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30.1 Shear Viscosity

An important mechanical property of fluids is viscosity. Physical systems and applications as diverse as
fluid flow in pipes, the flow of blood, lubrication of engine parts, the dynamics of raindrops, volcanic
eruptions, planetary and stellar magnetic field generation, to name just a few, all involve fluid flow and
are controlled to some degree by fluid viscosity. Viscosity is defined as the internal friction of a fluid. The
microscopic nature of internal friction in a fluid is analogous to the macroscopic concept of mechanical
friction in the system of an object moving on a stationary planar surface. Energy must be supplied (1) to
overcome the inertial state of the interlocked object and plane caused by surface roughness, and (2) to
initiate and sustain motion of the object over the plane. In a fluid, energy must be supplied (1) to create
viscous flow units by breaking bonds between atoms and molecules, and (2) to cause the flow units to
move relative to one another. The resistance of a fluid to the creation and motion of flow units is due
to the viscosity of the fluid, which only manifests itself when motion in the fluid is set up. Since viscosity
involves the transport of mass with a certain velocity, the viscous response is called a momentum transport
process. The velocity of flow units within the fluid will vary, depending on location. Consider a liquid
between two closely spaced parallel plates as shown in Figure 30.1. A force, F, applied to the top plate
causes the fluid adjacent to the upper plate to be dragged in the direction of F. The applied force is
communicated to neighboring layers of fluid below, each coupled to the driving layer above, but with
diminishing magnitude. This results in the progressive decrease in velocity of each fluid layer, as shown
by the decreasing velocity vector in Figure 30.1, away from the upper plate. In this system, the applied
force is called a shear (when applied over an area it is called a shear stress), and the resulting deformation
rate of the fluid, as illustrated by the velocity gradient dUx/dz, is called the shear strain rate, ·γzx. The
mathematical expression describing the viscous response of the system to the shear stress is simply:

(30.1)

where τzx, the shear stress, is the force per unit area exerted on the upper plate in the x-direction (and
hence is equal to the force per unit area exerted by the fluid on the upper plate in the x-direction under
the assumption of a no-slip boundary layer at the fluid–upper plate interface); dUx/dz is the gradient of
the x-velocity in the z-direction in the fluid; and η is the coefficient of viscosity. In this case, because one
is concerned with a shear force that produces the fluid motion, η is more specifically called the shear
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dynamic viscosity. In fluid mechanics, diffusion of momentum is a more useful description of viscosity
where the motion of a fluid is considered without reference to force. This type of viscosity is called the
kinematic viscosity, ν, and is derived by dividing dynamic viscosity by ρ, the mass density:

(30.2)

The definition of viscosity by Equation 30.1 is valid only for laminar (i.e., layered or sheet-like) or
streamline flow as depicted in Figure 30.1, and it refers to the molecular viscosity or intrinsic viscosity.
The molecular viscosity is a property of the material that depends microscopically on bond strengths,
and is characterized macroscopically as the fluid’s resistance to flow. When the flow is turbulent, the
diffusion of momentum is comprised of viscous contributions from the motion, sometimes called the
eddy viscosity, in addition to the intrinsic viscosity. Viscosities of turbulent systems can be as high as 106

times greater than viscosities of laminar systems, depending on the Reynolds number.
Molecular viscosity is separated into shear viscosity and bulk or volume viscosity, ηv, depending on the

type of strain involved. Shear viscosity is a measure of resistance to isochoric flow in a shear field, whereas
volume viscosity is a measure of resistance to volumetric flow in a three-dimensional stress field. For
most liquids, including hydrogen bonded, weakly associated or unassociated, and polymeric liquids as
well as liquid metals, η/ηv ≈ 1, suggesting that shear and structural viscous mechanisms are closely related
[1].

The shear viscosity of most liquids decreases with temperature and increases with pressure, which is
opposite to the corresponding responses for gases. An increase in temperature usually causes expansion
and a corresponding reduction in liquid bond strength, which in turn reduces the internal friction.
Pressure causes a decrease in volume and a corresponding increase in bond strength, which in turn
enhances the internal friction. For most situations, including engineering applications, temperature
effects dominate the antagonistic effects of pressure. However, in the context of planetary interiors where
the effects of pressure cannot be ignored, pressure controls the viscosity to the extent that, depending
on composition, it can cause fundamental changes in the molecular structure of the fluid that can result
in an anomalous viscosity decrease with increasing pressure [2].

Newtonian and Non-Newtonian Fluids

Equation 30.1 is known as Newton’s law of viscosity and it formulates Sir Isaac Newton’s definition of
the viscous behavior of a class of fluids now called Newtonian fluids.

