I CHAPTER 9

Frequency-Domain Signal Analysis

Frequency-domain signal analysis covers a wide variety of techniques involving the
Fourier transformation of the signal. The signal’s frequency domain representation
is then manipulated, decomposed, segmented, classified, and interpreted. One cen-
tral idea is that of a filfer: a linear, translation-invariant system that allows one band
of frequencies to appear in the output and suppresses the others. Where signal ele-
ments of interest occupy a restricted spectrum, filters invariably enter into the early
processing of candidate signals. In other ways—often purely theoretical—
frequency-domain analysis is important. For example, in this chapter we substanti-
ate the methods of matched filtering and scale-space decomposition, and the Fourier
transform plays a crucial role.

The main tools for frequency-domain analysis are of course the discrete signal
transforms: the discrete-time Fourier transform (DTFT); its generalization, the z-
transform; and especially the discrete Fourier transform (DFT). Many of the intro-
ductory applications proceed from Chapter 1 examples. There are extensions of
techniques already broached in Chapters 4 and 6. Modern spectral analysis applica-
tions have a digital computer at their heart, and they rely on the either the DFT or
one of its many fast versions. Some signal filtering applications use infinite impulse
response (IIR) filtering methods, implemented using feedback, as discussed in
Chapter 2. The DTFT is convenient for obtaining a theoretical understanding of
how such filters suppress and enhance signal frequencies. We often begin with an
analog filter and convert it to a discrete filter. Thus, we shall have occasion to use
the continuous-domain Fourier transform. We also briefly explain how the Laplace
transform, a generalization of the Fourier transform, can be used in certain analog
filter constructions. The z-transform figures prominently in this conversion process.

We are generally working with complex-valued signals, but the thresholding, seg-
mentation, and structural decomposition methods that Chapter 4 developed for time-
domain signal analyis are just as useful in the frequency domain. For example, to
find the spectral region where a source signal contains significant energy, we thresh-
old the signal’s magnitude or squared magnitude (power) spectrum. We know that
thresholding is often improved by filtering the data, so we are inclined to filter the
frequency-domain magnitudes too. This leads directly to the technique of windowing
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time-domain signal slices before Fourier transformation. The meaning of the analyt-
ical results can be quite different, of course; but as long as we understand the trans-
form relation clearly and capture that in the application design, then the time-domain
and frequency-domain procedures are remarkably similar. In some applications, the
results of this analysis convey the signal content. For other tasks, an inverse transfor-
mation back to the time domain is required. In any case, the principal tools are the
Fourier transform and its inverse, in both their analog and discrete formulations.

Our theoretical resources include Chapters 5, 7, and 8. This chapter introduces
some further theory, appropriate to the particular applications upon which we focus.
Specific applications include tone detection, speech recognition and enhancement,
and chirp analysis. Some of these experiments show that the Fourier transform is
precisely the tool we need to make the application work. Further reflection reveals
problems in applying the Fourier transforms. This motivates a search for frequency
transforms that incorporate a time-domain element: time-frequency and time-scale
transforms, which are topics for the final three chapters.

Fourier-domain techniques also offer many insights into our earlier material.
Scale space and random signals are considered once more, this time from the van-
tage point of the new frequency-domain methods. The last two sections detail the
construction of special filters for frequency analysis and possible structures for their
application. Later chapters will draw the link between this approach to signal pro-
cessing and the notion of a multiresolution analysis of the L? Hilbert space.

References on Fourier transforms include Refs. 1-5. Popular signal processing
texts that introduce Fourier methods and construct filters from the theory are Refs.
6-10. An older book that concludes its thorough coverage of signal theory with
detailed application studies in speech and radar signal analysis is Ref. 11.

Notation. The present discussion covers both analog and discrete filters. We use
the following notations for clarity:

(1) Analog filters: The impulse response is A(f), the radial Fourier transform is
H(Q), and the Laplace transform is H(s); in some contexts, we insert the
subscript a: h,(1), H,(€2), and Hy ,(s).

(i) Discrete filters: The impulse response is h(n), or any FORTRAN-like
integer independent variable such as h(@), h(k), or h(m); the discrete time
Fourier transform is H(®); and the discrete Fourier transform is H(k).

(>iii) We continue to use j2 =-1.

9.1 NARROWBAND SIGNAL ANALYSIS

The most basic frequency-domain analysis task involves detecting and interpreting
more or less isolated periodic components of signals. For some signals, or at least
for some part of their domain, a few oscillatory components contain the bulk of the
energy. It is such narrowband signals—sinusoids (tones) and dual-tones, mainly,
but we could also allow complex-valued exponentials into this category—that we
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begin our study of Fourier transform applications. We distinguish narrowband sig-
nals from wideband signals, where the energy is spread over many frequencies. A
signal that contains sharp edges, for example, will generally have frequency-domain
energy dispersed across a wide spectral range.

Although basic, a tone detection application leads to important practical con-
cepts: noise removal, filtering, phase delay, group delay, and windowing. Filters are
frequency-selective linear translation invariant systems. Filtering a signal can
change the time location of frequency components. For instance, a filter might retard
a sinusoidal pulse and the signal envelope itself, depending on their frequency.
These time lags define the phase and group delay, respectively. Knowing them is
crucial for application designs that must compensate for filter delays. Finally, we
often need to analyze signals in chunks, but so doing invariably corrupts the signal
spectrum. Only by looking at the signal through a well-constructed window can we
mitigate this effect. This concept leads directly to the modern theory of the win-
dowed Fourier transform (Chapter 10) and eventually to wavelets (Chapter 11).

Theory from earlier chapters now becomes practice. For designing filters, we
employ the discrete-time Fourier transform (DTFT). For implementing filters on a
computer, we use the discrete Fourier transform (DFT) or one of its fast Fourier
transform (FFT) schemes. Some infinite impulse response filter implementations
are particularly powerful, and we visualize their possible recursive implementation
on a computer through the z-transform (Chapter 8). We definitely do not need the
continuous-domain Fourier transform (FT), right? Quite wrong: We can obtain very
good discrete filters by first designing an analog filter and then converting it into a
discrete filter. It is perhaps a surprising fact, but this is the preferred method for con-
structing high-performance discrete filters. We even use the Fourier series (FS);
after a bit of contemplation, we realize that the FS converts an analog 1210, 2] sig-
nal into a discrete /> signal—just like the inverse DTFT. Indeed, as mathematical
objects, they are one and the same.

9.1.1 Single Oscillatory Component: Sinusoidal Signals

Let the real-valued signal x(n) contain a single oscillatory component and perhaps
some corrupting noise. We have seen such examples already in the first chapter—
x(n) is the Wolf sunspot count, for instance. Now, in earlier chapters, introductory
applications explored the discrete Fourier transform as a tool for detecting such
periodicities. The source signal’s oscillatory component manifests itself as an iso-
lated cluster of large magnitude spectral values. We can usually segment the fre-
quency components with a simple threshold around the maximum value; this is a
straightforward application of the DFT.

A tone is a time-domain region of a signal that consists of only a few sinusoidal
components. Briefly, detection steps are as follows:

(1) Select signal regions that may contain tones.

(ii) For noise removal and frequency selection, processing the signal through
various filters may benefit the analysis steps that follow.
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(iii) Fourier transform the signal over such regions.

(iv) For each such region, examine the spectrum for large concentrations of sig-
nal energy in a few frequency coefficients.

(v) Optionally, once a possible tone has been identified through frequency-
domain analysis, return to the time domain to more precisely localize the tone.

The discrete signal sometimes arises from sampling an analog signal x,(f): x(n) =
x,(nT), where T > 0 is the sampling period. But perhaps—as in the case of sunspot
estimates—the signal is naturally discrete. If we take select a window of signal val-
ues, 0 < n < N, we can compute the DFT over these N samples:

No1 —Z%kn
X(k) = Y x(n)e . ©.1)

n=0

In (9.1), X(0) represents the direct current (DC), or constant, or zero frequency com-
ponent. The signal average over the interval [0, N — 1] is X(0)/N, and it represents
zero cycles per sample (hertz) in the transform. If x(n) is real, then X(k) = X(N — k)
for all 1 <k < N — 1. The transform is invertible:

No1 2mjkn

x(n) = ~ ¥ X(ke N . 9.2)
=0

1
Nk
Equations (9.1) and (9.2) are the analysis and synthesis equations, respectively, for
the DFT. If x,(f) = cos(2m#/NT) is a real-valued analog sinusoid with frequency
(NT)_1 hertz, then upon sampling it becomes x(n) = x,(nT) = cos(2nn/N). We can
expand 2x(n) = [exp(2njn/N) + exp(2mjn(N — 1)/N)], which is a synthesis equation
(9.2) for the sinusoid. Thus, the smallest frequency represented by the transform
coefficients, the frequency resolution of the DFT, is (NT)~!. This means that energy
from source signal periodicities appears in the transform coefficients in at least two
different places. If N is even, then the highest frequency represented by the trans-
form values is 1/(2T) = (NT)_1 X (N/2) hertz. If N is odd, then the two middle coeffi-
cients share the Nyquist frequency energy.

This section explains the basic methods for applying the discrete Fourier trans-
form (DFT) and discrete-time Fourier transform (DTFT) for detecting oscillatory
components of signals. Strictly speaking, the DFT applies to periodic signals and
the DTFT to aperiodic signals.

9.1.2 Application: Digital Telephony DTMF

Let us consider the problem of recognizing multiple oscillatory components in a
source signal. If the source contains multiple periodic components, then the trans-
form exhibits multiple clusters of large values. To spot significant oscillatory signal
features, we might invoke the more powerful threshold selection methods covered
in Chapter 4, applying them to the magnitude spectrum instead of the signal
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amplitude values. Thresholding the magnitude spectrum does work, but it does not
take us very far.

This is the limitation of peak finding in the magnitude spectrum: These magni-
tudes represent frequencies over the entire time domain of the source signal. If
oscillations at different times have the same frequency, or those that occur at the
same time overlap with others of different wavelengths, then this potentially crucial
information for signal understanding is lost in the Fourier transformation. Many
applications involve signals with localized frequency components. What compli-
cates such applications is getting the Fourier transform—an inherently global trans-
formation—to work for us in a time localized fashion.

This application—however humble—inspires three general approaches for iden-
tifying and localizing signal frequency components:

® Preliminary time-domain analysis, arriving at a segmentation of the signal’s
values, and subsequent frequency-domain analysis on the segments of promise
(Section 9.1.2.2);

® An important tool—the time-frequency map or plane—which generally
decomposes the signal into pieces defined by the time interval over which they
occur and the frequencies over which their oscillatory components range (Sec-
tion 9.1.2.3);

® Another significant tool—the filter bank—which directs the signal values into
a parallel array of frequency selective linear, translation-invariant (LTI) sys-
tems (filters) and analyzes the outputs jointly (Section 9.1.2.4).

It will become clear that these three alternatives couple their time- and frequency-
domain analyses ever more closely. Thus, in the first case, algorithms finish the
time-domain segmentation and hand the results over to spectral analysis. Using the
second alternative’s time-frequency plane, in contrast, we decompose the signal into
pieces that represent a particular time interval and a particular frequency span. The
analyses within the two domains, instead of working in strict cascade, operate
simultaneously, albeit through restricted time and frequency windows. Finally, in a
filter bank, the signal’s values are streamed into the filters in parallel, and applica-
tion logic interprets the output of the filters. Since this can occur with each signal
sample, the output of the intepretive logic can be associated with the particular time
instant at which the frequency-domain logic makes a decision. So the filter bank, at
least as we sketch it here, comprises a very intimate merging of both time- and
frequency-domain signal analysis.

9.1.2.1 Dual-Tone Pulses in Noise. Let us review the discrete dual-tone
multifrequency (DTMF) pulses that modern digital telephone systems use for sig-
naling [12]. Table 9.1 shows the standard pairs.

True DTMF decoders—such as in actual use at telephone company central
offices—must stop decoding DTMF pulses when there is speech on the line. One fre-
quency-domain trait that allows an application to detect the presence of human voices
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TABLE 9.1. DTMF Frequency Pairs?

High (Hz): 1209 1336 1477 1633
Low (Hz):

697 1 2 3 A

770 4 5 6 B

852 7 8 9 C

941 * 0 # D

“The letter tones are generally reserved for the telephone company’s signaling, testing,
and diagnostic uses.

voices is that speech contains second and third harmonics [13], which the DTMF
tones by design do not [12]. For example, a vowel sound could contain significant
energy at 300 Hz, 600 Hz, and 900 Hz. An upcoming speech analysis application
confirms this. But note in Table 9.1 that the second harmonic of the low tone at
697 Hz (that would be approximately 1.4 kHz) lies equidistant from the high tones
at 1336 Hz and 1477 Hz. Later in this chapter, we will consider mixed speech and
DTMF tones and see how to discriminate between control tones and voice. For now,
let us return to the basic tone detection problem.

Suppose we represent a DTMF telephony pulse by a sum of two sinusoids cho-
sen from the above table enclosed within a Gaussian envelope. If we sample such an
analog signal at ¢ = 8192 Hz, then the sampling period is T = 819271 s.

Let us briefly cover the synthesis of the dual-tone multifrequency signal used in
this example.

The analog sinusoidal signals for a “5” and “9” tone are, respectively,

s5(1) = sin(2mF5’a) + sin(2mF5’b), (9.3a)

so(1) = sin(2meFy )+ sin(2meFy ,) . (9.3b)

where F5 , =770, F5 ;= 1336, Fg , = 852, and F5 ;, = 1477 as in Table 9.1. We need
to window these infinite duration signals with Gaussians that—effectively—die to
zero outside a small time interval. We take the window width L =50 ms, let 6 = L/2,
and use the window functions

-1

2(52

gs(t) = e , (9.42)

_(t— t9)2

202

go(t) = e , (9.4b)

where 15 =0.125 s and 79 = 0.375 s are the centers of the “5” and “9” pulse windows,
respectively. Let x(¢) = 55(1)g5(2) + s9(£)go(?) + n(t), where n(f) is a noise term.
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The noise term n(t) could be genuine noise arduously derived from a real system,
such as a radioactive source or galactic background radiation. Or it could be pseudo-
random noise conveniently synthesized on a digital computer.1 In order to control
the noise values for the experiments in this section, let us make noise by assuming
some realistic distribution functions and using some standard algorithms for the
synthesis.

A variety of methods exist for synthesizing noise. For example, an early algorithm
for generating a uniform random variable [14] called the congruential generator is

x(n) = [Ax(n—1)](mod M), 9.5)

where A is the multiplier, M is the modulus, and the iteration typically starts with a
choice for x(0), the seed value. The method produces values in the range [0, M — 1)
and works better for large M. For uniform noise on [0, 1) divide (9.5) by M.

A better algorithm is the linear congruential generator:

x(n) = [Ax(n—-1)+ C](mod M), (9.6)

where C is the increment. If C = 0, then (9.6) reduces to (9.5). The following values
make the congruential method work well [15]: A = 16,807; M = 231 _ 1;and C=0.
For the linear congruential iteration, nice choices are A = 8,121; M = 134,456; and
C=284117[16].

There is a standard algorithm for generating pseudo-random normally (Gauss-
ian) distributed sequences [17]. Let x;(n) and x,(n) be two uniformly distributed
random variables on (0, 1) and define

y(n) = cos(2mx,(n)),/-2In(x,(n)), (9.7a)
y,(n) = sin(2nx,(n)),/-2In(x,(n)). (9.7b)

Then y,(n) and y,(n) are zero-mean normally distributed random variables. Refer-
ences on random number generation include Refs. 18 and 19.

The chapter exercises invite readers to change signal to noise ratios and explore
the impact on detection algorithms.

We begin with an analysis of the DTMF signal using the discrete Fourier trans-
form on the entire time interval of N = 4096 points. Let x(n) = x,(nT) be the dis-
cretized input, where T =8 19271 s, x,(?) is the real-world analog representation, and
n=0,1,.. N—1=4095. Figure 9.1 (second from top) shows the magnitude of the
DFT coefficients (9.1). Even though the presence of DTMF tones in the signal is
clear, we cannot be sure when the tones occurred. For example, we detect two low
tones, 770 and 852 Hz, and we can see two high tones, 1336 and 1477 Hz, but this
global frequency-domain representation does not reveal whether their presence

1“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin”
(John von Neumann). And having repeated the maxim that everyone else quotes at this point, let us also
confess that “Wise men make proverbs, but fools repeat them” (Samuel Palmer).
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Two dual tone pulses: xa(t); [X(K)[; ya(t) = xa(t)+noise, o =1.0; and |Y (k)|

2 T T T T T T T T

300 T T T T T T T T

200 | B

100 B

0 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

-4 ! ! ! ! ! ! ! ! !

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

400 T T T T T T T T
300 |- B

200 - B

100 b

O 1] 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Fig. 9.1. DTMF numbers “5” and “9” tones (top). Sampling produces x(n) = x,(nT), where
T = 819271 s. Discrete Fourier transformation gives |X(k)| (second). Adding noise of zero
mean, normal distribution, and standard deviation ¢ = 1 effectively buries the signal (third).
Yet the characteristic peaks remain in the magnitude spectrum of the noisy signal (bottom).

indicates that the time-domain signal contains a “5” pulse, a “9” pulse, a “6” pulse,
an “8” pulse, or some invalid combination of tones.

The DFT efficiently detects signal periodicity. Adding a considerable amount of
noise to the pure tone signals used above demonstrates this, as can be seen in the
lower two panels of Figure 9.1. Should the application need to ascertain the mere
existence of a periodity, obscuring noise is no problem; there is just a question of
seeing the spike in |X(k)|. But it does become a problem when we need to find the
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time-domain extent of the tone—when one tone occurs earlier than another. Indeed,
high noise levels can confound as simple an application as DTMF detection.

9.1.2.2 Preliminary Time-Domain Segmentation. A straightforward ap-
proach is to preface frequency-domain interpretation with time-domain segmenta-
tion. Chapter 4’s diverse thresholding methods, for example, can decide whether a
piece of time-domain signal x(n) merits Fourier analysis. For dual-tone detection,
the appropriate steps are as follows:

(i) Segment the time-domain signal x(n) into background regions and possible
DTMF tone regions.

(i) Compute the DFT of x(n) on possible tone segments.

(iii) Apply the DTMF specifications and check for proper tone combinations in
the candidate regions.

Time-domain signal segmentation methods are familiar from Chapter 4. If we know
the background noise levels beforehand, we can assume a fixed threshold 7. Of
course, the source x(n) is oscillatory, so we need to threshold against |x(n)| and
merge nearby regions where |x(1)| 2 T,. Median filtering may help to remove narrow
gaps and small splinters at the edge of high magnitude regions. If we know the
probability of DTMF tones, then a parametric method such as the Chow and
Kaneko algorithm [20] may be useful. However, if x(n) contains other oscillatory
sounds, such as speech, or the tones vary in length and temporal separation, then a
nonparametric algorithm such as Otsu’s [21] or Kittler and Illingworth’s [22] may
work better. In any case, the first step is to produce a preliminary time-domain
segmentation into possible tone signal versus noise (Figure 9.2).

Nevertheless, segmentation by Otsu’s method fails to provide two complete can-
didate pulse regions for noise levels only slightly higher than considered in Figure
9.2. It is possible to apply a split and merge procedure to fragmented regions, such
as considered in the exercises. However, these repairs themselves fail for high levels
of noise such as we considered in the previous section.

Since the high level of noise is the immediate source of our time-domain seg-
mentation woes, let us try to reduce the noise. Preliminary noise removal filtering
comes to mind. Thus, we can apply some frequency-selective signal processing to
the input DTMF signal before attempting the partition of the source into meaning
signal and background noise regions.

Let us try a moving average filter. The motivation is that the zero mean noise
locally wiggles around more than the sinusoidal pulses that comprise the DTMF
information. So we anticipate that filter averaging ought to cancel out the noise but
leave the sinusoidal DTMF pulses largely intact.

The moving average filter of order N > 0 is h = H3, where

if0<nsN-1,

1
h(n) =3 N 9.3)
0

if otherwise,
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Noisy pulses (o = .1); median filtered (5), normalized, Otsu segmentation; |X(k)| early; |X(k)| late
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Fig. 9.2. Magnitudes of DTMF “5” and “9” tones within noise of zero mean, normal distri-
bution, and moderate 6 = 0.1 standard deviation. The second panel shows time-domain seg-
mentation via the Otsu algorithm. Here, the magnitude spectra are median-filtered and
normalized to a maximum of 100% before histogram construction and segmentation. The
horizontal line is the Otsu threshold. The vertical lines are boundaries of the likely pulse
regions. The lower panels show the magnitude spectra of DFTs on the two candidate regions.
Note that the spikes correspond well to “5” and “9” dual-tone frequencies.

and N > 0 is the order of the filter. Let x(n) be the pure DTMF signal and let us add
normally distributed noise of mean p, =0 and standard deviation 6, = 0.8 (Figure 9.3).

Why the time domain does not seem to aid the segmentation process is evident
from examining the various frequency-domain representations. Figure 9.3 shows the
spectral effect of filtering this signal with moving average filters of orders 3, 7, and
21. We can see that the smallest order is beneficial in terms of aiding a time-domain
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Time domain: x(n); with noise; and moving average filttered with N =3, 7, 21
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Fig. 9.3. Time-domain plots of the pure DTMF signal (top) and with Gaussian noise added,
Wy =0 and o, = 0.8 (second from top). The next three panels show y = A*x, with H a moving
average filter of order N=3, N=7, and N = 21.

segmentation, but only slightly so. The higher-order filters are—if anything—a
hindrance.

We can see that the moving average filter magnitude spectrum consists of a
series of slowly decaying humps (Figure 9.4). Frequencies between the humps are
suppressed, and in some cases the frequency buckets that correspond to our DTMF
pulses are attenuated by the filter. The filter will pass and suppress frequencies in
accordance with the DFT convolution theorem: Y(k) = H(k)X(k).

This explains in part why the moving average filter failed to clarify the signal
for time-domain segmentation. Although it is intuitive and easy, its frequency
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Frequency domain: X(k); with noise; and moving average filtered with N = 3, 7, 21
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Fig. 9.4. Frequency-domain plots of the magnitude spectrum |X(k)| of DTMF signal x(n)
(top); with Gaussian noise added, W, = 0 and 6, = 0.8 (b); and the final three panels are
|Y(k)| = |H(K)||X(k)|, with H of order N=3, N=7, and N = 21.

suppression capabilities do not focus well for narrowband tones. We seem to find
ourselves designing a raw signal that the moving average filter can improve. Later
in this chapter, we shall discover better filters and learn how to build them in accord
with the requirements of an application.

In fact, the second method, which applies the time-frequency map to the dual-
tone signals, offers some help with the high noise problem.

9.1.2.3 Analysis in the Time-Frequency Plane. A time-frequency map is a
two-dimensional array of signal frequencies plotted on one axis and their time loca-
tion plotted on the other axis. This is a useful tool for signal interpretation problems
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where the preliminary segmentation is problematic or when there is scant a priori
information on frequency ranges and their expected time spans. To decompose a
signal into a time-frequency plane representation, we chop up its time domain into
intervals of equal size and perform a Fourier analysis on each piece.

Let us explain the new tool using the DTMF application as an example. Applica-
tion necessity drives much of the design of time-frequency maps. A method appro-
priate for the DTMF detection problem is as follows.

(1) Select a fixed window width, say N = 256. This corresponds to a frequency
resolution of 32 Hz at Fy = 8192 Hz and a time-domain width of 31 ms.

(i) This DFT length supports efficient calculation of the transform: the Fast
Fourier Transform (FFT) algorithm (Chapter 7). Since we may have quite a
few time windows, Candidate segments that are too small can be padded
with zeros at the end to make, say, 256 points.

(iil) We can cover longer segments with 256-point windows, overlapping them if
necessary.

(iv) We have to run the FFT computation over a whole set of time-domain win-
dows; hence it may be crucial to use a fast transform and limit overlapping.

(v) A genuine DTMF application must account for proper pulse time width (23
ms, minimum, for decoding), frequency (within 3.5% of specification), and
energy ratio (DTMF tone energy must exceed that of other frequencies
present by 30 dB).

(vi) Once the application checks these details, it can then invoke the logic
implied by Table 9.1 and make a final tone decision.

Let us form an array of dual tone energies plotted against time window location
(Figure 9.5) and thereby interpret the signal. Sixteen disjoint 256-point windows
cover the signal’s time domain. Over each window, we compute the FFT. For each
of 16 DTMF tones, we calculate the frequency-domain signal energy in the tone fre-
quency range, the energy outside the tone frequency range, and the ratio of the two
energies in dB.

Recall that there are two formulas for expressing a gain or ratio Ryg between
signals Y| and Y, in decibels (dB). We use either magnitude or power (which is
proportional to energy, the magnitude squared):

R 201 M\ ol Py 9.9)
o = 200x (G) = 10ie (7). -
10\M 10\ 2
where M; and P; are the magnitude and power, respectively, of signal Y;. For each
time window we set y(n) = x(n) restricted to the window. Let Y(k) be the 256-point-
FFT of y(n) over the window. Then, for each DTMF tone frequency range in Figure
9.5, we take Py to be the sum of squared magnitudes of the transform values that lie
within the tone frequency range, considering only discrete frequency values 0 < k <
128 that lie below the Nyquist value. We set P, to be the sum of squared magnitudes
that remain; these represent other tones or noise. For example, for DTMF dual tone
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DTMF detection on x(n): pulses in noise

DTMF hex value 0-9, A-D, *, # 20 Time windows, 31 ms

Fig. 9.5. A time-frequency array showing DTMF detection on a noisy x(n). The DTMF “5”
and “9” tones appear as tall blocks, representing high ratios of DTMF tone power to overall
signal power (dB). Note, however, that the tones are just barely detectable, by a threshold
above 0 dB.

“9,” the energy lies in Y(k) coefficients 26 < k < 27 (which represent frequencies f
(Hz) of 26 x 32 = 832 < /< 864, for the lower tone) and in 45 < k <47 (which repre-
sent frequencies 1440 < f'< 1504 = 47 x 32) for the upper tone. Thus, we construct a
16 x 16 array of power ratios, DTMF versus non-DTMF.

Note that the joint frequency and time domain computations involve a tradeoff
between frequency resolution and time resolution. When we attempt to refine the
time location of a tone segment, we use a lower-order DFT, and the frequency reso-
lution (NT)_1 suffers. Since the sampling rate has been fixed at 8 kHz, on the other
hand, improving the frequency resolution—that is, making (NTY"" smaller—
requires a DFT over a larger set of signal samples and thus more imprecision in
temporal location.

Let us consider the effect of noise on the time-frequency plane analysis. We have
observed that preliminary time domain segmentation works well under benign noise.
Heavier noise demands some additional time domain segmentation effort. Noise
whose variation approaches the magnitude of the tone oscillations causes problems for
segmentation, even though the Fourier analysis can still reveal the underlying tones.

The noisy signal in Figure 9.1 resists segmentation via the Otsu algorithm, for
example. Without a time domain segmentation, we can try using small time domain
windows and computing an array of coarse frequency resolution magnitude spectra,
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DTMF detection on y(n), moving average filtered (N = 3) x(n)

DTMF hex value 0-9, A-D, *, # 20 Time windows, 31 ms

Fig. 9.6. A time-frequency array showing DTMF detection on a very noisy x(n) subject to a
moving average noise removal filter. The plot shows the ratio between frequency-domain
DTMF power (dB) and non-DTMF power. The time location of the tones is clear, but the
frequency discrimination shows little improvement.

such as in Figure 9.5. The problem is that the noisiness of the signal can obscure the
tone peaks in the time-frequency array. Let us apply a moving average filter to the
signal prior to time-frequency decomposition (Figure 9.6).

The moving average filter’s poor performance is not so surprising. We have
already empirically shown that its effectiveness is limited by our lack of control
over the lobes that appear in its magnitude spectrum (Figure 9.4). We apparently
require a filter that passes precisely the range of our DTMF signals, say from 600 to
1700 Hz, and stops the rest. Such a bandpass filter cuts down signal components
whose frequencies lie outside the DTMF band.

We can construct such a filter H by specifying its frequency domain H(k) as
being unity over the discrete DTMF frequencies and zero otherwise. Let f{ o =
600 Hz, fiz; = 1700 Hz, the sampling rate F; = 8192 Hz, and suppose N = 256 is the
DFT order. The sampling interval is 7 = F, ;1, so that the frequency resolution is
Jres = V/(N x T). The Nyquist rate is f,x = (N/2) X fres = F/2 = 4096 Hz. Hence, let
us define k1 o = (NV/2) X (fL.o/fmax) and kgy = (V/2) X (far/fimax)- An ideal bandpass
filter for this Fourier order is given by

1 if ko Sk <kyp
HK) =31 i Neky SkSN—kp o (©.10)

0 if otherwise.
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Then we find
2mjkn

N-1 N
S H(ke . 9.11)
k=0

h(n) = 1%,

This creates an N-point finite impulse response (FIR) filter (Figure 9.7). Except for

the DC term n = 0, h(n) is symmetric about n = 128.
We can filter the noisy x(n) in either of two ways:

(1) Set up the filter as a difference equation, for example, using the Direct Form
IT architecture that we will cover later. This method is appropriate for on-
line processing of the signal data.

(ii) Translate the filter g(n) = h(n — 128) and perform the convolution y(n) =
(g*x)(n). This method is suitable for off-line applications, where all of the
signal data is available and the noncausal filter g(n) can be applied to it.

The results of the filtering are shown in the two lower panels of Figure 9.7. Note that
the difference equation implementation produces a significant delay in the output

Noisy signal (¢ = .7), band-pass filter, difference equation band-pass filtered signal, and y = h*x

-5 ! ! ! ! ! ! ! ! !

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 9.7. Noisy signal x(n), ¢ = 0.7 (top). Bandpass filter 4(n) for 0 <n < N/2 (second from
top). Alternative filtering results (lower panels).
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Fig. 9.8. Magnitude spectra from the bandpass filtering operation.

signal. Figure 9.8 shows the frequency-domain magnitude spectra of X(k), H(k), and
Y(k), where y(n) = (Hx)(n).

An analysis of the noisy DTMF signal using a time-frequency map is shown in
Figure 9.9. Note that the bandpass filter raises the peaks in the time-frequency
plane, which potentially helps with detection under severe noise. The drawback is
that a few false positive frequency markers appear as well. Why does the bandpass
filter not do a clearly superior job compared to the simple moving average filter and
analysis without prefiltering? Unfortunately, this bandpass filter is still forgiving to
all noise in its pass band—that is, from 600 to 1700 Hz. For example, when the sig-
nal of interest is a DTMF “1” dual-tone (697 Hz and 1209 Hz), filtering with the
above H will allow noise from 1.25 to 1.7 kHz into the output.

So bandpass filtering is a promising idea, but cleaning all DTMF tones with a
single bandpass filter gives only modest results.

9.1.2.4 Filter Bank Decomposition and Analysis. A third approach to
dual-tone detection employs a frequency selective filter for each tone in the DTMF
ensemble. Constructing, implementing, and applying so many filters seems oner-
ous, but the humble results in the previous two sections encourage alternatives. The
appropriate frequency domain tool for this approach is called a filter bank. Indeed,
this is the conventional approach for DTMF detection, which often calls for online
implementation and real-time detection [12].
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DTMF detection on y(n), band-pass filtered

DTMF hex value 0-9, A-D, *, # 20 Time windows, 31 ms

Fig. 9.9. Time-frequency map: A DTMF signal after bandpass filtering.

Filter banks have been carefully studied by signal processing researchers for
applications involving compression and efficient signal transmission. More recently
they have been subject to intense scrutiny because, when combined with subsam-
pling operations, they are related to the theory of wavelets [23-25]. We will con-
sider these ideas at the end of the chapter and follow up on them in the last two
chapters especially. However, for now, our purposes are elementary.

We just want to assemble an array of filters whose parallel output might be
read out to interpret a signal containing digital telephony dual-tones. Such simple
filter banks are suitable for analysis applications where the input signal fre-
quency ranges are generally known in advance, but the time at which they might
occur is not known. If the several filters in the bank are implemented as causal
filters, h(n) = 0 for n < 0, then the filter bank can process data as it arrives in real
time.

To build a filter bank for the DTMF application, we set up bandpass filters with
unit gain passbands centered about the eight (four low and four high) tones of Table
9.1. Each bandpass filter is designed exactly as in (9.10), except that the frequency
range is narrowed to within 3.5% of the tone center frequencies. All filters have the
same passband width, and the order of the DFT is N = 200 samples (Figure 9.10).

The result of filtering the input signal x(n), which contains DTMF tones “5” and
“9” as well as normally distributed noise of zero mean and standard deviation ¢ =
0.8, is shown in Figure 9.11.
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Frequency domain: X(k) and magnitude spectra of eight band-pass filters
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Fig. 9.10. Magnitude spectra of pure DTMF tones “5” and “9” (top) and bank of eight
bandpass filters.

To complete the application, one could calculate the energy in a certain window
of the last M samples. The dual-tone standard calls for 23 ms for decoding, so at the
sampling rate of the example application, M = 188. If the energy exceeds a thresh-
old, then the tone is detected. A valid combination of tones, one low tone and one
high tone, constitutes a dual-tone detection.

The main problem with the filter bank as we have developed it is the delay
imposed by the bandpass filters. The shifting of pulses after filtering must be com-
pensated for in the later analysis stages, if there is a need to know exactly when the
tones occurred. For example, do we know that the tones are delayed the same
amount? If so, then the detection logic will be correct, albeit a little late, depending
on the length of the filters. But if different frequencies are delayed differnet
amounts, then we either need to uniformize the delay or compensate for it on a
filter-by-filter basis.
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Filter bank: noisy input x(n) and eight band-pass filtered outputs
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Fig. 9.11. Filter bank output, causally implemented. Note the large delay between the cen-
ter of the input and output pulses. This is a consequence of the length of the filter, N = 200,
and the causal implementation.

9.1.3 Filter Frequency Response

When input signals contain oscillatory components that are hidden within noise, the
discrete Fourier transform reveals the periodicity as high magnitude spikes in the
magnitude spectrum. Even when the signal is so immersed in noise that the time-
domain representation refuses to betray the presence of sinusoidal components, this
signal transformation is still effective. Though its power is evident for this purpose,
the DFT nonetheless loses the time location of oscillations. And for this some time-
domain analysis remains. But the noise obscures the time-domain location and
extent of the oscillations. This can be a crucial factor in interpreting the signal. By
noise removal filtering, however, we can improve visibility into the time-domain
and better know the places where the periodicity hides. All of this suggests a theo-
retical study of the effect of filters on periodic trends in signals.
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Consider an exponential signal x(r) input into a linear, translation-invariant sys-
tem H, producing output y(n): y = Hx. If 8(n) is the discrete impulse and # = HJ is
the impulse response of H, then y(n) = (x * h)(n) is the convolution of x(n) and h(n):

y(n) = (x*h)(n) = Y x(kh(n-k) = Y h(k)x(n-k). (9.12)
k=—oo k= —co

Suppose x(n) = e/ is the discrete exponential signal with radial frequency o radi-

ans per sample. Then

jok _

ym =S BT = S ke " H(w),  (9.13)

k = —oo k = —co

where H(m) is the frequency response of h(n). An exponential input to an LTI sys-
tem produces an exponential output of the same frequency, except amplified (or
attenuated) by the factor H(). This basic Chapter 7 result tells us that LTI systems
pass exponential signals directly from input to output, multiplied by a complex con-
stant which depends on the signal frequency.

9.1.4 Delay

We have observed empirically that noise removal filtering—and by implication,
convolutional filtering in general—imposes a delay on input signals. This section
explains the theory of two types of signal delay caused by filtering: phase delay and
group delay.

9.1.4.1 Phase Delay. Suppose x(n) is a discrete signal and y = Hx is a linear,
translation-invariant (LTI) discrete system. If x(n) = exp(jon) is a pure, complex-
valued exponential signal, then y(n) = H(w)exp(jon) = H(w)x(n), where H(®) is the
discrete-time Fourier transform (DTFT) of h(n) = (H3)(n).

Consider a sinusoidal input signal x(n) = cos(nw) = [e/9" + ¢7®)/2. Then

sy = H@eE™" HCoe " H@)" | H@)e!”
jon )
- 2Real[%J = Real[H(w)e’!™"]. ©.14)
But
Real[H(m)ejO)n] = |H((D)|c0s[Arg(H((o))ej“’”]. ©.15)

If we set O(w) = Arg(H(®)), then

y(n) = Real[H(m)e’®"] = |H(®)|cos[on +6(w)] = |H(w)|cos[w(n+?n.

(9.16)
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Noisy DTMF pulses x (black), filttered y = h*x (white)
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Fig. 9.12. Filter phase delay. Noisy DTMF pulses x (black), filtered y = h*x (white).
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So if the input x(n) to H is a sinusoid, then the output y(n) is a sinusoid too. Signals
x(n) and y(n) have the same frequency, but y(n) is scaled by |H(w)| and phase shifted
by Ty = —6(w)/m, which is called the phase delay of H [26].

If we apply a moving average filter of length N = 101 to the noisy DTMF pulses
(), then the phase delay imposed by the filter is clearly evident (Figure 9.12).

So sinusoids too, subject to a complex scaling, pass directly through LTI systems.
This helps explain the clarity with which the sinusoidal pulses of the DTMF applica-
tion appear in the frequency domain. Also, we now have a tool, namely the phase
delay, Ty; = —6(®)/® in (9.16) for comparing the delays induced by various filters.

9.1.4.2 Group Delay. Another type of filter delay occurs when source signals
contain sinusoids of nearby frequencies that form an envelope. The superposition of
the two sinusoids

x(n) = cos(mn) + cos(myn), 9.17)

with ®; = m,, creates a long-term oscillation, called a beat. This holds as long as the
filter H does not suppress the individual sinusoids; this means that ®; and ®, are in
the passband of H.

By trigonometry, we can write x(n) as a product of cosine functions, one of
which gives the envelope, of frequency ®; — ®,, and the other is a sinusoid whose
frequency is the mean. Thus,

x(n) = ZCos(n@%—E)—g-))cos(n@Jg&)), (9.18)
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Fig. 9.13. Signal envelope formed by two sinusoids of approximately the same frequency.

which explains the amplitude modulated oscillation of Figure 9.13. Now impose a
filter y(n) = (h*x)(n), with h = HJ. Using (9.16) and (9.17) we have

y(n) = |H(o))|cos(®n+6(0))) + |H(w,)|cos(w,n + 8(a,)). (9.19)

where 0(®) = Arg(H(m)). Assume ®; = 0, and that these lie in the passband of H,
which is to say |H(®;)| = |[H(®,)| # 0. Thus,

y(n) = |H(m1)|{cos(m1n +6(®,)) + cos (0,1 +6(w,))}. (9.20)
From trigonometry once again,

o n+06(w)-w,n-0(m,)
2

y(n) = 2|H(wl)|{cos

Os(mln+9(wl)+w2n+6(m2))} 9.21)
2

Rearranging the cosine arguments gives

y(n) = 2|H(®1)|{008{w1;w2|:n L0 9(0)2)}}

;- 0,

O, +® 0 +0
-cos( 12 2[n+ (@) (mz)D}’ (9.22)

0, +0,
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where the first cosine defines the envelope of y(n). This envelope is delayed by a
0(w,)-6(w,)
factor _u:—wz . As ®; — m,, this delay factor becomes a derivative, which

1 2
is called the group delay of the filter H: T; = —d0/dw [11].

9.1.4.3 Implications. Applications that require significant signal filtering must
consider the phase and group delay inherent in the system. In our own humble
DTMF example above, we noted the phase delay caused by the filter bank. In many
scientific and engineering applications, delay considerations affect the actual choice
of filters. We shall see later that certain types of finite impulse response (FIR) filters
have linear phase, so that their group delay is constant. Such filters support signal
processing without distortion, an important consideration in communications
systems [27].

9.2 FREQUENCY AND PHASE ESTIMATION

The dual-tone multifrequency (DTMF) detection problem in the previous section
required Fourier transformation of local signal slices in order to find coded tones.
With many slices and many frequency bins, we built time-frequency maps. And
thus, we were able to ascertain the presence of signal frequency components over
the time span of the signal slice by thresholding for large-magnitude Fourier-
domain values. In this section, we study the effectiveness of such techniques. Our
methods will be limited and introductory, only a small part of the broad and
involved theory of spectral estimation. In what appear to be obviously correct and
quite straightforward approaches to the problem, we shall see that there are some
surprising limitations.

This section introduces an important tool: window functions. These are special
analog or discrete signals that are used to weight a local signal slice. This technique,
called windowing, helps to suppress artifacts caused by Fourier transformation on a
segment of time-domain signal values. Thus, windowing improves the estimation of
local signal frequencies. The signal slice itself is called a window or a region of
interest. Sometimes window functions are loosely called “windows” as well. The
ideas are easy, and in context the terms are usually clear. In Chapter 10, we consider
analog window functions as an instrument with which to generalize the Fourier
transform. Here, we pursue signal analysis applications, computerized implementa-
tion, and our emphasis is consequently on discrete windowing.

The DTMF tutorial application did not weight the signal values before perform-
ing the discrete Fourier transform (DFT). The results were satisfactory, but we shall
see later that applying a window function to the values produces a cleaner, easier to
analyze time-frequency map. Moreover, we shall see that the window functions and
the windowing method provide a straightforward method for designing discrete
finite impulse response (FIR) filters.

In the present context, we can hardly to do justice to the vast research and
engineering literature on spectral estimation [28-31].



FREQUENCY AND PHASE ESTIMATION 609

9.2.1 Windowing

Let us experiment with a simple discrete sinusoid x(n) and the task of computing its
discrete Fourier transform (DFT) on a window—that is, over a restricted set of val-
ues. Three problematic cases emerge:

(i) Alignment of the DFT samples with the signal’s spectrally significant portion;
(ii) Signal features that appear to an initial interpretation as frequency charac-
teristics, but in fact arise from wholly different reasons—for example, the
presence of an edge;
(iii) Proper sizing of the DFT for the samples.

The first two points affect one another.

9.2.1.1 Alignment and Edges. Let us consider a sinusoidal pulse and its fre-
quency analysis on slices of varying alignments with the pulse event (Figure 9.14).
Windowing involves weighting the samples from the signal slice by window
function values before computing the spectrum. We might speculate that Fourier
magnitude spectra would be better represented by weighting the central values more

Sinusoidal pulse in square envelope with noise
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Fig. 9.14. Sinusoidal pulse in square envelope (75 Hz, 200 samples wide, T = .001 s) in mod-
erate noise (top) and its magnitude spectrum (bottom).
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Square (above) and triangular (below, less noisy) weighting
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Fig. 9.15. Square pulse magnitude spectra, same DFT order (N = 200) at three different off-
sets: n =300, n = 350, and n = 400 (full alignment).

than the peripheral values with a time slice from an input signal x(n). The next
experiment (Figure 9.15) shows the result of computing magnitude spectra for
square and for triangular-weighted window functions.

The main effect of misalignment of the DFT window with the signal oscillations
is a blurring of the magnitude spectrum spike. Improving the alignment—clearly—
produces a more distinct spike, and invoking a weighting function (a triangular win-
dow) in this case offers only modest improvement.

In many applications, preliminary time-domain segmentation helps avoid this
problem. Applications can detect signal edges early and use them to align spectral
analysis windows. Sometimes edge detection can be based on signal level changes,
but in other cases what constitutes an edge is a change in frequency content.

9.2.1.2 Window Size. Now we turn to another anticipated difficulty. Suppose
that the signal slice for DFT computation aligns with the oscillation-bearing part of
the signal, but the order of the Fourier transformation is a poor choice for the under-
lying frequency component. We know that a DFT of order N on data x(n) sampled at
F, = 1/T Hz will have frequency resolution (NT)™! and cover discrete frequencies
(NT)fl, 2(NT)71, s (2T)71 as long as x(n) is real-valued. Adding a pure sinusoid of
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one these frequencies—say o = kNTY™!, for 1 < k < N2—to x(n) will alter only
X(k) and X(N — k) [32]. Superimposing onto x(r) a sinusoid of frequency m # wy, for
any 1 < k < N/2, will perturb all of the X(k). The difference caused by adding the
sinusoid diminishes in magnitude like 1/j@ — @] as |® — | increases (exercise).

9.2.2 Windowing Methods

Windows are weighting functions that attenuate signals at their discontinuities.
When we cut out a piece of a signal and use it to compute its DFT, this effectively
periodicizes the signal. The problem is that the signal’s early values might differ
greatly from the later values in the excised portion. So the effective periodic signal
has a huge discontinuity, and this creates large spectral components that are due to
the time slicing rather than the trend of the original signal.

The remedy is to suppress the signal slice at its boundaries with a window func-
tion. Window functions also serve as a tool for constructing FIR filters. There are a
variety of window functions [7-9, 26, 33]:

® The rectangular window takes raw signal values without shaping them.
® The Bartlett* or triangular window weights them linearly away from the center.

® The Hann® window, sometimes called a “Hanning” window, is a modified
cosine weighting function.

® The Hamming4 window is also a modified cosine window.
® The Blackman® window is another modified cosine window.
® The Kaiser® window uses a Bessel function for shaping the signal slice.

It seems that throughout our experimentation in Section 9.1, we employed the
rectangular window. For comparison, Table 9.2 lists the window functions. Note

that the window domains || < ]% of Table 9.2 are convenient for applications

not needing causal filters, such as off-line signal analysis tasks. It is also the form
that we will use for the analog windows in the next chapter. Since the windows are
zero outside this interval, as linear, translation-invariant system impulse responses,
the window functions are all weighted moving average filters. They remove high
frequencies and preserve low frequencies when convolved with other discrete
signals.

2After M. S. Bartlett, who used this window to estimate spectra as early as 1950.

3Austrian meteorologist Julius von Hann introduced this window. At some point, perhaps due to
confusion with Hamming’s similar window or to the use of the term “hann” for the cosine windowing
technique in general (as in Ref. 32), the name “Hanning” seems to have stuck.

“Richard.W. Hamming (1915-1998) used this window for improved signal spectral analysis, but the
American mathematician is more widely known for having invented error correcting codes (The Bell
System Technical Journal, April 1950).

SAfter Hamming’s collaborator at Bell Telephone Laboratories, Ralph B. Blackman (1904-).
OIntroduced by J. F. Kaiser of Bell Laboratories in 1974.
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TABLE 9.2. Window Functions for N > 0 Samples®

Name Definition
. N-1
Rectangular w(n) = : if nf <
0 otherwise
Bartlett (triangular)  w(n) = 1 — 2l if |n| < N-1
N-1 2
Hann w(n) = 1[1 — cos 2N } if |nl <N-1
2 N-1 2
Hamming w(n) = 0.54-0 46cos1\2]“" if [n] < N%l
Blackman w(n) = 042 +0. 5coq + 0.08 cos dmn if |n| < N-1
N— N— 2
2n 2
Kaiser Io(a - (N— 1) ] _1
w(n) = if |nl N1

Ty(or)

“The table defines the windows as centered about n = 0. Outside the specified ranges, the windows are
zero. It is straightforward to shift them so that they are causal [7]. The Kaiser window is defined in terms
of the zeroth-order Bessel” function of the first kind (9.23) and a parameter o given below (9.24).

The summation
1 1 s [L(2)T 9.23
) = B E .
o) +n_1[n!(2” ©-23)

defines the Bessel function. There is a standard formula [33] for the Kaiser window
parameter o. To ensure a Kaiser window whose Fourier transform suppresses high-
frequency components to more than —A dB, set

0.1102(A — 8.7) if A> 50,
O =19 05842(A-21)4 +0.07886(A — 21)  if 50>A>21, 029
0 if 21> A.

Tprofessor of astronomy, mathematician, and lifelong director of the Konigsberg Observatory, Friedrich
Wilhelm Bessel (1784—1846) devised the functions bearing his name for analyzing the motions of three
bodies under mutual gravitation.
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9.2.3 Power Spectrum Estimation

The Fourier transform magnitude spectrum has some important drawbacks. Our
introductory digital telephony control tones application showed that—under moder-
ate noise—measuring the contributions of frequency components by the relative
magnitude of Fourier transform coefficients is effective.

To understand how this comes about, we have to consider signal noise in a math-
ematically tractable form.

9.2.3.1 Power Spectral Density. Let x be a discrete random signal; that is,
X = {x,: n € Z} is a family or ensemble of random variables (Chapter 1). This is an
abstract formulation. What it means is that if a signal x(n) has a random nature, then
we do not know exactly what value it may take at any particular time instant n € Z.
But we at least know that the values x(n) might assume at n = k, for example, are
given by a random variable, namely x; € X. So by a random signal, we understand a
signal that is random at all of its measured time instants; it is indeed an ensemble of
random variables.

But that is not to say that we know nothing about the random signal x. Associ-
ated with each random variable r = x,, € X for some n € Z is a probability distribu-
tion function F, and a probability density function f, such that F.(s) = P(r < s), the
probability that » does not exceed s € R. Moreover,

F (s) = j £(1) dt, 9.25)

which is to say that _F A(s) = f.(s). To the skeptically inclined individual, these
are almost incredible condmons but they do approximate naturally occurring ran-
dom signals fairly well. In any case, we need them for the theoretical development.

The distribution and density functions allow us to describe random variables
with averages. If r = x,, € X again, then we define its mean

oo

u, = j tf, (1) dt = E[r] (9.26)

—oo

and standard deviation G, the square root of the variance: =F [r 1-

Generalizing for two random variables, u = x,, and v = x,, 1n X, we assume a joint
dzstrlbution function F, (s, 1) = P(u < s and v<o) and joint density function
aaatF " L850 = fu, ,(8, 1) . If E[uv] = E[u]E[v], then random variables u and v are
uncorrelated or linearly independent.

Power spectrum estimation studies how signal power distributes among frequen-
cies. For finite-energy deterministic signals x(#), the power of x(¢) in the (unsigned)
band 0 < Q < Q < o> comes from integrating |X(Q)[? over [-Q;, -Q] U [Q(, Q;].
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But for random signals, the mathematical analysis depends on a special class of sig-
nals x(7) that obey the following two conditions:

(1) E[x(r)] does not depend on the process variable 7 € R.
(1) E[x(H)x(t + 7)] is a function of T and does not depend on 7 € R.

Such signals are called wide-sense stationary (WSS) [34]. We define the autocorre-
lation for a WSS random signal x() to be r,,(T) = E[x(#)x(¢ + T)]. It is easy to show
that E[x(#)x(s)] = r,,(t — s) and that r,(T) is an even signal. A special type of WSS
random signal x(#) has an autocorrelation function that is an impulse: r,(t) = Ad(¢)
for some constant A € R. This means that signal values are completely uncorrelated
with their neighbors. Such random signals are called white noise processes; we shall
explain this colorful terminology in a moment.

In order to study the spectrum of a noisy signal, we have to limit its time-
domain extent. So for L > 0 let us define the localization of random signal x(#)
to [-L, L]:

XL(I) - { x(t) if —LSISL, (927)
0 if otherwise.
so that
" iQ L iQ
X (Q) = [x (e dr = [x()e? dr. (9.28)
—oo -L

The energy of x; is ||xL||§ = ZLTCHXLHE = ZLnfw |XL(Q)|2dQ by Parseval’s identity.

The approximate energy of x; in a narrow signed frequency band, A(Q2) = Q; —Q,,

is thus |X;(Q)|*A(Q). Since frequency is the reciprocal of time, |X;(€)[*/(2L) has

units of energy, which is the product of power and time, or power divided by

frequency. Therefore, we may define the power spectral density (PSD) for x(¢) to
2

X, (Q)

u] It is

(Q) .. . . ..
be % This is a random variable, and its expectation is E 57

tempting to define the PSD of x(7) as the large time window [-L, L] limit of such
expectations:

)

—> oo

But some caution is in order. We need to know that the limit (9.29) exists. A famous
result shows that the desired limit operation is valid and moreover provides a way to
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compute it. The Wiener®~Khinchin® theorem, says that if x(7) is a real-valued, WSS
random signal with autocorrelation r,(f) € L (R), then

Xpsp(Q) = R (Q) = [ ro (e V. (9.30)

—oo

While the exact values of a random signal are not known, it is a reasonable
assumption that the autocorrelation of the signal is available. Indeed, the autocorre-
lation will tend to resemble a narrow pulse when local signal values x(t + T) corre-
late poorly with a particular x(¢), and it will look like a broad pulse when x(t + 7) as
a trend repeats x(f). In any case, for T large, r,,(T) diminishes, and we can often
assume a mathematically tractable model for the autocorrelation. For example, from
basic physical considerations, we can derive a model for the thermal noise across a
resistor in an electric circuit. A purely theoretical example is the aforementioned
white noise process. The Wiener—Khinchin theorem implies that the white noise
process r.(t) = Ad(f) has Xpgp(Q) = A, for A € R. Thus, its frequency spectrum is
flat; it contains all “colors,” as it were, and is therefore “white.” It turns out that
white noise models the thermal noise across a resistor and that its autocorrelation
scales according to the absolute temperature of the circuit elements.

Similar ideas work for discrete random signals. If x(n) € 1% is a discrete deter-
ministic signal with DTFT X(w), then integrating |X(oo)|2 over [—m;, —wp] U [,
] gives the power in the band 0 < ®y < ®; < T. A wide-sense stationary (WSS)
discrete random signal satisfies the following:

(1) E[x(n)] does not depend on the process variable n € Z.
(i1) E[x(n)x(n + v)] is a function of v and does not depend on n € Z.

The autocorrelation for a WSS random signal x(n) is r,(v) = E[x(n)x(n + v)].
Again, E[x(n)x(m)] = r,,(n — m) and r,,(v) is symmetric about v = 0. Toward ana-
lyzing the power spectrum, for L > 0 we define

xL(n) - { x(n) if —LSHSL, (931)
0 if otherwise.

8First—generati0n American mathematician Norbert Wiener (1894-1964) finished the doctoral program
at Harvard at age 18, concentrating on philosophy of mathematics and logic. In the tradition of Plato, the
great English scholar Bertrand Russell hoped to improve Wiener’s philosophical insights by having him
study more mathematics. But later encounters with G. H. Hardy, D. Hilbert, and E. G. H. Landau nudged
the prodigy toward mathematical analysis. After some peregrination, Wiener took a ground-floor job as a
mathematics instructor at the Massachussetts Institute of Technology. He eventually arose to full Profes-
sor, contributed substantially to statistical communication and control theory, and remained at MIT for
the rest of his career.

9Soviet mathematician Aleksandr Yakovlevich Khinchin (1894-1959) established much of the early the-
ory of stationary stochastic processes. The author of some 150 papers, he took a mathematics professor-
ship at Moscow State University in 1927. He was a patron of the arts and theater. Election to the Soviet
Academy of Sciences (1939) recognized Khinchin’s contributions to ranging from probability, number
theory, information theory, statistical physics, and quantum mechanics.
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The Fourier spectrum of the localized random signal is

L ) o0 )

X (@)= ¥ x(me’®™ = ¥ x,(n)e’". (9.32)

n=-L n = —oo

We define the PSD for x;(n) to be
2
[Xp (@)
. L

XPSD(O‘)) = ngnmE|:mj| (9.33)

There is a discrete version of the Wiener—Khinchin theorem. If x(n) is a real-valued,
WSS random signal with an absolutely summable autocorrelation function r,(n),
then

oo

XPSD((D) = Rxx(o‘)) = 2 rxx(n)e

n = —oco

—jon

(9.34)

Thus, for both analog and discrete random variables we are justified in defining the
power spectral density, and it can be computed as long as the associated autocorre-
lation function is respectively L' or . The exercises outline the proofs of both the
analog and discrete Wiener—Khinchin theorems.

9.2.3.2 Periodogram. Now we consider approximating the power spectral den-

sity. The oldest and most straightforward approach is to compute the discrete time

Fourier transform on a local time window [—L, L] of sampled data points x(n). Thus,

we have

L .12

Y x(n)e "
L

n=-—

od 1 2 1
XL, psp(®) = m|XL((D)| =

— (9.35)

Generally, we would take o = 2nk/T for —L < k < L and compute (9.35) on a discrete
set of frequencies. After all, although we used the discrete Fourier transform magni-
tude spectrum in the application examples of Section 9.1, we could have equally
well used the squared magnitude spectrum. Also, due to the periodicity of the dis-
crete Fourier transforms, we could equally well shift the local window of x(n) val-
ues. In practice, a window of width 2M is chosen to enable a fast Fourier transform
computation. In any event, (9.35) is a statistical estimator for the random variable
Xpsp(®). The question before us is how well—for a particular frequency of interest,
-1t < ® < n—the estimate of IX((so)I2 over N =2L + 1 samples of noisy x(n) compares
to the actual power at that frequency. B
Briefly, the problem with the estimated power spectrum Xpgp(®) is twofold:

(i) As the number of samples is increased, the mean of the estimate does not
approach the actual mean; it is a biased estimator.

(i1) As the number of samples is increased, the variance of the estimate does not
approach zero; it is an inconsistent estimator.
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Signal processing [7] and spectrum estimation [29-31] texts explain this theory.
Unfortunately, the development would drag us away from our signal analysis focus.
We would instead like to emphasize that the problems of the periodogram as an esti-
mator of the PSD can be addressed by applying the window functions we developed
earlier in this section along with some straightforward averaging techniques.

9.2.3.3 Periodogram Improvement. Fortunately, there are some easy ways
to improve the periodogram estimate X; pgp(®) of (9.35). We cover some classic
methods that use no model of the signal, its spectrum, or its autocorrelation. These
nonparametric techniques include:

® Bartlett’s method smoothes the time-domain data by breaking the interval into
smaller, equally sized segments and averaging the periodograms computed for
each segment [35].

® Welch’s algorithm smoothes the time-domain data by breaking the interval
into smaller, equally sized segments, applying a window function to each seg-
ment, and allowing the windows to overlap [36].

® Another technique, due to Blackman and Tukey [37], relies directly on the
Wiener—Khinchin theorem’s identification of the PSD with the Fourier trans-
form of the autocorrelation function.

Bartlett’s method divides a set of N = K x M data points of x(n) into K subwindows
of length M. Thus, the signal values on subwindow k are x;(m) = x(kM + m), where
0<k<K-1and0<m<M - 1. For each such subwindow we set

M-1

X psp(@) = 22| 3, x(me”") (9.362)
m=0
and then average them all to get the estimate over [0, N — 1]:
~ 1 K- 1 ~
XN, psp(0) = e Y, Xk, psp(0), (9.36b)
k=0

The Welch algorithm improves upon the Bartlett method by

(i) Allowing the subwindows to overlap.

(i) Applying a window function to the individual PSD estimates on the subwin-
dows. The window function can be any of those described in Table 9.2.

The steps in the Blackman—Tukey algorithm are as follows:

(i) From a body of measured noisy signal data, the autocorrelation function for
the random process is estimated.
(i) One of the typical window functions—for example, the Hann window—is
applied to the autocorrelation estimate.
(iii)) The discrete Fourier transform is applied to windowed autocorrelation
values.
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Another class of periodogram improvement algorithms—called parametric
methods—make a model for the noisy signal data. The idea is to assume that the
signal arises from a linear system excited by white noise. The exercises cover the
concept of noisy inputs to linear systems.

9.2.4 Application: Interferometry

An application that involves the precise estimation of signal frequency and phase is
interferometry, which is based on the wave nature of electromagnetic radiation [38].
In interferometry, an input optical signal contains light combined from two different
sources—for example, reflected from two different surfaces. If the original source
of both reflecting beams is coherent (that is, the light waves are in phase with one
another, such as from a laser), then the resulting interferogram will contain peaks
and valleys of intensity, depending on the path distance of the component light
waves. Of course, moving one reflecting surface by a wavelength amount produces
the same light combination, and so the intensity only indicates relative changes in
position between the two reflecting surfaces.

The technique enables us to measure minute differences in distance. Peaks in the
interferogram correspond to when the peak of one sinusoidal wave matches up with
the peak of the other. This is the length of the wave; and in the case of light, this
value is quite small, from about 400 nm (violet) to 700 nm (red). Thus, optical inter-
ferometry is used in precision measurement and manufacture, such as semiconduc-
tor integrated circuit fabrication.

We consider a semiconductor manufacturing and control application of interfer-
ometry involving chemical mechanical planarization (CMP) of silicon wafers [39].
CMP has become an important process for ensuring the planarity of the wafer sur-
face. A high degree of flatness eliminates flaws in later deposition steps. More
importantly for modern integrated circuit manufacture, CMP is used for selectively
removing thin layers of material on wafers that do not etch well in plasmas, such as
copper.

Evident in the signal trace (Figure 9.16) at the top are:

(i) The long-term undulations in reflected intensity due to the combination of
beams reflected from the surface and Si/SiO, interface;

(i) Short-term vibrations around f= 0.1 Hz;

(iii) At the end of the trace, a change in process conditions causing wild instabil-
ity of the sensor’s measured reflectance.

Our interferometric interest is to isolate these three trends. The wavelength of the long-
term oscillation, on the order of 0.0085 Hz, will be used to estimate the silicon oxide
removal rate (Figure 9.17). The short-term 0.1 Hz oscillation can be removed with a
notch filter in order to enhance the estimation of the removal rate. Also, with the short-
term oscillation removed by a notch filter, it becomes possible to design a simple algo-
rithm to compute the phase of the long-term reflectance oscillation and use this
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Interferometry data, N = 725 samples, T = 1/Fs = .845s
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Fig. 9.16. Reflectance data from a CMP removal process on a silicon wafer with a surface
silicon dioxide film. The upper panel contains the signal trace and the lower panel contains
the magnitude spectrum.

Fig. 9.17. Periodograms of several windows applied to the interferometic data from CMP
processing of a silicon wafer. Top four periodograms: Square, Bartlett, Hann, and Hamming
windows applied to signal before periodogram calculation. The bottom four plots show the
efficacy of various Kaiser window parameters. The vertical line marks the frequency of the
interference fringes.
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Fig. 9.18. Welch’s method for periodogram computation.

as a measurement of the amount of top-level film removed. Finally, we are inter-
ested in detecting the signal instability at the end of the trace, which is an indication
that the oxide has begun to disappear from the wafer, exposing the silicon substrate.
This represents polish endpoint.

