Chapter 12

The Mixed-Radix and
Split-Radix FFT's

12.1 The Mixed-Radix FFTs

There are two kinds of mixed-radix FFT algorithms. The first kind refers to a situation
arising naturally when a radix-q algorithm, where ¢ = 2™ > 2, is applied to an input
series consisting of N = 2F x ¢° equally spaced points, where 1 < k < m. In this case,
out of necessity, k steps of radix-2 algorithm are applied either at the beginning or at
the end of the transform, while the rest of the transform is carried out by s steps of the
radix-q algorithm. For example, if N = 22™+! = 2 x 4™ the mixed-radix algorithm
combines one step of the radix-2 algorithm and m steps of the radix-4 algorithm.!

The second kind of mixed-radix algorithms in the literature refers to those spe-
cialized for a composite N = Ny x Ny X .-+ X Ni. Different algorithms may be used
depending on whether the factors satisfy certain restrictions. The FFT algorithms for
composite N will be treated in Chapter 15.

12.2 The Split-Radix DIT FFTs

After one has studied the radix-2 and radix-4 FFT algorithms in Chapters 3 and 11,
it is interesting to see that the computing cost of the FFT algorithm can be further
reduced by combining the two in a split-radix algorithm. The split-radix approach was
first proposed by Duhamel and Hollmann in 1984 [39]. There are again DIT versions
and DIF versions of the algorithm, depending on whether the input time series or the
output frequency series is decimated.

The split-radix DIT algorithm is derived from (3.1), which defines the discrete

Tt is of historical interest to note that a program for N = 22™+1 was written by Gentleman and
Sande [47] in 1966, where they claimed a doubling of efficiency by this approach. However, Singleton
observed in [83] that when computing with all the data stored in memory, a good radix-2 program
was nearly as efficient as a radix-4 plus one step of radix-2 program and was simpler.
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Fourier transform of a complex time series:

N-—-1
Xy => awl, r=01,. ,N-1,
£=0

J1 | A1

r(2k) r(4k+1) r(4k+3)
(12.1) = E Topwy E Tak+1Wy + E Tap43Wy

k=0 k=0 k=0

e = (48) = (48)
r(2 r(4 3 r(4
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k=0 k=0 k=0

By decimating the time series into three sets, namely the set {yx|ypr = @ar, 0 < k <
N/2 — 1}, the set {zg|zx = X4p+1, 0 < k < N/4 — 1}, and the set {hglhy = 443, 0 <
k < N/4 — 1}, the three subproblems are defined after the appropriate twiddle factors

wy =wf and wy = w} are identified.

(12.2)
g1 o ¥
r(2k rk r
Y, = kawN( ) = ngk(wi) = Zykw%k, r=0,1,...,N/2 — 1.
k=0 k=0 k=0
(12.3)
X1 Jo1 Jq
r(4k rk r
Ly = Z x4k+1wN( ) = Z Lak+1 (W§) = Z ka%ka T:O,l,...,N/4—1.
k=0 k=0 k=0
(12.4)
X1 | |
r rk r
H, = Z x4k+3wN(4k) = Z Tak+3 (wfv) = Z hkw%k, r=0,1,...,N/4—1.
k=0 k=0 k=0

After these three subproblems are each (recursively) solved by the split-radix algorithm,
the solution to the original problem of size N can be obtained according to (12.1) for
r=20,1,...,N — 1. Because YHk% =Y. for0 <r < N/2-1, Zr+k% = Z, for
0<r<N/4i-1, and H, pn = Hy for 0 <r < N/4 — 1, equation (12.1) can be
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rewritten in terms of Y., YH_%, Z, and H, for 0 <r < N/4 — 1 as shown below.

X, =Y, +wZ, +w¥H,

(12.5) .
=Y, + (Wi Z, +wi H,), 0<r< -1,
r4+ 3(r4+ N
Xy =Y~ +wN+4Zr+wfv( +4)H’r
(12.6) 4 1 .
:Yr+% _j(w;Zr—wirHr), 0<r< T —1,
r4+ N
Xy =Vl iz, 4 0D,
(12.7)
=Y, — (W2 +wiH,), 0<r< -1,
: a(py BN
Xy = Vw2, 4l
(12.8) 4 1 .
=Y,y +j (@2 —wiH), 0<r< -1

The computation represented by (12.5), (12.6), (12.7), and (12.8) is referred to as an
unsymmetric DIT butterfly computation in the literature as shown in Figure 12.1.

