
1 Introduction and review of previous research

The detection of targets in clutter is one of the most rele-
vant problems in the radar technique. An abundance of
papers and books have been published on this topic;
Schleher [1] gives a commented collection of the most
important publications. The theory of optimum detection
of targets embedded in clutter is well established when the
probability density of clutter amplitude is Rayleigh or, in
other words, the in-phase and quadrature components are
jointly Gaussian-distributed processes, for any shape of the
clutter autocorrelation function. The optimum processor
for the suppression of clutter and enhancement of target
echo is a coherent linear filter, cascaded with a modulus
extractor and a comparison with a suitable threshold. A
detailed description of the optimum processor and the
evaluation of performance are described in References 2
and 3 (pp. 139-141), and a summary of relevant equations
can be found in the 'outline of MTI theory' of Reference 1
(pp. 20-35).

In several practical applications, clutter amplitude is not
Rayleigh-distributed. These situations occur when sea
clutter is viewed with a high-resolution radar (pulse width
T < 0.5 fis) at low grazing angle (</> < 5 degrees). They also
result when land clutter is viewed at low grazing angles
(</> < 5 degrees), regardless of radar resolution. In these
cases, the probability density function exhibits a long tail
('spiky' clutter); in other words, there is a significant prob-
ability of having very large returns from a clutter patch.
The mechanism of spikyness is well understood now from
a physical point of view [4, 5, 29]. Three non-Rayleigh
probability density functions for the clutter amplitude
have been proposed: log-normal, Weibull [1, 5] and
K-distribution [6, 7].

Agreement on which model performs best has not yet
been reached. A comparison of the results predicted from
the theory with the experiments does not seem to be
resolvable, owing to the large number of parameters
(frequency, pulse length, beamwidth, polarisation, siting
and environmental conditions) involved. A number of
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papers refer experimental results on non-Rayleigh clutter;
see, for example, the commented collection of papers in
Reference 8 (section 5) or Reference 9. More recently,
Perry [10] refers to measurements made by a 3-D radar
on ground and valley clutter showing a Weibull amplitude
distribution. References 11-19 refer to detailed sea clutter
measurement experiments. They confirm the spiky nature
of sea clutter; in addition, they provide an analysis of the
correlation properties in the space and time domains.
Spiky sea clutter, as evidenced by amplitude distributions
having long tails, is most evident for horizontal polarisa-
tion, low grazing angles, high spatial resolution of the
radar and for the up- and downwind directions. The
amplitude distribution is also often observed to be inde-
pendent of sea state as such.

The optimum processor for non-Rayleigh clutter is no
longer a linear filter, and it has not yet been found. The
detection performance of conventional processors in non-
Rayleigh clutter generally deteriorates from that in Ray-
leigh clutter [8]. This is due to the long 'tail' of the
distribution, which results in a problematic setting of the
detection threshold. In fact, an increase of false alarm rate
should be expected or, alternatively, a reduction of detec-
tion probability should occur in order to maintain CFAR
characteristics.

The list of References at the end of this paper suggests a
considerable amount of work has been done in the area of
processing non-Rayleigh clutter. Some of the important
published studies are critically examined in this Section.

Consider first the problem of processing log-normal
clutter. In References 20 and 21, the clutter has been mod-
elled as a noncoherent (i.e. only the amplitude was
considered) process, uncorrelated from pulse to pulse;
thermal noise has been neglected. Operating only on the
clutter amplitude, the processor has been considered non-
coherent. A number of conventional receivers (namely
linear, logarithmic, binary integrator and median detector)
have been compared in terms of detection performance. In
addition, the performance of the optimum processor,
under the above-mentioned hypotheses, has been found by
evaluating the Chernoff bound. Among the processors
considered, the logarithmic receiver has been recommend-
ed, owing to the good detection performance achieved, the
high dynamic range provided to handle the wide range of
clutter amplitude and its CFAR capability in Rayleigh-
distributed clutter.
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In Reference 22, the detection performance of a coher-
ent MTI cascaded with a quadratic detector has been
evaluated when fed with a correlated coherent log-normal
clutter. Such a clutter has been generated by correlating
separately the log-normal amplitude and then tagging it
with uniform, independent phase values. With this ques-
tionable clutter model, the performance of a single MTI
has been derived, neglecting the thermal noise, and a
measure of the performance degradation with respect to
the Rayleigh clutter has been found. However, as Schleher
points out, the comparison of MTI performance with
respect to log-normal and Rayleigh clutter is unfair
because the spectra of the two clutter models are different,
since the effect of the nonlinearity on the spectrum of the
log-normal clutter is not accounted for. As a matter of fact,
the log-normal correlated clutter model suggested by
Schleher does not allow the separate shaping of the prob-
ability density and autocorrelation functions.

Reference 23 affords the problem of detecting targets,
having log-normal amplitude, embedded in log-normal
clutter. This problem arises in harbour surveillance radars.
These radars are characterised by large antenna apertures
and short transmitted pulse width, necessary to provide
the high definition required for precise navigation in
narrow channels. In addition, the radar is usually situated
so that both sea clutter and vessels are viewed at relatively
low grazing angles. The above-stated conditions give rise
to a log-normal probability density of the amplitudes for
both target and clutter. The noncoherent processor exam-
ined in this case is the cascade of an envelope detector, a
logarithmic device and a moving window. The detection
performance has been evaluated considering independent
clutter samples and neglecting thermal noise.

An explicit account of thermal noise in addition to log-
normal clutter is only given by Fante [25], in which,
however, simplifications concerning the clutter fluctuations
are made. Specifically, two cases are considered, namely:
the completely correlated or completely uncorrelated
clutter samples on a pulse-to-pulse basis.

As far as the prediction of detection performance in
Weibull clutter is concerned, Schleher [26] provides a
comparison between the linear receiver, the logarithmic
receiver, the binary integrator and the median detector.
Optimum performances are estimated by means of the
Chernoff bound. Furthermore, in the Weibull case, the
modelling is confined to the amplitude of clutter. Addi-
tionally, independence between clutter samples is assumed
and thermal noise is neglected.

Similar remarks concerning the noncoherent processing
of clutter can be derived for the clutter distributed accord-
ing to the K-law [16, 18].

This paper affords the problem of target detection in
log-normal clutter. For this special case, all the previous
limitations are overcome. In more detail, a coherent model
is assumed for the clutter and the processing chain. As far
as the clutter model is concerned, the in-phase and quad-
rature components of clutter have been modelled to give a
log-normal amplitude distribution and a near-uniform dis-
tribution of the phase. Any shape of correlation among
consecutive clutter samples is allowed in the model. It is
worthwhile noting that the probability density and the
autocorrelation functions can be separately shaped at will.

Additionally, thermal noise is taken into proper con-
sideration. At the same time, the processing chain is also
coherent, i.e. it operates on the two components of the
signals. Two architectures have been considered for the
processor. The first, used in current practice, is formed of a
linear transversal filter (for clutter attenuation and target

echo enhancement) cascaded with a quadratic envelope
detector and a comparison with a suitable threshold. The
filter can be an MTI device and a coherent integrator or
the optimum filter [27] for the case of clutter having
Gaussian probability density. The second processor con-
sidered differs from the previous one in the filter for
clutter cancellation. A nonlinear homomorphic filter has
been conceived to obtain a better suppression of clutter.
The detection performance of the two processing chains
have been evaluated, by means of computer simulation, in
a number of operational cases of interest. It will be noted
that the processor currently used in practice suffers poor
detection performance; better results are achievable with
the second processor considered.