Let us also investigate one of the spectrogram improvement methods—in this
case Welch’s method with windows overlapped 50% and a variety of window func-
tions applied before computing the local periodograms. The results are shown in
Figure 9.18.

As a practical matter, some goal-directed information needs to be invoked in this
example. A peak detector needs to be provided with a limited range in hertz for its
search. Once the periodicity of the interferogram fringes is determined from the
periodogram algorithm, it is possible to calculate the phase of individual points
along the fringe trace. To do this, we would perform a discrete Fourier transform of
the proper window size according to the wavelength of the long-term undulations.
For the above sampling interval T = 0.8451 s, this would be N = 140 samples. The
phase of points along the interference fringe trace could be computed by the com-
plex argument of the first DFT coefficient, for example.

9.3 DISCRETE FILTER DESIGN AND IMPLEMENTATION

Discrete filters are suitable for computer implementation, and signal analysis appli-
cations depend on them directly. This section reviews some elements of filter the-
ory, the z-transform, and ideal filters. It also covers the more practical aspects such



DISCRETE FILTER DESIGN AND IMPLEMENTATION 621

as (a) filter approximation and (b) the steps in designing a discrete filter, and it
explains basic methods on how to implement discrete filters.

The principal tools for filter design are the discrete Fourier transform (DFT), the
discrete-time Fourier transform (DTFT), and the z-transform. One important design
method is to derive a discrete filter from an analog filter. So we shall also use the con-
tinuous-domain Fourier transform as well as introduce briefly the Laplace transform.
The Fourier transform properties allow us to convert one type of filter into another,
considerably simplifying the mechanics of filter construction. For example, we gen-
erally design a low-pass filter and then convert it into the required bandpass filter.

9.3.1 Ideal Filters

Some applications, such as in the dual-tone multifrequency application above,
require fine separation in the frequency domain. Some periodicities we need to pass
through for further analysis, such as the DTMF, range from 697 to 1633 Hz. Others,
such as high-frequency background noise and low-frequency interference, we prefer
to suppress. Offline applications can Fourier transform large time-slices of data and
select spectral components according to the frequency resolution of the transform.
Online applications, though, must achieve frequency selection as data enters the
system, in real time, and then pass the output to interpretation algorithms. Here the
filters have to be causal and efficiently implemented. Since no high-resolution
Fourier transform of the input data is possible in this situation, it becomes all the
more important to design filters that distinguish between nearby frequencies.

9.3.1.1 Low Pass. We can eliminate all frequencies above the range of interest
to an application by processing input signals through an ideal low-pass filter H. It is
easy to describe such a filter using the discrete-time Fourier transform H(®):

1 if ol <,

H(o) = { 9.37)

0 if otherwise,

where o, is the cutoff frequency of the filter. This filter’s perfect cutoff is ideal
for separating one frequency from another. The only caveat is that a sufficiently
high sampling rate must be chosen so that ®,. is close to the frequency of a discrete
component.

The inverse DTFT serves as a tool for building discrete filters from such fre-
quency-domain descriptions. The impulse response of the ideal low-pass system
(Figure 9.19) is

T o, .
i ; sin(w _n
h(n) = lJ'H((o)ejmnd(o -1 J‘ e dw = g 9.38)
2n 2w nn
- -0

c

Using the inverse DTFT to generate a filter impulse response from description of its
ideal frequency-domain representation is elegant and straightforward, but the result-
ing filters are often—and most particularly in the present case—quite impractical.
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Fig. 9.19. Ideal low-pass filter in the frequency-domain (a) and truncation of impulse
response in the time-domain (b).

The problems with i(n) as given by (9.38) are as follows:

(1) Itis an infinite impulse response (IIR) filter.

(i) This means that it cannot be implemented by a straightforward convolution
in applications.

(iii) Some IIR filters permit a recursive computation for their implementation,
but in this case h(n) # 0 for arbitrarily large magnitude n < 0, so it is in fact
unrealizable for applications.

(iv) The filter is not causal, so its realization requires future signal values and
cannot work on real-time data streams.

(v) The filter is not stable, since its impulse response is not absolutely summa-
ble (Chapter 2).

But these problems are not catastrophic. We can truncate /(n) so that it is supported
within some reasonable interval [-N, N], say. This is often satisfactory for applica-
tions where the raw signals contain high-frequency background noise. The perfect
frequency-domain characteristic is lost (Figure 9.19b). We will see how to over-
come these problems in a moment.

Next, however, let us look at ideal filters of other types and see how to build them
out of low-pass filters.

9.3.1.2 Other Filters. Applications require filters with varying frequency-
domain characteristics. For example, the DTMF application of Section 9.1 uses a
low-pass filter, a simple moving averager, to suppress background noise. In the filter
output, this highlights the relatively pure dual tones and improves thresholding
results. But an online version of the same application would need filters that select
frequency ranges and reject oscillations below and above certain bands. Here we are
speaking of a bandpass filter, and we have noted that an array of them in parallel
operation can pass filtered signals to the application logic for tone classification.
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The mechanics of converting a lowpass filter into one of an alternative fre-
quency-domain behavior are fortunately quite straightforward. We require only a
few DTFT properties (Chapter 7).

From a low-pass filter h(n) = (H8)(n), it is easy to make a high-pass filter f(n) =
(Fd)(n). An all-pass filter is the discrete impulse 8(n) or one of its shifted versions
d(n — ngy). We subtract fin) = 8(n) — h(n) for a high-pass filter fin) = (G&)(n).

Two elementary methods exist for building a bandpass filter . One way to do
this, starting from a low-pass filter H with cutoff ®,, is to use the frequency shifting
property of the DTFT. If we set f(n) = ¢ “*"h(n), then F(®) = H(®w-w,). F is
thus a bandpass filter with lower cutoff ®; and upper cutoff wy = ®; + ®.. The
blemish on this otherwise elegant modification of A(n) is the fact that f(n) becomes a
complex-valued discrete signal. A second basic technique is to combine a low-pass
filter H, with cutoff ®., and a high-pass filter G, with cutoffs ®; and wg. Typically,
we get G itself by subtracting h(n) from an all-pass system’s impulse response. If
our filters satisfy ®. > oy, then the system composition F(n) = G(H(n)) will pass
precisely the frequencies that lie in the passband overlap. We know that f = Fo =
g*h, the convolution of g(n) and A(n). So, if both g(n) and h(n) are real-valued, then
fin) € R too. By the convolution theorem for discrete linear, translation-invariant
systems, the DTFT of f(n) is F(®) = H(®)G(w). So, if H and G are ideal, then F will
be a perfect bandpass filter with lower cutoff ®; and upper cutoff ®,..

We form band-reject or notch filters by subtracting a bandpass filter from an all-
pass filter.

9.3.2 Design Using Window Functions

A useful discrete FIR filter design method uses the windowing concept from Sec-
tion 9.2. This is a straightforward way to improve truncated perfect low-pass filters
(Section 9.3.1.1). Again, let , be the cutoff frequency so that A(n) is given by

o,
j " do =
—o, _N<n<N

sin(®,n)

h(n) = (9.39)

1
21 nn :|—N <n<N
as shown in Figure 9.20(a).
Let w(n) be a window function, for example the Hann window, of Table 9.2. Set
g(n) = h(n)w(n) as in Figure 9.20c. Using signal multiplication in the time domain is
equivalent to convolution in the frequency domain:

T

G(®) = Flh(mw(n)] = %EJH(G)W(G—(D) de. (9.40)

Since discrete time Fourier transform of w(n) has the shape of a weighted averaging
function in the frequency domain, convolving it with H(®) effectively smoothes
the spectrum of A(n). This blends away the Gibbs phenomenon ripples caused by
the truncation of the perfect low-pass filter Figure 9.20b. The result is a magnitude
spectrum almost completely devoid of the problematic ringing Figure 9.20d.



624 FREQUENCY-DOMAIN SIGNAL ANALYSIS

(a) Truncated impulse response (b) Magnitude spectrum, o .= n/4
0.3 . . . 15 . . .
0.2 H i |
So 2
D o) E T T E o b 05
0 0] 0] 0] (0]
bbb : b4
-0.1 : . : 0 .
0 5 10 15 20 -4 -2 0 2 4
n ®
(c) Hann windowed: g(n) = h(n)w(n) (d) Magnitude spectrum, o .= n/4
0.3 T T T 15
0.2 H H ]
go | | 3
o ' ' S
1 7 | € s
030006d>0 ! Oééooﬁ)é
-0.1 : : : 0 ' ' :
0 5 10 15 20 -4 -2 0 2 4
n ®

Fig. 9.20. FIR filter design using Hann window. Formerly perfect, but now truncated
impulse response A(n) (a). Vertical lines in the magnitude spectrum plot (b) mark the cutoff
frequency. Panel (c) shows g(n) = h(n)w(n), where w(n) is a Hann window function having
the same support as A(n). The final panel (d) shows |G(w)| with the Gibbs phenomenon ring-
ing virtually eliminated.

9.3.3 Approximation

This section covers the approximation of ideal filters, the initial step among filter
design tasks.

9.3.3.1 Design Criteria. 1deal filters are impossible to implement on a digital
computer, but a filter that comes close to ideal performance is usually adequate for a
signal processing and analysis application. Let us look at the magnitude spectrum of
a typical discrete filter—in this case a third-order low-pass elliptic filter, which we
will study in Section 9.5. A plot of the magnitude response illustrates design criteria
(Figure 9.21).

Referring to Figure 9.21, we assume that the filter H has been normalized so that
it has at most unit gain.

® The passband is the region in which the filter in which the magnitude response is
near unity. For a low-pass filter, this is an interval around the origin: ® € [0, ®,,).

® The stopband is the region in which H() is near zero: ® € (®y, 7] for the low-
pass filter in the figure.

¢ Between the passband and the stopband lies the transition band: ® € [0, 0;].
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Fig. 9.21. Design characteristics of a low-pass filter (third-order low-pass elliptic), showing
the positive frequencies 0 < ® < 7.

® The cutoff frequency m,. is a transition band value that is somewhat arbitrary,
depending on the particular filter, but represents the frequency at which filter
suppression begins. For our low-pass example, ©, < @, < o,.

® Passband ripple measures the variation of |H(w)| within the passband. We typ-
ically specify a maximum value & > 0, such that |H(®) — 1| < & for o € [0, ®,,).
An equivalent, and sometimes convenient, mode of specification is to express
tolerances in decibels (dB). Thus, —A < 20log;o|H(®)| < A, for some A > 0.

® Stopband ripple measures the variation of |H(w)| within the stopband: There is
a A > 0, such that |[H(®)| < A for ® € (o, ©]. Equivalently, in decibels:
20logo|H(m)| < A, for some A < 0.

® Sharpness indicates how narrow the transition band is. Applications that
require fine frequency discrimination use filters with correspondingly sharp
transition bands. One measure of sharpness is the average slope of |H(®)|
in the transition band. Another way to specify sharpness is to stipulate a deri-
vative at a representative transition band value, such as o, or (@, + ©)/2.

The design criteria for other filters are similar. Thus, in a high-pass filter, the
passband is at the upper end of the spectrum: @, < ® < 7. In a bandpass filter, there
are two stop bands (in the neighborhoods of 0 and =), and there is a single passband.
Likewise, the notch filter has two outer passbands and a single inner stopband.
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9.3.3.2 Design Steps. In signal analysis, our design steps for discrete filters
are as follows:

(i) Determine the type (low-pass, high-pass, bandpass, or band-reject) of filter
G appropriate to the application.
(i1) Select a low-pass filter that approximates an ideal filter’s frequency-domain
characteristics.
(iii) Design a suitable low-pass filter h(n) = (HO)(n).
(iv) Convert the low-pass filter H to the application filter g(n) = (G8)(n) using
Fourier transform properties, ensuring that the approximation constraints on
G are not compromised by the conversion.
(v) For an online application, maintain causality.
(vi) For IIR filters, maintain stability.
(vii) Achieve an efficient computer implementation.

It is sometimes feasible to design G directly, skipping the low-pass starter filter H
and conversion. Once the filter type and approximation questions have been
resolved in accord with application constraints—points (i) and (ii), above—the next
step is to design a low-pass filter. The z-transform is the basic tool for working out
these remaining design steps.

9.3.4 Z-Transform Design Techniques

We recall from the previous chapter that the z-transform X(z) of a discrete signal
x(n) is given by
Xz) = ¥ x(mz", 9.41)

n = —oo

where z € C. We recognize that if z = ef‘”, then (9.41) is the discrete-time Fourier
transform of x(n). Evaluating the z-transform on the complex unit circle, |z| = 1, pro-
duces the DTFT. To avoid confusion, we may occasionally use the function nota-
tions (Zh)(z) or H,(z) for the z-transform and continue to use H(w) for the DTFT.
The z-transform came to signal processing from control theory in the early 1960s
[40]. It is a staple topic of discrete signal processing books (for example, Refs. 7—
11), and there are specialized texts covering the z-transform [41, 42].

The sum (9.41) converges absolutely on annular regions of the extended complex
plane C* = C U {eo}, called the region of convergence, ROCy. The z-transform
expression X(z) for a signal is not unique; one must also specify ROCy. Both
the causal signal x(n) = a"u(n) and the anti-causal signal y(n) = —a"u(—n — 1), for
example, have the same z—transforms: X(z) = Y(z) = z/(z — a). The difference is that
ROCy = {z € C: |a| < 7]} while ROCy = {z € C: |z| <|al}.

A theoretical subtlety on the region of convergence concerns square-summa-
ble signals. We know that discrete signals 4 € 1> have DTFTs, but it is possible
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that h ¢ ['. In fact, the discrete Hilbert space P is isomorphic to the continuous
Hilbert space LZ[—Tc, 1], understanding that x, y € LZ[—Tt, 1t] are considered identi-
cal if they are equal except on a set of Lebesgue measure zero (Chapter 3). Thus,
such signals h(n) possess a discrete-time Fourier transform, even though ROCg
does not include the unit circle |z| = 1.

9.3.4.1 System Function, Stability, Causality. If H is a discrete linear,
translation-invariant system, such as we might use for filtering a signal, then the z-
transform H(z) of its impulse response & = HJ is called the system or transfer func-
tion of H. The convolution theorem for the z-transform tells us that if y = Hx = h*x,
then Y(z) = H(z)X(z), where X(z) is the z-transform of input x(n), Y(z) is the z-trans-
form of output y(n), and H(z) is the system function.

Recall that a discrete LTI system H is stable if and only if the impulse response
h = HJ is absolutely summable: & e I'. But if H is stable, then h(n) has a DTFT
H(w). Since H(®) = H/(¢/®), ROCy evidently contains the unit circle, |z| = 1. The
converse is also true: If H,(z) converges absolutely on a region that contains the unit
circle, then H is stable (exercise).

A signal x(n) is right-sided means that x(n) = 0 for n < N € Z. In this case, its z-
transform X(z) (9.41) contains at most a finite number of positive powers of z, and
ROCy is the exterior of a circle. If N > 0, then e« € ROCy, and x(n) is causal; that is,
x(n) =0 for n < 0. Similarly, if x(n) =0 for n > N € Z, then we say that x(n) is a left-
sided sequence. The ROC of a left-sided signal is the interior of a circle, omitting
perhaps the origin z = 0.

An LTI system H is causal if its impulse response & = HJ is causal: h(n) = 0 for
n < 0. Thus, A(n) is right-sided, and ROCy is the exterior of a circle. If H is causal
and y = Hx, then

y(n) = Y h(k)x(n-k); (9.42)
k=0

y(n) can be computed without using future values of the input signal.

9.3.4.2 Systems Governed by Difference Equations. A wide variety of
discrete systems are defined by a difference equation:

N M
y(n)+ Y ay(n-k)y = Y b, x(n-m). (9.43)
0

k=1 m=

Note that (9.43) allows us to compute a new output y(n) if we know the previous N
output values, the previous M input values, and the current input value. Thus, for
real-time applications, signal filtering prior to frequency domain analysis is often
implemented using filters governed by a difference equation. Offline applications,
of course, do not worry about this detail, and they commonly employ noncausal
filters.
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If an LTI system H is governed by a difference equation, then its transfer func-
tion is rational. That is, H(z) = P(z_')/Q(z""), where P and Q are complex polynomi-
als. We can see this by taking the z-transform of both sides of (9.43):

N M
YO+ Y oY@ = Y b, X" (9.44)
k=1 m=0
Consequently,
N " M Y
Y(z){l + Y qz } =X Y b,z . (9.45)
k=1 m=0
This becomes a rational function in 7! by computing,
M —m
2 bz
) - _m=0 = H(2). (9.46)
X(z) N N
{1 + Y az
k=1

Although the system function is given by the z-transform convolution theorem as a
rational function in the complex variable z, it is often easier to work in terms of the
variable z_l, which is the z-transform of a unit delay.

9.3.4.3 Poles and Zeros Analysis. Let us continue to consider an LTI sys-
tem H, defined by a difference equation. The rational system function H(z) = Y(z)/
X(z) = P(z_l)/Q(z_l) may also be characterized by its poles and zeros. The poles are
the zeros of Q(z_l), and—assuming that common factors are removed from H(z)—
the zeros of P(z"") are those of H(z) too.

To find the poles and zeros, we must factor P(zfl) and Q(zﬁl) into products of
linear terms. The fundamental theorem of algebra guarantees that every complex
polynomial factors into linear terms, unique except for their order. Many readers
know theorem, but if we recount some complex variable theory from Chapter 1, an
argument of Liouville!® proves it fairly easily.

We may assume that some polynomial P(z) has been reduced to its lowest terms
and that it still has degree exceeding unity. If P(c) = 0 for some ¢ € C, then (z — ¢)
evenly divides P(z), so we must have P(z) # 0 for all z € C. This means that the
reciprocal function R(z) = 1/P(z) is defined for all z € C. But then R(z) is every-
where differentiable, since its denominator is differentiable and has no zeros.
Further as |z] gets large, |[R(z)| gets small. So R(z) is bounded and everywhere differ-
entiable. But, by Liouville’s theorem, a bounded, everywhere differentiable (ana-
Iytic) function is constant (exercise). This means R(z) is a constant, and we have a

10Rrench mathematician Joseph Liouville (1809-1882) authored some 400 papers on number theory,
integral equations, and differential geometry.



DISCRETE FILTER DESIGN AND IMPLEMENTATION 629

contradiction. It must be the case that we can always extract another root from a
complex polynomial of degree two or more.

Now consider the case of a discrete causal LTI system H whose transfer function
H(z) is a rational function. Since H is causal, h(n) is right-sided: h(n) = 0 for n < 0.
ROCy is the exterior of a circle. Since H(z) is rational, its denominator is a complex
polynomial 0(z™"). The only values z € C for which H(z) does not exist are the
zeros of Q(z_l), which are the poles of H(z). The number of poles is finite; it is at
most the degree of 0(z™"). Hence, there is a pole of largest modulus |p|, where
Q(p) = 0. Finally, we conclude that ROCy consists of the exterior of the circle
defined by |z| = |p|. If all the poles of H(z) are contained within the complex unit
circle |z] =1, then ROCy contains the unit circle, and H is a stable system.

How a signal processing application implements a discrete filter on a digital com-
puter depends on the support of its impulse response: finite (FIR) or infinite (IIR).

A simple convolution calculation suffices for an FIR filter. If y = Hx, and h = HJ,
then the filtered output y(n) can be calculated from the input x(n) via a convolution
operation:

N
yn)y =Y h(k)x(n-k). (9.47)
k=M

Finite impulse response filters are particularly easy to implement. The weighting
function h(k) is the impulse response of the linear, translation invariant discrete
filter. The application must store at least N — M + 1 values for this calculation.

The system function for an FIR filter is given by

N
Y(@) _ .
X6~ :Zthz H(z), (9.48)

where we have written &, = h(k). Since H(z) has no denominator polynomial, it is an
all-zero filter. Thus, another way to characterize FIR and IIR filters is as follows:

® The system function for an FIR filter is an all-zero rational function of 7L
® The system function for an IIR filter has at least one pole.

FIR filters tolerate transient inputs. A transient in past x(n) values eventually falls
outside the window [M, N] over which the sum is computed in (9.47), so an FIR fil-
ter’s output is never permanently affected by input spikes.

FIR filters behave well. They are clearly stable; that is, a bounded output signal
results from filtering a bounded input signal. If x(n) represents time sampled data
with a transient, then eventually the effect of the transient on the output y = Hx will
disappear.

This means that the delay of a sinusoid at the output is proportional to its fre-
quency. This can be important for processing and analysis applications where it is
important that tones not be scrambled by the filter. A preliminary filter for a speech
recognition system, for example, should not turn a simple spoken word into a grunt
followed by a squeak. Later we shall see that some FIR filters have linear phase.
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Examples of FIR filters that are implemented as in (9.47) include moving aver-
age filters and weighted averaging filters. We explored moving average filters for
noise reduction in the dual tone multifrequency detection application. There also we
considered windowing the signal in order to obtain a time localized snapshot of its
spectral characteristics.

The convolution calculation for an IIR filter is impossible to directly implement.
However, a large, powerful, efficient, and therefore imporant class of IIR filters
admits recursive implemenatation. Recursive filters save prior output values and
combine them with current and past input values to produce a current output value.
That is, these filters obey a difference equation (Chapters 2 and 8) of the form

N M
ym)+ Y apy(n—k)y = Y b, x(n—m). (9.49)
k=1 m=0

9.3.4.4 Implementation. Recursive implementation can be very efficient. In
fact, certain IIR filters, defined by a difference equation, require fewer computations
than equally powerful FIR filters. Moreover, these filters have almost linear phase.
To see schematically how we might implement a filter defined by a difference
equation on a digital computer, let us consider the system defined by (9.49). We can
see that if the blocks symbolized by 7! store a value for a unit time, then the equation
is implemented by the Direct Form I architecture [8] shown in Figure 9.22, where

M N N
y(n)y = Y b x(n-m)- ¥ ay(n-k) =v(n)- Y ayn-k). (9.50)
m=0 k=1 k=1
v(n)
TA TA
Z 1 bO Z_l
X(n'l) \ 4 [ d v )’(n-l)
TA A"
Z_1 bl -a; Z—l
x(n-2) y > < v y(n-2)
by 4y
Z—l
x(n-M) byt .
y(@0-N)
_aN

Fig. 9.22. Direct Form I implementation of a recursive system, governed by a difference
equation.
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Fig. 9.23. The Direct Form II implementation of a recursive system is formed by (i) revers-
ing the order of composition of the subsystems in the Direct Form I arrangement (as on the
left) and (ii) then merging the duplicated delay operations (right).

The Direct Form I structure is seldom implemented, because a much more effi-
cient scheme is possible. To see this, note that the lattice structures of Figure 9.22
cascades two LTI systems. One system produces v(n) from input x(7), and the other
accepts v(n) as an input and generates y(n). We know from Chapter 2 that the com-
position of systems is characterized by the convolution of their respective impulse
responses. Since convolution is commutative, so is composition. Thus, we can swap
the order of the cascaded systems in Figure 9.22. This is shown on the left-hand side
of Figure 9.23.

Reversing the order of these two subsystems leaves a network with two identical
sets of sequential delays in the middle (Figure 9.23). The insight of the Direct Form
II architecture is that the nodes across from one another contain the same mathemat-
ical result; the two halves can be joined, cutting the number of delay operations and
economizing on memory locations. The Direct Form II, on the right-hand side of
Figure 9.23, is a commonplace in computer implementations of signal processing
systems.

When the difference equation coefficients (9.49) are all real, another efficient fil-
ter structure is possible. In this case, the poles and zeros of the system function H(z)
that have nonzero imaginary parts must consist of conjugate pairs. Then H(z) is the
product of terms of the form

G (o) = b Pt 9.51a)
)4 0 ’

1 -1
+ alpz
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and

-1 )
1+b, z +b,z
K, (2) = lg M, (9.51b)

1"‘“qu +ay,2

where all of the coefficients are real. Some coefficients may be zero to account for
unequal numbers of poles and zeros. Terms of the form (9.51a) are called first-order
sections. Terms of the form (9.51b) are called second-order sections. We may
implement each first- or second-order section as a Direct Form I or Direct Form II
network. When we serialize all of them to implement H(z), we have the cascade
architecture for a system defined by a difference equation. Strategies exist for pair-
ing poles and zeros in the cascade architecture so as to minimize round-off error in
finite precision arithmetic [11].

9.3.5 Low-Pass Filter Design

This section covers several methods for designing discrete low-pass filters. The
mechanics of converting an approximate low-pass filter to one of the other types
(high-pass, bandpass, or band-reject) are the same as for ideal filters. This section
also covers two particularly important procedures for converting continuous domain
to discrete filters: the impulse invariance technique and the bilinear transformation.

We have already constructed and applied several ad hoc discrete filters. One
obvious method is to use a frequency-domain mask:

(i) Fourier transform the signal. Thus, from x(n), we find X(k) according to the
DFT analysis equation (9.1).

(i) Mark out all but the frequencies of interest to the application. In other
words, the application determines a binary mask H(k) € {0, 1} and we set
Y(k) = H(k)X(k). Note that this is equivalent to convolving y(n) = (h*x)(n),
where h(n) is the inverse DFT of H(k).

(iii) Analyze the result Y(k) by thresholding, segmentation, and classification pro-
cedures in the spirit of ordinary time-domain analysis (Chapter 4); or, alter-
natively, inverse transform Y(k) to continue time-domain analysis on y(n).

(iv) Finally, interpret the signal.

There are advantages and disadvantages to the obvious approach. It offers per-
fect control of the filtering, assuming that the sampling rate is high enough. Also, it
allows the application designer to work in both domains: time and frequency. This
could be pertinent. But one drawback is that it is only feasible for offline applica-
tions. Where decisions about the signal must be made while the data arrive, this
strategy does not work very well. Even for offline applications, the method could
be expensive; the discrete Fourier transform requires a lot of arithmetical opera-
tions, and if the data do not naturally come in fast transform-sized chunks, this pre-
sents another problem of data windowing and interpretation across the window
boundaries.
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Another method is to construct low-pass filters intuitively, using weighted aver-
ages or recursive, sample-and-hold algorithms. Although it chagrins a signal theo-
rist, probably most of the filters used in analysis applications are of this type. Such
adhoc filters are useful for salt-and-pepper noise removal, blending away transients,
and preparing signals for derivative or edge finding operations. One can investigate
the spectral characteristics of such filters using the discrete Fourier transform, such
as we carried out in Section 9.1.

9.3.5.1 Impulse Invariance. 1t is possible to begin with an analog low-pass
filter and convert it to a discrete filter. Often, the useful characteristics for an appli-
cation are known from their analog frequency-domain description. An example is
the Gaussian; it is analytically attractive, it decays quickly, and filtering with wider
kernels does not create additional time domain structure, as shown by scale-space
theory (Chapter 4).

The impulse invariance technique is as follows:

(i) From the application, a specification of the filter’s continuous-domain Fou-
rier transform H,(€2) is generated.
(ii) The inverse Fourier transform is applied to find £ (), the impulse response
of the analog filter.
(iii) The analog impulse respose is sampled hA(n) = h,(nT), where T > 0 is the
sampling interval.

Now, impulse invariance is simple and commonly invoked in signal analysis appli-
cations. One question, however, is whether the discrete sampling in step (iii) above
undoes the frequency-domain behavior that motivated the analog filter’s selection in
the first place.

The sampling theorem (Chapter 7) answers this question. We can write H(®), the
discrete-time Fourier transform of h(n), in terms of H,(€2), the analog Fourier trans-
form of h,(¢):

H(o) =% y Ha(é[m+2kn]). (9.52)
k = —c0

We recognize the form of (9.52). The DTFT of h(n) consists of a superposition of
scaled (amplified by T~ versions of H,, shifted by 2nt/T and dilated by T.

Note also that if |H ()| = 1 for |Q] = 0 in (9.52), then H(®) will provide a gain of
approximately 1/7. With the sampling rate close to 1 Hz, the effect will be neglig-
ble. However, if T is small—that is, the sampling rate is high—then the discrete fil-
ter will have a very high gain. For this reason, it is customary to set i(n) = Th,(nT)
[7, 40].

9.3.5.2 Sampling Rational Analog Filters. An important discrete filter
design method is to sample an analog filter whose Fourier transform is a rational
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function. It turns out that the impulse invariance method applied to such an analog
filter produces a discrete filter governed by a difference equation. Such analog fil-
ters are well-known from analog filter theory, and we will develop several of them
later. This becomes a very powerful method for designing discrete filters with excel-
lent design characteristics and efficient computer implementations.

Suppose that an analog low-pass filter H, has impulse response #,(f). Let the
radial Fourier transform of /,(f) be a quotient of polynomials in £
—jQt

dr = P(Q) (9.53)

H(Q) = [h .
a(£2) La(t)e (%)

We can find £,(#) using a partial fractions expansion of H,(€2). This can be a messy
manual computation, but it works just like partial fraction expansions for rational z-
transforms. These are the steps to expand H ,(£2) in partial fractions [10]:

(i) Normalize the fraction so that the denominator Q(€2) has a leading coeffi-
cient of unity.

(i) Since H, is low-pass, as |Q| — oo, it must also be the case that |H,,(Q)| — 0;
the degree of Q(£2) must exceed the degree of P(£2):

p QM1 +p Q-2 +p
H (Q) = PQ) _ M—IM M;/I2 : 0 (9.54)
0(Q) Q" +q, ,Q B + -+ q
(iii) Factor the denominator Q(£2) into its roots, ®,,, | <m <M,
M
Q) = I (@-9,), 9.55)
m=1

where we assume for now that the Q,, are distinct. Possibly Q(£2) has a
form that allows us to easily derive its roots. In other cases, a computational
method of root finding, such as the Traub—Jenkins algorithm may be

employed [43].
(iv) Then H,(£2) has a partial fractions expansion of the form:
H@ =y n 9.56)
d( ) - Z Q _ Q k] .
m=1 m

where c,,, | <m < M, are constants.

(v) To find c,,, 1 £ m < M, note that—having assumed that the denominator’s
roots €2, are distinct—we see

Cp = [(Q—Qm)Ha(Q)]‘ng : (9.57)
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The partial fraction expansion enables us to write out the impulse response 4,,(f)
of the analog low-pass filter H,. Indeed, the inverse radial Fourier transform of
Cm
Q- Qm
valid so long as the imaginary part of Q,, is positive: Imag(£2,,) > 0. By Fourier trans-

form linearity, we have

R L . . . . L
is jc,.e  u(t), where u(?) is the unit step signal. This transformation is

M iQ,t
h(t) = ju(t) S c,é " (9.58)

m=1

Now we can discretize the filter by the impulse invariance technique, for instance.
Let 7> 0 be the sampling interval. Then,

. M jQIﬂnT
h(n) = h,(nT) = ju(n) Y c,e . (9.59)
m=1
Taking the z-transform of (9.59) gives
M M :
. iQ nT Jjc
H(z) =) Y ¢, zlume ™ 1(z) = ¥ o (9.60)
m=1 m=11—¢ m_—1

The important points about this derivation are as follows:

® Note that (9.60) is already in the form of a partial fractions expansion.

® It has in fact the same partial fractions expansion coefficients as given by
(9.56) except for the factor of j € C.

® The poles of H(z) are at exp(jTQ2,,) form=1,2, ..., M.

® The pole at exp(j7€2,,) will be inside the unit circle if and only if Real(j7€,,) <
0 and thus if and only if Imag(£2,,) > 0.

® If we consider H(z) to be the z-transform of a causal filter, then Imag(£2,,) > 0
forall m =1, 2, ..., M implies that the region of convergence will be {z € C:
|z| > a}, for some 1 > a > 0, and the discrete filter H will therefore be stable.

® All of the partial fractions (9.60) are of the form ¢ = C—ZA , which is

-1 z-
1-Az
the z-transform of the LTI system governed by the difference equation
y(n) = Ay(n-1)+ Cx(n).
® Finally, if the sampling rate 1/T differs substantially from unity, then we
choose

M jC
H(z) = Y T—jT’g—l 9.61)
m= 1 1 _e m_—

in accord with (9.52) and the remarks thereafter.
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Now let us turn to the special case of (9.55) where the denominator Q(€2) has multi-
ple roots. Suppose the root £2; has multiplicity R and the remaining €2, 2 <m < M,
are distinct. Then H,(€2) has a partial fractions expansion of the form

R
H(Q) = ¥ —Lr
a

Cm
V=1(Q_Ql)r m—ZQ_Qm

(9.62)

M

where Cl 1 <r<R,andc,, 2 <m< M, are constants. The formula for calculating
the ¢; , is as follows:

dQ
Q=0

¢, = = : (9.63)

R-r
{%(Q—QI)RHL,@}

If there are several multiple roots, then we follow the above procedure, inserting
supplemental terms in the partial fractions expansion (9.62) and computing the
coefficients with repeated derivatives (9.63).

Notice again that if the analog H,(£2) has at least one pole, then so will the
z-transform (9.61), and the discrete filter will be IIR.

9.3.5.3 Laplace Transform Techniques. Analog filters and discrete filter
designs from them are usually approached using the Laplace transform [6—11].
Readers are probably familiar with this tool from continuous-domain systems the-
ory. The Laplace transform plays the same role in analog systems theory that the z-
trasnform plays in discrete system theory. Let us briefly review how the transform is
used with analog filters whose Fourier transform is a rational function. Specialized
texts include Refs. 44 and 45.
The Laplace transform X, (s) of the analog signal x(¢) is defined by

oo

st

X, (s) = J’x(l)ei dt, (9.64)

—oo

where s € C. If H is an LTI system, then the Laplace transform H; (s) of its impulse
response, h = HO , is also called the system or transfer function of H.

Note that if x(#) has a Fourier transform X(€2), then X; (jQ2) = X(£2). The Fourier
transform is the Laplace transform evaluated on the imaginary axis of the complex
plane. If s = 6 + jm, where 6 € R, then X, (s) is the Fourier transform of x(0)e .
Transform convergence depends on the relation of x(#) to the exponential factor
exp(—ot), and it does not depend on the imaginary part of s = ¢ + jm. Hence, the
Laplace transform converges on vertical strips in the complex plane.

A couple of basic examples show that the Laplace transform must be associated
with a region of convergence (ROC). If x(¢) = e_A’u(t), then X, (s) = 1/(s + a) and the
ROCy = {s € C: Real(s) > —a}. If y(r) = —eAly(~1), then Y;(s) = 1/(s + a) and the
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ROCy = {s € C: Real(s) < —a}. Recall that an analog LTI system H is stable if and
only if the impulse response i = H is absolutely integrable: h € L'. But this means
h(?) has a Fourier transform H(€2). Since H(L2) = H;(jQ2), ROCy must contain the
imaginary axis.

Now suppose x(¢) is right-sided: x(f) = 0 for t <a € R. If ROCy contains the ver-
tical line Real(s) = b € R, then ROCy contains {s € C : Real(s) = Real(b)}. This is
fairly easy to see, because, for such s € C, exp(-Real(s)f) < exp(-Real(b)¢) for t > 0
and the transform integral (9.64) will still exist. The ROC of a right-sided signal is a
right half-plane. Similarly, if x(¢) is left-sided (x(¢) = O for t > a € R), then ROCy is
a left half-plane. Now consider the case of a causal LTI system H whose transfer
function Hy(s) is a rational function. Since H is causal, /() = 0 for ¢ < 0. In other
words, h(?) is right-sided, and ROC is a right half-plane. Since H;(s) is rational, its
denominator is a complex polynomial Q(s). The only values s € C for which H;(s)
does not exist are the zeros of Q(s), which are the rational function’s poles. As there
are only a finite number of poles of H;(s), ROCy must be the half-plane to the right
of the zero of Q(s) with the largest real part.

We invert the Laplace transform using much the same methods as z-transform
inversion. Rational functions X;(s) can be decomposed into a partial-fractions rep-
resentation and the linearity propert applied to elementary transforms to arrive at
x(t). Table 9.3 lists basic Laplace transform properties.

Let us turn now to the use of the Laplace transform in designing discrete filters
from rational analog filters [7]. Let the Laplace transform of %,(¢) be a quotient of
complex polynomials

Hy(s) = [ hy(nedr = % (9.65)

TABLE 9.3. Summary of Laplace Transform Properties

Signal Expression ~ Laplace Transform or Property

x(0) X, (s) = [x(ne 't
zB) =ax(®) + by(t)  aXp(®)+ bY(w)
(Linearity, ROCx M ROCy € ROCy)
y(0) = x(t — a) X (s)
(Time shift, ROCy = ROCy)
y(@) =x(exp(ar)  Xy(s —a)
(Frequency shift, modulation, ROCy = {s: s —a € ROCx})
1

y(t) =x(at),a#0  —XL L(E)
|la a

(Scaling, dilation, ROCy = {s: s/a € ROCyx})

y(0) = (x* h)(1) F(s)H(s)
(Convolution, ROCx N ROCg < ROCy)
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and let its partial fractions expansion be

Mg
Hy(s) = ¥ —, (9.66)

where d,,,, 1 <m < M, are constants, and the poles s,, are distinct. Laplace transform
linearity and inversion of the summands in (9.66) implies

M )
hy(t) = ut) Y de™ (9.67)

m=1

Impulse invariance applies exactly as above. We set

M s nT
h(n) = h,(nT) = u(n) ¥, d,e" (9.68)

m=1
and the z-transform of A(n) is

M M

d,nT dm

m=1 m=11-¢ "z
Notice that if d,,, = jc,, and s, = jQ,,, then the two expressions for H(z), (9.69) and
(9.60), are identical. The conditions for stability and causality are similar too. From
a Fourier transform perspective, we need the poles of the rational function

H,(Q) = % to have positive imaginary parts. From the Laplace transform
P(s)

standpoint, however, we require the poles of H,(s) = 06s) to have negative real
N
parts. Of course, if € is a pole of H (L), then jQ is a pole of H,(s).

9.3.5.4 Bilinear Transformation. The bilinear transformation obtains a dis-
crete filter from the frequency domain representation of an analog filter by directly
mapping the analog frequency values to discrete frequency values. What sort of
operation performs such a mapping? Note that analog frequencies can be arbitrarily
large, —oo < Q < 400, whereas discrete frequencies are limited to a 2m-wide interval:
-1t < ® < 1. So we seek a function that maps the real line to the circumference of a
circle. The arctangent, tanfl, maps R to the interval (—m/2, ©/2). Let T be the sam-
pling interval. Then the following relation maps continuous to discrete frequency
values:

-1
® = 2tan (%T) (9.70)

Observe that as 0 — teo, the maximum analog frequency values, then ® — =,
respectively, the maximum discrete frequency values.
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Suppose that H,(€2) is an analog lowpass filter with cutoff frequency €2.. Then
the bilinear transformation (9.70) allows us to define a discrete low-pass filter as
follows:

2 [0}

H(®) = Ha(} tan(z)). (9.71)

C

-1,Q T
The cutoff frequency for H(w) is ®,. = 2tan (T) .

How does the scaling factor 7 come to appear in (9.70)? One practical reason is
that for small frequencies, T controls the rate of change of ® with respect to Q: do/

-1
dQ = T. Some authors (e.g., Ref. 46) set ® = % tan (%T) to ensure that for low

frequencies ® = .. Another way of justifying the frequency mapping (9.70) is to
consider the relation between poles of rational analog filters and the discrete filters
obtained from them. If s = s, is a pole of the Laplace transform H;(s) of a filter
(9.66), then corresponding to it is a pole z = exp(s,,T) of the z-transform H(z) (9.69).
This suggests a mapping from the Laplace s-plane to the z-plane: z = ¢*T. Thus,

T
1+s=
sT _ &1 _ s2 _ 2+sT

D S_ZT 2-sT

z=e (9.72)

where we approximate the quotient on the right in (9.72) using the first two Taylor
series terms for the exponential function. This implies

. Z(@) 9.73)

which relates the Laplace transform variable to the z-transform variable. To relate
continuous and discrete frequency responses, we use z = ¢® and s = jQ in (9.73),
treating it as an equality. After a little algebra, (9.70) results (exercise).

9.3.6 Frequency Transformations

There are convenient mappings of the independent variable of a filter’s system
function that convert a low-pass filter to a high-pass, bandpass, bandstop, or even
another low-pass filter [7, 11, 33, 47].

9.3.6.1 Analog. Consider an analog low-pass filter with Laplace transform
H(s) and cutoff frequency . = 1. The transformations are as follows:

(1) Let o(s) =s/Qp. Then H;(¢(s)) is a low-pass filter with cutoff frequency Q.
(ii) Let o(s) =Qg/s. Then Hy(¢(s)) is a high-pass filter with cutoff frequency Q.
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S+Q 0
(iii) Let ¢(s) = ————— . Then H;(¢(s)) is a bandpass filter with lower
s(Q H—Q L)
cutoff frequency €; and upper cutoff frequency Qp.
. S(QH_ QL) . . .
(iv) Let o¢(s) = > . Then H;(¢(s)) is a bandstop filter with lower
sT+Q LQ H

cutoff frequency €; and upper cutoff frequency Qp.

9.3.6.2 Discrete. Consider a discrete low-pass filter with z-transform H(z) and
cutoff frequency ... The transformations are as follows:

-1 _
: -z - N e AW G Rl |
(1) Let 0(z ) = - If we set o = sm( 5 )/sm( 5 ), then

1-oaz
H((z)) is a low-pass filter with cutoff frequency wg.

1 _
.. -1, 7 T +o _ O+ O O~ Oy
(i) Let ¢(z ) = - - If o= —COS(T)/COS( 3

1+oz
H(¢(z)) is a high-pass filter with cutoff frequency .

) , then

-2 -1 _
-1y _ z T-20Bz  +y _ Ot oL O~
(i) Let ¢(z ) = — 5 o = cos( 5 )/cos( 5 ),

vz T =2aBz +1

K = cot(wH;mL)tan(%c) ., B=x/(k+1), and ¥ = (k- 1)/(x+1),

then H(¢(z)) is a bandpass filter with upper cutoff frequency wy and lower
cutoff frequency ;.

_ -2 -1 Oy + © W — 0
(iv) Let ¢(z 1) =2 z20f vy o = cos( ek L)/cos( ek L),
- - 2 2
vz~ =20z +1

®,;— O ®
K = tan( ey L)tan({), B=1/(k+1), and y = (1-x)/(x+1),
then H(¢(z)) is a bandstop filter with upper cutoff frequency g and lower
cutoff frequency .
Example (Low-Pass to High-Pass). Suppose that ®, = /4 and 0y = 37/4 in (ii)

_ _cos(n/2) _ —g_
above. Then o = cos (7 d) 0 and H(¢(z)) = H(—2).

9.3.7 Linear Phase

It is possible to construct causal finite impulse response filters with linear phase.
Where the analysis steps in an application depend on linear phase during signal
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processing steps, this can be factor in favor of using finite impulse response (FIR) fil-
ters. Note that it is possible to have infinite impulse response (IIR) filters with linear
phase. For example, if 2 = HS and h(n) is symmetric about n = 0, then H will have
zero phase. However, we are interested in filters that are practically implementable,
and therefore we require right-sided impuse responses: i(n) =0 for n < N for some N.

9.3.7.1 FIR Characterization. Let H be a linear, translation invariant system,
let h(n) be its impulse response, and let H(w) be its discrete time Fourier transform.
If Hw) = OO r(®), with ¢(w) a linear function of ®, and Hg(®) € R, then we say
H has linear phase.

The theoretical result we are going to prove is as follows. If H is a discrete causal
FIR filter with impulse response & = HS such that h(n) = 0 for n > N — 1, then H has
linear phase if and only if for some ¢ € C, with |c| = 1, i(n) = ch*(N — 1 — n), where
h* is the complex conjugate of 4.

To begin, let us assume that H is causal, FIR, and has linear phase. Let H(®) =
ei¢(m)HR(w), with () = a + bw, for some a, b € R, and Hp(®) € R. Assume that
Support(h) = [0, N — 1] with N > 0, so that 2(0) # 0 and h(N — 1) # 0. Let Ag(w) be
the amplitude function for H(w) the DTFT of h(n): H(®) = ¢* A, (). Then

. N-1 .
T =y h(n)e?™", (9.74)
n=0

H(ow) = Eh(n)e

. _ . : _ in 2jb
H(Q)) _ e][2a+2b0) ¢((D)]AH(0)) - ezjanJb(De ]¢((D)AH((D) — ezfae J (DH*((D)
(9.75)

Note that H(®) and its complex conjugate H*(®) are both 2n—periodic; we must
have 2b = K € Z on the right-hand side of (9.75). Let ¢ = ¢F% and g(n) = h*(—n), so
that G(w) = H*(®w). Then the discrete signal s(n) = cg(n + K) has DTFT S(w) =
ce®OG(w) = ce/X°H*(w) = H(®). Because the DTFT is invertible, we must have
h(n) = s(n) = cg(n + K) = ch*(-K — n). We know that for n < 0, h(n) = h*(n) =0
Also, if n > —K, we have ch*(—K — n) = h(n) = 0. Thus, —K = N—1 because that is the
upper limit of the support of i(n), and so h(n) = ch*(N — 1 — n), as claimed.

Conversely, suppose Support(h) = [0, N — 1] and h(n) = ch*(N — 1 — n) for some
¢ € C with || = 1. Applying the DTFT properties gives H(®) = ce N = DOEe(@),
Letc=e® If H(®) = /@A, (o), then H (0) = e7* @A, (0). Putting these
together, we have

e](b(m) g,e (o) _J(N_ 1)(» (9.76)

and thus for some K € Z,

(d-Nwo _ 6,

_(
0(0) = == 5+ 7K. 9.77)

Clearly, ¢(w) is a linear function of ®, and we are done.



642 FREQUENCY-DOMAIN SIGNAL ANALYSIS

1 1 1 1 1 1

1 i 1 1 i ) 1 1

1 1 1 1

1 1 1

: ' :

= 05 A = 05 5
T |

0 0 |
L I D N

0 2 4 6 0 2 4 6

1 1 1 1 1 1 1 1 1 |

1 1 1 1 1 . 1

1 1 1 1 1 1

05 1 1 h 05 1 1 1

1 1 1 1 1

= 0 ! Lo T Z o ! ! !
= $ ! ! = ! :
0.5 i l l | | -0.5 L l ! !

1 1 1 1 1 1

1 1 1 1 1 1

o S S S NN T L

0 2 4 6 0 4 6

Fig. 9.24. Four classes of linear phase FIR filters.

9.3.7.2 Linear Phase Filter Classes. For real-valued filters & = HO, where
h(n) has support [0, N — 1], with N > 0, there are four categories of linear phase fil-
ters. We showed that a finite impulse response filter H has linear phase if and only if
forsome c € C,|c| =1, h(n) =ch*(N—1—-n). If h(n) € R, thenc =1, -1.

We can thus put the filter into one of four classes (Figure 9.24):

(i) c=1and N=2M + 1 is odd.
(ii)) ¢=1and N=2M is even.
(iii)) c=—1and N=2M + 1 is odd.
(iv) ¢=-1and N=2M is even.

9.3.7.3 Examples. We review two cases where the need for linear phase moti-
vates the specific use of FIR filters: electroencephalogram (EEG) interpretation and
seismogram intrpretation.

The first chapter explained the multichannel EEG [48], a biomedical signal that is
often employed in studying brain functions and diagnosing injuries and illnesses.
Electrodes attached to the scalp record the minute voltages produced by the interac-
tions of large numbers of neurons. The signals are often quite noisy, and successive
averaging is often employed to improve the quality of EEG traces. In studying audi-
tory potentials—EEG traces of the part of the brain that is involved in the front-end
processing of auditory nerve impulses—Ilinear filtering has been investigated in
order to improve upon successive averaging, the efficacy of which diminishes after a
large number of sampling epochs. Frequencies above 2 kHz are removed by lowpass
filtering, since they cannot be due to neuronal changes, which take place on the order



WIDEBAND SIGNAL ANALYSIS 643

of 1 ms. The remaining noise is usually at low frequencies, DC to about 150 Hz [49].
The most popular filtering methods for such an application use IIR filters derived
from difference equations (Section 9.3.4.2), since they are efficient and generally
have better sharpness than FIR filters. But the nonlinear phase response of the causal
IIR filters distorts the EEG trace, making linear phase FIR filtering preferable [49].

In seismic processing, the signals are generally quite noisy, composed of many
frequency components, which are filtered by their propagation through the earth.
These different sinusoidal pulses arrive at the sensing unit—the seismometer—at
different times [50], a kind of phase delay. Perhaps the most basic task of earth-
quake seismology is to estimate the arrival time of an event, so that different seis-
mometer stations can compare seismograms and locate the epicenter. Against the
background noise of minor earth movements, impacts from construction equipment,
and vehicle traffic vibrations, the seismic station determines the edge of a signifi-
cant transient. At what time this transient occurs for a seismic station depends on
the group delay of Mother Earth acting as a filter. Thus, for automated seismogram
interpretation, a signal processing filter that introduces a nonlinear phase delay into
the system might distort the signal and cause an error in pinpointing the onset time
of a seismic shock. In order to facilitate the comparison of arrival times among dif-
ferent stations with different equipment, it is essential that their diverse noise
removal filters not introduce any frequency dependent delays at all. The filtering
requirement is even more stringent; successful analysis of the seismogram usually
demands zero phase filtering [51].

9.4 WIDEBAND SIGNAL ANALYSIS

This section considers signals that contain diverse spectral components. These sig-
nals include chirps, which consist of rising or falling tones; transient signals, such
as seismic pulses; signals with sharp edges; and irregularly shaped signals, such as
image object boundaries. Our earlier methods of periodicity detection are successful
only with much simpler waveforms.

9.4.1 Chirp Detection

A chirp is a signal segment where the frequency rises or falls over time. Strictly
speaking, of course, a chirp is not a narrowband signal. But locally, at least, the sig-
nal energy is contained in a narrow spectral range. If this is indeed the case, then the
task of chirp analysis becomes based upon a series of pure tone detection problems
where the detected tones regulary rise or fall. This section considers the case where
locally, at least, a signal contains mainly one frequency component, but that the
frequency itself is changing over time.

9.4.1.1 Synthetic Chirps. Section 6.5 presented the theory of signal modula-
tion, which is the theoretical foundation of chirp signal analysis. Let us first consider
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Fig. 9.25. Synthetic chirp with noise added (a). Panel (b) shows the magnitude spectrum. A
time-frequency map (c) shows how the frequencies change over time. Surface maps (d) are
useful aids for visualizing signal structure.

chirp signals for which the change in frequency over time is fairly simple—Ilinear,
for instance. Thus, we have ®(f) = t®; + ®, as shown in Figure 9.25.

From its time-domain plot Figure 9.25a, it is hard to understand the signal. The
magnitude spectrum Figure 9.25b shows that a concentrated range of tones is
present, in the range from 30 to 50 kHz, amidst some moderate background noise.
But the time evolution of these frequencies and therefore the structure of the signal-
itself remains unclear. We compute a sequence of 32-point discrete Fourier trans-
forms over the time span of the signal. Overlapping the windows by eight samples
helps smooth the time-frequency representation. The resulting map, shown in
Figure 9.25¢, reveals a linear chirp beginning at about 50 kHz and decreasing in fre-
quency in a linear fashion down to about 30 kHz.

As long as its frequency content is, over a certain time interval, basically a tone,
a chirp signal can be analyzed using tone detection techiques and a state machine.
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Local discrete Fourier transforms carry out the frequency analysis, and some
straightforward intepretive logic carry out the chirp discrimination. We can surmise
the following steps:

(1) An order N for the number of samples for discrete Fourier transformation
(DFT) is selected, depending on the sampling rate of the source signal and
the range of frequencies expected in the chirp signal.

(ii)) A DFT window overlap is selected.

(iii) DFT computations are conducted on the source signal within overlapping
windows as chosen in (i) and (ii).

(iv) Where a relatively pure tone in the expected frequency range is found using
local Fourier analysis, the state machine enters a tone detected state.

(v) Step (iv) is carried out again, and if there is a tone in the acceptable spectral
range, then the tone is checked for purity, and the machine enters a state of
increasing or decreasing tone frequency.

(vi) Continued local frequency analysis extends the time-domain support of the
tone, breaks out of the tone detected state based on an invalid frequency
response, or decides that the tone has the proper quality and range to con-
tinue the chirp defined in the current machine state.

(vii) This process continues until the chirp ends or the input signal is exhausted.

The main difficulties with this analysis is that it requires—for the most part—offline
data analysis. That is, the DFT windows are applied around a time center value in a
noncausal fashion. This could be an expensive operation, and for real-time process-
ing, it may be impossible. One alternative might be to employ a bank of causal fil-
ters and seek significant outputs from the banks tuned to increasing or decreasing
frequency bands. To achieve this, however, we need to devise filtering methods that
are causal and sufficently efficient for online implementation.

9.4.1.2 Biological Signals: Bat Echolocation Chirp. Now let us study the
echolocation chirp recorded from a large brown bat (Eptesicus fuscus).]1 The sam-
pling period is 7= 7 us, and there are N = 400 samples in the data set. The time-
domain signal oscillates and rises in amplitude, but the plotted values evince few
other clues as to its structure (Figure 9.26a). The magnitude spectrum explains a lit-
tle more. There are frequencies between 20 kHz and 50 kHz, centered more or less
strongly around a spectral peak at some 35 kHz. The spectrum appears to be bimo-
dal (Figure 9.26b). From a Fourier domain perspective, we cannot tell whether the
modes are frequency components that appear at certain times, one after the other, or
whether they substantially overlap and the bimodality is an artifact of relatively
weaker middle frequencies.

UThis data set is available from the signal processing information base (SPIB): http://
spib.rice.edu/spib.html. The authors wish to thank Curtis Condon, Ken White, and Al Feng
of the Beckman Center at the University of Illinois for the bat data and for permission to use it in this
book.
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Fig. 9.26. Large brown bat echolocation pulse time-domian (a) and frequency-domain (b).

Our knowledge of the echolocation pulse’s content changes dramatically when
we develop the time-frequency map (Figure 9.27).

We use a boxcar window of width N = 128 to generate the local spectral values,
overlapping successvie windows by M = 120 samples. This reveals three descending
chirps (Figure 9.27a) and shows that the time-frequency plot is at least tri-modal.
The bar-shaped artifacts most visible in the lower frequencies appear to correlate
with window alignment. We try a Hann window function of length N and overlap M
to improve the local frequency estimates, as shown in Figure 9.27b. This reduces the
time-frequency artifacts, as one might expect. However, Hann windowing has the
added benefit of resolving the time-frequency mode of highest initial frequency into
two chirps; the echolocation pulse in fact contains four modes.

9.4.2 Speech Analysis

Let us now consider some low-level speech signal analysis problems. There is, to be
sure, a large research literature on natural language processing from initial filtering
methods, detection of utterances in noise, phoneme recognition, word recognition,
contextual analysis, and artificial intelligence techniques for computerized speech
understanding [13, 52-54].
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Fig. 9.27. The time-frequency map of the large brown bat echolocation pulse evidently has
three components (a), each a descending chirp. Instead of a 128-point square window, panel
(b) employs a 128-point Hann window to generate the local frequency information.

9.4.2.1 Formant Detection. Formants are relatively high-energy, tone-like
components within a spoken word. They appear in the speech spectrum as isolated
peaks. Consider, for example, a digitized voice fragment, consisting of a single
word (Figure 9.28).

It is possible to discover formants using peak detection in the Fourier magnitude
spectrum. The vowel phoneme /a/ in Figure 9.28c exhibits three strong peaks at
approximately 300 Hz, 600 Hz, and 900 Hz. Such harmonics are characteristic of
sounds produced in a tube, with a source at one end and open at the other. This
crudely models the vocal tract, with the vocal cords at one end and the open mouth
at the other. The vowel phoneme /i/ in in Figure 9.28e shows three resonant compo-
nents as well as significant energy in many higher frequencies. Parts of the speech
signal that do not contain high-energy tones, such as the /k/ in Figure 9.28b, cannot
have formant structures.

Another formant detection task is to identify a pitch or fundamental harmonic
frequency among the significant tones. This is the frequency of vibration of the
vocal cords. In real speech recognition systems, this frequency must be identified
and tracked, as it varies with the utterance as well as with the gender and emotional
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Fig. 9.28. Digitized voice (a) of a woman: “...calling....” Vertical lines mark the approximate
locations of five phonemes. Panels (b)—(f) show the magnitude spectra for phonemes /k/, /a/,
N, /i/, and /ng/.

state of the speaker. Some goal-directed information applies here. Pitch ranges from
about 60 Hz to 300 Hz in adult males and up to 600 Hz in adult females.

A third formant detection task is to compare the center frequencies of signifi-
cant tones. If such peaks represent formants, they must be integral multiples of the
pitch frequency. Thus, in addition to ordinary peak finding, a formant detection
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Fig. 9.29. Mixed-domain analysis of “calling” speech fragment. Using N = 256 point Hann
windows for local frequency estimations centered K = 32 samples apart along the time axis
produces the above time-frequency map. In many cases, voiced versus unvoiced speech seg-
ments can be found using the time-frequency map.

algorithm must include an assessment of the relative energy contributed by reso-
nant frequencies.

9.4.2.2 Voice and Unvoiced Speech Determination. Speech sounds can
be divided into voiced and unvoiced sounds, according to whether the vocal cords
vibrate or do not vibrate, respectively (Figure 9.29). Unvoiced sounds split roughly
into two categories: fricatives, such as /s/ or /f/, and aspirates, such as /k/.

9.4.2.3 Endpoint Detection. An important early speech analysis step
involves automatic discrimination between background noise and speech signals.
This segmentation procedure is important for automated compilation of speech
databases and for detecting word boundaries in speech recognition systems.
A fairly old but reliable method uses local energy and zero crossing rate parameters
to isolate speech [55]. From a background noise sample, upper- and lower-energy
parameters E,, and E;, respectively, and a zero crossing threshold Z, are determined.
The algorithm refines the boundaries of a speech fragment in three stages as
follows:

(i) The initial energy-based segmentation, say speech exists within [M,,, N,], is
given by where local signal energy exceeds E,,.

(ii) The refined energy-based segmentation widens this interval to [M;, N;] by
searching outside [M,,, N,] for the points where energy diminishes to E}.



650 FREQUENCY-DOMAIN SIGNAL ANALYSIS

(iii) Finally, a measure of local signal frequency—the zero crossing rate—is
checked outside of [M), Nj]. If the rate exceeds Z,. three or more times in the
250-ms intervals on either side of [M, N], then the speech fragment bound-
aries grow again to [M,, N,], where [M,,, N,] € [M;, Nj] C [M,, N,].

Noise versus speech discrimination problems continue to attract experimental
researchers [56, 57].

9.4.3 Problematic Examples

Let us mention a couple of signal analysis problem domains where Fourier
transform-based interpretation techniques begin to break down.

Seismic signals contain oscillations, but these oscillations are of unusually short
time domain and are interspersed with transient artifacts that often thwart analysis.
The Fourier transform is adequate for long-term periodic signal trends, but its effi-
ciency as a signal descriptor diminishes with the duration of the oscillations. Geo-
physicists resorted to the short-time or windowed Fourier transform, which we
cover in the next chapter, with some success. This theory constructs a time- and
frequency-domain transform using the Fourier transform and the windowing tech-
niques of Section 9.2. However, transient components are still problematic. Finally,
efforts to get around the difficulties of windowed Fourier methods let to the devel-
opment of the wavelet transform, which is the subject of Chapter 11.

Another problem area for Fourier methods is shape analysis. It seems that object
shapes, however they might be described mathematically, are comprised of parts.
One-dimensional methods, such as we develop here, can be applied to object
boundaries, and we attempt such applications in the last chapter. There are Fourier
transform-based approaches:

(1) An early method, called Fourier descriptors, approximates image object
boundaries with varying numbers of Fourier series components.

(ii)) Another method, the Fourier—-Mellin transform, incorporates a temporal
parameter into the transform.

These strategies work, but when the bounded object resolves into separate parts, the
overall analytic techniques collapse. As a result, automated object recognition sys-
tems tend to retreat into structural methods of pattern recognition and cordon off,
perhaps giving up on frequency-domain interpretation.

9.5 ANALOG FILTERS

Although our present goal is discrete time signal analysis and the frequency selec-
tive systems that support it, we have ample reasons for developing a respectable the-
ory of analog filtering.

(i) While signal analysis is computerized interpretation of signals and therefore
assumes a digital implementation, it relies upon discrete theory.
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(ii)) However, our ultimate source signals come from analog world.

(ii1) We need to filter incoming analog so as to remove high frequencies that would
otherwise cause aliasing during sampling, according to the Nyquist criterion.

(iv) We may be able to implement cheaper analog filters.
(v) A lot of discrete filter designs are based on analog filters.
(vi) We have shown that it is easy to derive discrete filters from analog ver-
sions—and especially if the analog filters have a rational transfer function.
(vii) Thus, if we develop a sound theory of analog filters, then we shall have a
correspondingly sound theory of discrete filters.

(viii) Analog filters are historically prior.

(ix) The analog theory of continuous theory involves continuous sinusoidal sig-
nals, and hence the analog Fourier transform is a convenient theoretical tool.
Anyway, this is consonant with our analog-first treatment of the frequency
transforms.

Just as the contiuous Fourier transform is the natural setting for studying signal
frequency, so the class of continuous domain, or analog, filters constitute the right
beginning place for our study of frequency-domain signal analysis. Signal analysis
usually takes place on a digital computer, but the frequency-selective algorithms
that operate on digital signal representations often derive from continuous-domain
filters. That is one reason for studying analog filters. But even before signals are
digitized and fed to the computer, the signal digitization must often be filtered by
analog means so that aliasing (Chapter 7) is minimized. This section presents some
basic analog filters, introduces their characterisitic descriptors, and outlines the
mechanics of converting one filter into another.

