSLEEP bit of
the task that is unblocked.

• If the sleep period of a task has expired (after labelL_SLEEP_LP in
crt0.S), then theBLKD bit is examined besides clearing theSLEEP bit of
the task. If it is set, i.e. if the task is in stateS_BLKD, then this bit is
cleared as well, the task is removed from the semaphore waiting chain
(using theP_Timeout_Semaphore member of the task) and
P_Timeout_Result is set to nonzero, indicating time-out.

After the semaphore class has been extended this way, the queue class
extended accordingly, implementing member functions likeGet_Timeout() and
Put_Timeout(). Since all these changes require considerable effort, they sh
only be implemented when needed. As a matter of fact, we have impleme
quite complex applications without the need for time-outs in semaphores.

A Appendices

A.1 Startup Code (crt0.S)

 1 | crt0.S
 2
 3 #define ASSEMBLER
 4
 5 #include "Duart.hh"
 6 #include "Task.hh"
 7 #include "Semaphore.hh"
 8 #include "System.config"
 9 |
 10 .global _null |
 11 .global _on_exit |
 12 .global _reset |
 13 .global _fatal |
 14 .global _deschedule |
 15 .global _consider_ts |
 16 .global _return_from_exception |
 17 .global _stop |
 18 .global _sdata |
 19 .global _idle_stack |
 20 .global _IUS_top |
 21 .global _sysTimeHi |
 22 .global _sysTimeLo |
 23 |
 24 .text |
 25 |
 26 wLED_ON = wDUART_BCLR |
 27 wLED_OFF = wDUART_BSET |
 28 LED_GREEN = 0x80 |
 29 LED_YELLOW = 0x40 |
 30 LED_RED = 0x20 |
 31 LED_ALL = 0xE0 |
 32 |
 33 |===|
 34 | VECTOR TABLE |
 35 |===|
 36 | Vector
 37 _null: BRA _reset | 0 initial SSP (end of RAM)
 38 .LONG _reset | 1 initial PC
 39 .LONG _fatal, _fatal | 2, 3 bus error, adress error
 40 .LONG _fatal, _fatal | 4, 5 illegal instruction, divide/0
 41 .LONG _fatal, _fatal | 6, 7 CHK, TRAPV instructions
 42 .LONG _fatal, _fatal | 8, 9 privilege violation, trace
 43 .LONG _fatal, _fatal | 10,11 Line A,F Emulators
 44 |
 45 .LONG _fatal,_fatal,_fatal | 12... (reserved)
 46 .LONG _fatal,_fatal,_fatal | 15... (reserved)
 47 .LONG _fatal,_fatal,_fatal | 18... (reserved)
 48 .LONG _fatal,_fatal,_fatal | 21... (reserved)
 49 |
 50 .LONG _fatal | 24 spurious interrupt
 51 .LONG _fatal | 25 level 1 autovector
 52 .LONG _duart_isr | 26 level 2 autovector
 53 .LONG _fatal | 27 level 3 autovector
 54 .LONG _fatal, _fatal | 28,29 level 4,5 autovector
 55 .LONG _fatal, _fatal | 30,31 level 6,7 autovector
 56 |
 57 .LONG _stop | 32 TRAP #0 vector
 58 .LONG _deschedule | 33 TRAP #1 vector

A. Appendices 131
 59 .LONG _fatal | 34 TRAP #2 vector
 60 .LONG _Semaphore_P | 35 TRAP #3 vector
 61 .LONG _Semaphore_V | 36 TRAP #4 vector
 62 .LONG _Semaphore_Poll | 37 TRAP #5 vector
 63 .LONG _fatal, _fatal | 38,39 TRAP #6, #7 vector
 64 .LONG _fatal, _fatal | 40,41 TRAP #8, #9 vector
 65 .LONG _fatal, _fatal | 42,43 TRAP #10,#11 vector
 66 .LONG _fatal | 44 TRAP #12 vector
 67 .LONG _set_interrupt_mask | 45 TRAP #13 vector
 68 .LONG _readByteRegister_HL | 46 TRAP #14 vector
 69 .LONG _writeByteRegister | 47 TRAP #15 vector
 70 |
 71 .FILL 16, 4, -1 | 48 .. 63 (reserved)
 72 |
 73 |===|
 74 | CODE |
 75 |===|
 76 |
 77 |---|
 78 | STARTUP CODE |
 79 |---|
 80 |
 81 _reset: |
 82 MOVE.L #RAMend, SP | since we abuse vector 0 for BRA.W
 83 LEA _null, A0 |
 84 MOVEC A0, VBR | MC68010++ only
 85 |
 86 MOVE.B #0, wDUART_OPCR | all outputs via BSET/BCLR
 87 MOVE.B #LED_ALL, wLED_OFF | all LEDs off
 88 |
 89 MOVE.L #RAMbase, A1 | clear RAM...
 90 MOVE.L #RAMend, A2 |
 91 L_CLR: CLR.L (A1)+ |
 92 CMP.L A1, A2 |
 93 BHI L_CLR |
 94 | relocate data section...
 95 MOVE.L #_etext, D0 | end of text section
 96 ADD.L #0x00001FFF, D0 | align to next 2K boundary
 97 AND.L #0xFFFFE000, D0 |
 98 MOVE.L D0, A0 | source (.data section in ROM)
 99 MOVE.L #_sdata, A1 | destination (.data section in RAM)
100 MOVE.L #_edata, A2 | end of .data section in RAM
101 L_COPY: MOVE.L (A0)+, (A1)+ | copy data section from ROM to RAM
102 CMP.L A1, A2 |
103 BHI L_COPY |
104 |
105 MOVE.L #_SS_top, A7 | set up supervisor stack
106 MOVE.L #_IUS_top, A0 |
107 MOVE A0, USP | set up user stack
108 |
109 MOVE #0x0700, SR | user mode, no ints
110 JSR _main |
111 |
112 _fatal: |
113 MOVE.W #0x2700, SR |
114 MOVE.B #LED_RED, wLED_ON | red LED on
115 MOVE.B #0x04, wDUART_CR_B | enable transmitter
116 MOVE.L SP, A0 | old stack pointer
117 MOVE.L #RAMend, SP |
118 _forever: |
119 MOVE.L A0, -(SP) | save old stack pointer
120 MOVE.L A0, -(SP) | push argument

A.1 Startup Code (crt0.S)132
121 JSR _Panic__2osPs | print stack frame
122 LEA 2(SP), SP | remove argument
123 MOVE.L (SP)+, A0 | restore old stack pointer
124 BRA _forever |
125 |
126 _on_exit: |
127 RTS |
128 |
129 |---|
130 | Duart interrupt |
131 |---|
132 |
133 _duart_isr: |
134 MOVE.B #LED_YELLOW, wLED_ON | yellow LED on
135 MOVEM.L D0-D7/A0-A6, -(SP) | save all registers
136 MOVEM.L rDUART_ISR, D7 | get interrupt sources
137 SWAP D7 |
138 MOVE.B D7, _duart_isreg |
139 |
140 BTST #1, _duart_isreg | RxRDY_A ?
141 BEQ LnoRxA | no
142 MOVEM.L rDUART_RHR_A, D0 | get char received
143 MOVE.L D0, -(SP) |
144 PEA 1(SP) | address of char received
145 PEA __8SerialIn$inbuf_0 | inbuf_0 object
146 JSR _PolledPut__t10Queue_Gsem1ZUcRCUc
147 LEA 12(SP), SP | cleanup stack
148 LnoRxA: |
149 |
150 BTST #5, _duart_isreg | RxRDY_B ?
151 BEQ LnoRxB | no
152 MOVEM.L rDUART_RHR_B, D0 | get char received
153 MOVE.L D0, -(SP) |
154 PEA 1(SP) | address of char received
155 PEA __8SerialIn$inbuf_1 | inbuf_1 object
156 JSR _PolledPut__t10Queue_Gsem1ZUcRCUc
157 LEA 12(SP), SP | cleanup stack
158 LnoRxB: |
159 |
160 BTST #0, _duart_isreg | TxRDY_A ?
161 BEQ LnoTxA | no
162 LEA -2(SP), SP | space for next char
163 PEA 1(SP) | address of char received
164 PEA __9SerialOut$outbuf_0 | outbuf_0 object
165 JSR _PolledGet__t10Queue_Psem1ZUcRUc
166 LEA 8(SP), SP | cleanup stack
167 MOVE.W (SP)+, D1 | next output char (valid if D0 = 0)
168 TST.L D0 | char valid ?
169 BEQ Ld1i11 | yes
170 CLR.L __9SerialOut$TxEnabled_0| no, disable Tx
171 MOVE.B #0x08, wDUART_CR_A | disable transmitter
172 BRA LnoTxA |
173 Ld1i11: MOVE.B D1, wDUART_THR_A | write char (clears int)
174 LnoTxA: |
175 |
176 BTST #4, _duart_isreg | TxRDY_B ?
177 BEQ LnoTxB | no
178 LEA -2(SP), SP | space for next char
179 PEA 1(SP) | address of char received
180 PEA __9SerialOut$outbuf_1 | outbuf_1 object
181 JSR _PolledGet__t10Queue_Psem1ZUcRUc
182 LEA 8(SP), SP | cleanup stack

A. Appendices 133
183 MOVE.W (SP)+, D1 | next output char (valid if D0 = 0)
184 TST.L D0 | char valid ?
185 BEQ Ld1i21 | yes
186 CLR.L __9SerialOut$TxEnabled_1| no, disable Tx
187 MOVE.B #0x08, wDUART_CR_B | disable transmitter
188 BRA LnoTxB |
189 Ld1i21: MOVE.B D1, wDUART_THR_B | write char (clears int)
190 LnoTxB: |
191 |
192 BTST #3, _duart_isreg | timer ?
193 BEQ LnoTim | no
194 MOVEM.L rDUART_STOP, D1 | stop timer
195 MOVEM.L rDUART_START, D1 | start timer
196 |
197 | increment system time
198 ADD.L #10, _sysTimeLo | 10 milliseconds
199 BCC.S Lsys_time_ok |
200 ADDQ.L #1, _sysTimeHi |
201 Lsys_time_ok: |
202 |
203 MOVE.L __4Task$currTask, D1 |
204 MOVE.L D1, A0 |
205 L_SLEEP_LP: | decrement sleep counters...
206 SUBQ.L #1, TaskSleepCount(A0) |
207 BNE L_NO_WAKEUP |
208 BCLR #3, TaskStatus(A0) | clear sleep state
209 L_NO_WAKEUP: |
210 MOVE.L TaskNext(A0), A0 |
211 CMP.L A0, D1 |
212 BNE L_SLEEP_LP |
213 ST _consider_ts | request task switch anyway
214 LnoTim: |
215 |
216 MOVEM.L (SP)+, D0-D7/A0-A6 | restore all registers
217 BRA _return_from_exception |
218 |
219 |---|
220 | TRAP #0 (STOP PROCESSOR) |
221 |---|
222 |
223 _stop: |
224 MOVE.B #LED_YELLOW, wLED_OFF | yellow LED off
225 STOP #0x2000 |
226 BRA _return_from_exception | check for task switch
227 |
228 |---|
229 | TRAP #1 (SCHEDULER) |
230 |---|
231 |
232 _deschedule: |
233 ST _consider_ts | request task switch
234 |
235 _return_from_exception: | check for task switch
236 OR.W #0x0700, SR | disable interrupts
237 MOVE.W (SP), -(SP) | get status register before exception
238 AND.W #0x2700, (SP)+ | supervisor mode or ints disabled ?
239 BNE L_task_switch_done | yes dont switch task
240 TST.B _consider_ts | task switch requested ?
241 BEQ L_task_switch_done | no
242 CLR.B _consider_ts | reset task switch request
243 |
244 |---------------------------------------|

A.1 Startup Code (crt0.S)134
245 | swap out current task by saving
246 | all user mode registers in TCB
247 |---------------------------------------|
248 |
249 MOVE.L A6, -(SP) | save A6
250 MOVE.L __4Task$currTask, A6 |
251 MOVEM.L D0-D7/A0-A5, Task_D0(A6)| store D0-D7 and A0-A5 in TCB
252 MOVE.L (SP)+, Task_A6(A6) | store saved A6 in TCB
253 MOVE USP, A0 |
254 MOVE.L A0, Task_USP(A6) | save USP from stack in TCB
255 MOVE.B 1(SP), Task_CCR(A6) | save CCR from stack in TCB
256 MOVE.L 2(SP), Task_PC(A6) | save PC from stack in TCB
257 |
258 |---------------------------------------|
259 | find next task to run
260 | A2: marker for start of search
261 | A6: best candidate found
262 | D6: priority of task A6
263 | A0: next task to probe
264 | D0: priority of task A0
265 |---------------------------------------|
266 |
267 MOVE.L __4Task$currTask, A2 |
268 MOVE.L A2, A6 |
269 MOVEQ #0, D6 |
270 TST.B TaskStatus(A6) | status = RUN ?
271 BNE L_PRIO_OK | no, run at least idle task
272 MOVE.W TaskPriority(A6), D6 |
273 L_PRIO_OK: |
274 MOVE.L TaskNext(A6), A0 | next probe
275 BRA L_TSK_ENTRY |
276 L_TSK_LP: |
277 TST.B TaskStatus(A0) | status = RUN ?
278 BNE L_NEXT_TSK | no, skip
279 MOVEQ #0, D0 |
280 MOVE.W TaskPriority(A0), D0 |
281 CMP.L D0, D6 | D6 higher priority ?
282 BHI L_NEXT_TSK | yes, skip
283 MOVE.L A0, A6 |
284 MOVE.L D0, D6 |
285 ADDQ.L #1, D6 | prefer this if equal priority
286 L_NEXT_TSK: |
287 MOVE.L TaskNext(A0), A0 | next probe
288 L_TSK_ENTRY: |
289 CMP.L A0, A2 |
290 BNE L_TSK_LP |
291 |
292 |---------------------------------------|
293 | next task found (A6)
294 | swap in next task by restoring
295 | all user mode registers in TCB
296 |---------------------------------------|
297 |
298 MOVE.L A6, __4Task$currTask | task found.
299 MOVE.L Task_PC(A6), 2(SP) | restore PC on stack
300 MOVE.B Task_CCR(A6), 1(SP) | restore CCR on stack
301 MOVE.L Task_USP(A6), A0 |
302 MOVE A0, USP | restore USP
303 MOVEM.L Task_D0(A6), D0-D7/A0-A6| restore D0-D7, A0-A5 (56 bytes)
304 L_task_switch_done: |
305 RTE |
306 |

A. Appendices 135
307 |---|
308 | TRAP #3 (Semaphore P operation) |
309 |---|
310 |
311 _Semaphore_P: | A0 -> Semaphore
312 OR #0x0700, SR | disable interrupts
313 SUBQ.L #1, SemaCount(A0) | count down resources
314 BGE _return_from_exception | if resource available
315 ST _consider_ts | request task switch
316 MOVE.L SemaNextTask(A0), D0 | get waiting task (if any)
317 BNE.S Lsp_append | got a waiting task
318 MOVE.L __4Task$currTask, D0 | get current Task
319 MOVE.L D0, SemaNextTask(A0) | store as first waiting
320 MOVE.L D0, A0 |
321 BSET #0, TaskStatus(A0) | block current task
322 CLR.L TaskNextWaiting(A0) | say this is last waiting
323 BRA _return_from_exception | done
324 |
325 Lsp_append: | goto end of waiting list
326 MOVE.L D0, A0 |
327 MOVE.L TaskNextWaiting(A0), D0 | get next waiting (if any)
328 BNE.S Lsp_append | if not last waiting
329 |
330 MOVE.L __4Task$currTask, D0 | get current task
331 MOVE.L D0, TaskNextWaiting(A0) | store as last waiting
332 MOVE.L D0, A0 |
333 BSET #0, TaskStatus(A0) | block current task
334 CLR.L TaskNextWaiting(A0) | say this is last waiting
335 BRA _return_from_exception | done
336 |
337 |---|
338 | TRAP #4 (Semaphore V operation) |
339 |---|
340 |
341 _Semaphore_V: | A0 -> Semaphore
342 OR #0x0700, SR | disable interrupts
343 ADDQ.L #1, SemaCount(A0) |
344 BLE.S Lsv_unblock | unblock waiting task
345 CLR.L SemaNextTask(A0) |
346 BRA _return_from_exception | done
347 |
348 Lsv_unblock: |
349 EXG D0, A1 |
350 MOVE.L SemaNextTask(A0), A1 | get next waiting task
351 MOVE.L TaskNextWaiting(A1), SemaNextTask(A0)
352 MOVE.L A1, A0 |
353 EXG D0, A1 |
354 BCLR #0, TaskStatus(A0) | unblock the blocked task
355 CLR.L TaskNextWaiting(A0) | just in case
356 MOVE.W TaskPriority(A0), D0 | get priority of unblocked Task
357 MOVE.L __4Task$currTask, A0 | get current Task
358 CMP.W TaskPriority(A0), D0 | current prio >= unblocked prio ?
359 BLS _return_from_exception | yes, done
360 ST _consider_ts | no, request task switch
361 BRA _return_from_exception | done
362 |
363 |---|
364 | TRAP #5 (Semaphore Poll operation)
|
365 |---|
366 |
367 _Semaphore_Poll: | A0 -> Semaphore