FIGURE 30.1 System for defining Newtonian viscosity. When the upper plate is subjected to a force, the fluid
between the plates is dragged in the direction of the force with a velocity of each layer that diminishes away from
the upper plate. The reducing velocity eventually reaches zero at the lower plate boundary.
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If the viscosity throughout the fluid is independent of strain rate, then the fluid is said to be a Newtonian
fluid. The constant of proportionality is called the coefficient of viscosity, and a plot of stress vs. strain
rate for Newtonian fluids yields a straight line with a slope of η, as shown by the solid line flow curve
in Figure 30.2. Examples of Newtonian fluids are pure, single-phase, unassociated gases, liquids, and
solutions of low molecular weight such as water. There is, however, a large group of fluids for which the
viscosity is dependent on the strain rate. Such fluids are said to be non-Newtonian fluids and their study
is called rheology. In differentiating between Newtonian and non-Newtonian behavior, it is helpful to
consider the time scale (as well as the normal stress differences and phase shift in dynamic testing)
involved in the process of a liquid responding to a shear perturbation. The velocity gradient, dUx/dz, in
the fluid is equal to the shear strain rate, ·γ, and therefore the time scale related to the applied shear
perturbation about the equilibrium state is ts, where ts =

·γ–1. A second time scale, tr, called the relaxation
time, characterizes the rate at which the relaxation of the strain in the fluid can be accomplished and is
related to the time it takes for a typical flow unit to move a distance equivalent to its mean diameter.
For Newtonian water, tr ~ 10–12 s and, because shear rates greater than 106 s–1 are rare in practice, the
time required for adjustment of the shear perturbation in water is much less than the shear perturbation
period (i.e., tr « ts). However, for non-Newtonian macromolecular liquids like polymeric liquids, for
colloidal and fiber suspensions, and for pastes and emulsions, the long response times of large viscous
flow units can easily make tr > ts. An example of a non-Newtonian fluid is liquid elemental sulfur, in
which long chains (polymers) of up to 100,000 sulfur atoms form flow units that are easily entangled,
which bind the liquid in a “rigid-like” network. Another example of a well-known non-Newtonian fluid
is tomato ketchup.

With reference to Figure 30.2, the more general form of Equation 30.1 also accounts for the nonlinear
response. In terms of an initial shear stress required for flow to start, τxy(0), an initial linear term in the
Newtonian limit of a small range of strain rate, •γ∂τxy(0)/∂γ, and a nonlinear term O( •γ2), the shear stress
dependence on strain rate, τxy(

•γ) can be described as:

FIGURE 30.2 Flow curves illustrating Newtonian and non-Newtonian fluid behavior.
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(30.3)

For a Newtonian fluid, the initial stress at zero shear rate is zero and the nonlinear function O( •γ2) is zero,
so Equation 30.3 reduces to Equation 30.1, since ∂τxy(0)/∂ •γ then equals η. For a non-Newtonian fluid,
τxy(0) may be zero but the nonlinear term O(•γ2) is nonzero. This characterizes fluids in which shear stress
increases disproportionately with strain rate, as shown in the dashed-dotted flow curve in Figure 30.2,
or decreases disproportionately with strain rate, as shown in the dashed flow curve in Figure 30.2. The
former type of fluid behavior is known as shear thickening or dilatancy, and an example is a concentrated
solution of sugar in water. The latter, much more common type of fluid behavior, is known as shear
thinning or pseudo-plasticity; cream, blood, most polymers, and liquid cement are all examples. Both
behaviors result from particle or molecular reorientations in the fluid that increase or decreases, respec-
tively, the internal friction to shear. Non-Newtonian behavior can also arise in fluids whose viscosity
changes with time of applied shear stress. The viscosity of corn starch and water increases with time
duration of stress, and this is called rheopectic behavior. Conversely, liquids whose viscosity decreases with
time, like nondrip paints, which behave like solids until the stress applied by the paint brush for a
sufficiently long time causes them to flow freely, are called thixotropic fluids.

Fluid deformation that is not recoverable after removal of the stress is typical of the purely viscous
response. The other extreme response to an external stress is purely elastic and is characterized by an
equilibrium deformation that is fully recovered on removal of the stress. There are an infinite number
of intermediate or combined viscous/elastic responses to external stress, which are grouped under the
behavior known as viscoelasticity. Fluids that behave elastically in some stress range require a limiting or
yield stress before they will flow as a viscous fluid. A simple, empirical, constitutive equation often used
for this type of rheological behavior is of the form:

(30.4)

where τy is the yield stress, ηp is an apparent viscosity called the plastic viscosity, and the exponent n allows
for a range of non-Newtonian responses: n = 1 is pseudo-Newtonian behavior and is called a Bingham
fluid; n < 1 is shear thinning behavior; and n > 1 is shear thickening behavior. Interested readers should
consult [3–9] for further information on applied rheology.

Dimensions and Units of Viscosity

From Equation 30.1, the dimensions of dynamic viscosity are M L–1 T–1 and the basic SI unit is the Pascal
second (Pa·s), where 1 Pa·s = 1 N s m–2. The c.g.s. unit of dyn s cm–2 is the poise (P). The dimensions
of kinematic viscosity, from Equation 30.2, are L2 T–1 and the SI unit is m2 s–1. For most practical situations,
this is usually too large and so the c.g.s. unit of cm2 s–1, or the stoke (St), is preferred. Table 30.1 lists
some common fluids and their shear dynamic viscosities at atmospheric pressure and 20°C.