Conventional analog filter designs begin by examining the frequency-domain
behavior X(®) or the s-domain behavior X; (s) of analog signals x(f). System theory
texts covering analog filter theory and the Laplace transform include Refs. 6, 58,
and 59. Texts that concentrate on the subsequent conversion to discrete time pro-
cessing are [7-11, 26].

Classical electronics studies networks of electrical components—resistors,
capacitors, and inductors—which implement the analog filtering operation in hard-
ware. Circuit design texts cover the electronic circuit designs [60—63]. More mod-
ern electrical and computer engineering texts cover the design of hardware for
digital filtering [64]. For signal analysis using digital computers, we need digital fil-
ters that selectively enhance and suppress signal frequency components of interest
to the application. We derive the digital filters from their analog equivalents using
some classic methods.

9.5.1 Introduction

A filter is a frequency-selective linear, translation-invariant system. Analog filtering
takes place by virtue of the convolution property: Y(Q) = H(Q)X(Q). So, if [H(Q)| is
small for values of € where it is desirable to suppress frequencies in the input x(7)
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and |H(Q)| is near unity where it is desirable to preserve frequencies in x(¢), then
convolution with A(f), y(f) = (h*x)(f) performs the requisite frequency selection
operation. To describe system filtering we specify the magnitude spectrum, |H(Q)|,
or, equivalently, |H(Q)|2. We are mainly interested in real-valued filters: A(f) € R.
Since H(—Q) = H*(Q) in this case and since |H(Q)| = |H*(Q)|, the filters herein have
both positive and negative frequency components. Thus, the magnitude spectra are
symmetric about the frequency-domain origin, = 0.

This section explains how to construct bandpass and high-pass filters from low-
pass filters. The discussion begins with the Gaussian; its Fourier transform is also
Gaussian, so it is a natural choice for a low-pass filter. Filter constructions depend
on the Fourier transform properties from Chapter 5.

The analog convolution operation is once again denoted by the * operator: y =
x*h. We define

y(t) = (x*h)(1) = J'x(s)h(t—s) ds . (9.78)

—oco

Section 6.4.1 introduced ideal analog filter types. One filter missing there is the
notch or band-reject filter. It is a like a reverse bandpass, and it suppresses rather
than preserves a range of frequencies.

9.5.2 Basic Low-Pass Filters
Since we can move easily from low-pass filters to any of the other three basic

types—high-pass, bandpass, or band-reject—Iet us consider some examples.

9.5.2.1 Perfect. The ideal low-pass filter completely removes all frequencies
higher than some given frequency and preserves the rest without amplifying or
attenuating them. This is the familiar analog moving average or boxcar filter.

9.5.2.2 Gaussian. The Gaussian

-’
1 202

Gme g(1) )

with mean U and standard deviation ¢ has Fourier transform

8y, o) =

oo ) 2 2
G(Q) = jg(t)e‘JQ‘dr: epoc’zQ +jQ|uD. (9.80)

Its magnitude spectrum is also a Gaussian, centered at {2 = 0. Thus, g(¢) is the impulse
response of an analog low-pass filter. If x(¢) is an analog signal and y = Gx = (g * x)(¥)
is the convolution with the Gaussian (9.79), then Y(Q) = X(Q)G(L2), where G(Q2) =
(72)(Q) is given by (9.80). Gaussians decay rapidly, faster than the inverse of any
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polynomial. Thus, the Fourier transform of the system response Y(£2) = ( #y)(2) will
contain the x(7) frequency components near 2 = 0, but they will be suppressed by the
product with the Gaussian G(€2). This idea is basic to all low-pass filtering.

Now we also gain a deeper understanding of scale space analysis, introduced in
Chapter 4. Recall that we showed that smoothing signals by ever broader Gaussian
kernels had the unique property that no structure was created in the process. We
understand signal structure to be determined by the concavity regions within the
signal. Now (9.80) shows that the wider kernels are actually low-pass filters with
smaller passbands. That is, the wider kernels progressively remove the high-
frequency components, leaving relatively lower frequency undulations, and—more
importantly—not creating additional changes in signal curvature.

A particularly important area of signal analysis is the detection, classification,
and recognition of signal features that vary according to the size of their features—
according to their scale, for instance.

9.5.2.3 Rational Functions. We can find other examples based on rational
functions. For example, suppose H(Q2) = (1 + Q%! The inverse Fourier transform is

° . -1

W) = = [ H@Q)dYaa= <, 9.81)
2n 2

which is easy to see from the forward radial transform F(exp(—alt])) = 2a/(a + Qz).

Evidently, convolution with A(f) performs a weighted averaging on input signal

data. In signal analysis applications, the pulse A(?) is often called a Lorentzian, and

it is used to find peaks, valleys, and transients in general by the method of template

matching.

9.5.2.4 Better Low-Pass Filters. 1t turns out that very good filters can be
built by pursuing the idea of rational functions introduced in the previous example.
The important features of such filters are as follows:

® They have superior cutoffs—sharper and more like perfect low-pass filters.
® Upon discrete conversion, they will be causal.

® They are stable.

® They have efficient implementations, relying on difference equations.

For signal analysis applications involving real-time data, such as in speech rec-
ognition or industrial control applications, causality is important. Of course, many
signal analysis applications do not involve real-time data; that is, they are offline
applications, and so causal systems are less critical. Nonetheless, very good filters
can be developed for data whose discrete values are only known for the present
and past.
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9.5.3 Butterworth

Butterworth'? filters have maximally flat pass and stop bands. Thus, the filter
designer that values, above all else, reduced pass- and stop-band ripple inclines
toward this filter.

9.5.3.1 Conditions for Optimally Flat Filters. We describe these filters via
their frequency-domain representation. Their Fourier transforms are based on ratio-
nal functions—quotients of continuous domain polynomials. The Butterworth filter
specializes the rational function by looking at the Taylor series representations of its
numerator and denominator.

Indeed, we have already constructed lowpass filters out of rational functions. The
idea is to look at analog filters & = H9, such that their Fourier transform power spec-
tra |H(Q)|2 are rational functions B(2)/A(€2), where A(€) and B(Q2) are polynomi-
als. We impose conditions on the rational functions so that we achieve our design
criteria: passband performance, stopband performance, cutoff frequency, allowable
ripple, and required transition band sharpness. Significantly, for signal analysis on
digital computers, when the power spectrum of an analog filter is a rational func-
tion, then it can be used to derive a discrete filter.

A simple but useful fact is that if 4(7) € R, then the squared magnitude spectrum
|H(Q)|2 is an even function of . To see this, note that Fourier transform symmetry
properties imply H(—Q) = H*(Q). So |[H(Q)]? = HQ)H*(Q) = H(Q)H(-Q). But then
|H-Q)|? = H—Q)H*(-Q) = H—Q)H(Q) too.

We thus consider P(Q) = [H(Q)|> = B(Q)/A(RQ), such that P(Q) is symmetric
about Q = 0. This means A(€2) and B(£2) are polynomials in Q? (exercise). Thus,

AQ) = ag+a,Q" +a, Q" +ay Q7" (9.82a)

B(Q) = by+b,Q  +b,Q" .. +b,, Q" (9.82b)

with ag = by. We may assume that ag = by = 1. A low-pass filter implies |[H(2)| — 0
as |Q| — o0, so N > M. For the filter stopband to be maximally flat as Q — oo, the
maximal number of numerator terms in (9.82b) should be zero. Thus, by = by = - =
byyy =0, and we see

1 1
Tk

P(Q) = [HQ) 9.83)

2 4 2N’
1 +a2§2 +a4Q +a2NQ

Butterworth criteria also require the filter’s passband to be maximally flat at Q = 0,
which entails a, = a4 = - = ay,,_» = 0. We define the cutoff frequency . of the

24 fier S. Butterworth, a British engineer who first analyzed this response profile [“On the theory of fil-
ter amplifiers,” Wireless Engineer, vol. 7, pp. 536-554, 1930]. V. D. Landon later described this same fil-
ter as maximally flat [Cascade amplifiers with maximal flatness, RCA Review, vol. 5, pp. 347-362, 1941].
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Butterworth filters, |H(u))|2: ®,=100Hz;n =4, 8, 16
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Fig. 9.30. Analog Butterworth filters for a few orders.

Butterworth filter by (QC)_Z'1 = ay,. Thus, the Butterworth filter of order N > 0 is
defined by its Fourier transform H(w) (Figure 9.30):

1

N
1+(§)
Q

c

H(Q) = (9.84)

an important next step in practical implementation is to decide which square roots to
choose for H(€) in (9.84). Note that H(Q,) = 2712 = 0.707, for any filter order.

It is possible to invert the Butterworth filter Fourier transform H(€2), truncate the
impulse response A(?), and then sample the result. As we have observed, this would
induce some errors due to aliasing into the final filtering result. The filter designer
might reduce these errors by preserving a large number of discrete samples. But this
necessitates a time-consuming convolution operation. It turns out, however, that
because a Butterworth filter has a rational Fourier transform, an efficient discrete
implementation is possible using difference equations.

Now let us turn to the approximation problem for the Butterworth filter. The pro-
cedure differs depending on how the designer performs conversion from the analog
to discrete filter form: impulse invariance or bilinear transformation.

9.5.3.2 Butterworth Approximation: Impulse Invariance. Given bounds
on how far the filter’s magnitude spectrum can stray from the ideal passband and
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stopband, the Butterworth filter approximation finds two parameters: the filter order
N >0 and the radial cutoff frequency €. in (9.84). Suppose that we require a dis-
crete low-pass Butterworth filter with unit DC gain: |H(w)| = 1 for @ = 0, where
H(w) is the DTMF of the filter impulse response 4(n). We assume that the sampling
frequency is high enough so that aliasing of H (), the filter’s (radial) Fourier trans-
form, is not an issue. This allows us to use the analog filter’s magnitude response in
the design approximation.

Suppose that the passband is Q| < €, and the application requires that |H,(Q)| is
within & > 0 of unity. Suppose the stopband begins at Q > Q,, and we need [H,(Q)]
to be within A > 0 of zero. The Butterworth magnitude response is monotone; it suf-
fices to consider the dual constraints:

|H(Q,)| (9.85a)

[H()

(9.85b)

Filter designers often prefer approximation by differences in decibels. Thus, we say
the passband magnitude (dB) is greater than a small negative value (A) and the stop-
band magnitude (dB) is less than a large negative value (A):

0> 1010g10|H(Qp)|2 >A, (9.862)
10log  |H(Q,)|" <A <0. (9.86b)

The above constraints reduce to

A
Q 2N T
1+[Q—P} <R, =10 =1, (9.87a)
C
A
Q 12N 1o
1_'_[9_5} 2R, =10 ">>1, (9.87b)
C
log(RA -1)
but (9.85a) and (9.85b) give similar relations too. Let R = =7 T so that
solving for Q.. gives og(Rp—1)
RlogQ _—1logQ
logQ, = 25 8% (9.88)

R-1
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At this point, the filter designer makes choices. We can use (9.87a) to find the
Butterworth filter order

log(R, -1
v = g(Ry-1)

Q b
21 _p)
og(Q

c

(9.89)

which will generally not be a whole number. Designers usually round the order
upward, taking the Butterworth order N to be the integral ceiling of v in (9.89)—the
integer greater than v, or Ceil(v). Using equality in either (9.87a) or (9.87b), the
cutoff frequency must be recomputed. For instance, setting

Q
Q, y = e (9.90)

2N/R) -1

establishes a new cutoff frequency based on the upwardly rounded order and the
passband constraint. The resulting low-pass Butterworth filter satisfies the passband
condition determined by €. 5, and improves upon the stopband condition. This is a
good approach for low sampling rates, when the aliasing caused by filter conversion
using impulse invariance is a concern [7].

Alternatively, tight application timing contraints might force the designer to round
down and choose a smaller N, the floor of v in (9.89). Perhaps N = Floor(v) = v, or
deviation from the passband and stopband specifications is acceptable. The designer
might also opt for a cutoff frequency that favors an exactly met stopband. Assuming
that the filter order is rounded upward, the filter then meets a more stringent passband
specification. The cost of this option is that it does not counteract the aliasing arising
from impulse invariance. The exercises explore these design alternatives.

We determine the ®, and o, (radians/sample) from the sampling rate Fy = 1/T
and the application’s specified analog passband and stopband frequencies (Hz).

Example (DTMF Passband and Stopband Calculations). Suppose we require a
lowpass filter that removes high-frequency noise for the dual-tone multifrequency
application of Section 9.1. Let the digital sampling rate be Fy = 8192 Hz. Then dis-
crete frequency ® = £1 corresponds to the Nyquist frequency of F/2 = 4096 Hz.
DTMEF tones range up to 1633 Hz. Thus, the lowpass filter bands could be specified
by setting @, = (1633/4096) x © = 0.3989m, and, depending upon the desired filter
sharpness, o, = (1800/4096) x = 0.4395m.

Example (Butterworth impulse invariance approximation). We require a low-
pass filter with a passband within 1 dB of unity up to ®, = n/4 and at least 5 dB
below unity beyond o, = /3. Assume the sampling interval is 7 = 1. Thus, we
require A = —1, and A = —5. The approximation steps above give Ry = 1.2589, R, =
3.1623, and R = —1.7522. The exact cutoff frequency for this example is Q. =

0.9433, but we elect to round v = 3.6888 upward to N = 4. Revising the cutoff
frequency, we find Q. ;= 0.9299.
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9.5.3.3 Poles and Zeros Analysis. Let us continue the design of the Butter-
worth low-pass filter of order N > 0 by factoring the denominator of the squared
magnitude response. Indeed, many analog filters satisfy

1

2N
1+ (E)
Q

c

P(Q) = |HQ) = = HQ)H(-Q). 9.91)

Pg(€2) has 2N poles in the complex plane. Let the roots of the denominator in (9.91)
be 4, £, ..., Qyy. In the case of the Butterworth squared magnitude, the roots lie
on a circle of radius .. in the complex plane. They are in fact the order-2N roots of
unity scaled by the cutoff frequency €2.. All we have to do to find H(2) that satisfies
(9.91) is to select one pole from each pair {€;, —€;} < {Qq, Q,, ..., Qyn}. But a
judicious root selection allows us to construct a causal discrete filter governed by a
difference equation and therefore having an efficient computer implementation. We
can obtain a discrete difference equation from an analog filter that has a rational
Fourier transform H(L) only if its poles have positive imaginary parts (Section
9.2.5.5). (Equivalently, if we are working with the Laplace transform, because
H(Q) =H L(s)‘v o’ this means that the poles of H;(s) must have negative real

parts.) With causality and difference equation implementation in mind, we retain
those roots, 1, €, ..., Qp, such that

1

H(Q) = . 9.92)
(Q-Q)(Q-Q,)...(2-Q))
with Imag(€2;) > 0.
Let the partial fractions expansion of (9.92) be
N .
H(Q) = —t 9.93
@= 3575 (9.93)

i=1

where ¢;, 1 <i <N, are constants. The results of Section 9.2.5.5 give the correspond-
ing discrete filter’s transfer function:

N jci
H(z) = Y TW, (9.94)
i=1 l-e 'z

where T is the sampling interval. We generally compute ®,, and ® using the sam-
pling interval, as explained in the previous section. Then, we derive the order N
and the cutoff frequency €. from the Butterworth approximation. The poles and
zeros analysis gives a Butterworth filter of order N with cutoff frequency €., no
matter what sampling interval we choose; it is conventient to assume 7 = 1. It is
usually necessary to scale the coefficients of the discrete filter’s impulse response
for unit DC gain. Let us see how this works by following through on the previous
example.
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Fig. 9.31. Butterworth filter, N = 4, eight poles of |H(Q)|2.

659

Example (Butterworth impulse invariance design, NV = 4). Suppose we require a
lowpass filter with order N = 4 and cutoff frequency €. = 0.9299, as in the previous
example. Figure 9.31 shows the eight roots of the Butterworth squared magnitude
function denominator. To find H(€2), we select poles having a positive imaginary
part. This selection corresponds to the poles of H;(s) whose real parts are negative,
because if €2 is a pole of H(£2), then Hj(j€2) is a pole of H;(s) (Table 9.4).

TABLE 9.4. Pole Selection in Butterworth Filter Design, N =4, Q. = 0.9299

Poles of |[H(Q)[?

Fourier-Selected
Poles

Poles of |[H L(s)|2

Laplace-Selected
Poles

—0.8591 + 0.3559j
—0.8591 — 0.3559j

—0.3559 + 0.8591j
—0.3559 — 0.8591;

0.3559 + 0.8591;
0.3559 — 0.8591j

0.8591 + 0.3559j
0.8591 — 0.3559;5

—0.8591 + 0.3559j

—0.3559 + 0.8591;

0.3559 + 0.8591;

0.8591 + 0.3559j

—0.3559 — 0.8591;
0.3559 — 0.8591j

—0.8591 — 0.3559;j
0.8591 — 0.3559j

—0.8591 + 0.3559j
0.8591 + 0.3559j

—0.3559 + 0.8591j
0.3559 +0.8591;

—0.3559 — 0.8591j

—0.8591 — 0.3559;j

—0.8591 + 0.3559j

—0.3559 + 0.8591;




660 FREQUENCY-DOMAIN SIGNAL ANALYSIS

Thus, performing the partial fractions calculations for H(z) gives

j(-0.2379 +0.5745)) , __j(1.3869 - 0.5745))
1— ejT(—O.8591+O.3559j)Z—1 1— ejT(— 0.3559 + 0.8591j)Z—1

Jj(=13869-05745)) , _j(0.2379 + 0.5745)) }
| _ JT(03559+08591j) ~1 | jT(08591+03559)) -1
1

where T is the sampling interval. Writing H(z) as a quotient of polynomials in z~,
we see that (9.46) becomes

H(z) = T[

(9.95)

M —m
Y b2 . ) -3
e 0 _ 0.08737 " +0.18372 2 + 0.0260z
N 14 (-1.7091)2 " + 13967272 + (-0.5538)2 " +0.08807
1+ Z a,z
1

(o (9.96)
Now, finally, we can implement (9.95) with a cascade architecture and (9.96) with a
Direct Form II. We can compute the impulse response h(n) as in Figure 9.32 by
feeding a discrete impulse through either of the difference equation architectures or
by using (9.68).

h(n), Butterworth, N = 4
0.6 T T T T T T

05F 4
04t N
03} _

0.2 + E
01-T T -
0¢ Q OQQDDOOGOOOODQQQQQQOOO b

b

5 10 15 20 25 30 35

Fig. 9.32. Impulse response i(n) of Butterworth low-pass filter, N = 4, Q. = 0.9299 (top),
and magnitude response (bottom) |H(w)|. Note that H(0) = 1.3386, so for unit DC gain, we
scale h(n) by (1.3386)7.
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9.5.3.4 Butterworth Approximation: Bilinear Transformation. This sec-
tion considers the Butterworth low-pass filter approximation using the bilinear
transformation. The crucial difference in finding the filter order N and the cutoff

frequency Q.. is the frequency mapping H(®w) = H a(% tan(%)). Here, H(®) is the
DTMF of the desired discrete low-pass filter, 7 > 0 is the sampling interval, and
H_,(Q) is an analog Butterworth low-pass filter whose order N and cutoff frequency

Q. remain to be found.

Let us suppose specifications on the passband and stopband similar to those with
which we began the impulse invariance approximation. Thus,

2
> A, (9.97a)

0> 10log, [H(w ) = 10log |H (2 tan( 22
> og10| (u)p)| = og10 a%tany

o)

where ), is the discrete passband frequency, 0, > ), is the stopband frequency, and
A < A <0. Applying the Butterworth filter condition as before, we calculate

2
10log, |H()| = 10log <A<O, (9.97b)

A

2 o Y T
h—z—tan(—zﬂ)} <10 "-1=R,-1, (9.98a)
C
- 2N _A
2 o 10 _
L c

We treat these as equalities and solve for the filter order:

o)
V= (tan(mp/2)) ©-99)

tan(w,/2)

where, in general, v is not an integer. Typically, we round v upward: N = Ceil(v).
We can use equality in either (9.98a) or (9.98b) to find Q.. An advantage of bilinear
transformation over impulse invariance is that there is no stopband aliasing. Thus,
computing Q. in terms of ®; gives

2tan(w /2) N
¢ = TS(RA—I) . (9.100)
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Example (Butterworth Bilinear Transformation Approximation). Suppose we
require the same low-pass filter: 0, = /4, wg = 1/3, A =-1, and A = -5. Again,
Rp = 12589, R\ = 3.1623, but we calculate v = 3.1957 and choose N = 4. The
exact analog cutoff frequency with 7' =1 is Q. = 1.048589, corresponding to a
discrete filter cutoff of .= 0.965788. Note that as v nears its integral floor—in
this case v = 3—it might be feasible to round to the lower integral order. This
could be useful when computing time is a consideration and some cushion exists
for passband and stopband specifications.

Having derived the filter order N and the analog cutoff frequency €, the rest of
the bilinear filter design steps are the same as for impulse invariance.

Example (Butterworth Bilinear Transformation Design, N =4). For the low-pass
filter with order N = 4 and cutoff frequency m,. = 0.9658, as in the previous example,

(0]
the analog cutoff frequency is Q, = 1.0486, since Q. = % tan(—zﬁ). Of the eight

poles of !

2N
1+ (8)
Q

c

H (@) = = H,(Q),H(-Q), (9.101)

we select those having a positive imaginary part for H,(€2). The poles of the Laplace
transform Hj ,(s) will thus have negative real parts (Table 9.5).
Thus, using the chosen poles (Table 9.5) the rational Laplace transform is

1
st +2.74015° +3.7541 5% + 3.0128s + 1.2090

H(s) = (9.102)

Substituting the bilinear transform relation s = %(%) with 7 =1 into (9.102)
gives the discrete transfer function, <

0.01662" + 0.0665z° +0.09972> + 0.0665z + 0.0166

H(z) = n 3 > > (9.103)
z —1.51167" +1.2169z7" - 0.4549z7" + 0.0711
TABLE 9.5. Pole Selection in Butterworth Filter Design Using Bilinear
Transformation, N = 4, Q. = 0.9658.
Fourier Poles Laplace Poles
|H a(Q)|2 Poles Selected |H, L’a(s)|2 Poles Selected
—0.9688 + 0.4013; —0.9688 + 0.4013j —0.4013 —0.9688; —0.4013 —0.9688;

—0.9688 — 0.4013;
—0.4013 + 0.9688;
—0.4013 — 0.9688;
0.4013 + 0.9688;
0.4013 — 0.9688j
0.9688 + 0.4013;
0.9688 — 0.4013j

—0.4013 + 0.9688;
0.4013 + 0.9688;

0.9688 + 0.4013;

0.4013 — 0.9688;
—0.9688 — 0.4013;
0.9688 — 0.4013j
—0.9688 + 0.4013j
0.9688 + 0.4013;
—0.4013 + 0.9688;
0.4013 + 0.9688;

—0.9688 — 0.4013;
—0.9688 + 0.4013;

—0.4013 + 0.9688;
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(a) Butterworth filter, N = 4, poles of |H,(<)[? (b) Impulse response, bilinear transformation
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Fig. 9.33. Butterworth filter design, bilinear transformation. Pole locations for analog
squared magnitude response (a). Impulse response i(n) of Butterworth low-pass filter, N = 4,
o, = 0.9658 (b) and (c) magnitude response |H(®)|. Note that H(0) = 0.8271, so for unit DC
gain, we scale h(n) by (0.8271)_1 = 1.2090. Panel (d) shows the phase and group delay for
this filter.

The partial fraction expansion of H(z) = B(2)/A(z) is

B(z) _ __-03048+0.1885] _ _ —0.30480.1885;
A 104326 +0.5780/)z " 1 (0.4326 - 0.5780/)z "
01962 1.2480; . 0.1962 + 12480 . (337
1 - (03232 4+ 0.1789)z""  1—-(0.3232-0.1789j)7"" (9.104)

+

The filter has a difference equation implementation (9.49), from which the impulse
response follows (Figure 9.33b).

Note that it is possible to skip the approximation step, instead stipulating a dis-
crete cutoff frequency . and guessing a filter order N > 0. After computing the
associated analog cutoff €, the above poles and zeros analysis follows. This step
produces an impulse response A(7), from which one can derive a Fourier magnitude
response |H(w)|. Should the passband or stopband not meet the anticipated
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constraints, the filter order is incremented and trial-and-error goes on. This is a good
use case for a computerized filter design package.

Consider the group and phase delays of the above Butterworth low-pass filter. If
H(w) = ei¢(“’)HR(0)) is a filter’s DTFT, where Hp(®w) € R, and ¢(m) is its phase
response, then its group delay is —dd(w)/dw. Since FIR filters enjoy linear phase
(Section 9.3.6), their group delay is constant. Butterworth filters are IIR, so
the group delay varies. In fact, Figure 9.33d illustrates that this system’s group
delay can change as much as four samples over the discrete frequency domain.

9.5.4 Chebyshev

Suppose a signal analysis application needs a low-pass filter with an especially
sharp cutoff frequency, but tolerates some passband ripple. The Butterworth condi-
tion began by hypothesizing flatness in both the pass- and stopbands, so we need to
relax one of these constraints. The first type of Chebyshev13 filter approximation
achieves a sharper transition than the Butterworth, but it does so at the cost of allow-
ing passband ripple. On the other hand, the stopband is flat, and the designer can
easily reduce the ripple to any positive value.

9.5.4.1 Chebyshev Polynomials and Equiripple Conditions. For the fil-
ter stopband to be maximally flat as € — oo, any (rational) analog low-pass filter
will have a squared Fourier magnitude response with a constant numerator (9.83). If
we hope to improve upon the Butterworth filter’s sharpness, we have to relax the
Butterworth contraints. By the logic of the argument for maximally flat filters in
Section 9.5.3.1, we must allow more a,; to be nonzero. Let 82T(Q) =A(Q)—1be
the nonconstant part of the denominator in (9.83), where € > 0 is a parameter con-
trolling the passband ripple height. A low-pass filter with unity gain requires a
denominator near unity when Q = 0, so let us stipulate that |T(Q)| < 1 for |Q] < 1.
Then a suitable € can always make ezT(Q) small for € near zero. Since 7(Q2) is still
a polynomial, its magnitude will get arbitrarily large as |Q| — oo, and so away from
the origin, P(2) — 0. Are there such polynomials?

Indeed approximation theory provides us with precisely such polynomials. We
set T(L2) = Tp(L2), where Tp(€2) is the Chebyshev polynomial of order N = 0 [43,
65]. These are defined recursively as follows: T () = 1, T(Q) = Q, and

Ty, (Q) = 2QT(Q)-Ty_,(Q). (9.105)

The Chebyshev polynomials have nice properties, which are explored in the exer-
cises and exploited by our filter designs. It can be shown that

Ty(Q) = cos(Ncos_l(Q)), (9.106a)

131y addition to his work on orthogonal functions, Russian mathematician Pafnuty Lvovich Chebyshev
(1821-1894) proved Bertrand’s conjecture: For n > 3, there is at least one prime number between n and
2n—2.
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(a) Chebyshev polynomials, N = 2, 3, 4 (b) Roots of |H,()[*
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Fig. 9.34. Chebyshev polynomials for a few orders (a). Roots of the Fourier squared magni-
tude response for a third-order low-pass filter (b). Corresponding discrete impulse response
(c) and magnitude spectrum (d).

so that indeed |T(Q)| < 1 for |Q| < 1. Furthermore, the polynomials are orthogonal
n [—1, 1]. Chebyshev polynomials are also given for |Q2| > 1 by the relation

T\y(Q) = cosh(Ncosh™(Q)), (9.106b)
as shown in Ref. 65 (see Figure 9.34).
Importantly for the filter approximation problem:

® If 1 <Nand Q e [-1, 1], then T)(£2) oscillates between —1 and +1.

® T\(€2) always achieves the minimum of —1 and the maximum of +1 on [-1, 1]
(for this reason it is called the equal ripple approximation).

® Tn(1) =1 for all V.
® For |Q| > 1, T(€) is strictly increasing or strictly decreasing.

Thus, the Chebyshev squared magnitude response is defined by

H, (@) = :

7 Q : . (9.107)
@ 1+ TVQ/Q,)
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9.5.4.2 Impulse Invariance Approximation. For the Chebyshev low-pass
filter approximation using the impulse invariance transformation, we are given a
discrete passband frequency ), a stopband frequency o, an allowable passband
ripple, and a required stopband attenuation value. We seek the analog cutoff fre-
quency Q,, the filter order N, and the ripple parameter € (9.107).

The Chebyshev polynomials’ properties simplify the approximation. |Tp(€2/Q,)|

is strictly increasing for Q > €, so we can set €2, = ),. If the passband constraint is

1010g10|H(0)p)|2 > A, for some A < 0 as in (9.86a), then the maximum departure

~-A/10
-1.

Here our design assumes that ripple is defined by the passband peak-to-valley dif-
ference. But some treatments assume that the ripple is half of this value—how far
the passband magnitude strays from its mean [26]. So readers should be aware of
the differences this assumption can make in the final design specifications. Finally,

from unity will occur for some —Q. < Q < Q.. Thus, we need €= 410

suppose the stopband specification (9.86b) is 10log 10|H((ns)|2 <A, for some A <

0, and the sampling rate is sufficiently high so that in the stopband, 0| > ,

1

2 2
H(w)|” = [H,(Q)|" = S (9.108)
1+ [eT\(2/Q))]
Thus, we seek N > 0 such that
2 2 -1
|Ha((°s)| = 10log o[1 + [eTy(0,/Q)]"] <A. (9.109)
We solve (9.109) as an equality for N,
-1 M0,
cosh (f_]
N = (9.110)

®
cosh(i)
Q

c

and round upward to the nearest integer.

Example (Chebyshev Impulse Invariance Approximation). Suppose we try the
Chebyshev approximation on a filter with the same specifications as in the Butter-
worth impulse invariance design (Section 9.5.3.2). We need a passband within 1 dB
of unity for < 0, = w/4. This means A =—1, Q. =7/4, and € = 0.5088. We need a
stopband that is 5 dB or more below unity for ® > ®; = /3. We have A = -5, and
(9.110) gives N = 2.1662, which we round up to N = 3. Thus, the Chebyshev
approximation gives a third-order IIR filter, whereas the Butterworth approximation
needed a fourth-order system—a benefit from allowing passband ripple.
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Example (Chebyshev Impulse Invariance design, N = 3). Let us contlnue the
previous example: N = 3, Q. = /4, and & = 0.5088. The poles of |H, (Q)| are
—0.7587 £ 0.1941j, 0.7587 + 0.1941j, and £0.3881;. They lie on an ellipse in
the complex plane [26] as shown in (Figure 9.34b). To find H,(£2), we select the
three poles with positive imaginary parts. (Equivalently, for the Laplace trans-
form-based filter derivation, these are —0.1941 £ 0.7587; and —0.3881.) Figure
9.34c shows the resulting impulse response. Figure 9.34d shows the discrete
magnitude spectrum.

9.5.4.3 Bilinear Approximation. In a bilinear transformation, Q_ =

o,
Ztan( 3 ) gives the cutoff frequency. The frequency mapping does not alter the

passband ripple, so we can calculate € just as with impulse invariance. For the filter
order, the stopband condition says

2\-1
2 (O
10log Hl +{8TN(—tan -3 H J }SA, 9.111)
(ool

which implies
-1

—A/10
cosh MJ

€

-1 :
0
cosh 2 tan(—f)
Q 2

N> 9.112)

c

Example (Chebyshev Bilinear Approximation). Let us turn to the bilinear trans-

formation method for the same filter design problem as above: w, = /4, ;= 1/3, A=

UJ
—1, A = -5, with sampling interval 7 = 1. Thus, Q = 2tan( 3 ) = 0.8284 , using

the bilinear frequency mapping. The ripple factor is € = 0.5088. Solving (9.112) as an
equality gives N = 2.0018, but we opt for the integral ceiling, setting N = 3.

Note that for the present design criteria, the Chebyshev filter comes very close to
reducing the required filter order to N = 2. In fact, unless the application parameters
are unusually rigid, this is an attractive possibility. The lesson is twofold:

® For the same filter order the Chebyshev filter has faster (sharper) rolloff than
the equivalent Butterworth filter.

® It is possible to achieve the same rolloff as the equivalent Butterworth filter
using a Chebyshev filter with a smaller order.

For a quicker rolloff, the Chebyshev suffers some passband ripple. Its transient
response is also worse than the Butterworth, as shown below (Section 9.5.4.5).
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Example (Chebyshev Bilinear Design, N = 3). Let us continue the above approx-
imation: N =3, € = 0.5088, and Q_ = 0.8284. The poles of |Ha(Q)|2 are —0.8003 £
0.2047j,0.8003 £ 0.2047j, and £0.4094; (Figure 9.35a). The Laplace transform poles
of choice are therefore —0.2047 £ 0.8003j and —0.4094. The analog system function is

1

HL,a(S) =3 3 . (9.113)
s~ +0.8188s5" +0.84995 + 0.2793
Inserting the bilinear map s = %(%) with 7= 1 into (9.113) gives
z
3 2
H(z) = 0.07§4z + 0.2223z +0.2263z + 0.0754 ' (9.114)
7 —1.8664z7" + 1.49867 - 0.4637
H(2) has partial fractions expansion
B(z) _ —0.6458 — 0.1170j + —0.6458 + 0.1170j 1 9.115)
AR 10,6031 +0.5819)z " 1-(0.6031-0.5819))z
et 2201 0.1627.
1-(0.6602)z
Figure 9.35 shows the impulse (b) and magnitude responses (c).
(a) Poles of [H, (@) i (b) Impulse response
1f - ’
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Fig. 9.35. Chebyshev low-pass filter, bilinear transformation. Pole locations (a), unnormal-
ized discrete impulse response (b), magnitude response (c) and phase and group delay (d).
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9.5.4.4 Phase and Group Delay of IR Filters. Let us compare the group
delay of Butterworth and Chebyshev filters. Figure 9.35d shows that the group
delay of the Chebysheyv filter can be as much as six samples for ® € [0, t]—worse
than the equivalent Butterworth design Figure 9.33d. This is one thing the Cheby-
shev filter gives up in order to improve its rolloff performance.

9.5.4.5 Application: Transient Response Comparison. The Chebyshev
filter’s better rolloff, compared to the maximally flat filter, also costs it some
transient response performance. To see this, let us consider a basic transient filter-
ing application. Observe first that the Chebyshev filter exhibits a sharper rolloff
Figure 9.36a.

We apply the Butterworth and Chebyshev low-pass filters (N = 3) developed in
previous sections to the transient Figure 9.36b. The Chebyshev filter produces a
longer delay and the ringing induced by the step edge persists for a longer time
interval than with the Butterworth. On the other hand, the pulse’s later sloped edge
provokes only a little bad behavior from the Chebyshev filter Figure 9.36c.

(a) Butterworth and Chebyshev discrete magnitude spectra

1 T T T T T T

05} _

[H(w)|

0 0.5 1 15 2 25 3 3.5
(O]

(b) Transient signal
J J J J J J J

i i i i i
0 10 20 30 40 50 60 70 80 90 100
n
(c) Butterworth and Chebyshev lowpass filter responses
T T T T T T T T T

y(n)

0 10 20 30 40 50 60 70 80 90 100

Fig. 9.36. Butterworth and Chebyshev comparison. Magnitude spectra (a), transient signal
(b), and Butterworth and Chebyshev responses (c).
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The following points should be taken into consideration when choosing the
Chebyshev over the Butterworth filter for a signal analysis application:

® For less computational overhead with the same frequency discrimination per-
formance, prefer the Chebysheyv.

® If the frequencies in the filter passband will be further characterized by their
relative strength, then the ripple in the Chebyshev becomes a detriment.

® If the application does not further analyze passband frequencies and is con-
cerned with their mere presence or absence (such as in the DTMF application
in Section 9.1) then the Chebyshev should be better.

® This is moreover the case when the application needs to segment relatively
close bands of spectral information and sharp rolloff becomes a priority.

® Finally, if the time location of edges is important, and the application needs a
crisp response from a crisp input edge to satisfactorily identify and locate the
transition, then the Butterworth filter is superior.

9.5.5 Inverse Chebyshev

The inverse Chebyshev filter provides a flat passband and an equiripple stopband.
This filter is also called the Chebyshev Type I filter.

9.5.5.1 Stopband Equiripple Conditions. The specification of the filter’s
squared magnitude response is based on the Chebyshev filter of Section 9.5.4 [26,
65]. The steps (Figure 9.37a) are as follows.

(1) We begin with the Chebyshev squared magnitude response function

1

- - P(Q), (9.116)
1+ TV(Q/Q,)

(@) =

where Tp(€2) is the order-N Chebyshev polynomial.

(i1) Subtract this response from unity, 1 — P(£2), to form the squared magnitude
response of a high-pass filter having a flat passband and equiripple in the
stopband.

(iii) Reverse the frequency axis to find Q(QQ) =1 — P(Qfl):

2 2
TN(Q /Q
0(Q) =1- I _ BTN 8 , (9.117)

2,2 B 2,2
L+ TMQ/Q) 1+ TMQ,/Q)

which is the squared magnitude response of a low-pass filter. It has a maxi-
mally flat passband and puts the Chebyshev equiripple characteristic in the
stopband.
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Fig. 9.37. Conversion from a Chebyshev to a third-order Inverse Chebyshev squared magni-
tude response function (a). The dotted traces are intermediate steps. The vertical line is €.
from (9.117) and represents the stopband frequency. For comparison, panel (b) shows an N =
4 squared magnitude response.

Note that Q(Q) is a rational function in Q~', but we can write it equivalently as a
rational function of Q. The poles of Q(€2) are the reciprocals of the poles of P(2)
(exercise).

9.5.5.2 Impulse Invariance Approximation. Consider the impulse invari-
ance approximation for the inverse Chebyshev low-pass filter. Suppose the discrete
passband frequency is ®,, the stopband frequency is y, the passband is within A <
0 (dB) of unity, and the stopband ripple (dB) does not exceed A < A < 0. We need
the analog stopband frequency €, the filter order N, and the ripple parameter €
(9.117).

As remarked above, the parameter . in (9.117) specifies the analog stopband.
So, although for an ordinary Chebyshev filter we took €2, = ®,, now we set Q. = ©,.
The stopband condition is 10log;(Q(£2) < A for Q = Q... But as long as Q = Q. we

2
have Q./Q <1 and so 1+ £2TN(Q SRS+ 82. Hence, we can determine the
stopband ripple factor € from the stopband condition with Q = Q_: 10log;(,Q(2,) <
A. Using the elementary Chebyshev polynomial property, Tn(1) = 1 for all N = 0,
this reduces to
A/10

10

1— 10A/lO

e<

(9.118)
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Observe that the ripple parameter does not depend on the filter order. Typically, we
solve (9.118) as an equality to obtain €.

The passband condition gives the analog filter order. If the discrete sampling
rate is high enough, this means that for Q < ®, < 0y = Q. we can assume
10log;oQ(€2) 2 A. for Q < ®,,. Q(€2) is strictly increasing as £ — 0. Thus, we know
that the passband condition applied to = ®, is a worst case. The usual algebra

4
boils this down to

-1,Q Q A/ 10
cosh[Ncosh (—6)} - TN(—C)zl IO—MO. (9.119)
©p O,/ EN1-10

The familiar steps of taking (9.119) as an equality, solving for N, and rounding
upward give the filter order.

Example (Inverse Chebyshev, Impulse Invariance, N = 3). We require a low-
pass filter with a passband within 1 dB of unity up to ®, = n/4 and at least 5 dB
below unity beyond o, = ©/3. Again, we see A = —1 and A = -5 and assume T =
1. As above, we set Q. = o, = ©/3. From (9.118) we find € = 0.680055. Solving

(9.119) as an equality produces N = 2.1662. This value we round up to N = 3. Since
T2(0) = 160° — 246" + 96, it must be the case that

162,°-240 0% +90 20

Q(Q) = (9.120)

6 9
160,°-24Q Q% +90 Q" + £
2

€

where we have expressed Q(€2) in positive powers of Q (Figure 9.38a).

9.5.5.3 Poles and Zeros Analysis. Unlike the others we have already con-
sidered, this filter has finite zeros in the extended complex plane. For H,(2) we
select the poles of Q(€2) which have positive imaginary parts. In general, among the
zeros of a squared magnitude response function, we select one each of the numera-
tor’s conjugate roots.

Example (Inverse Chebyshev, Impulse Invariance, N = 3). Let us continue with
the poles and zeros analysis of the previous example, for which the squared
magnitude response is given by (9.117). The poles of Q(€2) are +2.5848j, —1.0581
+0.2477j, and 1.0581 +0.2477j. The selected Laplace transform poles are thus
—2.5848,-0.2477 —1.0581j, and —0.2477 + 1.0581;. The zeros of Q(£2) are —1.1885 +
0.1276j and 1.1885 + 0.1276j. They all have the same magnitude, so we can choose
Laplace transform zeros to be —0.1276 — 1.1885j, and —0.1276 + 1.1885j. The poles
and zeros plot for Q(€2) is shown in Figure 9.38b.
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(a) Q. =mn/3,e=0.680055N=3 (b) Q (Q): zeros (o) and poles (x)
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Fig. 9.38. The squared magnitude response Q(L2) for an N = 3 analog filter approximated
using the impulse invariance method (a). Associated poles and zeros (b), extracted discrete
impulse response (c), and magnitude response (d). In panel (d), vertical lines mark the dis-
crete passband and stopband, m/4 and /3, respectively. The horizontal lines are the level
criteria associated with the A and A parameters.

As a quotient of polynomials in 7!, the discrete system function H(z) is thus
given by

M —m
2 byt -1 )
2o ) 12076242 +0.68267 ©.121)
{ N _k} | +(=0.8412)z"" +0.66712 > + (—0.0460)z
L+ Y az
k=1

Figure 9.38(c) shows the impulse response. Note that it consists of an impulse
and some low magnitude correction terms.

The magnitude response Figure 9.38d shows the effect of the rather loose stop-
band ripple constraint for this example. The filter sharpness is adequate, as can be
seen from the bounds in the figure. However, there are high frequencies present in
the analog filter, because of the allowed stopband ripple. Because of impulse invari-
ance sampling, aliasing occurs and the derived discrete magnitude response does



674 FREQUENCY-DOMAIN SIGNAL ANALYSIS

not satisfy the required stopband criterion. It might appear that increasing the sam-
pling rate should reduce the aliasing. But unfortunately this causes the cutoff fre-
quency of the analog filter to increase as well [7]. The best choice is to adjust the
design parameters so as to meet the discrete filter’s stopband criterion. The filter
order may be increased, the ripple parameter may be reduced, or the bilinear
approximation may be worthwhile.

9.5.5.4 Bilinear Approximation. Let us consider the bilinear approximation
for the inverse Chebyshev low-pass filter. Suppose the discrete passband frequency
is ®,,, the stopband frequency is @y, the passband is within A <0 (dB) of unity, and
the stopband ripple (dB) does not exceed A < A < 0. We need the analog stopband
frequency Q. the filter order N, and the ripple parameter € (9.117) in order to spec-
ify the analog filter.

We know from our study of the inverse Chebyshev squared magnitude resonse

that the €, parameter governs the analog stopband frequency. Thus, Q. =

w
% tan(f) using the bilinear transformation. The passband and stopband conditions

on the desired discrete filter are

2 2. (o))
0> 10log o|[H(w)|” = 10log |Q }tan 5 >A, (9.122a)
10
forco<(op, and
2 2 o)\
10log,o|H(@)|" = 10log |0 Ztan( T )] <A <0, (9.122b)
10

for ® > w,, where Q(L2) is the analog squared magnitude response (9.117). By Che-

byshev polynomial properties, Q(€2) achieves its stopband maximum at the analog
A/10

stopband value Q = Q.. From (9.122b) we have £ < |12 as in the impulse

b
l_]OA/IO

invariance approximation (9.118). We assume an equality to compute the ripple

®
parameter. In the passband constraint (9.122a) we use Q = Qp = % tan(Tp) as a

worst case. This entails

o 1 1OA/IO
TN(QC/Q])) = cosh [NCOSh(QC/Qp)] ZE W . (9123)

Changing this relation to an equality, solving for N, and rounding to the integral
ceiling gives the filter order.

Example (Inverse Chebyshev, Bilinear Approximation, N = 3). For a low-pass
filter with a passband within 1 dB of unity for ® < @, = m/4 and at least 5 dB of
attenuation for ® > w,; = 7/3, we again have A=—-1, A =-5. Let T = 1 be the sample
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Fig. 9.39. The squared magnitude response Q(£2) for an N = 3 analog filter approximated
using the bilinear transformation method (a). Panel (b) shows the associated poles and zeros.
Note that the zeros are second order. In (c), after normalization, is the impulse response.
Finally, there is the normalized magnitude response (d). In panel (d), vertical lines mark the
discrete passband and stopband, €2, and €, respectively. The horizontal lines are the level
criteria associated with the A and A parameters.

distance. We find Q. = 2tan(w, /2) = 1.154701 and Qp = 2tan(wp /2) = 0.8284.
Again, from (9.118) we get € = 0.680055. Solving (9.123) as an equality produces
N =2.0018, and although we are breathtakingly close to a second order filter, we
prudently round up to N = 3. The three estimates, Q, €, and N, give the squared
magnitude response Q(£2) (Figure 9.39a).

9.5.5.5 Poles and Zeros Analysis. Among the poles of Q(Q), we select
those having positive imaginary parts to form H,(€2). After bilinear transformation,
this filter too has finite zeros in the extended complex plane.

Example (Inverse Chebysheyv, Bilinear Transformation, N = 3). Let us wrap up
the previous example. In the squared magnitude response (9.117). The poles of
Q(Q) are +2.8657j, —1.1817 £ 0.2550j, and 1.1817 + 0.2550j. The good Laplace
transform poles are thus —2.8657, —0.2550 — 1.1817j, and —0.2550 + 1.1817j. The
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zeros of Q(€Q2) are +1.3333 and each has order two. The Laplace transform zeros
must be £1.3333;. Figure 9.39b shows the poles and zeros plot for Q(€2). Thus,

s>+ 1.7778
5> +3.3757s° +2.92285 + 4.1881

Hy (s) = (9.124)

Applying the bilinear map s = %[(z —-1)/(z+1)] withT=1to (9.124) gives

0.18327° +0.04237> +0.04237 + 0.1832

H(z) = 3 3 (9.125)
77 —0.60547" + 0.5459z + 0.1219
The z-transform H(z) has partial fractions expansion
H(z) = —0.0821 — 0.0082; —+ —0.0821 + 0.0082/ -
1-(0.3917 + 0.7293))z 1-(0.3917 - 0.7293j)z
+ # +1.5026 = B), (9.126)
1= (=0.1779)z" A(z)

Feeding a discrete impulse 8(r) through the difference equation implementation for
(9.126) gives the unnormalized impulse response. This we scale (Figure 9.39¢) by a
factor of (0.4245)_] so that the magnitude response has unit DC value, as shown in
Figure 9.39d.

9.5.6 Elliptic Filters

The fourth common transfer function—the elliptical, or Cauer'* (1958), filter—has
ripple in both the passband and stopband, nonlinear phase response, and the fastest
rolloff from passband to stopband for a given IIR filter order [26, 66, 67].

The squared magnitude response function for the elliptic or Cauer filter'# is

1 _ B(Q)

2
|H,(Q)" = = , 9.127)
a 2
12RO Q) AW
where R(Q) = U(Q)/V(Q) is a rational function, € > 0 is a parameter, R(0) = 0, and
the Degree(U) > Degree(V).

The rational function approximations (9.127) for the elliptic filter response are
derived from the analytic properties of the Jacobi elliptic functions, which are
encountered in the study of nonlinear oscillations. This oscillatory behavior gives
rise to the passband and stopband ripple associated with the elliptic filter transfer
function. Under certain conditions, the elliptic functions are qualitatively similar to

4German circuit theorist Wilhelm Cauer (1900-1945) invented and patented elliptic filters in the mid-
1930s. While on his way to his office to get some papers, Cauer was arrested and executed by troops tak-
ing control of Berlin at the end of World War II. A short note on Cauer’s life and accomplishments is
given by A. Fettweis, Fifty years since Wilhelm Cauer’s death, IEEE Transactions on Circuits and Sys-
tems—I: Fundamental Theory and Applications, vol. 42, no. 4, pp. 193-194, April 1995.
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the trigonometric sine and cosine. But they have advanced general features which,
when properly manipulated, give rise to better rolloff characteristics—for a given
filter order—than the Chebyshev filter. Since the reader may have only minimal
exposure to the elliptic functions, we will describe the analytical background for
Cauer’s elliptic filter prescription prior to developing the rational function approxi-
mations implied by (9.127).

9.5.6.1 Elliptic Functions and Integrals. Just as the Chebyshev filter res-
ponse had an analytic description in terms of the circular functions (e.g., (9.106a)),
the general elliptic filter response,

1

2
|HG(Q)| = 2 2
1+€Ry (Q)

) (9.128)

can be described in terms of a class of analytic functions known as the Jacobi ellip-
tic sine, designated sn(z, m), where the parameter 0 < m < 1 is the modulus, and
Z=u+jv is the argument, which may be complex-valued. The Cauer design calls
for a function of the form

Ry (Q) = sn(f-z+c,m), (9.129)

where the argument consists of a factor f; a constant additve offset c—both of which
can be specified to give the desired filter response; and a variable z that is the
inverse of a Jacobi elliptic sine,

2= s (Q/Q,m). (9.130)
The Jacobi' elliptic sine of modulus m is defined by
sn(z, m) = sin(0(z, m)). (9.131)
The argument u is described by the elliptic integral of the first kind:

° 1
u(,m) = [
04/(1 - mzsinze)
where the modulus is restricted to the interval 0 <m < 1. The function @¢(u, m) the
inverse of the u(¢@, m), for fixed modulus m, and when we refer to a specific value
we denote ¢ as the amplitude of the elliptic integral [33]. For the special case of

amplitude ¢ = 1/2, the elliptic integral of the first kind is a function only of the
modulus and reduces to the complete elliptic integral of the first kind (Figure 9.40),

do, (9.132)

n/2 1
K(m) = |

0 J(1=m?sin’0)

15Carl Gustav Jacobi (1804-1851), along with Gauss and Legendre, contributed to the early theory.

do. (9.133)



678 FREQUENCY-DOMAIN SIGNAL ANALYSIS

[ 02 e+ 06 0.8 1
Fig. 9.40. The complete elliptic integral as a function of the modulus m. It is real-valued,
but becomes singular as m —> oo ..

The complement to this integral is defined

n/2 1
K'(m) = |

0 J(1-m, sin’0)

where m; = 1-m. (We follow the usual convention and denote the complement
by a prime, but emphasize that it has nothing to do with differentiation.) From
(9.134) it is obvious that

de, (9.134)

K(m,) = K'(m) (9.135)

and we will use these interchangeably.

In the real-valued interval x € [0, o], the Jacobi elliptic sine is qualitatively sim-
ilar to a sine wave: It is real-valued, restricted in amplitude to the interval [-1, 1],
and exhibits oscillations which qualitatively resemble a pure sinusoid, as illustrated
in Figure 9.41. As this illustration suggests, K(m) is one-fourth of a full period of
the elliptic sine. For this reason it is also known as the real quarter period.

The Jacobi elliptic sine exhibits a richness that surpasses the simpler pure sinu-
soid. The most important new property is double periodicity,

sn(z+r-4K+s-4K', m) = sn(z, m), (9.136)

where r and s are arbitrary integers. In Figure 9.42 and Figure 9.43 we illustrate the
elliptic sine along other important intervals of the complex plane.

The validity of the Cauer’s construction of the elliptic filter response is depen-
dent upon the value of the Jacobi elliptic sine at several strategic points in the com-
plex plane. For convenience, these points are listed in table Table 9.6. This table
applies to both even- and odd-order elliptic filters.
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057

—1F

Fig. 9.41. The Jacobi elliptic sine sn(x, m) on the interval x € [0, 4K]. The case
m = 0.5 is shown.

The foregoing illustrations were selected because they will aid in the under-
standing of Cauer’s design of the elliptic filter response. Note that along these cho-
sen intervals, sn(z; m) is real-valued, although the argument itself may acquire
nonzero real and imaginary parts. Although excursions from the intervals selected
here may result in generally complex values for sn(z; m), Cauer’s design conve-
niently limits us to these intervals in which the elliptic sine remains real-valued.
With suitable manipulation of the free constants f and ¢ in (9.129), we can ensure
continuity of the response at the transition points between the pass- and stopbands.
The third column in Table 9.6 gives the points in the frequency plane at which the
conditions in the first two columns are applied. These issues are considered in the
next section.

147+

1371

12}

11}

0.25 0.5 075 1 1.25 1.5 1.75

Fig. 9.42. The Jacobi elliptic sine sn(K + jy, m) on the interval y € [0, 4K] . The case
m = 0.5 is shown.
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057

-1 F

Fig. 9.43. The Jacobi elliptic sine sn(x + 4jK’, m) on the interval x € [0, 4K], shown for
m=05.

9.5.6.2 Elliptic Filter Response. For the elliptic low-pass filter approxima-
tion using the impulse invariance transformation, we are given a discrete passband
frequency €2,,, a stopband frequency €2, an allowable passband ripple, and a required
stopband attenuation value. We seek the filter order N and the ripple parameter €. As
in the case of the Chebyshev response, it is not possible to specify a specific set of
parameters {€ , Q , N, e} that are identically satisfied by a low-pass elliptic filter
response, but an allowable upper bound on the passband ripple and a lower bound on
the stopband attenuation can be achieved, with both pass- and stopbands exhibiting
a flat response.

The design of an elliptic filter response involves the specification of parameters m,
p,andinteger N such that these specific acceptable bounds can be achieved. At the same
time, the filter response must be continuousat Q = Q and Q = Q s while also sat-
isfying acceptable bounds at Q = 0 and in the limit Q — oo. Continuity can be
achieved by proper specification of the constants f and ¢ (see (9.129)), while the
proper bounds arise naturally from the behavior of the elliptic sine. The following rela-
tions are imposed by the design process and hold for arbitrary positive integer N. First,

2 2
m=Q/Q (9.137)

TABLE 9.6. The Argument 7z and the associated value of the Jacobi
Elliptic Sine as the Frequency (2 Traverses the Passband, Transition
Band, and stopband of a Cauer Elliptic Filter?

z sn(z;m) Q
0 0 0
BK(m)) 1 Q
. -1/2 P
BK(m) £ jyYK’'(m) m Q
oK(m) £ jyK’'(m) ) oo

“The integer o is even, the integers B and 7y are odd.
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which ensures that m € [0, 1], as required by the elliptic sine. Second, we define

K
r=nK@) _ KD (9.138)
K(m) — K(m,)
The second equality in (9.138) is imposed (it is not an identity) and gives the flat-
ness condition,

N = K(m)K(P)

. (9.139)
K(p) K(m;)

Since parameter m is specified by the filter rolloff in (9.137), and the order N of the
filter is typically specified in advance, relation (9.139) amounts to a default specifi-
cation of the unknown parameter p . We note that (9.139) must be satisfied to give
identically flat pass- and stopband ripple. In practice, deviations from an integer
lead to good flatness provided they are small, and we will find it necessary to
finesse the pass- and stopband ripple levels @, and a, to achieve something close
to (9.139).

The value of remaining unknown, namely the additive offset ¢, depends on
whether the filter is of odd or even order. We will now consider these cases in turn.
For odd filter order N, the design process will result in a filter response having the
following general characteristics |H (Q/ Qp)| at selected critical frequencies:

[H(O) = 1, (9.140)
H()” = % (9.141)
1 +aj
2 1
HQ/Q)|" = -, (9.142)
1 +a,
|H(s)|> = 0. (9.143)

For filters of an even order N, the DC value of the response will be

1

2
1 +aj

\H(0)]* = (9.144)

but the other three points are the same as given in (9.141)—(9.143). In an actual
design problem, the real-valued parameters a; and a, will specified according to
the desired acceptable ripple and will be adjusted so as to leave the ripple within
specified bounds while also providing a flat response in the pass- and stopbands.

Remark. Readers consulting further references on elliptic filter design may encoun-
ter alternative design procedures which result in a filter response with asymptotic
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behavior which deviates from that specified in (9.140) and (9.143), especially when
consulting prepackaged tables or routines. Unless otherwise noted, we confine our-
selves to the limits defined here.

Case of N Odd. For an elliptic filter of odd order we stipulate
c=0. (9.145)

Consider the conditions at the stopband Q = Q_, as laid out in Table 9.6. Expres-
sing (9.29), we have

Ry(Q,/Q) = sn(NI-’{(((—% (K(m) +jK(m,)), m) (9.146)

where we have also used expression (9.135). After straightforward algebra this
reduces to

RN(QS/QP) = sn(NK(p) +jK(p,),p) = 1/Jp. (9.147)
Similarly, the passband edge at Q = Qp leads to
Ry(1) = sn(NK(p),p) = 1. (9.148)

Substitution of (9.147) and (9.148) into the expression for the filter characteristics
leads to the relations,

HEQ/Q) = —— = (9.149)

1+ (E) 1+ d%
and p

S S (9.150)

2
1 +a]

IH(1)|” =

L
1+e¢

Combining these lead to expressions for € and the parameter p in terms of the
pass- and stopband ripple:

e = aj, 9.151)
2
a

p= (9.152)
a

Remark. In the design of an elliptic characteristic for specified 2, and Q_, the
essential relations are (9.139), (9.151), and (9.152). A successful design will involve
juggling of a; and a, (within acceptable bounds) such that p from (9.152) will
lead to close agreement with the flatness criterion (9.139). This can be done graphi-
cally utilizing packaged math routines, as we will do in the following example.
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Example (Cauer Elliptic Filter, N = 3). Consider a specification calling for the
design of an N = 3 elliptic filter with Q = 0.9, Q= 1.39, a maximum passband
ripple of —2.0 dB, and a stopband ripple not exceeding —25.0 dB. As a first pass, one
can barely make the ripple tolerances by setting a; = 0.763 and a, = 17.9,
which lead to

10 log[1/(1 +a>)] = ~1.99253, (9.153)

10 log[1/(1 +a3)] = ~25.0706. (9.154)
However, the “integer” is given by

N = XPD Kom) _ 5 6347, (9.155)

K(my) K(p)

The effect of the deviation from the ideal value of 3 is to cause a departure from
flatness, which is particularly notable in the stopband, as illustrated in Figure 9.44.

The problem can be alleviated by reducing the passband ripple such that
a, = 0.445 and

- @IM = 3.00271, (9.156)
K(m;) K(p)

which is close to the ideal target of 3. The reduction in passband ripple required to
achieve this exceeds 1 dB, since

10 log[1/(1 +a})] = —0.784659. (9.157)

0.004

0.003

1v 25 3 3.5 4

-0.001

Fig. 9.44. Detail of the stopband response when the integer flatness condition is not met.
Note that the characteristic becomes negative in a small region of the spectrum.
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0.5 1 1.5 2

Fig. 9.45. The N = 3 elliptic filter response after the parameters have been adjusted to obtain
pass- and stopband flatness.

However, the result is the desired flat elliptic filter response representing (9.128), as
shown in Figure 9.45.

Remark. In practice, deviations from the integer ideal N have the greatest effect on
the stopband response. This includes the flatness, as noted, but even small devia-
tions can induce a small imaginary part to H(€2) . When setting up a plot, it is use-
ful to specify the real part to eliminate the small but unwanted imaginary
component.

Case of N Even. For an elliptic filter of even order we apply a nonzero offset to the
argument,

c = K(p). (9.158)

At the passband edge Q = Qp it is easy to show, since N + 1 is an odd number,
Ry(1) = sn((N+ 1)K(p),p) = 1. (9.159)

Likewise, at the stopband edge,

RN(QS/QP) = sn((N+ 1)K(p) +iK(p,),p) = 1/p. (9.160)
The effect of the nonzero offset (9.158) is to give edge conditions (9.159) and
(9.160) identical to their counterparts in the odd-order case. The offset will have the
effect of changing the elliptic filter response at zero frequency, but otherwise the

even order characteristic resembles that of the odd-order case. These points
are illustrated in the following example.
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Example (Cauer Elliptic Filter, N = 4). Consider the specifications laid out in the
example for N = 3, but suppose we require faster rolloff by specifying Q= 1.12.
By increasing the order of the filter to 4, and setting a; = 0.39 and a, = 23.9, we
obtain

10-Tog[1/(1 +a2)] = ~0.614902, ©9.161)
10-log[1/(1 +a2)] = ~27.5756, 9.162)
and
K
v = XD Ko _ o417, (9.163)

K(my) K(p)

which leads to a nominally flat response shown in Figure 9.46. Note that by increas-
ing the order of the filter we have achieved the desired faster rolloff and brought the
stopband ripple under the specification by more than 1.5 dB.

Remark. Note that the even-order elliptic response has the low-frequency limit,

IH(0) =

1 S = 0.86798. (9.164)
1+ aj

This outcome is the legacy of the nonzero offset specified in (9.158): At Q = 0,
the argument of the Jacobi elliptic sine is no longer zero, as it was in the odd-order
construction.

9.5.7 Application: Optimal Filters

Finally, let us consider the problem of designing a filter that conditions a signal so
that later processing preserves just the desired features of the input. To be more pre-
cise, suppose that an analog signal x(f) contains an original trend s(f) and an

0.25 0.5 0.75 1 1.25 1.5

Fig. 9.46. The N = 4 elliptic filter response. The result is flat in the pass- and stopbands.
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unknown corrupting noise component n(f): x(f) = s(t) + n(t). The signal x(¢) passes
through a linear, translation-invariant system H, y(¢) = (Hx)(#). Assume all signals
are real-valued. We seek the best H with real impulse response A(¢) so that (x*h)(¢) is
optimally close to s(7).