A.1 Startup Code (crt0.S)136
368 OR #0x700, SR | disable interrupts
369 MOVEQ #1, D0 | assume failure
370 TST.L SemaCount(A0) | get count
371 BLE _return_from_exception | failure
372 SUBQ.L #1, SemaCount(A0) |
373 MOVEQ #0, D0 | success
374 BRA _return_from_exception | check for task switch
375 |
376 |---|
377 | TRAP #13 (SET INTERRUPT MASK) |
378 |---|
379 |
380 _set_interrupt_mask: |
381 MOVEQ #7, D0 |
382 AND.B (SP), D0 | get old status register
383 AND.B #7, D1 | interrupt bits only
384 AND.B #0xF8, (SP) | clear interrupt bits
385 OR.B D1, (SP) | set interrupt bits from D1
386 BRA _return_from_exception | check for task switch
387 |
388 |---|
389 | TRAP #14 (READ DUART REGISTER) |
390 |---|
391 |
392 _readByteRegister_HL: | (emulated)
393 MOVEM.L (A0), D0 | .L to force dummy cycle
394 SWAP D0 | D23..D16 -> D7..D0
395 BRA _return_from_exception | check for task switch
396 |
397 |---|
398 | TRAP #15 (WRITE HARDWARE REGISTER) |
399 |---|
400 |
401 _writeByteRegister: | (emulated)
402 MOVE.B D0, (A0) |
403 BRA _return_from_exception | check for task switch
404 |
405 |===|
406 | DATA |
407 |===|
408 |
409 .data |
410 |
411 _sdata: .LONG 0 |
412 _sysTimeHi: .LONG 0 | system time high
413 _sysTimeLo: .LONG 0 | system time low
414 _super_stack: .FILL 512, 1, 'S' | supervisor stack
415 _SS_top: | top of supervisor stack
416 _idle_stack: .FILL 512, 1, 'U' | idle task user stack
417 _IUS_top: | top of idle task user stack
418 _consider_ts: .BYTE 0 | true if task switch need be checked
419 _duart_isreg: .BYTE 0 |
420 |
421 .ALIGN 2 |
422 .END

A. Appendices 137
A.2 Task.hh

 1 #ifdef ASSEMBLER
 2
 3 #define TaskNext
 4 #define TaskNextWaiting 0x04
 5 #define Task_D0 0x08
 6 #define Task_A6 0x40
 7 #define Task_USP 0x44
 8 #define Task_PC 0x48
 9 #define TaskSleepCount 0x4C
 10 #define TaskHitCount 0x50
 11 #define TaskPriority 0x54
 12 #define Task_CCR 0x56
 13 #define TaskStatus 0x57
 14
 15 #else
 16
 17 #ifndef __TASK_HH_DEFINED__
 18 #define __TASK_HH_DEFINED__
 19 #include "Semaphore.hh"
 20 #include "Message.hh"
 21 #include "Queue.hh"
 22
 23 void setupApplicationTasks();
 24
 25 class Task
 26 {
 27 friend class Monitor;
 28 private:
 29 // Make sure the following locations match the assembler defs above !!!
 30 Task * next; // 0x00
 31 Task * nextWaiting; // 0x04
 32 unsigned long Task_D0, Task_D1, Task_D2, Task_D3; // 0x08..
 33 unsigned long Task_D4, Task_D5, Task_D6, Task_D7; // 0x18..
 34 unsigned long Task_A0, Task_A1, Task_A2, Task_A3; // 0x28..
 35 unsigned long Task_A4, Task_A5, Task_A6; // 0x38..
 36 unsigned long * Task_USP; // 0x44..
 37 void (*Task_PC)(); // 0x48
 38 unsigned long TaskSleep; // 0x4C
 39 unsigned long TaskHitCount; // 0x50
 40 unsigned short priority; // 0x54
 41 unsigned char Task_CCR; // 0x56
 42 unsigned char TaskStatus; // 0x57
 43 // End of definitions also used in assembler
 44
 45 friend main();
 46 friend class Semaphore;
 47
 48 public:
 49 Task(void (* main)(),
 50 unsigned long userStackSize,
 51 unsigned short queueSize,
 52 unsigned short priority,
 53 const char * taskName
 54);
 55
 56 static void GetMessage(Message & msg)
 57 { currTask->msgQ.Get(msg); };
 58
 59 static int PolledGetMessage(Message & msg)
 60 { return currTask->msgQ.PolledGet(msg); };

A.2 Task.hh138
 61
 62 static const char * const MyName()
 63 { return currTask->name; };
 64
 65 static unsigned short MyPriority()
 66 { return currTask->priority; };
 67
 68 static Task * Current()
 69 { return currTask; };
 70
 71 static void Dsched()
 72 { asm("TRAP #1"); };
 73
 74 static int SchedulerRunning() { return SchedulerStarted; };
 75 static unsigned int Sleep(unsigned int);
 76 static void Terminate(int);
 77
 78 const char * const Name() const
 79 { return name; };
 80
 81 unsigned short Priority() const
 82 { return priority; };
 83
 84 void setPriority(unsigned short newPriority)
 85 { priority = newPriority; };
 86
 87 Task * Next() const
 88 { return next; };
 89
 90 unsigned char Status() const
 91 { return TaskStatus; };
 92
 93 void Start()
 94 { TaskStatus &= ~STARTED; };
 95
 96 void SendMessage(Message & msg)
 97 { msg.Sender = currTask; msgQ.Put(msg); };
 98
 99 int checkStacks();
100 unsigned int userStackUsed() const;
101
102 unsigned int userStackBase() const
103 { return (unsigned int)Stack; };
104
105 unsigned int userStackSize() const
106 { return US_size; };
107
108 enum { RUN = 0x00,
109 BLKD = 0x01,
110 STARTED = 0x02,
111 TERMINATED = 0x04,
112 SLEEP = 0x08,
113 FAILED = 0x10,
114 };
115
116 static Task * TaskIDs[];
117 private:
118 Task();
119 ~Task();
120
121 void clearHitCount()
122 { TaskHitCount = 0; };

A. Appendices 139
123
124 unsigned int HitCount() const
125 { return TaskHitCount; };
126
127
128 enum { userStackMagic = 'U', superStackMagic = 'S' };
129
130 static void Terminate_0();
131 static int SchedulerStarted;
132 static Task * currTask;
133
134 char * Stack; // user stack base
135 const unsigned long US_size; // user stack size
136 const char * name;
137 int ExitCode;
138 Queue_Gsem_Psem<Message> msgQ;
139 };
140
141 #endif __TASK_HH_DEFINED__
142
143 #endif ASSEMBLER

A.3 Task.cc140
A.3 Task.cc

 1 // Task.cc
 2
 3 #include "Task.hh"
 4 #include "TaskId.hh"
 5 #include "System.config"
 6 #include "os.hh"
 7 #include "SerialOut.hh"
 8
 9 //---
 10 int Task::SchedulerStarted = 0;
 11
 12 Task * Task::currTask = 0;
 13 Task * Task::TaskIDs[TASKID_COUNT];
 14
 15 //===
 16 extern char idle_stack;
 17 extern char IUS_top;
 18
 19 Task::Task()
 20 : US_size(&IUS_top - &idle_stack),
 21 priority(0),
 22 name("Idle Task"),
 23 TaskStatus(RUN),
 24 next(this),
 25 nextWaiting(0),
 26 Stack(&idle_stack),
 27 msgQ(1),
 28 ExitCode(0)
 29 {
 30 TaskIDs[TASKID_IDLE] = this;
 31 }
 32 //---
 33 Task::Task(void (*main)(),
 34 unsigned long usz,
 35 unsigned short qsz,
 36 unsigned short prio,
 37 const char * taskName
 38)
 39 : US_size(usz),
 40 priority(prio),
 41 name(taskName),
 42 TaskStatus(STARTED),
 43 nextWaiting(0),
 44 msgQ(qsz),
 45 ExitCode(0)
 46 {
 47 int i;
 48
 49 Stack = new char[US_size]; // allocate stack
 50
 51 for (i = 0; i < US_size;) Stack[i++] = userStackMagic;
 52
 53 Task_A0 = 0xAAAA5555; Task_A1 = 0xAAAA4444;
 54 Task_A2 = 0xAAAA3333; Task_A3 = 0xAAAA2222;
 55 Task_A4 = 0xAAAA1111; Task_A5 = 0xAAAA0000;
 56 Task_A6 = 0xAAAA6666;
 57 Task_D0 = 0xDDDD7777; Task_D1 = 0xDDDD6666;
 58 Task_D2 = 0xDDDD5555; Task_D3 = 0xDDDD4444;
 59 Task_D4 = 0xDDDD3333; Task_D5 = 0xDDDD2222;
 60 Task_D6 = 0xDDDD1111; Task_D7 = 0xDDDD0000;

A. Appendices 141
 61 Task_PC = main;
 62 Task_CCR = 0x0000;
 63
 64 Task_USP = (unsigned long *)(Stack + US_size);
 65 *--Task_USP = (unsigned long)Terminate_0;
 66
 67 if (!currTask)
 68 currTask = new Task();
 69
 70 {
 71 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 72 next = currTask->next;
 73 currTask->next = this;
 74 os::set_INT_MASK(old_INT_MASK);
 75 }
 76 }
 77 //===
 78 void main()
 79 {
 80 if (Task::SchedulerStarted) return -1;
 81
 82 for (int i = 0; i < TASKID_COUNT; i++) Task::TaskIDs[i] = 0;
 83 setupApplicationTasks();
 84
 85 for (Task * t = Task::currTask->next; t != Task::currTask; t = t->next)
 86 t->TaskStatus &= ~Task::STARTED;
 87
 88 Task::SchedulerStarted = 1;
 89 os::init(os::Interrupt_IO); // switch on interrupt system
 90 os::set_INT_MASK(os::ALL_INTS);
 91
 92 Task::Dsched();
 93
 94 for (;;) os::Stop();
 95
 96 return 0; /* not reached */
 97 }
 98 //===
 99 void Task::Terminate_0()
100 {
101 Terminate(0);
102 }
103 //===
104 void Task::Terminate(int ex)
105 {
106 {
107 SerialOut so(ErrorOut);
108 so.Print("\n%s Terminated", currTask->name);
109 }
110 currTask->ExitCode = ex;
111 currTask->TaskStatus |= TERMINATED;
112 Dsched();
113 }
114 //===
115 int Task::checkStacks()
116 {
117 if ((char *)Task_USP < Stack) return 1;
118 if ((char *)Task_USP >= Stack + US_size) return 2;
119 return 0;
120 }
121 //
===

A.3 Task.cc142
122 unsigned int Task::Sleep(unsigned int ticks)
123 {
124 if (!SchedulerStarted) return 0;
125 if (ticks == 0) ticks++;
126
127 {
128 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
129 currTask->TaskStatus |= SLEEP;
130 currTask->TaskSleep = ticks;
131 os::set_INT_MASK(old_INT_MASK);
132 }
133 Dsched();
134 return ticks;
135 }
136 //===
137 unsigned int Task::userStackUsed() const
138 {
139 for (int i = 0; Stack[i] == userStackMagic; i++) /* empty */ ;
140 return US_size - i;
141 }
142 //===

A. Appendices 143
A.4 os.hh

 1 /* os.hh */
 2
 3 #include "Channels.hh"
 4
 5 #ifndef __OS_HH_DEFINED__
 6 #define __OS_HH_DEFINED__
 7
 8 extern "C" void * sbrk(unsigned long);
 9 template <class Type> class RingBuffer;
 10 template <class Type> class Queue;
 11 template <class Type> class Queue_Gsem;
 12 template <class Type> class Queue_Psem;
 13 template <class Type> class Queue_Gsem_Psem;
 14 class Semaphore;
 15
 16 typedef unsigned long HW_ADDRESS;
 17
 18 class os
 19 {
 20 public:
 21 friend class Monitor;
 22 friend class SerialIn;
 23 friend class SerialOut;
 24 friend void * sbrk(unsigned long);
 25
 26 static void Stop(); // for Idle Task only
 27
 28 static unsigned long long getSystemTime(); // system time in ms
 29
 30 enum INIT_LEVEL {
 31 Not_Initialized = 0,
 32 Polled_IO = 1,
 33 Interrupt_IO = 2
 34 };
 35
 36 static void init(INIT_LEVEL new_level);
 37 static int setBaudRate(Channel, int);
 38 static int setSerialMode(Channel, int databits, int parity);
 39 static INIT_LEVEL initLevel() { return init_level; };
 40 static void * top_of_RAM() { return free_RAM; };
 41
 42 private:
 43 os(); // dont instantiate
 44
 45 static char * free_RAM;
 46
 47 static void Panic(short * SP);
 48
 49 static INIT_LEVEL init_level;
 50 static void initDuart(HW_ADDRESS base, int baudA, int baudB);
 51 static void initChannel(HW_ADDRESS base, int baud);
 52 static void resetChannel(HW_ADDRESS base);
 53
 54 static unsigned int readDuartRegister(HW_ADDRESS reg)
 55 {
 56 int result;
 57 asm volatile (
 58 "MOVE.L %1, A0
 59 TRAP #14

A.4 os.hh144
 60 MOVE.L D0, %0" : "=g"(result) : "g"(reg) : "d0", "a0"
 61);
 62 return result;
 63 };
 64
 65 static void writeRegister(HW_ADDRESS reg, int val);
 66
 67 public:
 68 enum INT_MASK {
 69 NO_INTS = 0x07,
 70 ALL_INTS = 0x00
 71 };
 72
 73 static INT_MASK set_INT_MASK(INT_MASK new_INT_MASK)
 74 {
 75 INT_MASK old_INT_MASK;
 76
 77 asm volatile (
 78 "MOVE.B %1, D1
 79 TRAP #13
 80 MOVE.B D0, %0"
 81 : "=g"(old_INT_MASK)
 82 : "g"(new_INT_MASK)
 83 : "d0", "d1"
 84);
 85
 86 return old_INT_MASK;
 87 };
 88 };
 89
 90 #endif __OS_HH_DEFINED__
 91

A. Appendices 145
A.5 os.cc

 1 /* os.cc */
 2 #include "System.config"
 3 #include "os.hh"
 4 #include "Task.hh"
 5 #include "Semaphore.hh"
 6 #include "SerialOut.hh"
 7 #include "Channels.hh"
 8 #include "Duart.hh"
 9
 10 os::INIT_LEVEL os::init_level = Not_Initialized;
 11
 12 //===
 13 //
 14 // functions required by libgcc2.a...
 15 //
 16
 17 extern int edata;
 18 char * os::free_RAM = (char *)&edata;
 19
 20 //---
 21 extern "C" void * sbrk(unsigned long size)
 22 {
 23 void * ret = os::free_RAM;
 24
 25 os::free_RAM += size;
 26
 27 if (os::free_RAM > *(char **)0) // out of memory
 28 {
 29 os::free_RAM -= size;
 30 ret = (void *) -1;
 31 }
 32
 33 return ret;
 34 }
 35 //---
 36 extern "C" void * malloc(unsigned long size)
 37 {
 38 void * ret = sbrk((size+3) & 0xFFFFFFFC);
 39
 40 if (ret == (void *)-1) return 0;
 41 return ret;
 42 }
 43
 44 //---
 45 extern "C" void free(void *)
 46 {
 47 }
 48 //---
 49 extern "C" void write(int, const char *text, int len)
 50 {
 51 SerialOut so(SERIAL_1);
 52 so.Print(text, len);
 53 }
 54 //---
 55 extern "C" void _exit(int ex)
 56 {
 57 Task::Terminate(ex);
 58 /* not reached */
 59 for (;;);
 60 }