The paper gives a first contribution to the problems of
finding better models of disturbance and of deriving more
efficient processing chains. The remainder of the paper is
organised as follows. Section 2 illustrates the mathematical
model assumed for the clutter, the relevant properties of
the model and the method of generating correlated log-
normal clutter in the computer simulation. Section 3
describes the detection performance obtained with the
current-practice processing chain. In Section 4, the nonlin-
ear processing chain is derived and the detection per-
formance evaluated and compared with the other cases. In
the closing Section 5, the limitations of the present analysis
are pointed out and the trends of future research are envis-
aged. In particular, the theory for deriving the optimum
detection for any kind of target model embedded in any
kind of clutter model is briefly illustrated, postponing the
description of the theory in Reference 28. The paper is cor-
roborated with an extensive list of References covering the
last 20 years.

2 Coherent model for log-normal clutter

The purpose of this Section is to detail the mathematical
model assumed to represent the coherent samples of log-
normal clutter. Consequently, the algorithm adopted to
generate clutter samples for the computer simulation is
also derived. In particular, it is shown how correlated
samples of log-normal clutter can be obtained by suitably
processing coherent samples of white Gaussian noise.

The Section is organised as follows. In subsection 2.1
the well known results relevant to the modelling of the
log-normal amplitude of a single clutter echo are briefly
summarised. In subsection 2.2 an original extension
regarding the modelling of the in-phase and quadrature
components of a single clutter echo is provided. Particular
attention is devoted to the selection of the probability
density of the echo phase. In more detail, comparison is
made, in terms of detection performance, between the
effect of having either a Gaussian or a uniform distribution
of the clutter phase.

In subsection 2.3 a further extension of the mathemati-
cal model of the clutter, pertaining to the coherent pulse
train case, is presented. The model is conceived around the
structural separability of nonlinearity from memory. In
other words, the model is the cascade of a generator of
white Gaussian noise, a linear dynamic filter and a nonlin-
ear memoryless device.

Rather than resorting to physical considerations it is
preferred to justify the model by showing that it is a
canonic approach for representing a stochastic coherent
process having any shape of probability density and auto-
correlation functions. Other two additional considerations
are related to the corresponding simplicity in simulating



the clutter process and, more important, the capability of
deriving the processor which has an architecture replying
in some respect that of the model. The latter property is
well known and widely used in the field of Gaussian-
distributed clutter processes. In this case, the model of the
clutter consists of a linear filter fed by a white Gaussian
noise; the main part of the corresponding processor results
to be a linear filter with parameters strictly dependent on
the parameters of the clutter model (whitening filter).

In subsection 2.4, the previous theory is applied to the
simulation of correlated coherent log-normal clutter
samples. Indications of the number of statistical trials to be
carried out are also given.

2.1 Noncoherent single pulse case
It is well known [20] that a real-valued, log-normal-
distributed, random variable r can be obtained from a
Gaussian-distributed variable /?, having mean value h and
standard deviation o, by applying the transformation

r = exp (n) (1)

Consequently, the probability density function (PDF) of r
turns out to be

(2)

where m represents the median value of r, related to h as
m = exp (n), and o is referred to as the 'logarithmic stan-
dard deviation' of r. The moments of r depend on m and o
as

(3)

Examples of log-normal probability density functions are
represented in Fig. 1, for m = 1 and different values of G. It

Fig. 2 Probability of threshold crossing for Rayleigh and log-normal
amplitudes
a Rayleigh (a = <7j,fl>.) ^ Log-normal (m = 1, o = aLN)

A dramatic increase in P(T) is shown, when the log-normal
amplitude is considered, with respect to the Rayleigh dis-
tribution.

Since the log-normal power depends on two parameters
(m, a), both are relevant for the power associated to a
clutter sample, as shown by eqn. 3 for k = 2. It is question-
able whether m or o or both should be used to account for
clutter power in a log-normal model. The effect of taking a
value m = e (with a = 1) is also shown in Fig. 1; this
results in the same power as m = 1, a = ^/2, but a rather
different PDF (broken line). When considering a coherent
model, the two assumptions lead to rather different results;
the former (i.e. taking m = 1 and increasing a with clutter
power) has been chosen in this paper, as will be
clarified in Section 2.2. This choice may be somewhat dif-
ferent from others in the technical literature where the
clutter power is related essentially to the median value.

2.2 Coherent single pulse case
The problem of modelling log-normal coherent clutter is
now afforded in two steps. At first, the case of single pulse
(i.e. random variable generation) is considered; then
(Section 2.3) the theory is extended to the pulse train case
(i.e. stochastic process). In order to model coherent clutter
samples having a log-normal-distributed amplitude, the
PDFs of the in-phase and quadrature components must be
specified. This is achieved by resorting to an extension of
the transformation (eqn. 1) to the complex field. Let x, y be

random variable is

where erf (•) denotes the error function:

For comparison, the probability P(T) for a Rayleigh-
distributed random variable is [8]

Eqns. 4 and 6 are plotted against T in Fig. 2 for a same
mean value of the two distributions, namely setting
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Fig. 1 Probability density functions for Rayleigh and log-normal ampli-
tudes

R

a Log-normal (m = I, a = 2, r = e2)
b Log-normal (m = I, a = y/2, r = e)
c Log-normal (m = I, a = 1, f = Je)
d Rayleigh (r = Je)

e Rayleigh (r = e)
/Rayleigh (r = e2)
g Log-normal (m = e, o = 1, r = e3/2)

is evident that an increase in o results in a longer tail for
the PDF, together with a higher and narrower peak, closer
to the null value. For comparison purposes, the corre-
sponding Rayleigh PDFs having the same mean values are
also depicted in the same Figure. The long tail that charac-
terises the log-normal PDF accounts for the phenomenon
of spiky clutter, with large amplitude values having a sig-
nificant probability of occurrence. The probability of
crossing a threshold value T for a log-normal-distributed



two jointly Gaussian-distributed, zero-mean random vari-
ables, and define the complex-valued random variable

(7)

A complex-valued log-normal random variable can be
defined as

(8)

where cexp (•) stands for the complex exponential func-
tion. The amplitude of w depends on x only:

and is log-normal-distributed, according to eqns. 1 and 2;

the phase of w coincides with the Gaussian y:

(9)

It is common to model noise or clutter samples as having a
uniformly distributed phase in (0, 2n), corresponding to the
absence of any a priori information about the phase values
and a circular symmetry in the PDF of the complex
variate. The Gaussian PDF assumed in this paper for arg
(vv) does not rely on a physical model, but is motivated by
the dramatic simplifications in the development of the
mathematical model; this is particularly true for the pulse
train case, which is considered in Section 2.3. It is worth
specifying that arg (vv) is considered to be defined on the
whole real axis, where the Gaussian PDF applies.
However, since the phase is always considered through
trigonometric functions, a sort of 'aliasing effect' arises
for its PDF, in that the probabilities of values of arg (vv)
congruent modulo 2TT add up. Consequently, a nearly
uniform distribution of arg (vv) (mod 2n) results, at least
when ay is large. This reconciles the mathematical model
with the common assumption.