Frequency-domain methods provide a solution: the optimal or Wiener'® filter
[68]. Arguing informally, let us use the L? norm as a measure of how close (1) is to
s(¢). For an optimal noise removal filter, then, we seek to minimize

Iy=s” = 5=l¥ =8I = 5= ] 1S(0) - S(@)H(@) - H@)N@) do. (9.165)

—oo

where we have used Parseval’s result and the convolution theorem for the radial
Fourier transform (Chapter 5). The integrand on the right-hand side of (9.165) is

S(@)S()[1 -H(®)][1 - H(w)] - HO)N(®)[1 - H(®)]S(»)
~ H(O)N(0)[1 - H(®)]S(®) + N(0)N()H(0)H(v). (9.166)

The noise n(f) is random, so it is uncorrelated with s(¢), and integrating products
involving their respective Fourier transforms gives zero:

Iy=sI” = 5= | (S@F1 - H) - [H@N@)) do. 9.167)

—oo

To find the minimum of |y — s|~, we must minimize the integral in (9.167). Thus, we
must minimize its integrand, and—arguing informally—the criterion for this is that

the function f(H) = |S|2|1 - H |2 —|HN| |2 has zero derivative. Taking the derivative

with respect to H gives giH = H[|S|2+ |N|2] - |S|2. Setting giH = 0 and solving
gives

2
o s

- . (9.168)
2 2
ISI” + [N

which is the Fourier transform of the optimal or Wiener filter for removing noise
from the signal x(¢).

9.6 SPECIALIZED FREQUENCY-DOMAIN TECHNIQUES

This section introduces and applies some signal analysis methods arising from
Fourier transform theory.

16Although it had been developed in 1942, Wiener’s optimal filter was made public only in 1949, when
the first edition of Ref. 68 was published. The theory had remained classified during World War II,
because of its application to radar.
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9.6.1 Chirp-z Transform Application

In many applications, the frequencies of interest within candidate signals are known
in advance of their processing. Such a priori information can simplify the design of
the analysis system. For instance, instead of computing a broad range of spectral
values using the discrete Fourier transform, the engineer may elect to compute only
a small portion of the spectrum, namely that part that might contain useful signal
information. One way to focus in on a spectral interval without computing large
numbers of useless coefficients is the use the chirp-z transform (CZT), introduced
in the previous chapter (Section 8.3.1).

Let us first recall the basic ideas of the CZT. The CZT computes z-transform on
a spiral contour in the complex plane [11]. It is determined by two parameters: A
and W—the spiral starting point and arc step, respectively. Via an example, we
shall see how to apply it to zoom in on DFT frequency components. As in Chapter
8, we take the notation of Rabiner and Gold [11]. Suppose that A = Ayexp(21j0);
W = Wyexp(2mjdg); M, N are positive natural numbers; x(n) = 0 outside [0, N — 1];
and z;, = AW for 0 < k < M. The chirp z-transform of x(n) with respect to A and
W is

N-1 N-1 x
Xy W) = Y x(n)z = ¥ x(mATW". (9.169)
0

n=0 n=

The exercises of Chapter 8 explained that the CZT reduces to the DFT of order N
whenA=1,M=N,and W= exp(_znj/N).

Let us return to the speech fragment considered earlier, “calling” in a female
voice. The fundamental frequency range of the /a/ phoneme for a woman is from
about F;, = 100 Hz to Fy,; = 400 Hz. We would like to design a CZT detector for this
spectral range and apply it to the digitized speech sample. From a manual segmenta-
tion of the speech sample in question (Figure 9.28), we know that the /a/ phoneme
occurs from samples n = 800 to n = 1200. It also degrades off into the /l/ sound
immediately following.

To set up the CZT for this formant detection application, we set the sliding disjoint
windows to consist of N =400 samples. The sampling frequency F; = 8192 Hz. Also,

2njF
A = exp[-ﬂ} (9.170a)
FS
F,.—F
W = exp[—znj(%)] (9.170b)
S

Applying the algorithms of Chapter 8, we find the first six detection windows
(Figure 9.47).
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Fig. 9.47. Fundamental frequency detector for the /a/ phoneme based on the chirp-z trans-
form. A lone peak rises in the third window, which concurs with a manual segmentation of
the speech sample.

9.6.2 Hilbert Transform
The Hilbert transform'” is a powerful technique that can be used to:

(1) Find the envelope of a signal.
(i) Find the instantaneous phase of a signal.

"David Hilbert originated the idea in his papers on integral equations, reprinted in the book Grundzuge
einer allgemeinen Theorie der linearen Integralgleichungen, Leipzig and Berlin: Teubner, 1912.
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(iii) Find the instantaneous frequency of a signal.

(iv) Suppress one of the sidebands in order to create a single sideband (SSB)
modulation of a signal.

The Hilbert transform has rich theory and many interesting properties [7, 69, 70].
We shall skim the theoretical material and show how the transform works in another
speech analysis application.

9.6.2.1 Definition and Properties. There are analog and discrete Hilbert
transforms. The analog Hilbert transform of a signal x(f) is defined to be

-
(1) = ﬁ-_j ’t% ds = (9x)(1) . 9.171)

The integral, due to the singularity of its integrand at ¢ = s, must be interpreted in a
special way in order to make sense. The standard way to define the integral is by the
Cauchy principal value [71]:

oo o —€
Py [ 2X8) gy = tim | (28 gy 28D g, (9.172)
t—S € + t—S

_ -0 et—S

—oo

which is valid as long as the limit of the sum of the two partial integrals exists. The
principal value is written with a PV before the integral sign to signify that a special,
augmented form of the Lebesgue integral is supposed. Note that the individual lim-
its of the integrals inside the square brackets of (9.172) may not exist. It is in general
not permissable to move the limit operation inside the brackets when using the
principal value of the integral.

Example (Square Pulse). Consider the signal x(f) = u(t + 1) — u(z — 1). The func-
tion A(r) = ! defies integration on [—1, 1], because of the singularity at the origin.
But using the Cauchy principal value, we can still compute xz(0):

o0 1 —£€
- ) go = _ 1 1 1 -
)CH(O) = PVI (rg ds = - 1111:)+|:J.E ds + J.IE dS:| =0. (9173)
o0 € —

Consequently, we can interpret the transform integral as a special kind of convolu-
tion. Let us investigate how the Hilbert transform system affects an analog signal.
Let h(r) = (Tct)_l. Then xg(#) = (x*h)(¢). The generalized Fourier transform of h(f) is

= o —j for Q> 0,
H(Q) = f e dt = —jsgn(Q) =4 o for Q=0, ©.174)

- Jj for <0,
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The duality principle of the Fourier transform explains (9.174). If x(#) has radial
Fourier transform y(€2), then y(f) will have Fourier transform 2mx(—€2). From
Chapter 6, we know that the Fourier transform of (j/2)sgn(z) is Q. Hence by dual-
ity, ! transforms to (j12)(2m)sgn(—L2), and (9.174) follows.

The Hilbert transform system x(f) — xg(#) is also called a 90° phase shift or
quadrature filter [50]. To see why, we look at the system’s frequency-domain effect.
The Fourier transform of xg(#) is Xg(Q2) = X(Q)H() = —jX(L2)sgn(L2). This opera-
tion multiplies positive spectral components by the factor —j = exp(—jn/2) and nega-
tive spectral components by j = exp(jn/2). These correspond to phase shifts of —m/2
and /2, respectively. Thus, the Hilbert transform converts sines to cosines and vice
versa. Let us examine at these basic transformations.

Example (Sinusoids). Consider x() = cos(Q(?) and y() = sin(£2yf). The general-
ized Fourier transforms of x(7) and y(r) are X(Q) = n[&(Q — Q) + d(Q + Q)] and
Y(Q) = ())[8(Q — Q) — d(Q + Q)] Note that 3(Q — ) is a positive frequency
impulse, whereas &(Q2 + ) lives across the origin, in Q < 0 land. The Fourier
transform of xy(r) is Xg(Q2) = F(xp)(Q) = —nsgn()[6(Q — Q) + 8(Q + Qg)]. But
this is (W))[6(Q — Qg)] — (WHIS(Q + Qy)] = Y(Q). Evidently, xy(r) = y(). As an
exercise, we leave the other relation yg() = —x(¢) to the reader.

Typically, then, we compute the Hilbert transform of a signal x(f) by examining
the frequency domain product X(Q)H(€2). This is usually much simpler than evalu-
ating the Cauchy principal value integral (9.172), although the results can be
counter-intuitive. The generalized Fourier transform of the signal x(rf) = 1 is the
Dirac 2nd(Q), for instance. Multiplication by —jsgn(€2) therefore gives zero.

We summarize analog Hilbert transform properties in Table 9.7 and leave the der-
ivations as exercises. Note that if X(0) = 0, then the inverse transform is -t
Also, many algebraic properties of the Fourier transform carry through to the Hilbert
transform.

9.6.2.2 Discretization. Moving toward computer applications, let us now con-
sider how to define a discrete Hilbert transform. Again, the frequency-domain
behavior is the key; we seek a discrete 90° phase shift system. Such a system would
turn each cosine component cos(wn) in a signal x(n) into a sin(®wn) term and each
sin(n) into a —cos(wrn).

First, we consider the case of aperiodic discrete signals x(n). The appropriate 90°
phase shift system should have a frequency response H(®) given by

—J for ®>0,
0 for =0, ©.175)
Jj for o <0.

H(®) = E h(n)e " = _jsen(o)

n = —oo
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TABLE 9.7. Some Analog Hilbert Transform Properties

Signal Expression Hilbert Transform or Property
x(7) — ]pvmx(s)d = (%Hx
xp(t) = 2PV [ 2 ds = ()1
-8
(Analysis equation)
xg (1) (Hxp)(t) = —x
(Inverse, synthesis equation)
ax(t) + by(t) axg () + byg (1)
(Linearity)
dx/dt dxg/dt
(Derivative)

(X, xp) = _[ x(Dxy(t) dt = 0 xe LXR) Orthogonality

—oo

[/l ,= ")CH”2 xe LAR) Energy conservation

The inverse DTFT computation gives

1 on .0 ‘on T on 0 if n is even,

h(n) = 5= [ H(w)¢ m»=LIJ¢m+JVde: )
27 2n 21 — if nis odd.

- -T 0 nmw
(9.176)

So the above discrete Hilbert transform system is neither causal nor FIR. Now let us
consider a discrete x(n) with period N > 0.

Let X(k) be the DFT of a real-valued signal x(n) defined on [0, N — 1]. So corre-
sponding to each positive discrete frequency k € [1, N/2) there is a negative fre-
quency N —k e (N/2, N — 1]. The DFT coefficients X(0) and X(N/2)—corresponding
the DC and Nyquist frequency values—are both real. Mimicking the analog Hilbert
transform, let us therefore define the system function of the discrete Hilbert trans-
form to be

[0 if k=0,
Lo if1<k<d,
H(k) = 2 9.177)
0 if k=N,
j if§<kSN—1

We claim this works. For if x(n) = Acos(2mkyn/N), then its representation in terms of
the inverse DFT is x(n) = (A/2)exp[2njkon/N] + (A/2)exp[2mj(N — ko)n/N]. That is,
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X(k) = (A2)d(k — ko) + (A/2)8(k — (N — kg)). Multiplying by H(k) gives X(k)H(k) =
(—JAI2)3(k — ko) + (jAI2)S(k — (N — kg)). Applying the inverse DFT, this becomes
y(n) = (—jAR2)exp[2mjkgn/N] + (GA/2)exp[2mj(N — ky)n/N] = Asin(2mkyn/N). So
y(n) = xg(n), as claimed. Similarly, discrete Hilbert transformation of Asin(2rtkqn/
N) gives —Acos(2mkyn/N).

Note that the Hilbert transform xg(n) of a discrete signal x(n) on [0, N — 1] loses
the energy of both the DC term and the Nyquist frequency term. To find the impulse
response of the discrete Hilbert transform system, we calculate the inverse DFT of
(9.177) to get h(n). This allows us to implement discrete Hilbert transforms on a
digital computer. However, the value of Hilbert transform applications revolves
around the related concept of the analytic signal, which the next section covers.

9.6.2.3 Analytic Signal. Given an analog signal x(7) and its Hilbert transform
xg(?), the associated analytic signal [72, 73] is

x4 (1) = x(1) + jap(1) . (9.178a)

Although replacing a real-valued with a complex-valued signal may make things
seem needlessly complicated, it does allow us to define the following related—and
quite valuable—concepts. The signal envelope is

g (D) = 37 (0) +xg (1) (9.178b)

Thus, we can write the analytic signal as
04(0) = a0 (9.178¢)

where the instantaneous phase §(t) is

xﬂ(-t—)} . (9.1784d)

-1
o(f) = tan [x(t)

In the first chapter, we argued that the derivative of the phase with respect to time is
a reasonable way to define the instantaneous radial frequency. Hence, we set

o(t) = %(b(t) . (9.178¢)

We may also define discrete versions of these notions. Notice that the signal enve-
lope for a sinusoid is precisely its amplitude. Thus, the definition of signal envelope
(9.178b) gives us a definition that applies to aperiodic signals, but reduces to what
we should expect for the case of sinusoids. The imaginary part of the analytic signal
(9.178a) fills in the gaps, as it were, left in the signal by its fine scale oscillations
(Figure 9.48).

In many ways, the analytic signal is more important than the Hilbert transform
itself. It is possible to show that the analytic signal satisfies the Cauchy—Riemann
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Fig. 9.48. Signal x(7) contains a unit amplitude 30-Hz sinusoid that has been attenuated in
the first and last 250 ms of its domain (top). Magnitude spectrum (middle panel). Signal
envelope (bottom).

equations , so that it can be extended to an analytic function of a complex variable
x(z) [71, 74]. The next section contains an example of envelope computation on a
speech signal.

9.6.2.4 Application: Envelope Detection. An important early task in
speech analysis is to segment the input signal into regions containing utterances and
those holding only background noise. The utterance portions can be further broken
up into separate words, although this is by no means a simple task. One tool in
either segmentation procedure is the signal envelope. Here, as an example, we com-
pute the envelope of the speech signal considered earlier, namely, the “calling” clip.
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Fig. 9.49. Speech signal (a), its envelope (b), and its filtered envelope (c).

Working on the first 2000 speech samples (Figure 9.49a), we can compute the Hil-
bert transform, analytic signal, and envelope (Figure 9.49b). The problem is that the
envelope remains rather jagged and therefore problematic for segmentation purposes.

One way to improve the envelope is to apply low-pass filter. In Figure 9.49¢ we
created a third order Chebyshev Type II low-pass filter with stopband attenuation of
20 dB. The speech sampling rate is 8 kHz for this example, so the Nyquist rate is
4 kHz, and the cutoff frequency for the low-pass filter is 200 Hz.

In general, envelope detection problems can be improved with such smoothing
filters. Even simple sample-and-hold filters with H(z) = z/(z — a) may prove ade-
quate for envelope amelioration.

Signal analysis applications requiring instantaneous phase or frequency computa-
tions—such as interferometry, for instance—may demand more refined filtering. A
typical strategy is to use filters based on fitting methods, such as the Savitzky—Golay
filters to the raw signal envelope before computing the phase and its derivative.

9.6.3 Perfect Reconstruction Filter Banks

In this chapter’s first section we considered simple signal analysis problems using
an array of filters selective of different frequency ranges. By examining the energy
outputs of the separate filters, the frequency content according to time location of
signals could be ascertained. This section investigates filter banks more deeply, and,
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in particular, takes up the problem of reconstructing the original signal from its sep-
arately filtered versions.
Why should this matter? There are two basic reasons:

® If a signal can be broken down into separate components and perfectly (or
approximately) reconstructed, then this provides a basis for an efficient signal
transmission and compression technology.

® There is also the possibility of constructing signal libraries for detection and
interpretation purposes that support a coarse-to-fine recognition methodology
but provide a compact library of signal prototypes.

One more involved reason is that a perfect reconstruction filter bank is closely
related to a type of time-scale transform, the orthogonal wavelet transformation,
which we shall cover in Chapter 11.

9.6.3.1 Laplacian Pyramid. An early and innovative approach combining sig-
nal scale and frequency-domain analysis is the Laplacian pyramid decomposition.
Constructing hierarchical image decompositions was employed by Ref. 75 in their
development of the Laplacian pyramid. They approached the problem of managing
the sheer volume of information in a pixel image by making two points: First, the
gray-scale pixel values are highly correlated in natural scenes; second, it is possible
to decompose the original image into both a coarse representation which contains
the gross features of the image and a difference image which contains sufficient
information to reconstruct the original image from the coarse representation. Their
objective was to remove the correlations that typically exist between neighboring
pixels in natural scenes. This is a primary goal of image compression.

Burt and Adelson used a discrete filter, which in certain instances closely
resembles a Gaussian, to derive the coarse images. The filtered representations are
subsampled at twice the unit distance of the previous image to obtain new levels
in the pyramid. The authors call this the Gaussian pyramid. This process for one-
dimensional signals, passes the original signal at resolution level 0, f(n), given by
the digitizer, to the first coarser level of the Gaussian pyramid. The filter coeffi-
cients, w(n), are chosen to have an approximately Gaussian shape by Burt and
Adelson, although the technical conditions the authors impose on the w(n) allow
some quite different filters to arise [75].

To extract a difference signal from two successive layers of the Gaussian pyra-
mid, Burt and Adelson began by inserting zeros between the values of the coarse
pyramid level. This is necessary because the coarser level contains pixels whose unit
of size is twice that of the finer level. The addition of zero elements causes extra
high frequency components to be added to the signal when this up-sampling opera-
tion is performed. This requires a second smoothing operation. The new smoothed
signal, the values of which are now taken at unit intervals, can be subtracted from
the original signal. Figure 9.50 illustrates these operations on the signals. The coarse
images are obtained by Gaussian-like filtering and the difference images are
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Original signal Coarser signal
(N values) Subsample (N/2 values)
Smooth l

—>

172

Up sample by adding zeros
between coarse signal values

Smooth out newly added
high frequency components

=

Signal difference l
& ©) Do

Difference signal obtained
(N values)

Fig. 9.50. Signal processing diagram of the Laplacian pyramid decomposition.

obtained by subtracting such filtered representations. Since the difference of two
Gaussians so closely resembles the Laplacian of a Gaussian operation studied by
Marr [77], Burt and Adelson called their construction the Laplacian pyramid.

The signal operations of Figure 9.50 may be repeated. Successive difference
signals are produced together with a final coarse, or approximate, signal. The
Laplacian pyramid, then, consists of Dy, D_j, D 5, ..., D_;, A_;. As is evident from the
simple decomposition procedure shown in Figure 9.50, the finer resolution layers of
the pyramid may be recovered from the appropriate difference and coarse signals.

When a one-dimensional signal with N samples is hierarchically analyzed with a
Laplacian pyramid, the number of coefficients required increases to approximately
2N. This is evident from the diagram (Figure 9.50).

The Laplacian pyramid provides a scale-based signal recognition strategy.
Notice that quasi-Gaussian filters of identical shape applied at differing scales and
basic arithmetic operations between the levels of the pyramid to decompose and

Coarser signal Smooth newly added high
(N/2 values) frequency components
ot —[ife] — [w]
Upsample
Difference signal Original signal
(N values) (N values)
Do f ® > Agf
signal sum

Fig. 9.51. Laplacian pyramid reconstruction of signal.
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reconstruct the original image. The computational strategies of the Laplacian pyra-
mid have been implemented in a series of special-purpose vision machines [76].

9.6.3.2 Exact Reconstruction Filter Banks. There is a type of pyramid
decomposition that allows perfect signal reconstruction but does not increase the
amount of data required for storing the decomposition components. Of course, this
is an ideal feature for signal compression applications. But it can also be applied for
progressive signal transmission as well as for coarse-to-fine recognition applica-
tions. Here we introduce the theory. We shall have occasion to refer back to it when
we cover wavelet transforms in the last two chapters.

Consider a real-valued signal ag(n). The decomposition and reconstruction
scheme resembles the Laplacian pyramid’s signal flow (Figure 9.52). For the
present and the sequel (Chapter 11, in particular) it is useful to set up the following
notations. Given the filter impulse responses A(n) and g(n), we set h(n) = h(-n) and
g(n) = g(—n) to be their reflections in time. Observe that H(w) = H*(®).

Also, we have a(n) = (ag*h)(2n), which is the original signal convolved with
h(-n) and subsampled. Similarly, we have d;(n) = (ay*g)(2n). Typically, we shall
select h(n) to be a low-pass filter and g(n) to be a high-pass filter. In terms of the
classic paper [78], ai(n) and d(n) are the first-level approximate and detail signals,
respectively, in the decomposition of source signal ag(n). Furthermore, we obtain
a,’(n) by upsampling a;(n) and then b’(n) by filtering with /’(n). Similarly, ¢,’(n)
comes from filtering d;’(n) with g’(n), where d;’(n) is an upsampled version of
di(n). Finally, ag’(n) = (a;” * K)(n) + (d;” * g")(n). We seek conditions that will
guarantee ag(n) = ay’'(n).

Let us note some properties of the upsampling and downsampling operations.
First, let x(n) be a discrete signal and y(n) = x(2n). Then

S}

“2jno _ X(0) + X(0 + 1) .

Y20) = Y x(2n)e > (9.179)
n = —oo
b1(n) at(n) a’1(n) b’1(n)
h(-n) Ty 2 >4 2 "1 w(n)
ap(n) a'o(n)
\ c1(n) d1(n) d1(n) c¢1(n)
> » A >
g(-n) v ?2 2 g'(n)

Fig. 9.52. Decomposition and reconstruction signal paths. With the proper choice of filters,
the original signal can be recovered and yet its decomposition does not increase the amount
of data to be stored.
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The second term on the right in (9.179) is called the folding or aliasing term. This is
what wrecks the desired exact reconstruction. Next, if y(n) comes from x(n) by
upsampling and inserting zeros,

y(n) = { x(m) —ifn=2m, (9.180)
0 if otherwise.

then Y(w) = X(2w). We leave the straightforward proofs as exercises.
The next result is due to Ref. 79.

Theorem. Let i(n) and g(n) be real-valued impulse responses for discrete filters.
Then the decomposition and reconstruction filter bank (Figure 9.52) performs per-
fect reconstruction if and only if

(i) H*(o+n)H' (0) + G*(0 + ©)G’(®) = 0 and

(ii)) H*(0)H' (®) + G*(0)G’(®) = 2.
Proof: Referring to Figure 9.52, let us calculate the frequency response of the
reconstructed signal ay’(n). We know that Bi(®) = Ao(w)ITI(a)) and Cj(w) =
Ap(®)G(®). Thus,

24,(20) = Bj()+ B (0+T) = Ay(0)H(®) +Ay(0+ T)H(® + 1)
= Ao(w)H*(w)+A0(m+n)H*(m+n) (9.181a)

and similarly,
2D,20) = Ay(0)G* () +Ay(w + T)G* (W + 7). (9.181b)
On the reconstruction side of the diagram, we have
Ay (0) = B)(0)+C/(0) = A;2Qo)H'(0) + D,(20)G’(®) . (9.182)
Substituting (9.181a) and (9.181b) into (9.182) and simplifying leads to
AY'(@) = 34 (O)H*(@)H'(©) + G*(0)G'(@)]
+%A0(m+n)[H*((o+n)H’(w)+G*(m+n)G’m]. (9.183)
Inspecting (9.183), we see that the only way that Ay’(®) can equal Ap(w) is if the

nonaliased term is doubled, and the aliased term is zero. These are precisely the
conditions (i) and (ii) of the theorem’s statement. |

The theorem gives a necessary and sufficient condition on the reconstruction fil-
ters 4’(n) and g’(n) so that the decomposition scheme provides exact reconstruction.
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Theorem. Let i(n) and g(n) be as in the previous theorem. Then the decomposition
and reconstruction scheme (Figure 9.52) performs perfect reconstruction only if

H*(0)H (o) + H*(0+T)H' (0 +7) = 2. (9.184)

Proof: After taking complex conjugates, we may write the result of the previous
theorem

(i) Ho+n)H*(®0)+ G(o+1m)G*(®w) = 0 and
(iv) H(0)H*(®) + G(0)G*(®) = 2.

Let us rewrite these relations in matrix form as follows:

Hw) G(w) |[H*(0)| - [2| (9.185)
H(o+7) G(o+1)||G*(w) 0

If the determinant is nonzero, (9.185) can be solved,

H*(0)| = _2_| Glo+m) | (9.186)
G*(w) MO |-H(o+m)

where A(w) = H®)G(® + ©) — G(w)H(® + 7). Note too that A(®w + ©) = —A(w).
From (9.186) we get

W+ (0 +m) = 200421 _ 2G(w) ©.187)
A(® + 1) A®) '

implying

G(0)G#(w) = AQHTOADEDHO+T) _ prs(y 4 myH(w + ).

-2 A(w) (9.188)

Using the complex conjugate of (9.188) with (ii) of the previous theorem gives
(9.184) above. |

Corollary. Under the theorem’s assumptions,
G*(0)G' (W) + G*(w+n)G'(w+T) = 2. (9.189)
Proof: Exercise. |

Definition (Quadrature Mirror Filters). If the decomposition filter is the same as
the reconstruction filter h(n) = h’(n), then it is called a quadrature mirror filter
(QMF) or conjugate mirror filter (CMF).

Corollary. If h(n) is QMF, then
H(o)* +|H(o+m) = 2. (9.190)
Proof: From (9.184). |
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9.7 SUMMARY

This chapter explored a variety of frequency domain signal analysis applications,
developed several related tools, explained how to construct and implement filters
for frequency selective input processing, and studied the theoretical issues that arose
in the course of experimentation.

We can divide analysis applications according to whether the source signals are
basically narrowband or wideband:

(i) Narrowband signals are interpretable—at least locally—via pulse detection
in the Fourier magnitude spectrum.

(i1)) Wideband signals, on the other hand, demand more complicated proce-
dures, multicomponent, and shape-based techniques.

For narrow band signals we developed three basic approaches:

(i) Time-domain segmentation, based on the histogram for example, prior to
frequency-domain analysis.
(i1) Local windowing using a short (say N = 256) DFT in many locations, thus
forming a time-frequency map.
(iii) The filter bank.

Either of the first two methods work well under moderate noise. Under heavy noise,
or faced with real-time processing and interpretation constraints, a bank of carefully
crafted filters, operating in parallel and equipped with decision logic at their output,
can provide satisfactory results.

We significantly extended filter bank theory at the end of the chapter. We showed
that subsampling combined with low- and high-pass filtering can be used to decom-
pose signals for analysis. Moreover, under certain conditions on the filters, the filter
bank supports an exact reconstruction algorithm using upsampling and filtering. We
will revisit these ideas in Chapters 11 and 12, showing that there is a link between
filter banks and the theory of orthogonal wavelets—a time-scale signal analysis
technique.

The concepts of phase and group delay arose in frequency-domain signal analy-
sis applications where discrete filters were necessary. Applications that filter incom-
ing signals for noise removal, frequency selection, or signal shaping and then
analyze the output must take into account the delay characteristics of the filter. We
observed the phase delay of sinusoidal tones in the DTMF filter bank application,
for example. Other applications involve group delay, such as speech analysis and
edge detection.

Many applications require that the filters provide linear, or nearly linear, phase.
In communication systems, for example, the information is carried on the envelope
and the carrier has a constant frequency. Thus, nonlinear phase delay could well
stretch and compress the frequencies in the signal so that the distortions render the
signal unintelligible. Important aspects of seismic signal processing are to properly
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measure the time delays between different signal components. Thus, linear phase is
crucial when filtering; and for this reason, finite impulse response (FIR) filters,
which we proved to have linear phase, are preferred.
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PROBLEMS

1. Suppose an analog signal is sampled x(n) = xa(nT), where T is the sampling
period. A discrete Fourier transform of order N follows: X(k) = ( 7x)(k). Find the
frequency resolution, the Nyquist frequency, and the highest frequency repre-
sented by the DFT coefficients:

(a) N=80,T=0.02;
(b) N =10, sampling frequency F = 1 kHz;
(c) N=21,T=1,;
(d) N =256, sampling frequency = 8192 Hz.
2. Which of the following finite impulse response (FIR) filters have linear phase?
zero phase?
(@) x(n) =u(n +2) —u(n —2), where u(n) is the discrete unit step signal.
(b) y(n) =u(n +2) —u(n —3).
() v(n) = (=1)"x(n).
(@) w(n)=(=1)"y(n).
(e) Can an IIR filter have linear phase?
3. Provide sketches of all four types of linear phase filters H with h(n) € R [26].
4. Let r (1) = E[x(t)x(t + T)] be the autocorrelation for a wide-sense stationary
(WSS) analog random signal x(f). Prove:
(@) E[x(D)x(s)] = ry(f—s).
(b) 1 (1) = r(-1).
(¢) If x = Ay for some constant A, find y(D).

(d) State and the corresponding properties for the autocorrelation r (k) =
E[s(n)s(n + x)] of a discrete WSS random signal s(n).
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5. Suppose data from a noisy signal is collected for two seconds at a sampling rate
of 8 kHz.

(a) If a periodogram is calculated for the entire data set, what is its frequency
resolution? What is the Nyquist frequency?

(b) Suppose that Bartlett’s method is tried for the purpose of improving the
periodogram. The data is partitioned into sixteen disjoint windows. Now
what is the frequency resolution? What is the Nyquist frequency?

(c) It is decided to try Welch’s method using windows of a larger size than in
part (b), but to overlap them by fifty percent. How many windows are
needed to cut the frequency resolution in half? Sketch your window layout.

6. Let H be a discrete LTI system, let H(z) be its system function, and let ROCg be

the region of convergence of H(z).

(a) Show that if H is stable (if the input x(n) is bounded, then the output y(n) =
(Hx)(n) is also bounded), then this implies that ROC contains the unit cir-
cle |z] = 1 of the complex plane.

(b) Suppose that {z € C: |z] = 1}c ROCy. Show that H is stable.

(c) Given: an example of a discrete signal i(n) that has a discrete-time Fourier
transform H(®), but ROCp does not include the unit circle. Under this cir-
cumstance, can the system y = Hx = h*x be causal, anti-causal, or both?

7. Let H be a discrete LTI system, h(n) its impulse response, H(z) its transfer func-
tion, and ROCy the region of convergence of H(z).

(a) Show that if H is stable, then ROC}; contains the unit circle |z| = 1.
(b) Show the converse: If ROCy; > {z € C: |z] = 1}, then H is stable.

8. Let x(n) be a discrete signal, X(z) its z-transform, and ROCy the region of con-
vergence.

(a) Show that x(n) is right-sided implies that ROCy is the exterior of a circle in
the complex plane.

(b) More particularly, if x(n) is causal, show that o € ROCy.

(¢) If x(n) is left-sided, show that ROCy is the interior of a circle and may or
may not include 0.

(d) Give a condition on a left-sided signal x(n) so that 0 € ROCy.

(e) Give a characterization in terms of ROCy for causal, stable LTI systems y =
Hx.

9. Let x(¢) have Fourier transform X(£2) and Laplace transform X (s).
(a) Show that X; (jQ) = X(Q2), for Q € R.
(b) Let s =X + jQ, where X € R. Show that X, (s) is the Fourier transform of
x(t)e_Zt.
(c) Show that Laplace transform convergence does not depend on the imagi-
nary part of s = X + jQ.
(d) Conclude that X;(s) converges on vertical strips in the complex plane.
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10. Let x(¢) = exp(—alt]) be the Lorentzian function, where a > 0.
(a) Show that X(Q) = 2a/(a + Q).
(b) Sketch x(¢) fora=1, 2, 3.
(¢) Explain how convolution with x(#) performs a weighted averaging of input
signal data.
11. Suppose we map the Laplace s-plane to the z-plane via z = ¢*T, where we shall
assume equality in (9.72).
(a) Show that this implies s = g(g) , the bilinear relation between the

X T\z+1
Laplace and z-transformations.

(b) Letz= e®and s = J€ in (a) and derive the bilinear mapping (9.70).
12. Derive the Laplace transform properties given in Table 9.3.

13. Let T)(€2) be the Chebyshev polynomial of order N = 0.
(a) Show that T)(1) =1 for all N.
(b) Show Th(€2) is even if N is odd, and T(€2) is odd if N is even.
(c) Show all the zeros of T)(€2) lie on the open interval (-1, 1).
(d) Show that |TN(Q)| <1 on[-1, 1].
14. Let P(Q2) and Q(€2) be the squared magnitude response for the Chebyshev and
inverse Chebyshev low-pass filters, respectively.
(a) Show that the poles of Q(€2) are the reciprocals of the poles of P(Q2).
(b) Find P(Q) for IIR filters of order 2 and 3.
(¢) Find Q(Q) for IIR filters of order 2 and 3.
(d) Under what conditions is Q(£2) an all-pass filter? Explain.
(e) Find the zeros of Q(€2).
(f) Show that the zeros of Q(€2) do not depend on the stopband ripple function.

15. Compute the Hilbert transform xp(¢) for the following signals:
(@) x(7) = cos(2mt).
(b) x(f) = sin(-3mr).
(¢) x(¥) = cos(5mr) + 2sin(2mr).
(d) x(¢) = 8(z), the Dirac delta.
(e) x(1) = Cy, a constant signal.
() x(t) = u(r), the unit step signal.
@ x(®)=u(@+1)—u(t-1).
16. Let x(f) = cos(Qyt) and y(¥) = sin(?).
(a) Show that yg(#) = —x(#), where y(?) is the Hilbert transform of y(z).
(b) Compute the analytic signal x4 (7).
(¢) Compute the signal envelope for x(¢).
(d) Compute the instantaneous phase ¢(7).
(e) Compute the instantaneous frequency m(z).
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Show that the Hilbert transform is linear: If x(#) and y(#) are analog signals and
2(t) = Ax(t) + By(2), then zy(f) = Axg(t) + Byg(?).

Let x(n) be discrete with period N > 0. Show that the discrete Hilbert transfor-
mation of Asin(2rtkyn/N) is —Acos(2mtkyn/N).

Suppose the discrete filter H has impulse responses h(n). Suppose h(n) = h(-n)
and let H(w) be its DTFT.

(a) Show that H(®) = H*(®), the complex conjugate of H(w).

(b) Let y(n) = x(2n). Show that Y(2w) = [X(®) + X(® + ®)]/2.

(c) Let y(n) = x(n/2). Show that Y(®) = X(2w).

Let h(n) and g(n) be discrete filters that provide an exact reconstruction scheme
as in Figure 9.52. Show that G*(®)G’(®) + G* (0 + )G’ (0 + ) =

Advanced problems and projects:

21.

1 L L
Ll_r)ner| L((o)| ] = lim Z Y ry(n-—m)e

This problem outlines a proof of the Wiener—Khinchin theorem for discrete ran-
dom signals. Assume the notation from Section 9.2.3.1.

(a) First show that

L L
Y, Y x(n)x(m)e

n=-Lm=-L

—jo(n— m)

(9.191)

where X; (o) is the local discrete time Fourier transform of real-valued WSS
random signal x(n), and we assume that the autocorrelation function r, (V) is
absolutely summable: r, (V) € I

(b) Apply the expectation operator to both sides of (9.191) to get

L L
Y Yy Elx(n)x(m)le

n=-Lm=-L

—jo(n—m)

EI|X ()]

L .
3 2 r(n—mye "™ (9.192)
n=-Lm=-L

(c) Divide by 2L + 1 and take limits on both sides of (9.192). From the absolute
summability of r,(v), argue that the equal limits of the double summation
can be replaced with independent limits to get

—jo(n—m)

= =-L
L
Y lim 2 rx(n—m)e

lim S on=m)
n=-L

(9.193)
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(d) Conclude as follows:

L
. 1
Xpsp(®) = L]f‘sz_H 2 R (o)
n=-L
2L+ 1
A 1 (@) = Ryy(®@) ©.154)

22. This problem outlines a proof of the Wiener—Khinchin theorem (9.30) for WSS

23.

analog random signals x(f). Assume the notation from Section 9.2.3.1.
(a) By interchanging the order of integration, show that

EL[ J'xL(t)xL(s)e_jm(t_s)dsdt} = E[|XL((D)|2], (9.195)
where X; (o) is the local radial Fourier transform of x(z).

(b) Use the results of probability theory: E[ax + by] = aE[x] + bE[y] and
rot — 8) = E[x(s)x(r)]. Show that the expectation operation may be
moved inside the integral in (9.195) and therefore that

oo oo . LL .
[ ] EL(xy ()¢ dsdr = [ [r(t-9)e7 " Vdsdr. (9.196)
—oo—00 —L-L

(c) Let u =t — s for a change of integration variable in (9.196) and show that

—jou

the iterated integral becomes 2Ly (w)e [2L—|u|] du .

2L XX
(d) Put the above expressions together and take limits to get

2L

.1 2, .. —joul 2L — |u|
Jlim S (@)]] = lim é[erx(u)e [T} du . (9.197)

(e) Show that the integrand on the right-hand side of (9.197) is bounded by
|r ()] so that Lebesgue’s dominated convergence theorem (Chapter 3)
applies.

(f) Since the the limit and integration operations can be interchanged, show

L— o

Xpgp(®) = jrxx(u)e‘f‘””{ lim [ZLZ—‘L""J} du =R, (0),  (9.198)

where R, () is the radial Fourier transform of r, (7).

Consider a linear system y = Hx, where the WSS random signal x(7) is the input
and y(¢) is the corresponding output. Let r, (1) = E[x(£)x(t + T)] and ryy(t) =
E[y(@)y(t + V)].

(a) Show that the cross correlation rxy('c) = r (1) * h(-7).
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(b) Show that r,, () = r,(T) * h(1).

(c) Show that Ypqp(Q) = XPSD(Q)IH(Q)IZ, where H(Q) is the radial
Fourier transform of A(z).

Suppose that real-valued discrete signal x(n) is sampled at Fy = 1/T Hz. We

select a window of N > 0 values and compute the DFT of order N. Thus, the

DFT X(k) has frequency resolution (NT)_l and its coefficients represent dis-

crete frequencies (NT)_l, 2(NT)_1, s (21)_1.

(a) Show that adding a pure sinusoid of one these frequencies—say w, = kF/
N, for 1 < k < N/2—to x(n) will alter only X(k) and X(N — k).

(b) Verify experimentally using that y(n) = x(n) + cos(2nnk/N) a sinusoid of
frequency ® # oy, for any 1 < k < N/2, will perturb all of the X(k).

(c) Show that the difference caused by adding the sinusoid diminishes in mag-
nitude like 1/j — @] as |® — @] increases [32].

This problem motivates use of the sampling interval T in the bilinear transfor-
mation (9.70). The derivation closely follows [33]. Consider the analog integra-
tor system with impulse response

h(1) = { 0 if£<0, (9.199)
1 if 1>0.

(a) Lety = Hx, so that y(¢) = (h*x)(¢) and show that for 0 < a < b,

b
y(b) =y(a) = [x(t) dt. (9.200)
(b) Arguethatasa — b,
y(B) - y(@) = L5 Lx(@) + 2(5). (9201

(¢) Let a =nT —T and b = nT so that (9.201) becomes a discrete integrator and
show that

Y(2) -7 ' Y(2) = g [ X(2) + X(2)]. (9.202)

(d) Show that the discrete integrator has z-transform
T(z+1)
H(z) = z>>——. 9.203
(@ =50 (9.203)
(e) Show that the Laplace transform of the analog integrator is H(s) = s

(f) Argue that an analog system defined by a difference equation (9.65) can be
implemented using adders, amplifiers, and integrators.
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(g) Replace every analog element by its corresponding discrete element and
conclude that the discrete transfer function corresponding to (9.65) is given
by

_2(z-1)
B i (9.204)

26. Prove Liouville’s theorem, which we used to justify the fundamental theorem of
algebra. Let |f(z)| < B on C be everywhere differentiable, or analytic.

(a) Show that the Cauchy Residue Theorem (Chapter 1) implies

flz) = L.gﬁm ds, (9.205)
21 oS~ 2
where C is a large circular contour centered about z € C.
(b) Show that

R S (€))
f(2) = ——¢—-+L—=ds. (9.206)
2Tc]i(s—z)z

(¢) If C has radius R > 0, show that
, B
If"(2)l < i (9.207)

(d) Since the radius of C may be arbitrarily large, conclude that f’(z) = 0 and
f(z) = constant.

27. Suppose a rational function P(Q) = B(Q)/A(Q) is even: P(QQ) = P(—) for all
Q e R. Show that A(€2) and B(Q2) have no terms of odd degree.

28. Consider the analog Lorentzian signal A(f) with rational (radial) Fourier trans-
form. H(Q) = (1 + Q371
(a) Show that A(¢) is given by

1 ” iQt e_lt‘
h) = 5~ [ HQ)d™ "= 5 (9.208)

(b) Using synthetic signals, evaluate the performace of A(r) as a peak, valley,
and transient detector.

(c) Evaluate the signal analysis performance of A(¢) for detecting the same sig-
nal features in the presence of synthetic additive noise.

(d) Identify suitable real data sets and report on the Lorentzian’s capabilities
for detecting these same features.

29. Develop software for a Butterworth filter design tool.

(a) Given a discrete cutoff frequency ®, and filter order N > 0, compute the
analog cutoff Q...
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(b) Find the above poles of the analog squared Fourier magnitude response
function.

(c) Select poles in order to ensure a stable filter.
(d) Derive the discrete impulse response h(n).
(e) Compute the discrete magnitude response |H(w)|.

(f) Compute the margin by which the filter H passes or fails the passband and
stopband constraints.

(g) Provide an approximation feature that computes the filter order given ®,. as
well as passband and stopband criteria.



I CHAPTER 10

Time-Frequency Signal Transforms

Time-frequency signal transforms combine traditional Fourier transform signal
spectrum information with a time location variable. There results a two-dimensional
transformed signal having an independent frequency variable and an independent
time variable. Such a signal operation consititutes the first example of a mixed-
domain signal transform.

Earlier discussions, many applications, and indeed our entire theoretical
approach considered signal analysis strategies based upon time, frequency, or scale.
Time-domain methods are adequate for tasks such as edge detection, elementary
segmentation, correlation-based shape recognition, and some texture analysis prob-
lems. But in many situations, the inherent periodicity within signal regions pushes
us toward a decomposition of the signal according to its frequency content.

Frequency—or spectral—analysis enters the picture as a tool for discovering a
signal’s sinusoidal behavior. But this is an inherently global approach. Standard
spectral analysis methods, which the Fourier transform in both its analog and dis-
crete guises completely typifies, suffer signal interpretation difficulties when oscil-
lations of interest exist only within a limited signal region. As we discovered in the
previous chapter, windowing the signal improves local spectral estimates.

Another approach takes a standard signal shape element, shrinks or expands it
into a library of local signal forms, and then considers how well different regions of
the signal match one or another such local prototypes. This is an analysis based on
signal scale. The first chapter provided tutorial sketches of all three approaches.
Later chapters built up theoretical tools, demonstrated their applications, and
discovered some limitations. So far we have worked out much theory and many
applications involving time- and frequency-domain techniques, but we have not
formalized the notion of a scale-based analysis.

We now have a sufficient theoretical foundation and practical motivation to
explore combined methods. The idea is to mix time-domain methods with either the
frequency- or the scale-domain approach. Both combinations provide avenues for
structural signal decomposition. The theory is rich and powerful. It has developed
rapidly in the last few years. We elect to start with the methods that are most intui-
tive and, in fact, historically prior: the time-frequency transform techniques.

Signal Analysis: Time, Frequency, Scale, and Structure, by Ronald L. Allen and Duncan W. Mills
ISBN: 0-471-23441-9 Copyright © 2004 by Institute of Electrical and Electronics Engineers, Inc.
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The Fourier transform is the fundamental tool for frequency-domain signal ana-
lysis. It does allow us to solve some problems that confound time-domain tech-
niques. The mapping X(w) = F[x(¢)] lays out the frequency content of a signal x(z),
albeit in complex values, and its large magnitude |X(w)| indicates the presence of a
strong sinusoidal component of frequency  radians per second in x(¢). We can con-
struct filters and assemble them into filter banks in order to search for spectral com-
ponents in frequency ranges of interest. All such strategies stem from the
convolution theorem, which identifies time-domain convolution—and hence linear,
time-invariant processing—with frequency-domain multiplication. The caveat is
that standard Fourier techniques depend on a knowledge of the entire time-domain
extent of a signal. Even the filter bank highlights ranges of frequencies that existed
in the signal for all time: past, present, and future.

But many signals have salient periodic features only over limited time intervals.
Although a global analysis is theoretically possible, it may not be practical or effi-
cient. Consider, for example, an orchestra that must play a two-hour symphony, and
let us fancy that the composer employs a Fourier transform music style that assigns
each instrument just one tone for the entire duration of the performance. The super-
position of the various tones, each constantly emitted for two hours by the musi-
cians, does indeed produce the composer’s envisioned piece. Of course, the
orchestra has but a finite number of musicians, so what is in effect here is really a
Fourier series music synthesis. The conductor’s job is greatly simplified, perhaps
reducing to a few minor pre-concert modifications to the chosen tones. Concert hall
owners could well be drawn to encourage such an artform; it would allow them to
hire low-paid, unskilled musicians and cut the conductor’s hours. The problem of
course is that it would be nearly impossible to get the right tonal mix to compose a
Fourier symphony. A few hertz too far in this or that direction generates not a sym-
phony but a cacophany instead. Localizing the tones works much better. The com-
poser uses a local frequency synthesis, assigning tones to moments in time; the
musicians—they must be artists of supreme skill and dedication—read the musical
notation and effect the appropriate, time-limited tones; and the conductor orches-
trates the entire ensemble, settting the tempo and issuing direction as the perfor-
mance proceeds. The composition of the signal in terms of time-localized tones is
far easier to understand, communicate, replicate, and modify.1

10.1 GABOR TRANSFORMS

The previous chapter studied the strategy of time-limiting, or windowing, a signal
before calculating its spectrum. This technique—of which there are many variants—
furnishes better estimates of the signal’s spectrum, because it restricts the signal

1Interestingly enough, there is a musical composition style that combines long-term tones to produce
desired harmonies: “spectral music.” Its resonances evolve slowly, retain a distinctly synthetic character,
and thereby differ greatly from traditional 12-tone music. French composer Gérard Grisey (1946-1998),
winner of the Rome prize, pioneered this form.
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values to those over which the relevant oscillatory signal features should appear. The
spectrogram of the signal x(¢) relative to the window function w() is the squared
magnitude of the Fourier transform of the product s(f) = x(H)w(¥): | F| [s(t)]|2 =
| 7 [x(t)W(l‘)]|2 > (. Applications can therefore compare or threshold spectrogram val-
ues in order to decide whether one frequency is more significant than another or
whether an individual frequency is significant, respectively. With the spectrogram, of
course, the application design may need to search through possible time locations as
well as through possible frequency ranges when seeking local spectral components.
That is, Fourier applications tend to be one-dimensional, in contrast to short-time
Fourier applications, which are inherently two-dimensional in nature.

We first explore the basic ideas of the transform, working with its original analog
formulation. Section 10.1.2 develops the idea of the time-frequency plane. The Gabor
transform partitions the (¢, m)-plane into equally sized regions, which Gabor dubbed
“logons,” from the ancient Greek word logos, meaning word or account. Logons are
now generally called time-frequency windows or atoms. These time-frequency cells
contain the signal’s local frequency information, and their derivation provides a
structural interpretation. Time-frequency windows with smaller 7-dimensions pro-
vide higher signal time resolution, and those with tighter m-dimensions have better
signal frequency resolution. So small time-frequency cells are good, but we will
eventually discover that a lower limit on cell size exists.

We generalize the Gabor transform further in Section 10.2 to include general
window functions. It is proven, however, that among the many short-time Fourier
techniques, the Gabor transform has smallest time-frequency windows. A Gaussian
window, therefore, provides a joint time and frequency resolution superior to all
other window functions: Hanning, Hamming, Kaiser, Bartlett, and so on. Finally,
we derive the discretization of the Gabor transform in Section 10.3.

The Gabor transform uses a Gaussian window to create a window of time from
which the spectrum of the local signal values are computed. Gaussian signals pos-
sess a magic property: Their Fourier transform is also a Gaussian. And this fact
imparts an utterly elegant mathematical development to the study of the transform.
But elegance is not the only reason for starting our study of short-time Fourier
methods with the Gabor transform. In a sense that we will make precise momen-
tarily, the Gabor transform is in fact the optimal short-time Fourier transform.

Carefully note that the width of the Gaussian window, as measured by its vari-
ance, is fixed throughout the transformation. Allowing it to vary has proven useful
in many applications, but doing so undermines the essence of the transform as a
time-frequency tool. It could indeed be argued that varying the window width
makes it more like a time-scale transform. The location of the time-domain window,
on the other hand, does change and becomes a variable of the two-dimensional,
complex valued, Gabor transform function.

After Gabor’s original paper [1], occasional research contributions related to
Gabor transforms appeared sporadically in the scientific and engineering literature
over the next 30 years. Interest in mixed-domain transforms accelerated with the dis-
covery of the wavelet transform in the mid-1980s. There are now a variety of tutorial
articles [2—4] on time-frequency transforms. Books devoted to Gabor analysis and
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the broader category of time-frequency transforms include Refs. 5-9. Their intro-
ductory chapters and those concentrating on the short-time Fourier transforms—of
which the Gabor transform, by using a Gaussian window, is a particular case—are
the most accessible. Treatments of time-scale transforms, or wavelets, often contain
material introducing time-frequency transforms; we have found the material in Refs.
10-13 to be particularly useful.

10.1.1 Introduction

The Gabor transform picks a particular time-limiting window—the Gaussian—and
generalizes the windowed spectrum computation into a full signal transform. The
goal is to capture both the frequency components of a signal and their time locality
in the transform equation. Of course, a Gaussian window is not truly finite in extent;
its decay is so fast, however, that as a practical computation matter it serves the pur-
pose of localizing signal values. Finite windows are possible with species [14-18].

Definition (Gabor Transform). Let g(f) be some Gaussian of zero mean:

2

g(t) = A", (10.1)

where A, B> 0. If x(¢) € L2( R) is an analog signal, then its Gabor transform, written
Xo(u, o), is the radial Fourier transform of the product x(#)g(¢ — W):

2

-
o 2 .
X, (o) = [ x()e 200 0y (10.2)

—oo

We will occasionally use the “fancy G notation for the Gabor transform: X,(1, ®) =
GolX(D1(U, ). The windowing function g(¢) in (10.1) remains fixed for the trans-
form. If its parameters are understood—for instance, it may be the Gaussian of zero
mean and standard deviation ¢ > 0—then we may drop the subscript g for the win-
dowing function.

No reader can have overlooked the fact that we define the Gabor transform for
LA(R) signals. Analog Fourier analysis (Chapter 5) shows that square-integrable
signals have Fourier transforms which are also in LZ(R). Thus, if x(7) € Lz([R{)
and g(7) is a Gaussian, then x(¢)g(t — W) € LZ(R) also, and the Fourier transform
integral (10.2) therefore exists. Now for each W, F[x(¢)g(t — Wl(w) € LZ(R), and
this will therefore enable us to find a Gabor inverse transform, or synthesis
formula.

It is possible to specify a particular normalization for the Gaussian window used
in the Gabor transform. For example, we might choose ||g(9)]||; = 1 or ||g(®)], = 1,
where || - ||, is the norm in the Banach space L(R) of Chapter 3. Gaussian signals
belong to both spaces. Either choice makes some Gabor transform properties look
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nice but not others. We generally normalize the window with respect to the L'(R)
norm, so that our windowing functions are zero-mean Gaussians of standard devia-
tion 6 > 0, go 5(9):

-’

26° —jot
J' x(t)e e’ dt. (10.3)
2n

oo

1
Xg(u’ (D) - G

The exercises explore how these alternative Gabor transform normalizations affect
various transform properties.

Observe that the Gabor transform, unlike the analog Fourier transform, is a func-
tion of two variables. There is a time-domain variable L, which is the center or mean
of the window function, and a frequency-domain variable, ®. Since a time-domain
variable—namely the location of the window’s center, 1—is a parameter of the
transform, the inverse Gabor transform involves a two-dimensional, or iterated inte-
gral. Figure 10.1 shows the Gabor transform scheme.

It is also possible to vary the width of the window, which is determined by G, the
standard deviation of the Gaussian. However, this changes the fundamental analy-
tical nature of the transform operation, and our theory endeavors to avoid this. If ¢
changes while ® remains fixed, then the effect of the transform is to find oscillatory
components of radial frequency ® over signal regions of varying width. But this is
the defining characteristic of a scale-based signal analysis. The size of the prototype
signal changes. When ® and ¢ both vary, we lapse into a hybrid scale and frequency
approach. This does aid some applications. But our present purpose is to reveal the
strengths and weaknesses of pure time-frequency methods, and therefore we fix 6
for each particular Gabor transform formulation.

/\ x(t)

~___— >

)
)

~

Frequency

Time

Fig. 10.1. The Gabor transform finds the spectral content of x(¢) within a Gaussian window
g(t — ). The two-dimensional transform function takes parameters L, the window’s center,
and o, the frequency of the exponential exp(j®?).
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10.1.2 Interpretations

There are several fruitful ways to interpret the resulting Gabor transform:

¢ The mostimmediate way to visualize X (I, 0) is to see it as the Fourier transform
of the windowed—and therefore essentially time-limited—signal x(£)g(¢ — ).

® Secondly, in resonance with our physical concept of the Fourier transform, we
can think of X (11, ®) as an inner product relation that measures the similarity
of x() to the pulse g(r)exp( jor), a Gabor elementary function (GEF).

® Parseval’s theorem provides yet a third interpretation: an inner product mea-
sure of the similarity of the Fourier transforms of x(¢) and g(#)exp( jwt).

® Finally, the Fourier transform’s convolution theorem shows that the Gabor
transform is a filtering operation on X(w), the Fourier transform of x(7).

So the idea of windowing a signal x(¢) with a Gaussian and making the location
of the window a parameter of the transform richly interconnects concepts in signal
spaces and transforms. In fact, we encounter two more interpretations of this many-
faceted transform later in the chapter! But these first four carry us a long ways, so
let us further investigate them.

The most immediate observation is that the Gaussian function g(¢) windows sig-
nal values of x(¢) in a neighborhood of around the point # = u. This springs right out
of the definiton. The windowing effect suppresses oscillatory components of x(7)
distant from ¢ = .. The Gabor transform of x(?), Xg(u, ), is thus the frequency con-
tent of x(¢) in this Gaussian-trimmed region.

Another perspective on the Gabor transform follows, if we recall that the product
g(Hexp(—jor) in the integrand (10.2) is the complex conjugate of a Gabor elemen-
tary function,? introduced in Chapter 1. Thus, if x(¢) € Lz([R{), then for each w € R,
the Gabor transform integral is an inner product: {x(¢), g(t — Wexp( jwr)). Or, if the
Gaussian has zero mean and standard deviation ¢ > 0, then Xg(u, o) = {x(?),
gu’c(t)exp(j(ot)). Beginning with elementary vector spaces, through abstract inner
product spaces, and finally with Hilbert spaces, the inner product relation continues
to serve as our yardstick for establishing signal similarity. Hence, the Gabor trans-
form X, g(u, ) measures the similarity between x(f) and the Gabor elementary func-
tion g(t — Wexp(jwr)—an important idea which leads directly to the next point and
figures prominently in the sequel.

Our third view of the Gabor transform follows from applying Parseval’s formula
to inner product relation:

(0, gt -we’™) = S-(X(0), Tgd™D = X,(ww).  (104)

2Gabor actually used the Hertz formulation of the Fourier transform in his landmark 1946 paper. He
applied the results to human hearing, observing that, up to about 1 kHz and independent of pulse width,
we can distinguish some 50% of audible GEFs. Above that frequency, our sense rapidly deteriorates;
Gabor concluded that cheaper means of transmission—although perhaps hampered by a poorer fre-
quency, response—might replace more faithful and expensive systems [19].
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Note that we are fixing ® so that the Gabor elementary function g(¢)exp(jw?) is a
pure function of t. The dummy variable for F[x(#)](0) = X(0) in (10.4) changes from
the usual o to avoid a conflict. Thus, the Gabor transform is a (scaled) similarity
measure between the Fourier transforms of x(¢) and the GEF g(r — wexp( jo?).

The convolution theorem for the radial Fourier transform provides a fourth
insight into the Gabor transform. Convolution in time is equivalent to multiplication
in frequency. And, reversing the transform direction, convolution in frequency
corresponds to termwise multiplication in time. Therefore, if y(f) = g(f)exp(jwr), it
follows that

_ CJen L _ 1 _
Xg(u, o) = (x(1), g(t—pye’ ) = 2n(X"‘Y)(G) = 27:_! X Y(6-C) dt.

(10.5)

Gabor transforming a signal x(¢) is the same as filtering X(0) with the Fourier trans-
form of the Gabor elementary function y(¢) = g(t — Wexp( jor).

These several interpretations lead us to further study the Gaussian, the GEFs,
inner products, and convolution operations in both the time and frequency domains.

10.1.3 Gabor Elementary Functions

By now, Gabor elementary functions y(f) = g(# — Lexp( jot) are quite familiar. We
introduced them as early as Chapter 1, noted their applicability to spectral analysis
of signal texture in Chapter 4, and considered them as amplitude-modulated sinuso-
idal carrier signals in Chapter 5. They have other names, too: Gabor atoms or win-
dowed Fourier atoms. Now we have seen that y(¢) is a signal model—or prototype—
to which the Gabor transform compares x(#). This section continues our investiga-
tion of these important signal prototypes.

In the time domain, y(f) = g(f)exp( jwr) is a complex exponential that is ampli-
tude modulated by a Gaussian g(¢). The Gaussian envelope—Ilet us say it has mean
1 and standard deviation 6—gy, (#) amplitude modulates the real and imaginary
parts of exp(jot). From a communications theory standpoint, the latter are sinusoi-
dal carrier signals. The real part of y(f) is cos(wf)-modulated by gu,c(t); hence,
Real[g,, s(Nexp(jor)] is even. And its imaginary part is sin(t) inside the same enve-
lope, making Imag[g, s(1)exp(jor)] an odd signal. The GEFs exhibit more or less
oscillations as the frequency of the exponential carrier signal increases or decreases,
respectively, under a modulating Gaussian pulse of constant width. This changes the
shape of the model signal as in Figure 10.2.

Altering the spread of the Gaussian envelope (given by its width parameter G)
while leaving ® constant also produces prototype signals of different shapes. The
large sinusoidal oscillations persist over a wider time-domain region (Figure 10.3).
This behavior typifies time-scale analysis methods, which depend upon comparing
source signals with models of variable time-domain extent, but similar shape.
Unless we tie the frequency ® to the Gaussian’s standard deviation o, then the
Gabor elementary functions will exhibit different basic shapes as ¢ changes. This
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Real part

Time t

(b)

Fig. 10.2. Gabor elementary functions. The cosine term (a) represents the real part of a

GEF and is an even signal. The sine term represents the imaginary part and is an odd signal
(b). Panels (c) and (d) show the effect of frequency doubling.



720 TIME-FREQUENCY SIGNAL TRANSFORMS

Doubled frequency

Real part

Time t

(c)

Doubled frequency

Imag part

Time t
(d)
Fig. 10.2 (Continued)

technique is often called the adaptive Gabor transform. But a bona fide time-
frequency transform should be able to reveal all frequencies within a local signal
region; we cannot mathematically link ® and 6. Consequently, to preserve the time-
frequency nature of the Gabor transform and short-time Fourier tools in general, we
avoid flexible windows. Time-scale transforms (Chapter 11) use dilation to
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Real part

Real part

Time t

(b)

Fig. 10.3. Window size variation. With the radial frequency o fixed, the shape of a Gabor
elementary function signal (a) changes as the window expands (b).
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maintain a basic shape while changing the size of a prototype signal. This chapter’s
exercises preview this idea.

Now let us consider the frequency-domain representation of Gabor elementary
functions. The formula for the Fourier transform of y(¢) = gu’c(t)exp(jwot) derives
from the radial Fourier transform’s properties (Chapter 5).

Proposition (Fourier Transform of Gabor Elementary Function). Let ¢ > 0
and suppose g(1) = g, (1) is the Gaussian with mean 1 and standard deviation c. Let
(1) = g(Hexp(jmyt) be a Gabor elementary function with envelope g(f) and radial
frequency . Then
1 (52 2.
Y(0) = 2-exp [- S (- +j(o- wo)u}. (10.6)
2n 2

Proof: In Chapter 5 we calculated the radial Fourier transform of the Gaussian;

there results a Gaussian once more: ¥ [exp(—tz)]((n) =gl 2exp(—coz/4). The Fourier
transform properties allow us to write out the Fourier transform for g(7) = g, 5(1):

o . 2 2
G(w) = J‘ g(t)e_jwtdt = exp({o 2(0 +j(ouD (10.7)

—oo

whose magnitude |G(w)| is a Gaussian centered at o = 0. Applying the generalized
Fourier transform handles the exponential factor: F[exp(j®myf)](®) = d(® — wg). A
termwise multiplication y(f) = x{(©)X,(f) in time has Fourier transform Y(®) =
X1(0)*X5(0)/(2w). This implies F[g(Hexp( joy)] = G(w)*d(®w — y)/(2m), the con-
volution of a Gaussian with a shifted Dirac delta. Making 6 the integration variable
for continuous-domain convolution, we compute:

@t ” X (0-8) +j(w—8
V@) = Tlge ™) = 5= [ 80 -wpe T O ap
1 e—(czuu— @)’ +j(®— 0y)K) (10.8)
= 5 .
We use the Sifting Property of the Dirac delta in (10.8), the last expression of which
is precisely the value (10.6). |

Remarks. In (10.8) observe that |Y(w)| is a scaled (amplified or attenuated) Gaussian
pulse centered at ® = ® in the frequency domain (Figure 10.4). To find the Fourier
transform of Real[y(#)], we write cos(wgf) = [exp( jmgt) + exp(—jwgr)]/2. Its spectrum
is a pair of impulses at |®| = 0; hence, a convolution like (10.8) produces a sum of
two Gaussians. A similar procedure (exercises) works for the imaginary part of
exp( jmgt) and gives us the Fourier transform of Imag][ y(#)].

Simple experiments demonstrate that for the Gabor elementary function a recip-
rocal relationship apparently exists between time- and frequency-domain window
widths (Figure 10.4). Further elucidation requires us to formalize the concept of
window width, which is a topic covered in Section 10.2.4.