TABLE 30.1 Shear Dynamic Viscosity of Some Common Fluids 
at 20°C and 1 atm

Fluid Shear dynamic viscosity (Pa·s)

Air 1.8 × 10–4

Water 1.0 × 10–3

Mercury 1.6 × 10–3

Automotive engine oil (SAE 10W30) 1.3 × 10–1

Dish soap 4.0 × 10–1

Corn syrup 6.0
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Viscometer Types

The instruments for viscosity measurements are designed to determine “a fluid’s resistance to flow,” a
fluid property defined above as viscosity. The fluid flow in a given instrument geometry defines the strain
rates, and the corresponding stresses are the measure of resistance to flow. If strain rate or stress is set
and controlled, then the other one will, everything else being the same, depend on the fluid viscosity. If
the flow is simple (one dimensional, if possible) such that the strain rate and stress can be determined
accurately from the measured quantities, the absolute dynamic viscosity can be determined; otherwise,
the relative viscosity will be established. For example, the fluid flow can be set by dragging fluid with a
sliding or rotating surface, falling body through the fluid, or by forcing the fluid (by external pressure
or gravity) to flow through a fixed geometry, such as a capillary tube, annulus, a slit (between two parallel
plates), or orifice. The corresponding resistance to flow is measured as the boundary force or torque, or
pressure drop. The flow rate or efflux time represents the fluid flow for a set flow resistance, like pressure
drop or gravity force. The viscometers are classified, depending on how the flow is initiated or maintained,
as in Table 30.2.

The basic principle of all viscometers is to provide as simple flow kinematics as possible, preferably
one-dimensional (isometric) flow, in order to determine the shear strain rate accurately, easily, and
independent of fluid type. The resistance to such flow is measured, and thereby the shearing stress is

TABLE 30.2 Viscometer Classification and Basic Characteristics

Drag Flow Types:
Flow set by motion of instrument boundary/surface using external or gravity force.

Type/Geometry Basic characteristics/Comments

Rotating concentric cylinders (Couette) Good for low viscosity, high shear rates; for R2/R1 > 1, see Figure 30.3; hard to 
clean thick fluids

Rotating cone and plate Homogeneous shear, best for non-Newtonian fluids and normal stresses; need 
good alignment, problems with loading and evaporation

Rotating parallel disks Similar to cone-and-plate, but inhomogeneous shear; shear varies with gap 
height, easy sample loading

Sliding parallel plates Homogeneous shear, simple design, good for high viscosity; difficult loading 
and gap control

Falling body (ball, cylinder) Very simple, good for high temperature and pressure; need density and special 
sensors for opaque fluids, not good for viscoelastic fluids

Rising bubble Similar to falling body viscometer; for transparent fluids
Oscillating body Needs instrument constant, good for low viscous liquid metals

Pressure Flow Types:
Fluid set in motion in fixed instrument geometry by external or gravity pressure

Type/Geometry Basic characteristics/Comments

Long capillary (Poiseuille flow) Simple, very high shears and range, but very inhomogeneous shear, bad for 
time dependency, and is time consuming

Orifice/Cup (short capillary) Very simple, reliable, but not for absolute viscosity and non-Newtonian fluids
Slit (parallel plates) pressure flow Similar to capillary, but difficult to clean
Axial annulus pressure flow Similar to capillary, better shear uniformity, but more complex, eccentricity 

problem and difficult to clean

Others/Miscellaneous:

Type/geometry Basic characteristics/Comments

Ultrasonic Good for high viscosity fluids, small sample volume, gives shear and volume 
viscosity, and elastic property data; problems with surface finish and 
alignment, complicated data reduction 

Adapted from C. W. Macosko, Rheology: Principles, Measurements, and Applications, New York: VCH, 1994.
© 1999 by CRC Press LLC



determined. The shear viscosity is then easily found as the ratio between the shearing stress and the
corresponding shear strain rate. Practically, it is never possible to achieve desired one-dimensional flow
nor ideal geometry, and a number of errors, listed in Table 30.3, can occur and need to be accounted for
[4–8]. A list of manufacturers/distributors of commercial viscometers/rheometers is given in Table 30.4.

Concentric Cylinders

The main advantage of the rotational as compared to many other viscometers is its ability to operate
continuously at a given shear rate, so that other steady-state measurements can be conveniently per-
formed. That way, time dependency, if any, can be detected and determined. Also, subsequent measure-
ments can be made with the same instrument and sampled at different shear rates, temperature, etc. For
these and other reasons, rotational viscometers are among the most widely used class of instruments for
rheological measurements.

Concentric cylinder-type viscometers/rheometers are usually employed when absolute viscosity needs
to be determined, which in turn, requires a knowledge of well-defined shear rate and shear stress data.
Such instruments are available in different configurations and can be used for almost any fluid. There
are models for low and high shear rates. More complete discussion on concentric cylinder viscome-
ters/rheometers is given elsewhere [4–9]. In the Couette-type viscometer, the rotation of the outer cylinder,
or cup, minimizes centrifugal forces, which cause Taylor vortices. The latter can be present in the Searle-
type viscometer when the inner cylinder, or bob, rotates.