A.5 os.cc146
 61
 62 //===
 63 //
 64 // crt0.S interface functions...
 65 //
 66
 67 void os::Stop()
 68 {
 69 asm("TRAP #0");
 70 }
 71 //---
 72 void os::writeRegister(HW_ADDRESS reg, int v)
 73 {
 74 asm("MOVE.L %0,A0; MOVE.L %1,D0; TRAP #15" : : "g"(reg), "g"(v) :
"d0","a0");
 75 }
 76 //---
 77 // return time since power on (or reload) in milliseconds
 78 //
 79
 80 extern volatile unsigned long sysTimeLo; // in crt0.S
 81 extern volatile unsigned long sysTimeHi; // in crt0.S
 82
 83 unsigned long long os::getSystemTime()
 84 {
 85 for (;;)
 86 {
 87 unsigned long sys_high_1 = sysTimeHi;
 88 unsigned long sys_low = sysTimeLo;
 89 unsigned long sys_high_2 = sysTimeHi;
 90
 91 // sys_low overflows every 49.86 days. If this function is
 92 // hit by that event (very unlikely) then it may be that
 93 // sys_high_1 != sys_high_2. If so, we repeat reading
 94 // the system time.
 95 if (sys_high_1 != sys_high_2) continue;
 96
 97 unsigned long long ret = sys_high_1;
 98 ret <<= 32;
 99 return ret + sys_low;
100 }
101 }
102 //---
103 // print stack frame in case of fatal errors
104 //
105 void os::Panic(short * SP)
106 {
107 SerialOut so(SERIAL_0_POLLED);
108 int i;
109
110 so.Print("\n\n======================================");
111 so.Print("\nFATAL ERROR STACK DUMP: SP=%8X", SP);
112 so.Print("\n======================================");
113 // for (i = -5; i < 0; i++)
114 // so.Print("\n[SP - 0x%2X] : %4X" , -2*i, SP[i] & 0xFFFF);
115 so.Print("\n[SP + 0x00] : %4X (SR)" , SP[0] & 0xFFFF);
116 so.Print("\n[SP + 0x02] : %4X%4X (PC)" , SP[1] & 0xFFFF, SP[2] & 0xFFFF);
117 so.Print("\n[SP + 0x06] : %4X (FType/Vector)" , SP[3] & 0xFFFF);
118 for (i = 4; i < 10; i++)
119 so.Print("\n[SP + 0x%2X] : %4X" , 2*i, SP[i] & 0xFFFF);
120 so.Print("\n======================================\n");
121 }

A. Appendices 147
122
123 //===
124 //
125 // hardware initialization functions...
126 //
127
128 void os::init(INIT_LEVEL iLevel)
129 {
130 enum { green = 1<<7 }; // green LED, write to BCLR turns LED on
131
132 if (init_level < Polled_IO)
133 {
134 initDuart(DUART, CSR_9600, CSR_9600);
135 init_level = Polled_IO;
136 }
137
138 if (iLevel == Interrupt_IO && init_level < Interrupt_IO)
139 {
140 readDuartRegister (rDUART_STOP); // stop timer
141 writeRegister(xDUART_CTUR, CTUR_DEFAULT); // set CTUR
142 writeRegister(xDUART_CTLR, CTLR_DEFAULT); // set CTLR
143 readDuartRegister(rDUART_START); // start timer
144
145 writeRegister(wDUART_IMR, INT_DEFAULT);
146 init_level = Interrupt_IO;
147 }
148 }
149 //---

150 void
151 os::initDuart(HW_ADDRESS base, int baudA, int baudB)
152 {
153 // setup outputs
154 writeRegister((HW_ADDRESS)(base + w_OPCR), OPCR_DEFAULT);
155
156 resetChannel(base + _A);
157 resetChannel(base + _B);
158
159 writeRegister(base + w_ACR, ACR_DEFAULT);
160
161 initChannel(base + _A, baudA);
162 initChannel(base + _B, baudB);
163 }
164 //---
165 void os::resetChannel(HW_ADDRESS channel_base)
166 {
167 const HW_ADDRESS cr = channel_base + w_CR;
168
169 writeRegister(cr, CR_RxRESET); // reset receiver
170 writeRegister(cr, CR_TxRESET); // reset transmitter
171 }
172 //---
173 void os::initChannel(HW_ADDRESS channel_base, int baud)
174 {
175 const HW_ADDRESS mr = channel_base + x_MR;
176 const HW_ADDRESS cr = channel_base + w_CR;
177 const HW_ADDRESS csr = channel_base + w_CSR;
178
179 writeRegister(cr, CR_MR1); // select MR1
180 writeRegister(mr, MR1_DEFAULT); // set MR1
181 writeRegister(mr, MR2_DEFAULT); // set MR2
182 writeRegister(csr, baud); // set baud rate

A.5 os.cc148
183 writeRegister(cr, CR_TxENA); // enable transmitter
184 writeRegister(cr, CR_RxENA); // enable receiver
185 }
186 //---
187 int os::setSerialMode(Channel ch, int databits, int parity)
188 {
189 int mr1 = MR1_DEFAULT & ~(MR1_P_MASK | MR1_BITS_mask);
190
191 switch(databits)
192 {
193 case 5: mr1 |= MR1_BITS_5; break;
194 case 6: mr1 |= MR1_BITS_6; break;
195 case 7: mr1 |= MR1_BITS_7; break;
196 case 8: mr1 |= MR1_BITS_8; break;
197 default: return -1;
198 }
199
200 switch(parity)
201 {
202 case 0: mr1 |= MR1_P_EVEN ; break;
203 case 1: mr1 |= MR1_P_ODD ; break;
204 case 2: mr1 |= MR1_P_LOW ; break;
205 case 3: mr1 |= MR1_P_HIGH ; break;
206 case 4: mr1 |= MR1_P_NONE ; break;
207 default: return -1;
208 }
209
210 switch(ch)
211 {
212 case SERIAL_0:
213 writeRegister(wDUART_CR_A, CR_MR1); // select MR1
214 writeRegister(xDUART_MR_A, mr1); // set MR1
215 return 0;
216
217 case SERIAL_1:
218 writeRegister(wDUART_CR_B, CR_MR1); // select MR1
219 writeRegister(xDUART_MR_B, mr1); // set MR1
220 return 0;
221 }
222
223 return -1;
224 }
225 //---
226 int os::setBaudRate(Channel ch, int baud)
227 {
228 int csr;
229
230 switch(baud)
231 {
232 case 38400: if (ACR_DEFAULT & ACR_BRG_1) return -1;
233 csr = CSR_38400; break;
234 case 19200: if (~ACR_DEFAULT & ACR_BRG_1) return -1;
235 csr = CSR_19200; break;
236 case 9600: csr = CSR_9600; break;
237 case 4800: csr = CSR_4800; break;
238 case 2400: csr = CSR_2400; break;
239 case 1200: csr = CSR_1200; break;
240 case 600: csr = CSR_600; break;
241 default: return -1;
242 }
243
244 switch(ch)

A. Appendices 149
245 {
246 case SERIAL_0: writeRegister(wDUART_CSR_A, csr); return 0;
247 case SERIAL_1: writeRegister(wDUART_CSR_B, csr); return 0;
248 }
249 return -1;
250 }

A.6 Semaphore.hh150
A.6 Semaphore.hh

 1 #ifdef ASSEMBLER
 2 #define SemaCount
 3 #define SemaNextTask 4
 4 #else !ASSEMBLER
 5 #ifndef __SEMAPHORE_HH_DEFINED__
 6 #define __SEMAPHORE_HH_DEFINED__
 7
 8 class Task;
 9
 10 class Semaphore
 11 {
 12 public:
 13 Semaphore() : count(1), nextTask(0) {};
 14 Semaphore(int cnt) : count(cnt), nextTask(0) {};
 15 void P() {
 16 asm volatile ("MOVE.L %0, A0
 17 TRAP #3" : : "g"(this) : "d0", "a0");
 18 };
 19 void V() {
 20 asm volatile ("MOVE.L %0, A0
 21 TRAP #4" : : "g"(this) : "d0", "a0");
 22 };
 23 int Poll() {
 24 int r;
 25
 26 asm volatile ("MOVE.L %1, A0
 27 TRAP #5
 28 MOVE.L D0, %0"
 29 : "=g"(r) : "g"(this) : "d0", "a0");
 30 return r;
 31 };
 32 private:
 33 long count;
 34 Task * nextTask;
 35 };
 36 #endif __SEMAPHORE_HH_DEFINED__
 37 #endif ASSEMBLER
 38

A. Appendices 151
A.7 Queue.hh

 1 // Queue.hh
 2
 3 #ifndef __QUEUE_HH_DEFINED__
 4 #define __QUEUE_HH_DEFINED__
 5
 6 #include "os.hh"
 7 #include "Semaphore.hh"
 8
 9 #pragma interface
 10
 11 //---
 12 template <class Type> class RingBuffer
 13 {
 14 public:
 15 RingBuffer(unsigned int Size);
 16 ~RingBuffer();
 17
 18 int IsEmpty() const { return (count) ? 0 : -1; };
 19 int IsFull() const { return (count < size) ? 0 : -1; };
 20
 21 int Peek(Type & dest) const;
 22
 23 protected:
 24 enum { QUEUE_OK = 0, QUEUE_FAIL = -1 };
 25
 26 virtual int PolledGet(Type & dest) = 0;
 27 virtual int PolledPut(const Type & dest) = 0;
 28 inline void GetItem(Type & source);
 29 inline void PutItem(const Type & src);
 30
 31 unsigned int size;
 32 unsigned int count;
 33
 34 private:
 35 Type * data;
 36 unsigned int get;
 37 unsigned int put;
 38 };
 39 //---
 40 template <class Type> class Queue : public RingBuffer<Type>
 41 {
 42 public:
 43 Queue(unsigned int sz)
 44 : RingBuffer<Type>(sz), overflow(0), underflow(0)
 45 {};
 46
 47 unsigned int getUnderflowCount() const { return underflow; };
 48 void clearUnderflowCounter() { underflow = 0; };
 49 unsigned int getOverflowCount() const { return overflow; };
 50 void clearOverflowCounter() { overflow = 0; };
 51
 52 int PolledGet(Type & dest);
 53 int PolledPut(const Type & dest);
 54
 55 private:
 56 unsigned int underflow;
 57 unsigned int overflow;
 58 };
 59 //---
 60 template <class Type> class Queue_Gsem : public RingBuffer<Type>

A.7 Queue.hh152
 61 {
 62 public:
 63 Queue_Gsem(unsigned int sz)
 64 : RingBuffer<Type>(sz), overflow(0), GetSemaphore(0)
 65 {};
 66
 67 unsigned int getOverflowCount() const { return overflow; };
 68 void clearOverflowCounter() { overflow = 0; };
 69
 70 int PolledGet(Type & dest);
 71 int PolledPut(const Type & dest);
 72 void Get(Type & dest);
 73
 74 private:
 75 Semaphore GetSemaphore;
 76 unsigned int overflow;
 77 };
 78 //---
 79 template <class Type> class Queue_Psem : public RingBuffer<Type>
 80 {
 81 public:
 82 Queue_Psem(unsigned int sz)
 83 : RingBuffer<Type>(sz),
 84 PutSemaphore(sz),
 85 underflow(0)
 86 {};
 87
 88 unsigned int getUnderflowCount() const { return underflow; };
 89 void clearUnderflowCounter() { underflow = 0; };
 90
 91 int PolledGet(Type & dest);
 92 int PolledPut(const Type & dest);
 93 void Put(const Type & dest);
 94
 95 private:
 96 unsigned int underflow;
 97 Semaphore PutSemaphore;
 98 };
 99 //---
100 template <class Type> class Queue_Gsem_Psem : public RingBuffer<Type>
101 {
102 public:
103 Queue_Gsem_Psem(unsigned int sz)
104 : RingBuffer<Type>(sz), PutSemaphore(sz), GetSemaphore(0)
105 {};
106
107 int PolledGet(Type & dest);
108 int PolledPut(const Type & dest);
109 void Get(Type & dest);
110 void Put(const Type & dest);
111
112 private:
113 Semaphore GetSemaphore;
114 Semaphore PutSemaphore;
115 };
116 //---
117 #endif __QUEUE_HH_DEFINED__

A. Appendices 153
A.8 Queue.cc

 1 // Queue.cc
 2
 3 #pragma implementation "Queue.hh"
 4
 5 #include "Queue.hh"
 6 #include "Message.hh"
 7
 8 //===
 9 template <class Type> RingBuffer<Type>::RingBuffer(unsigned int Size)
 10 : size(Size), get(0), put(0), count(0)
 11
 12 {
 13 data = new Type[size];
 14 }
 15 //---
 16 template <class Type> RingBuffer<Type>::~RingBuffer()
 17 {
 18 delete [] data;
 19 }
 20 //---
 21 template <class Type> int RingBuffer<Type>::Peek(Type & dest) const
 22 {
 23 int ret = QUEUE_FAIL;
 24
 25 {
 26 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 27 if (count) { dest = data[get]; ret = QUEUE_OK; }
 28 os::set_INT_MASK(old_INT_MASK);
 29 }
 30 return ret;
 31 }
 32 //---
 33 template <class Type> inline void RingBuffer<Type>::GetItem(Type & dest)
 34 {
 35 dest = data[get++];
 36 if (get >= size) get = 0;
 37 count--;
 38 }
 39 //---
 40 template <class Type> inline void RingBuffer<Type>::PutItem(const Type &src)
 41 {
 42 data[put++] = src;
 43 if (put >= size) put = 0;
 44 count++;
 45 }
 46 //===
 47 template <class Type> int Queue<Type>::PolledGet(Type & dest)
 48 {
 49 int ret;
 50
 51 {
 52 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 53 if (count) { GetItem(dest); ret = QUEUE_OK; }
 54 else { underflow++; ret = QUEUE_FAIL; }
 55 os::set_INT_MASK(old_INT_MASK);
 56 }
 57 return ret;
 58 }
 59 //---
 60 template <class Type> int Queue<Type>::PolledPut(const Type & dest)

A.8 Queue.cc154
 61 {
 62 int ret;
 63
 64 {
 65 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 66 if (count < size) { PutItem(dest); ret = QUEUE_OK; }
 67 else { overflow++; ret = QUEUE_FAIL; }
 68 os::set_INT_MASK(old_INT_MASK);
 69 }
 70 return ret;
 71 }
 72 //===
 73 template <class Type> void Queue_Gsem<Type>::Get(Type & dest)
 74 {
 75 GetSemaphore.P();
 76 {
 77 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 78 GetItem(dest);
 79 os::set_INT_MASK(old_INT_MASK);
 80 }
 81 }
 82 //---
 83 template <class Type> int Queue_Gsem<Type>::PolledGet(Type & dest)
 84 {
 85 if (GetSemaphore.Poll()) return QUEUE_FAIL;
 86 {
 87 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
 88 GetItem(dest);
 89 os::set_INT_MASK(old_INT_MASK);
 90 }
 91 return QUEUE_OK;
 92 }
 93 //---
 94 template <class Type> int Queue_Gsem<Type>::PolledPut(const Type & dest)
 95 {
 96 int ret = QUEUE_FAIL;
 97
 98 {
 99 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
100 if (count < size)
101 {
102 PutItem(dest);
103 GetSemaphore.V();
104 ret = QUEUE_OK;
105 }
106 os::set_INT_MASK(old_INT_MASK);
107 }
108 return ret;
109 }
110 //===
111 template <class Type> int Queue_Psem<Type>::PolledGet(Type & dest)
112 {
113 int ret = QUEUE_FAIL;
114
115 {
116 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
117 if (count)
118 {
119 GetItem(dest);
120 PutSemaphore.V();
121 ret = QUEUE_OK;
122 }