GABOR TRANSFORMS 723

X(t) = 25 Hz pulse; sigma = .05; X = DFT of x(nT)
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(a)

x(t) = 25 Hz pulse; sigma = .2; X = DFT of x(nT)
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Fig. 10.4. Fourier transform of a Gabor elementary function. A narrow time-domain signal,
y(©) = g 5(Nexp( jogr), has a wide magnitude spectrum (a). As the time-domain width of the
Gaussian envelope grows, the frequency-domain window width shrinks (b).

10.1.4 Inversion

Recalling that all of the analog and discrete versions of the Fourier transform
of Chapters 5 and 7 have inverse relations, let us consider the same problem for
the Gabor transform. Suppose we transform with respect to a Gaussian window
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g(h = 8u, o(H. We call the forward transform relation, X(®) = F[x(9)], the analysis
equation, and we call the inverse Fourier transform relation, x(¢) = 7l [X(w)], the
synthesis equation. Of course, X (1L, ®) is the radial Fourier transform of the win-
dowed signal x(t)gu’(,(t), so its synthesis equation produces not x(¢), but x(t)gu’s(t)
back again. How can we get x(¢) from X, g(u, ®)? Because Xg(u, ) is a function of two
variables, we can integrate a second time, letting the Gaussian’s location [ vary and
using it as an integration variable.

We divide our efforts according to whether the Gabor transform of x(¢) is 1ntegra—
ble. As with the Fourier transform development in Chapter 5, if X, (u, o) e L! (R),
then we can freely interchange integration limits. If we assume x(t) e I? (R) and
nothing more, then a limiting argument is once again necessary.

10.1.4.1 Assuming Transform Integrability. The following lemma is a
direct consequence of our choice of g, (7) for the Gabor transform windowing sig-
nal. It shows that, for each 1, the Gabor transform X, (U1, ®) represents a local piece
of F[x(#)]. Independent variable ® corresponds to the spectral frequency, and U rep-
resents the spectral fragment’s time location. Indeed, when we integrate all of these
pieces together (10.9), the result is the full signal spectrum X(®).

Lemma. Suppose x(?) € L2 R);n,0e R,o>0;g(r)= 8u oD s the Gaussian win-
dow with mean [ and standard deviation o; and let X (i, 0)) e LY(R) be the Gabor
transform of x(¢). Then,

X(w) = ng(u, o) du. (10.9)

—oo

Proof: Let us expand the integrand in (10.9):

J' X, (1, 0) du = _[ [ J x(s)g(s)e_jmsds] du = J x(s)e_jm( J' 8y, 6(5) du) ds.

—oo —00 \—oo —oo —oo

(10.10a)

Fubini’s theorem [11, 12] states that if an iterated integral’s integrand is absolutely
integrable, then it is identical to the double integral, and the order of iteration is
irrelevant. The interchange of limits (10.10a) is possible by applying Fubini’s
theorem, which is possible because the integrand is absolutely integrable. The inner
integrand is unity, since ||g||; = 1. Consequently,

[ X (1, 0) du = jx(s)e*f‘“ds = X(w). (10.10b)
oo —eo ]

Now we can prove an initial inverse Gabor transform relationship for the situation
where Xg(u, ) is integrable.
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Theorem (Inverse Gabor Transform or Synthesis Equation). Suppose ¢ > 0;
x(1) € L2( R); g(¢) = 8u oD 1s the Gaussian window with mean | and standard devia-
tion G; and let X, (u, (o) el (R) be the Gabor transform of x(7). Then,

x(0) = 5- | ( [ X, w)ej(”tdm) du. (10.11)

—00 \—oco

Proof: Using the definition of the Gabor transform for x(¢), we have

157 j 17 o =
> _[ [ ,[ X, (1, (x))e“”tde du = 5 J- ejwt( J‘ X, (1, o) du} do. (10.12)

—o0 \—oo

We use the assumption that XU, m) € LI(R) to infer X,(U, w)exp( jor) € LI(R) as
well; Fubini’s theorem then implies (10.12). Using the lemma to evaluate the paren-
thesized integral on the right-hand side of (10.12) gives

51?5 | ef“”[ [ X, (1 m)du}dm = El?c [e ¢’ X(®) do = x(1) (10.13)

as desired. |

The next result is a time-frequency version of Plancherel’s theorem. It shows that
the Gabor transform preserves signal energy. We do not have a perfect proportion,
since the equation depends on the L?(R) norm of the window function.

We interpose a lemma that shows how to compute the Fourier transform of a
Gabor transform.

Lemma (Fourier Transform of Gabor Transform). Suppose ¢ > 0; x(¢) € L2( R);
g(H = 8u, o) is the Gaussian window with mean | and standard deviation G; and
let X, (1, 0) € L! (R) be the Gabor transform of x(¢). Then, for each ® € R we can
Fourler transform the signal X (11, ), viewing it as a function of [. So,

0 c

7 jue 1 _ 1 T2
[ X @)™ du = =X(0+6)G(0) = =X(0+6)e ~ ,  (10.14)

—oo

where G(0) is the radial Fourier transform of g(z).

Proof: Expanding X, (U1, 0) in the integrand (10.14) gives

| {J x(g(ne”” df} ®du = | [{ | x(t)go,c(t—u)e_jmtdtDe_j”e m

—ocob—oo

= ] ({ | x(t)go’c(t—p.)e_jwteiwudtDe_juee_jwudu. (10.15)

—oo

—oo —o0

—o0
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The algebraic manipulations in (10.15) aim to change the expression’s form into a
convolution of x(#) with the Gabor elementary function y(s) = g¢ s(s)exp( jws).

Because go,q(f — ) = 80 o(1 — 1)

] {fx(t)g(t)e_jmdt}e_j”edu = | |:_[X(t)go,c(ﬂ—t)e’jw(u_t)dt}e_juee_jm“dli

—ocob—co —oob—oo

= [ e MO Vay, (10.16)

which exposes a convolution integral, (x * y)(i). But now the outer integral in is
evidently a radial Fourier transform; invoking the convolution theorem,

[ e ™ gy

—oo

J { J x(t)g(t)e_jmtdt}e_jl'Le du

—oo L —oo

X(®+0)Y(o+0). (10.17)

Now, X(w + 0) is the Fourier transform of x(¢) evaluated at ® + 0, as the lemma
requires. Y(9) = F[y(s)1(9) = F[go s(s)exp( jws)](9) is the Fourier transform of
a Gabor elementary function. In (10.8) we found Y(¢) = (ZTC)_1 Flgo.6($)(0 — w).
If u = 0, then F[g, o()I(®) = exp(-624*/2). So Y(® + 6) = 2m) " F[gy ()]
([o + 6] —®) = (21)" [go,5(5)](0). Finally,

2.2
G0

X(o+ e)e‘T

X(0+8)Y(0+8)=X(0+8) Flgy (N (0 +6) = = ,

(10.18)

and the proof is complete. |

10.1.4.2 Two-Dimensional Hilbert Spaces in Brief. Our next result is the
time-frequency version of the Plancherel formula. Now, this theorem depends on
the two-dimensional L*(R) norm. “You are so unaccustomed to speak in images,’
Adeimantus ironically remarks to Socrates in the Republic,3 and we too have
been—intentionally—so unaccustomed! The L2(R) norm applies to analog images,
and up until now we have been deliberately partial to one-dimensional signal theory.
Nonetheless, time-frequency methods, and mixed-domain techniques in general,
often transgress into multidimensional or image analysis. This is to be expected,
since the transforms do encode both time and frequency information as independent
variables in the transformed signal. The theoretical extensions are gratefully
straightforward. In fact, LZ(R X R) is a Hilbert space also, and its theoretical devel-
opment follows from our one-dimensional endeavors in Chapter 3. We do not need
to spend a lot of time developing that multidimensional theory here; nevertheless,
the concepts of the LA(R?) space and its norm are worth reviewing.

3Republic, vol. II, B. Jowett, translator, Oxford: Clarendon Press, 1964.
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Definition (LZ(RZ)). A two-dimensional signal x(s, t) is square-integrable or has
finite energy if

| _j Ix(s, )|* dsdt < oo. (10.19)

—00 —00

We denote the set of all such signals by LQ(R2) or L2(R X R). If x(s, 1) € L2([R§2),
then

1

00 —oo 2
2
{ | ] xGs, 0l dsdt} = ||x||2, 2R (10.20)
is its LZ(IRZ) norm. If the context is clear, then we omit the subscripted LZ(RZ) in
(10.20). If x(s, ©) and y(s, 7) are in L*(R?), then we define their inner product by

= J 7‘[ x(s, 1)y(s, t) dsdt . (10.21)

—00 —c0

(x, y>L2(R2)

In a clear context, we drop the subscript and write (10.21) as (x, y). The exercises
further cover the ideas of two-dimensional signal spaces.

Theorem (Gabor Transform Plancherel’s). Suppose ¢ > 0; x(7) LZ(R); g =
gu’c(t) is the Gaussian with mean |1 and standard deviation G; and let X, (1L, )€ Ll([RQ)
be the Gabor transform of x(¢). Then

K ], e

lgll,

I, = «2m

(10.22)

Proof: Fubini’s theorem applies to the double integral that defines the LA(R?)
norm:

b ey = 1 0o do = | x| do

—00 —0c0 —oob—oo

(10.23)
Since the inner integral is a function of the time domain variable ., we can Fourier

transform its integrand with respect to L. An application of the Fourier transform
Plancherel formula is then feasible:

X, (1, w)||22,L2(R2) = Elfr[j | FIX (1, w)](6)|2d9} do. (10.24)
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Let H(0) = Flgo (H]1(0), so that by the Lemma we find

||Xg(u’°))||22,ﬁ(n:@) zn { ‘_X(w+e)H(e)‘ de} do

2 —{j X (o + 0)| IH(e)I d@} dw. (10.25)
T2

To evaluate the iterated integral (10.25), we swap the order of integration and use
Plancherel two more times. The last expression above becomes

H(6 X(w+06
0 e, = 2 [ ) O )'dw}de

oo

I3 < ey || ||
= 2 HO Lo 2y, (10.26)

—oo

10.1.4.3 For General Square-Integrable Signals. This section develops
the Plancherel and inverse results for square-integrable signals, dropping the
assumption of integrability on the Gabor transform. We begin with a form of the
Parseval theorem.

Theorem (Gabor Transform Parseval’s). Suppose ¢ > 0; x(¢), y(f) € Lz( R); g(r) =
gu’c(t) is the Gaussian window with mean [ and standard deviation G; and let XU,
) and Y, (1, o) be the Gabor transforms of x(¢) and y(¢), respectively. Then

oo oo

2
2mlgl3 (60 = [ [ X0 @7, (4 0) dodi = (X ), 0 (1027

—00 —co

Proof: For fixed W, we can apply the Parseval theorem to find

[ X, (1 )Y, (1 0) do = 21 [ F ' Xe(1, 0)F V(1L @) do,  (10.28)

—oo —oo

where F ~1 is the inverse radial Fourier transform. Since the inverse Fourier trans-
form of the Gabor transform X1, ) is the windowed signal x(t)g“g(t), we con-
tinue (10.28) as follows:

= oo

2 | x(0g, (YN8, (1) dt = 21 | x(t)y(_t)gzu,g(r) dr. (10.29)

—oco —oo
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Integrating (10.29) with respect to L produces

oo oo oo oo

[ [ X, (1 )Y, (1 0) dody = 21 | [ x(0)y(Dg’y, o(r) drdy

—00—00 —00 —00
oo

21 [ x(0Y(D) | 8w, o(t) dudr

—oo —oo

21| g, o3 (% 3)- (10.30)

Fubini’s theorem and the Schwarz inequality (applied to the inner integral on the top
right-hand side of (10.30), which is itself an inner product) allow us to interchange
the integration order. |

The next result shows how to retrieve the original signal x(f) € Lz(R) from its
Gabor transform Xg(u, ®). This is the Gabor transform inverse relation, but it has
other names, too. It is sometimes called the resolution of the identity or simply the
synthesis equation for the Gabor transform.

Theorem (Inverse Gabor Transform). Suppose 6 > 0; x(7) € LZ(R); g = gu,c(t)
is the Gaussian window with mean [ and standard deviation o; and let X (1L, ®) be
the Gabor transform of x(¢). Then for all s € R, if x(¢) is continuous at s, then

x(a) = —1—- [ X (1 0)g, g(a)e’dody . (10.31)

@nlgl?)
Proof: Consider a family of Gaussians h,, (¢), where s > 0. As s — 0, they approxi-
mate a delta function, and, informally, from the sifting property we expect that

lim (x(1), h, (1)) = x(a) (10.32)
s—0 ’

when x(7) is continuous at ¢ = a. If we set y(r) = h,, (1), then we can apply the prior
Plancherel theorem to obtain

(x, ha’s) = zj jX (U, ) jha S(t)gu G(t)e dt} dodu. (10.33)
27t/ gl15 —co oo

‘We calculate the limit

oo oo

Jim jha (g, S(De?dr = liinojha’s(t)gu,c(t)e]wtdt

- . jot
jslgoha,s(t)gu’c(t)e’ dr

J 3(t-a)g, o0 dr = g, J(@)d ™" (1034)

—oo
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Taking the same limit s — 0 on both sides of (10.33) and interchanging limit and
integration operations gives

lim (x,h, ) = — S [ ] X (1 0)g, g(a)e’dody = x(a).  (1035)

$=0 27lgll5 oo

10.1.5 Applications

Let us pause the theoretical development for a moment to explore two basic Gabor
transform applications: a linear chirp and a pulsed tone. These illustrate the use and
behavior of the transform on practical signals. Studying the transform coefficients
as dependent on the width of the transform window function will also lead us to
important ideas about the relation between the transform’s time and frequency
resolutions.

10.1.5.1 Linear Chirp. This section discusses the Gabor transform for a linear
chirp signal. A linear chirp is a sinusoidal function of a squared time variable AP,
where A is constant. Thus, as |f| increases, the signal oscillations bunch up. Signal
frequency varies with time in a linear fashion, and we anticipate that the Gabor
transform will expose this behavior.

Let us consider the analog signal

2
X(l(t) = COS(At )’ te [O’ L] (1036)
0 otherwise.

The Gabor transform of x,(¢) is

L .
Gl (DI, ©) = (X,), (1 ®) = [x,(Ng, o(Ne”dr. (10.37)
0

We need to decide upon an appropriate value for the spread of the Gaussian, which
is given by its standard deviation 6. Also, (X,), is a two-dimensional function, so we
seek an image representation of the Gabor transform for a range of values, 1 and ®.

We apply Section 7.1.2’s ideas for approximating an analog transform with dis-
crete samples. Recall that the discrete Fourier series (DFS) coefficients

o
c(k) = N Y, x(n)e , (10.38)
n=20

where 0 <k <N — 1, are a trapezoidal rule approximation to the Fourier series integral
using the intervals [0, T/N], [T/N, 2T/N], ..., [(N — 1)T/N, T]. Recall as well from
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Fig. 10.5. Gabor transform of linear chirp, windowing with a Gaussian of ¢ = 16. The
frequency of x () = cos(Atz) rises from 0 to 250 Hz over a 1-s time interval. Its magnitude
spectrum X(k) is shown in panel (a). Note the apparent presence of frequencies between 0
and 250 Hz, but that the time of a particular frequency is lost by the discrete Fourier trans-
form (DFT). The Gabor transform reveals the time evolution of frequencies in x(f), as shown
in panel (b). Time values are shown along the bottom over the interval [0, 1], which repre-
sents samples n from 0 to 255. Image intensities represent Gabor magnitude spectral values
| Glx4] (1, 0)|; darker values indicate larger magnitudes.

Chapter 7 that if x(2) has discrete Fourier transform (DFT) coefficients X(k) and DFS
coefficients c(k) on [0, N — 1], then X(k) = Nc(k). Since we have to perform a discrete
transform on N samples over an array of points, we choose that N = 2™, for some m,
so that the efficient fast Fourier transform (FFT) algorithm applies. We transform the
windowed signal xa(t)gu’c(t) sampled at t = 0, T/N, 2T/N, ..., (N — 1)T/N. Finally,
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Fig. 10.6. Window width effects in the Gabor transform of a linear chirp. Windowing with a
Gaussian of ¢ =4 is shown in panel (a). Panel (b) shows the case of ¢ = 64.

we select 6 = 16 as the standard deviation of the Gaussian window function for the
transform (Figure 10.5).

What effect does the decision 6 = 16 play for the transform? If ¢ increases, then
the band of large transform coefficients shrinks. And decreasing the width of the
transform’s window function causes the sloping region of large magnitude coeffi-
cients to expand.

Carefully note in Figure 10.6 that broadening the time-domain window functions
narrows the region of large magnitude values in the transformed signal. Indeed a
reciprocal relation is manifest. This is an important characteristic. The next section
further explores the link between time- and frequency-domain resolution under
Gabor signal transformation.
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10.1.5.2 Pulsed Tone. Now suppose that we begin with a time-domain pulse:
x, (1) = exp(—Btz)cos(At). (10.39)

We shall suppose that the pulse frequency is 50 Hz and consider different time-
domain durations of x,(¢), which are governed by stretching the Gaussian envelope,
exp(—B). (Figures 10.7 and 10.8).

1 T T T : :
0.8

0.6
0.4

—W\M f—

-0.2

x(t)

-0.4

-0.6

-0.8

1 L L L L L
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Time t (ms)
(a)
Magnitude of DFT of x(t)
140 T T T T T T T T T

120 1
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80

x(k)

60 1

40 -

20 1 1

0 100 200 300 400 500 600 700 800 900 1000

k

(b)
Fig. 10.7. Time-frequency localization tradeoff for a pulse tone. (a) The 50-Hz tone pulse
rising and decaying in a 600-ms interval about # = 0.5 s. (b) Its Fourier spectrum shows the
frequencies present but provides no time information. (c) The Gabor transform.
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Fig. 10.7 (Continued)

This elementary experiment reveals that as the time-domain locality of the pulse
increases, the frequency-domain locality decreases. In other words, it seems that as we
gain a better knowledge of the time span a signal’s frequencies occupy, then we lose
knowledge of the specific frequencies it contains. This points to a fundamental tradeoff

0.8 r J

0.6 | 1

04 1

02r 4

L
|

_1 1 1 1 1 1
0 200 400 600 800 1000 1200

Time t (ms)
(a)
Fig. 10.8. Time-frequency localization tradeoff for a pulse tone. Panel (a) shows the 50-Hz

tone pulse rising and decaying in a 300-ms interval about ¢ = 0.5 s; (b) the more tightly
localized pulse has a Gabor transform that is correspondingly dispersed.
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Fig. 10.8 (Continued)

in time-frequency analysis. It is also closely related to the Heisenberg Uncertaintly
Principle, which we touched upon in our treatment of frequency-domain analysis.

10.1.6 Properties

Table 10.1 summarizes properties of the Gabor transformation, some of which are
left as exercises.

TABLE 10.1. Gabor Transform Properties?

Signal Expression Gabor Transform or Property
x(1) X, @)
ax(t) + by(r) aX (|, ©) + bY (W, ®)
x(t —a) e T (1 —a, ©)
x(D)exp(jor) X1, @—9)
[Xgwo] 5
Ixll,= N 2,L"(R") Plancherel’s theorem
gl
1
(o) = > <Xg’ Y g> Parseval’s theorem
2ngll5
x(1) = 1 J- X, (1, 0)g, (1) 7% do du Inverse, re.solutior.l of the identity, or
| g||§) 8 Lo synthesis equation

“In the table, x(¢) is square-integrable, and g(?) is a Gaussian of mean [ and standard deviation G.
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10.2 SHORT-TIME FOURIER TRANSFORMS

A short-time Fourier transform (STFT) generalizes the Gabor transform by allow-
ing a general window function. For the supporting mathematics to work, the theory
requires constraints on the window functions. These we will elaborate in a moment.
Once these theoretical details are taken care of, though, the general transform
enjoys many of the same properties as the Gabor transform.

One might well ask whether a window shape other than the Gaussian can provide
a better time-frequency transform. The answer is affirmative, but qualified. If the
window shape matches the shape of signal regions to be analyzed, then an alterna-
tive window function offers somewhat better numerical results in signal detection
applications. Thus, choosing the window to have roughly the same shape as the sig-
nals to be analyzed improves detection performance. These benefits are usually
slight, however.

We know from the experiments with pulses and chirps at the end of the previous
section that there is a tradeoff between time and frequency localization when using
the Gabor transform. How does the selection of a transform window affect this
behavior? It turns out that there is a hard lower limit on the joint time-frequency
resolution of windowed Fourier transforms. Constricting the time-domain window
so as to sharpen the time domain resolution results in a proportionately broader,
more imprecise frequency-domain localization. This is a fundamental limitation on
windowed Fourier methods. Its practical import is that signals with both low and
high frequencies or with abrupt transients are difficult to analyze with this trans-
form family. In fact, this limitation—which is a manifestation of the famous
Heisenberg Uncertainty Principle—stimulated the search for alternative mixed
domain transforms and was an impetus behind the discovery of the wavelet
transform (Chapter 11).

Among all possible window functions, there is one signal in particular that shows
the best performance in this regard: the Gaussian. Thus, the Gabor transform is the
short-time Fourier transform with the best joint time-frequency resolution. So
despite the benefits a special window may have, the Gabor transform prevails in all
but certain specialized STFT-based signal analysis applications.

10.2.1 Window Functions

This section specifies those functions that may serve as the basis for a windowed
transform. We formally define window functions and the resulting general window
transform. We also develop some window function properties. This leads to a crite-
rion for measuring joint time-frequency resolution. We prove the uncertainty princi-
ple, and the optimality of the Gabor transform follows as a corollary.

We should note right away that exponential signals modulated by window func-
tions will play the role of structuring elements for signal analysis purposes. The
short-time Fourier transform applies this structuring element at different time loca-
tions to obtain a set of time-ordered snapshots of the signal at a given frequency.
When we later discretize the STFT, this idea will become clearer.
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Definition (Window Function). If x(1) € LX(R), ||x(1)||, # 0, and rx(r) € L*(R), then
x(t) is called a window function.

So, x(f) is a window function when its squared magnitude, |x(t)|2, has a second
order moment. This technical condition is necessary for many of the properties of
the windowed transform. Of course, the familiar functions we have used to improve
signal spectra in Chapter 9 satisfy this definition.

Example (Gaussian). The Gaussian g(¢) = Aexp(—Btz), where Az0and B> 0, is a
window function. The Gaussian has moments of all orders, as we can check by
integrating by parts:

oo

2

o S -2Bt e 2
2 2 2B Ate (A ) 2Bt
tg(D)|°dt=A [t dr = | At dt
[ leg@)l [ e 1B _+4Bje
_ (i)m 2y (10.40)
~ 4B ] ’ :

—oo

The Fourier transform of a Gaussian is still a Gaussian, and therefore G(®) is a
window function in the frequency domain too. But many window functions have
Fourier transforms that are not window functions by our definition.

Example (Square Pulse). The square pulse of width 27> 0, w(f) = u(t+ T) — u(t —
T), is a window function. Indeed any non-trivial compactly supported LA(R) signal
is a window function. The Fourier transform of w(f), W(w) = 2Tsinc(Tw), decays
like ® ! in the frequency domain. Thus, @W(®) = 2sin(Tw) ¢ Lz(R). So a window
function does not necessarily have a Fourier transform that is a window function as
well. Indeed, this occurs rarely, as the next result shows.

Lemma (Integrability). If x() is a windowing function, then x(¢) € Ll([RE).
Proof: (A Schwarz Inequality exercise). |

Proposition. If x(7) is a discontinuous window function, then X(®) cannot also be a
window function.

Proof: If X(w) is a window function, then it is absolutely integrable by the lemma,
and its inverse Fourier transform F 1[X(oo)] = x(¢) is continuous. But this is a
contradiciton. |

So constructing double pane windows requires some care. To do so we must find win-
dow functions that are continuous, decay quickly, and have Fourier transforms which
are continuous with fast decay. Later, we will define the concept of the center and size
of a window function. These definitions will lead to the uncertainty principle and the
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result that, among the short-time Fourier transforms, the Gabor transform alone
possesses a window function with optimal time- and frequency-domain resolution.

10.2.2 Transforming with a General Window

It is not hard to generalize the Gabor transform to work with a general window, now
that we have introduced the moment condition that a window function must satisfy.
We will define the windowed transform for window functions and make the addi-
tional assuption that the Fourier transform of the window is also a window function
for some of the properties. Drawing inspiration from the Gabor transform formal-
izations, we can easily draft a definition for a general windowed transform.

Definition (Short-Time Fourier Transform). Let w(f) be a window function and
x(t) Lz(R). The short-time Fourier transform (STFT) with respect to w(t), written
X, (1L, ), is the radial Fourier transform of the product x(f)w(t — ):

X, (L) = [x(Ow(t-pe’dr. (10.41)

—oo

The STFT is also known as the windowed Fourier transform. There is a “fancy W”
notation for the short-time Fourier transform: X, (1, ®) = (W) [x(*)]1(L, ®).

Remarks. The windowing function w(#) in (10.41) remains fixed for the transform,
as does the Gaussian in a Gabor transform. Indeed, our definition generalizes the
Gabor transform: If w(r) is a Gaussian, then the short-time Fourier transform with
respect to w(f) of x(¢) is precisely the Gabor transform of x(¢) using the Gaussian
w(t). We do not demand that the Fourier transform ( #w)(®) = W(®) must also be a
window function; when we turn to study time-frequency localization using the
transform, however, we make this qualification.

10.2.2.1 Standard Windows. We can define an STFT for any of the
windowing functions used to improve local spectra estimates in Chapter 9.
We recall that windowing a signal x(#) with a tapered window function reduces the
size of Gibbs phenomenon sidelobes. Table 10.2 summarizes possible standard
analog windows: rectangle, Bartlett (triangle), Hamming, Hanning, and Blackman
functions.

Each of the standard window functions above has a discontinuity in a time-
domain derivative of some order. We can develop the STFT using B-splines, how-
ever, and achieve smooth time-domain derivatives of arbitrarily high orders.

10.2.2.2 B-spline Windows. Another window function appropriate for the
STFT involves B-splines, which we introduced in Section 3.2.5. Splines are popular
in applied mathematics [14], computer graphics [15], and signal processing and
analysis [16—18]. We recall the definition.
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TABLE 10.2. Short-Time Fourier Transform Window Functions?

739

Name Definition
Rectangle w(t) = { b if (I < )
0 otherwise.
bivb it —asi<o,
a
Bartlett (triangle w(t) =
(triangle) by it osgi<a,
a
0 otherwise.
2( it .
=2 <
Hanning (von Hann) w() = beos (Za) ifld< a
1 O otherwise.
0.54b + 0.46b (TL’) if |4 <
Hamming w(t) = " o8 a i< a
1 0 otherwise.
B 04uﬂ4wbm{?Q+o%bm{ZE) if 1]<a
Blackman w(t) = a a

0

otherwise.

“Adjust parameter a > 0 for a window width appropirate to the signal features of interest. Adjust para-
meter b > 0 in order to normalize the window function.

Definition (B-spline). The B-

Bo(1) =

spline of order zero is

1 if-lered
213

if 4 = L
p

if otherwise.

S NI

and higher-order B-splines are found by successive convolution:

B,(1) =

Bo(1)*By(1)* -.-Bo(t)“

n + 1 times

.

(10.42)

(10.43)
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The B-splines are clearly window functions; 3,,(f) has compact support. Now let us

examine the Fourier transform of f,,(7). Let B,(®) = F(B,)(®). The Fourier trans-
form convolution theorem implies
o\ 1
sin(—)
2
> .

2

B,(®) = (10.44)

So the denominator of (10.44) is 0)””; in case n = 1, we see 0B, (®) € LZ(IR), SO
that B, (o) is indeed a window function.

In Section 10.2.4 we formulate, refine, and quantify the concept of the a win-
dowed Fourier transform’s time-frequency localization. A crucial precondition for
frequency-domain locality is that the window function’s Fourier transform must
also be a window function. Note that both the Gabor transform and the B-spline
windowed STFT enjoy this condition. Before addressing the idea of joint localiza-
tion, however, let us cover some STFT properties.

10.2.3 Properties

Many of the properties of the Gabor transform carry over directly to the short-time
Fourier transform. Like the specialized Gabor transform, the STFT obeys basic
properties of linearity, time shift, and frequency shift. We state and leave as
exercises the STFT Plancherel, Parseval, and inverse results.

Theorem (Short-Time Fourier Transform Parseval’s). Suppose x(¢), y(f) € LZ( R);
w(t) is a window function; and let X (1, ®) and Y,,(L, ) be the STFTSs of x(¢) and y (),
respectively, based on windowing with w(¢). Then

oo oo

2 —_—
2n|wl5(x, y) = J J'Xw(u, )Y, (1, ®) dodp = (X, YW)LZ(RZ). (10.45)

—00 —0c0

Proof: Similar to Gabor transform (exercise). |

Theorem (Short-Time Fourier Transform Plancherel’s). Suppose ¢ > 0; x(¢) €
LZ(R); w(t) is a window function; and let X, (1, ®) be the STFT of x(#). Then

lgll,

I, = 27

(10.46)

Proof: Exercise. u
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Theorem (Inverse Short-Time Fourier Transform). Suppose x(¢) € LZ(R), w(t)
is a window function, and let X, (1, ®) be the STFT of x(¢). Then for all a € R, if
x(1) is continuous at a, then

oo

x(a) = _.1_5 [ X, o)w(a)e’dody. (10.47)

2nfw]?) -

Proof: Apply a limit argument to the Parseval formula, as with the Gabor transform
(exercise). |

10.2.4 Time-Frequency Localization

How precisely we can locate the frequency values within a signal using the short-
time Fourier transform? Section 10.1.5 showed how the Gaussian window width
dramatically affects the transform coefficients. Indeed, an improperly chosen win-
dow width—determined by the standard deviation 6—can render the transform
information useless for intepreting signal evolution through time. The reason is not
too hard to grasp. By narrowing the window, we obtain a more precise time frame in
which frequencies of interest occur. But if we calculate the transform from discrete
samples, then we cannot shrink ¢ too far; eventually the number of samples within
the window are too few to compute the discrete signal frequencies. This is, of
course, the threshold governed by the Nyquist rate. As ¢ decreases, then, the Gabor
transform gains time-domain resolution, but it loses frequency-domain resolution at
the same time.

10.2.4.1 Window Location and Size. To study the tradeoffs between time
and frequency-domain resolution requires first of all a standard for measuring a sig-
nal’s width or extent. The standard deviation of the enclosing Gaussian is a natural
choice for the Gabor elementary function, y(f) = gM’G(t)exp( jor). Recalling the
Gaussian or normal distribution from the probability theory tutorial in Section 1.8,
the probability that a normally distributed random variable has a value within one
standard deviation of the mean W is approximately 68%. That is, the area under the
bell curve from L — ¢ to WL + G is about 0.68, whereas the total underlying area is
unity. Thus, we propose 26 for the “width” of y(¢), rather than a single standard
deviation. Now, the standard deviation for a normally distributed random variable
with density function g, () is

1

= 2
G = {j (t—u)zgu,g(t)dt} . (10.48)

oo

Can we extend this scheme to a general x(f) € LZ(R) which we propose to Gabor
transform? The answer is, unfortunately, no; we do know that there are signals that
have finite energy without being integrable. The canonical example in signal pro-
cessing is sinc(?) = sin(?)/t. It is square-integrable, because sincz(t) decays like ¢ 2at
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infinity. However, sinc(?) ¢ L](R), because, for instance, its Fourier transform is a
square pulse, which is not continuous. Another problem is that the second moment
integral (10.48) must also be valid. The following definition accounts for both diffi-
culties, but we need a preliminary lemma.

Lemma. If x(7) is a window function, then #'/%x(r) e LX(R).

Proof: This turns out to be a consequence—through the Schwarz inequality—of
the square integrability of x(f) and tx(¢). We leave this as an exercise. |

Definition (Center and Radius). If x(¢) is a window function, then the center C,
and the radius p, for x(f) are given by

1 2
C, = — [k i (10.49a)
15w
and
1
1 2 2 ]2
b, = ”—ZJ'(I—CX) () dr| (10.49b)
15w

respectively. The diameter or width of a windowing function x(¢) is A, = 2p,.

Remark. The lemma assures us that the integral (10.49a) exists.

The more highly concentrated a signal x(¢) is about its center C,, the smaller is its
radius p,. Let us consider a few examples of window functions before stating some
of their basic properties.

Examples (Window Functions). Any Gaussian, g(f) = Aexp(—Btz) is a window
function as we already showed. All of the standard window functions of Table 10.2
are also window functions. The B-spline functions [,,(f) are also window functions,
and, for n > 1, B,(®) is a window function.

Now let us work out a few basic properties of window center and radius.

Lemma (Window Translation and Modulation). Suppose x(f) is a window func-
tion and y() = x(t + ). Then:

(@ C,=Cy—1y

(b) If X = Fx and Y = 7y are the Fourier transforms of x and y, respectively, and
X and Y are window functions, then Cy = Cy.

(d) If y() = exp(—jCxt)x(t + C,) and X = % and Y = Fy are window functions,
then C;, = Cy=0and p, =p,.
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Proof: By the Shifting and Modulation Properties of the Fourier transform
(exercises). |

Lemma (Radius of Derivative). Suppose x(f) € LZ(R) and is differentiable. If
X' (1) ¢ LX(R), then Px = co.

Proof: Use Parseval’s theorem for the radial Fourier transform and the formula for
FIx'(H](w). (exercise). [ |

10.2.4.2 Uncertainty Principle. The next theorem is the classic Heisenberg
Uncertainty Principle4 for the Fourier transform [20, 21]. The theorem says as a sig-
nal becomes more concentrated about its time-domain center, it becomes more dis-
persed about its frequency domain center. Recent tutorials on the Uncertainty
Principle include [22, 23].

Theorem (Heisenberg Uncertainty). Suppose x(f) € LZ(R), X(w) = Flx](w) is the
radial Fourier transform of x(7). Then p,py > % .

Proof: We prove the Uncertainty Principle in two steps:

® First, for the happy circumstance that x(#) obeys a special limit condition at
infinity:

lim J]d|x(1)] = 0; (10.50)
— oo

this condition does not necessarily hold for a square-integrable signal, of
course; we could have x(f) > € > 0 on some set S of measure zero, for example.

® Then, for the general case by writing x(¢) as a limit of such continuous, piece-
wise smooth signals.

Note that we may assume that x(¢) is a window function; otherwise, p, = oo, so that
p,Px = 1/2. We assume X(m) is a window function as well, since otherwise py = oo
with the same consequence. In either exceptional case, we are done. The Window
Translation and Modulation Lemma allows the further simplifying assumption that
C, = Cx =0. Therefore,

pipéx = |:L2 J t2|x(f)|2dt:||:% J' Q)2|X(0))|2d0):|

s X122

1 r () " 2

=— j x(1)| dt}{j |oX(w)| dm}. 10,51
X121 L - (10.51)

4Werner Heisenberg (1901—1976) discovered that the probable location of a particle trades off against its
probable momentum. In 1927, Heisenberg showed that ApAx > 2h, where Ap represents the width of a
particle’s momentum distribution, Ax is the width of its position distribution, and /4 is Planck’s constant
[W. Heisenberg, Physical Properties of the Quantum Theory, New York: Dover, 1949].
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Using Plancherel’s theorem and the radial Fourier transform derivative formula
gives

2 2

Ixl; -
PPy = 5o {J jex (1) dr}{ | I?’[x’(t)](w)lzdw}

- %Ilm(r)llillT[x’(t)](w)lli. (10.52)

That is,
422 1 20 2 20,2
Ixdl>pip = nlltx(t)llzllx Ml32r = x5 1x" (5 - (10.53)

Invoking the Schwarz inequality, x|, [yl, = [xyll, , on (10.53) gives

oo 2 oo 2
I¥l3p20%, 2 lx(x 0l = [ [ lex(llx’ (o) dt} = { [ lex(l1x (o) dr}

(10.54)

and, continuing our algebraic duties, we find that

o 2
[ 2x(Dx (Ddi] = (12 (1), tx(D)]> 2 (Re (' (1), tx()))?). (10.55)

—oo

4 2 2
Inl3p2p7s 2

Now, we claim the following:
, 17 2 1 P
(Re{x'(1), tx(2))) = -3 [ (0l dr = —Ellx(t)ll : (10.56)

The trick behind the strange looking (10.56) is integration by parts on the inner
product integral:

[ (0 (1) di = x(Dx(n)|_~ [ ([ (@) +x(D)] dr

—oo —oo
oo

=0- jx(t)[tmﬂﬁ)] dr. (10.57)

—oo

Note that we have invoked (10.50) to conclude that t|)c(t)|2 — 0 as || = oo. Separat-
ing the bottom of (10.57) into two integrals gives

[ (O’ () di = - [ () di— [ tx(0)x' (1) di. (10.58)

—oo —oo —oo
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After rearrangment, the claim (10.56) easily follows. We insert the result into the
inequality (10.55), thereby finding

4
422 _ A
3PP 2 Tz (10.59)

1
and hence p py 2 5

Let us proceed to the second step in the proof: removing the limit assumption
(10.50) on the finite energy signal x(f). We write x(¢) as the limit of a sequence of
signals in the Schwarz space S of infinitely continuously differentiable, rapidly
decreasing signals [21]:

x(1) = lim x,(1). (10.60)
n— oo

We introduced the Schwarz space in Chapter 3 and know it to be dense in both
LZ(R) and LI(R). Since for all x € S, we have t|x(t)|2 — 0 as |f| — o, we have

oo oo

lim [ rx,(Nx,/(ndi = lim txn—(t)xn(t)r ~ lim [ x,(0)lrx, (1) + X, (D] d.
n—>eo n— oo e M

(10.61)

Because x,, € S, which decreases faster than any polynomial, the integrands in
(10.61) are absolutely integrable and we may interchange the integration and limit
operations. Schwarz space elements are also continuous, so the first limit on the
right-hand side of (10.61) is still zero. Thus,

j lim rx,(1)x,’(t) dt = —j lim x(¢)[zx,”(¢) +x,(1)] dt . (10.62)
7°°n —> o0 7oon — oo
But these limits are precisely (10.57). |

The above proof follows Weyl’s derivation [24], which he published in 1931 3

Thus, every windowed Fourier transform has a lower limit on its joint time-
frequency resolution. If we work with a transform based on a window function w(f)
whose Fourier transform W(w) is also a window function, then it makes sense to
define the time-frequency resolution as the product p,,py: If we use a standard win-
dow function—a Hamming window, for example—whose Fourier transform is not
itself a window function, then py, is infinite. The Uncertainty Principle tells us that
this is a hard lower bound: p,,py = 1/2. As a practical consequence, smaller time-
domain window sizes result in proportionally large frequency- domain window

SThe interests of Hilbert’s student, Hermann Weyl (1885—1955), ranged from quantum mechanics to
number theory. He showed, for instance, that given an irrational number r, the fractional parts of r, 2r, 3, ...,
etc., lie uniformly distributed on the interval (0, 1).
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sizes. As we attempt to better locate a signal oscillation, we suffer a corresponding
loss of accuracy in estimating the precise frequency of the oscillation.

There are window functions that achieve the lower bound on time-frequency
localization given by the Heisenberg Uncertainty Principle. The next section shows
that the optimally localizing window is none other than the Gaussian.

10.2.4.3 Optimally Localized Signals. The Gabor transform is the short-
time Fourier transform with the smallest time-frequency resolution. We identify
time-frequency resolution with the joint product of the time-domain and frequency-
domain radius: p py . To derive this optimality claim, we review the Uncertainty
Principle’s proof. Our scrutiny shows that inequality arises with its use of the
Schwarz inequality [21].

Corollary (Optlmal Time-Frequency Locality). We have p,py = 3 1f and only
if x(¢) = ae‘b’ for some a € C and b > 0.

Proof: We recall that |x||,[lyll, > [xy|, always, and equality occurs if and only if
x = cy for some constant ¢ € C. In the context of the proof, then, optimally small
time-frequency locality coincides with the condition x’(#) = ctx(t) . Are there any
LA(R) signals satisfying the above differential equation? It is a basic first-order dif-
ferential equation, but before we note the solution, let us address two problems:

® Since the Uncertainty Principle deals with square-integrable signals x(z), we
understand this equality as occurring almost everywhere; that is, we require
x'(t) = ctx(t) except on some set of measure zero.

® Furthermore, the proof depends on the fact that we can represent a general
x(1) e LZ(R) as the limit of a sequence x(f) = lgnooxn(t), where x,,(f) € S, the
Schwarz space of infinitely continuously differ’éntiable, rapidly decreasing sig-
nals. We must therefore show that for any x(#) satisfying the differential equation,
which is an LZ([RE) limit of x,,(¢) € S, that

X() = lim x,’(1). (10.63)
n— oo

In the convenient Schwarz space, the second point is straightforward. Indeed, we
recall that x(¢) = y’(¢) in Lebesgue integration theory means

t
y(t) = jx(s)ds +y(0) (10.64)
0
almost everywhere. We have x(#) —x(0) = nli_r)n [x,(t) —x,(0)], and the x,(1) € §
are infinitely continuously differentiable; thus,
t t
x()—=x(0) = lim _[xn'(s) ds = _[x’(s) ds . (10.65)
n— oo 0



DISCRETIZATION 747

To solve the differential equation, note that t_lx’(t) = C)Tt) , whereby
(WD) = {ex(DY = ex' (1) = cetx(r) = || tx(r). (10.66)

If we let b = |c|%, then the solutions to this second-order differential equation are

—bt

of the form x(t) = ae , where a € C is a constant. |

Example (STFT based on a B-Spline Window). Suppose we use a B-spline func-
tion B(¢) = B,,(t), where n > 1, to define a short-time Fourier transform. We know
that wB,(®) € LZ(R), so that B, () is indeed a window function. The Uncertainty
Principle applies. The Gaussian is not a B-spline, however, and we know therefore
that pgpp > 1/2.

10.3 DISCRETIZATION

The short-time Fourier transform can also be discretized. There are two possible
approaches:

® To compose discrete sums from values of a discrete signal x(n), which is cov-
ered in Section 10.3.1.

® To sample the ordinary analog STFT analysis equation of an analog signal
x,(t)—the far more interesting and challenging problem—introduced in
Section 10.3.2 and further explored in the sequel.

The second approach is our main emphasis. Its successful development leads to a
new structural decomposition of finite- energy analog signals. It was also a focus of
Gabor’s original paper 1, a preoccupation of a number of later signal analysts, and
the wellspring of much of our later insight into the nature of mixed-domain signal
interpretation. We shall in fact pursue this idea for the remainder of this chapter.

10.3.1 Transforming Discrete Signals

Working with discrete signals, we can forumulate a purely discrete theory of win-
dowed Fourier transforms. The results are not difficult to develop, and it turns out
that they follow directly from discrete Fourier theorems. We are thus content to
explicate only the discrete STFT synthesis and energy conservation equations.

We begin with a discrete signal x(n) having period N > 0, x(n) = x(n + N). Alter-
natively, we may select N samples {s(n): 0 <n < N} from an arbitrary discrete signal
s(n) and consider the periodic extension x(n) = s(n mod N). We require the discrete win-
dow function to be nonzero and have the same period as the signal to be transformed.

Definition (Discrete Short-Time Fourier Transform). Let x(n) and w(n) be dis-
crete signals of period N > 0. Further suppose w(n) is real and not identically zero



748 TIME-FREQUENCY SIGNAL TRANSFORMS

on [0, N — 1]. Then the discrete short-time Fourier transform (or discrete windowed
fourier transform) of x(n) with respect to w(n) is

N-1 AQnM%
X, (m k) = ¥ x(n)w(n-m)e . (10.67)
n=20

The signal w(n) is called the windowing function for the transform.

Definition (Discrete Gabor Elementary Function). Let w(n) be a discrete signal
of period N > 0, with w(n) is not identically zero on [0, N —1]. Then the discrete Gabor
elementary function or discrete Gabor atom of discrete frequency k € [0, N— 1]
and location m € [0, N — 1] is wy, 1(n) = w(n — m)exp(2njkn/N).

As with its analog world counterpart, the discrete STFT can be viewed in several
ways. In particular, we may think of (10.67) as giving

® Foreachm e [0, N — 1], the discrete Fourier transform (DFT) of x(n)w(n —m);

® For each k € [0, N — 1], the inner product on [0, N — 1] of x(n) with the discrete
GEF Wi, (n).

The following theorem gives the synthesis equation for the discrete STFT.

Theorem (Inverse Discrete STFT). Letx(n)and be adiscrete signal with period N >
0; let X, (m, k) be its discrete STFT with respect to the windowing function w(n); and,
finally, let i|w||2 be the 2-norm of w(n) restricted to the interval [0, N — 11: ||w||, =
[W2(0) + w2(1) + - - - + w3(N — 1)]"2. Then,

| N-oTN-d 2mm%
5 Sy X, (m kyw(n—-m)e . (10.68)

NIwlsm=0 k=0

x(n) =

Proof: Substituting the definition of X, (m, k) into the double summation on the
right-hand side of (10.68) gives

N-1 N-1N-1 —ka% 2mk%
>y Y x(p)wp-m)e w(n—m)e . (10.69)

m=0k=0p=0

Rearrangment of the sums produces

N1 N-1 N_12nMQ%fQ
Y ox(p) X wp-m)wn-m) Y . (10.70)

p=0 m=0 k=0
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Reciting what has become a familiar and fun argument, we note that the final sum in
is zero unless n = p, in which case it is N. Therefore the entire triple summation is
simply

N-1
Nx(n) Y w(n-m)w(n-—m) = Nx(n)||w||§ , (10.71)
m=0
and the theorem follows. |

Theorem (Discrete STFT Parseval’s). Let x(n) and be a discrete signal with
period N > 0; let X, (m, k) be its discrete STFT with respect to the windowing
function w(n); and, finally, let ||w]|, be as in the previous theorem. Then,

N-1 2 N-1N-1 )
S |x(n)|” = S Y3 X, m k)| 10.72)

n=0 Nlwl3m =0k =0

1

Proof: Let us expand the double summation on the right-hand side of (10.72):

N-1 N-1[N-1 2wk N -1 amjkd
Z Z { 2 x(p)w(p—m)e H Z x(q)w(g—m)e } (10.73)

m=0k=0Lp=0 qg=0

Interchanging the sums we find that (10.73) becomes

N-1N-1 _ [N-1 N1 2thk(q1:/p)
> > X(p)x(q)[ S W(p—m)W(q—m)}{ 3 e } (10.74)
k=0

p=0q=0 m=0

The final bracketed sum is either N or 0, depending on whether p = g or not, respec-
tively. Since only the case p = g contributes to the sum, we let n = p = ¢ and reduce
the double summation on the left-hand side of (10.74) to a single sum over n:

N-1 _ N-1
N Y x(n)x(n){ Yy wn-m)w(n-— m)} . (10.75)

n=0 m=0

Finally we see
LN-1 _ N-1N-1 )
N||w||2 Y x(m)x(n) = Y Y |Xw(m, 9] (10.76)
n=0 m=0k=0

using the periodicity of w(n). |

10.3.2 Sampling the Short-Time Fourier Transform

Now let us turn to the deeper question of what happens we attempt to sample the
STFT. We select a time-domain sampling interval 7 > 0 and a frequency-domain
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sampling interval ©Q > 0. These remain fixed for the discrete transform, and a
complex-valued function on pairs of integers results. It might appear that our
endeavors here will not differ radically in method and results from the work we did
earlier in discretizing the Fourier transform. Quite the opposite turns out to be the
case: Discretization of the windowed Fourier transform opens the door to a wealth
of intriguing problems in signal analysis.

For one thing, discretizing the transform provides us with aready breakdown of the
signal into time localized frequency components, or time-frequency atoms. Each
atom represents a spot in time. Each atom represents a possible frequency component.
And—depending on the nature of our atomic signal building blocks—there is a way
to measure the quantity of that frequency resident in the signal in the vicinity a discrete
time instant. This is a structural decomposition of the signal. Chapters 4 and 9
explored time- and frequency- domain signal analysis, respectively. Among their les-
sons is the usefulness of a structural decomposition of the signal for purposes of clas-
sification, recognition, and interpretation. Time-frequency transforms benefit signal
analysis by providing an elegant, formal mathematical theory as well as a relational
description of the signal.

Discretization places Gabor’s original problem on the agenda [1]. He proposed
to model communication signals using families of discretely indexed signal ele-
ments, which he called logons, but which nowadays are known by various other
monikers—Gabor elementary functions, Gabor atoms, windowed Fourier atoms,
and so on. Can families of the form {exp(2mjnt)g(t — m): m, n € Z} provide an
orthonormal basis for Lz([R{) signals? Their optimal joint time-frequency localiza-
tion does recommend them, but neither Gabor nor any other signal analyst for
decades after his suggestive 1946 paper could substantiate in theory what seemed so
tantalizing for practice.

It was a negative answer to Gabor’s insightful proposal that began to emerge in
the 1980s, a decade marking a watershed of results in time-frequency and time-
scale signal analysis. The rest of the chapter elaborates some of these apparently
discouraging results for short-time Fourier methods. The next chapter suggests an
alternative approach, motivated in part our understanding of the limitations inherent
in atomic time-frequency signal decompositions. Chapter 11 does show that trans-
formations that rely on signal scale instead—the wavelet transform in particular—
may avoid the weaknesses of short-time Fourier techniques.

Definition (Discretized Short-Time Fourier Transform). Suppose that X, (1, ®)
is the STFT of x(¢) € L2( R) with respect to the window function w(z). Given T >0
and Q > 0, the discretized short-time Fourier transform is

X, (m,n)= (X,) (m&,nT) = jx(t)w(t—mT)e

—oo

Iy (10.77)

If distinguishing between the discrete and analog transform signals becomes a prob-
lem, then we can append a subscript a to the analog form, as in (10.77). Note that
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we are using the first discrete independent variable of X, (m, n) as the time index
and are using the second variable as the frequency index.

10.3.3 Extracting Signal Structure

If we can find a sufficiently strong mathematical representation, then discretized

short-time Fourier transforms provide an attractive means of describing signal struc-

ture. We have already covered the broad qualifications for such a represenation. It

must be able to represent any candidate signal, for otherwise some inputs will avoid

our decomposition method. The representation must also be stable, which, informally,

means that changing the signal a little bit only perturbs the representation a little bit.
So, the question is, Can windowed Fourier atoms of the form

W (1) = "t —mT), (10.78)

where 7> 0 and TQ = 2m, serve as a complete signal representation? The two prac-
tical alternatives are that the family {w,, ,(f): m, n € Z} constitutes either

® An orthonormal basis or
® A frame.

It is hoped that we can discover {w,, ,(1): m, n € Z} that make up an orthonormal
basis. Then every square-integrable signal x(f) has a expansion in terms of Fourier
coefficients, easily calcuated as the inner products of x(#) with the w,, ,(9):

A1) = Y (), Wy (VW (1) (10.79)

m,ne 7z

If we fail to find such a basis, then computing the expansion coefficients (10.79)
becomes problematic. Lack of a basis encumbers our signal analysis too. While we
might be able to decompose a candidate signal x(f) into a linear combination of
atoms, x(7) = Zc,, ,Wy, ,(1), we do not necessarily know the uniqueness of the expan-
sion coefficients c,, , for representing x(¢). So the utility of the expansion coeffi-
cients as indicators of some signal component’s presence or the lack thereof is very
much compromised.

Should a basis not be available, we could search for a frame representation of
LZ(R) signals using the Gabor atoms (10.118). After all, we know from Chapter 3
that frame coefficients can characterize the source signal x(f), and they support
numerically stable reconstructions. This may be a good redoubt.

10.3.3.1 Discrete Time-Frequency Plane. Towardbuildingastructural inter-
pretation of a signal, we can place the expansion coefficients ¢, , into an array. Thus,
for a fixed frequency n€, the rows of the array, {c,, ,: m € Z}, indicate the relative
weight of frequency nQ inside signal x(¢) at all time instants m7. Similarly, the columns
record the frequencies at a given time instant. Refer to Figure 10.9.
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Fig. 10.9. Discretized STFT coefficients arranged in a rectangular grid.

Notice thatupon discretizing the STFT we have a mathmatical signal transform that
resolves a signal into finite regions of the time-frequency plane. The Fourier series of
Chapter 5, in contrast, can only furnish time-frequency regions of infinite time- domain
extent. When we covered discrete Fourier theory in Chapter 7, we studied the sampling
theorem by which a band-limited analog signal can be reconstructed from sufficiently
dense discrete samples. The sampling theorem too implies a partition of the time-
frequency plane, except that its regions have an infinite frequency-domain extent. The
STFT therefore marks a theoretical advance within our signal analytic understanding.

As a relational structure, this partition of the time-frequency plane is quite sim-
ple. Each region has the same size as its neighbors. We can, however, adjust the size
of the regions to be smaller or larger in time or frequency by dilating our windowing
function. The Uncertainty Principle imposes the constraint that the area of the STFT
regions be no smaller than that given by the Gabor transform. Signal analysis appli-
cations based on STFT methods generally search the corresponding time-frequency
mesh in order to understand signal content.

Let us consider some examples of how the time-frequency decomposition struc-
ture presents itself in applications.

Figure 10.10 illustrates a time-frequency mesh that contains a linear chirp and
what is apparently a tone. Chirp signal energy concentration is fairly constant and can
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n

Fig. 10.10. Schematic representation of a signal with two components: a linear chirp and an
isolated tone.

be tracked as a rising line over time. Tone signal energy concentration remains at a
fixed frequency. Clicks or pops are characterized by a narrow time-domain extent and
an extended, more or less uniform distribution of signal energy over a wide range of
frequencies—a vertical linear structure. A sinusoidal tone is a horizontal linear struc-
ture. These ideas are only schematic, but they convey some of the signal varieties that
are amenable to time-frequency analysis.

Let us now consider a speech analysis application. We have considered speech
signal interpretation already in Chapters 4 and 9. In fact, in Chapter 9 we saw that
many speech recognition systems have been developed using the basic technique of
windowing the Fourier transform. If x(¢) is a speech signal, for example, then look-
ing for a large percentage of signal energy in a pair of frequencies might indicate the
presence of a vowel phoneme. Or, a broad dispersion of signal energy in a range of
high frequencies could mark a velar fricative. Time-frequency signal decomposition
offers a complete picture of the speech waveform. Figure 10.11 shows a contour
diagram of the energies in a speech fragment.

"Gabor"

250

200

150

Frequency

100

0 0.05 01 015 02 025 03 035 04
Time (s)

Fig. 10.11. The time-frequency decomposition of the word “Gabor.” Lines indicate signal
energy contours. Note that the two syllables can be segmented in time according to the dis-
tribution of signal energy along the frequency axis.
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10.3.3.2 Identifying Significant Local Frequency Components. Many
of the filtering, enhancement, and thresholding techniques we applied in time-
domain signal analysis can help us find localized signal frequency components. For
instance, we might use a threshold to indicate a significant frequency component.
Furthermore, we might calculate the total amount of energy among all time-
frequency cells at a certain time instant and count the number that contain say a
majority of the energy. Such quantities can be assembled into feature vectors, for
example. All of the methods we employed in Chapter 4 for thresholding signals
apply equally well to thresholding values in the two-dimensional time-frequency
plane. Indeed, this is an elementary instance of image analysis, and with it, our
work in interpreting signal content begins to take advantage of techniques in image
processing and computer vision.

10.3.4 A Fundamental Limitation

We have observed that the windowed Fourier transform provides an elegant and nat-
ural description of signal structure—a two-dimensional array, easily searched along
time or frequency axes. With other decomposition techniques, especially those
revolving around signal scale, structures may assume the form of a tree or some more
general graph. Traversing graph structures consumes computer time. So even though
our derived structures may be far simpler than the time-domain signal, we are still
concerned to make the graphs sparse and conclude our exhaustive search as quickly
as possible. Hence the problem before us is, How large can we choose the time and
frequency sampling intervals, T and Q, so that we still build a family of windowed
Fourier atoms that provide an orthonormal basis or exact frame structure?

10.3.4.1 Nyquist Density. Our question directly concerns the power of short-
time Fourier transforms for signal interpretation. Gabor studied the case 7Q = 2m,
suggesting that the Fourier expansion coefficients could be used to encode a signal
for efficient transmission. Note too that for this case the time-domain sampling
interval is T = 2nt/Q. If a signal x(#) has bandwidth €, then its highest frequency
component is /2 radians per second, or F,, = (€2/2)/(2) = Q /(4x) hertz. By the
Shannon—-Nyquist sampling theorem, it can be reconstructed from discrete samples
taken at intervals sampled at a rate not less than F = T~! = 2F ax = /(27) hertz.
We offer the formal definition.

Definition (Time-Frequency, Nyquist Densities). Let x(f) have bandwidth Q
and be sampled at intervals 7 > 0. Then we define its time-frequency density to
be (TQ)~!. The Nyquist density is (2m)~".

In other words, Gabor’s concern was to set the time- and frequency-domain
sampling intervals so that 7Q) = 2n—that is, to sample at the Nyquist density. This
is equivalent to time sampling at the largest interval allowable, by the sampling
theorem, for analog signal reconstruction from discrete samples. Gabor proposed
families of windowed Fourier atoms, separated from one another at the Nyquist
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limit 7 = 2nQ~". Our problem is to characterize Gabor’s proposal for each of the
three cases:

(1) TQ < 2m, when the sampling interval is less than the Nyquist frequency or,
equivalently, when the time-frequency density exceeds the Nyquist density.

(i) TQ = 2m, the original proposal of Gabor.
(iii)) TQ > 2m.

10.3.4.2 Too Sparse: TQ >2xn. Gabor’s proposal to represent signals using
sums of windowed Fourier atoms does not in fact succeed for the sparse case, 7Q >
2m. This case occurs when the time- domain sampling interval exceeds the maximum
allowable for reconstructing an analog signal of bandwidth Q by its discrete samples
at times mT, m € Z. That is, families of Gabor atoms {w,,, ,(t) = exp( jr€)w(t — mT):
m,n e 7} cannot be a frame when (7Q) ! is less than the Nyquist density.

Using the Zak transform, introduced in Chapter 8, this result can be shown for
the case where (21) ! 7Q is rational and exceeds unity. We will only consider a far
simpler case: Q = 2w and 7' = 2. We recount the following results from Ref. 12.

Lemma. Letw(r) € LX(R); w,, ,(t) = "™ *w(t —mT), form,n e 7; Q@ =2n;and T=2.
Then there is an x(r) € LX(R) such that [Ix]l2 # 0 and (x(2), w,, ,(1)) = 0 forallm, ne Z.

Proof: Lette [0, 1) and define
x(t+k) = (~D)w—k=1), (10.80)
where k € Z. It is easily shown (exercise) that

() xe LAR).
@) |l = [[wll2-
(iii) [|x||, #O.

We contend that {(x(t), w,, ,(£)).= 0 for all m, n € Z. Breaking up the inner product
integral reveals

jnmw(l —-2m) dt

(x(0), w,, , (D) = [ x(t)e
T o
= [ Y x(e+kywk+1-2m) di (10.81)
0 k = —oo

But inserting (10.80), we observe that

E x(t+kywlk+1—2m) = E (W —k=Dw(r+ k—=2m). (10.82)
k= k= —oo
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On the right-hand side of (10.82) consider a summand,

(D) w(t—k=Dyw(r + k=2m), (10.83a)

forsome ke Z.Leti=2m — k—1 and compare the term

() wt—i—myw(t+i-2m). (10.83b)

The trick is that

(~D)'wl—i—mw+i-2m) = (1) " Wa—2m+bwi—k=1), (10.84)

which is the additive inverse of (10.83a). The upshot is that every summand in is com-
plemented by its additive inverse also inside the summation; the sum is precisely
zero! All inner products (10.81) are zero, and we have constructed a nontrivial x(¢) in
the orthogonal complement of {w,, ,(1): m,n € Z}. |

Now we can prove the theorem. Recall that a frame generalizes the notion of an
orthogonal basis, yet provides stable signal reconstruction and complete signal rep-
resentation. We introduced frame theory in Section 3.3.4.

Theorem. Let w(?) € LZ(ERE); Wi o) = ej”Q’w(t —mT), form, n € Z; Q =2m; and
T =2.Then {w,, ,(): m,n € Z} cannot be a frame.

Proof: Let x(f) be given by the lemma: nontrivial and orthogonal to all of the
Wy n(D). If the {w,, ,(1): m, n € Z} were a frame, then by the definition of frame,
there exist A > 0 and B > 0 such that

oo

2 2
AT 3 [sw| < Byl (10.85)

m,n = —oo

for all y(¢) € Lz( R). The frame condition must hold for the lemma’s x(7) as well, but
since {(x(1), wm,n(t)) =0forall m,n e Z, we have a contradiction. |

Remark. So there are no frames of windowed Fourier atoms, w,,, ,,(£) = ei"Q’w(t —mT),
when the frequency- and time-domain sampling intervals are = 2w; and T = 2,
respectively. This is perhaps not too surprising a result, given the Shannon—-Nyquist
sampling theorem.

We have shown our result for only a particular instance, 2 = 2w and 7 = 2, of the
case TQ > 2m. An interesting, but somewhat technical, Zak transform application
extends this same argument whenever 7Q > 21 and 7€ is a rational multiple of 27
[25]. Using advanced mathematical methods well beyond our present scope, it has
been shown that whenever the time-frequency sampling is too sparse—whether
either 7 and € are rational or irrational—then there are no frames of windowed
Fourier atoms [26].
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10.3.5 Frames of Windowed Fourier Atoms

Now let us consider another possibility: 7Q < 2. This is the dense time-frequency
sampling case. Now, from a classic construction [27], it can be shown that we can
build frames from windowed Fourier atoms when 7Q < 27t. Here, we adapt the pre-
sentation in Ref. 12 to our own notation and show that collections of Gabor atoms
{wWy () = exp( an)w(t mT): m,n € 7} can be a frame when (TQ)_] exceeds the
Nyquist density, 2m)”!