TABLE 30.3 Different Causes of Viscometers Errors

Error/Effect Cause/Comment

End/edge effect Energy losses at the fluid entrance and exit of main test geometry
Kinetic energy losses Loss of pressure to kinetic energy
Secondary flow Energy loss due to unwanted secondary flow, vortices, etc.; increases with 

Reynolds number
Nonideal geometry Deviations from ideal shape, alignment, and finish
Shear rate non-uniformity Important for non-Newtonian fluids
Temperature variation and viscous heating Variation in temperature, in time and space, influences the measured viscosity
Turbulence Partial and/or local turbulence often develops even at low Reynolds numbers
Surface tension Difference in interfacial tensions
Elastic effects Structural and fluid elastic effects
Miscellaneous effects Depends on test specimen, melt fracture, thixotropy, rheopexy

TABLE 30.4 Viscometer Manufacturers

Manufacturers Model Description

Brookfield Eng. Labs Inc. DV-I+ Concentric cylinder
Custom Scientific Inst. Inc. CS245 Concentric cylinder
Reologica Inst. Various Falling sphere, capillary, rotational
Haake GmbH Various Falling sphere, rotational
Cannon Inst. Co. Various Extensive variety of capillary viscometers
Toyo Seikl Seisaku-Sho Ltd. Capirograph Capillary 
Gottfert Werkstoff-Prufmaschinen GmbH Various Extensive variety of capillary viscometers
Cole-Palmer Inst. Co. GV2100 Falling sphere
Paar Physica U.S.A. Inc. Various Concentric cylinder, falling sphere, capillary
Monsanto Inst. & Equipment ODR 2000 Oscillating viscometer
Nametre Co. Vibrational viscometer Oscilating viscometer
Rheometric Scientific Inc. RM180

RM265
Cone-and-plate, parallel plate
Concentric cylinders

T.A. Instruments Inc. Various Concentric cylinder

Note: All the above manufacturers can be found via the Internet (World Wide Web), along with the most recent
contact information, product description and in some cases, pricing.
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Usually, the torque on the stationary cylinder and rotational velocity of the other cylinder are measured
for determination of the shear stress and shear rate, which is needed for viscosity calculation. Once the
torque, T, is measured, it is simple to describe the fluid shear stress at any point with radius r between
the two cylinders, as shown in Figure 30.3.

(30.5)

In Equation 30.5, Le = (L + Lc), is the effective length of the cylinder at which the torque is measured.
In addition to the cylinder’s length L, it takes into account the end-effect correction Lc [4–8].

For a narrow gap between the cylinders (β = R2/R1 > 1), regardless of the fluid type, the velocity profile
can be approximated as linear, and the shear rate within the gap will be uniform:

(30.6)

where Ω = (ω2 – ω1) is the relative rotational speed and
—

R = (R1 + R2)/2, is the mean radius of the
inner (1) and outer (2) cylinders. Actually, the shear rate profile across the gap between the cylinders
depends on the relative rotational speed, radii, and the unknown fluid properties, which seems an “open-
ended” enigma. The solution of this complex problem is given elsewhere [4–8] in the form of an infinite
series, and requires the slope of a logarithmic plot of T as a function of Ω in the range of interest. Note
that for a stationary inner cylinder (ω1 = 0), which is the usual case in practice, Ω becomes equal to ω2.

FIGURE 30.3 Concentric cylinders viscometer geometry.

τ θr

e

r
T

r L
( ) =

π2 2

γ r
R

R R
( ) ≅

−( )
Ω

2 1
© 1999 by CRC Press LLC



However, there is a simpler procedure [10] that has also been established by German standards [11]. For
any fluid, including non-Newtonian fluids, there is a radius at which the shear rate is virtually independent
of the fluid type for a given Ω . This radius, being a function of geometry only, is called the representative
radius, RR, and is determined as the location corresponding to the so-called representative shear stress,
τR = (τ1 + τ2)/2, the average of the stresses at the outer and inner cylinder interfaces with the fluid, that is:

(30.7)

Since the shear rate at the representative radius is virtually independent on the fluid type (whether
Newtonian or non-Newtonian), the representative shear rate is simply calculated for Newtonian fluid
(n = 1) and r = RR, according to [10]:

(30.8)

The accuracy of the representative parameters depends on the geometry of the cylinders (β) and fluid
type (n).

It is shown in [10] that, for an unrealistically wide range of fluid types (0.35 < n < 3.5) and cylinder
geometries (β = 1 to 1.2), the maximum errors are less than 1%. Therefore, the error associated with the
representative parameters concept is virtually negligible for practical measurements.

Finally, the (apparent) fluid viscosity is determined as the ratio between the shear stress and corre-
sponding shear rate using Equations 30.5 to 30.8, as:

(30.9)

For a given cylinder geometry (β, R2, and Le), the viscosity can be determined from Equation 30.8 by
measuring T and ω2.

As already mentioned, in Couette-type viscometers, the Taylor vortices within the gap are virtually
eliminated. However, vortices at the bottom can be present, and their influence becomes important when
the Reynolds number reaches the value of unity [10, 11]. Furthermore, flow instability and turbulence
will develop when the Reynolds number reaches values of 103 to 104. The Reynolds number, Re, for the
flow between concentric cylinders is defined [11] as:

(30.10)

Cone-and-Plate Viscometers

The simple cone-and-plate viscometer geometry provides a uniform rate of shear and direct measure-
ments of the first normal stress difference. It is the most popular instrument for measurement of non-
Newtonian fluid properties. The working shear stress and shear strain rate equations can be easily derived
in spherical coordinates, as indicated by the geometry in Figure 30.4, and are, respectively:
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(30.11)

and

(30.12)

where R and θ0 < 0.1 rad (≈6°) are the cone radius and angle, respectively. The viscosity is then easily
calculated as:

(30.13)

Inertia and secondary flow increase while shear heating decreases the measured torque (Tm). For more
details, see [4, 5]. The torque correction is given as:

(30.14)

where

(30.15)

FIGURE 30.4 Cone-and-plate viscometer geometry.
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Parallel Disks