A. Appendices 155
123 else
124 {
125 underflow++;
126 ret = QUEUE_FAIL;
127 }
128 os::set_INT_MASK(old_INT_MASK);
129 }
130 return ret;
131 }
132 //---
133 template <class Type> void Queue_Psem<Type>::Put(const Type & dest)
134 {
135 PutSemaphore.P();
136 {
137 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
138 PutItem(dest);
139 os::set_INT_MASK(old_INT_MASK);
140 }
141 }
142 //---
143 template <class Type> int Queue_Psem<Type>::PolledPut(const Type & dest)
144 {
145 if (PutSemaphore.Poll()) return QUEUE_FAIL;
146 {
147 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
148 PutItem(dest);
149 os::set_INT_MASK(old_INT_MASK);
150 }
151 return QUEUE_OK;
152 }
153 //===
154 template <class Type> void Queue_Gsem_Psem<Type>::Get(Type & dest)
155 {
156 GetSemaphore.P();
157 {
158 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
159 GetItem(dest);
160 os::set_INT_MASK(old_INT_MASK);
161 }
162 PutSemaphore.V();
163 }
164 //---
165 template <class Type> int Queue_Gsem_Psem<Type>::PolledGet(Type & dest)
166 {
167 if (GetSemaphore.Poll()) return QUEUE_FAIL;
168 {
169 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
170 GetItem(dest);
171 os::set_INT_MASK(old_INT_MASK);
172 }
173 return QUEUE_OK;
174 }
175 //---
176 template <class Type> void Queue_Gsem_Psem<Type>::Put(const Type & dest)
177 {
178 PutSemaphore.P();
179 {
180 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
181 PutItem(dest);
182 os::set_INT_MASK(old_INT_MASK);
183 }
184 GetSemaphore.V();

A.8 Queue.cc156
185 }
186 //---
187 template <class Type> int Queue_Gsem_Psem<Type>::PolledPut(const Type &
dest)
188 {
189 if (PutSemaphore.Poll()) return QUEUE_FAIL;
190 {
191 os::INT_MASK old_INT_MASK = os::set_INT_MASK(os::NO_INTS);
192 PutItem(dest);
193 os::set_INT_MASK(old_INT_MASK);
194 }
195 GetSemaphore.V();
196 return QUEUE_OK;
197 }
198 //===
199 typedef Queue_Gsem_Psem<Message> MessageQueue;
200 typedef Queue_Gsem<unsigned char> serialInQueue;
201 typedef Queue_Psem<unsigned char> serialOutQueue;
202 //===

A. Appendices 157
A.9 Message.hh

 1 // Message.hh
 2
 3 #ifndef __MESSGAE_HH_DEFINED__
 4 #define __MESSGAE_HH_DEFINED__
 5 class Message
 6 {
 7 public:
 8 Message() : Type(0), Body(0), Sender(0) {};
 9 Message(int t, void * b) : Type(t), Body(b), Sender(0) {};
 10 int Type;
 11 void * Body;
 12 const Task * Sender;
 13 };
 14
 15 #endif __MESSGAE_HH_DEFINED__

A.10 Channels.hh158
A.10 Channels.hh

 1 // Channels.hh
 2 #ifndef __CHANNELS_HH_DEFINED__
 3 #define __CHANNELS_HH_DEFINED__
 4
 5 enum Channel {
 6 SERIAL_0 = 0,
 7 SERIAL_1 = 1,
 8 SERIAL_0_POLLED = 4,
 9 SERIAL_1_POLLED = 5,
 10 DUMMY_SERIAL = 8,
 11 };
 12
 13 extern Channel MonitorIn;
 14 extern Channel MonitorOut;
 15 extern Channel ErrorOut;
 16 extern Channel GeneralOut;
 17
 18 #endif __CHANNELS_HH_DEFINED__

A. Appendices 159
A.11 SerialOut.hh

 1 /* SerialOut.hh */
 2
 3 #ifndef __SERIALOUT_HH_DEFINED__
 4 #define __SERIALOUT_HH_DEFINED__
 5
 6 #include "Channels.hh"
 7
 8 // forward declarations...
 9 class Semaphore;
 10 template <class Type> class Queue_Psem;
 11
 12 class SerialOut
 13 {
 14 public:
 15 SerialOut(Channel);
 16 ~SerialOut();
 17
 18 static int Print(Channel, const char *, ...);
 19 static int IsEmpty(Channel);
 20
 21 int Print(const char *, ...);
 22 void Putc(int character);
 23 private:
 24 static int print_form(void (*)(int),
 25 const unsigned char **&,
 26 unsigned const char * &);
 27
 28 static void Putc_0(int c);
 29 static void Putc_1(int c);
 30 static void Putc_0_polled(int c); // Putc_0 before scheduler is
running
 31 static void Putc_1_polled(int c); // Putc_1 before scheduler is
running
 32 static void Putc_dummy(int c); // dummy Putc to compute
length
 33
 34 Channel channel;
 35
 36 static Semaphore Channel_0;
 37 static Semaphore Channel_1;
 38
 39 static Queue_Psem<unsigned char> outbuf_0;
 40 static Queue_Psem<unsigned char> outbuf_1;
 41
 42 static int TxEnabled_0;
 43 static int TxEnabled_1;
 44 };
 45
 46 #endif __SERIALOUT_HH_DEFINED__

A.12 SerialOut.cc160
A.12 SerialOut.cc

 1 /* SerialOut.cc */
 2
 3 #include "System.config"
 4 #include "os.hh"
 5 #include "Task.hh"
 6 #include "SerialOut.hh"
 7 #include "Duart.hh"
 8
 9 //===
 10 Queue_Psem<unsigned char> SerialOut::outbuf_0 (OUTBUF_0_SIZE);
 11 Queue_Psem<unsigned char> SerialOut::outbuf_1 (OUTBUF_1_SIZE);
 12
 13 int SerialOut::TxEnabled_0 = 1; // pretend Transmitter is enabled
at startup
 14 int SerialOut::TxEnabled_1 = 1;
 15
 16 Semaphore SerialOut::Channel_0;
 17 Semaphore SerialOut::Channel_1;
 18
 19 //===
 20 SerialOut::SerialOut(Channel ch) : channel(ch)
 21 {
 22 switch(channel)
 23 {
 24 case SERIAL_0:
 25 if (Task::SchedulerRunning()) Channel_0.P();
 26 else channel = SERIAL_0_POLLED;
 27 return;
 28
 29 case SERIAL_1:
 30 if (Task::SchedulerRunning()) Channel_1.P();
 31 else channel = SERIAL_1_POLLED;
 32 return;
 33
 34 case SERIAL_0_POLLED:
 35 case SERIAL_1_POLLED:
 36 return;
 37
 38 default:
 39 channel = DUMMY_SERIAL; // dummy channel
 40 return;
 41 }
 42 }
 43 //---
 44 SerialOut::~SerialOut()
 45 {
 46 switch(channel)
 47 {
 48 case SERIAL_0: Channel_0.V(); return;
 49 case SERIAL_1: Channel_1.V(); return;
 50 }
 51 }
 52 //===
 53 void SerialOut::Putc_0(int c)

A. Appendices 161
 54 {
 55 unsigned char cc = c;
 56
 57 outbuf_0.Put(cc);
 58 if (!TxEnabled_0)
 59 {
 60 TxEnabled_0 = 1;
 61 os::writeRegister(wDUART_CR_A, CR_TxENA); // enable Tx
 62 }
 63 }
 64 //---
 65 void SerialOut::Putc_1(int c)
 66 {
 67 unsigned char cc = c;
 68
 69 outbuf_1.Put(cc);
 70 if (!TxEnabled_1)
 71 {
 72 TxEnabled_1 = 1;
 73 os::writeRegister(wDUART_CR_B, CR_TxENA); // enable Tx
 74 }
 75 }
 76 //---
 77 void SerialOut::Putc_0_polled(int c)
 78 {
 79 if (os::initLevel() < os::Polled_IO) os::init(os::Polled_IO);
 80
 81 while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /**/ ;
 82
 83 os::writeRegister(wDUART_THR_A, c);
 84
 85 while (!(os::readDuartRegister(rDUART_SR_A) & SR_TxRDY)) /**/ ;
 86 }
 87 //---
 88 void SerialOut::Putc_1_polled(int c)
 89 {
 90 if (os::initLevel() < os::Polled_IO) os::init(os::Polled_IO);
 91
 92 while (!(os::readDuartRegister(rDUART_SR_B) & SR_TxRDY)) /**/ ;
 93
 94 os::writeRegister(wDUART_THR_B, c);
 95
 96 while (!(os::readDuartRegister(rDUART_SR_B) & SR_TxRDY)) /**/ ;
 97 }
 98 //---
 99 void SerialOut::Putc_dummy(int)
100 {
101 // dummy Putc to compute length
102 }
103 //---
104 void SerialOut::Putc(int c)
105 {
106 switch(channel)
107 {
108 case SERIAL_0: Putc_0(c); return;
109 case SERIAL_1: Putc_1(c); return;

A.12 SerialOut.cc162
110 case SERIAL_0_POLLED: Putc_0_polled(c); return;
111 case SERIAL_1_POLLED: Putc_1_polled(c); return;
112 case DUMMY_SERIAL: return;
113 default: return;
114 }
115 }
116 //===
117
118 const char * const hex = "0123456789abcdef";
119 const char * const HEX = "0123456789ABCDEF";
120
121 //---
122 int SerialOut::IsEmpty(Channel channel)
123 {
124 switch(channel)
125 {
126 case 0: return outbuf_0.IsEmpty();
127 case 1: return outbuf_1.IsEmpty();
128 }
129 return 1; // Polled, dummy and remote IO is always empty
130 }
131 //---
132 int SerialOut::Print(Channel channel, const char * format, ...)
133 {
134 SerialOut so(channel);
135
136 void (*putc)(int);
137 const unsigned char ** ap = (const unsigned char **)&format;
138 const unsigned char * f = *ap++;
139 int len = 0;
140 int cc;
141
142 switch(channel)
143 {
144 case SERIAL_0: putc = Putc_0; break;
145 case SERIAL_1: putc = Putc_1; break;
146 case SERIAL_0_POLLED: putc = Putc_0_polled; break;
147 case SERIAL_1_POLLED: putc = Putc_1_polled; break;
148 case DUMMY_SERIAL: putc = Putc_dummy; break;
149 default: return 0;
150 }
151
152 while (cc = *f++)
153 if (cc != '%') { putc(cc); len++; }
154 else len += print_form(putc, ap, f);
155
156 return len;
157 }
158 //---
159 int SerialOut::Print(const char * format, ...)
160 {
161 void (*putc)(int);
162 const unsigned char ** ap = (const unsigned char **)&format;
163 const unsigned char * f = *ap++;
164 int len = 0;
165 int cc;

A. Appendices 163
166
167 switch(channel)
168 {
169 case SERIAL_0: putc = Putc_0; break;
170 case SERIAL_1: putc = Putc_1; break;
171 case SERIAL_0_POLLED: putc = Putc_0_polled; break;
172 case SERIAL_1_POLLED: putc = Putc_1_polled; break;
173 case DUMMY_SERIAL: putc = Putc_dummy; break;
174 default: return 0;
175 }
176
177 while (cc = *f++)
178 if (cc != '%') { putc(cc); len++; }
179 else len += print_form(putc, ap, f);
180
181 return len;
182 }
183 //===
184 int
185 SerialOut::print_form(void (*putc)(int),
186 const unsigned char **& ap,
187 const unsigned char * & f)
188 {
189 int len = 0;
190 int min_len = 0;
191 int buf_idx = 0;
192 union { const unsigned char * cp;
193 const char * scp;
194 long lo;
195 unsigned long ul; } data;
196 int cc;
197 unsigned char buf[10];
198
199 for (;;)
200 {
201 switch(cc = *f++)
202 {
203 case '0': min_len *= 10; continue;
204 case '1': min_len *= 10; min_len += 1; continue;
205 case '2': min_len *= 10; min_len += 2; continue;
206 case '3': min_len *= 10; min_len += 3; continue;
207 case '4': min_len *= 10; min_len += 4; continue;
208 case '5': min_len *= 10; min_len += 5; continue;
209 case '6': min_len *= 10; min_len += 6; continue;
210 case '7': min_len *= 10; min_len += 7; continue;
211 case '8': min_len *= 10; min_len += 8; continue;
212 case '9': min_len *= 10; min_len += 9; continue;
213
214 case '%':
215 putc('%');
216 return 1;
217
218 case 'c':
219 data.cp = *ap++;
220 putc(data.lo);
221 return 1;

A.12 SerialOut.cc164
222
223 case 'd':
224 data.cp = *ap++;
225 if (data.lo < 0)
226 {
227 data.lo = -data.lo;
228 putc('-'); len++;
229 }
230
231 do { buf[buf_idx++] = '0' + data.ul%10;
232 data.ul = data.ul/10;
233 } while (data.lo);
234
235 while (min_len-- > buf_idx) { putc(' '); len++;
}
236
237 do { cc = buf[--buf_idx]; putc(cc); len++; }
238 while (buf_idx);
239 return len;
240
241 case 's':
242 data.cp = *ap++;
243 if (data.scp == 0) data.scp = "(null)";
244 while (cc = *data.cp++)
245 { putc(cc); len++; min_len--; }
246
247 while (min_len-- > 0)
248 { putc(' '); len++; }
249 return len;
250
251 case 'x':
252 data.cp = *ap++;
253 do { buf[buf_idx++] = hex[0x0F & data.ul];
254 data.ul >>= 4;
255 } while (data.ul);
256
257 while (min_len-- > buf_idx) { putc('0'); len++;
}
258
259 do { cc = buf[--buf_idx]; putc(cc); len++; }
260 while (buf_idx);
261 return len;
262
263 case 'X':
264 data.cp = *ap++;
265 do { buf[buf_idx++] = HEX[0x0F & data.ul];
266 data.ul >>= 4;
267 } while (data.ul);
268
269 while (min_len-- > buf_idx) { putc('0'); len++;
}
270
271 do { cc = buf[--buf_idx]; putc(cc); len++; }
272 while (buf_idx);
273 return len;
274 }

A. Appendices 165
275 }
276 }
277 //===

A.13 SerialIn.hh166
A.13 SerialIn.hh

 1 /* SerialIn.hh */
 2
 3 #ifndef __SERIALIN_HH_DEFINED__
 4 #define __SERIALIN_HH_DEFINED__
 5
 6 #include "Channels.hh"
 7
 8 // forward declarations...
 9 class Semaphore;
 10 class SerialOut;
 11 template <class Type> class Queue_Gsem;
 12
 13 class SerialIn
 14 {
 15 public:
 16 SerialIn(Channel);
 17 ~SerialIn();
 18
 19 static unsigned int getOverflowCounter(Channel);
 20
 21 int Getc();
 22 int Pollc();
 23 int Peekc();
 24 int Gethex(SerialOut &);
 25 int Getdec(SerialOut &);
 26
 27 enum SerialError
 28 {
 29 OVERRUN_ERROR = 1,
 30 PARITY_ERROR = 2,
 31 FRAME_ERROR = 3,
 32 BREAK_DETECT = 4
 33 };
 34 private:
 35 Channel channel;
 36
 37 static Semaphore Channel_0;
 38 static Semaphore Channel_1;
 39
 40 static Queue_Gsem<unsigned char> inbuf_0;
 41 static Queue_Gsem<unsigned char> inbuf_1;
 42 };
 43
 44 #endif __SERIALIN_HH_DEFINED__

A. Appendices 167
A.14 SerialIn.cc

 1 /* SerialIn.cc */
 2
 3 #include "System.config"
 4 #include "SerialIn.hh"
 5 #include "SerialOut.hh"
 6 #include "Task.hh"
 7 #include "Queue.hh"
 8
 9 Queue_Gsem<unsigned char> SerialIn::inbuf_0 (INBUF_0_SIZE);
 10 Queue_Gsem<unsigned char> SerialIn::inbuf_1 (INBUF_1_SIZE);
 11
 12 Semaphore SerialIn::Channel_0;
 13 Semaphore SerialIn::Channel_1;
 14
 15 //===
 16 SerialIn::SerialIn(Channel ch) : channel(ch)
 17 {
 18 switch(channel)
 19 {
 20 case SERIAL_0: Channel_0.P(); break;
 21 case SERIAL_1: Channel_1.P(); break;
 22 }
 23 }
 24 //===
 25 SerialIn::~SerialIn()
 26 {
 27 switch(channel)
 28 {
 29 case SERIAL_0: Channel_0.V(); break;
 30 case SERIAL_1: Channel_1.V(); break;
 31 }
 32 }
 33 //===
 34 int SerialIn::Getc()
 35 {
 36 unsigned char cc;
 37
 38 switch(channel)
 39 {
 40 case SERIAL_0: inbuf_0.Get(cc); return cc;
 41 case SERIAL_1: inbuf_1.Get(cc); return cc;
 42 default: return -1;
 43 }
 44 }
 45 //===
 46 int SerialIn::Pollc()
 47 {
 48 unsigned char cc;
 49
 50 switch(channel)
 51 {
 52 case SERIAL_0: return inbuf_0.PolledGet(cc) ? -1 : cc;
 53 case SERIAL_1: return inbuf_1.PolledGet(cc) ? -1 : cc;
 54 default: return -1;