Theorem. Let w(r) € LX(R); let w,,, (1) = e/ *w(t —mT), for m, n € Z; TQ < 2m;
and suppose that [-t/Q2, /2] D Support(w). Then for any x(¢) € Lz( R),

Y [, ) = 25“ | |x(t)|2( y Iw(t—kT)IZJ dr. (10.86)

k = —oo

m,n = —oo

Proof: Let us expand the sum on the left-hand side of (10.86) as sums over 27t/Q-
wide intervals:

2 2
o w |Q o _
Y [ww = Y [y (H%‘) (t+%<—mT) dr.
m,n = —oo m,n=-| ( k=—o<>
(10.87)

Notice that the integral in (10.87) is a constant multiple of a Fourier series coefficient.
The functions /%e/”m = ¢, (t) are an orthonormal basis for the Hilbert space

H = L2[0, 2/Q], and we know therefore that ||y||§ = Zn | {y, en)|2 for any square-

integrable y(7) in H. (This is in fact a Parseval result for H, and its roots extend back
to our very early algebraic result from abstract Banach spaces—Bessel’s inequal-
ity.) Thus, for each m € Z we are able to replace the sum over n € Z in (10.87) with
the square of the LZ[O, 27t/Q2] norm of the sum in the integrand:

oo

[\e]

S @)= %

m,n = —oo m = —oo

(e} —2
Z x(t+2%k) (t+%€—mT) dt.

(10.88)

Next, observe that for any m all of the summands over k inside the integral are zero
except for possibly one. This is due to the choice of support for the window function
w(?). The right-hand side of simplifies, and we see

(t+w‘) (t+w<—mT)
Q

275

Ik

oo

2 |<x’ Wm,n>|2 =

m,n = —oo

2

2n dr.  (10.89)

a,x.
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We can now reassemble the separate finite integrals to one over the entire real line:

oo

Y [xw, o = 25“ | Ix(t)lz( 3 Iw(t—kT)lzj di . (10.90)
oo k = —c0

m,n = —oo

The term in parentheses inside the integral (10.90) is crucial. If we can show that
there are constants A, B > 0 such that A bounds this term below and B bounds this
term above, then we will have found frame bounds and shown that the windowed
Fourier atoms {w,, (1) = exp(jn{)w(t — mT): m, n € Z} do comprise a frame. The
following corollary imposes a reasonable technical condition on the window func-
tion w(t) [27], namely that the window function be continuous and positive on some
interval about 7 = 0.

Corollary. Let w(r) € LZ(R) be as in the theorem. Further suppose that w(¢) is con-
tinuous and that there are € >0 and 1 > & > 0 such that |w()| > € on [ = [-6m/C, m/
Q]. Then {w,, ,(t) = "Myt —mT): m,n e 7} are a frame.

oo

Y [ww, o = 25“ [ |x(t)|2[ »d Iw(t—kT)Iz] dr. (10.91)
oo k

m,n = —oo = —oo

Proof: Since

oo

Y [xw, o = 2?2’-‘ |x(t)|2( » |w(t—kT)|2J dt, (10.92)

m,n = —oo oo k = —oo

oo

by the theoreﬁn, we seek positive constants o and B such that o < Z|w(t - kT)| 2 and
Slw(t—kT)|” < B for all z. Then we have

[kldis 3 [(ow, ) = %ﬁ [ (o ar, (10.93)

m,n = —oo

20
Q

so that A = 2no)/Q and B = (2nf)/Q constitute lower and upper frame bounds,
respectively, for {w,, ,()}. By the assumption that w(¢) exceeds € > 0 on the proper
subinterval /, we can set 0, = inf{|w(t)|2: t € I}. Since o is the greatest lower bound
of [w(1)|? on I, and |w(r)| > & on I, we know o, > € > 0. The lower frame condition fol-
lows easily with bound A = (2ro)/€2 To find the upper frame bound, we note that
because the support of w(r) is contained within the interval [-n/Q2, ©/Q], only a
finite number K of terms in the sum Z|w(f— kT)|?> will be nonzero. Since w(?) is
continuous and supported on [-t/Q, ©/Q2], we may let M be its least upper bound;
that is, M = ||w]|... We can then set B = sup { Z|w(r—kT)|*: r € R} < KM, and with
B = (2nB)/Q we can verify the upper frame bound property. |
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Remarks. Recall from our general discussion of frames in Section 3.3.4 that the
frame reconstruction algorithm is more efficient when the frame is tight. We can see
in the theorem that finding w(¢) so that Z|w(t— kT)I2 is constant does provide us
with a tight frame: A = B = 2n(QT) 7! In fact, it is fairly straightforward to concoct
window functions w(f) so that this expression is constant. Moreover, the construc-
tion method gives windows with compact support arbitrarily good smoothness. We
refer the reader to the literature for details [12, 25, 27].

The result of the theorem (10.86) can be used to find examples of windowed
Fourier frames from special window functions.

Example. Suppose w(r) = (1 + tz)_l. Then w(¥) is bounded and absolutely integra-
ble. If T > 0, then Z|w(s—kT)|? has an upper and lower bound. One can show
(exercise) that {w,, ,(f) = ej"Qtw(t —mT): m,n € 7} are a frame if we take Q to be
sufficiently small.

Example. Now let w(7) = g, (1), the Gaussian with mean u and standard deviation
C. Again, Z| 8y, o(t— kT)| 2 is bounded above and below when 7> 0, and we can use
the theorem’s criterion for showing that Gabor frames exist for a sufficiently small
frequency sampling interval.

Before summarizing our results in pursuit of Gabor’s problem, let us note an
important necessary condition of windowed Fourier frames [12].

Theorem. Suppose w(f) € L*(R); Q T > 0; and {w,,, ,(t) = &"*w(t —mT): m, n e
Z} constitute a frame with lower and upper bounds A and B, respectively. Then

27 2
A< Q_T”W”2 <B. (10.94)

Proof: Exercise. |

10.3.6 Status of Gabor’s Problem

We can briefly summarize the status of our search for frames of windowed Fourier
atoms. There are three cases, which depend on the time- and frequency-domain
sampling intervals, T and €, respectively. Our present understanding is as follows:

(1) When TQ < 2r the time-frequency density is higher than the Nyquist density,

and we have just constructed frames of windowed Fourier atoms in this case.

(i) When TQ = 2r the atom are at Nyquist density exactly; this is the alterna-
tive proposed by Gabor, and our analysis of it is not yet complete.

(iii) Finally, when TQ > 21 we have noted that windowed Fourier frames do not
exist in this situation; we proved a simple instance, and the research litera-
ture—portions of which rely on advanced analysis—completely covers the
remaining cases.
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We will in fact devote a considerable portion of the remainder of this chapter to
Gabor’s dividing line case. The applicability of the short-time Fourier transform
(STFT) when time-frequency localization is of paramount importance hangs on this
question. This question also vexed signal processing investigators for a number of
years; we are especially interested in fully understanding the impact of windowed
Fourier transform discretization when 7TQ = 2.

Before turning to this question, however, let us consider another approach to
time-frequency signal decompositions.

10.4 QUADRATIC TIME-FREQUENCY TRANSFORMS

There are classes of time-frequency transforms that do not depend on a windowing
function. Instead, the transform relation emerges out of the properties of the ana-
lyzed signal. The signal x(#) enters the transform integral as a quadratic rather than
as linear term, as it does in the windowed Fourier transform. This transform family
is therefore generally known as the quadratic time-frequency transformations. Its
principal members are the Wigner—Ville transform (WVT) and the closely related
ambiguity function.

Now, transforming without a window function appears to be quite advantageous,
since the resulting procedure eliminates the effect window selection imposes on the
transform’s behavior. The short-time Fourier transform mixes spectral properties of
the analyzed signal x(7) together with those of the window function w(¢). Blindly
perusing coefficients, we do not know whether their large magnitude results from
signal or window properties. On the other hand, we do not often blindly process
transform coefficients. Rather, the window function is typically chosen to isolate
signal features of expected frequency content and time- domain extent; in the more
typical application then, choosing a window function may well be the best first step.

Although avoiding window effects may recommend quadratic transforms, there
are some more important considerations. We shall explore three significant proper-
ties of these transforms. This transform family:

® More precisely resolves certain standard cases of time-varying frequencies
than does the STFT;

® Enjoys special properties called marginal conditions that allow them to act as
distribution functions for a signal’s spectral content;

® Has the significant drawback that transformed signals exhibit certain artifacts
called cross-terms that hamper higher-level interpretation.

This is in fact a very rich transform family. An entire book could be written about
these transforms, and many treatments devote considerable space to these trans-
forms [2, 6, 9]. By our brief sketch we hope that the reader will acquire a more bal-
anced opinion of the windowed Fourier transforms and an interest in further
exploring the theory and application of quadratic transforms.
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10.4.1 Spectrogram

We can base a quadratic time-frequency transform on the STFT. This is in fact just
the spectrogram, which we define as follows.

Definition (Spectrogram). Let x(7) € LZ(R) and let w(¢) be a window function.
The spectrogram with respect to w(t), written Xg (1L, ®), is

o0 . 2
Xg (L ®) = X o)” = | [ x(ow(r—we”d | (10.95)

—oo

where X (1L, ), is the STFT of x(f) with respect to w().

Thus, the spectrogram of x(z) is the squared magnitude of the STFT of x(f) with
respect to w(f). The spectrogram is thus a natural generalization of the windowed
Fourier methods we have been comfortable in using. However, despite the more
intuitive feel, spectrograms are far from being the most popular quadratic time-
frequency transforms. For one thing, X, relies on a window function. But it also
has some other undesirable traits that have motivated signal theorists to search out
other transform techniques. Among these better transforms is the the classic trans-
form of Wigner and Ville which we introduce next; we shall assess the merits of the
spectrogram in this context.

10.4.2 Wigner-Ville Distribution

The Wigner—Ville distribution (WVD) is the oldest time-frequency transform and
the preeminent quadratic signal representation. In fact it dates to the early 1930s
when E. Wigner6 applied it in quantum mechanics [28]. The communication
theorist J. Ville’ introduced the transform to the signal processing community some
16 years later [29].

The transform has been widely studied for signal analysis applications [30, 31]. It
has also found use as an important tool in computer vision [32]. The WVD has some
distinct advantages over the more intuitive spectrogram. But it is not without its faults.

One difficulty in applying the WVD is the presence of so-called cross- or inter-
ference terms among the transform coefficients. Indeed, many research efforts in
time-frequency theory have concentrated on avoiding or ameliorating the effects of
cross-terms when using this type of tool. This problemis covered in the Section 10.4.3.

10.4.2.1 Definition and Motivation. The Wigner—Ville distribution takes the
Fourier transform of a product of the signal with its complex conjugate. Thus, it
resembles the computation of the power spectral density.

The Hungarian chemical engineer Eugene P. Wigner (1902-1996) immigrated to the United States to
teach mathematics at Princeton University in 1930. He received the Nobel prize in 1963 for discoveries
in atomic and elementary particle research.

7TFrench communication researcher J. Ville developed the same transform as Wigner, but for the purposes
of clarifying the concept of instantaneous frequency.



762 TIME-FREQUENCY SIGNAL TRANSFORMS

Definition (Wigner-Ville Distribution). If x(7) € LZ(R) is an analog signal, then
its Wigner—Ville distribution, written Xyy(UL, ®), is the radial Fourier transform of
the product x(l + #/2)x* (U — #/2):

Xyy(L o) = | x(u ¥ é)x(u . é)e_j “ar . (10.96)
t X(S) t
X(s+0xt2) A A A x(s2)

Fig. 10.12. Tllustrating the support of x(s + ¢/2)x*(s —#/2) in the (s, 7) plane. Panel (a) shows
the support of x(s). We move to two dimensions in Panel (b), but show the support of the
degenerate function x(s + 0 X (¢/2)). The support of x(s — #/2) is the parallelpiped region (c)
and the product x(s + #/2)x*(s —/2) has support mainly within the diamond (d).
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Remark. We observe that the integral (10.96) is well-defined. It is the Fourier trans-
form of x(U + #2)x*(U — #/2), which must be absolutely integrable. This follows
because both factors are in L*(R), and the Schwarz inequality ensures that ||x(1L +
12)|lp (W = #2)||5 = |x(u + #2)x*(u — #/2)||;. Of course, L'(R) signals have Fou-
rier transforms.

No window function appears in the definition (10.96), but there is an easy way to
understand how folding the source signal x(¢#) over on itself accomplishes the
required time localization. Imagining that a signal’s support lies mainly within the
interval [—a, a], the local region implied by the WVD transform is a diamond, as
shown in Figure 10.12.

10.4.2.2 Properties. The properties of this transform are quite remarkable. To
begin with, we can show that the Wigner—Ville distribution is real-valued.

Proposition (Real-Valued). Let x(¢) € LZ(R) and Xyvy (1L, ®) be its WVD. Then
XWV (u, (,0) e R.

Proof: We calculate the complex conjugate of (10.96) and make the change of inte-
gration variable s = — 1.

oo

o - oo e

oo

= - j x(u — %)x(u + %)eijm ds = Xy (1, o). (10.97)

Because X*ywv(lL, @) = Xywvy(UL, ®), it must be real. |

Already we see that the WVD’s properties are quite unlike those of the Fourier
transform or its time-limited versions. However, the time- and frequency-domain
shifting properties are familiar, as the next proposition shows. Symmetry properties
are covered in the exercises.

Proposition (Time and Frequency Shift). Let x() € LZ(R) and Xy (U, o) be its
WVD. Then

(a) If s(t) = x(1 — a), then Sy (L, ®) = Xyv(lLl — a, ©).
(b) If y(1) = ¢/¥x(1), then Yyyy(1, ©) = Xy (UL, ©0— ).

Proof: Exercise. n
The double product of x(¢) terms in the WVD integral, which is the “quadratic” fac-

tor, spoils the transform’s linearity. This is easy to see for the scaling property of the
linearity. We let y(f) = ax(f), where a is a constant. Then Yy (UL, ®) = |a|2XWV(].L, o).



764 TIME-FREQUENCY SIGNAL TRANSFORMS

Superposition also fails for the WVD. We use an auxiliary transform as part of the
argument.

Definition (Cross Wigner-Ville Distribution). If x(¢), y(¢) € LZ(R) are analog sig-
nals, then the Cross Wigner—Ville Distribution, written XWV,y(H’ ®), is the radial
Fourier transform of the product x(U + #/2)y*(U — #/2):

oo

Xy, (1 0) = | x(u + %)y(u - é)e" “dr. (10.98)

—oo

One can easily show that Xy (1L, ®) is the complex conjugate of Yy (1L, ).
If we set s(f) = x(r) + y(9), then Syy(L, ®) = Xyy(L, ®) + Yyy(L, ®) +
2Rea1[XWV,y(u, w)].

Thus, both component properties of linearity fail for the WVD. The failure of
superposition is the more serious deficiency. This defect causes artifacts, called
cross-terms, in the WVD transform coefficients. The presence of cross-terms leads
to difficulties of automatic interpretation, and removing them by various alternative
transformations has been a major research goal of the last several years.

The next theorem reveals an interesting symmetry between time and frequency
domain representations for the WVD. Besides having an eerie similarity to the
inverse Fourier relation, it is also useful in calculations involving the WVD.

Theorem (Frequency-Domain Representation). Let x(¢) € L2( R), let X() be its
Fourier transform, and Xy (UL, ®) be its WVD. Then

oo

1 0 0) jou
X =—|X ~X|lo-= . 10.
wy(t ©) = = (w+2) (co 2)e de (10.99)

—oo

Proof: The key idea is to write Xy (UL, ®) as an inner product,

—jor jot
Xypy (i, ©) = <x(u+§)e R (T > (10.100)

splitting the exponential between its two terms. We can then apply Parseval’s
theorem:

—jot jot
2 2
Xyy (W, ) = %E< frx(u + %)e , ﬂfx(u - é)e >

= ﬁ(zxm +20)e™ @20 2x(w - 20)M ). (10.101)
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The final inner product in (10.101) simplifies to the integral

Xy (1L, ©) = Zin [ X(0+20)X(0-20)e a0, (10.102)

oo

whereupon the substitution 0 = 4¢ gives (10.99). |

Corollary (Fourier Transform of WVD). Let x(¢) € L2( R), let X(w) be its Fourier
transform, and Xyyy (1L, ®) be its WVD. Then, with o fixed and viewing Xy (L, ®)

as a signal with independent time variable 1, we have

oo

~jn6 0 0
AX gy ©)1(0) = [ Xyy (1, 0)e " du = X(w+§)X(u)—§). (10.103)

—oo

Proof: Apply the theorem to the WVD term in the integral (exercise).

Table 10.3 summarizes WVD properties. Some of the table’s properties are left

as exercises.

10.4.2.3 Examples. Letuslook at some WVD calculations on standard exam-
ple signals. These examples are revealing, because they show how the WVD
improves upon the frequency resolving capability of the STFT.

TABLE 10.3. Wigner-Ville Distribution Properties®

Signal Expression WYVD or Property

x(1) Xwv(l, ®)

ax(t Ja Xy (W, ©)

x(1) + y(t) Xwv(lt, ®) + Yywy(l, o) +
2Real[Xyyy, (L, 0)]

x(t—a) Xwv(l —a, o)

x(t)exp( jOr) Xwv(i, ® —0)

x(texp( j0r%) Xy, © —26p)

x(tla), witha >0 aXwy(Wa, aw)

=

Xy (M @) = %r, J' X(u) + g)X(m— g)eje“de

—oo

™ = oo

Frequency-domain representation

Fourier transform of WVD

“In this table, x(¢) and y(f) are square-integrable.
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Example (Dirac). Let x(r) = 8(t — a). Then Xyvy(U, ®) = d(L — a). To verify this
formula, we utilize the Frequency-Domain Representation Theorem. Then.

R Y
Xy o) = 5- ] e e ¢ap = L g = S(u-a).

—oo

(10.104)

The interesting aspect of this example is that the WVD maps an impulse to an
impulse. The time-frequency representation that the WVD provides is just as tempo-
rally localized as the original time-domain signal. In the (U, ®) plane, realm of the
WVD, the signal ()L —a) is a Dirac knife edge, infinitely high and infinitely narrow,
parallel to the w-axis and passing through the point L = a. This stands in stark contrast
to the STFT. The windowed Fourier transformation of the same Dirac impulse x(¢) =
3t —a)is X, (1, ®) =w(a — u)e‘j ©4_an exponential modulated by the transform win-
dow w(?) situated over the point L = a.

Example (Sinusoid). Let x(¢) = ¢/%. Then Xwv(, o) = (275)_18(00 —a). This can
be shown using the WVD properties (Table 10.3) or by direct computation as above.

Example (Gaussian Pulse). Now let g(r) = gq (), the Gaussian of mean o and
standard deviation 6. Then

oo {52

e
e . (10.105)
(o}

27

Gwv(u, W) =

Notice in this example that the WVD of a Gaussian pulse is always positive. The
only signals x(#) for which Xy (l, ®) is positive are linear chirps, exp( jbt2 + jat),
modulated by a Gaussian envelope Ref. [7].

Example (Square Pulse). Let s(f) = u(z + 1) —u(t — 1), the square pulse supported
on the interval [—1, 1]. Then

Sy (L, ©) = %sin(zm(l —luly). (10.106)

Thus, although the WVD is real-valued, its values can be negative.

These examples illustrate the trade offs between the windowed Fourier trans-
forms and the WVD. There are still other time-frequency transforms, of course;
Ref. 33 compares the frequency resolution efficiencies of several of them.

10.4.2.4 Densities and Marginals. Now we turn to an important feature
of the Wigner—Ville distribution, a set of properties that distinguish it from the
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short-time Fourier transform, namely its density function-like character. What does
this mean? In the case of the Fourier transform, we have been content to use frac-
tions of signal energy as an indication that a frequency range is significant within a
signal x(#). Thus, the energy of x(¢) is E,:

2

» 2 > 1 2 1X115
E= [ di= I3 = 5- ] K@) do= 2. (10.107)

— —oo

We may normalize x(#) or X() so that the have unit energy, or we may elect to use
the normalized radial Fourier transform and equate time and frequency-domain
energies. The exercises explore the use of the Hertz Fourier transform for quantify-
ing energy distributions in both time and frequency-domains. In any case then, like
a probability density function, the fraction of signal energy between w, and ®; is
given by
®,
2 2
E [0, o] = J X ()| do, (10.108)

®g

where we have normalized so that J_°° |X ((»)I2 do = 1.

Now, we are interested in transform representations of signals that have both a
time- and a frequency-domain independent variable. Our question is whether such
transforms can have joint density function behavior as well. For this to be the case,
we should require that the signal transform assumes non-negative values and obey
certain marginal integral conditions.

Definition (Marginals). The time-frequency transform P(U, ®) of x(f) € LZ(R)
obeys the marginal conditions if

P(u, ) 20, (10.109a)
2L1'c | P(h, @) do = (), (10.109b)
[ P( o) du = [X(@)], (10.109¢)

where X(w) is the radial Fourier transform of x(z).
(These conditions are somewhat imperfect, due to the scaling factor in (10.109b).

We can escape the scaling by using a Hertz Fourier transform. All we really require
is that the marginal integral with respect to one variable be proportional to the signal
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energy with respect to the other variable; see the exercises.) The idea behind the
definition is that P(l, ®) represents a relative amount of the signal per unit time and
per unit frequency. Summing the distribution over frequency values should produce
a relative amount of signal per unit time. Finally, summing over time should pro-
duce a signal strength per unit frequency.

The interpretation of the WVD as a kind of probability density function seems to
gain steam from the fact that its values are real; we have already seen from the
example of the square pulse, however, that the values can be negative. In contrast,
the spectrogram, because it is a squared norm, is always non-negative. However, the
WVD does satisfy marginal conditions, which the spectrogram does not.

Theorem (Marginals). Let x(7) € LZ(R), let X(w) be its Fourier transform, and let
Xwv(U, o) be its WVD. Then

= 2
IXWV(M, ®) do = 2xlx(w)|”, (10.110a)

—oo

[ Xy (1, ©) du = [X(0)]”. (10.110b)

—oo

Proof: We can directly evaluate the integral (10.110a) as follows:

[ Xyy( 0) do = | | x(u + é)x(u - %)e_jwtdtd(o. (10.111)

Interchanging the order of integration on the right-hand side of (10.111) gives

oo

}o x(u + é)x(u - é) 7 7 dodt = 2 | x(u + é)x(u - %)S(t) dwdt

t t
=2 e _Z
m(“ * 2)x(” 2)

= 2mx(x()= 2mlx(w)|. (10.112)

We leave the second marginal as an exercise. |

Thus, we have shown that the WVD obeys a marginal condition akin to that of a
joint probability density function. It is possible to show that employing a Hertz for-
mulation of the WVD produces perfect marginal conditions for the transform.
Unfortunately, the spectrogram fails the marginals, precisely because of the window
function (exercises).
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10.4.3 Ambiguity Function

Another quadratic time-frequency signal representation is the ambiguity function.
Its formulation is much like the WVD, except that it swaps the time and integration
variables in the defining Fourier integral.

Definition (Ambiguity Function). If x(¢) € Lz([R{) is an analog signal, then its
ambiguity function, written X,g(lL, ), is the radial Fourier transform of the product
X(t + W2)x*(t —W?2):

X\ 0) = | x(t+ %)x(r—%)e_wtdt. (10.113)

—oco

The following result relates the ambiguity function to the WVD.

Theorem (Ambiguity Function Characterization). Let x(¢) € L*(R) be an analog
signal, Xag(lL, ®) its ambiguity function, and Xy (L, ®) its Wigner—Ville distribu-
tion. Then,

Xpp( ) = [ [ Xyy(v, 007V avap. (10.114)

—00 —c0

Proof: Let us evaluate the integral on the right-hand side of (10.114) by splitting up
the exponential into two one-dimensional Fourier transforms. Then the corollary to
the Frequency-Domain Representation Theorem [(10.103) applies.

oo oo

) o0 —— _jue
[ [ Xyy v 07V avag = | (m+g)X(w—g)e 6. (10.115)

—00 —00 —o0

Writing the integral on the right-hand side of (10.115) as an inner product and
invoking Parseval’s formula, we find

}O X(m + Q)X(w _ Q)e_juede - Of x(t + H)x(z- E)e*f O g, (10.116)
2 2 2 2

— —oo

But the last integral above is Xsg(lL, ®). ]

Remark. Notice that the ambiguity function characterization (10.114) shows that
XAr(1L, ) is the two-dimensional Fourier transform of Xy (UL, ®).

10.4.4 Cross-Term Problems

While the WVD does have several advantages over the spectrogram—among them
superior frequency-domain resolution, satisfaction of the marginals, and indepen-
dence of a windowing function—it does have the misfortune of interference terms.
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Fig. 10.13. An example of the presence of cross-terms in the WVD. The original signal is a
chirp, first rising in frequency and then falling. High-energy coefficients appear beneath the
main arc of energy in the transform plane, yet the time-domain signal contains no such
tones. Higher-level interpretation routines are beset with the problem of separating such
artifacts from genuine features of the signal’s time evolution.

The cross-terms represent time-frequency domain energy in locations where it is not
present in the original signal (Figure 10.13).

Cross-terms in WVD coefficients are, generally speaking, oscillatory in nature.
As such, their effect on applications can be mitigated if not removed by filtering in
the (U, ®) plane. The quid pro quo is some loss of frequency resolution [9]. The
principal approach to removing these oscillatory components is through frequency
domain filtering. Thus, one manipulates the Fourier transform of Xy (1, 0)—the
ambiguity function X, g(1L, ®). Several such methods are compared in Ref. 34. Mod-
ification of the ambiguity plane image, a two-dimensional undertaking, is outside
our present scope, however.

Although they are in general tolerable, WVD interferences can be extreme in
some cases. For example, for each pair of energy concentrations in the time-fre-
quency plane, a possible cross-term region is created. Thus, if there are N significant
temporal-spectral components of x(f), then Xyv(H, ®) will have N x (N —1) inter-
ference term regions. This combinatorial explosion presents nasty problems for
higher-level interpretation algorithms. Furthermore, by the algebraic nature of their
origin, cross-term amplitudes can conceivably be double the magnitudes of their
source pair of time-frequency energy modes. So how then can a high-level algo-
rithm distinguish meaningful events from meaningless interferences?

10.4.5 Kernel Construction Method

Many of the latest time-frequency signal analysis research efforts have revolved
around the problem of finding density-like distributions that obey the marginal con-
ditions, but avoid cross-term effects.

The principal strategy is to introduce a third term into the defining transform
integral [35].
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Definition (Kernel-Based or Cohen’s Class of Transforms). If x(7) € Lz( R) is an
analog signal, then its Cohen Class Transform with respect to K, written Xg (I, ®), is

PO 16(s— ) t 1 —jor
Xp(w o) = [ [ [K(@®. 1 ux(s+§)x(s—§)e T dtdsde . (10.117)

—00 —00 —00

The kernel term can be thought of as smoothing the interferences. It is also possible
to show that almost all time-frequency transforms, assuming a suitable choice of the
kernel function, belong to the Cohen Class [7, 9].

Why resort to such triple integrals for basic one-dimensional signal representa-
tion? The spectrogram does not obey the marginals, so signal theorists sought a
solution amongst transforms such as the WVD. Hope for a quadratic transform,
however, was dashed by Wigner’s theorem [36]. This result states that a quadratic
time-frequency transform cannot obey the marginal conditions (10.109a)—
(10.109c). Pursuing these very interesting ideas would require quite a bit of multidi-
mensional transform development and take us far afield, however.

We return to the STFT family to answer conclusively the question Gabor posed:
Can a critically sampled set of windowed Fourier atoms fully support representation
and analysis?

10.5 THE BALIAN-LOW THEOREM

This section concludes the chapter by proving a famous result in time-frequency
transform theory: the Balian—Low theorem. The theorem applies to the entire class
of time-frequency (or windowed-Fourier) transforms. Balian—-Low answers a ques-
tion posed by discretizing the short-time Fourier transform: Can windowed Fourier
atoms of the form

W (D= " w(t=mT), (10.118)

where 7> 0 and TQ2 = 27 serve as a complete signal representation? We desire good
time and frequency localization; we stipulate, therefore, that both w(f) and its Fou-
rier transform W(w) are window functions. The two practical alternatives are that
{Wpn(D): m, n € Z} constitutes either

® An orthonormal basis or
® A frame.

It is hoped that we can discover {w,, ,(1): m, n € Z} that make up an orthonormal
basis. Then every square-integrable signal x(f) has a expansion in terms of Fourier
coefficients, easily calcuated as the inner products of x(7) with the w,, ,(1):

x()= Y (x(®),w, (O)w,, (). (10.119)

m,ne 7z
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If we fail to find such a basis, then computing the expansion coefficients (10.119)
becomes problematic. Lack of a basis encumbers our signal analysis too. While we
might be able to decompose a candidate signal x(¢) into a linear combination of
atoms, x(¢) = Xc,, ,w,, (1), we do not necessarily know the uniqueness of the expan-
sion coefficients c,, , for representing x(¢). So the utility of the expansion coeffi-
cients as indicators of some signal component’s presence or the lack thereof is very
much compromised.

Should a basis not be available, we could search for a frame representation of
LA(R) signals using the Gabor atoms (10.118). After all, frame coefficients can
characterize the source signal x(f), and they support numerically stable reconstruc-
tions. This may be a good redoubt.

In either case, orthonormal basis or frame, we can build a structural interpreta-
tion of finite-energy signals x(t). The Balian—Low theorem dashes our hopes—both
of them. We cover the theorem for the easier-to-prove case of orthonormal bases,
first. Then we turn to Balian—-Low’s rejection of frames. To prove that no such
frames exist, we need a special tool, namely the Zak transform. Frames were cov-
ered in Section 3.3.5, and the Zak transform was introduced at the end of Chapter 8.

10.5.1 Orthonormal Basis Decomposition

The Balian—Low theorem answers Gabor’s original problem of finding well-local-
ized signal representations using time-frequency atoms [25, 37-40]. It is also a neg-
ative result, for it shows the impossibility of finding well-localized, orthonormal
decompositions based on windowed Fourier atoms when 7Q = 2m.

We begin with a lemma. It is simple, but it allows us to reduce the proof of the the-
orem for all possible samplings 7Q = 2, to the specific case of 7= 1 and Q = 2m.

Lemma. If 7> 0, then the map H(x(?)) = TV 2x(Tt) is unitary on LZ(R); that is,

(i) His onto;
(ii) H preserves inner products, (Hx, Hy) = (x, y).

Proof: For (i), let y € L*(R) and choose x(f) = T~ 2y(#/T). Then (Hx)(f) = y(t). For
(ii) we change variables, s = Tt, in the inner product integral:

(Hx, Hy) = [ (HO))(H) @) di =T [ x(T)y(T0) di =T | K”Ty-—(—s-) ds = {x, y)

—oo —oo —oo

(10.120)
This completes the proof. u

Now we can prove the result of Balian and Low for the orthonormal basis
situation.



THE BALIAN-LOW THEOREM 773

Theorem (Balian-Low for Orthonormal Bases). Let 7Q = 27, let w(t) € LZ(R)
and let the collection of windowed Fourier atoms {w,, ,(f): m, n € Z} be given by
(10.118). If {w,, ,(): m, n € Z} is an orthonormal bas1s for Lz(lR{) then either

(i) w(?) is not a window function:

[ lwo)’de = Jw(D|3 = . or (10.121)

—o0

(i1)) W(w) is not a window function:

[ o’ W) do = [oW(w)]} = . (10.122)

—oo

Proof: 1t is sufficient to prove the theorem for the special case 7= 1 and Q = 2.
We know from the lemma that the scaling map H(x(f)) = TV 2x(Tt) is unitary on
LZ(R). If we examine its effect on atoms, we find

JTw,, (Tt) = ST w(Ti—mT)
A Tw(T(1—m)) = e~ ™" (Hw) (1 —m). (10.123)

H(w,, (1)

The map H takes basis elements w,, ,(r) with time and frequency sampling intervals
T and €, respectively, to basis elements with corresponding sampling intervals 1
and 2m. So it suffices to prove the theorem for this special case—that is, for the
image of the set {w,, ,(¢): m,n € Z} under H.

We note that the derivative w'(¢) € LZ(R) if and only if W(w) is a window func-
tion. We can check this relationship of differentiation to the window condition on
W(w) as follows:

, 1y, 17 2 15 2 2
W3 = 3=17w13 = 5= [ loW) do = 3= [ o’ [We) do. (10.124)

Let us assume that both w(f) and W(w) are window functions. From (10.124) this is
equivalent to assuming that m(r) and w'(f) are square-integrable. Our goal is to
show that this leads to a contradiction.

From the assumption, we can calculate the pair of inner products (tw(t), —jw’(?))
and (= jw’(t), tw(®)). Since {w,, ,(1): m, n € Z} is an orthonormal basis for LA(R),
we can expand both inner products as follows:

(tw(t), 5w’ () = % (tw(t), w, (D)w,, (), —w'(1)),  (10.125a)

mne 7z
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and

(W' (), tw(@)y = Y (Gw(0), w, (D) w,, (1), tw(1)). (10.125b)

m,ne 7z

Let us attend to the first inner product in the summations of (10.125a). We compute

J tw(t)eznjmw(t —m) dt

—oo

(tw(1), w,, (1))

[ (s +myw(s +mye > " w(s) ds, (10.126)

—oco

where s =1 —m. Since w_,, (1) = exp(2njnt)w(f + m), we can write the final inte-
gral in (10.126) as a sum,

(tw(t), w,, (1) = J'sw(s+m)e_2njnsst) ds+m j w

—oo —oo

(s)w(s) ds.

-m, —n
(10.127)

The final term in (10.127) is zero. It is clearly so if m = 0, and if m # 0, then it is
m{w_, _,(t), w(1)). But by the orthogonality of the {w,, ,(f)}, of which wgy(r) =
w(t), we get (w_,, _,(8), w(?)) = 0. Thus,

oo

(tw(1), W L) = _[ sw(s+m)e

—oo

—annsm ds = (w_,, _,(5), sw(s)).

(10.128)

Now we can rewrite the inner product (10.125a) like this:

(WD), 5w ) = 3 Wy (0, 0w(D) Wy (0, 5w (D). (10.129)

m,ne 7z

Let us now divert our attention to the second inner product expansion (10.125b). We
try the same strategy, expand the first inner product in the summation, and use the
orthogonality of the {w,, ,(f)} to simplify.

2mjnt———

(—jw’ (1), wm,n(t)) = —j J' w'(t)e w(t—m) dt. (10.130)

—oo

Integration by parts gives

EM 1 mon) + L(mon),  (10.131)

Jw @), w,, () = ww(t—m)e
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where I(m, n) and I,(m, n) are the integrals

Ii(m,n) = = [ (™" w()w(1—m) dn) (10.132a)
and
Lm,n) = 2mjn | (& 2" w(tyw(t—m) dn). (10.132b)

—oo

Since w(t) € LZ(R), the first term on the right-hand side of (10.131) must be zero.
The second integral (10.132b) is zero also. To see this, note that

I,(m,n) = 2mjn J' w(t)w(t—m)eﬂmtdt = 2nn{w(r), W (1), (10.133)

—oo

But the final term in (10.133) is zero; either n = 0 or{(w(?),w, (1)) = 0 by
orthogonality of the {w,, ,(1)}. Thus,

(w0, wy, (D) = jIj(m,n) = j J' w(t)eiznjmw’(t—m) dr.  (10.134)

—oo

Letting s = t—m to change integration variables in (10.134) gives

oo

(W (D, Wy () = [ (s +m)e

—oo

_2njntm ds = <W_m,—n(t)’_jw’(t)>'

(10.135)

Thanks to this last result (10.135) we can rewrite the inner product (10.125b) as
follows:

(WO, (D) = 3 Wy (0, W (0) (w,, (0, 0w(D) . (10.136)
m,ne 7z
Reversing the order of summation in (10.136) produces

(Hw @), tw(@®) = % Aw,, (0O, 5w (O)(w_,, (1), tw(0)) . (10.137)

m,ne 7z

This is nothing else but the summation in (10.129); in other words, we have shown
that tw(z) and — jw’(f) commute under the inner product relation:

(tw(0), 5w’ (1)) = (W' (1), tw(D)). (10.138)



776 TIME-FREQUENCY SIGNAL TRANSFORMS

Contradiction looms. Indeed, computing the integral on the left-hand side of
(10.138), we can integrate by parts to find

oo

[ tw(O[Sw (D1di= jrw(w(D|__~j [ wB){w(e) + 1w’ (1)} dr.  (10.139)

Again, |w(t)|2 — 0 as t — oo, because w(t) € LZ(R). This means

w0, =jw’ (1) = [ w(tyw(t) di— [ tw(t)w’ (1) di = [wll3 + (=jw’ (1), w(D)).

—oo —oo

(10.140)
Of course, ||w|| = |wool| = 1 by orthogonality of {w,,,}, and this contradicts
(10.138). |

To illustrate the Balian—-Low theorem, we consider two examples of orthonormal
bases for L2( R).

Example (Fourier Basis). For the first example, we try w(f) = u(f) —u(t — 1), where
u(f) is the unit step signal, as the window function. Then the family {w,, () =
exp(2rjnt)w(t —m): m, n € Z} is an orthonormal basis for L ([R) In fact, for any fixed
my € Z, we can represent a general signal x(¢) restricted to [mg, m + 1] by its Fourier
series. And the collection of all such Fourier series suffices to construct x(¢). Orthog-
onality follows, of course, from the orthogonality of the exponentials on unit intervals.
What does Balian—-Low say? Either w(¢) or its Fourier transform W(®) must not be a
window function. Indeed the Fourier transform of w(r) is a sinc function, its Fourier
transform decays like o~ !, and ||oW(w)||, = o°. So although w(f) is well-localized in
time, it is poorly localized in frequency.

Example (Shannon Ba51s) This example takes the other extreme. We now let
w(t) = sinc(mr) = (7t)~ sm(Tct) Then, once again, {w,, ,(¢) = exp2rjnH)w(t —m): m,
n € Z} is an orthonormal basis for LQ(R) Although the Fourier transform of this
signal is a window function, a square pulse, we now find tw(r) ¢ LZ(R).

We might yet hope to find an exact frame representation, having shown now
that no orthonomal basis of Gabor elementary functions, or more general win-
dowed Fourier atoms, can exist of the case of 7QQ = 2r. Orthonormality is, after
all, an extremely strict constraint. And we understand that exact frames can sup-
port complete and stable signal representation for analysis purposes. Unfortu-
nately, the looser requirement—that the windowed Fourier decomposition set
should form an exact frame—is also impossible. The next section covers this more
involved proof.
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10.5.2 Frame Decomposition

The most elegant and accesible proof of the Balian—Low theorem for frames relies
uses the notion of a signal’s Zak transform.

10.5.2.1 Zak Transform Preliminaries. Recall from Chapter 8 that the Zak
transform maps an analog signal x(#) to a two-dimensional function having indepen-
dent variables in both time and frequency. In this sense, it resembles the Gabor
transform; however, it looks through no window function, and, much like the
discrete-time Fourier transform, it is the limit of an infinite sum involving discrete
samples of x(¢). With parameter a = 1, we define

oo

(Zx)(s, ®) = 2 x(s—k)e

k= —oo

2ok (10.141)

The Zak transform’s properties make it a particularly effective tool for studying
frames based on windowed Fourier atoms. Reviews concerning the Zak transform,
frames, and windowed Fourier expansions include Refs. 41 and 42.

The Zak transform is a unitary map from Lz(R) to L2(S) where S is the unit
square [0, 1] x [0, 1]. The set of two-dimensional exponentials {e, ,(f) =
exp(2njmt)exp(2njnt): m, n € Z} is a basis for LZ(S) Because of this unitary map,
the Zak transform converts questions about frames in LX(R) into questions about
frames in L(S), where the answers are generally easier to find. The next proposition
shows that Zak transforming a Gabor atom is equivalent to a modulation operation.

Proposition (Modulation). Let w(?) € LZ(R) let w,, ,(t) = exp(2rjn)w(t —m) for
m,n € Z;and let Z: Lz(R) - LZ(S) be the Zak transform, where S is the unit square
[0, 1] x [0, 1]. Then

Zchnse—ZTCj(Dm

(2w, )5 0) = e (Zw)(s, ®). (10.142)

Proof: We compute

2njok 2mjns —2mjnk
e J e / e J

(Zw,, (s, @) w(s—k—m)

1]
IMS

k = —co
=Sy PN k—m) (10.143)
k= —oo
and find
(Zw,, (s, ®) = 2T R z e2njw(k+m)W(s - (k+m))
k=—
2mjns —ZTEj(Dm (10.144)

(Zw)(s, w)e

as required. |
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Proposition (Norms). If w(r) € LZ(IR) Wy (D) = exprjnt)w(t —m) form, n € Z,
and Z: LZ(R) - LZ(S) is the Zak transform, where S is the unit square [0, 1] % [0, 1],
then

[ w,, D7 10200 (s, @) (Zw)(s, ). (10.145)

mne 7

Proof: From the transform’s unitary property and the previous proposition, the sum
in (10.145) expands as follows:

) 2
[Kow, = 3 [Kzx 2w, )
mne Z m,neZ
e P
”.e_ mjns,, njmm(Zx)(S, o)(Zw)(s, ®) dsdo| .
m,n e Z|g
(10.146)

The two-dimensional exponentials are an orthonormal basis for LZ(S). Hence, the
Bessel relation for Hilbert spaces implies that the final sum in is in fact

11

[Cew, = (120 (s o) l(2w)(s, )] dsdo. (10.147)
m,ne Z 00

as desired. |

The theorem below uses the ideas on Lebesgue measure and integration from
Chapter 3.

Theorem (Bounds). Let w(t) € LZ(R) and suppose {w,, (1) = eznj’"w(r —m): m,

ne 7} is a frame, with lower and upper bounds A and B, respectively. Then for
almost all s and » we have

A<|(zw)(s, 0)|> <B. (10.148)
Proof: The frame property implies

0<Ald’<s ¥ [(xow, o <Blal® <o (10.149)

m,ne 7z

m, n>|

for any x(¥) € LA(R). By the previous proposition,

11
0 <Al < [[I(zx)(s, ) [(zw)(s, o) dsdo < Bl < o (10.150)
00
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must hold for all finite energy x(¢) as well. We argue that this entails

11
0<A<[[l(zw)(s, o)’ dsdo < B<oo. (10.151)
00

To see this, let us suppose that, for example, |(Zw)(s, 0))|2 < A on some subset
R c § with positive measure: W(R) > 0. Let v(s, ®) be the characteristic function on
S and set y = 27 v; since Z s unitary, |[y()]|* = ||v(s, ®)||* = W(R). Consequently,

11
ARR) = Al < [[l(z9) (s, ) I(2w) (s, )| dsdo

00
11

= [[Iv(s. )P [(Zw)(s, ) *dsdo. (10.152)
00

Now, because v(s, ®) =1 on Rc S and v(s, ®) = 0 otherwise, this last integral
becomes

11
[[Iv(s, 0)2I(2w)(s, )| dsde> = [ [I(2w)(s, 0)| dsdo < [ A dsdo = AP(R).
00 R R

(10.153)

Together, (10.152) and (10.153) produce a contradiction. By a similar argument, so
does the assumption B < |[(Zw)(s, (o)|2. Showing this last step is left as an exercise,
which finishes the proof. u

The next two propositions characterize time- and frequency-domain window func-
tions as having differentiable derivatives of their Zak transforms.

Lemma (Window Function). If x(7) € LZ([R%), and x(7) is a window function, then
z = A
(1x(1) (s, ©) = s(Zx)(s, ) + —[—(Zx)(s, co)} . (10.154)
2nldw

Proof: Applying the Zak transform (10.141) to y(f) = tx(), this is straightforward:

oo

Y (s—k)x(s—k)e

k= —oo
s Y x(s—k)e - Y kx(s-k)e

k = —o0 k= —oo

2mjwk

(Zy)(s, ®)

2mjwk 2mjwk

(10.155)
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The first summation on the bottom of (10.155) is s(Zx)(s, ). Partial differentiation
of (Zx)(s, m) with respect to ® gives

2njk®

%(Zx)(s, w) = § 2mjke x(s-k), (10.156)

k = —oo

and algebraic manipulation accounts for the second summation in (10.155). ]

Proposition (Window Function Characterization). Let x(¢) € L*(R) and Zbe the
Zak transform Z: LZ([R) - L2(S), where S is the unit square [0, 1] X [0, 1]. Then x(¢)
is a window function if and only if

i(ZX)(s, w)e L’[S]. (10.157)
ow

Proof: If x(¢) is a window function, then the Window Function Lemma applies and
(10.154) holds. Since s(Zx)(s, ®) € LZ(R), necessarily (10.157) holds. Conversely,
suppose (10.157). Because both of the final two sums in (10.155) are in LZ(S), S0 is
their sum. Following equalities backwards in (10.155), we thereby find that

oo

Y (s—k)x(s-k)e

k = —oco

MOk 120s). (10.158)

But (10.158) is none other than the Zak transform expansion for #x(¢). Thus, x(¢) is a
window function. u
Lemma (Derivative). If x(7), x’(¢) € LZ(R), then

208 (1)) (s, ) = %(Zx)(s, ®). (10.159)
Proof: By differentiating the Zak transform sum (exercise). |
Proposition (Derivative Characterization). Let x(7) € LZ(R), let X(w) be its

radial Fourier transform, and let Z be the Zak transform Z: L2(IR) — LZ(S), where S
is the unit square [0, 1] x [0, 1]. Then X() is a window function if and only if

ai(zx)(s, ®) e L°[S]. (10.160)
S

Proof: The Fourier transform of x’(¢) is joX(w), so x'(¢) € L*(R) if and only if
oX(w) LZ(R); that is, X(w) is a window function. Invoking the Derivative Lemma
completes the proof (exercise). |

The proof of the general Balian—Low theorem for frames uses the above Zak
transform properties. The bounds theorem, however, implies a weaker version of the
theorem, recapitulated from Ref. 13, where it is attributed to Yves Meyer.
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Theorem (Meyer). Let w: R — R be continuous and suppose there are € > 0 and
C > 0 such that

c
(1+1)

Then {w,, (1) = eznjmw(t —m): m,n € Z} cannot be a frame.

lw(n)] < (10.161)

1+¢°

Proof: Since |w(1)| is dominated by C(1 + |t|)717 € its Zak transform sum con-
verges. Moreover, it must converge to a continuous function in L%(S), where S is the
unit square [0, 1] x [0, 1]. For the sake of contradiction, now suppose that (Wi =
eznj"’w(t —m): m, n € 7} constitute an Lz(R) frame with lower and upper bounds A
and B, respectively. Since w(f) has a Zak transform, the bounds theorem (10.148)
entails 0 <A < |(Zw)(s, )| for almost all (s, ®) € S. But (Zw)(s, ®) is continuous,
and therefore |(Zw)(s, ®)| # 0 for all (s, w) € S.

The trick is to define, for each s € [0, 1], the curve, {;: [0, 1] — C:

(Zw)(s, )

. (10.162)
(Zw)(0, )

C(w) =
Note that {o(®) = 1. Since (Zw)(s + 1, ®) = eznjm(Zw)(s, ), it follows as well that
Ci(w) = ¥ for all € [0, 1]. But we cannot continuously map the horizontal line
segment defined by () to the unit circle defined by {;(®) unless at some € (0, 1)
and some g € [0, 1] we have  (®wg) = 0. But then (Zw)(r, @) = 0, which contradicts
the fact that (Zw)(s, ®) # 0 for all (s, ®) € S. Indeed, {w,, ,(1): m, n € Z} cannot be
a frame. |

The next section proves the general Balian—Low theorem. We have already
shown the result for orthonormal bases and for frames deriving from continuous
window functions with a sufficient decay rate. In the general theorem, the window
function assumption is much weaker: the windowing function w(z) of {w,, ,(1): m,
n € Z} need only have finite energy.

10.5.2.2 General Balian—Low Theorem. The idea of a frame generalizes the
notion of an orthonormal basis. We introduced frames along with the theory of
Hilbert spaces of analog signals in Section 3.3.4. Signal analysis using atomic sig-
nal models is possible with frames in the sense that such a decomposition:

® Uniquely represents candidate signals;

® Reconstructs a candidate signal in a numerically stable way from its decompo-
sition coefficients.

Frame theory has classic beginnings—Ref. 43—45, for example—and numerous
recent texts and papers cover its relationship to mixed-domain signal analysis [27,
42, 46].
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We begin with two lemmas on applying the Zak transform to dual frame ele-
ments. Recall from basic frame theory (Section 3.3.4.3) that if F = {f,(f): m,n e Z}
is a frame in a Hilbert space H, then the associated frame operator T: H — P(2) is
defined by

Tx)(n) = (x,f,)- (10.163)

Frame operator 7is linear; it is bounded; and, in particular, if B is the upper frame
bound, then||T(x)||> < B][x||>. Associated to T is the operator S: [(Z) — H defined
for y(n) € I*(Z) by

Sy) = Y y(n)f,. (10.164)

n = —oco

In fact, we showed that S is the Hilbert space adjoint operator of T S = T*. The
composition 7*7 happens to be an invertible map 7*7: LA(R) — LA(R) given by

(T*TYx) = Y AL, (10.165)

n = —oo

We can thus define the dual frame to F by applying the inverse of 7#*7 to frame
elements:

F= {(‘T*‘Z‘)l(fn)} . (10.166)

neZzZ

The dual frame idea is key in signal analysis applications. If the dual frame
elements are given by f, = (7*7 )y~ f, » then we have a reconstruction formula
for x(¢) from both frame and dual frame elements:

oo

X(6) = Y Ax(0), (O fu(D) (10.167a)

n = —oo

and

oo

()= 3 ), (), (D). (10.167b)
If x(), () € H, then these formulas imply

(@0, y(0) = % (X0, £,(0) Fal), Y1) (10.168a)

n = —oo
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and

(XD, 70 = 3 (X0, [ (1), ¥(1)) - (10.168b)

n = —oco

Our theory now combines frame and Zak transform concepts. We are also exploit-
ing several different Hilbert spaces: Lz(R), Lz([O, 1] x [0, 1]), and lz(Z). Note that
although we have formulated these properties for frame elements indexed by a sin-
gle integral variable, we can specify a one-to-one correspondence between integers
and their pairs, k <> (m, n). Our families of windowed Fourier atoms {w,, ,(¢): m,
n e Z} are doubly indexed, and we thus rewrite (10.163) through (10.166) accord-
ingly. The next lemma shows the relationship between the Zak transform and the
frame operator.

Lemma. Let w(?) € Lz(R); let F = {w,, ,(t) = expQ2jn)w(t —m): m,n € Z} be a
frame; let 7 be the associated frame operator; and let Z: LZ(R) - L2(S) be the Zak
transform, where S is the unit square [0, 1] X [0, 1]. If x € Lz(R) and Zx=ye LZ(S),
then [AT*T)Z 'y = |Zw|2y.

Proof: We have [Z(T*T)Z 'y = [T *T)x. Since (T*T )x = Xx, W, W, o
we have

-1
(Z(T*DZ 1y = ¥ (x wm,n)Zwm’n = ¥ (zx Zwm,n)Zwm’n.
m,ne 7z mne 7z
(10.169)
But
2 zx, ZW . W = Dy, FNST2TOM 73, N 2GS o 2TGOM 7, (10.170)

by the Modulation Proposition in the previous section. Manipulating the inner prod-
uct on the right-hand side of (10.170) gives

d{zx, ZWyy ) Wiy = DUy Zw Zw, 2T ImOm) 2Mjns o2 jom (10.171)

Now, ZwZw = |Zw|2, and since the two-dimensional exponentials Q2TINS =2 510

an orthonormal basis for L*(S), the last expression is precisely |Zw|2y. |

Lemma (Dual Frame). Let w(f) € LZ(R), let F = {w,, () = eznj’"w(r —m):m,ne
Z} be a frame, and let 7 be the frame operator on F. Further, let

~ -1
Wy = (THT) W, (10.172)

be the dual frame elements for F and Z: LZ(R) - LZ(S) be the Zak transform, where
S is the unit square [0, 1] X [0, 1]. Then
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(Zwm,n)(s’ ) ~ eannse—Zrcju)m

(2w, (s, ©) = (10.173)

[(Zw) (s, (o)l2 (Zw)(s, ®)

Proof: By the previous lemma, if Zw,, , =y € L2(S), then [HT*T)Z~ 1]y = |Zw|2y.
By definition of the dual frame, v~vm a = (T*T )_lwm ,, - Fiddling with operators
shows

Zw, = T wmn= Z(TT) 27y = 2w’y = 2w 2w, .

m,n

(10.174)
The Bounds Theorem justifies division by |Zw|2 in (10.174), and (10.173) follows
from the Modulation Proposition. |

These tools allow us to extend the Balian—Low theorem to frames.

Theorem (Balian-Low for Frames). Let TQ = 2w, w(f) € LZ(R), and let W = Fw
be the Fourier transform of w. If the collection of windowed Fourier atoms F =
WD = &Yyt —mT): m, n e 7} is a frame, then—once again—either

(i) w(r) is not a window function:

[ Pw)*de = w3 = e, or (10.175)

—oo

(i1)) W(w) is not a window function:

[ o’ W) do = [oW(®)|} = . (10.176)

—oco

Proof: By a scaling argument, such as we used in proving the theorem for
orthonormal bases in Section 10.6.1, it suffices to prove the theorem for 7= 1 and
Q = 2m. Let us suppose that both tw(7) and @W(w) are square-integrable and seek a
contradiction.

Let Z : LZ(R) - LZ(S) be the Zak transform, where S = [0, 1] x [0, 1], and
w = (T*T)'w, where 7 is the frame operator for F. We claim that

mw(t) e LA(R) (10.177a)

and

%m) e LX(R). (10.177b)
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Indeed, from the assumption that tw(t) € Lz( R), the W1ndow Function Characteriza-
tion Proposition (10. 157) implies f(Zw)(s W) e L’ [S] . Likewise, supposing
oW(w) e LZ(R) gives f(Zw)(s m)(g L7[S] via the Derivative Characterization
Proposition. But extractfng derivatives is straightforward using the Dual Frame
Lemma (10.173) with m = n = 0. Thus, w,, ,(#) = w(?), and we calculate

) ————
i (Zw)(s, ®) _ 0 1 _m(ZW)(s, )

5 5 3 = (10.178a)
S(zw) (s, w)| S(Zw)(s, @) (s, )

d -
352G, ®) =

and

a -
—m(Zw)(s, o)

0, .~ 0 (Zw)(s, ®)
%(Zw)(s, w) = Yo

I
O zZw)(s, w)>  ©

O zZw)(s, (o)=

(Zw)(s, ®)°
(10.178b)

Denominators are nonzero almost everywhere in (10.178a) and (10.178b) by the
Bounds Theorem on the Zak transform. That is, the expressions on the ri ght hand sides
of (10.178a) and (10.178b) are in LZ(S) Hence the partlal derivatives f(Zw)(s )

and i(Zw)(s ®) are in L2(S) Hence tw(t) € L (R) and w ‘(1) e L (R) by the
Window Function and Derivative Characterization Propositions, respectively.

Now—working toward a contradiction along the same lines we used for the case
of orthonormal bases—we claim that

) = <w,v~vm,,>={ 1 ifm=n=0 (10.179)
’ 0 otherwise.

To justify the claim, we apply the unitary Zak transform to the inner products of
(10.179) and use (10.173) once more:

11

(w, v~vm, W = (Zw, Zv~vm’ W = ”(Zw)(s, (L))(vam’n)(s, ®) dsdw
00
11 e—ZTr,jnseZ‘rtjwm
= [z , ) ——————— dsdo. .
[[@w)(s, @) e © (10.180)
00
Consequently,

R

(W, = [Je " dsda, (10.181)

00
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which will be unity when m = n = 0 and zero otherwise by the orthogonality of the
dual exponentials on the unit square. Showing the same result for (w, W, 0 is left
as an exercise.

Our next claim is that
(tw(1), w' (1)) = —{w’ (1), tw(1)). (10.182)

Recalling the reconstruction formula for frames (10.167a) and (10.167b), we write

oo

(tw(),w' (1)) = % (tw(t),ﬁzm,n(t)ﬂwm,n(t),fv’(t)) (10.183)

m,n = —oo

and work on inner products within the sum. We compute the first by expanding the
inner product integral and using (10.179) (exercise):

(tw(1), V~Vm, WD) = Aw_, (1), w(t)) . (10.184)

The second inner product in the sum of (10.183) involves integration by parts, and
here the proof has much of the uncertainty principle’s flavor.

<Wm,n([)’ w(t)) = j eznjmw(t—m)fv’(t) dt. (10.185)
It follows, upon integrating by parts, that

2njnt

(W (D, W(1)) =€ w(r—m)m\:— jez"f”’w'(z—m)th) dt

—oo

— [ 2mjne™™ " w(t - myw(e) dr. (10.186)

—oo

The first term on the right-hand side of (10.186) is zero. The inner product in the
third term, 2njn(wm, 20, w(t)), is zero unless m = n = 0, as we proved above,
and, thanks to the 2mwtjn factor, the entire term is necessarily zero. Changing the inte-
gration variable in the remaining term produces

oo

(W (D, W (1) = = | w’(t=m)w(t) di= ~(w’ (1), w_,, _, (1)
e (10.187)

2mjnt
e ]

Substituting (10.184) and (10.187) into (10.183) and reversing the summation, we
discover
(tw(), w' (D) = = 3 WD), w, () w, (0O, tw(t)) = =W (1), tw(1)).

m,n = —oo

(10.188)
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Is this last equality plausible? We claim that it is not, that it leads to a contradiction,
and that, therefore, our assumption that w(f) and W(w) are both window functions is
false. To verify this final claim, let us work the integration by parts on the inner
product on the left-hand side of (10.188):

oo

(tw(@), w(0) = [ tw()W' (1) dt = = [ w(@)w(t) dt— [ w'(1)iw(t) dr.

(10.189)
The integrals on the right-hand side of (10.189) are inner products, so that
(tw(n), W' (1)) = = (w(1), w(r)) = (w'(1), tw(1)) . (10.190)

But we know {(rw(r), w’(£)) = —{(w’(¢), tw(t)) by (10.188) and (w(r), w(t)) = 1
by (10.179). This exposes the contradiction and finishes the proof. |

Remark. Integratlon by parts for x, y € LX(R), J’x y = xy|- .[xy generally pre-
supposes that xy, xy” € L(R). Using a limit argument however, we can make only
the additional assumptions that the derivatives x” and y” are square-integrable [12,
13]. We can specify x,, — x and y,, — y, where {x,,} and {y,} are Schwarz space ele-
ments, for example.

10.5.3 Avoiding the Balian-Low Trap

Let us add a final footnote to the saga of Gabor’s problem. It is possible to escape
the negative conclusion of the Balian—Low theorem only by giving up on some of
its suppositions. One of these suppositions is the exponential term in the windowed
Fourier atoms. This is something that probably seems quite natural given all the
work we have done with signal transforms with the complex exponential at their
heart. The idea is to extract orthonormal bases with good time-frequency localiza-
tion by using sines and cosines instead [12].

10.6 SUMMARY

The Gabor transform is the most accessible mixed-domain transform tool. It is a
representative of a broader class of short-time (or windowed) Fourier transforms
(STFT). These transforms invoke a tiling of the time-frequency plane with regions
of equal size. The Gabor transform tiles have the minimal area. Tilings of the time-
frequency plane are a powerful technique for discovering signal structure, and,
developing wavelet theory in the next chapter, we will explore the concept further.
In point of fact, equally sized tiles can be a difficulty when analyzing signals that
contain feature of different extents and transients; the wavelet transform has time-
frequency tiles of varying size, and it was first developed as a transient-capable
alternative to the Gabor transform.
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Thus, there are some practical and theoretical limitations to the Gabor transform
and the STFT in general:

® The size of the signal structures that must be analyzed becomes problematic
when the time-domain window has already been fixed for the transform
analysis.

® Computationally, the method does not support frames based on windowed
Fourier atoms unless the time-frequency density is sufficiently dense.

Natural and synthetic signals have time-limited frequency components. One of
the important observations from Chapter 9’s study of frequency-domain signal anal-
ysis is that standard Fourier transform tools sometimes do a poor job of identifying
these localized oscillations. Our principal approach was to trim the source signal
x(¢) with a symmetric, decaying window function. This technique time-limits, or
windows, a signal before calculating its spectrum. There are many variants, depend-
ing on the window’s shape. Windowing furnishes better estimates of a signal’s spec-
trum, because it restricts the signal values to those over which the relevant
oscillatory waveform features should appear.

The short-time Fourier transform extends this idea of signal windowing to a full
transform. It lays out the frequency content of a signal according to the time that the
oscillatory components appear. Discretized, the windowed Fourier transform pre-
sents a complete structural description of a signal. In Chapters 4 and 9, such con-
structions were at best ad hoc. Now we can produce a full graphical representation
of signal frequency components and the time of their occurrence. Moreover, a rich
mathematical theory supports the application of this structural tool.

Of the many feasible window shapes upon which we can found a time-limited
Fourier transformation, the one which uses a Gaussian window is the Gabor trans-
form. It is the most natural of the various STFTs, and we introduced it to lead off the
chapter. The Gabor transform’s Gaussian window function has optimal time and
frequency locality—a result of the classic Heisenberg Uncertainty Principle.