The statistics of vv are easily computed [30] as (see
Appendix)

(10)

(H)

where a2
x, a

2 and oxy denote the second-order moments of
the Gaussian variates x and y. The joint PDF of the in-
phase and quadrature components u, v of vv has been com-
puted by carefully applying the transformation theorem
[31] (see Appendix). In particular, assuming that x and y
are independent (oxy = 0) and having equal power (a2. =
a2 = o2\ the joint probability of (w, v) is

(12)

where arg0 (vv) is defined in [ — n, + 71] as the principal
value of the argument; namely

(13)

and sign (•) = ± 1 , according to the sign of the argument.
From eqn. 12 it is apparent that w, v are not independent
of each other; however, they are mutually uncorrelated
[32]; the marginal distributions of u and v have been com-
puted via numerical integration [32]. Examples of p(u) and
p(v) are drawn in Figs. 3 and 4, respectively. It turns out
that p(v) is an even function, whereas u has unit mean

Fig. 4 Probability density function of quadrature component

It is possible to conceive a more general model, by
allowing x and y to have nonzero mean values x, y. This
results [32] in a coherent sample having mean value

and variance

while the median value of the echo amplitude becomes

This allows representing clutter power as arising from two
contributions, one deterministic and the other random.
The power ratio between the two terms is given by

However, a deterministic term is not of great concern,
since it can be easily filtered out by means of a convention-
al canceller. Hence, for the sake of simplicity, it is assumed
that x = y = 0 throughout the paper. The coherent model
discussed in the present Section, and the homomorphic
filter presented in Section 4, can easily be extended to the
more general case.

Consider now in some detail the case in which the
random phase of the clutter, i.e. arg (vv), has a uniform
distribution in [ — n, + TE]. The purpose is to compare in a
simple way this situation with that considered up to now,
i.e. Gaussian distribution of the clutter phase. One possi-
bility would be to evaluate the PDF of p(u) and p{v) and

Im(W)

P(
O

P(
O

value (eqn. 10) and a nonsymmetric PDF. The variances of
u and v are both equal to |(exp {2o2) — 1).

Re(W)
Fig. 3 Probability density function of in-phase component



compare them with those of Figs. 3 and 4. Another
method, preferred here, is to show that the detection per-
formance (obtained by processing only one received
sample) does not appreciably depend on the distribution of
the clutter phase.

To this end, consider the problem of detecting a target
embedded in log-normal clutter and white Gaussian noise,
by processing only one sample. The target signal is
assumed to be known a priori except the initial phase;
SNR is the value of the signal/noise ratio. The clutter
amplitude is log-normal-distributed (with m—\ and a
evaluated from eqn. 3) and with phase either Gaussian or
uniform distributed. CNR is the value of the clutter/noise
ratio; the same CNR values have been assumed in the two
cases, i.e. relevant to the different distribution of the clutter
phase. The sum of the in-phase and quadrature com-
ponents of the noise, clutter and target signal (in the H1

hypothesis) have been simulated in a digital computer by
means of the Monte Carlo technique. In the same
program, the processor (i.e. modulus extraction and com-
parison with a suitable threshold T) has been simulated.

The detection performance, i.e. PD against SNR for a
certain value of CNR and PFA, has been obtained. It is
found that these detection curves are stepwise: in other
words, below a certain SNR* value the probability of
detection is nearly zero, while for SNR values immediately
greater than SNR* the corresponding PD is about 99%.
The interesting result obtained is that the detection curves
are independent of the distribution of clutter phase (i.e.
Gaussian or uniform), and the SNR* values are the same.
Table 1 gives the SNR* values against CNR (ranging from

Table 1: Minimum SNR values giving PD = 0.99

CNR, dB SNR*, dB T

10 35 51
20 49 256.2
30 60 930.8
Random phase of clutter is either Gaussian or uniform. PFA is assumed
to be 1Q-4; the corresponding threshold value T is shown

10 dB to 30 dB) for PFA = 10"4. The corresponding values
of the threshold T have also been indicated. Another simu-
lation exercise has been carried out by considering a target
having a Rayleigh amplitude and a uniform random phase.
The target is embedded in log-normal clutter (having
either uniform or Gaussian phase) and white Gaussian
noise. The detection performance corresponding to the
processing of a single pulse has been evaluated (see Table
2). Two main results are obtained, namely (i) the detection

Table 2: R0 values against SNR values for a target having a
Rayleigh amplitude and uniform phase

uniform phase assumption. A Gaussian phase is preferred
in this paper, owing to the possibility of generating a cor-
related coherent log-normal pulse train, as is shown in
Section 2.3.

2.3 Correlated coherent pulse train case
The concept of correlating noncoherent log-normal
samples has been discussed [33, 34]. The basis of the
approach is to feed with a white Gaussian noise a proper
linear dynamic filter cascaded with an exponential nonlin-
earity. It is worthwhile noting that sometimes the methods
for deriving the parameters of the filter, starting from the
probability density and autocorrelation functions required,
are tortuous.

The concept of a coherent log-normal continuous-time
process with specified autocorrelation function is now
introduced with the purpose of modelling the coherent
pulse train case (i.e. discrete-time sequence). Assume that
x(t) and y(t) are zero-mean, real-valued, jointly Gaussian-
distributed stationary processes, and denote with Rxx(t\
Ryy(t) and Rxy(t) their auto- and crosscorrelation functions.
These processes can be thought of as the in-phase and
quadrature components of a complex-valued Gaussian
process z{t\ with autocorrelation function

(14)

A straightforward extension of eqn. 8 provides the defini-
tion of the complex-valued, log-normal process:

(15)

having a mean value (eqn. 10) given by

(16)

and autocorrelation function [30] given by

(17)

Eqns. 14-17 provide the fundamental relationships for the
development of the coherent log-normal clutter model in
the continuous-time case. The clutter process w(t) is rep-
resented as the output of a nonlinear memoryless trans-
formaton (eqn. 15) operating on a Gaussian process z(i).
The latter process z(r), in turn, is obtained as the output of
a linear filter which shapes Rzz(t) having white Gaussian
noise at the input [27]. It should be remarked that the
ability of obtaining a log-normal-correlated clutter
sequence is strongly related to the availability of the
'complex exponential function' which operates on a 'coher-
ent Gaussian process'. Conversely, whether the nonlinear
memoryless device is different or its feeding sequence is
non-Gaussian, the upstream dynamic filter would be non-
linear, thus invalidating the whole canonical method.