A.14 SerialIn.cc168
 55 }
 56 }
 57 //===
 58 int SerialIn::Peekc()
 59 {
 60 unsigned char cc;
 61
 62 switch(channel)
 63 {
 64 case SERIAL_0: return inbuf_0.Peek(cc) ? -1 : cc;
 65 case SERIAL_1: return inbuf_1.Peek(cc) ? -1 : cc;
 66 default: return -1;
 67 }
 68 }
 69 //===
 70 int SerialIn::Gethex(SerialOut &so)
 71 {
 72 int ret = 0;
 73 int cc;
 74
 75 for (;;) switch(cc = Peekc())
 76 {
 77 case -1: // no char arrived yet
 78 Task::Sleep(1);
 79 continue;
 80
 81 case '0': case '1': case '2': case '3': case '4':
 82 case '5': case '6': case '7': case '8': case '9':
 83 ret <<= 4;
 84 ret += cc-'0';
 85 so.Print("%c", Pollc()); // echo char
 86 continue;
 87
 88 case 'A': case 'B': case 'C':
 89 case 'D': case 'E': case 'F':
 90 ret <<= 4;
 91 ret += cc+10-'A';
 92 so.Print("%c", Pollc()); // echo char
 93 continue;
 94
 95 case 'a': case 'b': case 'c':
 96 case 'd': case 'e': case 'f':
 97 ret <<= 4;
 98 ret += cc+10-'a';
 99 so.Print("%c", Pollc()); // echo char
100 continue;
101
102 default:
103 return ret;
104 }
105 }
106 //===
107 int SerialIn::Getdec(SerialOut &so)
108 {
109 int ret = 0;
110 int cc;

A. Appendices 169
111
112 for (;;) switch(cc = Peekc())
113 {
114 case -1: // no char arrived yet
115 Task::Sleep(1);
116 continue;
117
118 case '0': case '1': case '2': case '3': case '4':
119 case '5': case '6': case '7': case '8': case '9':
120 ret *= 10;
121 ret += cc-'0';
122 so.Print("%c", Pollc()); // echo char
123 continue;
124
125 default:
126 return ret;
127 }
128 }
129 //===
130 unsigned int SerialIn::getOverflowCounter(Channel channel)
131 {
132 switch(channel)
133 {
134 case SERIAL_0: return inbuf_0.getOverflowCount();
135 case SERIAL_1: return inbuf_1.getOverflowCount();
136 default: return 0;
137 }
138 }
139 //===

A.15 TaskId.hh170
A.15 TaskId.hh

 1 // TaskId.hh
 2
 3 enum { TASKID_IDLE = 0,
 4 TASKID_MONITOR,
 5 TASKID_COUNT // number of Task IDs
 6 };
 7
 8 #define IdleTask (Task::TaskIDs[TASKID_IDLE])
 9 #define MonitorTask (Task::TaskIDs[TASKID_MONITOR])

A. Appendices 171
A.16 duart.hh

 1 #ifndef __DUART_HH_DEFINED__
 2 #define __DUART_HH_DEFINED__
 3
 4 /* DUART base address */
 5 #define DUART 0xA0000000
 6
 7 /* DUART channel offsets */
 8 #define _A 0x00
 9 #define _B 0x20
 10
 11 /* DUART register offsets */
 12 #define x_MR 0x00
 13 #define r_SR 0x04
 14 #define w_CSR 0x04
 15 #define w_CR 0x08
 16 #define r_RHR 0x0C
 17 #define w_THR 0x0C
 18 #define r_IPCR 0x10
 19 #define w_ACR 0x10
 20 #define r_ISR 0x14
 21 #define w_IMR 0x14
 22 #define x_CTUR 0x18
 23 #define x_CTLR 0x1C
 24 #define x_IVR 0x30
 25 #define r_IPU 0x34
 26 #define w_OPCR 0x34
 27 #define r_START 0x38
 28 #define w_BSET 0x38
 29 #define r_STOP 0x3C
 30 #define w_BCLR 0x3C
 31
 32 /* DUART read/write registers */
 33 #define xDUART_MR_A (DUART + x_MR + _A)
 34 #define xDUART_MR_B (DUART + x_MR + _B)
 35 #define xDUART_IVR (DUART + x_IVR)
 36 #define xDUART_CTUR (DUART + x_CTUR)
 37 #define xDUART_CTLR (DUART + x_CTLR)
 38
 39 /* DUART read only registers */
 40 #define rDUART_SR_A (DUART + r_SR + _A)
 41 #define rDUART_RHR_A (DUART + r_RHR + _A)
 42 #define rDUART_IPCR (DUART + r_IPCR)
 43 #define rDUART_ISR (DUART + r_ISR)
 44 #define rDUART_SR_B (DUART + r_SR + _B)
 45 #define rDUART_RHR_B (DUART + r_RHR + _B)
 46 #define rDUART_IPU (DUART + r_IPU)
 47 #define rDUART_START (DUART + r_START)
 48 #define rDUART_STOP (DUART + r_STOP)
 49
 50 /* DUART write only registers */
 51 #define wDUART_CSR_A (DUART + w_CSR + _A)
 52 #define wDUART_CR_A (DUART + w_CR + _A)
 53 #define wDUART_THR_A (DUART + w_THR + _A)
 54 #define wDUART_ACR (DUART + w_ACR)

A.16 duart.hh172
 55 #define wDUART_IMR (DUART + w_IMR)
 56 #define wDUART_CSR_B (DUART + w_CSR + _B)
 57 #define wDUART_CR_B (DUART + w_CR + _B)
 58 #define wDUART_THR_B (DUART + w_THR + _B)
 59 #define wDUART_OPCR (DUART + w_OPCR)
 60 #define wDUART_BSET (DUART + w_BSET)
 61 #define wDUART_BCLR (DUART + w_BCLR)
 62
 63 /* DUART MR1 bit definitions */
 64 #define MR1_RxRTS (1<<7)
 65 #define MR1_FFUL (1<<6)
 66 #define MR1_EBLOCK (1<<5)
 67
 68 #define MR1_P_EVEN (0<<2)
 69 #define MR1_P_ODD (1<<2)
 70 #define MR1_P_LOW (2<<2)
 71 #define MR1_P_HIGH (3<<2)
 72 #define MR1_P_NONE (4<<2)
 73 #define MR1_P_void (5<<2)
 74 #define MR1_M_DATA (6<<2)
 75 #define MR1_M_ADDR (7<<2)
 76 #define MR1_P_MASK (7<<2)
 77
 78 #define MR1_BITS_5 (0<<0)
 79 #define MR1_BITS_6 (1<<0)
 80 #define MR1_BITS_7 (2<<0)
 81 #define MR1_BITS_8 (3<<0)
 82 #define MR1_BITS_mask (3<<0)
 83
 84 #define MR1_DEFAULT (MR1_P_NONE | MR1_BITS_8)
 85
 86 /* DUART MR2 bit definitions */
 87 #define MR2_NORM (0<<6)
 88 #define MR2_ECHO (1<<6)
 89 #define MR2_LOLO (2<<6)
 90 #define MR2_RELO (3<<6)
 91
 92 #define MR2_TxRTS (1<<5)
 93 #define MR2_TxCTS (1<<4)
 94 #define MR2_STOP_2 (15<<0)
 95 #define MR2_STOP_1 (7<<0)
 96
 97 #define MR2_DEFAULT MR2_STOP_2
 98
 99 /* DUART SR bit definitions */
100 #define SR_BREAK (1<<7)
101 #define SR_FRAME (1<<6)
102 #define SR_PARITY (1<<5)
103 #define SR_OVERRUN (1<<4)
104 #define SR_TxEMPTY (1<<3)
105 #define SR_TxRDY (1<<2)
106 #define SR_RxFULL (1<<1)
107 #define SR_RxRDY (1<<0)
108
109 /* DUART CSR bit definitions */
110 #define BD_600 5

A. Appendices 173
111 #define BD_1200 6
112 #define BD_2400 8
113 #define BD_4800 9
114 #define BD_9600 11
115 #define BD_19200 12
116 #define BD_38400 BD_19200
117 #define BD_TIMER 13
118
119 #define CSR_600 (BD_600 | BD_600 <<4)
120 #define CSR_1200 (BD_4800 | BD_4800 <<4)
121 #define CSR_2400 (BD_2400 | BD_2400 <<4)
122 #define CSR_4800 (BD_4800 | BD_4800 <<4)
123 #define CSR_9600 (BD_9600 | BD_9600 <<4)
124 #define CSR_19200 (BD_19200 | BD_19200<<4)
125 #define CSR_38400 (BD_38400 | BD_38400<<4)
126 #define CSR_TIMER (BD_TIMER | BD_TIMER<<4)
127
128 /* DUART CR bit definitions */
129 #define CR_NOP (0<<4)
130 #define CR_MR1 (1<<4)
131 #define CR_RxRESET (2<<4)
132 #define CR_TxRESET (3<<4)
133 #define CR_ExRESET (4<<4)
134 #define CR_BxRESET (5<<4)
135 #define CR_B_START (6<<4)
136 #define CR_B_STOP (7<<4)
137
138 #define CR_TxENA (1<<2)
139 #define CR_TxDIS (2<<2)
140
141 #define CR_RxENA (1<<0)
142 #define CR_RxDIS (2<<0)
143
144 /* DUART ACR bit definitions */
145 #define ACR_BRG_0 (0<<7)
146 #define ACR_BRG_1 (1<<7)
147
148 #define ACR_CNT_IP2 (0<<4)
149 #define ACR_CNT_TxCA (1<<4)
150 #define ACR_CNT_TxCB (2<<4)
151 #define ACR_CNT_XTAL (3<<4)
152 #define ACR_TIM_IP2 (4<<4)
153 #define ACR_TIM_IP2_16 (5<<4)
154 #define ACR_TIM_XTAL (6<<4)
155 #define ACR_TIM_XTAL_16 (7<<4)
156
157 #define ACR_INT_IP3 (1<<3)
158 #define ACR_INT_IP2 (1<<2)
159 #define ACR_INT_IP1 (1<<1)
160 #define ACR_INT_IP0 (1<<0)
161
162 #define ACR_DEFAULT (ACR_TIM_XTAL_16 | ACR_BRG_0)
163 #define XTAL_FREQ (3686400/2)
164 #define XTAL_FREQ_16 (XTAL_FREQ/16)
165 #define TS_RATE 100
166 #define CT_DEFAULT (XTAL_FREQ_16/TS_RATE)

A.16 duart.hh174
167 #define CTUR_DEFAULT (CT_DEFAULT / 256)
168 #define CTLR_DEFAULT (CT_DEFAULT & 255)
169
170 /* DUART IMR/ISR bit definitions */
171 #define INT_IPC (1<<7)
172 #define INT_BxB (1<<6)
173 #define INT_RxB (1<<5)
174 #define INT_TxB (1<<4)
175 #define INT_CT (1<<3)
176 #define INT_BxA (1<<2)
177 #define INT_RxA (1<<1)
178 #define INT_TxA (1<<0)
179
180 #define INT_DEFAULT (INT_RxB | INT_TxB | INT_RxA | INT_TxA |
INT_CT)
181
182 /* DUART OPCR bit definitions */
183 #define OPCR_7_TxRDY_B (1<<7)
184 #define OPCR_6_TxRDY_A (1<<6)
185 #define OPCR_5_RxRDY_B (1<<5)
186 #define OPCR_4_RxRDY_A (1<<4)
187
188 #define OPCR_3_OPR_3 (0<<2)
189 #define OPCR_3_CT (1<<2)
190 #define OPCR_3_TxC_B (2<<2)
191 #define OPCR_3_RxC_B (3<<2)
192
193 #define OPCR_2_OPR_2 (0<<0)
194 #define OPCR_2_TxC_A16 (1<<0)
195 #define OPCR_2_TxC_A (2<<0)
196 #define OPCR_2_RxC_A (3<<0)
197
198 #define OPCR_DEFAULT 0
199
200 #endif __DUART_HH_DEFINED__
201

A. Appendices 175
A.17 System.config

 1 #define ROMbase 0x00000000
 2 #define ROMsize 0x00040000
 3 #define RAMbase 0x20000000
 4 #define RAMsize 0x00040000
 5 #define RAMend (RAMbase+RAMsize)
 6
 7 #define OUTBUF_0_SIZE 80
 8 #define OUTBUF_1_SIZE 80
 9 #define INBUF_0_SIZE 80
 10 #define INBUF_1_SIZE 80

A.18 ApplicationStart.cc176
A.18 ApplicationStart.cc

 1 // ApplicationStart.cc
 2
 3 #include "os.hh"
 4 #include "Channels.hh"
 5 #include "SerialIn.hh"
 6 #include "SerialOut.hh"
 7 #include "Task.hh"
 8 #include "TaskId.hh"
 9 #include "Monitor.hh"
 10
 11 Channel MonitorIn = DUMMY_SERIAL;
 12 Channel MonitorOut = DUMMY_SERIAL;
 13 Channel ErrorOut = DUMMY_SERIAL;
 14 Channel GeneralOut = DUMMY_SERIAL;
 15
 16 //---
 17 //
 18 // Note: do not Print() here !
 19 // Multitasking and interrupt IO is not yet up and running
 20 //
 21 //
 22 void setupApplicationTasks()
 23 {
 24 MonitorIn = SERIAL_1;
 25 MonitorOut = SERIAL_1;
 26 ErrorOut = SERIAL_1;
 27 GeneralOut = SERIAL_1;
 28
 29 Monitor::setupMonitorTask();
 30 }

A. Appendices 177
A.19 Monitor.hh

 1 // Monitor.hh
 2
 3 #ifndef MONITOR_HH_DEFINED
 4 #define MONITOR_HH_DEFINED
 5
 6 #include "Channels.hh"
 7
 8 class SerialIn;
 9 class SerialOut;
 10
 11 class Monitor
 12 {
 13 public:
 14 Monitor(Channel In, Channel Out)
 15 : si(In), channel(Out), currentChannel(0), last_addr(0) {};
 16
 17 static void setupMonitorTask();
 18
 19 private:
 20 static void monitor_main();
 21
 22 // menus...
 23 void MonitorMainMenu();
 24 void InfoMenu();
 25 void DuartMenu();
 26 void TaskMenu();
 27 void MemoryMenu();
 28
 29 int getCommand(const char * prompt);
 30 int getCommand(const char * prompt, char arg);
 31 int echoResponse();
 32 // complex functions...
 33 void setTaskPriority();
 34 void showTasks();
 35 void showTask();
 36 void showTask(SerialOut &, const Task *, const char *);
 37 const char * const showTaskStatus(const Task * t);
 38 void displayMemory(int cont);
 39
 40 SerialIn si;
 41 const Channel channel;
 42
 43 int currentChannel; // used in DuartMenu()
 44 int currentChar; // used in DuartMenu()
 45 unsigned long last_addr; // used in MemoryMenu()
 46
 47 enum { ESC = 0x1B };
 48 };
 49
 50 #endif MONITOR_HH_DEFINED

A.20 Monitor.cc178
A.20 Monitor.cc

 1 // Monitor.cc
 2
 3 #include "System.config"
 4 #include "os.hh"
 5 #include "SerialIn.hh"
 6 #include "SerialOut.hh"
 7 #include "Channels.hh"
 8 #include "Task.hh"
 9 #include "TaskId.hh"
 10 #include "Monitor.hh"
 11
 12 //---
 13 void Monitor::setupMonitorTask()
 14 {
 15 MonitorTask = new Task (
 16 monitor_main, // function
 17 2048, // user stack size
 18 16, // message queue size
 19 240, // priority
 20 "Monitor Task");
 21 }
 22 //---
 23 void Monitor::monitor_main()
 24 {
 25 SerialOut::Print(GeneralOut,
 26 "\nMonitor started on channel %d.",
 27 MonitorOut);
 28
 29 Monitor Mon(MonitorIn, MonitorOut);
 30 Mon.MonitorMainMenu();
 31 }
 32 //---
 33 int Monitor::getCommand(const char * prompt)
 34 {
 35 SerialOut::Print(channel, "\n%s > ", prompt);
 36 return echoResponse();
 37 }
 38 //---
 39 int Monitor::getCommand(const char * prompt, char arg)
 40 {
 41 SerialOut::Print(channel, "\n%s_%c > ", prompt, arg);
 42 return echoResponse();
 43 }
 44 //---
 45 int Monitor::echoResponse()
 46 {
 47 int cc = si.Getc() & 0x7F;
 48
 49 switch(cc)
 50 {
 51 case ESC: SerialOut::Print(channel, "ESC "); break;
 52 case '\n': break;
 53 case '\r': break;
 54 default: if (cc < ' ') break;