Applications generally use the squared norm of the transformed signal, called
the spectrogram. We discovered, moreover, that spectrogram performance is sat-
isfactory for many signal analysis tasks. In particular, it has seen wide and largely
successful application in speech recognition. It has been the basis for many appli-
cations that need time-limited descriptions of signal spectra. The spectrogram of
the signal x(¢) relative to the window function w(¢) is the squared magnitude of
the Fourier transform of the product: |F [s(t)]|2 = |7 [x(t)w(t)]|2. This is a non-
negative real value. Applications can therefore compare or threshold spectrogram
values in order to decide whether one frequency is more significant than another
or whether an individual frequency is significant, respectively. With the spec-
trogram, of course, the application design may need to search through possible
time locations as well as through possible frequency ranges when seeking local
spectral components. That is, Fourier applications tend to be one-dimensional, in
contrast to short-time Fourier applications, which are inherently two-dimensional
in nature.
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Virtuous in their locality, short-time Fourier transform methods improve upon
the necessarily global Fourier transform, but they are not without their problems.
The previous chapter found the spectrogram adequate for many important signal
analysis tasks. It can perform poorly, however, when signals contain sharply varying
frequencies, such as chirps, transients, or unconstrained frequency modulation. This
behavior is mitigated in the short-time Fourier transform, but not completely
removed. There is still the problem of selecting a window for the transform
operation. And there is the fundamental limitation for discrete methods that the
Balian-Low theorem enforces. Since their critically sampled collections cannot be
frames, and hence cannot provide stable signal reconstruction, we are led to hope
that the signal universe is made up of more than just windowed Fourier atoms.

10.6.1 Historical Notes

A recent history of time-frequency analysis by one of the principal contributors to
the discipline, L. Cohen, is Ref. 47. It includes an extensive bibliography.

The original time-frequency signal analysis technique is the Wigner—Ville
distribution. E. Wigner proposed it for application to quantum mechanics [28]. J.
Ville used it to explicate the notion of instantaneous frequency for communication
theory purposes [29]. The WVD does not rely on a separate window function for
generating the transform, using instead a bilinear term involving the original signal.
This independence from window selection is at once its strength and weakness. The
WVD and its more modern variants have been widely studied and are quite power-
ful; under certain conditions these transforms are optimal detectors for frequency-
modulated signals [48]. It has been used as the cornerstone of a complete approach
to biological and computer vision, for example [32].

The WVD has come under critical scrutiny because of the problematic cross-
terms that the transform produces [7]. Some conferences have witnessed spirited
debates over this transform’s strengths and weaknesses. There are a variety of
approaches for reducing cross-term effects, and a number of researchers were
already investigating them in the early 1980s. The main line of attack was given by
P. Flandrin in 1984 [49].

The general theory of quadratic kernel-based transforms is due to L. Cohen [35].
He introduced the Cohen class of distributions for applications in quantum mechan-
ics—an area that has stimulated many original contributions to time-frequency
signal theory. Later, Wigner published the result that quadratic time-frequency
representations, such as his namesake distribution, cannot be simultaneously non-
negative and obey the Marginal Conditions.

The Gabor transform is the most easily accessible time-frequency transform, and
this is due to the analytic tractability of the Gaussian window function. Gabor’s
1946 paper studied sets of signal atoms—Gabor elementary functions—with
optimal joint resolution in the time and frequency domains. Gabor applied the
theory to acoustics [19] and communication theory [1]. Gabor’s conjecture—that
optimally localized time-frequency atoms of spatial and spectral sampling intervals
satisfying TQ = 2w could be a foundation for signal analysis—was seriously
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undermined by the Balian—-Low theorem. Such windowed Fourier atoms cannot
comprise a frame; their signal reconstruction behavior is therefore unstable. Never-
theless, Gabor methods remain the mostly widely applied time-frequency transform.

Researchers in diverse areas—communications theory, speech recognition, seis-
mic signal interpretation, image analysis, and vision research—have had a keen
interest in the Gabor transform for many years. One surprise, in fact, issued from
investigations into the behavior of neurons in the visual cortex of animals. Research
showed that individual neurons respond to certain visual stimuli in ways that resem-
ble the shapes of the real and imaginary parts of GEFs. Chapter 12 outlines these
discoveries and provide references to the literature.

We now know from frame theory, largely developed by I. Daubechies and her
coworkers [12, 25, 27] that frames of windowed Fourier atoms are possible for suf-
ficiently dense time-frequency samplings. For many years, investigators pondered
how to expand a signal with elementary functions based on a particular window
function, such as the Gaussian. Sparse samplings preclude windowed Fourier
frames, and at the Nyquist density they are only possible given poor time-frequency
localization. Therefore, decomposing signals with windowed Fourier atoms was a
major problem. The first solution was in fact given many years after Gabor’s paper,
by M. Bastianns [50, 51] using the Zak transform. Another strategy for finding
expansion coefficients relied upon a neural network for their approximation [52].
Only recently have efficient algorithms for calculating the decomposition coeffi-
cients been disclosed [53].

The correct proof of the Balian—Low theorem eluded researchers for a number of
years. The result was given independently by Balian [37] and Low [38]. Their
proofs both contained the same technical gap, which was corrected several years
later for the specific case of orthonormal bases [39] and later extended to frames
[25, 40]. It is a hard-won result. Further research in this area produced a
workaround for the Balian—Low theorem: Use sinusoids instead of exponentials for
the atomic decomposition! Some examples of this approach are [54, 55].

10.6.2 Resources

Readers will find the following resources handy for working with time-frequency
transforms:

® The Matlab and Mathematica commercial software packages, which we have
used to generate many of the figures.

® The Time-Frequency ToolBox (TFTB), available over the web from CNRS in
France; this public-domain software package, based on Matlab, contains a
variety of tools for performing STFT, WVD, and other time-frequency signal
transforms. We have used it for replicating the WVD analysis of the speech
sample “Gabor.”

® The small, but very educational, demonstration tool bundled with the treatise
[8], the Joint Time-Frequency Analysis (JTFA) package. We have used JTFA
to illustrate a number of STFT and WVD concepts in this chapter.
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10.6.3 Looking Forward

Time-frequency transforms are problematic in certain applications, especially those
with transients or local frequency information that defies any a priori demarcation
of its frequency- and time-domain boundaries. Quadratic methods have better spec-
tral resolution, but interference terms are sometimes hard to overcome. Finally, the
Balian—Low theorem enforces a fundamental limitation on the joint time-frequency
resolution capability of the windowed Fourier transforms.

This situation led to the discovery of another mixed-domain signal analysis tool—
the wavelet transform, one of the great discoveries of mathematical analysis in the
twentieth century. As we have already indicated, the wavelet transform uses a signal
scale variable instead of a frequency variable in its tranform relation. This renders it
better able to handle transient signal behavior, without completely giving up fre-
quency selectivity. Readers seeking a popular introduction to wavelet theory, a review
of the basic equations, and fascinating historical background will find Ref. 56 useful.
A more mathematical treatment focusing on applications is Ref. 57. The next chapter
introduces wavelets, and the final chapter covers both time-frequency and time-scale
applications.
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PROBLEMS

1. Suppose that i, 6 € R, 6 > 0; and g(#) = g, 5(7) is the Gaussian signal with
mean U and standard deviation ¢. Find the Gabor transform with respect to
80.4(p) of the following signals:

(a) x(r) = exp(6mjt)
(b) y(t) = exp(-5Smjt)
(©) z(t) = x(2) + y()
(d) exp(jmgt)

(e) sin(6mr)

(®) cos(5mr)

2. Using the notation of the first problem, find the Gabor transform with respect to
80,1(9) of the following signals:

(a) x(r) = 8(¢), the Dirac delta
(b) y(1)=8(t -5)
(©) s(t) = x(1) + y(1)
(d) z(r) =0(t—r), where re R
3. Using the notation of the first problem, find the Gabor transform with respect to
80,1(0) of the following signals:
(@) x(1) = g5.4(0)
(b) ¥(1) = g3 4(Nexp(6m;1)
(€) 2(1) = g_p 4(1)cos(6mr)
d) s = g_2,4(t)sin(6m)

4. Let x(r) = exp( thz) be a linear chirp signal and g(¢) = gg () be the zero-mean
Gaussian with standard deviation ¢ > 0.
(a) Find the Gabor transform X g(u, o) of x(7).
(b) Show that the frequency at which |X,(lL, )| reaches a maximum value for
w="Tis Q. =2TQ
(c) Leto(r) = Qtz, so that ¢(#) is the phase of the signal x(¢); show that the insta-
neous frequency of x(f), d/dt evaluated at t = T, is precisely €2, of part (b).

5. Suppose that x(7) is an analog signal; I, 6 € R, 6 > 0; and g(#) = g, (1) is the
Gaussian signal with mean [ and standard deviation 6. Show the following:
@) g) e LAR).
(b) If x(r) € LZ(R), then x(f)g(?) € LZ([RE) and the Gabor transform of x(?),
X, (1, ) exists.
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(¢) Show that if x(¢) € L2( R), then its Gabor transform with respect to the win-
dow function g(¢) is the inner product of x(f) and the Gabor elementary
function g(f)exp( jor).

(d) Find the norm of g(r) in L*(R): ||g(1)||>.

. With the notation of Problem 1, show the following:

(@) If x(r) € L'(R), then x(1)g(r) € L'(R) also.
(b) If x(r) € L'(R), then X, (11, ®) exists.
(c¢) Find an upper bound for ||Xg(u, ®)||;, the L'(R) norm of Xy(1, ).

. Let y(¢) = g(Hexp( joyt), using the notation of Problem 1.

(a) Write the sinusoidal signal, sin(®?), as a sum of exponentials and sketch its
spectrum using Dirac delta functions.

(b) Using the Sifting Property of the Dirac delta, calculate Y(®).
(c) Sketch the magnitude spectrum |Y(w)| and the phase spectrum arg[Y(®)].

. If w(z) is a window function and v(#) = w(t + ). Define the center C,, and radius

of p,, of w(¢) by
1 2
C, = — j tlw(n)| dt, (10.191)
Iwl3—c

1

- 2 2, 7
Py = |[— [ (t=C) Wl dr| . (10.192)

w5 —c

(a) Show that v(¢) is a window function also.

(b) Show C, =C,, — 1.

(¢) If W= Fw and V = Fv are the Fourier transforms of w and v, respectively,
and W and V are window functions, then Cy, = Cy,.

(d) p,=py-

(e) If x(r) =exp(—jCyt)w(t+ C,),then C,=Cx=0and p,=p,,.

. Let w(?) be a window function. Show the following:

(@) s =1+~ e LAR).

(b) v(r) = (1 + [fhw(r) € LA(R).

(¢) Use the Schwarz inequality for analog Hilbert spaces (Chapter 3) and the
previous two results to show that w(¢) € Ll(R).

(d) Again using the Schwarz inequality, show that 2w e LA(R).

This problem explores how our definitons of center and radius accord with the

mean and standard deviation of a Gaussian pulse.

(a) Calculate the center and radius of g(f) = gu,c(t), the Gaussian with mean [
and standard deviation ¢. For instance, for p, we find
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. . -’

2 t o’
j tlg()| dt= j S—e dt. (10.193)
oo o0 2T

(b) Calculate the center and radius of the other standard window functions: the
rectangular, triangular, Hanning, Hamming, and Blackman windows.

(c) Calculate the center and radius of the B-spline windows, [3,,().

11. Letw(r) € L2(IR) and define the signal x(¢) by
x(t+ k)= (—1)kw(t—k—1), (10.194)

where t € [0, 1) and k € Z. Show the following:
(@) xe L*(R)

(b) [xll2 = [l

(© [pdl2#0

12. Let x(7) € LZ([R), and X'(r) ¢ LZ(R). Show that py = co. [Hint: Use Parseval’s
theorem for the radial Fourier transform and the formula for F[x'(H)](®).]

13. Consider the two-dimensional LZ(RZ) signals x(s, 7), or images, that satisfy

[ ] s, 0| dsdt < oo . (10.195)

—00 —00

(a) Show that LQ(RZ) is a vector space: it is closed under sums and scalar mul-
tiplication, and each element has an additive inverse.

(b) What is the zero element of LZ(RZ)? Is it unique? Explain how to rectify
this difficulty by establishing equivalence classes of images [x] = {y €
Lz(Rz): x(s, 1) = y(s, t) for almost all (s, ) € Rz}. Define vector addition of
equivalence classes by [x] + [y] = [z], where z = x + y. Define scalar multi-
plication analogously. Show that this definition makes sense.

(¢) Define a norm on LZ(R 2) by

1

00 —oo 2
2
{j jIx(s, 1| dsdt} = ||x||2 2R (10.196)

Show that ||x|| in (10.196) is indeed a norm: ||x|| > O, unless x(?) is zero
almost everywhere; ||ax|| = |a|||x||; and ||x]| + |[¥]| = |}x + Y-
(d) Show that L2(R2) with norm (10.196) is a Banach space; that is, every

Cauchy sequence of finite-energy images converges to a finite energy
image.
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(e) If x(s, 1) and y(s, t) are in L2( [Riz), then we define their inner product by

00 —oo

(x, y>L2(R ) j J’ x(s, 1)y (s, 1) dsdt . (10.197)
Show that {x, y) is an inner product space: {x + y, z) = {x, ¥) + {x, z); {ax, y) =
alx, yy; {x, xy = 0; {x, x) = 0 if and only if x(#) = 0 almost everywhere; and
Xy =X

(f) Show that LZ(IR 2) is a Hilbert space.

Prove the Parseval theorem for the short-time Fourier transform. Suppose x(7),
¥(t) € LZ(R) suppose w(f) is a window function; and let X,,(ll, ®) and Y, (1, ®)
be the STFTs of x(¢) and y(¢), respectively, based on windowing with w(#). Then

X o
2y (v )= [ [ X, (0 07, (1 0)dodi= (X, ), o (10.198)

—00 —00

Prove the Plancherel formula for the short-time Fourier transform. Let x(7) €
LZ(R), let w(t) be a window function, and let X, (1, ) be the STFT of x(¢).
Then

G

2, L*(R?
Ixll,= 27 . R) (10.199)
2

Prove the inversion formula for the short-time Fourier transform. Suppose
x(t) LZ(R), suppose w(t) is a window function, and let X, (1L, @) be the STFT
of x(¢). Then for all a € R, if x(¢) is continuous at a, then

x(a)= —1-—- [ X,, (1 0)w(a)e ™ dody. (10.200)

@nlwl3)

Provide an example of a signal x(f) € L2(R) that fails to satisfy the special con-
dition we assumed in the first part of the Uncertainty Principle’s proof:

lim Jd|x(5)|= 0; (10.201)
t— o0

[Hint: Define x(f) so that x(n) = € > 0 on the integers Z.]

Restate and prove the Uncertainty Principle for the Hertz Fourier transform:

21'[]0)[

X(0)= J x(1)e

—oo

(10.202)
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Let us derive a one-dimensional form of Heisenberg’s Uncertainty Principle.
Following the quantum mechanical viewpoint, we assume that the position and
momentum describe the state of an electron, and a probability density function
|q)(x)|2 governs its position. The probability that the particle is on the closed real
intervala <x<bis

b
j|¢(x)|2dx, (10.203)

where we must have ||¢(x)||, = 1 so that ¢ is indeed a density. Define a momen-
tum state function y(w) as follows:

*(3)
h
A21h
where ®(w) is the radial Fourier transform of ¢(x), and % is a constant
(Planck’s).

(a) Show that ||y(m)||, = 1, so that y is a density also.

(b) Let Ay =2p, and Ay, =2p,, be the diameters of ¢ and , respectively, where
p is the radius (10.192). Show that A¢AW >2h.

y(w) = s (10.204)

Suppose we are interested in time-frequency localization and thus require a

short-time Fourier transform based on a window function w(¢) such that W(w) is

also a window function.

(a) Which of the standard window functions, if any, in Table 10.2 supports this
requirement?

(b) Show that a Gaussian works.
(c) Show that any B-spline B,,(¢) of order n > 1 works too.

This problem explores the idea of changing the window width normalization
for the Gabor transform. We defined the Gabor transform for an arbitrary Gaus-
sian window gg 5(#) of zero mean and arbitrary standard deviation ¢ > 0:
=w)’
2
20

oo

J' x(t)e

ON2T_

7. (10.205)

X,(, ©) =

(a) Supposewe are Gabor transforming with awindow function g(r) with ||g(9)||; =
1, where || - || is the norm in the Banach space of absolutely integrable signals
L'(R). What form do the followin g Gabor tranform properties take in this case:
the inverse theorem, the Plancherel theorem, and the Parseval theorem?

(b) Suppose instead that we have used a Gaussian g(f) with ||g(#)||, = 1. Now
what form do these same properties take?

Try to prove the bounds theorem for windowed Fourier frames without resort-
ing to Zak transform results. Let w(f) € LZ(R) and its windowed Fourier
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atoms {w,, ,(f) = ei”Q’w(t —mT): m, n € 7}, constitute a frame. Show that

A< é—nT ||w||§ < B, where A and B are the lower and upper frame bounds, respec-
tively.

Suppose we select the following window function: w(f) = (1 + T

(a) Show that w(¢) is bounded (in L™(R)) and absolutely integrable (in LI(R)).

(b) Let T > 0 be the time-domain sampling int2erval for discretizing the STFT
with respect to w(f). Show that Z|w (¢ — kT)|” has an upper and lower bound.

(¢) Show that we can find a frequency-domain sampling interval Q > 0 such that
{(Win() = ™Myt —mT): m, n € 7} are a frame. How small must Q be?

(d) Repeat the above steps for the Gaussian window w(?) = gu’(,(t), the Gauss-
ian with mean |, and standard deviation G.

Let x(¢) € LZ(R) and Xy (UL, ®) be its Wigner—Ville distribution. Show the

following:

(a) If S(l) =x(t - Cl), then Swv(l.L, W) = XWV(H_ a, (D)

(b) If y(t) = &¥x(1), then Yyy(1, ®) = Xyy (W, @ — 6).

(¢) If y(¥) = ax(?), then Yyy(U, ®) = |a|2XWV(u, ).

(d) If y(#) = x(t/a) and a > 0, then Yy (U, ®) = aXyy(Wa, aw).

() If y(r) = exp(i0r*)x(r), then Yyyy(1, ®) = Xyyy (i, © —26).

Let x(¢) € LZ(R), X(w) be its Fourier transform, and Xy (1L, ®) be its WVD.

Show the following symmetry properties:

(a) If x(¢) is real-valued and Xywv (UL, ®) = Xwvy(1, —®), then X(w) is even:
X(w) = X(—w).

(b) If Xy (=1, ®) = Xywy(U, ®) and X(w) is real-valued, then x(f) is even.

Let x(¢) € LZ(R), w(?) be a window function, and let Xg (1L, ®) be the spectro-

gram of x(¢) with respect to w(r). Develop a table of properties for X (1L, ®)
analogous to Table 10.3.

Let x(#) and y(7) be finite energy analog signals and let Xy (I, @) be the cross
Wigner —Ville distribution of x(¢) with respect to y:

Xy, (L 0) = | x(p + é)y(p - é)e_j‘mdt. (10.206)

(a) Show that [Xyy (L, ©)]* = Yyyy (1L, ®).

(b) If s(9) = x(¢) + y(¢), show then that Sy (L, ®) = Xyy(UL, ©) + Yiyy(U, ©) +
2Real[Xyyy, (1, 0)].

(c) What is the relation between the cross Wigner—Ville distribution and the
short-time Fourier transform?

Suppose x(f) = /. Show that Xy (1L, ®) = (21)"'8(w — a).

Let g(#) = g¢,5(?), the Gaussian of mean o and standard deviation 6 > 0. Show
that
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N2
coor {45

XWV(“" ) = Te . (10207)
2 "o

30. Let s(r) = u(t+ 1) —u(t — 1). Show that
Sy (1L ©) = ZL(E)I'L—)sian(l—IuI)). (10.208)

31. Let x(¢) € LZ(R), let X(®) be its Fourier transform, and let Xy (U, ®) be its
WYVD. As a function of [, show that Xy (1, @) has the following Fourier trans-
form:

" —ju® 0 9
FiXyy (L @)1(0) = [ Xy (1, )My = X(w+§)X(u)—§). (10.209)

32. Complete the proof of the bounds theorem for windowed Fourier frames. Let
w(t) € L2(R) and suppose {w,, (1) = eznjmw(r —m): m,n € 7} is a frame, with
lower and upper bounds A and B, respectively. Then for almost all s and ® we
have |(Zw)(s, oo)I2 < B, where Zw is the Zak transform (parameter a = 1) of w:

oo

(Z0)(s,0) = 3 x(s—k)e" k. (10.210)
k = —co
33. Prove the Zak transform derivative lemma: if x(¢), x'(¢) € Lz( R), then
Z(x"(1))(s, ®) = ag(Zx)(s, ). (10.211)
s

Justify interchanging the summation and differentiation operations when differ-
entiating the Zak transform sum with respect to s.

34. Complete the proof of the Zak transform derivative characterization. Let x(¢) €
LZ(R); X(w) = F[x(1)] be its Fourier transform; and Z be the Zak transform Z:
L2( R) — L2(S ), where S is the unit square [0, 1] x [0, 1]. Then the following are
equivalent:

(a) X(w) is a window function.
(b) X e LAR).

© ai(Zx)(s, o) e L’[S].
S
35. Letw(t)e LAR); F={w,, ,()=e¥"w(t—mT):m,ne Z} beaframe;let z: LAR) —

L2(S) be the Zak trlansform, where S = [0, 1] x [0, 1]; and let
w = (T*T) w =S w,where Tis the frame operator for F.If k€ Z,show that

(a) Translations by k and the operator § commute:
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(Sw)(t—k) = S(w(t—k)). (10.212)
(b) Modulations are also commutative under S transformation:
A swin) = s () . (10.213)

© (T*D Wy, w= (T*T) " (w,, ).

@ (w,, )= { Lo = =0
0 otherwise.

(e) Show that
(tw(t), fvm, 2O = (w_, (1), w(t)) . (10.214)
by expanding the inner product integral.

Develop an experiment with either real or synthetic data showing that an
improperly chosen STFT window width can render the transform information
useless for intepreting signal evolution through time.

Develop an experiment with either real or synthetic data showing the presence
of cross-terms in the WVD of a signal. Consider the analysis of a linear chirp
signal. Devise an algorithm to estimate the rate of change in frequency over
time. How do the WVD’s cross terms affect this algorithm? Suppose that a
quadratic chirp is given, and explore the same issues.

Obtain or generate signals have significant transient phenomena in addition to
localized frequency components. Develop experiments comparing the STFT
and the WVD for the purposes of analyzing such signals.

Define the following Hertz version of the spectrogram:

o0 ) 2
Xg () = | [ x(w(t-we " ™ay (10.215)

—oo

(a) Show that

[ Xg ,(wNdf = ] Is(yw(r—w)dr. (10.216)

— —oo

(b) Also show

[ X, (uAdw = [ X)W f) du. (10.217)

—oo —oo

(¢) Show that the Hertz spectrogram does not satisfy the either the time or
frequency marginal conditions.

(d) Define a Hertz version of the WVD.
(e) Show that the Hertz WVD satisfies the ideal Marginal Conditions.
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Time-Scale Signal Transforms

Petroleum seismologists discovered the modern form of the continuous wavelet
transform in the mid-1980s. For some time, researchers had been using time-
frequency transforms—such as the Gabor transform and its broader family of short-
time Fourier transforms—for analyzing signals containing localized frequency
components. Speech and seismic waveforms are representative examples.
Windowed Fourier analysis becomes problematic, however, when the structure of
the signal involves transients of varying scale. Then the short-time tools behave
more like the global Fourier transform, and their approximations converge poorly.
One idea put forward to improve decomposition convergence was to replace the fre-
quency variable with a scale parameter in the transform relation. The basis functions
for this new method were shifted and dilated versions of each other. So they looked
like little waves: wavelets.

This research caught the eye of mathematicians who found that the new tech-
nique held a wealth of special properties. It could be discretized. Wavelets were
close kin to theoretical tools used in the study of singular integral operators (mathe-
matical physics), the frame signal decomposition structure (harmonic analysis),
quadrature mirror filters (communication theory), and the scale space representation
(signal and image analysis). And against the intuition of all theoreticians of the
time, there were found orthonormal bases for the L2 Hilbert space that consisted of
smooth, rapidly decaying, similarly shaped elements: orthonormal wavelets.

This chapter develops both continuous and discrete scale-based transforms. The
topics include the continuous wavelet transform; further development of the idea of
frames, which we covered in Chapters 3 and 10; the concept of multiresolution
analysis; orthogonal wavelets; discrete wavelet transforms; and, finally, the con-
struction of multiresolution analyses and orthogonal wavelets. Wavelet decomposi-
tion furnishes an alternative approach for describing signal structure.

There is a rich research literature on wavelet transforms, including a history of
the discipline [1] and many excellent introductory treatments [2—12].

Signal Analysis: Time, Frequency, Scale, and Structure, by Ronald L. Allen and Duncan W. Mills
ISBN: 0-471-23441-9 Copyright © 2004 by Institute of Electrical and Electronics Engineers, Inc.
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11.1 SIGNAL SCALE

In a variety of signal analysis applications we have taken note of the problems that
arise due to the scale of signal features. The idea is that of the extent of recognizable
portions of the signal or the width of regions of interest within the signal may vary over
time. The scale of signal features affects the behavior of such signal analysis elements
as edge detectors, shape detectors, and local frequency identification algorithms.

From several standpoints we have attempted to interpret signals, and from each
of them we had to deal with the issue of scale in a rather informal manner. For
instance, in Chapter 4 we pursued time domain techniques for understanding sig-
nals. Scale issues affect edge and peak detection, obviously, and even the decision
about how wide noise removal filters should be must take into account the size of
objects sought within the signal. In Chapter 9 we designed filters to find periodici-
ties within signals. But when such oscillatory components are localized—and so
they often are in natural signals—then the extent of the oscillatory phenomenon
affects the outcome of the analysis.

The dilation of a function has the same basic shape. For scale-based signal anal-
ysis we generally use translations and dilations or scalings of a basic signal y(f):

Va0 = =v(=2) (L)
, J& a

In the next section, we shall show, following Grossmann and Morlet [13], that dila-

tions (variations in parameter a) and translations (variations in b) support a decom-

position of a general function y(#).

In the previous chapter we covered time-frequency transforms, which combine
time and frequency information in the transformed signal. These time-frequency
transforms achieve local frequency estimation, but the windowed Fourier trans-
forms suffer from a fixed window size. It turns out, as a consequence, that they do
not effectively handle signals with transients and components whose pitch changes
rapidly. Making the time-domain window more localized (narrower) makes the
frequency-domain window less localized (wider) and vice versa. Time-scale trans-
forms can deal with these last problems; indeed we can mark this insight by petro-
leum geologists as the grand opening of modern wavelet theory. But time-scale
transforms too have deficiencies. One such is the lack of translation-invariance. The
final chapter explores some signal analysis applications and examines the tradeoffs
between pure time-domain, time-frequency, and time-scale methods.

11.2 CONTINUOUS WAVELET TRANSFORMS

This section presents the continuous wavelet transform. The wavelet representation
for one-dimensional signals was developed by Grossmann and Morlet to overcome
the deficiencies of the Gabor transform for seismic applications [13]. Wavelets are
special functions whose translations and dilations can be used for expansions of
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Fig. 11.1. Typical seismic section.

square-integrable functions. In the discussion of the fixed window size implicit in
the Gabor representation in Section 2.4, it was noted that the Gabor representation
is burdened by the problem of high-magnitude, high-frequency coefficients that is
so typical of the Fourier transform.

11.2.1 An Unlikely Discovery

Seismic signals contain many irregular and isolated transients (Figure 11.1). The
drawback of the Fourier transform is that it represents signal frequencies as present
for all time, when in many situations, and in seismic signal interpretation in particu-
lar, the frequencies are localized. The Gabor transform and its more general variant,
the short-time Fourier transform (STFT), provide local frequency analysis. One fea-
ture of the short-time transforms is that the window size remain fixed. This is
acceptable as long as the signal frequency bursts are confined to regions approxi-
mating the size of the transform window.

However, in seismic applications, even the STFT becomes problematic. The
problem is that seismic signals have many transients, and Grossmann and Morlet
found the windowed Fourier algorithms to be numerically unstable. That is, a slight
change in the input seismic trace results in a quite pronounced change in the decom-
position coefficients. Grossmann and Morlet identified the fixed window size as
contributing to the difficulty. Their solution was to keep the same basic filter shape,
but to shrink its time-domain extent. That is, they resorted to a transform based on
signal scale.

11.2.2 Basic Theory

This section introduces the fundamental ideas behind continuous-domain wavelet
transforms.

11.2.2.1 Definition and Motivation. Let us begin with a formal definition of
a wavelet. The idea is rather recent, and this special signal type passes through the
scientific and engineering literature by means of a variety of monikers.
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Definition (Analyzing Wavelet). The square-integrable signal y(¢) is an analyzing
wavelet if it satisfies the admissibility condition

o 2
¥ ()]
C = A do < oo, 11.2

where W(w) is the radial Fourier transform of (7). The quantity in (11.2) is called
the admissibility factor. Other names for analyzing wavelets are basic wavelet,
continuous wavelet, admissible wavelet, and mother wavelet. In some analyses it is
convenient to normalize the analyzing wavelet,

Ny (),p(1) = 1, (11.3)

but normalization is not a necessary condition for generating useful time-scale
transforms or performing the inverse wavelet transform.

The admissibility condition makes possible the inversion relation for the trans-
form. There are some further consequences, however: Wavelets are bandpass filters
with a quick frequency cutoff characteristic and have zero mean in the time
domain.

The wavelet transform is a time-scale transform that uses a scaled and translated
version of the analyzing wavelet in a Hilbert space inner product to convert one-
dimensional time-varying signals to a two-dimensional scale and translations space:

Definition (Wavelet Transform). Let

1 t—b
N = —0 (11.4)
\lfa,;,() «/HW( p )

Let f(t) be square-integrable. The wavelet transform of f(¢) is defined as the inner
product

Fy(a,b) = MA@, b) = [ )y, ,(Ddi= (D), ,1).  (115)

The wavelet transform is a mapping from the one-dimensional time domain to a
two-dimensional space consisting of a scale a and a translation b (Figure 11.2).

An inverse wavelet transform synthesizes f(¢) from the two-dimensional W[f(t)]
(a, b):

Definition (Inverse Wavelet Transform). The inverse wavelet transform is the
two-dimensional integral,

oo oo

fay = 2= | ] WIAD(a, bYw(e) d, (11.6)

—00 —00
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Fig. 11.2. Example of continuous wavelet transform of a noisy sine wave.

where
du = d‘“z”’ 11.7)
a
and
j"P("’” do. (11.8)
|l

Remarks. The definition of a wavelet is fundamentally quite simple, consisting
of a time criterion (square integrability) and a frequency criterion expressed by
the admissibility condition. Some references include normalization in the defini-
tion of a wavelet, but we emphasize that unit energy is an option, not a neces-
sity. At the present level of development, (11.6) suggests that the admissibility
condition (11.2) allows the inverse wavelet transform to be carried out. On cur-
sory inspection the admissibility condition would suggest that the spectrum of an
analyzing wavelet should decay rapidly for large ||, and since wavelets are
defined to be square-integrable, this is automatically fulfilled. On the other hand,
the presence of || in the denominator of (11.8) imposes two further require-
ments on the time domain behavior of the analyzing wavelet. One is obvious, the
other is a bit more subtle, but both are relatively easy to satisfy, as the following
discussion demonstrates.

Proposition. Let y(¢) be an analyzing wavelet as previously defined. Then the
admissibility criterion is satisfied if
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(i) the analyzing wavelet is of zero mean, that is,

| w(®) dt =0, (11.9)

and
(ii)
() e L'(R). (11.10)

Proof: The first condition is obvious: We require ¥(0) = 0 to ensure that the inte-
grand in (11.2) remains finite at ® = 0. Equation (11.9) simply restates this in terms
of the Fourier transform,

lim jw(t)e‘f“”dt = [y d = 0. (11.11)
(n—>07w -

The significance of the second criterion is best demonstrated by dividing the real
line into three segments and examining the integral (11.8),

-1 2 1 2 bl 2
c, = [ 4o [EEOL 4, [P 4, (11.12)
ool ol 5 ol L ol

Our primary interest is the integral over the interval re [-1, 1]. According to
the moment theorem developed in Chapter 5, if ry(t) e LI(R) , then the first
derivative of W () exists and is bounded. Designate the maximum value of this
derivative in the interval |®| <1:

A wiwy<m. (11.13)
do

According to the mean value theorem of differential calculus, if a function g(w®) is
bounded and continuous on an interval [a, b], then

b
[8(®) do<M(b-a). (11.14)

a
Designating %H’((&)ﬂ = g(w), (11.14) implies
¥ (@) <M - 2|w| (11.15)

for |®/ <1. This bound is actually tighter than implied by (11.15). Since
¥(0) = 0, the relevant interval is effectively halved so that

¥(w)| <M -|a. (11.16)
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Returning to the admissibility condition, we now have

JI‘P(OT)I do < jM lo| do< M, (11.17)
-1

thus bounding one portion of the admissibility condition. The remaining two
integrals along their respective semi-infinite intervals are easily handled. Since

2
% >0 over |o| <1, it follows that

1 2 - _
jI‘I’|(0<:)|)| dw+j|‘{l|(§)l f'w(wn do< [ [¥() do.  (1118)

This is bounded by virtue of the L* Fourier transform. In summary, the overall
proposition is proved by virtue of (11.11), (11.17), and (11.18). |

Remark. The conditions (11.9) and (11.10) are not difficult to satisfy. The first cri-
terion,

[w(®)dr=0 (11.19)

—oo

implies that a wavelet must oscillate about the time axis—it puts the wave into a
wavelet. The stipulation ry(f) € Ll(d[RE) can be met if (for example)
y(r) e L' (R) and has co fact support. By definition, this would imply that any
function y(¢) € L' (R) n L“(R) with zero mean is a wavelet.

Proposition (Fourier Representation of Wavelet Transform). Let f(1) LZ(ERE).
Then for a given scale a, the wavelet transform is proportional to a Fourier transform
into the space of translations:

1
WIf(H)l(a, b) = — FIF(Y)1(-b), 11.20
f(D](a, b) W (M1(=b) ( )

where
F(y) = Jlal - FIADIY) - Fly()1(ay). (11.21)

By definition and by Parseval’s relation, it readily follows that

WIAD1(a, b) = (), ,(1) = —=(FLADIW). Fv, ;010 (11.22)
J2n

However,

FIv, ,010) = 7 Fly, (01 = PN Flyi(ra) — (11.23)
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so that (11.22) can be expressed in the desired form,

WIAD)(a, b) = % [ Wal - FUOIY) - Fly, ,01) - e Pay  (1124)
nfoo

and the proposition is proven. |

This intermediate result is useful for establishing the more important Parseval
relation for the wavelet transform.

Theorem (Wavelet Transform Parseval Relations). Let f(¢) € Lz( R) and g(¢)
L2(R), and let Cw be the admissibility coefficient as previously defined. Then

oo oo

[ [ WIfD)(a, bY)WIg(n](a, b) du = C\ (f(1), g(1)). (11.25)

—00 —00

Proof: Let F(y) be d efined as in (11.21) and define

G(y)=Alal - Flg1(y) - Flw(n)](ay). (11.26)

Then according to the previous proposition,

oo oo

[ ] WLIADNa bYW g(D](a, b) du

—00 —0c0

= —-——7F ] b—-ﬂc 1(=b) d (11.27)
jj (Y)()J—n (MI1(=b) du

—oooo

Using the Parseval relation to convert the b-space Fourier transforms back to 7y
space, the above integral takes the form

F j j FUNOIN FLeOI() - | F L@yl dy do, (11.28)

—00 —00

where do = da .
a

The integrals over a and y can be separated so that (11.28) becomes

L (17t )@l do [ TN TLeIM) dy. (11.29)
J2n

Applying Parseval’s relation to the second of these integrals gives a time-domain
inner product:

L2 (f(1), g(1)). (11.30)
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da do

The substitution of variables ® = ay into the first integral implies - =T SO
that (11.29) takes the desired form,

Cy (D), 8(1)), (11.31)
completing the proof. |

Theorem (Inverse Wavelet Transform). Let f(¢) be square-integrable. The syn-
thesis problem for the continuous wavelet transform takes the form

2 [ WA )W, (1) du. (11.32)

—o0—00

f1) =

Proof: This inversion formula follows directly from the Parseval relation (11.25),
which can be written

oo oo

[ ] WD a, b)[” g0, (1) didn = C, (A1), g(1). (11.33)

—00 —00

This can be rearranged in the more suggestive form:

j{ [ ] WIf)1(a, byw, (1) du}ﬁ dt = C,{f(1),8(1)). (11.34)

—ocol—oo—co

Since g(t) is an arbitrary function in L2( R), (11.34) implies (11.25), and the prop-
osition is proven. [ ]

Remark. Note that the wavelet y, ,(¢) is not conjugated when taking the inverse
transform (11.25), in contrast to the forward wavelet transform (11.5).

Since Y(w) € LZ(R), we must obtain ¥(®w) — 0 as ® — oo; hence y(?) is a
band-pass filter. The details are left as an exercise.

11.2.2.2 Algebraic Properties. As in the case of the Fourier transform, oper-
ations such as scaling, translation, and linear combination can be applied to both
the analyzing wavelet and the signal waveform. The proofs are straightforward,
some are given explicitly in the text, and others are left as exercises. In the
following discussion, we assume all signals are square-integrable.

Let us first cover operations on the analyzing wavelet.

Proposition. Let o, B be complex constants and y(z), 0(¢) are wavelets. If we
define 6(7) = oy () + Bd(7), then

WolA(](a, b) = oW, [f(1](a, b) + BW,lf(1)](a, b). (11.35)
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Proof: Follows trivially from the linearity of the integral (exercise). |

Proposition (Translation of Analyzing Wavelet). Let y be a real constant and
(1) be a wavelet. If we define 6(¢) = y(¢—7), then

WolA(n1(a, b) = W lf(D)](a, b+ya). (11.36)

Proof: By definition,

_ N 1 t—b _ " 1 t—(b+vya)
Wolf(H1(a,b) = [ fi—y[ =2 —y]dr = [ f(r)—=y| =YY 4,
/(D &) _Lf()mw(a Y) _{of()m"’( a )
(11.37)

which proves the theorem. |

Proposition (Scaling of Analyzing Wavelet). Let 1 >0 and y(¢) be a wavelet. If
0(r) = %\p(%), then

1
Wolf(H)1(a, b) = —W _I[f(1)](an, b). (11.38)
0 Y

Proof: Exercise. n
Now let us turn to signal operations and the resulting wavelet transformations.

Proposition (Linearity). Let o, B be complex constants. If we define 0(z)=
oy () + Bd(r), then

Wolof (1) + Bg(D](a, b) = aW, [f(1)](a, b) + BW,[f(D)](a, b). (11.39)
Proof: The proof is straightforward and left as an exercise. Note the similarity to,
and subtle difference between, this case and the similar operation on the analyzing
wavelet. |
Proposition (Translation). Let ¥ be a real constant. Then

WIf(t-=1(a, b) = WIf(D)I(a, b 7). (11.40)

Proof: Exercise. n

Proposition (Scaling of Signal). Let n > 0. Then

W[Tl]f(%ﬂ(a, by = %nW[f(t)](%, 19]) (11.41)
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Proof: By change of variables T = ¢/7m, it follows that

Wi (1))@ b = _Zﬂt)ﬁw%_b) - jf( )L ﬂ W)

(11.42)

Since
W[f(r)](“ b = jf( )[ T(a(%;” dr (11.43)
the desired relation (11.41) follows. [ ]

11.2.2.3 Synthesis with Positive Scale. One final set of properties follows
when we restrict the dilation parameter a to positive values.

Practical signal analysis and synthesis algorithms benefit from the elimination of
redundant data. We now demonstrate a condition under which the reconstruction
(11.32) (and by inference, the forward wavelet transform) requires only positive val-
ues of the dilation. We show that this condition is met by all real-valued wavelets,
which comprise the vast majority of continuous and discrete wavelets.

Proposition (Positive Dilation Values). If

}O—M“’)'z do = (j) @l 4, (11.44)
|ol 2 el
then (note the limit on the domain of a)
f(r) = c j j WIf(D1(a, b)y, (1) du, (11.45)
Y0 -
where
_ e ¥ (o)
C\U = j ) do = _j ) do. (11.46)
Proof: First, note
2
j H’(‘D)' do = 2;"*’(‘9)' do =2 | | ) do. (11.47)
||

The overall proof is best carried out by reconsidering the steps leading up to the
Parseval relation (11.25). Note that if (11.44) holds, the two auxiliary functions,

G(y) = lal - Flg(O1(Y) - Flw()]1(ay) (11.48)
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and
F(y)=Jal - FIADI(Y) - Flw(n](ay), (11.49)

display the necessary symmetry in a so that (11.27) can be reformulated as an inte-
gral over positive dilations only:

2[ [ WIAD @ b)Wg(D1(a, b) du = 2[] 'q’l("’l" d(x))U(t),g(t)). (11.50)
0 —oo

The factors of 2 cancel and, starting from (11.50), it is straightforward to reproduce
the wavelet inversion formula, leading to the desired result (11.45). |

This proposition is of more than passing interest, as indicated by our next obser-
vation.

Theorem (Real Wavelets). If y(¢) is a real-valued function, then (11.44) is satis-
fied.

Proof: This is easily established from the Fourier transform of y(z),

¥(0) = _[\V(t)e B (11.51)
If y(r) € R, then
Y(-0) = [y "d = F(w). (11.52)
From here is easy to establish condition (11.44), since
j"”"”' do = j"”"”' do. (11.53)
| |
—oo 0
With a simple substitution of variables M = —®, this can be rearranged to the
desired result,
0 2 00 2
—j H’(“))' do = - y = [EOL 4y, (11.54)
! -
[ |

Remarks. Note how the condition (11.52) is explicitly used to establish the first
equality in (11.54). Also, the importance of this theorem lies in the implication that
all real-valued wavelets can lead to reconstruction on the half-plane a € [0, o] .



814 TIME-SCALE SIGNAL TRANSFORMS

Note that some authors define synthesis to occur over this restricted domain, but
they are often tacitly restricting the discussion to real-valued y(#), which form the
overwhelming majority of practical wavelets. Selected complex-valued wavelets (to
be considered later) may also satisfy (11.45) with a suitable redefinition of C, , but
whenever complex-valued wavelets are under consideration, the reader should
exercise caution when performing reconstruction.

Table 11.1 summarizes our results so far.

11.2.2.4 Wavelets by Convolution. Convolution is a smoothing operation
which preserves any existing localized properties of the functions involved. It is
simple to show that under certain reasonable conditions, wavelets generate other
wavelets through the convolution operation.

Theorem (Wavelets Through Convolution). If y(7) is a wavelet and A(¢) € Ll,
then

0=y (11.55)

is a wavelet.

. 2 . . . .
Proof: We first need to establish that ¢ € L™ . This can be carried out in the time
domain, but it is simpler to consider the frequency domain where

Flo(Hl(w) = Y(0)A(w). (11.56)

TABLE 11.1. Wavelet Transform Properties®

Signal Expression

va 50 = =v(=2)

Wavelet Transform or Property

M Dilation and translation of ()
IO .
C\V = _[ o) do Admissibility factor
fin WIf(D1(a,b) = [ fi), (1) dr

WIf()1(a, b) = f FIF(Y)1(-b) Fourier transform representation
T

dadb

f6) = 2= | | WD), b))

—00—00

0(r) = ay(r) +Bo(r)

2
a

Inverse

WolAD] = aW, [A(D]+ BW¢[f(I)]

“In the table, () is square-integrable.
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. . . .2 . .
It is easy to establish that this spectrum is L~ . While we cannot assert that A(®) is
integrable, it is certainly bounded and

[ (@A) do = [ [¥(0)’|Aw) do < |A()

—oo —oo —oco

2 I‘P(w)IZdw < oo,

max ,[

(11.57)

which proves F[¢(f)](®) € L? . The inverse Fourier transform maps L* oL so
that

o(t) e L. (11.58)

The admissibility condition on ¢(¢) follows in a similar manner:

max

oo 2
J ICD'(O(;)')I do = | %m(m)ﬁdwdf\(wn

(o) 2

Conditions (11.58) and (11.59) establish that ¢(#) is a wavelet. |
Now let us turn to some examples of analyzing wavelets.

11.2.3 Examples

Continuous analyzing wavelets are atomic functions with imposed oscillations. For
example, we have seen that the Gaussian time-scale atom is not a wavelet, but oper-
ating on a Gaussian by taking one or more derivatives can impose the necessary
waviness to ensure that the zero-mean condition (11.19) is satisfied.

11.2.3.1 First derivative of a Gaussian. Let us first consider the analyzing
wavelet. A bona fide wavelet is created by applying the first derivative to a

Gaussian,
2

2
W) = Ay [—%e_tJ = 24 te”" . (11.60)

The normalization constant A, can be determined by solving a straightforward
Gaussian integral,

j l(0)%dr = 44 [ ie 2, (11.61)

—oo —oo

which leads to

A, = 42/m. (11.62)
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The normalization verifies that y(¢) is in fact square-integrable and by inspection,
due to the odd symmetry of (11.60), the zero-mean condition

[w(t)di =0 (11.63)

—oo

is assured.
Next, we check the admissibility criteria. The Fourier domain is easily handled
by applying the time differentiation property,

—0’/4

Fly()1(0) = joA, /e (11.64)

Then for ® <0
2

2
| |(u‘;)|)| = —Alnwe (11.65)

and for positive frequencies

2 2
| |(u‘;)|)| = Alnwe 2. (11.66)

The coefficient (11.8) takes the form

0 2 had 2
C, = A [ 0e®Pdo+ Ao P do. (11.67)

"
—oo 0

These integrals defined along the half-line can be evaluated by noting that each inte-
grand can be represented as a derivative, so (11.67) now reads

0 2 ° 2
2 d -o/2 2 .d -0/2
CW =Am J' %e d(o—Aong%e do (11.68)
)

C, = 2mAj, (11.69)

Remark. Note that (11.54) holds for this real-valued analyzing wavelet, as
expected. If reconstruction uses only positive values of scale (as per (11.45)), then

c, = nA, (11.70)

should be used in place of (11.69).
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Example (Gaussian Transient). We will generate and discuss the wavelet trans-
form of a Gaussian pulse

= e 11.71)

where o is a positive factor. The analyzing wavelet (11.60) with an applied scale a
and translation b reads

_(tz—th]

t=b »/a’ (t=b a’

yl—| = 24,e |— e (11.72)
a

a

and the wavelet transform integral breaks down conveniently,

= L anu(i=b\ar = _
WIAD) (0, b) = J&Lﬂw( D) = cla.b)in-bL). (173)
where
2A
C(a, b) = 2o b (11.74)

asJa

and the integrals

gl e
aJn ( b )e()

e 2.\,2 2
IIE J.te—((x+(l/a Nt +(2b/a )tdl‘ _ - (11.75)
—oo Ala2a+1 aOL+]
and
)
= _(a+ (17N +2bsad afn @ ldPaxi
I,= J'e dt = ———¢ (11.76)
—o0 A/azoc +1
are evaluated using standard Gaussian integration. The result
e
2 22
- 1
WIADI(a, b) = —=4bodo fe/ e (11.77)

Ala(azoc+ 1)

is a two-dimensional function of scale and translation shown in Figure 11.3.
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Fig. 11.3. Wavelet transform of Gaussian pulse.

Example (Rectangular Pulse). Consider a rectangular pulse of width D analyzed
by the same wavelet as above. The wavelet transform again takes the form

_ 17 t=b\, _ _
WIf()](a, b) = ﬁ_{cf(t)w( - )dt C(a, b1, - bl,], (11.78)

where as before

A, 2,2
Cla, b) = =007 (11.79)
aia
The integrals now read
D/2 2.2 2
A R (11.80)
-D/?2
and
D/2 2.2 2
h= | oW/ v @brad (11.81)
-D/2

The central feature of each integral is the exponential

2
e—[f(a)t +g(b)t]’ (11.82)
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where f(a) = l/a2 and g(a)= —2b2/a2. With proper manipulation, (11.81) and
(11.82) can be handled analytically. It is a simple matter to complete the square on
the argument of the above exponential, transforming it:

)+ g(b)r — (fla)t + g(b)t + x) —x, (11.83)

2
where x = 18 (@) If we let y=AJfla)t+ %Lb) and make a substitution of vari-
ables, then Jfa)

L,
1 1g(b) 1
—>— |y ¢ dy, (11.84)
«/f(a)LJl( 2 /f(a) ) @

where the limits L, = 4@ 18(0) ang [, =44@), 120)  This conveniently

breaks into two terms 2 zﬁ > "2 o
X LZ 2 1 (b)
= i 2o =37 Yy, 11.85
! f(a)Lflye sz(—aIe } (11.85)
? 1\d[ -
Now ye = = ( E)dy[ } 0
_ Sy n i 1)
g _f(a){( 2)(e ¢ ) 2J—[”f(Lz)+erf(L1)]}. (11.86)

With similar operations, it is easy to show

X
I, = —S—[erf(L,) + erf(L,)]. (11.87)
2 AC)) S
Nf(a)
11.2.3.2 Second Derivative of a Gaussian (“Mexican Hat”). Taking a fur-
ther derivative provides an analyzing wavelet
2

de” 2

w(1) = B, { . } = —2By[1-211e " (11.88)
dt

It is readily shown that

| (o)l dr = 3B§J§, (11.89)

—oo
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5t
-10 -5 5 10
-0.
-1.
Fig. 11.4. Mexican hat wavelet.
so the normalization constant is
14
B, = —=%V2/m. (11.90)
J3

This wavelet is shown in Figure 11.4. It has an even symmetry, but equal area above
and below the axis, so that (11.9) is satisfied.! These details are left as an exercise.
In the Fourier domain, the Mexican hat provides a spectrum

2

(0]
Fly(Hl(w) = —Bowzﬁte * (11.91)
and the admissibility coefficient is
j [lw@l 4, 2J—n (11.92)

o]

Example (Gaussian Transient). Consider the Mexican hat applied to the Gaussian
transient of (11.71). The scaled and translated analyzing wavelet is easily found:

s _(r2—2bz]
t—b 2, d a
yl— | = [dy—dt+dyt']e " e , (11.93)
a
where bz
dy = —230{1 —2—2}, (11.94)
a
8B,
d, = — (11.95)
a

1t might resemble a traditional Mexican sombrero in cross section—hence the name.
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and

d, = —2. (11.96)

It is left as an exercise to show that the wavelet transform takes the form

—172/(42
WA, b) = e—ldoly—d, 1, +d,1,] (11.97)
Ja
with
&)=
had _ 2 2 2 2 2 1
Iy= | e (a+ (1/a)F+@b/a)t ﬂea a o+ (11.98)

—oo A/a2oc +1

and I, asin (11.75), and

oo 2 2 2
—(a+(1/a )t +(2b/a" )t
I,= jtze dt

—oo

Bl

2 4 bz/ 2 a2 ato+1

_ _aJn ( 2“ ](H (2 a )]e , (11.99)
2o+ 1\2(a o+ 1) ao+1

11.3 FRAMES

It is much easier to construct frames based upon wavelets than upon the short-time
Fourier transform. Building computer applications requires us to work with discrete
rather than continuous signal representations. One requirement for signal analysis is
that our discrete representation be capable of representing any signal; this is a com-
pleteness or spanning condition. If we also ask that our discrete representation also
be numerically stable—that is, a small change in a signal results in a small change
in its decomposition coefficients—then we must use a frame representation.

As a generalization of orthonormal bases, Chapter 3 introduced frames. We
remember that F = {f,: n € Z} from a Hilbert space H is a frame if there are A, B €
R such that A >0, B> 0, and for all x € H,

2 = 2 2
Ald’s s [ <BIN. (11.100)

n = —oco

The frame F is tight if its lower and upper bounds—A and B, respectively—are
equal. Any frame F — H spans H. A frame F'is exact if, when an element is removed
from it, it ceases to be a frame. If F is orthonormal, then F is tight; in fact, A=B =1,
and F is exact.



822 TIME-SCALE SIGNAL TRANSFORMS

Recall from Chapter 10 that the Balian—Low theorem imposes strict constraints
on the time- and frequency-domain sampling intervals for a frame of windowed
Fourier atoms. The time- and frequency-domain sampling intervals, 7 and €,
respectively are critical:

(1) If TQ < 2x, then the time-frequency density (TQ)™! exceeds the Nyquist
density (2m)~!, and frames of windowed Fourier atoms are possible.
(i) If 7Q > 2m, then we are sampling below the Nyquist density and there are
no windowed Fourier frames.
(iii) If we sample at precisely the Nyquist density, 7Q = 27, and F = {w,, (1) =
¥yt — mT): m, n e 7} is a frame, then either w(¢) or its Fourier trans-
form W(w) is not well-localized (i.e., not a window function).

In this section we shall see that the wavelet transform is not so restrictive; one
can find wavelets y(¢) that allow tight frames aslong as Q # 0, 1 and T# 0 [14, 15].

11.3.1 Discretization

The wavelet discretization procedure is analogous to discretization of time-
frequency transforms. Instead of applying a time and frequency increment, we use a
time and scale increment on a signal model. The signal model is an admissible
wavelet y(r).
We have noted that the continuous wavelet transform is an inner product. It mea-
sures similarity of x(r) and y ab(l) = —}-\u(%’] as follows:
a

oo

Xylab) = (xy, ) = [ x(Dw, (1) di (11.101)

—oo

where a, b € R. The wavelet y(f) must satisfy the admissibility condition (11.2).
For simplicity, let us consider only the case @ > 0 and assume y(#) € R. The inner
product (11.101) measures the similarity of x(¢) and al 2\|Ju,b(t), which is a dilated
version of y(?), shifted so that it centers at time ¢ = b.

Suppose we are searching a candidate signal for a prototype shape y(#). This is a
typical signal analysis problem. Perhaps the shape () resembles the signal trace
we are trying to detect, or it maybe it responds significantly to some feature—such
as an edge—that we can use in a structural description to identify the candidate. If
we know the exact location and time-domain extent, we can fix a, b € R and
perform the inner product computation. If x(#) happens to be a scalar multiple (an
attenuated or amplified replica) of y,, (), then the Schwarz inequality

e, W p O < [l Tl (11.102)
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will be an equality. Thus, we threshold the inner product (11.102) as a percentage of
llxll X [y, pll to obtain a measure of the match between prototype and candidate
signals.

One the other hand, if we do not know the location and time extent—and this is
the more common and daunting signal recognition problem—then the task of per-
forming many inner products in (11.102) becomes a computational burden. We
can correlate y, ;(7) with local values of x(), say restrlcted to [b—c, b+ c], for
some ¢ > 0. But then our inner product varies with the L2 norm of x(1) restricted to
[b — ¢, b + c]. This is conventional normalized cross-correlation, where we divide
the inner product by the norm of the candidate signal in a region of interest. Never-
theless, there is in principle a continuous range of scale factors, offsets, and (per-
haps) window widths—a, b, and c, respectively. To make the analysis practical, we
must choose a discrete set of locations and signal prototype sizes against which we
compare the candidate waveform.

Let us start discretization with scale increment ay > 0. Our discussion closely
follows [3]. Dyadic decomposition remains the most common. In this case ay = 2,
and we have dilation steps y(#/2), (), y(2t), y(4¢), and so on. These signal models
are, respectively, twice as large, exactly the same, half as large, and one quarter as
large in time-domain extent as the root scale element (7). If we let a = ay™, then
y(tag ™) is ap™ times wider than y(7).

Now let us decide how to discretize the time domain. A moment’s thought shows
that we cannot just take b = nb, for some b, >0 and n € Z. Note that if ay = 2, then
signal prototypes at the scale a = ao1 have the shape of y(#/2) and occupy twice the
time-domain extent as at unit scale a = 1. Thus, we should cover the time-domain
with step increments that are twice as far apart as at unit scale. That way, the time-
domain coverage and overlap between prototypes at unit and double scale is propor-
tional. Similarly, if a = ao_l, then models at this scale look like y(2¢) and take only
half the time-domain width as at unit scale. We could repeat this logic at quadruple
and quarter scales, but the point is that time-domain steps for scale a = ay™ should
be in increments of the product bgag™. For wavelet transform discretization, we
employ wavelet atoms of the form

ﬂ nbya -3 -
Vo (1) = ag W[¢J = ay y(ag"t—nby). (11.103)

ay

Note that—in accord with other established notations [3, 10]—we use the first dis-
crete index for the scale variable and use the second for the time variable.

As with the short-time Fourier transform, discretization implies a structural
description of a signal. Windowed Fourier transforms produce a tiling of the time-
frequency plane by signal atoms that occupy equally sized regions. In contrast,
time-scale discretizations, as with wavelets, tile the plane with regions of varying
size. Signal atoms tuned to higher frequencies have a more restricted time-domain
support (Figure 11.5).
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Fig. 11.5. Tiling of the time-frequency plane by a discretized wavelet transform.

11.3.2 Conditions on Wavelet Frames

In order for a discretization based on translations and dilations to constitute a frame,
certain necessary conditions must obtain. We quote the following theorem.

Theorem (Necessity of Admissible Wavelet). Suppose y(¢) € LZ(R), ap >0, and
_m
F = {\ym (1) = aozw(agmz—nb0)|m, ne z} (11.104)

constitutes a frame with lower and upper bounds A and B, respectively. Then

TI¥()’
Abyln a, < j—go‘;’—)- do < Bbyln a, (11.105a)
0
and
Abin g < (PO 4o < gy 1.1
boln ay< [P0 dw < By In g, (11.105b)
0

where W(w) is the (radial) Fourier transform of y(¥).
Proof: Due to Daubechies [3, 15]. |

Remark. Interestingly, for a family of translates and dilates to be a frame, y(r)
must be admissible. One might think that the admissibility condition (11.2) is a
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technicality, concocted just to make the wavelet transform inversion work. We see
now that it is essential for signal analysis using families of scaled, translated
atoms—that is, for wavelet frames.

11.3.3 Constructing Wavelet Frames

This section covers one method for constructing tight wavelet frames [3, 14, 15].
Let v(f) be real-valued, k times continuously differentiable, and approximate the
unit step as follows:

W) = { 0 if7=0, (11.106)
1 if r2>1.

An example (Figure 11.6) of ve C Uis the following

0 if 1<0,
2
v(t) =1 sin (Tg) ifr<0<1, (11.107)
1 if t>1.

Now let ag > 1 and by, > 0. We will specify two square-integrable signals, y*(¢) and
y* (), by their normalized radial Fourier transforms, ¥*(w) and ¥~ (w), respectively.

Let L = 2n[by(ag— 1)1, define

0.8
0.6
0.4

0.2

: : : — t
-2 -1 1 2

Fig. 11.6. Continuously differentiable approximation to the unit step.
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0 ifmSLormzLa(Z),
1
¥ () = (Inag) sin(gv(L(ma;_Ll))) if L<0<La,, (11.108)
0
w-La
cos(gv(lﬁ)) if LaOSmSLa(Z)
pldg—

-4

(b)

Fig. 11.7. Fourier transforms of atoms used for a tight frame based on translation and dila-
tion: (a) ¥ () and (b) ¥ (w).
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and set ¥ (®) = ¥*(—w). Then—as Figure 11.7 illustrates for the ch01ces ay=2,by=
1, and v(¢) given by (11.107)—¥*(w) is finitely supported on [L, Lao]
The special construction (11.108) guarantees

1 .
2 fO<wm,
o) = n(ag (11.109)

me 0 if @<0.

To see this, note that the sequence {ay” | m € Z} decreases toward zero as m — —eo
and increases toward e as m — oo. If @ > 0, then there must be exactly one m € Z
such that way™ € [L, Lag], the interval of the sin() term in (11.108). Then the next
summand’s argument wa0m+1 falls in the interval supporting the cos() term, [Lay,
Laoz]. The consequence is that exactly two summands from (11.109) are non-zero:
one sin() term for way™ and one cos() term for way™ *1_ The sum of their squares is
unity justifying (11.109).

We turn to the frame condition. If x(7) € Lz(R) and X(w) is its normalized radial
Fourier transform, X(®) = (2n)‘(1/2)jx(t) exp(—jor) dt, then following Ref. 3
we find

oo

> ‘(x, W+m,n>‘2

m,n = —oo

oo

v lxowt,

m,n = —oo
> 7 jonbyal  m 2
= Y a, je X(@)¥ (ay0)do
m,n = —oo —oo
(/<+1)?-7-t 2
bo“o
= Z%ZZ [ X" (aow) do| . (11.110)
k2n
Q

Our strategy has been to break down the integral over R in (11.110) into an
infinite sum of integrals over a finite interval. Note that we have used the fact that
the normalized radial Fourier transform is an isometry: (x, y) = (X, Y ). By resort-
ing to the normalized frequency transform, we economize on 2w factors. We
recall from basic Hilbert space theory that {e, (1) = (Q/27t)1/ 2exp(ant) |ne Z}is
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an orthonormal basis for the Hilbert space H = L?[0, 2/Q]. Thus, by Chapter 2’s
abstract version of the Pythagorean theorem, ||x||,> = Z,|(x, ¢,)]*>. Above, we set
Q = bgay™, break up the integral over R into sections 2m/Q w1de and interchange
summation and integral. With the substitution ® = 06 + 2n— (11.110) continues
as follows:

25 2
j0nQ 2tk m Ik
%“02 ng ZX(9+%)‘I’+(aOG+b—T;)de
27t 2
Z%Z jelengY(e)de Z 6”2“||y1|2, (11.111)

where Y(0) is the summation in the integrand at the top of (11.111). Having dis-
posed of one summation, we now backtrack, writing the ||¥]},? term (which is the
L2 norm over H) as an integral, first as a sum over a finite interval, and then as over
all of R:

21

2
Zag' nllYllz

Q
25 [ ¥(0)Y(8) db
bOm 0

e . 2|+, m |2 o, 2
= = X b4 do = X do. (11.112
ol (¥ (@) do = - n%({l (@) do. (11.112)

A similar argument—with a little analytical discomfort but still no pain—gives

oo

> ‘(X‘V mn)‘

m,n = —oo

2nb0 2 j X(0)| do, (11.113)

where Y™ (#) has normalized Fourier transform ¥ (w). Now we claim that F =
{Wm’,f(t)} U A{W,,, (O} is aframe. Indeed, (11.110) through (11.112) and (11.113)
imply

oo

> ‘(x, \lfsm, n)‘z =

2n (11.114)
bolna

21
olnay

we see that (11.114) is a tight frame with bounds
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This construction—albeit clearly contrived—shows how readily we can con-
struct frames for signal analysis based on translations and dilations. We can actually
loosen the provisions ag > 1 and b > 0 by reviewing the argument. We see that pos-
itive and negative integer powers of a, were used to justify (11.109). Hence, as long
as 0 < aq and a( # 1, the same argument applies (exercise).