This geometry (Figure 30.5), which consists of a disk rotating in a cylindrical cavity, is similar to the
cone-and-plate geometry, and many instruments permit the use of either one. However, the shear rate
is no longer uniform, but depends on radial distance from the axis of rotation and on the gap h, that is:

(30.16)

For Newtonian fluids, after integration over the disk area, the torque can be expressed as a function
of viscosity, so that the latter can be determined as:

(30.17)

Capillary Viscometers

The capillary viscometer is based on the fully developed laminar tube flow theory (Hagen–Poiseuille flow)
and is shown in Figure 30.6. The capillary tube length is many times larger than its small diameter, so
that entrance flow is neglected or accounted for in more accurate measurement or for shorter tubes. The
expression for the shear stress at the wall is:

(30.18)

and

FIGURE 30.5 Parallel disks viscometer geometry.
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(30.19)

where, C > 1.1, P, z, V = 4Q/[πD2], and Q are correction factor, pressure, elevation, the mean flow
velocity, and the fluid volume-flow rate, respectively. The subscripts 1 and 2 refer to the inlet and outlet,
respectively.

The expression for the shear rate at the wall is:

(30.20)

where n = d[log τw]/d[log (8V/D)] is the slope of the measured log(τw) – log (8V/D) curve. Then, the
viscosity is simply calculated as:

(30.21)

FIGURE 30.6 Capillary viscometer geometry.
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Note that n = 1 for a Newtonian fluid, so the first term, [4n/(3n + 1)] becomes unity and disappears
from the above equations. The advantages of capillary over rotational viscometers are low cost, high
accuracy (particularly with longer tubes), and the ability to achieve very high shear rates, even with high-
viscosity samples. The main disadvantages are high residence time and variation of shear across the flow,
which can change the structure of complex test fluids, as well as shear heating with high-viscosity samples.

Glass Capillary Viscometers

Glass capillary viscometers are very simple and inexpensive. Their geometry resembles a U-tube with at
least two reservoir bulbs connected to a capillary tube passage with inner diameter D. The fluid is drawn
up into one bulb reservoir of known volume, V0, between etched marks. The efflux time, ∆t, is measured
for that volume to flow through the capillary under gravity.

From Equation 30.21 and taking into account that V0 = (∆t)VD2π/4 and ∆P = ρg(z1 – z2), the kinematic
viscosity can be expressed as a function of the efflux time only, with the last term, K/∆t, added to account
for error correction, where K is a constant [7]:

(30.22)

Note that for a given capillary viscometer and n > 1, the bracketed term is a constant. The last
correction term is negligible for a large capillary tube ratio, L/D, where kinematic viscosity becomes
linearly proportional to measured efflux time. Various kinds of commercial glass capillary viscometers,
like Cannon-Fenske type or similar, can be purchased from scientific and/or supply stores. They are the
modified original Ostwald viscometer design in order to minimize certain undesirable effects, to increase
the viscosity range, or to meet specific requirements of the tested fluids, like opacity, etc. Glass capillary
viscometers are often used for low-viscosity fluids.

Orifice/Cup, Short Capillary: Saybolt Viscometer

The principle of these viscometers is similar to glass capillary viscometers, except that the flow through
a short capillary (L/D « 10) does not satisfy or even approximate the Hagen–Poiseuille, fully developed,
pipe flow. The influences of entrance end-effect and changing hydrostatic heads are considerable. The
efflux time reading, ∆t, represents relative viscosity for comparison purposes and is expressed as “vis-
cometer seconds,” like the Saybolt seconds, or Engler seconds or degrees. Although the conversion
formula, similar to glass capillary viscometers, is used, the constants k and K in Equation 30.23 are purely
empirical and dependent on fluid types.

(30.23)

where k = 0.00226, 0.0216, 0.073; and K = 1.95, 0.60, 0.0631; for Saybolt Universal (∆t < 100 s), Saybolt
Furol (∆t > 40 s), and Engler viscometers, respectively [12, 13]. Due to their simplicity, reliability, and
low cost, these viscometers are widely used for Newtonian fluids, like in oil and other industries, where
the simple correlations between the relative properties and desired results are needed. However, these
viscometers are not suitable for absolute viscosity measurement, nor for non-Newtonian fluids.

Falling Body Methods

Falling Sphere

The falling sphere viscometer is one of the earliest and least involved methods to determine the absolute
shear viscosity of a Newtonian fluid. In this method, a sphere is allowed to fall freely a measured distance
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through a viscous liquid medium and its velocity is determined. The viscous drag of the falling sphere
results in the creation of a restraining force, F, described by Stokes’ law:

(30.24)

where rs is the radius of the sphere and Ut is the terminal velocity of the falling body. If a sphere of density
ρ2 is falling through a fluid of density ρ1 in a container of infinite extent, then by balancing Equation 30.24
with the net force of gravity and buoyancy exerted on a solid sphere, the resulting equation of absolute
viscosity is:

(30.25)

Equation 30.25 shows the relation between the viscosity of a fluid and the terminal velocity of a sphere
falling within it. Having a finite container volume necessitates the modification of Equation 30.25 to
correct for effects on the velocity of the sphere due to its interaction with container walls (W) and ends
(E). Considering a cylindrical container of radius r and height H, the corrected form of Equation 30.25
can be written as:

(30.26)

where

(30.27)

(30.28)

The wall correction was empirically derived [15] and is valid for 0.16 ≤ rs/r ≤ 0.32. Beyond this range,
the effects of container walls significantly impair the terminal velocity of the sphere, thus giving rise to
a false high viscosity value.