A. Appendices 179
 55 SerialOut::Print(channel, "%c ", cc);
 56 }
 57 return cc;
 58 }
 59 //---
 60 void Monitor::MonitorMainMenu()
 61 {
 62 SerialOut::Print(channel, "\nType H or ? for help.");
 63 SerialOut::Print(channel, "\nMain Menu [D I M T H]\n");
 64
 65 for (;;) switch(getCommand("Main"))
 66 {
 67 case 'h': case 'H': case '?':
 68 {
 69 SerialOut so(channel);
 70 so.Print("\nD - Duart Menu");
 71 so.Print("\nI - Info Menu");
 72 so.Print("\nM - Memory Menu");
 73 so.Print("\nT - Task Menu");
 74 }
 75 continue;
 76
 77 case 'd': case 'D': DuartMenu(); continue;
 78 case 'i': case 'I': InfoMenu(); continue;
 79 case 'm': case 'M': MemoryMenu(); continue;
 80 case 't': case 'T': TaskMenu(); continue;
 81 }
 82 }
 83 //---
 84 void Monitor::InfoMenu()
 85 {
 86 SerialOut::Print(channel, "\nInfo Menu [O S T H Q]");
 87 for (;;) switch(getCommand("Info"))
 88 {
 89 case 'h': case 'H': case '?':
 90 {
 91 SerialOut so(channel);
 92 so.Print("\nO - Overflows");
 93 so.Print("\nS - System Memory");
 94 so.Print("\nT - System Time");
 95 }
 96 continue;
 97
 98 case ESC: case 'Q': case 'q':
 99 return;
100
101 case 'o': case 'O':
102 {
103 SerialOut so(channel);
104 so.Print("\nCh 0 in : %d",
105 SerialIn::getOverflowCounter(SERIAL_0));
106 so.Print("\nCh 1 in : %d",
107 SerialIn::getOverflowCounter(SERIAL_1));
108 }
109 continue;
110

A.20 Monitor.cc180
111 case 's': case 'S':
112 {
113 SerialOut::Print(channel, "\nTop of System Memory:
%8X",
114 os::top_of_RAM());
115 }
116 continue;
117
118 case 't': case 'T':
119 {
120 unsigned long long time = os::getSystemTime();
121 unsigned long t_low = time;
122 unsigned long t_high = time>>32;
123
124 SerialOut::Print(channel, "\nSystem Time: %d:%d",
125 t_high, t_low);
126 }
127 continue;
128 }
129 }
130 //---
131 void Monitor::DuartMenu()
132 {
133 int currentChar;
134 int databits;
135 int parity;
136 int baud;
137
138 SerialOut::Print(channel, "\nDuart Menu [B C M T H Q]");
139 for (;;) switch(getCommand("Duart", 'A' + currentChannel))
140 {
141 case 'h': case 'H': case '?':
142 {
143 SerialOut so(channel);
144 so.Print("\nB - Set Baud Rate");
145 so.Print("\nC - Change Channel");
146 so.Print("\nM - Change Mode");
147 so.Print("\nT - Transmit Character");
148 }
149 continue;
150
151 case ESC: case 'Q': case 'q':
152 return;
153
154 case 'b': case 'B':
155 {
156 SerialOut so(channel);
157 so.Print("\nBaud Rate ? ");
158 baud = si.Getdec(so);
159 Channel bc;
160
161 if (currentChannel) bc = SERIAL_1;
162 else bc = SERIAL_0;
163
164 if (os::setBaudRate(bc, baud))
165 so.Print("\nIllegal Baud Rate %d", baud);

A. Appendices 181
166 }
167 continue;
168
169 case 'c': case 'C':
170 currentChannel = 1 & ++currentChannel;
171 continue;
172
173 case 'm': case 'M':
174 SerialOut::Print(channel, "\nData Bits (5-8) ? ");
175 databits = echoResponse() - '0';
176 if (databits < 5 || databits > 8)
177 {
178 SerialOut::Print(channel,
179 "\nIllegal Data bit count %d",
180 databits);
181 continue;
182 }
183
184
185 SerialOut::Print(channel, "\nParity (N O E M S) ? ");
186 parity = echoResponse();
187
188 {
189 SerialOut so(channel);
190 Channel bc;
191
192 if (currentChannel) bc = SERIAL_1;
193 else bc = SERIAL_0;
194
195 switch(parity)
196 {
197 case 'E': case 'e':
198 os::setSerialMode(bc, databits, 0);
199 break;
200
201 case 'O': case 'o':
202 os::setSerialMode(bc, databits, 1);
203 break;
204
205 case 'M': case 'm':
206 os::setSerialMode(bc, databits, 2);
207 break;
208
209 case 'S': case 's':
210 os::setSerialMode(bc, databits, 3);
211 break;
212
213 case 'N': case 'n':
214 os::setSerialMode(bc, databits, 4);
215 break;
216
217 default:
218 so.Print("\nIllegal Parity %c", parity);
219 continue;
220 }
221 so.Print("\nDatabits = %d / Parity = %c set.",

A.20 Monitor.cc182
222 databits, parity);
223 }
224 continue;
225
226 case 't': case 'T':
227 {
228 SerialOut so(channel);
229 currentChar = si.Gethex(so);
230
231 so.Print("\nSending 0x%2X", currentChar & 0xFF);
232 }
233 {
234 Channel bc;
235
236 if (currentChannel) bc = SERIAL_1;
237 else bc = SERIAL_0;
238
239 SerialOut::Print(bc, "%c", currentChar);
240 }
241 continue;
242 }
243 }
244 //---
245 void Monitor::TaskMenu()
246 {
247 SerialOut::Print(channel, "\nTask Menu [P S T H Q]");
248 for (;;) switch(getCommand("Task"))
249 {
250 case 'h': case 'H': case '?':
251 {
252 SerialOut so(channel);
253 so.Print("\nP - Set Task Priority");
254 so.Print("\nS - Show Tasks");
255 so.Print("\nT - Show Task");
256 }
257 continue;
258
259 case ESC: case 'Q': case 'q':
260 return;
261
262 case 'p': case 'P':
263 SerialOut::Print(channel, "Set Task Priority:");
264 setTaskPriority();
265 continue;
266
267 case 's': case 'S':
268 SerialOut::Print(channel, "Show Tasks:");
269 showTasks();
270 continue;
271
272 case 't': case 'T':
273 SerialOut::Print(channel, "Show Task:");
274 showTask();
275 continue;
276 }
277 }

A. Appendices 183
278 //---
279 void Monitor::MemoryMenu()
280 {
281 int gotD = 0;
282
283 SerialOut::Print(channel, "\nMemory Menu [D H Q]");
284 for (;;) switch(getCommand("Memory"))
285 {
286 case 'h': case 'H': case '?':
287 {
288 SerialOut so(channel);
289 so.Print("\nD - Dump Memory");
290 gotD = 0;
291 }
292 continue;
293
294 case ESC: case 'Q': case 'q':
295 return;
296
297 case 'd': case 'D':
298 SerialOut::Print(channel, "Dump Mamory at address 0x");
299 displayMemory(0);
300 gotD = 1;
301 continue;
302
303 case '\n':
304 if (gotD) displayMemory(1);
305 continue;
306 }
307 }
308 //---
309 void Monitor::displayMemory(int cont)
310 {
311 unsigned int addr = last_addr;
312
313 if (cont == 0) // dont continue
314 {
315 SerialOut so(channel);
316 addr = si.Gethex(so);
317 si.Pollc(); // discard terminating char for Gethex()
318 }
319
320 for (int line = 0; line < 16; line++)
321 if (ROMbase <= addr && addr < ROMbase+ROMsize-16
322 || RAMbase <= addr && addr < RAMbase+RAMsize-16
323)
324 {
325 SerialOut so(channel);
326 int j;
327 char cc;
328 so.Print("\n%8X: ", addr);
329
330 for (j = 0; j < 8; j++)
331 so.Print("%4X ", 0xFFFF & (int)(((short *)addr)[j]));
332
333 for (j = 0; j < 16; j++)

A.20 Monitor.cc184
334 {
335 cc = ((char *)addr)[j];
336 if (cc < ' ' || cc > 0x7E) cc = '.';
337 so.Print("%c", cc);
338 }
339
340 addr += 16;
341 }
342 last_addr = addr;
343 }
344 //---
345 void Monitor::setTaskPriority()
346 {
347 Task * t = Task::Current();
348 unsigned short priority;
349 {
350 SerialOut so(channel);
351 while (si.Pollc() != -1) /* empty */ ;
352 so.Print("\nTask number = ");
353
354 for (int tindex = si.Getdec(so); tindex; tindex--)
355 t = t->Next();
356
357 while (si.Pollc() != -1) /* empty */ ;
358 so.Print("\nTask priority = ");
359 priority = si.Getdec(so);
360
361 if (priority == 0) priority++;
362 so.Print("\nSet %s Priority to %d", t->Name(), priority);
363 }
364 t->setPriority(priority);
365 }
366 //---
367 void Monitor::showTask()
368 {
369 const Task * t = Task::Current();
370 SerialOut so(channel);
371
372 so.Print("\nTask number = ");
373 for (int tindex = si.Getdec(so); tindex; tindex--)
374 t = t->Next();
375
376 const char * const stat = showTaskStatus(t);
377 unsigned int stackUsed = t->userStackUsed();
378
379 so.Print("\nTask Name: %s", t->Name());
380 so.Print("\nPriority: %d", t->Priority());
381 so.Print("\nTCB Address: %8X", t);
382 if (stat) so.Print("\nStatus: %s", stat);
383 else so.Print("\nStatus: %2X", t->Status());
384 so.Print("\nUS Base: %8X", t->userStackBase());
385 so.Print("\nUS Size: %8X", t->userStackSize());
386 so.Print("\nUS Usage: %8X (%d%%)",
387 stackUsed, (stackUsed*100)/t->userStackSize());
388 }
389 //---

A. Appendices 185
390 void Monitor::showTasks()
391 {
392 const Task * t = Task::Current();
393 SerialOut so(channel);
394
395 so.Print(
396 "\n--");
397 so.Print(
398 "\n TCB Status Pri TaskName ID US Usage");
399 so.Print(
400 "\n--");
401 for (;;)
402 {
403 if (t == Task::Current()) showTask(so, t, "-->");
404 else showTask(so, t, " ");
405
406 t = t->Next();
407 if (t == Task::Current()) break;
408 }
409 so.Print(
410 "\n==\n");
411 }
412 //---
413 void Monitor::showTask(SerialOut & so, const Task * t,
414 const char * prefix)
415 {
416 const char * const stat = showTaskStatus(t);
417 int i;
418
419 so.Print("\n%s %8X ", prefix, t);
420 if (stat) so.Print("%s", stat);
421 else so.Print("%4X ", t->Status());
422 so.Print("%3d ", t->Priority());
423 so.Print("%16s", t->Name());
424
425 for (i = 0; i < TASKID_COUNT; i++)
426 if (t == Task::TaskIDs[i]) break;
427
428 if (i < TASKID_COUNT) so.Print("%2d ", i);
429 else so.Print("--- ");
430
431 so.Print("%8X ", t->userStackUsed());
432 }
433 //---
434 const char * const Monitor::showTaskStatus(const Task * t)
435 {
436 switch(t->Status())
437 {
438 case Task::RUN: return "RUN ";
439 case Task::BLKD: return "BLKD ";
440 case Task::STARTED: return "START ";
441 case Task::TERMINATED: return "TERM ";
442 case Task::SLEEP: return "SLEEP ";
443 case Task::FAILED: return "FAILED ";
444 default: return 0;
445 }

A.20 Monitor.cc186
446 }
447 //---

A. Appendices 187
A.21 Makefile

 1 # Makefile for gmake
 2 #
 3
 4 # Development environment.
 5 # Replace /CROSS by where you installed the cross-environment
 6 #
 7 CROSS-PREFIX:= /CROSS
 8 AR := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-ar
 9 AS := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-as
 10 LD := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-ld
 11 NM := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-nm
 12 OBJCOPY := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-objcopy
 13 CC := $(CROSS-PREFIX)/bin/m68k-sun-sunos4.1-gcc
 14 MAKE := gmake
 15
 16 # Target memory mapping.
 17 #
 18 ROM_BASE:= 0
 19 RAM_BASE:= 20000000
 20
 21 # compiler and linker flags.
 22 #
 23 ASFLAGS := -mc68020
 24 CCFLAGS := -mc68020 -O2 -fomit-frame-pointer -fno-exceptions
 25
 26 LDFLAGS := -i -nostdlib \
 27 -Ttext $(ROM_BASE) -Tdata $(RAM_BASE) \
 28 -Xlinker -Map -Xlinker Target.map
 29
 30 # Source files
 31 #
 32 SRC_S := $(wildcard *.S)
 33 SRC_CC := $(wildcard *.cc)
 34 SRC := $(SRC_S) $(SRC_CC)
 35
 36 # Dependency files
 37 #
 38 DEP_CC := $(SRC_CC:.cc=.d)
 39 DEP_S := $(SRC_S:.S=.d)
 40 DEP := $(DEP_CC) $(DEP_S)
 41
 42 # Object files
 43 #
 44 OBJ_S := $(SRC_S:.S=.o)
 45 OBJ_CC := $(SRC_CC:.cc=.o)
 46 OBJ := $(OBJ_S) $(OBJ_CC)
 47
 48 CLEAN := $(OBJ) $(DEP) libos.a \
 49 Target Target.bin \
 50 Target.td Target.text Target.data \
 51 Target.map Target.sym
 52
 53 # Targets
 54 #

A.21 Makefile188
 55 .PHONY: all
 56 .PHONY: clean
 57 .PHONY: tar
 58
 59 all: Target Target.sym
 60
 61 clean:
 62 /bin/rm -f $(CLEAN)
 63
 64 tar: clean
 65 tar:
 66 tar -cvzf ../src.tar *
 67
 68 include $(DEP)
 69
 70 # Standard Pattern rules...
 71 #
 72 %.o: %.cc
 73 $(CC) -c $(CCFLAGS) $< -o $@
 74
 75 %.o: %.S
 76 $(CC) -c $(ASFLAGS) $< -o $@
 77
 78 %.d: %.cc
 79 $(SHELL) -ec '$(CC) -MM $(CCFLAGS) $< \
 80 | sed '\''s/$*\.o/$*\.o $@/'\'' > $@'
 81
 82 %.d: %.S
 83 $(SHELL) -ec '$(CC) -MM $(ASFLAGS) $< \
 84 | sed '\''s/$*\.o/$*\.o $@/'\'' > $@'
 85
 86 libos.a:$(OBJ)
 87 $(AR) -sr libos.a $?
 88
 89 Target: Target.bin
 90 $(OBJCOPY) -I binary -O srec $< $@
 91
 92 Target.text:Target.td
 93 $(OBJCOPY) -R .data -O binary $< $@
 94
 95 Target.data:Target.td
 96 $(OBJCOPY) -R .text -O binary $< $@
 97
 98 Target.bin:Target.text Target.data
 99 cat Target.text | skip_aout | cat - Target.data > $@
100
101 Target.sym:Target.td
102 $(NM) -n --demangle $< \
103 | awk '{printf("%s %s\n", $$1, $$3)}' \
104 | grep -v compiled | grep -v "\.o" \
105 | grep -v "_DYNAMIC" | grep -v "^U" > $@
106
107
108 Target.td:crt0.o libos.a libgcc.a
109 $(CC) -o $@ crt0.o -L. -los -lgcc $(LDFLAGS)