A schematic diagram of the proposed model is depicted
in Fig. 5. This model is claimed here to provide a 'canon-
ical' [35, 36] representation of a non-Gaussian process;
hence its application can be extended to represent other
processes, provided that a suitable nonlinear memoryless
function can be found, to replace the cexp (•). For each
specific application, the nonlinear device is such that it
transforms a pair of jointly distributed Gaussian variates
into a complex vector having a specified PDF for the
amplitude and a Gaussian (but near-uniform) phase. It is
explicitly noted that the shape of the clutter autocorrela-
tion function Rww(t) is determined by the combined effect

Clutter amplitude is log-normal and phase is either Gaussian or
uniform

curves are not stepwise but smoothed and (ii) the detection
curves differ, at the maximum, by 0.1% when considering
either Gaussian or uniform distribution of the clutter
phase. The results obtained confirm that the hypothesis of
Gaussian distribution of the clutter phase is equivalent to

CNR = IOdB

SNR, dB

30
35
40
45
7=51

P0. %
7.4

44,2
76.7
91.9

CNR = 20 dB

SNR, dB

45
50
55
60
7=265.2

PD> %

10.8
49.8
79.6
93.1

CNR = 3OdB

SNR, dB

55
60
65
70
7=930.8

PO' %
6.2

42.3
75.5
91.5



Fig. 5 Proposed model for correlated log-normal noise
a Continuous-time model b Discrete-time model

allows control of the shape of the probability density inde-
pendently of the shape of the autocorrelation function.

A major problem concerning the proposed clutter
model is that from a specified autocorrelation function
Rww(t) it is necessary to find the corresponding function
Rzz(t) for the Gaussian input, as well as the parameters
Rxx(0) and Kyy(0). In other words, it is necessary to solve
the inverse of eqn. 17, implying evaluation of a logarithm
in the complex field, i.e. a multiple-values function. Thus,
the existence and uniqueness of the solution cannot be
generally guaranteed for an arbitrary Rww(t). A similar
problem, i.e. of unrealisable autocorrelation function, was
pointed out in Reference 35, where a pair of theorems were
derived to deal with this topic; however, they are not
easily extensible to the complex field (i.e. the coherent
case).

A futher problem refers to the synthesis of the shaping
filter for the required autocorrelation function Rzz{t). In
general, this could be achieved by resorting to standard
synthesis techniques for FIR or IIR filters. This will be
afforded in the case of discrete-time processes, for which it
is possible to resort to eigenvalue/eigenvector decomposi-
tion of the process covariance matrix. The proposed
approach yields a model that can be easily implemented in
a computer, for Monte Carlo simulation purposes.

In order to give some insight in the proposed model,
consider in some more detail eqns. 14-17. Assume first that
Rxy(t) is identically zero and that x(t) and y{t) have the
same power. As a result, the deterministic component of
w(t) (eqn. 16) is real and equals unity. It contributes to the
frequency spectrum of w(t) as a Dirac pulse at zero fre-
cuency, with unitary amplitude. The random components
of w(r), say w(f), has a real-valued autocorrelation function
(see eqn. 17):

(18)

corresponding to a symmetric frequency spectrum around
zero, and has a power

It can also be shown [31] that, under the above-mentioned
hypotheses, w(t) is a wide-sense stationary baseband
random process.

A white log-normal process is obtained when z(t) is
white Gaussian noise, namely bypassing the shaping filter
in the model of Fig. 5.

Letting Rxy(t) be nonzero and nonsymmetric yields a
complex-valued, time-invariant deterministic component,
and a complex-valued autocorrelation function for the
random component, which may account for an offset in
the frequency spectrum with respect to zero (e.g. due to a
nonzero mean-value Doppler frequency). Finally, letting
RxJO) and Ryy{0) be different from each other (i.e. allowing
unbalanced power between the in-phase and quadrature
components at the input) changes the deterministic com-
ponent of w(t), according to eqn. 16, and affects the
random component for an amplitude factor.

For completeness, it is necessary to mention a slightly
different approach to account for an offset in the frequency
spectrum of the clutter. Assume that x and y are mutually
independent, so that w{t) has a real-valued autocorrelation
function, and hence a frequency spectrum symmetric
around zero. If w(t) is further multiplied by a deterministic
phasor cexp (j2nfc t\ the resulting signal has a mean
Doppler frequency fc, while still retaining the same PDF
and shape of the spectrum. With this approach, the sche-
matic diagram of Fig. 5a should be completed by inserting
a complex multiplier downstream the nonlinear device.
The applicability of such model may be broader than that
of the original model. However, it will not be considered in
this paper, since a zero-mean Doppler frequency is
assumed for the clutter.

The extension of the proposed model to discrete-time
processes is now outlined, which allows modelling of a
train of N echoes obtained in response to consecutive
radar pulses. A succession of Gaussian-distributed
complex-valued variates zk — xk — xk + jyk, is considered,
in lieu of the continuous-time process z(t) = x(t) -f jy{t).
The complex-valued, log-normal-distributed samples are
obtained by applying the transformation (eqn. 8) to each
Gaussian variate. It is convenient to introduce vector
notation to represent the time sequences, namely

The correlation between consecutive samples is rep-
resented by means of the covariance matrices

where w denotes the random component of w, namely

(22)

Assuming that the in-phase and quadrature components
of z have the same power, the relationship between the
corresponding elements (m, n) of M2 and Mw results from
eqns. 14, 17 and 21, and is given by

(23)

Consequently, from a specified covariance matrix Mw, it is
possible to determine the required covariance matrix M2

for the Gaussian variates. A batch of N samples having the
desired covariance matrix M2 can be obtained from a
batch of white Gaussian noise samples by means of a suit-
able linear operator, provided that M2 is Hermitian. In this
case, it is possible to perform a decomposition of M2 as
follows [27]:

(24)

where L is the diagonal matrix formed with the eigen-
values of M2 and U is the matrix of the corresponding

of the linear filter and nonlinear transformation, as
exoressed by eqn. 17. In addition, the proposed method
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eigenvectors. Consequently, the linear operator

(25)

provides the required transformation from a vector of
unitary power white noise to the desired process z (see Fig.
5b).

It can easily be verified that any Hermitian matrix M2

produces a Hermitian matrix A/w, and vice versa, as
follows from eqn. 23. However, the matrix M2 does not
always turn out to be positive-definite, and hence suitable
to represent the covariance matrix of a discrete-time
process. As an example, consider the case of a wide-
sense stationary log-normal clutter having power P for its
random component and a Gaussian-shaped autocorrela-
tion function; assume that a nonzero mean Doppler fre-
quency fc exists, and let p cexp (/</>) denote the correlation
between any two consecutive pulses:

(26)

The following covariance matrix Mw is obtained for two
pulses:

(27)

The corresponding covariance matrix M2 turns out to be

In the case of a clutter spectrum centred at zero Doppler
frequency (c/> = 0), the matrix M2 is Hermitian, with posi-
tive eigenvalues

(29)

since P > 0 and p < 1.
In the more general case (i.e. </> =/= 0), under the condi-

tion P >̂ 1, the eigenvalues of M2 are

(30)

the second term being positive if

(31)

Hence eqn. 31 defines the admissible clutter parameters for
the proposed model in the case of two pulses. As an
example, let P=IOO and p = 0.99; eqn. 31 yields
<f> < (0.3), corresponding to a mean Doppler frequency of
(0.048) PRF. Similarly, it is possible to verify that, for a
batch of three pulses, a Gaussian-shaped autocorrelation
function and a zero-mean Doppler value, the matrix M2 is
positive-definite provided that the following inequality
holds:

(32)

This defines the range of P and p in which the model
applies. As an example, eqn. 32 holds for P > 2 when
p = 0.99.