Figure 30.7 is a schematic diagram of the falling sphere method and demonstrates the attraction of
this method — its simplicity of design. The simplest and most cost-effective approach in applying this
method to transparent liquids would be to use a sufficiently large graduated cylinder filled with the liquid.
With a distance marked on the cylinder near the axial and radial center (the region least influenced by
the container walls and ends), a sphere (such as a ball bearing or a material that is nonreactive with the
liquid) with a known density and sized to within the bounds of the container correction, free falls the
length of the cylinder. As the sphere passes through the marked region of length d at its terminal velocity,
a measure of the time taken to traverse this distance allows the velocity of the sphere to be calculated.
Having measured all the parameters of Equation 30.26, the shear viscosity of the liquid can be determined.

This method is useful for liquids with viscosities between 10–3 Pa·s and 105 Pa·s. Due to the simplicity
of design, the falling sphere method is particularly well suited to high pressure–high temperature viscosity
studies.
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Falling Cylinder

The falling cylinder method is similar in concept to the falling sphere method except that a flat-ended,
solid circular cylinder freely falls vertically in the direction of its longitudinal axis through a liquid sample
within a cylindrical container. A schematic diagram of the configuration is shown in Figure 30.8. Taking
an infinitely long cylinder of density ρ2 and radius rc falling through a Newtonian fluid of density ρ1 with
infinite extent, the resulting shear viscosity of the fluid is given as:

(30.29)

Just as with the falling sphere, a finite container volume necessitates modifying Equation 30.29 to account
for the effects of container walls and ends. A correction for container wall effects can be analytically
deduced by balancing the buoyancy and gravitational forces on the cylinder, of length L, with the shear
force on the sides and the compressional force on the cylinder’s leading end and the tensile force on the
cylinder’s trailing end. The resulting correction term, or geometrical factor, G(k) (where k = rc/r), depends
on the cylinder radius and the container radius, r, and is given by:

(30.30)

FIGURE 30.7 Schematic diagram of the falling sphere viscometer. Visual observations of the time taken for the
sphere to traverse the distance d, is used to determine a velocity of the sphere. The calculated velocity is then used
in Equation 30.24 to determine a shear viscosity.
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Unlike the fluid flow around a falling sphere, the fluid motion around a falling flat-ended cylinder is
very complex. The effects of container ends are minimized by creating a small gap between the cylinder
and the container wall. If a long cylinder (here, a cylinder is considered long if ψ ≥ 10, where ψ = L/r)
with a radius nearly as large as the radius of the container is used, then the effects of the walls would
dominate, thereby reducing the end effects to a second-order effect. A major drawback with this approach
is, however, if the cylinder and container are not concentric, the resulting inhomogeneous wall shear
force would cause the downward motion of the cylinder to become eccentric. The potential for misalign-
ment motivated the recently obtained analytical solution to the fluid flow about the cylinder ends [16].
An analytical expression for the end correction factor (ECF) was then deduced [17] and is given as:

(30.31)

where Cw = 1.003852 – 1.961019k + 0.9570952k2. Cw was derived semi-empirically [17] as a disk wall
correction factor. This is based on the idea that the drag force on the ends of the cylinder can be described
by the drag force on a disk. Equation 30.31 is valid for ψ ≤ 30 and agrees with the empirically derived
correction [16] to within 0.6%.

With wall and end effects taken into consideration, the working formula to determine the shear
viscosity of a Newtonian fluid from a falling cylinder viscometer is:

(30.32)

FIGURE 30.8 Schematic diagram of the falling cylinder viscometer. Using the same principle as the falling sphere,
the velocity of the cylinder is obtained, which is needed to determine the shear viscosity of the fluid.
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In the past, this method was primarily used as a method to determine relative viscosities between
transparent fluids. It has only been since the introduction of the ECF [16, 17] that this method could be
rigorously used as an absolute viscosity method. With a properly designed container and cylinder, this
method is now able to provide accurate absolute viscosities from 10–3 Pa·s to 107 Pa·s.

Falling Methods in Opaque Liquids

The falling body methods described above have been extensively applied to transparent liquids where
optical (often visual) observation of the falling body is possible. For opaque liquids, however, falling body
methods require the use of some sensing technique to determine, often in situ, the position of the falling
body with respect to time. Techniques have varied but they all have in common the ability to detect the
body as it moves past the sensor. A recent study at high pressure [18] demonstrated that the contrast in
electric conductivity between a sphere and opaque liquid could be exploited to dynamically sense the
moving sphere if suitably placed electrodes penetrated the container walls as shown in the schematic
diagram in Figure 30.9. References to other similar in situ techniques are given in [18].