A. Appendices 189
A.22 SRcat.cc

 1 // SRcat.cc
 2
 3 #include <stdio.h>
 4 #include <stdlib.h>
 5 #include <string.h>
 6 #include <assert.h>
 7
 8 FILE * infile;
 9
 10 enum { MAX_REC_SIZE = 256 };
 11 enum { AOUT = 0x20 };
 12
 13 class SRecord
 14 {
 15 public:
 16 SRecord() {};
 17
 18 int readRecord();
 19 void writeRecord(int rtype);
 20 enum { ERR_EOF = -1,
 21 ERR_BAD_CHAR = -2,
 22 ERR_CHECKSUM = -3
 23 };
 24
 25 unsigned int address;
 26 unsigned int size;
 27 char data[MAX_REC_SIZE];
 28 private:
 29 int type;
 30 int getHeader();
 31 int getWord();
 32 int getByte();
 33 int getNibble();
 34 void putByte(unsigned int);
 35
 36 unsigned char checksum;
 37 };
 38
 39 int load_file(const char * filename);
 40 void store_file(unsigned int address, unsigned char * data,
unsigned int size);
 41 void store_odd_even(unsigned int odd, unsigned char * data,
unsigned int size);
 42 unsigned long compute_crc(unsigned char * data, unsigned int size);
 43
 44 unsigned char * ROM = 0;
 45 const char * prog = 0;
 46 int rom_index = 0;
 47 int skip = AOUT;
 48 int crlf = 0;
 49
 50 enum { ROMSIZE = 0x00020000 };
 51
 52 // --

A.22 SRcat.cc190
 53 int main(int argc, char * argv[])
 54 {
 55 int exit_code = 0;
 56 const char * argv1 = 0;
 57
 58 prog = argv[0];
 59
 60 if (argc < 2) exit(-8);
 61 else argv1 = argv[1];
 62 if (!strcmp(argv1, "aout")) skip = AOUT;
 63 else if (!strcmp(argv1, "noaout")) skip = 0;
 64 else exit(-9);
 65
 66 ROM = new unsigned char[ROMSIZE];
 67 if (ROM == 0) exit(-1);
 68
 69 for (int i = 0; i < ROMSIZE; i++) ROM[i] = 0;
 70
 71 for (int arg = 2; arg < argc; arg++)
 72 {
 73 const char * av = argv[arg];
 74 int address = 0;
 75
 76 if (!strcmp(av, "-dsp_code"))
 77 {
 78 printf("// This file is automatically generated, don't
edit !\n");
 79 if (rom_index == (3*(rom_index/3)))
 80 printf("enum { dsp_code_bytes = %d, dsp_code_words =
%d };\n",
 81 rom_index, rom_index/3);
 82 else
 83 printf("#error \"Byte Count not multiple of 3\"\n");
 84 printf("const char dsp_code[dsp_code_bytes] = {");
 85
 86 for (int i = 0; i < rom_index; i++)
 87 {
 88 if (!(i & 15)) printf("\n");
 89 printf("0x%2.2X,", ROM[i] & 0xFF);
 90 }
 91 printf("\n };\n\n");
 92 }
 93 else if (!strcmp(av, "-crlf"))
 94 {
 95 crlf = 1;
 96 }
 97 else if (!strcmp(av, "-version"))
 98 {
 99 unsigned long Release = (ROM[0x100] << 24)
100 | (ROM[0x101] << 16)
101 | (ROM[0x102] << 8)
102 | (ROM[0x103]);
103 unsigned long Revision = (ROM[0x104] << 24)
104 | (ROM[0x105] << 16)
105 | (ROM[0x106] << 8)
106 | (ROM[0x107]);

A. Appendices 191
107 fprintf(stderr, "%s: FW Revision -> %u.%u\n",
108 prog, Release, Revision);
109 }
110 else if (!strcmp(av, "-crc"))
111 {
112 unsigned long crc = compute_crc(ROM, ROMSIZE-4);
113 fprintf(stderr, "%s: CRC -> 0x%8.8X\n", prog,
crc);
114 ROM[ROMSIZE-4] = crc>>24;
115 ROM[ROMSIZE-3] = crc>>16;
116 ROM[ROMSIZE-2] = crc>> 8;
117 ROM[ROMSIZE-1] = crc;
118 rom_index = ROMSIZE;
119 }
120 else if (!strcmp(av, "-even"))
121 {
122 store_odd_even(0, ROM, rom_index);
123 }
124 else if (!strcmp(av, "-odd"))
125 {
126 store_odd_even(1, ROM, rom_index);
127 }
128 else if (!strncmp(av, "0x", 2))
129 {
130 if (sscanf(av, "%X", &address) == 1)
131 {
132 fprintf(stderr, "%s: Storing -> 0x%8.8X\n",
133 prog, address);
134 store_file(address, ROM, rom_index);
135 }
136 else
137 exit_code = -2;
138 if (exit_code) break;
139 }
140 else // file name
141 {
142 fprintf(stderr, "%s: Loading %s:\n", prog, av);
143 exit_code = load_file(av);
144 if (exit_code) break;
145 }
146 }
147
148 delete ROM; ROM = 0;
149 exit(exit_code);
150 }
151
152 int load_file(const char * filename)
153 {
154 SRecord srec;
155 int mini = -1;
156 int maxi = -1;
157 int record = 0;
158 int exit_code = 0;
159 int initial_skip = skip;
160
161 infile = fopen(filename, "r");

A.22 SRcat.cc192
162 if (infile == 0) return exit_code = -3;
163
164 for (;;)
165 {
166 int res = srec.readRecord();
167 record++;
168
169 switch(res)
170 {
171 case 0:
172 fprintf(stderr, "%s: S0 %s\n", prog, srec.data);
173 continue;
174
175 case 1:
176 case 2:
177 case 3:
178 {
179 if (mini == -1) // first data record
180 {
181 mini = srec.address;
182 fprintf(stderr, "%s: S%d 0x%8.8X ->
0x%8.8X\n",
183 prog, res, mini, rom_index);
184 }
185 else if (res != 1 && srec.address != maxi)
186 {
187 fprintf(stderr,
188 "%s: Record %d: Gap/Overlap at
0x%8.8X\n",
189 prog, record, srec.address);
190 exit_code = -7;
191 break;
192 }
193
194 maxi = srec.address + srec.size;
195
196 for (int i = 0; i < srec.size; i++)
197 {
198 if (skip)
199 skip--;
200 else if (rom_index <= ROMSIZE)
201 ROM[rom_index++] = srec.data[i];
202 else
203 {
204 fprintf(stderr, "%s: S%d above ROM\n",
205 prog, res);
206 exit_code = -5;
207 break;
208 }
209 }
210 }
211 continue;
212
213 case 7:
214 case 8:
215 case 9:

A. Appendices 193
216 fprintf(stderr, "%s: S%d 0x%8.8X -> 0x%8.8X\n",
217 prog, res, maxi, rom_index);
218 break;
219
220 default:
221 fprintf(stderr, "%s: Bad Record S%d\n", prog,
res);
222 exit_code = -5;
223 break;
224 }
225 break;
226 }
227
228 fclose(infile);
229 fprintf(stderr, "%s: Size 0x%8.8X\n",
230 prog, maxi-mini-initial_skip);
231 return exit_code;
232 }
233 // --
234 void store_file(unsigned int addr, unsigned char * data, unsigned
int size)
235 {
236 SRecord srec;
237 char name[20];
238 int i, sl, dr, er;
239
240 sprintf(name, "Image_0x%8.8X", addr);
241 sl = strlen(name);
242
243 // write S0 record
244 srec.address = 0;
245 for (i = 0; i < sl; i++) srec.data[i] = name[i];
246 srec.size = sl;
247 srec.writeRecord(0);
248
249 if ((addr+size) <= 0x01000000) { dr = 2; er = 8; } // S2/S8
250 else { dr = 3; er = 7; } // S3/S7
251
252 // write S2/S3 records
253 for (int idx = 0; idx < size; idx += 32)
254 {
255 srec.address = addr+idx;
256 srec.size = 0;
257 for (i = 0; i < 32; i++)
258 {
259 if ((idx+i) >= size) break;
260 srec.data[i] = data[idx+i];
261 srec.size++;
262 }
263 srec.writeRecord(dr);
264 }
265
266 // write S8/S7 records
267 srec.address = 0;
268 srec.size = 0;
269 srec.writeRecord(er);

A.22 SRcat.cc194
270 }
271 // --
272 void store_odd_even(unsigned int odd, unsigned char * data,
unsigned int size)
273 {
274 unsigned int addr;
275 SRecord srec;
276 char * name;
277 int i, sl;
278
279 if (odd)
280 {
281 name = "EEPROM.ODD";
282 addr = 1;
283 }
284 else
285 {
286 name = "EEPROM.EVE";
287 addr = 0;
288 }
289
290 sl = strlen(name);
291
292 // write S0 record
293 srec.address = 0;
294 for (i = 0; i < sl; i++) srec.data[i] = name[i];
295 srec.size = sl;
296 srec.writeRecord(0);
297
298 // write S2/S3 records
299 for (int idx = 0; idx < size; idx += 32)
300 {
301 srec.address = idx>>1;
302 srec.size = 0;
303 for (i = addr; i < 32; i+=2)
304 {
305 if ((idx+i) >= size) break;
306 srec.data[i>>1] = data[idx+i];
307 srec.size++;
308 }
309 srec.writeRecord(1);
310 }
311
312 // write S9 records
313 srec.address = 0;
314 srec.size = 0;
315 srec.writeRecord(9);
316 }
317 // --
318 void SRecord::writeRecord(int rtype)
319 {
320 int i;
321 const char * CRLF = "\n";
322
323 if (crlf) CRLF = "\r\n";
324

A. Appendices 195
325 checksum = 0;
326 switch(type = rtype)
327 {
328 case 0: printf("S0");
329 putByte(size+3);
330 putByte(address>>8);
331 putByte(address);
332 for (i = 0; i < size; i++)
333 putByte(data[i]);
334 checksum = ~checksum;
335 putByte(checksum);
336 printf(CRLF);
337 return;
338
339 case 1: printf("S1");
340 putByte(size+3);
341 putByte(address>>8);
342 putByte(address);
343 for (i = 0; i < size; i++)
344 putByte(data[i]);
345 checksum = ~checksum;
346 putByte(checksum);
347 printf(CRLF);
348 return;
349
350 case 2: printf("S2");
351 putByte(size+4);
352 putByte(address>>16);
353 putByte(address>>8);
354 putByte(address);
355 for (i = 0; i < size; i++)
356 putByte(data[i]);
357 checksum = ~checksum;
358 putByte(checksum);
359 printf(CRLF);
360 return;
361
362 case 3: printf("S3");
363 putByte(size+5);
364 putByte(address>>24);
365 putByte(address>>16);
366 putByte(address>>8);
367 putByte(address);
368 for (i = 0; i < size; i++)
369 putByte(data[i]);
370 checksum = ~checksum;
371 putByte(checksum);
372 printf(CRLF);
373 return;
374
375 case 7:
376 printf("S7");
377 putByte(size+5);
378 putByte(address>>24);
379 putByte(address>>16);
380 putByte(address>>8);

A.22 SRcat.cc196
381 putByte(address);
382 for (i = 0; i < size; i++)
383 putByte(data[i]);
384 checksum = ~checksum;
385 putByte(checksum);
386 printf(CRLF);
387 return;
388 case 8:
389 printf("S8");
390 putByte(size+4);
391 putByte(address>>16);
392 putByte(address>>8);
393 putByte(address);
394 for (i = 0; i < size; i++)
395 putByte(data[i]);
396 checksum = ~checksum;
397 putByte(checksum);
398 printf(CRLF);
399 return;
400 case 9:
401 printf("S9");
402 putByte(size+3);
403 putByte(address>>8);
404 putByte(address);
405 for (i = 0; i < size; i++)
406 putByte(data[i]);
407 checksum = ~checksum;
408 putByte(checksum);
409 printf(CRLF);
410 return;
411 }
412 }
413 // --
414 void SRecord::putByte(unsigned int val)
415 {
416 printf("%2.2X", val & 0xFF);
417 checksum += val;
418 }
419 // --
420 int SRecord::readRecord()
421 {
422 int dat, w, total;
423
424 getHeader();
425 checksum = 1;
426 total = getByte(); if (total < 0) return total;
427 switch(type)
428 {
429 case 0: address = getWord(); if (address < 0) return
address;
430 total -= 2;
431 break;
432
433 case 1:
434 case 9: address = getWord(); if (address < 0) return
address;

A. Appendices 197
435 total -= 2;
436 break;
437
438 case 2:
439 case 8: w = getByte(); if (w < 0) return w;
440 address = getWord(); if (address < 0) return
address;
441 address += w << 16;
442 total -= 3;
443 break;
444
445 case 3:
446 case 7: w = getWord(); if (w < 0) return w;
447 address = getWord(); if (address < 0) return
address;
448 address += w << 16;
449 total -= 4;
450 break;
451
452 default: return ERR_BAD_CHAR; // error
453 }
454
455 size = total-1; // 1 checksum
456
457 for (int i = 0; i < total; i++)
458 { data[i] = dat = getByte(); if (dat < 0) return dat; }
459 data[size] = 0; // terminator if used as string, e.g. for S0
records
460
461 if (checksum) return ERR_CHECKSUM;
462
463 return type;
464 }
465 // --
466 int SRecord::getHeader()
467 {
468 int c;
469
470 for (;;)
471 {
472 c = fgetc(infile);
473 if (c == 'S') break;
474 if (c == EOF) return type = ERR_EOF;
475 if (c <= ' ') continue; // whitespace
476 return type = ERR_BAD_CHAR;
477 }
478
479 // here we got an 'S'...
480 switch(c = fgetc(infile))
481 {
482 case '0':
483 case '1': case '2': case '3':
484 case '7': case '8': case '9':
485 return type = c - '0';
486

A.22 SRcat.cc198
487 default: fprintf(stderr, "\ngetHeader: not 0, 1-3 or 7-9
[%d]", c);
488 return type = ERR_BAD_CHAR;
489 }
490 }
491 // --
492 int SRecord::getWord()
493 {
494 int b, w;
495
496 b = getByte(); if (b < 0) return b;
497 w = getByte(); if (w < 0) return w;
498 return (b<<8) + w;
499 }
500
501 // --
502 int SRecord::getByte()
503 {
504 int n, b;
505
506 n = getNibble(); if (n < 0) return n;
507 b = getNibble(); if (b < 0) return b;
508 b += n<<4;
509 checksum += b;
510 return b;
511 }
512
513 // --
514 int SRecord::getNibble()
515 {
516 int c;
517
518 for (;;)
519 {
520 c = fgetc(infile);
521 if (c == EOF) return ERR_EOF;
522 if (c > ' ') break;
523 }
524
525 c &= 0x7F; // strip parity
526 if (c < '0') return ERR_BAD_CHAR;
527 if (c <= '9') return c - '0';
528 if (c < 'A') return ERR_BAD_CHAR;
529 if (c <= 'F') return c + 10 - 'A';
530 if (c < 'a') return ERR_BAD_CHAR;
531 if (c <= 'f') return c + 10 - 'a';
532 return ERR_BAD_CHAR;
533 }
534
535 // --
536 unsigned long compute_crc(unsigned char * ROM, unsigned int size)
537 {
538 unsigned long D5 = 0x00A00805; // CRC-32 polynomial
539 unsigned long D1 = 0xFFFFFFFF; // preset CRC value to all ones
540 unsigned long D2; // data
541 unsigned long D3; // temp data

A. Appendices 199
542 unsigned long D4; // bit counter
543
544 for (unsigned int D0 = 0; D0 < size; D0 += 4) // long loop
545 {
546 D2 = (ROM[D0] << 24) & 0xFF000000
547 | (ROM[D0+1] << 16) & 0x00FF0000
548 | (ROM[D0+2] << 8) & 0x0000FF00
549 | (ROM[D0+3]) & 0x000000FF;
550
551 for (D4 = 0; D4 < 32; D4++) // bit loop
552 {
553 D3 = D1 ^ D2;
554 D1 += D1;
555 D2 += D2;
556 if (D3 & 0x80000000) D1 ^= D5;
557 }
558 }
559 return D1;
560 }
561 // --