Some mathematical expedients [32] can be found in
order to extend the range of values in which a solution for
M2 exists. They correspond to adding a small white-noise
or deterministic component, with power e, to the log-
normal clutter. In terms of the covariance matrix Mw, the

former corresponds to adding a constant term e on the
diagonal elements; the latter implies replacing ' l ' b y ' l + e '
in eqn. 23.

2.4 Simulation of coherent log-normal clutter
It is worth concluding this Section with some remarks on
the simulation of coherent log-normal clutter in a digital
computer, according to the proposed model. The model
described in Section 2.3 can be directly applied to generate
samples of the clutter process in a simulation program. It
is well known that the simulation consists of a number oi
statistically independent trials, in which samples of the
input process are generated by the computer and then pro-
cessed according to the desired algorithm. From the col-
lected outputs, the probability of occurrence of a
significant event, or some statistical parameters of the
output distribution, can be estimated. The larger the
number of trials, the more accurate is the estimate. The
computer is able to generate numbers which appear as
drawn from a specified PDF (e.g. Gaussian). The sub-
sequent steps follow closely the scheme of Fig. 5b, namely
a linear combination is made of the random numbers gen-
erated to produce a batch of correlated inputs; then a non-
linear transformation is performed to obtain
log-normal-distributed samples representing the input for
the processor under examination. Since only a limited
number of input data are generated, the space of the events

(28)

is not fully covered by the trials. Hence, the tails of the
PDF can be poorly reproduced, as they correspond to the
less likely events. This is not generally a significant
problem when dealing with Gaussian variates. However,
for the log-normal clutter model, the 'weight' of such tails
is greatly emphasised, as can be inferred from the 'cexp"
operation. This makes the faithful reproduction of the
Gaussian distribution a key problem, thus requiring a
large number of trials to be performed, as well as an accu-
rate check of the statistical behaviour of the random
number generators.

To give a flavour of the above-mentioned problem, con-
sider the effect of the selection of the number of indepen-
dent statistical trials on the evaluation of the improvement
factor for a linear MTI with given (e.g. binomial) weights.
To this end, consider two clutter sequences having the
same power spectral density but different probability
density functions, namely Rayleigh and log-normal. Owing
to the same spectral densities, the corresponding improve-
ment factor values are equal (the same does not apply to
the detection and false alarm probabilities). However, the
different probability densities of the two clutter sources
call for different numbers of statistical trials to reach the
same improvement factor estimated values. This situation
is clearly illustrated in Fig. 6; it dramatically emerges that
the log-normal clutter requires a considerable number of
independent trials, i.e. several hundreds of thousands,
which will be the normal situation for all the operational
cases illustrated in the following Sections.

3 Performance evaluation of conventional
processor

The optimum receiver, according to the Neyman-Pearson
criterion, maximises the detection probability for a given



number of trials, x 103

Fig. 6 Estimated improvement factor (IF) values against number of inde-
pendent statistical trials

Clutter/noise power ratio CNR = 20 dB, one-step correlation coefficient p = 0.9,
number of processed pulses N = 2; binomial MTI; Swerling 2 model assumed for
target
a Rayleigh clutter b Log-normal clutter

comparing the alternative hypotheses of target absent (H0)
or present (H1). For an input disturbance having Gaussian
PDF, it is well known that the optimal receiver consists of
a linear filter, followed by an amplitude detector and a
threshold [2]. The linear filter provides cancellation of the
correlated disturbance (clutter) as well as matched filtering
(for a priori known target), thus maximising the signal/
noise ratio at the output. The coefficients w of the linear
filter are uniquely determined from the covariance matrix
M of the disturbance and the expected target samples S,
according to the well known equations [2]:

(33)

where Umin is the eigenvector of M associated to its
minimum eigenvalue; weights (a) apply for a deterministic
target (completely known except for the initial phase),
while weights (b) apply for a Swerling 2 target. In practice,
owing to lack of information about the clutter statistics,
suboptimal filters are used in lieu of the weights of eqn. 33,
resorting to the well known MTD (a) and MTI [b) tech-
niques.

When the input disturbance is not Gaussian-distributed,
evaluation of the likehood ratio is not easy, even in the
case of a single pulse. Furthermore, the resulting optimal

processor is always nonlinear [8]. The theory of stochastic
processes [20] provides the basis for the derivation of the
optimal processor. However, the structure of the optimal
processor in most cases is not known, and among these
still remains the log-normal clutter. Approximate, sub-
optimal processors can be derived in some cases by
resorting to intuition; an example is described and evalu-
ated in Section 4.

The purpose of this Section is to assess the performance
of a conventional processor, designed under the assump-
tion of a Gaussian-distributed disturbance, in the presence
of log-normal clutter having covariance matrix M which is
evaluated according to a Gaussian-shaped spectrum. The
mismatching between the design model and the actual dis-
turbance statistics is shown to cause severe performance
degradation in terms of PD and PFA. It is worth pointing
out that, regardless of the PDF of the input disturbance,
the filter that maximises the output signal/noise ratio is
uniquely determined by the clutter covariance matrix M.
However, maximising the signal/noise ratio does not guar-
antee optimum detection performance when the dis-
turbance is not Gaussian-distributed. In other words, the
design of the optimum detector requires knowledge of the
whole joint PDF of the input samples, rather than the
first- and second-order moments (S and M) that are suffi-
cient statistics for the Gaussian processes.

A schematic diagram of the conventional processor
examined here is represented in Fig. 7. A batch of input
samples z consisting of log-normal clutter c, Gaussian
noise n and (eventually) target echoes s, is fed into the
linear filter with weights w to produce a scalar output y
that is envelope-detected and compared with the threshold
T. In order to assess the detection performance, determi-
nation of the PDF of the amplitude of y under the hypoth-
eses H0 and H1 is required. However, analytical results are
not available as closed-form solutions, and the computa-
tion of PFA and PD requires the performing of numerical
integration of very complex expressions, even in the case of
a single pulse. Thus, performance evaluation has been
carried out by means of a simulation on a digital com-
puter. This allows evaluation of PFA and PD, as well as of
the PDF of the output of the envelope detector, in any
case of interest. In particular, it has been found that, when
the target is absent, the output is approximately log-
normal-distributed when few samples are processed in the
filter. The output power is reduced, with respect to the
input, of an amount corresponding to the improvement
factor (IF) provided by the filter. The IF, of course, does
not depend on the PDF of the input, but only on its
covariance matrix. Hence, it is the same that could be
achieved on a Rayleigh-distributed disturbance with the
same spectrum. The threshold setting, however, is strongly
dependent on the PDF, as illustrated in Fig. 8, where PFA

is plotted against the threshold value for a clutter with
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Fig. 9 Log-normal clutter amplitude after linear coherent filtering
Rayleigh amplitude shown for comparison; CNR = 30 dB, p = 0.9, N = 2
a Rayleigh clutter, SNR = 25 dB
b Log-normal clutter, SNR = 25 dB
c Log-normal clutter, SNR = 26 dB

pertains to the processing of two pulses, with CNR = 30
dB, p = 0.9 and a target echo with SNR = 25 dB. The
optimum filter with weights (eqn. 33b) provides 10 dB of
IF. The PDF in the presence of log-normal clutter differs
significantly from that relating to Rayleigh clutter, shown
in Fig. 9 for comparison, the latter being much broader. In
Fig. 9, the PDF for log-normal clutter and SNR = 26 dB
is also represented. It is noteworthy that a difference of
1 dB causes a remarkable shift of the PDF. Consequently,
it is expected that for the same threshold value (e.g.
T = 26), a significant change of PD is produced from few
percent to near unity, when the SNR increases from 25 to
26 dB.

