
Chapter 12

The Mixed-Radix and

Split-Radix FFTs

12.1 The Mixed-Radix FFTs

There are two kinds of mixed-radix FFT algorithms. The first kind refers to a situation
arising naturally when a radix-q algorithm, where q = 2m > 2, is applied to an input
series consisting of N = 2k × qs equally spaced points, where 1 ≤ k < m. In this case,
out of necessity, k steps of radix-2 algorithm are applied either at the beginning or at
the end of the transform, while the rest of the transform is carried out by s steps of the
radix-q algorithm. For example, if N = 22m+1 = 2 × 4m, the mixed-radix algorithm
combines one step of the radix-2 algorithm and m steps of the radix-4 algorithm.1

The second kind of mixed-radix algorithms in the literature refers to those spe-
cialized for a composite N = N0 × N1 × · · · × Nk. Different algorithms may be used
depending on whether the factors satisfy certain restrictions. The FFT algorithms for
composite N will be treated in Chapter 15.

12.2 The Split-Radix DIT FFTs

After one has studied the radix-2 and radix-4 FFT algorithms in Chapters 3 and 11,
it is interesting to see that the computing cost of the FFT algorithm can be further
reduced by combining the two in a split-radix algorithm. The split-radix approach was
first proposed by Duhamel and Hollmann in 1984 [39]. There are again DIT versions
and DIF versions of the algorithm, depending on whether the input time series or the
output frequency series is decimated.

The split-radix DIT algorithm is derived from (3.1), which defines the discrete

1It is of historical interest to note that a program for N = 22m+1 was written by Gentleman and

Sande [47] in 1966, where they claimed a doubling of efficiency by this approach. However, Singleton

observed in [83] that when computing with all the data stored in memory, a good radix-2 program

was nearly as efficient as a radix-4 plus one step of radix-2 program and was simpler.

© 2000 by CRC Press LLC

Fourier transform of a complex time series:

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1,

=

N
2 −1∑
k=0

x2kω
r(2k)
N +

N
4 −1∑
k=0

x4k+1ω
r(4k+1)
N +

N
4 −1∑
k=0

x4k+3ω
r(4k+3)
N

=

N
2 −1∑
k=0

x2kω
r(2k)
N + ωrN

N
4 −1∑
k=0

x4k+1ω
r(4k)
N + ω3r

N

N
4 −1∑
k=0

x4k+3ω
r(4k)
N .

(12.1)

By decimating the time series into three sets, namely the set {yk |yk = x2k, 0 ≤ k ≤
N/2 − 1}, the set {zk|zk = x4k+1, 0 ≤ k ≤ N/4 − 1}, and the set {hk|hk = x4k+3, 0 ≤
k ≤ N/4− 1}, the three subproblems are defined after the appropriate twiddle factors
ωN

2
= ω2

N and ωN
4

= ω4
N are identified.

Yr =

N
2 −1∑
k=0

x2kω
r(2k)
N =

N
2 −1∑
k=0

x2k

(
ω2

N

)rk
=

N
2 −1∑
k=0

ykω
rk
N
2
, r = 0, 1, . . . , N/2 − 1.

(12.2)

Zr =

N
2 −1∑
k=0

x4k+1ω
r(4k)
N =

N
4 −1∑
k=0

x4k+1

(
ω4

N

)rk
=

N
4 −1∑
k=0

zkω
rk
N
4
, r = 0, 1, . . . , N/4 − 1.

(12.3)

Hr =

N
2 −1∑
k=0

x4k+3ω
r(4k)
N =

N
4 −1∑
k=0

x4k+3

(
ω4

N

)rk
=

N
4 −1∑
k=0

hkω
rk
N
4
, r = 0, 1, . . . , N/4 − 1.

(12.4)

After these three subproblems are each (recursively) solved by the split-radix algorithm,
the solution to the original problem of size N can be obtained according to (12.1) for
r = 0, 1, . . . , N − 1. Because Yr+kN

2
= Yr for 0 ≤ r ≤ N/2 − 1, Zr+kN

4
= Zr for

0 ≤ r ≤ N/4 − 1, and Hr+kN
4

= Hr for 0 ≤ r ≤ N/4 − 1, equation (12.1) can be

© 2000 by CRC Press LLC

rewritten in terms of Yr, Yr+N
4
, Zr, and Hr for 0 ≤ r ≤ N/4 − 1 as shown below.