A.22 SRcat.cc200

4
6
3
2
5
2
6
6
0
2
6
1

6
6
5
5
6
6
3
6

6
6
6

3
6

2
7
8

8
4
8
1
1
7

3
1
1
2
2

0
6
9
7

0
8

6
7
9
8

1

7

7
5
2
1

6
5

6
4

55
7
8
8

7
9
6
7

8
4

3

7

3
7
3
7

4
6
2
3
1

3

Symbols
.DATA... 81
.TEXT... 81
__main() ... 8
_consider_ts.................................. 42, 50, 76, 13
_deschedule .. 42, 13
_duart_isr .. 73, 125, 13
_exit().. 14
_fatal ... 80, 8
_idle_stack.. 13
_IUS_top... 83, 13
_null .. 82, 123, 13
_on_exit .. 84, 13
_readByteRegister_HL 13
_reset... 83, 124, 13
_return_from_exception 42, 43, 76, 8
_sdata.. 13
_Semaphore_P.. 13
_Semaphore_V ... 13
_set_interrupt_mask 13
_SS_top... 83, 13
_stop ... 85, 86, 13
_super_stack ... 13
_sysTimeHi... 13
_sysTimeLo .. 13
_writeByteRegister ... 13

A
ApplicationStart.cc ... 176
autolevel.. 7
Autovector .. 3

B
Baudrate.. 7
BSS...
Busy wait .. 19, 2

C
Channel (enum) .. 15
Channel variable ... 6
Channels.hh .. 62, 15
checkStacks() (class Task)...................... 138, 14
class .. 15

Message .. 54, 15
Monitor ... 79
os... 14
Queue.. 34, 5
Queue_Gsem... 15
Queue_Gsem_Psem.................................... 15
Queue_Psem ... 15
RingBuffer .. 51, 151
Semaphore .. 34, 15
SerialIn.. 34, 16
SerialOut ... 34, 15
Task... 34, 41, 87, 13

Compiling ... 7
crt0.S... 34, 42, 47, 13
Current() (class Task) 79, 13

D
DATA.. 7, 77
Data bus contention .. 3
delete .. 7
DeSchedule() .. 1
Dsched() (class Task) 72, 79, 13
DUART... 35, 171
duart.hh... 35, 17
Dummy cycle ... 37
Dynamic bus resizing 3

E
edata ... 7
event ... 5
Exception stack frame 4
Execution of programs 1

F
FIFO ... 2
free() ... 77, 78, 14
free_RAM... 77

G
Get() ... 2
Get() (class Queue_Gsem) 152, 15
Get() (class Queue_Gsem_Psem)........... 152, 1
Getc() (class SerialIn)....................... 69, 166, 16
Getdec() (class SerialIn)......................... 166, 16
Gethex() (class SerialIn)......................... 166, 16
GetItem() (class RingBuffer)............ 52, 151, 153
GetMessage() (class Task)........................ 79, 13
getOverflowCounter() (class SerialIn)70, 166, 16
getSystemTime() (class os) 80, 143, 14
GNU ... 7

H
Hardware initialization 71
Hardware memory management 39, 56, 57, 7
Hardware model ... 3

I
Idle task .. 7
INBUF_0_SIZE.. 175
INBUF_1_SIZE.. 175
init() (class os) 71, 143, 14
INIT_LEVEL (class os) 71, 143
init_level (class os) 71, 14
initChannel() (class os)............................. 80, 14
initChannle() (class os)................................... 14
initDuart() (class os)......................... 71, 143, 14
initLevel() (class os) 143
INT_MASK (class os).................................... 144
Interprocess communication 5
Interrupt assignment... 3
Interrupt mask .. 7
Interrupt service routine 7
Interrupt_IO (class os)...................................... 7
IsEmpty() (class RingBuffer) 151
IsEmpty() (class SerialOut) 66, 159, 162
IsFull() (class RingBuffer) 151

K
Kernel architecture ... 3
Index

Index202

7

1

9
1
3
5
5

7
7

7

9
8

8
7
8

7

6

6
1
3
7
3

8
8
6

5
3

2
0

6
3
8
0

1
3
4
5
4

7
3
4
6
2

5

2

4
55
6
55
2

1

1
3
3
1
3
1

4
4
4
2

5
5
6
5
2

4
5
5
2

5
5
5
3

L
libgcc .. 7
Library .. 8
Linking ... 7
Loading of programs .. 1

M
main .. 8
main() ... 72, 85, 92, 14
malloc ... 77, 9
malloc()... 78, 14
Memory map .. 3
Message

Message().. 54, 15
Message.hh ... 54, 15
Monitor

setupMonitorTask()....................... 89, 102, 176
Monitor.cc... 178, 18
Monitor.hh .. 177
msgQ (class Task)....................................... 55, 7
MyName() (class Task) 79, 13
MyPriority (class Task) 79, 138

N
Name() (class Task) 79, 13
new.. 7
Next() (class Task).................................... 79, 13
Not_Initialized (class os) 71

O
Object file ...
os

getSystemTime()........................... 80, 143, 14
init() .. 71, 143, 147
INIT_LEVEL.. 71, 143
init_level ... 71, 143
initChannel() 80, 143, 147
initDuart() 71, 143, 147
initLevel() ... 143
INT_MASK .. 144
Interrupt_IO .. 71
Not_initialized .. 71
Panic()..................................... 80, 84, 143, 14
Polled_IO.. 66, 7
readDuartRegister() 80, 14
resetChannel()..................................... 143, 14
sbrk()... 14
set_INT_MASK() 47, 72, 144
setBaudRate() 80, 143, 14
setSerialMode()................................... 143, 14
Stop() 72, 85, 143, 14
top_of_RAM() .. 143
writeRegister() 80, 144, 146

os.cc .. 14
os.hh.. 14
OUTBUF_0_SIZE.. 175
OUTBUF_1_SIZE.. 175

P
P() ... 2
P() (class Semaphore)............................... 46, 15
Panic() (class os) 80, 84, 143, 14
Peek() (class RingBuffer) 151, 15
Peekc() (class SerialIn)..................... 70, 166, 16
Poll() (class Semaphore) 48, 15
Pollc() (class SerialIn) 69, 166, 167
Polled_IO (class os) 66, 7
PolledGet() (class Queue) 151, 15
PolledGet() (class Queue_Gsem) 152, 15
PolledGet() (class Queue_Gsem_Psem) 152, 15
PolledGet() (class Queue_Psem)............ 152, 15
PolledGet() (class RingBuffer)................. 53, 151
PolledGetMessage() (class Task) 13
PolledPut() (class Queue)....................... 151, 15
PolledPut() (class Queue_Gsem) 152, 15
PolledPut() (class Queue_Gsem_Psem). 152, 15
PolledPut() (class Queue_Psem) 15
PolledPut() (class RingBuffer) 53, 151
PolledPut(class Queue_Psem)........................ 15
Pre-emptive multitasking.................................. 12
Print() (class SerialOut).................... 66, 159, 16
print_form() (class SerialOut 159
print_form() (class SerialOut) 163
Priority() (class Task) 79, 138
Privilege violation .. 39
Privileged instructions 39
Processor .. 3
Put (class Queue_Psem) 1
Put() .. 2
Put() (class Queue_Gsem_Psem) 152, 1
Put() (class Queue_Psem) 15
Putc() (class SerialOut) 65, 159, 16
PutItem() (class RingBuffer) 52, 151, 153

Q
Queue ... 26, 51, 15

PolledGet() ... 151, 15
PolledPut() .. 151, 15
Queue() ... 15

Queue.cc... 51, 15
Queue.hh .. 51, 15
Queue_Gsem

Get().. 152, 15
PolledGet() ... 152, 15
PolledPut() .. 152, 15
Queue_Gsem().. 15

Queue_Gsem_Psem
Get().. 152, 15
PolledGet() ... 152, 15
PolledPut() .. 152, 15
Put() .. 152, 15
Queue_Gsem_Psem() 15

Queue_Psem
PolledGet() ... 152, 15
PolledPut() .. 152, 15
Put() .. 152, 15
Queue_Psem() .. 15

R
RAMbase.. 35, 17
RAMend ... 17
RAMsize... 35, 17
readDuartRegister() (class os) 80, 14

Index 203

0
7

3

3
1
1
3

5
5
3
9

5
8
7
0

0

0

0
38
9
9

7
8
8

8

7
6

2

1
0
0
0
9

8
8
8
9
6

2
9
8
9

0
8
3
9
2
5

0
1
8
8
7
9

8

7

8
8

2
8

8
0

1

8
8
2
9
0
7
0

8
1

5
0

2
0
9
8
8
2

2
0

red LED .. 8
resetChannel() (class os)......................... 143, 14
Ring Buffer ... 26
RingBuffer .. 51

~RingBuffer() 52, 151, 153
GetItem()....................................... 52, 151, 15
IsEmpty() .. 151
IsFull() .. 151
Peek() .. 151, 15
PolledGet().. 53, 15
PolledPut() .. 53, 15
PutItem() 52, 151, 15
RingBuffer().................................. 51, 151, 153

ROMbase .. 35, 17
ROMsize ... 35, 17
RUN.. 22, 2
RUN (class Task) 44, 75, 7

S
sbrk()... 77, 143, 14
SchedulerRunning() (class Task).................... 13
Section ..
Semaphore .. 21, 46, 15

P() ... 46, 15
Poll() ... 48, 150
Semaphore().. 46, 15
V()... 49, 150

Semaphore.hh ... 46, 15
SendMessage() (class Task)...................... 55, 1
Serial I/O .. 5
SerialIn ... 6

~SerialIn()... 166, 167
Getc() .. 69, 166, 16
Getdec() .. 166, 16
Gethex() .. 166, 16
getOverflowCounter() 70, 166, 169
Peekc() .. 70, 166, 16
Pollc() ... 69, 166, 167
SerialIn() ... 166, 167

SerialIn.cc... 16
SerialIn.hh .. 16
SerialOut

~SerialOut() .. 159, 160
IsEmpty() 66, 159, 162
Print() .. 66, 159, 16
print_form() .. 159, 163
Putc()... 65, 159, 16
SerialOut() 63, 159, 16
TxEnabled_..................................... 65, 74, 16

SerialOut.cc .. 63, 16
SerialOut.hh.. 64, 15
set_INT_MASK() (class os)............... 47, 72, 144
setBaudRate() (class os) 80, 143, 14
setPriority() (class Task)................................. 13
setSerialMode() (class os) 143, 14
setupApplicationTasks...................................... 8
setupApplicationTasks() 85, 89, 102, 137, 17
setupMonitorTask() (class Monitor) . 89, 102, 176
Sleep() (class Task)..................... 75, 79, 138, 14
S-record ..
Start() (class Task) 79, 13
STARTED (class Task)..................................... 7
startup code .. 13
Status() (class Task).................................. 79, 13
Stop() (class os) 72, 85, 14
Supervisor mode... 3
Supervisor stack ... 4
System.config ... 35, 17

T
Task .. 14

checkStacks()...................................... 138, 14
Current() ... 79, 13
Dsched() ... 72, 79, 13
GetMessage().. 79, 13
msgQ... 55, 7
MyName() .. 79, 138
MyPriority().. 79, 138
Name() .. 79, 13
Next().. 79, 138
PolledGetMessage() 13
Priority() ... 79, 138
RUN.. 44, 75, 79
SchedulerRunning().................................... 13
SendMessage() 55, 13
setPriority()... 138
Sleep()..................................... 75, 79, 138, 14
Start() .. 79, 13
STARTED... 79
Status().. 79, 13
Task() 87, 91, 137, 14
TaskIDs[] 88, 138, 140
Terminate() 79, 90, 138, 14
TERMINATED... 79
userStackBase() 79, 13
userStackSize() 79, 13
userStackUsed().................................... 79, 14

Task switching.. 3
Task.cc.. 14
Task.hh ... 13
TaskId.hh .. 17
TaskIDs[] .. 88, 140
TaskIDs[} (class Task).................................... 138
Terminate (class Task).................................... 13
Terminate() (class Task) 79, 90, 14
TERMINATED (class Task)............................. 79
TEXT.. 7
top_of_RAM() (class os)................................ 143
TxEnabled (class SerialOut)............................. 6
TxEnabled_ (class SerialOut)................... 74, 16

U
unput() .. 5
unputc() .. 7
User mode .. 3
userStackBase() (class Task) 79, 13
userStackSize() (class Task)..................... 79, 13
userStackUsed() (class Task).................... 79, 14

V
V() .. 2
V() (class Semaphore) 49, 15

Index204

5
6

W
write() ... 14
writeRegister() (class os) 80, 144, 14

	List of Figures
	List of Tables
	Preface
	1 Requirements
	1.1 General Requirements
	1.2 Memory Requirements
	1.3 Performance
	1.4 Portability

	2 Concepts
	2.1 Specification and Execution of Programs
	2.1.1 Compiling and Linking

	2.2 Loading and Execution of Programs
	2.3 Preemptive Multitasking
	2.3.1 Duplication of Hardware
	2.3.2 Task Switch
	2.3.3 Task Control Blocks
	2.3.4 De-Scheduling

	2.4 Semaphores
	2.5 Queues
	2.5.1 Ring Buffers
	2.5.2 Ring Buffer with Get Semaphore
	2.5.3 Ring Buffer with Put Semaphore
	2.5.4 Ring Buffer with Get and Put Semaphores

	3 Kernel Implementation
	3.1 Kernel Architecture
	3.2 Hardware Model
	3.2.1 Processor
	3.2.2 Memory Map
	3.2.3 Peripherals
	3.2.4 Interrupt Assignment
	3.2.5 Data Bus Usage

	3.3 Task Switching
	3.4 Semaphores
	3.4.1 Semaphore Constructors
	3.4.2 Semaphore Destructor
	3.4.3 Semaphore P()
	3.4.4 Semaphore Poll()
	3.4.5 Semaphore V()

	3.5 Queues
	3.5.1 Ring Buffer Constructor and Destructor
	3.5.2 RingBuffer Member Functions
	3.5.3 Queue Put and Get Functions
	3.5.4 Queue Put and Get Without Disabling Interrupts

	3.6 Interprocess Communication
	3.7 Serial Input and Output
	3.7.1 Channel Numbers
	3.7.2 SerialIn and SerialOut Classes and Constructors/Destructors
	3.7.3 Public SerialOut Member Functions
	3.7.4 Public SerialIn Member Functions

	3.8 Interrupt Processing
	3.8.1 Hardware Initialization
	3.8.2 Interrupt Service Routine

	3.9 Memory Management
	3.10 Miscellaneous Functions
	3.10.1 Miscellaneous Functions in Task.cc
	3.10.2 Miscellaneous Functions in os.cc

	4 Bootstrap
	4.1 Introduction
	4.2 System Start-up
	4.3 Task Start-up
	4.3.1 Task Parameters
	4.3.2 Task Creation
	4.3.3 Task Activation
	4.3.4 Task Deletion

	5 An Application
	5.1 Introduction
	5.2 Using the Monitor
	5.3 A Monitor Session
	5.4 Monitor Implementation

	6 Development Environment
	6.1 General
	6.2 Terminology
	6.3 Prerequisites
	6.3.1 Scenario 1: UNIX or Linux Host
	6.3.2 Scenario 2: DOS Host
	6.3.3 Scenario 3: Other Host or Scenarios 1 and 2 Failed

	6.4 Building the Cross-Environment
	6.4.1 Building the GNU cross-binutils package
	6.4.2 Building the GNU cross-gcc package
	6.4.3 The libgcc.a library

	6.5 The Target Environment
	6.5.1 The Target Makefile
	6.5.2 The skip_aout Utility

	7 Miscellaneous
	7.1 General
	7.2 Porting to different Processors
	7.2.1 Porting to MC68000 or MC68008 Processors
	7.2.2 Porting to Other Processor families

	7.3 Saving Registers in Interrupt Service Routines
	7.4 Semaphores with time-out
	A Appendices
	A.1 Startup Code (crt0.S)
	A.2 Task.hh
	A.3 Task.cc
	A.4 os.hh
	A.5 os.cc
	A.6 Semaphore.hh
	A.7 Queue.hh
	A.8 Queue.cc
	A.9 Message.hh
	A.10 Channels.hh
	A.11 SerialOut.hh
	A.12 SerialOut.cc
	A.13 SerialIn.hh
	A.14 SerialIn.cc
	A.15 TaskId.hh
	A.16 duart.hh
	A.17 System.config
	A.18 ApplicationStart.cc
	A.19 Monitor.hh
	A.20 Monitor.cc
	A.21 Makefile
	A.22 SRcat.cc

	Index