Consider now, in Figs. 10-15, the detection probability
PD represented against the single pulse SNR at the input.
The target is assumed to have a constant amplitude and
unknown initial phase (Swerling 0) and a Doppler fre-
quency fD = 0.5 PRF. The filter is the optimal one (eqn.

Fig. 10 Comparison of detection performance of a Swerling 0 target
embedded in log-normal and Rayleigh clutter
CNR = 30 dB, p = 0.9, N = 2, PFA = 1.5 x 10"2

a Rayleigh clutter b Log-normal clutter

Fig. 10 refers to a high value of PFA (i.e. 1.5 x 10 ~2) and
N = 2 pulses. In this case, the processor performs better
against log-normal clutter than against Rayleigh clutter,
for a wide range of values of PD (greater than 50%). This
apparently strange phenomenon can be explained by
resorting to Fig. 9; to obtain a PFA value of 1.5 x 10"2,
the threshold value should be 16. However, when the
required PFA is lowered, as shown in Fig. H ( T = 38), the

T

1-
P D PD

P(
R)

1-
P D PD

Fig. 8 Comparison of PFA values against threshold in Rayleigh and log-
normal clutter cases
CNR = 30 dB, p = 0.9, N = 3
a Rayleigh b Log-normal

18 dB. The Rayleigh case shows an unappreciable vari-
ation of T causing dramatic differences in PFA. The log-
normal clutter, on the other hand, requires much larger
values of T to achieve the same PFA, the difference being
emphasised when PFA decreases. The variation of the
threshold values with the number of processed pulses and
the clutter correlation coefficient is found to follow the
corresponding variation of IF.

When the target signal is present, the PDF of the
envelope of y assumes the shape illustrated in Fig. 9, which

PFA

CNR = 30 dB, p = 0.9; three pulses are processed in the
optimal filter with weights (eqn. 33b), providing an IF of

33a). The clutter is assumed to have at the input, on a
single pulse, CNR = 30 dB and p = 0.9. Different values of
PFA and of the number of processed pulses are considered.

SNR.dB

R

Fig. 11 As Fig. 10, but with lower PFA value of 5 x K)'3

a Rayleigh b Log-normal

SNR,dB
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Fig. 13 Detection performance of a Swerling O target model in log-
normal and Rayleigh clutter for processing of three pulses
CNR = 30 dB, p = 0.9, N = 3,PFA=5 x Kr1

a Rayleigh b Log-normal

SNR.dB

Fig. 15 Detection performance of a Swerling 0 target model in log-
normal clutter for processing of four pulses
'Rayleigh' curve not shown, requiring tens of decibels less; CNR = 30 dB, p = 0.9,
N = 4, PFA = 2.8 x 10~5

SNR,dB

Fig. 12 As Fig. W, but with lower PFA value of 2.8 x 10~5

Only the log-normal' curve is shown, requiring tens of decibels more than the 'Ray-
leigh' curve

clutter is of the order of tens of decibels. This situation
(with PFA ranging between 10 " 4 and 10 ~6) is typically of
interest in radar systems.

A further remark concerns the shape of the curve of PD

against SNR for the log-normal clutter that is nearly step-
wise, this feature being enhanced as PFA decreases. In par-
ticular, Fig. 12 shows that at the output of the linear filter
(providing an IF of 13 dB), a signal/disturbance ratio of
about 39 dB (corresponding to SNR = 52 dB at the input)

Fig. 14 Detection performance of a Swerling 0 target model in log-
normal clutter for processing of three pulses
'Rayleigh' curve not shown, requiring tens of decibels less; CNR = 30 dB, p = 0.9,
N = 3, PFA = 2.8 x 10~5

increasing the number of pulses. In particular, Fig. 13
refers to three pulses and can be compared with Fig. 11. It
is shown that a saving of SNR required to achieve a given
PD is 9-10 dB for the Rayleigh clutter as against 6-8 dB
for the log-normal clutter. Similarly, Figs. 12, 14 and 15

SNR,dB

SNR,dB

situation reverses; for extremely low PFA, as shown in Fig.
12, the difference of sensitivity in favour of the Rayleigh

is required to achieve a high PD (greater than 99%).
However, a reduction of 1 dB is enough to drop PD to less
than 1%.

Figs. 13, 14 and 15 allow evalution of the effect of



refer to the same PFA and N = 2, 3 and 4 pulses, respec-
tively. As an example, to obtain a PD of 90% the input
SNR required is 51.8 dB for N = 2, and it decreases to 41.8
dB and 35.5 dB for N = 3 and 4, respectively. This saving
is comparable (but not coincident) with the increase in IF
achieved, which evaluates as 13 dB, 23 dB and 31 dB,
respectively.

The detection loss of the linear receiver in the presence
of log-normal clutter is summarised in Table 3, for a

Table 3: Detection performance degradation SNR loss for
PD = 80%

/V 2 3 4

9 x TO-3 0 — —
10"3 10 16 —

1.8*10- 4 18 17 16
2.8x10- 5 33 25 23

SNR loss in decibels.

required PD of 80%. It turns out that a dramatic per-
formance degradation is observed, when PFA is very small;
conversely, when the number of pulses increases, the loss
decreases. A moderate decrease in the loss is also found
when PD increases. As an example, for N = 3 pulses and
PFA = 2.8 x 1(T5, when PD ranges between 0.5 and 0.99
the loss is between 25 and 23 dB, respectively.

The performance of the conventional processor has
finally been evaluated for a scan-to-scan fluctuating target
(Swerling 1 model) with Rayleigh amplitude. The optimum
processor, in the presence of Gaussian noise, is the same as
depicted in Fig. 7, with some performance degradation due
to target fluctuation. The detection performance in the pre-
sence of log-normal clutter is represented in Figs. 16 and
17. In particular, in Fig. 16 a comparison is made between
the performance achieved for the target and clutter models.
It is evident that, for a log-normal clutter, the shape of the
curve for Swerling 1 target (curve b) shows a much slower

SNR,dB
Fig. 17 Comparison of detection performance of a Swerling 1 target
model in log-normal clutter for different values of PFA and N

CNR = 3OdB, p = 0.9
a PFA = 1.8 x 10~4and N = 3
b PFA = 2.8 x 10~5 and N = 3
c PFA = 1.8 x 10~4andiV = 2

some curves of PD against SNR for fluctuating targets and
log-normal clutter, which allow comparison among differ-
ent values of PFA and number N of pulses. In particular,
for PD = 90%, increasing the number of pulses to three
(curves a and c) provides a saving of 10 dB in SNR (again
comparable with the increase in IF), while a reduction of
PFA of nearly one order of magnitude implies an extra of
6-7 dB in SNR (curves a and b).