Xr = Yr + ωrNZr + ω3r
N Hr

= Yr +
(
ωrNZr + ω3r

N Hr
)
, 0 ≤ r ≤ N

4
− 1,

(12.5)

Xr+N
4

= Yr+N
4

+ ω
r+N

4
N Zr + ω

3(r+N
4)

N Hr

= Yr+N
4
− j

(
ωrNZr − ω3r

N Hr
)
, 0 ≤ r ≤ N

4
− 1,

(12.6)

Xr+N
2

= Yr + ω
r+N

2
N Zr + ω

3(r+N
2)

N Hr

= Yr −
(
ωrNZr + ω3r

N Hr
)
, 0 ≤ r ≤ N

4
− 1,

(12.7)

Xr+ 3N
4

= Yr+N
4

+ ω
r+ 3N

4
N Zr + ω

3(r+ 3N
4)

N Hr

= Yr+N
4

+ j
(
ωrNZr − ω3r

N Hr
)
, 0 ≤ r ≤ N

4
− 1.

(12.8)

The computation represented by (12.5), (12.6), (12.7), and (12.8) is referred to as an
unsymmetric DIT butterfly computation in the literature as shown in Figure 12.1.

Figure 12.1 The split-radix DIT FFT butterflies.

12.2.1 Analyzing the arithmetic cost

To determine the arithmetic cost of the split-radix DIT FFT algorithm, observe that
ωrNZr and ω3r

N Hr must be computed before the two partial sums can be formed. Since
these two subproblems are each of size N/4, N/2 complex multiplications and N/2 com-
plex additions are required in order to obtain the partial sums. Among the N/2 complex
multiplications, there are four special cases which were already identified in the earlier
discussion of the radix-4 algorithm: they are two cases of multiplication by 1 and two
cases of multiplication by an odd power of ω8. Recall that the former two cases are triv-
ial, and only four real operations rather than six would be used in the latter two cases.
Thus, (3+3)×(N/2 − 4)+4×2+2×(N/2) = 4N−16 nontrivial real operations are per-
formed in the first stage of butterfly computation. In the second stage of the butterfly
computation, only N complex additions or 2N real operations are required. The total
cost for a single split-radix step thus involves 6N−16 nontrivial real operations (flops).

© 2000 by CRC Press LLC

To set up the recurrence equation, the boundary conditions for both N = 4 and
N = 2 are needed; when the size of a subproblem is reduced to 8, the three subsequent
subproblems are of sizes 4, 2 and 2. As noted earlier, T (4) = 16 flops, and T (2) = 4
flops. The cost of the split-radix FFT algorithm (in terms of nontrivial flops) can be
represented by the following recurrence:

T (N) =


T

(
N
2

)
+ 2T

(
N
4

)
+ 6N − 16 if N = 4n > 4 ,

16 if N = 4 ,

4 if N = 2 .

(12.9)

Solving (12.9) (see Appendix B), one obtains the solution

T (N) = 4N log2 N − 6N + 8 .(12.10)

12.3 The Split-Radix DIF FFTs

A split-radix DIF FFT algorithm can be derived by recursively applying both radix-2
and radix-4 DIF FFT algorithm to solve each subproblem resulting from decimating the
output frequency series in a similar fashion. That is, the frequency series is recursively
decimated into three subsets, i.e., the set denoted by Yk = X2k for 0 ≤ k ≤ N/2−1, the
set denoted by Zk = X4k+1 for 0 ≤ k ≤ N/4 − 1, and the set denoted by Hk = X4k+3

for 0 ≤ k ≤ N/4 − 1 as shown below. The derivation begins with the discrete Fourier
transform defined by (3.1). Using the results developed earlier for the radix-2 DIF
algorithm in (3.11), one obtains

Xr =

N
2 −1∑
�=0

x�ω
r�
N +

N−1∑
�=N

2

x�ω
r�
N

=

N
2 −1∑
�=0

(
x� + x�+N

2
ω
rN

2
N

)
ωr�N , r = 0, 1, . . . , N − 1.