Figure 12.1 The split-radix DIT FFT butterflies.
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12.2.1 Analyzing the arithmetic cost

To determine the arithmetic cost of the split-radix DIT FFT algorithm, observe that
wh Z, and w3 H, must be computed before the two partial sums can be formed. Since
these two subproblems are each of size N/4, N/2 complex multiplications and N/2 com-
plex additions are required in order to obtain the partial sums. Among the N/2 complex
multiplications, there are four special cases which were already identified in the earlier
discussion of the radix-4 algorithm: they are two cases of multiplication by 1 and two
cases of multiplication by an odd power of wg. Recall that the former two cases are triv-
ial, and only four real operations rather than six would be used in the latter two cases.
Thus, (3+3) x (N/2 — 4)+4x2+2x(N/2) = 4N —16 nontrivial real operations are per-
formed in the first stage of butterfly computation. In the second stage of the butterfly
computation, only N complex additions or 2V real operations are required. The total
cost for a single split-radix step thus involves 6 N — 16 nontrivial real operations (flops).
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To set up the recurrence equation, the boundary conditions for both N = 4 and
N = 2 are needed; when the size of a subproblem is reduced to 8, the three subsequent
subproblems are of sizes 4, 2 and 2. As noted earlier, T'(4) = 16 flops, and T'(2) = 4
flops. The cost of the split-radix FFT algorithm (in terms of nontrivial flops) can be
represented by the following recurrence:

T(¥)+2T (§)+6N—-16 if N=4">4,
(12.9) T(N) =416 if N =4,
4 if N=2.

Solving (12.9) (see Appendix B), one obtains the solution
(12.10) T(N) =4Nlogy N — 6N + 8 .

12.3 The Split-Radix DIF FFTs

A split-radix DIF FFT algorithm can be derived by recursively applying both radix-2
and radix-4 DIF FFT algorithm to solve each subproblem resulting from decimating the
output frequency series in a similar fashion. That is, the frequency series is recursively
decimated into three subsets, i.e., the set denoted by Y;, = Xoi for 0 < k < N/2—1, the
set denoted by Zp = Xyp4+1 for 0 < k < N/4 — 1, and the set denoted by Hy = Xp+3
for 0 < k < N/4 — 1 as shown below. The derivation begins with the discrete Fourier
transform defined by (3.1). Using the results developed earlier for the radix-2 DIF
algorithm in (3.11), one obtains

X, = Tt + Z zowtt
(12.11) z

J-1
Yk::X2k: (l‘g—‘rl'é_i_%)Wk%g
=0
(12.12) ¥
= gk, k=0,1,...,N/2 1.
2
=0

To construct the other two subproblems of size N/4, begin with the DFT definition
in (3.1) and use the results developed earlier for the DIF radix-4 algorithm in (11.22).
N-—1
Xp=> awl, r=01,.. ,N-1,
£=0
(12.13) ¥

= E <x4+xe+%w£+xz+%wiT+xz+%wir)wzf.
=0
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By substituting » = 4k + 1 and r = 4k + 3, one again obtains

(12.14)
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To form these three subproblems using two stages of unsymmetric butterfly computa-
tion, the computation of the partial sums is again rearranged to facilitate the butterfly
computation.

N
(12.16) yg:(iceJrCI?H%), Oﬁfﬁzfl-
N
(12.17) y“_%:(xu_%—i-x“_%), 0<i< 1.
N
(12.18) Zg:((I57$Z+%)*j(x£+%7-r£+%))w]{m Séngl.
N
(12.19) hgz(j(xe%—xﬁ%)jt(mz—xﬁw))wiﬁ 0<t< 1.

The computation represented by (12.16), (12.17), (12.18), and (12.19) again yields an
unsymmetric DIF butterfly computation as depicted in Figure 12.2.
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Figure 12.2 The split-radix DIF FFT butterflies.
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12.4 Notes and References

The split-radix FFT was originally developed by Duhamel and Hollmann [39] in 1984,
and it was subsequently extended and implemented for complex, real and real-symmetric
data by Duhamel in [38]. In 1986, Sorensen, Heideman, and Burrus presented an index-
ing scheme which efficiently implemented the Duhamel-Hollmann split-radix FFT [86].
Both DIF and DIT Fortran programs were presented in [86]. The history of the ideas
on the fast Fourier transforms from Gauss to the split-radix algorithm is presented
in [41].
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