Suboptimal linear filters (e.g. binomial MTI or coherent
integrator implemented by means of FFT technique) have
not been considered in this Section, although they are the
most common approximation to the optimum filters (eqn.
33). However, the performance degradation of these filters
with respect to the optimum ones is well known [1] and is
related to the reduced improvement factor achieved.

4 Nonlinear canceller of log-normal clutter

The detection probability curves evaluated in Section 3
show the limited performance of a conventional processing
chain with respect to log-normal clutter. The linear pro-
cessor, upstream of the envelope detector, is optimum for
clutter having Rayleigh amplitude distribution [2] and
cannot perform well against disturbances having non-
Rayleigh amplitude distribution. This observation moti-
vates the attempt made in this Section of using a nonlinear
filter to cancel log-normal clutter.

Derivation of the proposed nonlinear scheme exploits
the techniques of homomorphic filtering and linear predic-
tion error filters, well known and widely applied in com-
munications and radar (see Reference 37, Chap. 10).

1-
P D PD

PD1-
P D

SNR,dB
Fig. 16 Comparison of detection performance for different models of
target and clutter
Case for Swerling 0 target and Rayleigh clutter is not shown, requiring tens of
decibels less; CNR = 30 dB, p = 0.9, N = 2, PFA = 10"3

a Swerling 1 target and Rayleigh clutter
b Swerling 1 target and log-normal clutter
c Swerling 0 target and log-normal clutter

increase in PD when the SNR increases, with respect to the
fixed target (c). Furthermore, in the range of PD = 0.8-0.9,
a fluctuation loss of 6-10 dB results. In the same Figure,
the curve (a) of PD against SNR for a Swerling 1 target in
the presence of Rayleigh clutter is shown, for comparison.
For PD = 0.8, the loss due to the log-normal distribution
amounts to 12 dB (compare curves a and b). Fig. 17 shows



Three received samples zfc, zk_x and zk_2 are processed,
the extension to a longer data batch being straightforward.
The purpose is to process the samples zk_ t and zfe_2 in
order to give an estimate zk of the kth received sample. If
the clutter/signal-plus-noise ratio is high enough, the
quantity zk corresponds to the estimated clutter sample at
the kth step, and the clutter cancellation is achieved by the
simple operation (zk — zk).

The estimate zk is obtained by means of the following
three steps:

(a) zfc_! and zk_2 are passed through two nonlinear
instantaneous blocks performing the inverse of the nonlin-
ear function of the model in Fig. 5b, namely the complex
logarithm (clog) function. The outputs z'k_x and z'k_2

 a r e
now Gaussian-distributed, with zero mean and a covari-
ance matrix M'r (2 x 2) which can be directly derived by
the covariance matrix M ( 3 x 3 ) :

(34)

The matrix M' is equal to M2, which was used in Section 2
to generate log-normal clutter (eqn. 23), neglecting the pre-
sence of thermal noise and target inz fc,z j t_1,z fc_2.

(b) The samples z'k _ x and z'k _ 2 can be linearly processed
in order to predict, one step ahead, the sample z'k. This is
achieved by means of a transversal filter having weights
wk_x and wfc_2, which are evaluated according to a mean-
square error criterion as follows (Reference 40, p. 691, eqn.
1.4):

device can be envelope-detected and compared with a suit-
able threshold. The proposed approach provides only the
clutter cancellation, while signal enhancement is not
achievable in the coherent section of the processor.
However, a noncoherent integration of target echo could
be inserted after the modulus extraction; this case is not
considered in the remaining part of the paper.

It is worth considering the matching between the model
(with well separated memory and nonlinearity) and the
cancellation filter (characterized again by a separation
between nonlinearity and memory). Furthermore, it is
necessary to spend a few words on the Gaussian variates z'
purposely obtained in the receiver. They reproduce the
corresponding Gaussian-distributed and correlated
samples of the model (if noise and target echo can be
neglected).

The relationship between the covariance matrices M
(referred to as Mw in Section 2.3), pertaining to the
environment, and M (denoted by M2 in Section 2.3), per-
taining to the model and to the reproduced values z\ is
known (eqn. 23) and used to design the prediction filter.
However, when comparing the performance of a same pro-
cessor (e.g. MTI) against Rayleigh and log-normal clutter,
the same matrix M must be considered for both clutter
models, in order to have a fair comparison pertaining to
the same spectrum. This was not done in Reference 22,
where the Rayleigh clutter was assumed to have covari-
ance matrix M (more correlated than M), giving rise to an
unfair comparison.

Fig. 18 Nonlinear (homomorphic) clutter canceller

(c) The output of the linear filter is passed through an
instantaneous nonlinear block which performs the
complex exponential (cexp) function. The estimate zk of the
kth received sample is thus provided. Clutter-free samples
are obtained by subtracting from the incoming data
sample zk the estimate zk. The output from this new MTI

Moreover, it can be shown that the same structure can be
derived as a particular case from a very general approach,
based on the estimator-correlator receiver, discussed in
Reference 20 and applied to clutter and target models in
References 20 and 28. Here, it is preferred to derive the
processor by resorting to intuition, the goal being to
design a near-optimal prediction scheme for clutter
samples, according to a mean-square error criterion.

It is worth pointing out that resorting to nonlinear
filters allows processing of the data in such a way that not
only second-order statistics (e.g. spectra) are relevant, but
higher-order moments are properly accounted for. This,
for non-Gaussian signals, allows a more appropriate 'can-
cellation' of the process or, equivalently, more adequate
control of the PDF of the statistic used for the decision.

To illustrate the rationale behind the proposed
approach, consider the schematic diagram of Fig. 18.

where the matrix M'r and the vector R are derived by
the same matrix M (3 x 3) as follows:

(35)

(36)
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The detection performance of the processor of Fig. 18
has been evaluated by means of computer simulation. The
following three situations have been considered and com-
pared :

(a) Log-normal clutter processed by the nonlinear filter
of Fig. 18.

(b) Log-normal clutter processed by a conventional
linear (binomial) MTI.

(c) Rayleigh amplitude clutter processed by a conven-
tional linear MTI (this case is taken as a term of reference).

The same one-lag correlation coefficient (in the example
considered, p = 0.9) and the same clutter/noise ratio
(CNR = 30 dB) have been assumed for the above-
mentioned situations. Additionally, it has been considered
that the amplitude of the target echo is constant and the
Doppler frequency is randomly distributed in [0, 1/7] and
variable from pulse to pulse.