FIGURE 30.9 Diagram of one type of apparatus used to determine the viscosity of opaque liquids in situ. The
electrical signal from the passage of the falling sphere indicates the time to traverse a known distance (d) between
the two sensors.
© 1999 by CRC Press LLC



Rising Bubble/Droplet

For many industrial processes, the rising bubble viscometer has been used as a method of comparing
the relative viscosities of transparent liquids (such as varnish, lacquer, and beer) for decades. Although
its use was widespread, the actual behavior of the bubble in a viscous liquid was not well understood
until long after the method was introduced [19]. The rising bubble method has been thought of as a
derivative of the falling sphere method; however, there are primary differences between the two. The
major physical differences are (1) the density of the bubble is less that of the surrounding liquid, and
(2) the bubble itself has some unique viscosity. Each of these differences can, and do, lead to significant
and extremely complex rheological problems that have yet to be fully explained. If a bubble of gas or
droplet of liquid with a radius, rb, and density, ρ′, is freely rising in some enclosing viscous liquid of
density ρ, then the shear viscosity of the enclosing liquid is determined by:

(30.33)

where

(30.34)

where η′  is the viscosity of the bubble. It must be noted that when the value of η′  is large (solid spheres),
ε = 1, which reduces Equation 30.33 to Equation 30.25. For small values of η′  (gas bubbles), ε becomes
2/3, and the viscosity calculated by Equation 30.33 is 1.5 times greater than the viscosity calculated by
Equation 30.25. It is apparent from Equation 30.33 and 30.25 that if the density of the bubble is less than
the density of the enclosing liquid, and the terminal velocity of the sphere is negative, which indicates
upward motion since the downward direction is positive.

During the rise, great care must be taken to avoid contamination of the bubble and its surface with
impurities in the surrounding liquid. Impurities can diffuse through the surface of the bubble and
combine with the fluid inside. Because the bubble has a low viscosity, the upward motion in a viscous
medium induces a drag on the bubble that is responsible for generating a circulatory motion within it.
This motion can efficiently distribute impurities throughout the whole of the bubble, thereby changing
its viscosity and density. Impurities left on the surface of the bubble can form a “skin” that can significantly
affect the rise of the bubble, as the skin layer has its own density and viscosity that are not included in
Equation 30.33. These surface impurities also make a significant contribution to the inhomogeneous
distribution of interfacial tension forces. A balance of these forces is crucial for the formation of a spherical
bubble. The simplest method to minimize the above effects is to employ minute bubbles by introducing
a specific volume of fluid (gas or liquid), with a syringe or other similar device, at the lower end of the
cylindrical container. Very small bubbles behave like solid spheres, which makes interfacial tension forces
and internal fluid motion negligible.

In all rising bubble viscometers, the bubble is assumed to be spherical. Experimental studies of the
shapes of freely rising gas bubbles in a container of finite extent [20] have shown that (to 1% accuracy)
a bubble will form and retain a spherical shape if the ratio of the radius of the bubble to the radius of
the confining cylindrical container is less than 0.2. These studies have also demonstrated that the effect
of the wall on the terminal velocity of a rising spherical bubble is to cause a large decrease (up to 39%)
in the observed velocity compared to the velocity measured within an unbounded medium. This implies
that the walls of the container influence the velocity of the rising bubble sooner than its geometry. In
this method, end effects are known to be large. However, a rigorous, analytically or empirically derived
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correction factor has not yet appeared. To circumvent this, the ratio of container length to sphere diameter
must be in the range of 10 to 100. As in other Stokian methods, this allows the bubble’s velocity to be
measured at locations that experience negligible end effects.

Considering all of the above complications, the use of minute bubbles is the best approach to ensure
a viscosity measurement that is least affected by the liquid to be investigated and the container geometry.

Oscillating Method

If a liquid is contained within a vessel suspended by some torsional system that is set in oscillation about its
vertical axis, then the motion of the vessel will experience a gradual damping. In an ideal situation, the
damping of the motion of the vessel arises purely as a result of the viscous coupling of the liquid to the vessel
and the viscous coupling between layers in the liquid. In any practical situation, there are also frictional losses
within the system that aid in the damping effect and must be accounted for in the final analysis. From
observations of the amplitudes and time periods of the resulting oscillations, a viscosity of the liquid can be
calculated. A schematic diagram of the basic set-up of the method is shown in Figure 30.10. Following initial
oscillatory excitation, a light source (such as a low-intensity laser) can be used to measure the amplitudes
and periods of the resulting oscillations by reflection off the mirror attached to the suspension rod to give
an accurate measure of the logarithmic decrement of the oscillations (δ) and the periods (T).

Various working formulae have been derived that associate the oscillatory motion of a vessel of radius r
to the absolute viscosity of the liquid. The most reliable formula is the following equation for a cylindrical
vessel [21]:

(30.35)

FIGURE 30.10 Schematic diagram of the oscillating cup viscometer. Measurement of the logarithmic damping of
the amplitude and period of vessel oscillation are used to determine the absolute shear viscosity of the liquid.
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where

(30.36)

(30.37)

(30.38)

(30.39)

I is the mass moment of inertia of the suspended system and ρ is the density of the liquid.
A more practical expression of Equation 30.35 is obtained by introducing a number of simplifications.