(12.11)

By letting Yk = X2k, y� = x� + x�+N
2
, one subproblem of half the size is defined by

Yk = X2k =

N
2 −1∑
�=0

(
x� + x�+N

2

)
ωk�N

2

=

N
2 −1∑
�=0

y� ω
k�
N
2
, k = 0, 1, . . . , N/2 − 1.

(12.12)

To construct the other two subproblems of size N/4, begin with the DFT definition
in (3.1) and use the results developed earlier for the DIF radix-4 algorithm in (11.22).

Xr =
N−1∑
�=0

x�ω
r�
N , r = 0, 1, . . . , N − 1 ,

=

N
4 −1∑
�=0

(
x� + x�+N

4
ωr4 + x�+N

2
ω2r

4 + x�+ 3N
4
ω3r

4

)
ωr�N .

(12.13)

© 2000 by CRC Press LLC

By substituting r = 4k + 1 and r = 4k + 3, one again obtains

Zk = X4k+1 =

N
4 −1∑
�=0

(
x� + x�+N

4
ω4k+1

4 + x�+N
2
ω

2(4k+1)
4 + x�+ 3N

4
ω

3(4k+1)
4

)
ω

(4k+1)�
N

=

N
4 −1∑
�=0

((
x� − x�+N

2

)
− j

(
x�+N

4
− x�+ 3N

4

))
ω�Nω

k�
N
4

=

N
4 −1∑
�=0

z� ω
k�
N
4
, k = 0, 1, . . . , N/4 − 1 .

(12.14)

Hk = X4k+3 =

N
4 −1∑
�=0

(
x� + x�+N

4
ω4k+3

4 + x�+N
2
ω

2(4k+3)
4 + x�+ 3N

4
ω

3(4k+3)
4

)
ω

(4k+3)�
N

=

N
4 −1∑
�=0

((
x� − x�+N

2

)
+ j

(
x�+N

4
− x�+ 3N

4

))
ω3�

N ωk�N
4

=

N
4 −1∑
�=0

h� ω
k�
N
4
, k = 0, 1, . . . , N/4 − 1 .

(12.15)

To form these three subproblems using two stages of unsymmetric butterfly computa-
tion, the computation of the partial sums is again rearranged to facilitate the butterfly
computation.

y� =
(
x� + x�+N

2

)
, 0 ≤ � ≤ N

4
− 1 .(12.16)

y�+N
4

=
(
x�+N

4
+ x�+ 3N

4

)
, 0 ≤ � ≤ N

4
− 1 .(12.17)

z� =
((

x� − x�+N
2

)
− j

(
x�+N

4
− x�+ 3N

4

))
ω�N , ≤ � ≤ N

4
− 1 .(12.18)

h� =
(
j
(
x�+N

4
− x�+ 3N

4

)
+

(
x� − x�+N

2

))
ω3�

N , 0 ≤ � ≤ N

4
− 1 .(12.19)

The computation represented by (12.16), (12.17), (12.18), and (12.19) again yields an
unsymmetric DIF butterfly computation as depicted in Figure 12.2.

© 2000 by CRC Press LLC

Figure 12.2 The split-radix DIF FFT butterflies.

12.4 Notes and References

The split-radix FFT was originally developed by Duhamel and Hollmann [39] in 1984,
and it was subsequently extended and implemented for complex, real and real-symmetric
data by Duhamel in [38]. In 1986, Sorensen, Heideman, and Burrus presented an index-
ing scheme which efficiently implemented the Duhamel-Hollmann split-radix FFT [86].
Both DIF and DIT Fortran programs were presented in [86]. The history of the ideas
on the fast Fourier transforms from Gauss to the split-radix algorithm is presented
in [41].

© 2000 by CRC Press LLC

	INSIDE the FFT BLACK BOX: Serial and Parallel Fast Fourier Transform Algorithms
	Table of contents
	Part II: Sequential FFT Algorithms
	Chapter 12: The Mixed-Radix and Split-Radix FFTs
	12.1 The Mixed-Radix FFTs
	12.2 The Split-Radix DIT FFTs
	12.2.1 Analyzing the arithmetic cost

	12.3 The Split-Radix DIF FFTs
	12.4 Notes and References