The threshold values plotted against the probability of
false alarm are shown in Fig. 19 for the three situations
considered. It can be noted that the situation (c) is the

most favoured; situations (a) and (b) require a higher
threshold in order to maintain the same value of PFA.
However, the case (a) performs better than case (b), as is
confirmed in Fig. 20. Here the detection probability is
plotted against the signal/noise ratio value when the PFA
value is 3.6 x 10"4. It can be seen that the nonlinear filter
allows a saving of about 10 dB in SNR with respect to the
linear conventional MTI when log-normal clutter is pro-
cessed. A smaller gain (about 5 dB on average) can be
achieved in the case of PFA equal to 3.8 x 10"5, as shown
in Fig. 21. Another set of detection performance curves
(Fig. 22) has been derived for a target signal represented as
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Fig. 19 Threshold values against PFA values

CNR = 30 dB, p = 0.9, JV = 3
a Log-normal clutter, processor of Fig. 18
b Log-normal clutter, processor of Fig. 7
c Rayleigh clutter, processor of Fig. 7

PFA

Fig. 21 Detection performance at PFA = 3.8 x 10 5

Meaning of curves (a) and (b) same as in Fig. 19 (performance of processor (c) is off
the scale); CNR = 30 dB, p = 0.9, N = 3

SNR,dB

SNR,dB

Fig. 20 Detection performance at PFA = 3.6 x 10~A

Meaning of curves (a)~(c) same as in Fig. 19; CNR = 30 dB, p = 0.9, N = 3

SNR.dB

Fig. 22 Detection performance for Swerling 2 target model

Meaning of curves (a) and (b) same as in Fig. 19 (performance of processor (c) is off
the scale); CNR = 30 dB, p = 0.9, PFA = 1.4 x 10"4, N = 3



Fig. 23 Adaptive approach to log-normal clutter cancellation

tive section, indicated in the Figure, represents the novel
part with respect to the previous schematic diagram of Fig.
18. Preliminary results concerning the robustness and
adaptive implementation of the proposed nonlinear pro-
cessor are available in Reference 46.

5 Conclusions and trends of research

In this paper the problem of target detection in log-normal
clutter has been considered in detail. A breakthrough in
the theory has been achieved by introducing a coherent
model for the log-normal clutter. The model, i.e. the
cascade of a linear dynamic filter and a nonlinear instanta-
neous filter fed by a white Gaussian process, is quite
general. It can be extended to other non-Rayleigh clutter,
such as Weibull clutter, by a suitable modification of the
nonlinearity shape and of the parameters of the linear
filter. Another relevant result has been the evaluation of
performance of conventional processors fed by log-normal
clutter in a number of operational cases of interest. A non-
linear MTI canceller (and a schematic diagram of it) pro-
viding better performance with respect to the linear one
has also been suggested.

The theory developed in this paper needs some more
investigation in the areas of:

(a) clutter modelling.
(b) performance evaluation.
(c) optimum detection scheme.

The first item (a) is strictly connected to the clutter
sample generation by means of a digital computer. Two
problems arise in this respect, namely (i) mathematical
refinements of clutter modelling to avoid mathematical
expedients discussed in Section 2.3, and (ii) extension of the
computer generation method to other relevant clutter
models such as Weibull and /C-distribution.

With reference to the performance evaluation task (b),
the complexity of the problem in hand makes any mathe-
matical evaluation impracticable. At the same time, Monte
Carlo simulation requires a large number of independent
statistical trials, whose number increases very much as the
PFA value decreases. It should be considered the
opportunity of alternative methods such as the importance
sampling technique [38].

The latter simulation technique needs some comments
in order to have the feeling of the problems which arise in
using it. Briefly speaking, importance sampling is an effi-
cient method to estimate low PFA values. This objective is
achieved by artificial generation of 'important' events (i.e.
false alarms) through a deliberate distortion, called biasing,
of the statistics of the underlying processes. Of course, at
the very end, the false alarm count must be properly
unbiased [38]. A synthesis of biasing and unbiasing pro-
cedures is the crucial point of the method. The fulfilment
of this task requires having a formal expression, at least, of
the probability of false alarm, and to recognise in this
formal expression the weights for biasing the original
process to compare with the threshold. As far as the pro-
cessors of Figs. 7 and 18 are concerned, these two prob-
lems are really hard to solve. Furthermore, evaluation of
the confidence of importance sampling simulation results
is another major concern.

The final point to be considered is the derivation of
optimum detection schemes to deal with any type of
clutter and target models [45]. A first attempt in this direc-
tion is due to Schleher and Kozin [39], who apply the
theory of stochastic filtering to this complex detection
problem. Their approach, however, is limited to the real-
valued continuous-time signal case. Another limitation
refers to the assumption of completely known target signal
when competing with clutter.

A powerful generalisation of this approach is available
in Reference 28, which represents the first systematic
approach, as far as the authors are aware, to the pro-
cessing of clutter and target signals having any type of
probability density and autocorrelation functions. Briefly,
the rationale behind the proposed approach is to replace
the original complex test of hypotheses, built around the
received radar echoes, with a test of hypotheses operating
on two white Gaussian noise processes having different
variances and mean values. The two white Gaussian pro-
cesses correspond to the residuals (statistical innovation)
obtained by estimating the expected received radar echoes
in the two alternative hypotheses. It is shown [28] that, in
the log-normal clutter case, the architectures of the two
estimators are very similar to the homomorphic filter
depicted in Fig. 18.
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a Swerling 2 model. The clutter source is the same as in the
previous example. The detection threshold has been sel-
ected to obtain a PFA value of 1.4 x 10 ~4. This limited
number of examples demonstrates that nonlinear filtering
provides a useful approach to improve detection per-
formance of radar systems in log-normal clutter.

A final remark to be considered refers to the fact that
the covariance matrix M of the samples z'k9 zk-l9 zk_2

 ls

a priori unknown. A usual approach to this problem leads
to the adaptive processor, which estimates the covariance
matrix on-line and efficiently evaluates the filter weights
W. An exhaustive overview of the possible adaptive tech-
niques to be employed can be found in Reference 27. Here
it is sufficient to consider the schematic diagram of the
adaptive processor, which is shown in Fig. 23. The adap-
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8 Appendix

8.1 Evaluation of joint PDF of (u, v)
Consider the transformation of variables

(37)

where x, y are independent zero-mean Gaussian variates.
According to Reference 31 (Section 7-2, p. 201), the

PDF p(u, v) can be evaluated, provided that a countable
number of solutions (xi9 yt) exist for (x, y) for any pair
(u, v) as follows:

(38)

where J(X1, y() denotes the Jacobian of the transformation,
evaluated in the ith solution.

In the present case, inverting/(x, y) and g(x, y) yields

(39)

since, from the couple (w, v), the value of y is determined in
the interval [ — n, n\

The Jacobian of the transformation evaluates as

(40)

independently of i. Hence, each term in the summation
contributes to p(u, v) as follows:

(41)



Taking into account the explicit expressions (eqn. 39) of X1

and yi9 from eqn. 38 the expression (eqn. 12) of p(u, v)
follows.

8.2 Evaluation of statistics of w
Assume that (x, y) are zero-mean, jointly distributed
Gaussian variates, with standard deviations Gx, oy and a
correlation coefficient p between them. Evaluation of E{w}
requires the computation of

which coincides with eqn. 10, where oxy represents GxGyp.
In order to evaluate E(IwI2J, recall that, according to

the definition of eqn. 8, it turns out that

(46)

and, since the marginal distribution of x is Gaussian, with
zero mean and variance cr2, the required expectation is

(47)

This is easily solved, resorting again to eqn. 43 with the
new positions

(42)

(43)

(44)

which can be solved by using the relationship

with the following assumptions:
giving rise to eqn. 11.

(48)

(45)

Then it follows that
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