First, it is a reasonable assumption to consider δ to be small (on the order of 10–2 to 10–3). This reduces
a0 and a2 to values of 1 and –1, respectively. Second, the effects of friction from the suspension system
and the surrounding atmosphere can be experimentally determined and contained within a single
variable, δ0. This must then be subtracted from the measured δ. A common method of obtaining δ0 is
to observe the logarithmic decrement of the system with an empty sample vessel and subtract that value
from the measured value of δ. With these modifications, Equation 30.35 becomes:

(30.40)

where

(30.41)

(30.42)

(30.43)

It has been noted [22] that the analytical form of Equation 30.40 needs an empirically derived,
instrument-constant correction factor (ζ) in order to agree with experimentally measured values of η.
The discrepancy between the analytical form and the measured value arises as a result of the above
assumptions. However, these assumptions are required as there are great difficulties involved in solving
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the differential equations of motion of this system. The correction factor is dependent on the materials,
dimensions, and densities of each individual system, but generally lies between the values of 1.0 and 1.08.
The correction factor is obtained by comparing viscosity values of calibration materials determined by
an individual system (with Equation 30.35) and viscosity values obtained by another reliable method
such as the capillary method.

With the above considerations taken into account, the final working Roscoe’s formula for the absolute
shear viscosity is:

(30.44)

The oscillating cup method has been used, and is best suited for use with low values of viscosity within
the range of 10–5 Pa s to 10–2 Pa·s. Its simple closed design and use at high temperatures has made this
method very popular when dealing with liquid metals.

Ultrasonic Methods

Viscosity plays an important role in the absorption of energy of an acoustic wave traveling through a
liquid. By using ultrasonic waves (104 Hz < f < 108 Hz), the elastic, viscoelastic, and viscous response of
a liquid can be measured down to times as short as 10 ns. When the viscosity of the fluid is low, the
resulting time scale for structural relaxation is shorter than the ultrasonic wave period and the fluid is
probed in the relaxed state. High-viscosity fluids subjected to ultrasonic wave trains respond as a stiff
fluid because structural equilibration due to the acoustic perturbation does not go to completion before
the next wave cycle. Consequently, the fluid is said to be in an unrelaxed state that is characterized by
dispersion (frequency-dependent wave velocity) and elastic moduli that reflect a much stiffer liquid. The
frequency dependence of the viscosity relative to some reference viscosity (η0) at low frequency, η/η0,
and of the absorption per wavelength, αλ , where α is the absorption coefficient of the liquid and λ is
the wavelength of the compressional wave, for a liquid with a single relaxation time, t, is shown in
Figure 30.11. The maximum absorption per wavelength occurs at the relaxation frequency when ωτ = 1

FIGURE 30.11 Effects of liquid relaxation (relaxation frequency corresponds to ωτ = 1 where ω = 2πf ) on relative
viscosity (upper) and absorption per wavelength (lower) in the relaxed elastic (ωτ < 1) and unrelaxed viscoelastic
(ωτ > 1) regimes.
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and is accompanied by a step in η/η0, as well as in other properties such as velocity and compressibility.
Depending on the application of the measured properties, it is important to determine if the liquid is in
a relaxed or unrelaxed state.

A schematic diagram of a typical apparatus for measuring viscosity by the ultrasonic method is shown
in Figure 30.12. Mechanical vibrations in a piezoelectric transducer travel down one of the buffer rods
(BR-1 in Figure 30.12) and into the liquid sample and are received by a similar transducer mounted on
the other buffer rod, BR-2. In the fixed buffer rod configuration, once steady-state conditions have been
reached, the applied signal is turned off quickly. The decay rate of the received and amplified signal,
displayed on an oscilloscope on an amplitude vs. time plot as shown in Figure 30.12(a), gives a measure
of α. The received amplitude decays as:

(30.45)

where A is the received decaying amplitude, A0 is the input amplitude, b is an apparatus constant that
depends on other losses in the system such as due to the transducer, container, etc. that can be evaluated
by measuring the attenuation in a standard liquid, c is the compressional wave velocity of the liquid, and
t′ is time. At low frequencies, the absorption coefficient is expressed in terms of volume and shear viscosity
as:

(30.46)

FIGURE 30.12 Schematic diagram of apparatus for liquid shear and volume viscosity determination by ultrasonic
wave attenuation measurement showing the recieved signal amplitude through the exit buffer rod (BR-2) using (a) a
fixed buffer rod (BR-2) using (a) a fixed buffer rod configuration, and (b) an interferometric technique with moveable
buffer rod.
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One of the earliest ultrasonic methods of measuring attenuation in liquids is based on acoustic
interferometry [23]. Apart from the instrumentation needed to move and determine the position of one
of the buffer rods accurately, the experimental apparatus is essentially the same as for the fixed buffer
rod configuration [24]. The measurement, however, depends on the continuous acoustic wave interfer-
ence of transmitted and reflected waves within the sample melt as one of the buffer rods is moved away
from the other rod. The attenuation is characterized by the decay of the maxima amplitude as a function
of melt thickness as shown on the interferogram in Figure 30.12(b). Determining α from the observed
amplitude decrement involves numerical solution to a system of equations characterizing complex wave
propagation [25]. The ideal conditions represented in the theory do not account for such things as wave
front curvature, buffer rod end nonparallelism, surface roughness, and misalignment. These problems
can be addressed in the amplitude fitting stage but they can be difficult to overcome. The interested
reader is referred to [25] for further details.

Ultrasonic methods have not been and are not likely to become the mainstay of fluid viscosity
determination simply because they are more technically complicated than conventional viscometry
techniques. And although ultrasonic viscometry supplies additional related elastic property data, its niche
in viscometry is its capability of providing volume viscosity data. Since there is no other viscometer to
measure ηv, ultrasonic absorption measurements play a unique role in the study of volume viscosity.
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