
Chapter 12

The Mixed-Radix and

Split-Radix FFTs

12.1 The Mixed-Radix FFTs

There are two kinds of mixed-radix FFT algorithms. The first kind refers to a situation
arising naturally when a radix-q algorithm, where q = 2m > 2, is applied to an input
series consisting of N = 2k × qs equally spaced points, where 1 ≤ k < m. In this case,
out of necessity, k steps of radix-2 algorithm are applied either at the beginning or at
the end of the transform, while the rest of the transform is carried out by s steps of the
radix-q algorithm. For example, if N = 22m+1 = 2 × 4m, the mixed-radix algorithm
combines one step of the radix-2 algorithm and m steps of the radix-4 algorithm.1

The second kind of mixed-radix algorithms in the literature refers to those spe-
cialized for a composite N = N0 × N1 × · · · × Nk. Different algorithms may be used
depending on whether the factors satisfy certain restrictions. The FFT algorithms for
composite N will be treated in Chapter 15.

12.2 The Split-Radix DIT FFTs

After one has studied the radix-2 and radix-4 FFT algorithms in Chapters 3 and 11,
it is interesting to see that the computing cost of the FFT algorithm can be further
reduced by combining the two in a split-radix algorithm. The split-radix approach was
first proposed by Duhamel and Hollmann in 1984 [39]. There are again DIT versions
and DIF versions of the algorithm, depending on whether the input time series or the
output frequency series is decimated.

The split-radix DIT algorithm is derived from (3.1), which defines the discrete

1It is of historical interest to note that a program for N = 22m+1 was written by Gentleman and

Sande [47] in 1966, where they claimed a doubling of efficiency by this approach. However, Singleton

observed in [83] that when computing with all the data stored in memory, a good radix-2 program

was nearly as efficient as a radix-4 plus one step of radix-2 program and was simpler.
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Fourier transform of a complex time series:
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By decimating the time series into three sets, namely the set {yk |yk = x2k, 0 ≤ k ≤
N/2 − 1}, the set {zk|zk = x4k+1, 0 ≤ k ≤ N/4 − 1}, and the set {hk|hk = x4k+3, 0 ≤
k ≤ N/4− 1}, the three subproblems are defined after the appropriate twiddle factors
ωN
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After these three subproblems are each (recursively) solved by the split-radix algorithm,
the solution to the original problem of size N can be obtained according to (12.1) for
r = 0, 1, . . . , N − 1. Because Yr+kN

2
= Yr for 0 ≤ r ≤ N/2 − 1, Zr+kN

4
= Zr for

0 ≤ r ≤ N/4 − 1, and Hr+kN
4

= Hr for 0 ≤ r ≤ N/4 − 1, equation (12.1) can be
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rewritten in terms of Yr, Yr+N
4
, Zr, and Hr for 0 ≤ r ≤ N/4 − 1 as shown below.
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The computation represented by (12.5), (12.6), (12.7), and (12.8) is referred to as an
unsymmetric DIT butterfly computation in the literature as shown in Figure 12.1.

Figure 12.1 The split-radix DIT FFT butterflies.

12.2.1 Analyzing the arithmetic cost

To determine the arithmetic cost of the split-radix DIT FFT algorithm, observe that
ωrNZr and ω3r

N Hr must be computed before the two partial sums can be formed. Since
these two subproblems are each of size N/4, N/2 complex multiplications and N/2 com-
plex additions are required in order to obtain the partial sums. Among the N/2 complex
multiplications, there are four special cases which were already identified in the earlier
discussion of the radix-4 algorithm: they are two cases of multiplication by 1 and two
cases of multiplication by an odd power of ω8. Recall that the former two cases are triv-
ial, and only four real operations rather than six would be used in the latter two cases.
Thus, (3+3)×(N/2 − 4)+4×2+2×(N/2) = 4N−16 nontrivial real operations are per-
formed in the first stage of butterfly computation. In the second stage of the butterfly
computation, only N complex additions or 2N real operations are required. The total
cost for a single split-radix step thus involves 6N−16 nontrivial real operations (flops).
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To set up the recurrence equation, the boundary conditions for both N = 4 and
N = 2 are needed; when the size of a subproblem is reduced to 8, the three subsequent
subproblems are of sizes 4, 2 and 2. As noted earlier, T (4) = 16 flops, and T (2) = 4
flops. The cost of the split-radix FFT algorithm (in terms of nontrivial flops) can be
represented by the following recurrence:
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4 if N = 2 .

(12.9)

Solving (12.9) (see Appendix B), one obtains the solution

T (N) = 4N log2 N − 6N + 8 .(12.10)

12.3 The Split-Radix DIF FFTs

A split-radix DIF FFT algorithm can be derived by recursively applying both radix-2
and radix-4 DIF FFT algorithm to solve each subproblem resulting from decimating the
output frequency series in a similar fashion. That is, the frequency series is recursively
decimated into three subsets, i.e., the set denoted by Yk = X2k for 0 ≤ k ≤ N/2−1, the
set denoted by Zk = X4k+1 for 0 ≤ k ≤ N/4 − 1, and the set denoted by Hk = X4k+3

for 0 ≤ k ≤ N/4 − 1 as shown below. The derivation begins with the discrete Fourier
transform defined by (3.1). Using the results developed earlier for the radix-2 DIF
algorithm in (3.11), one obtains
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By letting Yk = X2k, y� = x� + x�+N
2
, one subproblem of half the size is defined by
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To construct the other two subproblems of size N/4, begin with the DFT definition
in (3.1) and use the results developed earlier for the DIF radix-4 algorithm in (11.22).
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By substituting r = 4k + 1 and r = 4k + 3, one again obtains
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To form these three subproblems using two stages of unsymmetric butterfly computa-
tion, the computation of the partial sums is again rearranged to facilitate the butterfly
computation.
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The computation represented by (12.16), (12.17), (12.18), and (12.19) again yields an
unsymmetric DIF butterfly computation as depicted in Figure 12.2.
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Figure 12.2 The split-radix DIF FFT butterflies.

12.4 Notes and References

The split-radix FFT was originally developed by Duhamel and Hollmann [39] in 1984,
and it was subsequently extended and implemented for complex, real and real-symmetric
data by Duhamel in [38]. In 1986, Sorensen, Heideman, and Burrus presented an index-
ing scheme which efficiently implemented the Duhamel-Hollmann split-radix FFT [86].
Both DIF and DIT Fortran programs were presented in [86]. The history of the ideas
on the fast Fourier transforms from Gauss to the split-radix algorithm is presented
in [41].
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