Now, it turns out that this frame is not a particularly stellar choice for signal
analysis [3]. For one thing, its frame elements do not consist entirely of transla-
tions and dilations of a single element; rather, there are two prototype patterns
from which the others derive. Worse, however, is the fact that the elements in
our special tight frame have poor time-domain decay. Their spectrum has finite
support. The consequence is that inner products will have nonzero responses
even when the analyzing frame elements are offset some distance away from
the candidate signals. The exercises invite the reader to explore these ideas
further.

11.3.4 Better Localization

We can construct frames based on translations and dilations of a Gaussian root sig-
nal. Such frames offer satisfactory time-domain decay. The drawback, however, is
that the precise explication of the frame condition is not as elegant as in the previous
section’s special construction. There is a sufficient condition for wavelet frames [3],
which, despite its ponderous formulation, allows one to estimate frame bounds for
y(#) having good time and frequency-domain decay.

11.3.4.1 Sufficient Conditions for Wavelet Frames. Let us state some theo-
rems due to Daubechies [3].

Theorem (Sufficiency). Suppose y(7) € LZ( R), ag > 1, ¥(w) is the (radial) Fourier
transform of y(#), and

B(s) =  sup ( E \lP(a?m)HW(aﬁwﬂ)\]. (11.115)

1 <o <agim = —e

Further assume that

> 2
inf ( D “I’(ag’m)‘ J>0; (11.116a)
lé\w\SaO m = —oo
w -
sup 3 “I’(aou))‘ < oo} (11.116b)
m = —oo

lglmlﬁao
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and, for some & > 0, P(s) decays as fast as (1 + |s|)~! ~&. Then there is By > 0 such
that for any by < By, F = (y,, (1) = ag"™ Py(ay" t-nby)|m, n € 7} is a frame.

Corollary (Bounds). With the theorem’s assumptions and notation, let

1

o 5 R o

k = —oo
k#0

and suppose by < By. Then F' = {y,, n(t)| m,ne Z} has lower and upper frame
bounds, A and B, respectively:

1 . e m 2
A= —{ inf ( Y ¥ ]—C} (11.118a)
bol1 <lol <ag\ = o
and
1 > m |2
B=Ll swp | ¥ Wiyl |+c|. (11.118b)
0 1S|(‘)|S“Qm:7m

Proofs: Again due to Daubechies [3, 15].

Remark. These technical conditions will be met, for example, if y(#) obeys the fol-
lowing:

® Its time- and frequency-domain decay rates are not too slow.
® Its spectrum is zero for ® = 0: ¥(0) = _[\If(t) dt = 0.

The conditions do imply that y(f) is admissible (11.2). Moreover, under these
mild constraints, there will be many combinations of scale and time steps for which
F comprises a frame [3].

11.3.4.2 Example: Mexican Hat. Let us consider the Mexican hat function,
introduced in Section 11.2.3.2 (Figure 11.4). This signal is the second derivative of
the Gaussian: y(f) = exp(—*/2). Normalizing, ||, = 1, gives

1

2

4
_2n 2 _r
y(t) = 7 (1 t)exp( 2). (11.119)

Table 11.2 repeats some estimates for the lower and upper frame bounds, A and B,
respectively, for frames based on translations and dilations of the Mexican hat [3].
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Notice that as the time domain increment b increases, then frame lower bound A
decreases much faster toward zero; we might interpret this as indicating that there
are finite energy signals that are more and more orthogonal to the frame elements.
Decreasing the scale domain increment a = ay k=1, 2,3, 4, etc., mitigates this
tendency.

TABLE 11.2. Lower and Upper Bound Estimates for Frames
Based on the Mexican Hat

bo A B a=2!
0.25 13.091 14.183

0.50 6.546 7.092

0.75 4.364 4.728

1.0 3.223 3.596

1.25 2.001 3.454

1.50 0.325 4.221

1.75 — — No frame
bo A B a=2"2
0.25 27.273 27.278 Nearly exact
0.50 13.673 13.676

0.75 9.091 9.093

1.0 6.768 6.870

1.25 4.834 6.077

1.50 2.609 6.483

1.75 0.517 7.276

bo A B a=2"3
0.25 40.914 40.914 Nearly exact
0.50 20.457 20.457

0.75 13.638 13.638

1.0 10.178 10.279

1.25 7.530 8.835

1.50 4.629 9.009

1.75 1.747 9.942

bo A B a=2"
0.25 55.552 55.552 Nearly exact
0.50 27.276 27.276

0.75 18.184 18.184

1.0 13.586 13.690

1.25 10.205 11.616

1.50 6.594 11.590

1.75 2.928 12.659




832 TIME-SCALE SIGNAL TRANSFORMS

What time- and scale-domain increments make the best choices? To answer this
question, we recall the formula for reconstructing a signal x(#) from frame elements
(Section 3.3.4). Let {y(¢): k € Z} enumerate the doubly indexed frame F of trans-
lations and dilations of y(¢), F = {y,, ,(1)}. Then,

X=X Sy, = ix vS v (11.120)

where § = T*T; T is the frame operator, T(x)(k) = (x, y;); and T* is the frame
operator adjoint, T *(s) = 2?: _S(k)y, , where s(k) € 1*(Z). Now by the Frame
Characterization Theorem of Section 3.3.4.3, we can write the frame condition as
AI<S§ < BI, where [ is the identity operator on LA(R).

Suppose that the lower and upper frame bounds are almost equal, a condition that
several of the alternatives in Table 11.2 allow [3]. AsB —> A,e=B/A—-1— 0, and

the operatlor S = T*T is close to a midpoint operator between Al and BI: S = A8y
Thus, S = —2-1 , and (11.120) becomes
A+B
-1 2
x= 30 S WRW= e P AN O e (11.121)
3 +B%

Equation (11.121) is a simple, approximate reconstruction formula for x(¢) that is
valid when the frame F' is almost exact. Thus, choosing time and scale dilation fac-
tors that provide an almost exact frame facilitates reconstruction of x(¢) from its
frame coefficients.

The next section develops wavelet theory that provides not just frames, but
orthonormal bases for finite energy signals based on translations and dilations of a
single prototype signal.

11.4 MULTIRESOLUTION ANALYSIS AND
ORTHOGONAL WAVELETS

After the publication of Grossmann and Morlet’s paper in 1984, wavelet methods
attracted researchers—including the present authors—from a broad range of
scientific and engineering disciplines.2 The new scale-based transform posed an
alternative to short-time Fourier techniques for seismic applications [13, 16]. It
facilitated the construction of frames (Section 11.3), which are necessary for numer-
ically stable signal modeling [14, 15]. Wavelets were used for analyzing sound
waves [17] and adapted to multiscale edge detection [18]. Academic meetings were
exciting. It was still unclear how powerful this tool could become.

2<Such a portentous and mysterious monster roused all my curiosity” (Melville).
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The wavelet transform was but one of several mixed domain signal transforms
known in the mid-1980s. Among the others were time-frequency techniques such as
the short-time Fourier transform and the Wigner distribution (Chapter 10). Wavelet
analysis, in contrast, represents a scale based transform.

Recall that if we set y a p(1) = f ([ b) then the wavelet transform
a

S}

X, (a,b) = (x,y, =[xy, (1) dt (11.122)

—oo

measures the similarity of x(¢) and the scaled, shifted wavelet y, ,(r). This makes it
a multiscale shape detection technique.

Because Grossmann and Morlet’s wavelets are also bandpass filters, the conv-
olution (11.122) effects a frequency selection from the source signal x(f). Assuming
that y(¢) € LZ(R) is an analyzing wavelet and W(w) is its radial Fourier transform,
the inverse wavelet transform is given by

Y, b()

x(f) = —j jX( b)~%b" " abda, (11.123)

2
where C\V is the admissibility factor, C\U = '[j"oo ‘—T—‘(—(%)‘—)—‘— dm < oo . Thus, the transform
(11.122) characterizes the signal x(f) and can be the basis for signal comparisons,
matching, and interpretation.

To accomplish wavelet-based signal analysis on a computer requires, of course,
that the transform be discretized. For example, we might study transform coeffi-
cients of the form x,,(m,n) = X, (mA, nT) = (x(t),Y,;p ,7(1)). This leads to the con-
struction of wavelet frames, which support signal characterization and numerically
stable representation. These benefits would be all the stronger if a wavelet frame
could be somehow refined into an orthonormal basis.

Nonetheless, it was the intuition of pioneering researchers that—just as they had
shown for windowed Fourier expansions—a Balian—Low type of result would hold
for wavelets, precluding orthonormal bases. As exciting as the developments of the
1980s had been, the prospects for well-localized short-time Fourier bases appeared
quite bleak. The critical time-frequency sampling density, 7Q2 = 2x, does not permit
frames let alone orthogonal windowed Fourier bases, unless either the windowing
function w(t) or its Fourier transform W(w) fails to be well-localized: |[tw(?)||, =
or ||oW(w)||, = = (Section 10.5.1). Anticipating equally negative results for the new
scale-based transforms too, Meyer [19] tried to prove a version of Balian—Low for
wavelets. To his own and everyone else’s surprise, he failed and instead found an
orthonormal wavelet basis!

Meyer’s basis [4,19] proceeds from a wavelet y(f) whose normalized Fourier
transform is given by
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o

e——sinr—tv(M - 1)} for 2F< |o| < ﬂt,

hr L2 \(2n 3 3

() =1 e (11.124)

2

£ cos [ED(M - 1)} for 4n <o < S-T—E,

Jn L2 \2m 3 3

L 0 otherwise.

In (11.124) v(¢) is a c* signal, where v(f) = u(f), except on (0, 1). It specializes the
v(#) used earlier; the extra proviso is v(f) + v(1 — f) = 1. Figure 11.8 shows Meyer’s
wavelet y(r) = 7~ [W(0)]](2).

0.4
0.3

0.2

0.1

-10 -5 5 10
(@)

(b)

Fig. 11.8. Its normalized Fourier transform (a) and the Meyer wavelet (b). Its translations
and dilations form an orthonormal basis for L2 signals.
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Until this discovery, mathematicians had more or less given up on finding
orthonormal expansions for LA(R) using smooth basis elements. It was assumed that
there had to be discontinuities in the time domain such as with Haar’s basis, which
was discovered some 75 years earlier [20], or in the frequency domain, such as with
Shannon’s sinc(¢) = sin(¢)/t basis of Ref. 21 (Section 3.3.3). A later construction of
Stromberg provides another orthonormal basis of continuous functions [22]; it pre-
dated Meyer’s function by a few years and had been largely overlooked.

From the desks of several other mathematicians, more examples of orthonormal
wavelet bases soon issued. But—except for the intricate calculations, carefully con-
cocted estimations, and miraculous cancellations—there seemed to be no connec-
tion between these diverse constructions. Could there be no rules for building them?
It was a fascinating mess.

11.4.1 Multiresolution Analysis

The unifying breakthrough came when Mallat [23] and Meyer elaborated the con-
cept of a multiresolution analysis (MRA) for square-integrable signals. A computer
vision researcher, Mallat was especially inspired by the similarities between some
of the recent wavelet basis developments and work in pyramid decompositions for
signal and image analysis such as the Laplacian pyramid [24], quadrature mirror
filter banks employed in communication engineering [25], and scale space
decompositions [26-28].

The MRA concept leads to a rich theory of the scale-based structure of signals.
As a bonus, the MRA establishes a set of rules for constructing a wide range of
orthonormal wavelet bases. Mallat and Meyer found the rules for building orthonor-
mal wavelet bases in a quite unexpected place: the very applied areas of multiscale
signal decomposition, image analysis, and efficient communication engineering.
The discovery of important theoretical concepts out of utterly practical problems
seems to be a distinct characteristic within the new discipline of wavelet analysis.

11.4.1.1 Definition. A multiresolution analysis of L2( R) is an abstract structure,
but it has close links to several signal analysis ideas that we have already covered. We
present the formal definition and develop some of the theory of bases made up of
translations of a single root signal. The presentation follows closely and may be con-
sidered a tutorial on the classic papers [23, 29].

Definition (Multiresolution Analysis). A multiresolution analysis (or multiresolu-
tion approximation, MRA) is a chain of closed subspaces {V;: i € Z} in L2(R) such
that the following conditions hold:

(i) The V; are nested within one another: ...c V_jcVycV,cV, ...

(i1) The union of the V; is dense in L2([R§): v V= LZ(R) .

n = —oo
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(iii) The intersection of the V; is the signal of zero norm (zero almost every-

where), which we write ?\ V,=0.

i = —oo

(iv) Elements of the spaces are dyadically scaled (more precisely, dilated) ver-
sions of one another: x(f) € V; & x(2t) e V,, ;.

(v) Forany x(t) e Vyand any ke Z, x(t —k) € V.

(vi) There is an isomorphism from V|, onto the Hilbert space of square-summa-
ble discrete signals I: Vy — I such that for any k € Z, if I(x(1)) = s(n) € 2,
then I(x(t — k)) = s(n — k).

Remark. We give the classic definition and notation for the MRA [23]. It has
become common to index the V; in the other direction: V; D V. So readers must
pay close attention to an author’s V; indexing.

Nowadays, many treatments (for instance, Refs. 3, 8, and 9) replace (vi) with the
requirement that V|, has an orthonormal basis of translates of a single finite-energy
signal: {¢(t —n) | n € Z}. This works. But so early on, it also seems incredible; we
prefer to proceed from the apparently weaker criterion. In Section 11.4.2 we dem-
onstrate that there is indeed a special function in Vy, called a scaling function,
whose translates comprise an orthonormal basis of V.

Finally, note that by an isomorphism in (vi) we mean only a bounded, one-to-
one, linear map, with a bounded inverse. Some mathematics texts, for example [30],
define the term to mean also {Ix, Iy) = {x, y), which implies an isomertry; this we do
not assume herein. The last MRA property (vi) is very strong, though. The isomor-
phism is a bounded linear map: There is an M such that ||Ix|| < M||x]| for all x € V.
For linear maps this is equivalent to continuity. Range(J) is all of 1. If it were an
isometry, then we would be easily able to show that V|, has a scaling function; but
with our weaker assumption, this requires quite a bit more work.

11.4.1.2 Examples. Although it is rich with mathematical conditions, which
might appear difficult to satisfy, we can offer some fairly straightforward instances of
multiresolution analyses. Here are three examples where the root spaces consist of:

® Step functions;
® Piecewise linear functions;
® Cubic splines.

Note that the root spaces in these examples contain increasingly smooth signals.

Example (Step Functions). It is easiest to begin with a root space V| comprised of
step functions and define the spaces of non-unit scale by dilation of V|, elements.
Let u(t) be the analog unit step signal and set Vj = {x(f) € L2( R) | for all n € Z, there
isac, € R such that x(f) = ¢, [u(t — n) — u(t —n— 1)] for t € (n, n+1)}. So elements
of V|, are constant on the open unit intervals (n, n+1). The boundary values of the
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signals do not matter, since Z is a countable set and thus has L_ebesgue measure
zero. We define V; = {y(f) € LZ(R)' | for some x(f) € Vy, y(1) = x(2')}. Thus, V; sig-
nals are constant on intervals (n27%, (n+1)27"), where n € Z. Let us show that each
of the MRA properties holds.

(i) Signals that are constant on (n27", (n+1)27) for all n € Z will also be con-
stant on subintervals (727!, (n+1)27"1), so the first property holds.

(i) From Chapter 3, we know that the step functions are dense in LZ(R); since
arbitrarily narrow steps are contained in V; for i sufficiently large, we know
that the V; are dense in L2(|R).

(iii) For a nonzero signal to be in all of the V;, it would have to have arbitrarily
wide steps, so the intersection property must be satisfied.

(iv) This is how we define the V; for i # 0.

(v) Integral translates of signals in V|, are obviously in V,, since an integral
translate is still constant on unit intervals.

(vi) Ifx(r) € V{, and x(¢) = ¢, (u(t —n) —u(t —n—1)] for t € (n, n+1), then we set
I(x(t)) = s(n), where s(n) = ¢, for all n € Z; then I(x(t — k)) = s(n — k), and /
is an isomorphism. This is left as an exercise.

This MRA is the orthonormal basis of Haar in modern guise [20]. For analyzing
blocky signals, this simple MRA is appropriate (Figure 11.9a). But when studying
smoother signals, decompositions on the Haar set require quite a few coefficients in

1.4 1

1.2} E

X(t)

0.8 4

0.6 4

04} ;

Fig. 11.9. Typical elements of an MRA built by step functions (a), piecewise linear func-
tions (b), and cubic splines (c).
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y(®)

z(t)

Fig. 11.9 (Continued)
order to smooth out the discontinuities present in the basis elements. So the approx-
imations are often quite inefficient.

Example (Piecewise Linear Functions). Let us refine the multiscale structure so
that it employs piecewise continuous signals. MRAs using such functions are better
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for signal analysis purposes when we have to interpret signals that do not contain
abrupt jumps in value (Figure 11.9b). Let us define V, to be the LZ(IR) continuous
functions that are piecewise linear on integral intervals [n, n+1]. We define the
remaining spaces via the MRA’s dilation property (iv): x(f) € V; < x(2t) € Vi, ;.
The six MRA properties are clear, except perhaps for density (ii) and the isomor-
phism (vi). Note, however, that a piecewise continuous x(f) € Vj, is determined
uniquely by its values on integers. We define I(x(¢)) = s(n), where s(n) = x(n) for all
n € Z. We can approximate a step function to arbitrary precision with piecewise lin-
ear functions, and the step functions are dense in L2(R), so the second MRA prop-
erty holds. Stromberg [22] elaborated this MRA’s theory.

Example (Cubic Splines). A more interesting example relies on cubic splines.
Here, the root space V|, consists of all functions that are twice continuously differ-
entiable and equal to a cubic polynomial on integral intervals [n, n+1]. Again,
dilation defines the other V;: x(f) € V; & x(2f) € V, . Numerical analysis texts,
(e.g., Ref. 31, show that a continuous function can be approximated to any preci-
sion with a cubic spline, so the V; are dense in LZ(R).

As we continue to develop MRA theory, we shall return to these examples.

11.4.1.3 Links to Signal Analysis Legacy. Before expounding more theory,
let us reflect on how the multiresolution analysis concept echoes many ideas from
previous multiscale signal analysis techniques. In fact, stripped of their mathematical
formalism, several of the multiresolution analysis properties (i)—(vi) have conceptual
precedents in prior multiscale representations. Others embody ideas that were only
implicit in the intuitive constructs of earlier methods of interpretation.

For example, the nested sequence of subspaces in (i) embodies the concept of the
representations becoming ever finer in resolution. The inclusion property indicates
that every coarse representation of a signal may also be considered to be a fine reso-
lution version of some other waveform that has an even coarser shape. The sub-
spaces are closed; each V; contains the limit of its convergent function sequences.
Coarse resolution representations are useful because:

® Using them can reduce the time required for pattern searches, such as in ele-
mentary edge and feature detection applications [32-34].

® Some signal features appear only at certain scales [35].

We need closure to guarantee that given a finite-energy signal x(#) and an approxi-
mation error, there is some V; that approximates x(#) to within the tolerance.

What does the union property (ii) mean? If one looks in a sufficiently fine resolu-
tion space, then there is a finite energy signal that is arbitrarily close to any given
signal. V; signals are only approximations of real signals, but we can choose them to
be very good approximations. Notice that (i) and (ii) encapsulate the intuitive notion
of earlier researchers that scale is critical for structural decompositions of signals.
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To interpret a signal we have to determine either the specific time extents of signal
shapes, or we must search for shapes across all scales. This insight is the motivation
behind scale space analysis [26—28], which we first considered in Chapter 4.

The intersection property (iii) tells us that, from a scale-based signal analysis
standpoint, any meaningful signal must be visible to the MRA at some scale. That
is, if a signal is composed of structures that have such a fine scale that it must appear
in all the subspaces, then this signal must be the almost everywhere zero signal.

The next property concern resolution. Next, if a function is in space V,, then its
dilation by a factor of 2 is in the next higher resolution space V;, ;. Furthermore, its
dilation by a factor of 1/2 is in the lower resolution space V;_;. Thus, the implica-
tion of (iv) is that one ascends and descends in resolution by means of dilations,
such as in the classic Laplacian pyramid construction [24].

The subspace V|, contains signals that resolve features to the unit of measure.
Signals in V{; may be translated by integral amounts, and we are assured that the
result remains in the root space (v).

Lastly, discrete samples characterize the MRA functions that model the signals.
Property (vi) formalizes this by requiring an isomorphism between V|, and the
square-summable sequences of real numbers. This discretization has the further
property that the discrete representations of functions are translated when the func-
tion is translated. Without this invariance, the discrete samples associated with a
waveform x(#) in V{; might change with the translation of x(f) by integral steps. For
the lower resolution spaces V;, i < 0, translation invariance does not hold. It will
become apparent in applications that the overall situation for translation invariance
is far from satisfactory; indeed, it is problematic.

11.4.1.4 Bases of Translates: Theory. Our first theoretical result on MRAs
comes right out of the sixth criterion. It shows that the root space V|, has a basis,
consisting of integral translates of a single square-integrable signal. Multiresolution
analysis exploits the special properties of such bases.

Proposition (Basis). If {V; | i € Z} is an MRA in LZ(R), then there is e(t) € V)
such that {e(r — k) | k € Z} is a basis for V.

Proof: Let 8(n — k) be the discrete delta signal delayed by ke Z. {d(n—k) | ke Z}
is an orthonormal basis for /2. Let I: Vo — 1% be the isomorphism of MRA property
(vi). Since [ is onto, we may set e;(f) = I_I(S(n —k)). Then {e;(9) | ke Z} is a basis
for V,,. However, I(ey(1)) = 8(n), so that the translation-invariance provision of (vi)
also implies I(e(t — k)) = 8(n — k), whence e,(1) = e(t — k). |

The proposition guarantees a basis that is useful for those pattern matching appli-
cations where we expect candidate signals containing the shape of the root element.
The basis elements comprise our model or prototype signals. For computational
purposes, we prefer such bases to be orthonormal, since that simplifies expansion
coefficient computations. But, again, orthogonality requires more work. Let us
explore some of the theory of such bases.
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Definition (Riesz Basis). E = {¢,, | n € Z} is an unconditional or Riesz basis in a
Hilbert space H if

(i) E spans H: For any x € H, there is s € 1% such that

X = E“ s(n)e, . (11.125a)

n = —oo
(i) There are 0 <A < B < o such that for any s € 2,

=

Yy, s(n)e,

n = —oco

Allsl| € <Bls] . (11.125b)

The constants A and B are called the lower and upper Riesz basis bounds, respectively.

Notice how (11.125b) cross-couples the norms of H and I2. An orthonormal basis
is also a Riesz basis. Note too that the lower bound condition in (11.125b) implies
that a Riesz basis is linearly independent (exercises). The next result shows that
property (vi) of an MRA is equivalent to V) having a Riesz basis.

Theorem (Riesz Basis Characterization). E = {¢; | k € Z} is a Riesz basis in a
Hilbert space H if and only if:

(1) There is an isomorphism / from H onto 12 such that I(ey) = d(n — k), where
d(n) is the discrete delta.

(i) I~!is bounded.

Proof: LetE = {e,| ke Z} be a Riesz basis in H. Since for any x € H, there is s €
1% such that (11.125a) holds, we may set Ix = 5. This map is well-defined by the lin-
ear independence of E; that is, for each x, the coefficient sequence {s(n)} is unique.
The linearity follows from the properties of the square-summable sequences, and
clearly I(e) = 8(n — k). The map is also onto, because any s € 12 defines an element
of H as in (11.125a). This sum converges in H by the upper bound inequality in
(11.125b). The boundedness of I follows as well: ||Ix|| = ||s|| < A7Ylx]||. The inverse
J =1I"" exists because I is one-to-one and onto (a bijection). ||Js|| = |[x]| = [[Es(k)ey]| <
B|ls|| by (11.125b), so J is bounded too.

Conversely, let I: H — I be an isomorphism obeying (i) and (ii). Let x € H.
We need to show that x is in the closure of Span(E). Let Ix = s € 2. In general, it
does not necessarily follow that if an isomorphism is bounded, then its inverse
is bounded. However, we are assuming J = [ “lis bounded, so it is also continuous
[30]. Thus,

N ) o
lim J( v s(k)S(n—k)): T s(k)JS(n-k)= ¥ s(ke, (11.126)

N — oo k=N

k = —oo k = —oo
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and x is a limit of elements in Span(E). Let ||l = A" and ||J] = B. Then A and B are
the lower and upper Riesz bounds for E (11.125b). |

Corollary. Property (vi) of an MRA is equivalent to V|, having a Riesz basis of
translates.

Proof: Since the isomorphism 7 in (vi) has a bounded inverse and / is onto, we may
find ey(r) such that I(e)(r)) = 8(n — k), where d(n) is the discrete delta signal. The
theorem tells us that {e;(¢) | k € Z} is a Riesz basis. The translation invariance for
Vo implies that e;(¢) = e(t — k). |

The conditions (11.125a) and (11.125b) for a Riesz basis resemble the criterion
for a frame, which we studied in Chapters 3 and 10. Indeed, the following corollary
shows that a Riesz basis is a frame. Of course, the converse is not true; a Riesz basis
must be linearly independent, while frames can be overcomplete.

Corollary (Frame). If E = {e; | k € Z} is a Riesz basis in a Hilbert space H, then E
is a frame.

Proof: Letletl: H— 1% be the isomorphism promised in the Riesz basis character-
ization: I(e;) = 0(n — k). Let I* be the Hilbert space adjoint operator for /. We intro-
duced the adjoint operator in Chapter 3 and therein applied it to the study of frames
(Section 3.3.4). The adjoint cross-couples the inner product relations of H and % so
that if s(n) is square-summable, then (Ix, s) = (x, Is). Note that I*: [> — H is an iso-
morphism, bounded, and in fact ||I*|| = ||/]|. For example, to show I* is one-to-one,
let I*v = I*w for some v(n), w(n) € I>. Then for any h € H, (h, I*v) = (h, *w). But
this implies {/h, v) = {Ih, w). Since I is onto and / is arbitrary, Ih could be any finite-
energy discrete signal. In other words, (s, v) = (s, w) for all s € I2. But this means
v =w too. We leave the remaining /* details as exercises.

Now, let f = I*(8(n — k). Since 8(n — k) = (*)"'(f) and (%) ))~! = I* is
bounded, the proposition says that F={f, | ke Z} is aRiesz basis in H.If x € H, then
by (11.125a) there is s € /> such that x = = v _ s(k)f, . We see that (x, epy = s(k)
by calculating (f;, e;) = (I*(d(n — i), ep) = (8(11 - z) I(ek)) (8(n — i), d(n — k)). So

2 > 2 2
(e = 3 Isol™ = sl (11.127)
k=—o0 k = —oo
Since I* and (I*)_1 are bounded and x = I*s, we have

2 oo
-1
o 5 et = 3 IsoP<hi?lo
I 4 2 e

2
, (11.128)

which is precisely a frame condition on E. |
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Theorem (Orthonormal Translates). Let ¢(¢) € LZ(R) and ®(w) = F[d(H)](w) be
its (radial) Fourier transform. The family F = {¢(t — k) | k € Z} is orthonormal if
and only if

E (0 +21k)|* = 1 (11.129)

= —oco

for almost all ® € R.

Proof: An interesting application of Fourier transform properties makes this proof
work. Let us define a; = (§(¢), 0(r — k)). Note that—by a simple change of variable
in the inner product integral—F is orthonormal if and only if g, is zero when k # 0
and unity when k = 0. We calculate

(11.130)

by the Parseval and shift properties. The right-hand integrand in is |(I)(0))|2eik°°. We
break up the integral into 2n-wide pieces, invoke the exponential’s periodicity, and
swap the order of summation and integration to get

oo 27 21 oo
_ 1 2 jko 1 ke 2
ap = En—zi (j)|<I>(m+2nn)| " dw = 5 (j) ¢ n_z, |®(w + 27n)| do.

(11.131)

We move the sum into the integral, since ® = 7§ € L%(R), so that |®(o)]* € LY(R).
Let us define

oo

2
Pp(w) = ¥ |D(w+ 27n)| . (11.132)
n = —oo
Now observe
2T o 2 27 oo ) )
| Y [@@+2mn)] do = [Py(w)do = [|®(w) do = [@(0)l3,
0 n=-—oo 0 —oco
(11.133)

so that Pg(m) is finite for almost all ® € R. This allows us to interchange summa-
tion and integration with the Lebesgue integral (Chapter 3) in (11.131). We can say
more about Pg(): It is 2wt-periodic, and the right-hand side of (11.131) is precisely
the expression for its Fourier series coefficient, which is a;. Within the inner prod-
uct there hides nothing less than a Fourier series analysis equation for the special
periodic function Pg()! We use this periodization argument a lot.
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Let us check our claim that Pg(m) = 1 almost everywhere if and only if the fam-
ily of translates F is orthonormal. First, if Pg(®) = 1, then (11.131) becomes

2
a, = %T [ *do = (o), d(1-). (11.134)
0

The integral in (11.134) is 2w if k = 0 and zero if k # 0. So F = {0(t — k)} must be
orthonormal. Conversely, suppose F is orthonormal so that g, =1ifk=0and a; =0
if £ # 0. Because (11.131) gives the Fourier series coefficients for the 2r-periodic
function Pg(w), we know that Pg() has all zero Fourier series coefficients except
for its DC term, which is one. In other words,

=

Po(@) = Y a =1 = 1. (11.135)

k= —oo |

The following corollary shows that when the translates of ¢(#) are orthonormal, then
its spectrum, as given by the support of ®(w), cannot be too narrow [8]. Scaling
functions cannot have simple frequency components. This result uses the Lebesgue
measure of a set, an idea introduced in Section 3.4.1.

Corollary (Spectral Support). Let ¢(¢) € LA(R), ®(w) = 7 [0(H](w) be its (radial)
Fourier transform, let Support(®) = {®w € R|®(w) %0}, and let u(A) be the Lebesgue
measure of a measurable set A. If the family F = {¢(t— k) | ke Z} is orthonormal, then
W(Support(®)) = 2. Under these assumptions, moreover, W(Support(®)) = 2r if and
only if |®(w)| =y, for some Lebesgue measurable A = R with W(A) = 2m.

Proof: Since ||0||, = 1, we know ||®]|, = (21)!2, by Plancherel’s formula. The theo-
rem then implies |®(w)| < 1 for almost all ® € R. Consequently,
W(Support(®)) = [ ldo> [ |®(w)’do = 2m. (11.136)
Support (D) —oo

Now suppose (11.136) is an equality, but 0 < |®(®)| < 1 on some set B — R with
W(B) > 0. Then

j|q>(w)|2dw<j1dm= u(B) (11.137)
B B

and

2 2
[®l; = 2n J |® ()| dow < u(Support(®)\B) + W(B)
Support (D)

n(Support(®)) = 2n (11.138)
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a contradiction. Conversely, assume F is orthonormal and |®(®)| = ¥4, for some
Lebesgue measurable A c R with n(A) = 2w. Then we quickly see that

W(A) = u(Support(®)) = |@|3 = 2. (11.139)
]

Here is a second characterization of unconditional bases. In the next section, we use
this result to find the scaling function for an MRA. We begin with a lemma [9].

Lemma. Suppose ¢(¢) € LZ(R), D(w) = F[P(H)](w) is its (radial) Fourier transform,
F={0(t—k)| ke Z}, and we define Pg(m) as above (11.132). If s € lz, then

2 2n
2
- %C [15(0)*P () dov, (11.140)
0

oo

>, s()o(r—k)

k = —o0

2

where S(m) is the discrete-time Fourier transform of s(k).

Proof: Let us consider a linear combination of the ¢(r — k), ZZ _ ps (k)o(r—k)
where s € 1%, Using the above periodization technique, we compute

i Sl _jko 2
3 s(0G-k)| = | 3 ske” (o)
k=p 2 Mo, 2
| g 2 2n| ¢ 2
= %Ej Y sk)e” | |o(w) do = %CJ Y sk)e?*| Po(0)do
—eolk=p 0lk=p (11.141)

By assumption, s(k) is square-summable. Hence its discrete-time Fourier transform
exists (Chapter 7), and we may pass to the double summation limit in (11.141).
Indeed, as p, ¢ — oo, the last integrand in (11.141) becomes |S(0))|2P¢(0)), where
S(w) is the DTFT of s(k). |

Theorem (Riesz Translates Basis Characterization). Suppose ¢(7) € L2( R), d(w) =
Fld(0](w) is its (radial) Fourier transform, F = {¢(t—k) | ke Z},0<A < B < oo, and
we define Pg(®) as above (11.132). Then the following are equivalent:

(i) Fis a Riesz basis with lower and upper bounds /A and /B, respectively.
(i) A < Pg(w) < B for almost all ® € R.

Proof: Suppose (i), and let s € 2. Then A|S(®)]? < |S(®)|?Pp(®) < B|S(@)]? < o
almost everywhere, too, where S() is the DTFT of s(k). Integrating on [0, 21t], we
see

21 2n 2n

A 2 1 2 B 2
> ({ 1S(o)| dwéﬁ({ 1S()|"Po(@) do < = (j) 1S(0)| do . (11.142)
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We know that 27|s||* = ||S]|%, and so the lemma implies

oo

> s(k)o(z—k)

k= —oo

2 2
Alsl} < <BJsl3 ; (11.143)

2
2

this is precisely the Riesz basis condition for lower and upper bounds JZ and @,
respectively.

Now let us assume (i) and try to show A < Pg() almost everywhere on [0, 27].
Following [9], we set Og, , = {0 € [0, 21t]: Pgp(®) < a}. If the Lebesgue measure of
O, 4 Qe o) 18 zero for almost all a € R, then Pg(w) diverges almost everywhere,
and, in particular, A £ Pg(®). We can thus suppose that there is some a € R such
that W(Qg ,) > 0. Let y, be the characteristic function on Qg ,:

if o€ Qg

0 ifog Qg ,

Xa(®) = (11.144)

By the theory of Lebesgue measure, if a set is measurable, then so is its characteris-
tic function. This entitles us to compute the inverse discrete-time Fourier transform

of x,(®):
2n .
x,(n) = %E({xa(w)e’m”du), (11.145)

where x, € I2. From (i) and the lemma we see

o 2 2
Ay <| 3 xkoG-b = 5= [ (@) Po(@) do
k=~ 0
1 21 ]
b (j) X (@) Pg(®)do = EQ‘[ Pg(w)do. (11.146)

By our choice of Qg ,, Pp(®) < afor w € Qg 4, and (11.146) entails

Ay <5120 ). (11.147)

But [[x|I* = ) [Ix I = @) ' W(Qg, ). and, by (11.147), A < a. This gives us a
contradiction by the following observation. If A £ Pg(®) almost everywhere on
[0, 2mt], then we are done. Otherwise, there must be some U c R such that
W) >0 and Pg(w) < A. But then there must also be some a > 0 such that
Pgp(w) < a <A and W(Qg,) > 0. But our argument above has just proven that A <
a, a contradiction.
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Let us continue to assume (i) and try to show Pg(®) < B for almost all ® € [0,
2xt]. Define Pg,, = {® € [0, 2n]: Pgp(®) > a}. Much like before, if W(Pg, ;) = 0
almost everywhere, then Pg(m) = 0 for almost all ® € [0, 2], and thus Pg(m) < B.
Assume that some a > 0 gives W(Pg ;) > 0. Now the argument parallels the one just
given and is left as an exercise [9]. For an alternative proof, see [8]. |

11.4.2 Scaling Function

From our study of bases of translates and Riesz expansions, we can show that every
multiresolution analysis V = {V;} has a special scaling function, whose translates
form an orthonormal basis for V(). The MRA structure is appropriately named; the
scaling function property further implies that signals in every V; look like combina-
tions of dilated versions of V|, elements.

11.4.2.1 EXxistence. In the following result, the equalities in (11.148a) and
(11.148b) are assumed to hold almost everywhere.

Proposition (Spanning Translates). If x(¢), y(f) € LZ(R), X(w) and Y(w) are their
respective radial Fourier transforms, and s(k) € 12, then the following are equivalent:

E s(k)x(t—k), (11.148a)

k = —oc0

S(m)X(w), (11.148b)

y(1)

Y(w)

where S(m) is the discrete-time Fourier transform of s(k).

Proof: Now, assuming (11.148b), we have

Y0 = 5 | S@X(@F o = o | ( 5 S(k)é’jkaX(co)eimtdw.

o —oo = —oo

(11.149)
Hence,

NOEED> s(k)%th((o)ejw(l_k)dwz Y s(x(t—k).  (11.150)

= —oo — k = —oc0

oo

To show the converse, we work backwards through the equalities in (11.150) to the
front of (11.149), a Fourier transform synthesis equation for y(f). We must have
(11.148b) except on a set of Lebesgue measure zero. |
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This section’s main result comes from the classic source papers on wavelets and
multiresolution analysis [23, 29].

Theorem (Scaling Function). If {V;: i € Z} is an MRA, then there is some §() €
Vi such that {¢(¢ — k): k € Z} is an orthonormal basis of V,.

Proof: By the Riesz Basis Characterization (Section 11.4.1.3), there is some g(¢) €
Vy such that F = {g(t— k) | k€ Z} is a Riesz basis for V. Let us say it has lower and
upper bounds JA and /B, respectively. The Riesz Translates Basis Characteriza-
tion implies

oo 2
A< Y |G(o+2mk) <B (11.151)

k = —oco

for almost all ® € R, where G(m) is the (radial) Fourier transform of g(#). Note that
the sum in (11.151) is the 2m-periodic function P;(w), defined in (11.132). The
Riesz bounds on Pg(m) allow us to define (almost everywhere) the Lz( R) function

(o) = 2@ (11.152)

JP(0)

®(w) is the Fourier transform of ¢(¢) € L2(R), and our claim is that ¢(f) works. The
previous proposition implies ¢(¢) € Span{g(t—k)}. Since V is closed, 0(7) € V),
and so §(t — k) € V,;, by MRA property (v). Equation (11.152) works both ways, and
we see that F = {g(r — k) | k € Z}—which is dense in V,—is in the closure of {¢(t —
kY| ke Z}. Thus, Span{¢(t—k)} = V- It remains to show that the ¢(z — k) are
orthonormal. We calculate

oo

2 oo
S [®(w+2rmk) = Y

k= —co k= —oo

v |Go+2rk)* _ |
Pg(o) '

G(w+ 2mk)

[P (0 +27k)

2
‘ k = —oo

(11.153)

By the Orthonormal Translates criterion (11.129), {¢(t — k} | k € Z} is an orthonor-
mal set.

Corollary. Let {V;: i € Z} be an MRA, and (1) € V) be given by the theorem.
Then, {2720(2/t — k): k € Z} is an orthonormal basis of V..

Proof: By properties (iv) and (v) of the MRA, the scaled versions of an orthonor-
mal basis for V, will constitute an orthonormal basis for V;. u

Definition (Scaling Function). Let V={V;:i e Z} be an MRA and ¢(¢) € V|, such
that {¢(r — k): k € Z} is an orthonormal basis of V|,. Then ¢(¢), known from the
theorem, is called a scaling function of the MRA.
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Any translate ¢(¢ — k) of a scaling function ¢(¢) is still a scaling function. The
next corollary [9] characterizes scaling functions for an MRA.

Corollary (Uniqueness). Let V={V;:ie Z} be an MRA and ¢(¢) € V,, be the scal-
ing function found in the proof. Then 6(¢) € V is a scaling function for V if and
only if there is a 2m-periodic function P(®) such that

(i) O(w) =P(0)d(w);
(ii) |P(w)| =1 almost everywhere on [0, 2x].

Proof: Exercise. u

11.4.2.2 Examples. Let us look at some examples of scaling functions for the
three multiresolution analyses that we know.

Example (Step Functions). The scaling function for the Haar MRA, for which V
consists of constant functions on unit intervals (n, n —1), is just the unit square pulse

o) = u(®) —ut - 1).

Example (Piecewise Continuous Functions). Finding this scaling function is not
so direct. The continuity of V|, elements forces us to reflect on how a possible scal-
ing function ¢(f) might be orthogonal to its translates ¢(¢ — k). It is clear that ¢(¢)
cannot be finitely supported. For then we could take the last interval (n, n+1) to the
right over which ¢(#) is nonzero, the last interval (m, m+1) proceeding to the left
over which ¢(¢) is nonzero, and compute the inner product {¢(z), ¢(t — (n — m))). A
simple check of cases shows that it is never zero. Evidently, ¢(¢) # 0 on (n, n+1) for
arbitrarily large |n|, and the inner products {¢(¢), d(¢ — k)) involve an infinite number
of terms.

But rather than stipulating from the start that V(y must have a scaling function, we
have elected to define our MR As using the apparently weaker isomorphism condition
(vi). The existence of this isomorphism I: Vj — 12, which commutes with translations
by integral amounts, is equivalent to V(, having a Riesz basis. This facilitates our study
of the Stromberg MRA. If we can find a Riesz basis F = {g(r— k) | ke Z} for V|, then
the Scaling Function Theorem (11.152) readily gives the Fourier transform ®(®) of
o(7). Let g(r) € V|, be the simple triangular pulse with g(0) = 1, g(¢) =¢+1 on (-1, 0),
g(t)=1-ton (0, 1), and g(¢) = 0 otherwise. Then x(¢) = Za;g(¢ — k) is piecewise linear,
continuous, and x(k) = a; for all k € Z. We can define the isomorphism I by (Ix)(k) =
ay. This map commutes with integer translations. The Riesz Basis Characterization
implies that {g(t — k) | k € Z} is a Riesz basis. In fact, g(¢) = F1(8(n)), where [ is the
isomorphism from V/, to 12, and 8(n) is the discrete delta signal. We compute

G(w) = [ g(t)e?dr = (11.154)
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Define
. 2(® . 2(®
sinc (5) sinc (E)
o(w) = SO _ = .
Ps(o) °° * _
JPs J ¥ Sinc“(%m) 4sin’(®) J Y (0+2mk) "
o o (11.155)
We define the utility the function Z,(®) as follows:
T (0) = Y (0o+2mk) " (11.156)

k = —oo

Though it tests our competence in differential calculus, it is possible [23] to develop
closed form expressions for the X,(®), beginning with the standard summation [36]:

> 2 1. %
S = Y (0+21k) " = Isin (2). (11.157)
o (5)

Twice differentiating (11.157) gives

2 o 2 2 4
izz(w) =6 3 (oo+21tk)_4 = 62,(0) = Lot (C—O)CSC (9)+lcsc (9)
dO)Z 4 2 2 8 2

k = —o0
(11.158)

Finally,
d(w) = C©) _ J6

Pal@ 2 chof(aa)cscz(@)+1050“(9)' (11.159)

4 2 2) 8 2

Taking the inverse Fourier transform gives ¢() (Figure 11.10). Notice from its mag-
nitude spectrum that ¢(¢) is an analog low-pass filter.

4 _2\] \/ 2 4

-0.2

Fig. 11.10. Scaling function for the MRA consisting of continuous piecewise signals.
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Example (Spline Functions). The procedure for finding this scaling function is
similar to the one we use for the piecewise continuous MRA. The root space V
contains the L*(R) signals that are continuously differentiable and equal to cubic
polynomials on each interval [n, n +1], where n € Z [37, 38]. To find a scaling
function we need to find a Riesz basis. Let g(f) € V|, be the cubic spline that satis-
fies g(0) = 1 and g(n) = 0 otherwise. This is a rounded tent function. Then x(¢) =
Xa;g(t — k) is a cubic spline on intervals [n, n+1], continuously differentiable, and
x(k) = ay for all k € Z. Once again we set (Ix)(k) = a; and invoke the Riesz Basis
Characterization toward showing {g(t — k) | k € Z} to be a Riesz basis. We compute
the radial Fourier transform of g(z):

G(o) = (1 —%sinz(g))_lsinc4(§). (11.160)

We can derive a cubic spline scaling function by the standard formula (11.152):
1
2
G(o) _ [Xg(0)]

JPo(®) o’

where Z,(®) is given by (11.156). Again, we can compute the X, (®) by taking
successive derivatives—six actually—of X,(®). With either resolute patience or a
symbolic computation software package, we calculate

®(0) = (11.161)

6 6 2 4 4
LZ (o) = lcot (C—O)csc (9)+ ﬂcot (Q)CSC (9)
Job 2 4 2 2) 8 2 2
45 Yo w) 17 3w
+ Z—cot (E)CSC (5)+1—60$c (E) (11.162)
Consequently,
1 d°
2o(w) = —— (Z,(m)) (11.163)
8 2
5040d0)6
and
Do) = — L (11.164)

4
O, /Z(m)
So once again, we find a scaling function using frequency-domain analysis. The key
relationship is (11.152). Inverse Fourier transformation gives ¢(t) (Figure 11.11). For
the cubic spline MRA too, the scaling function is a low-pass filter. In comparison to

the MRA for piecewise linear signals, observe the flatter reject band of ®(w) for the
spline MRA.
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SRS VN AV
-0.2

Fig. 11.11. Scaling function for the MRA consisting of cubic splines.

11.4.3 Discrete Low-Pass Filter

The scaling function is not the only special function connected with the multiresolu-
tion analysis structure. This section shows that for every MRA of finite energy sig-
nals we can find a special discrete filter [10, 23, 29]. This filter will prove useful
when we discretize our theory and use it in signal analysis applications. In fact, we
shall show that it is a low-pass filter. Mathematically thorough introductions to this
material include [8, 9].

Suppose V={V;:ie Z}is an MRA and ¢(f) € V}yis its scaling function. Because
0(#/2) € V_; < V; and since integral translates of ¢(f) span V), we see that

1.(1) _ <
Eq’(i) - nzz_whnq)(z—n), (11.165)

where the sequence {h, | n € Z} is square-summable. Hilbert space theory tells us
that

_[1g(t _
hn—<2¢(2),¢(t n)>. (11.166)

These observations lead to the following definition.

Definition (Associated Filter). The ¢(¢) be the scaling function of an MRA,V =
{Vitie Z}.1f Hy is the discrete filter with impulse response hy(n) = hy,, where h,, is
given by (11.166), then H¢ is called the associated filter to V (and to ¢(¢)).

As we develop the properties of the discrete filter associated to an MRA, we
shall see that it is indeed a low-pass filter. When there is no ambiguity, we drop
the subscript: H = H,. The following proposition gives a formula for the discrete-
time Fourier transform H(w) of the associated filter [23].
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Proposition. Let ¢(7) be the scaling function of an MRA,V = {V;: i € Z}; let ®(®)
be its Fourier transform; and let H be the associated discrete filter with impulse
response, h(n) = h,, given by (11.166). Then,

d2w) = P(w)H(W), (11.167)
where H(®) is the DTFT of h(n): H(w) = Znh(n)efj‘”".

Proof: Apply the radial Fourier transform to both sides of (11.165). ]

Remark. The relation shows that H(w) has a low-pass filter characteristic (Figure
11.12). The dilation ®(2m) looks just like ®(w), except that it is contracted with
respect to the independent frequency-domain variable ® by a factor of two. The
relation (11.167) shows that a multiplication by H(®) accomplishes this, and the

08}
06|
0.4}

02}

(b)

Fig. 11.12. Associated low-pass filters for the MRAs consisting of piecewise linear functions
(a) and cubic splines (b). Note the better cutoff behavior of the filter based on cubic spline
approximations.
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only this can be the case, intuitively, is that H(®) is approximately unity around the
DC value ® = 0, and it falls off to essentially zero halfway through the passband of
the spectrum of ®(w). This is not a rigorous argument, but it can be made so by
assuming some decay constraints on the scaling function ¢(r) [23, 29].

Proposition. Let ¢(¢) be the scaling function of an MRA,V = {V;: i € Z}; ®(w) its
Fourier transform; A(n) the associated discrete low-pass filter (11.166), and H(®) its
DTFT. Then,

H) +|Ho+m)” = 1, (11.168)
for almost all ® € R.

Proof: By the Orthonormal Translates Theorem, Z:__ |PQw + 2nk)|2 =1.
Inserting (11.167) into this identity gives -

T @0+ 1k |H(o+ k) = 1 (11.169)
k = —co

almost everywhere. Next, we split left-hand side of (11.169) into a sum over even
integers and odd integers:

Ho)® Y [®(0+21k) +Ho+m)" T |+ 2nk+m)” = 1,
k:7°° szoo
(11.170)

where we have used H(®w) = H(® + 2m). The Orthonormal Translates Theorem tells
us that the infinite sums in (11.170) are unity, and (11.168) follows. |

Remarks. Discrete filters satisfying (11.168) are conjugate filters, familiar from
Chapter 9. Conjugate filters are used to filter a signal in such a way that it can be sub-
sampled and exactly reconstructed later. The Laplacian pyramid technique provides
decomposition by filtering and subsampling as well as exact reconstruction [24]. Var-
ious efficient signal compression and transmission techniques rely on this idea [25,
39, 40]. What is particularly striking about the MRA structure is that quite disparate
signal theoretic techniques such as scale space analysis [26—28], orthogonal bases,
and pyramid decompositions all meet together in one place.

The following results [8] link the low-pass filter H of an MRA, V={V;:ie Z},
with the low-resolution subspace V_; c Ve V.

Lemma. Let ¢(¢) be the scaling function of an MRA, let ®(m) be its Fourier trans-
form, and let C(w) € L2[0, 21] be 2n-periodic. Then C(w)P(w) € LZ(R).
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Proof: We compute

oo oo 27
[lo@)|’[C()’do = Y [ l@(+2mn)’|C(o+2m0) do
—oo n=-—oo ()
© 27

T [lo+2m)llc) do,  (11.171)

n:_ooo

where we have invoked C(w) = C(® + 2m). Interchanging summation and integra-
tion in (11.171), and again using ¥ [®(w + 2nn)|” = 1, we get

2 oo 2
jl(b(w)l ’IC(w) do = [ Y [@(w+2nn) |C(0)*do
—oo 0n=—oo
2n ) )
= [IC@)"do = IC17, 121q 2ny (11.172)
0

Proposition (V( Characterization). Let V={V;:ie Z} be an MRA, let ¢() be its
scaling function, and let @ = 7(¢) be its (radial) Fourier transform. Then the root
space V) € V contains precisely those x(7) Lz([R) such that X(w) = C(0)P(w)
for some 2n-periodic C(®) € L?[0, 2], where X(w) = F(x).

Proof: Let x(t) € Vjy. Then x(f) = Zc;0(¢ — k) for some c(k) = ¢;, where ¢ € 12. We
compute X(w) as follows:

oo oo

J' x(t)eijmtdt R

J' z cd(t—k)e = ckJ'q)(t—k)e
—oo R k=-o _oo
2 o

k = —oo

j(Dt

](Dk

j¢(r) Yt = C(0)D(w). (11.173)

Now suppose X(®) = C(0)P(w) for some 2x-periodic C(®) € LZ[O, 2n]. By the
lemma, X(®) € L2( R), and we can write C(®) = che_j“’k, where c(k) is the inverse
DTFT of C(®). Whence the computation (11.173) shows that x() is in the closure of
the span of {0(t —k) | ke Z};soxe V. [ |

Corollary. With the same notation, define the operator 7: V) — LZ[O, 2n] by Tx =
C, where C(w) is the 2m-periodic function with X(®) = C(®)®(w) guaranteed by the
proposition. Then:
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(i) Tis linear.

N 2 2

(i) If x € Vo, then 2xtllxl; = ICI5 ;210 2p)-

i) If =Tx, and D = Ty, then 2 = D .
(i) Ifx,y € Vi, C=Tx, an Y, then 7E<X,Y>L2(R) (C, >L2[0,2n]

Proof: Linearity (i) is left as an exercise. For (ii), let x(r) € V), so that X(w) =
C(w)®(w). Then, the Plancherel’s formula for LZ(R) and (11.172) entail

2 - 2 2 2 2
IXI°, 2= | 1P@I IC@)do = 1C1 20 2y = 273 1250

(11.174)

From (11.174) and the polarization identity [8, 30] for inner product spaces (Chap-
2l =l i) follows. ]

2 2 . .
ter2), 4(x, y) = [x+yl" = lx=yl" +jlx +jy

Definition (Canonical Linear Map on V). The linear map 7x = C, where C(®) is
the 2m-periodic function with X(®) = C(w)®(w) guaranteed by the corollary, is
called the canonical map from V to LZ[O, 2m].

Proposition (V_; Characterization). Let V = {V;: i € Z} be an MRA, let ¢(t) be
its scaling function, ® = (0), and let H = H¢ the associated low-pass filter. Then
the first low resolution subspace V_; € V contains precisely those x(t) € Lz(R) such
that X(®) = CRw)H(®)P(w) for some 2m-periodic C(w) € L2[0, 2m], where X(w) =
F(x).

Proof: Let x(t) € V_y, so that 2x(2t) € V,;. Then 2x(2¢) = Zci¢(t — k) for some ¢; =
c(k) € I2. Thus,

oo

(1) = ¥ c(k)d)(é—k). (11.175)

k = —oo

Taking Fourier transforms again [8]:

2X(0)

) 2 ¢ _[ ¢(S)e—j(n(25+2k)ds
k=-o _

2 Y e 7 o) s = 20C0)0C0),  (11.176)
k=—°° —o0

where we have made the substitution s = #/2 — k, and C(w) is the DTFT of c(k).
From (11.167), ®2®) = H(0)®(w); thus, X(®w) = CRw0)H(w)D(w). For the con-
verse, let X(0) = CRw)H(®)P(w) for some 2w-periodic C(w) € LZ[O, 2m]. Since
C2w)H(w) is still 2r-periodic, the Lemma applies, and X(®) € LZ(R). Finally,
(11.176) reverses to show x(¢) € V. |



MULTIRESOLUTION ANALYSIS AND ORTHOGONAL WAVELETS 857

It is possible to generalize this result (exercise). The next section explains a
mathematical surprise that arises from MRA theory.

11.4.4 Orthonormal Wavelet

Besides the scaling function and the associated discrete low-pass filter, a third
special function accompanies any multiresolution approximation of LA (R): the
orthonormal wavelet [23, 29]. Our presentation has been guided by the mathemati-
cally complete introductions [8, 9].

Definition (Orthonormal Wavelet). Let y(?) € Lz(R). If its dilations and transla-
tions {2”/2\|!(2”t —m): m, n € Z} are an orthogonal basis of L*(R), then V is an
orthogonal wavelet. If ||y|| = 1, then  is an orthonormal wavelet.

At the beginning of this chapter we considered an extension of the Fourier trans-
form based on scale and location as transform parameters. The transform inversion
required a special signal, the admissible wavelet, in order to succeed, and we found
that admissible wavelets had to be analog band-pass filters. Now, for MRAs it turns
out that the special associated orthogonal wavelet too is a band-pass filter. To dis-
cover how it is that an MRA supports this extraordinary function, we examine the
orthogonal complements of the component spaces V; of the multiresolution analysis
V={V.:ie Z}.

11.4.4.1 Existence. Consider first V_; c V|;. From Hilbert space theory (Chap-
ters 2 and 3), we know that every element of V) can be written uniquely as a sum
x=v+w, where ve V_jand w L v. The set of all such w € V, constitute a Hilbert
subspace of Vy; let us denote it by W_;. We say that V is the direct sum of V_; and
W_1: Vo =V_; @ W_;. In general, every V;, is the direct sum of V; and W;, where
W; is the orthogonal complement of V; in V; ;. We know already that the V; have
orthonormal bases made up of translations and dilations of the scaling function 0(z).
We can also find an orthonormal basis of W; by the Gram—Schmidt orthonormaliza-
tion procedure, of course [31]. But this does not imply that the basis elements are
translates of one another, and it exposes no relation between the basis elements so
found and the rest of the MRA structure. We want a more enlightening theory.

Lemma (First W_; Characterization). Let V= {V;:ie Z} be an MRA; let ¢(¢) be
its scaling function; let ® = F(¢) be the (radial) Fourier transform of ¢(7); let H = H¢
be the associated low-pass filter; and let 7x = C be the canonical linear map from V,,
to LZ[O, 2mt]. Then x(f) € W_; c V,yif and only if

C(wH® +C(o+mH(w+7) =0 (11.177)
for almost all ® € [0, 2x].

Proof: Let y(f) € V_; and let Ty = D. Then by the V_; characterization, Y(®) =
AQCw)H(m)P(w) for some 2w-periodic A € LZ[O, 27t]. So D(w) = AQw)H(w) almost
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everywhere on [0, 2r]. By the corollary to the V|, characterization, {x, y) = {C, D).
Thus, x(f) € W_; if and only if (C(®), AQw)H(®)) = 0, for almost all ® € [0, 2x].
Writing out the inner product integral [8], we see that this is further equivalent to

2n b4

C(mACL0H(®) do = [AQo)[C(0)H(®w)+ C(o+m)H(w+m)] do = 0
I I
0 0

(11.178)

for almost all w € [0, 2w]. Since y() is any element of V_;, the A(2w) in the integrand
on the right-hand side of (11.178) is an arbitrary nt-periodic signal; evidently, x(¢) €
W_; if and only if the m-periodic factor C(w)H(®)+ C(wo+m)H(®w+m) = 0
almost everywhere on [0, rt]. Finally, by the 2w-periodicity of C(®w) and H(®), this
same expression must be almost everywhere zero on [0, 27].

Lemma (Second W_; Characterization). Let V= {V;: i e Z} be an MRA, let {(7)
be its scaling function, let ® = H¢) be the Fourier transform of ¢, let H = Hq) be the
associated low-pass filter, and let Tx = C be the canonical map from Vj, to LZ[O, 2m].
Then, x(#) € W_; if and only if X(w) = e79SQw)H(® + T)P(m) for some 2n-peri-
odic S(w) € L2[0, 27].

Proof: Resorting to some linear algebra tricks, we formulate the previous lemma’s
criterion as a determinant. Thus, x(f) € W_; is equivalent to

det|H(@+m)  C(0) } =0 (11.179)
-H(®w) C(o+m)

for almost all ® € [0, 2r]. This means that the columns of the matrix (11.179) are
linearly dependent—that is, they are proportional via a 2r-periodic function R():

{ C(o) } _ R(w)lH(mM)] (11.180)
C )

(0+m -H(w)
for just as many ® € [0, 2x]. Now substitute ® + 7 for ® in (11.180) to see

{C(m+n)} - Ro+m| HO) (11.181)
C(m) -H(®w+ 1)

whence C(®w) = —R(® + n)H(w + 1) . Further putting ® + 7 for win (11.181) gives
C(®w) = R(w)H(w + ) . Evidently, R(®w) = —R(® + ) for almost all w € [0, 2x].
Hence we have shown that x(¥) € W_; if and only if X(®w) = C(0)®(w), where
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C(w) = R(w)H(w + 1) for some 2n-periodic R(w) € LZ[O, 2mn] with R(®w) = —R(® +
7). We define S(®) = exp(jw/2)R(®/2). Then S(w + 21) = S(w) almost everywhere, and

X(w) = C(0)P(w) = RwH(0+1)P(w) = eij“)S(zm)H(m+n)<D(m).
(11.182)
|

Lemma (W, Characterization). Let V= {V;: i € Z} be an MRA, ¢(¢) its scaling
function, @ = (¢) the Fourier transform of ¢, H = H¢ the associated low-pass filter,
and Tx = C the canonical map from V|, to LZ[O, 2m]. Then, x(t) € W, if and only if
XQ2w) = e_j“’S(2u))H (o + ) (o) for some 2x-periodic S(w) € LZ[O, 2x).

Proof: We note that x(r) € W, if and only if {x(?), v(¢)) = O for all v(r) € V{), which
is equivalent to (x(#/2), v(t/2)) = 0. But any f(r) € V_; is of the form v(#/2), so this is
also equivalent to x(#/2) L V_;; in other words, y(f) = x(#/2) € W_;. The previous
lemma says Y(®) = e_j“’S(Zu))H(u) + 1) ®(w) for some 2n-periodic S(w) € LZ[O,
27t]. But Y(0) = 2X(2w). [ |

The main result of this section—very probably the main result of this chapter,
likely the main result of this book, and arguably the main result of Fourier analysis
in the latter half of the twentieth century—is expressed in the following theorem
and its corollary [23, 29].

Theorem (Orthonormal Basis of W)). Suppose V = {V;: i € Z} is an MRA, ¢(¢)
its scaling function, ® = F(¢) the Fourier transform of ¢, and H = H, is the associ-
ated low-pass filter. If y(#) is the finite energy signal whose Fourier transform is
given by

Y(20) = e 7*H(o + 1) D(0), (11.183)

then {y(t — k) | k € Z} is an orthonormal basis for W,,.

Proof: We know that the W,y characterization lemma entails y(r) € W,. (In fact,
y(?) represents the very straightforward case where the lemma’s S(®) = 1 almost
everywhere on [0, 2rt].) Let x(f) € W;. Let us show that a linear combination of
translates of y(¢) is arbitrarily close to x(¢). The previous lemma says that X(2w) =
e f“)S(Z(o)H((o+n)d>(0)) for some 2m-periodic S(w) € L2[0 2m]. Thus, X(®) =
S(w)¥(w), almost everywhere on [0, 2rt]. But we know this condition already from
the Spanning Translates Proposition of Section 11.4.2.1: It means that

oo

x() = Y s(my(t-n), (11.184)

n = —oo

where s(n) is the inverse discrete-time Fourier transform of S(w). Verily, the closure
of {w(r—k)| ke Z} is all of W,
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What about orthonormality? If we attempt to apply the Orthonormal Translates
criterion (11.129), then we have

2 2 2 ® 2l (@ 2
Y W(o+2kn)” = Y CI)(E+kn) H(5+(k+l)n)
= —oo k = —oo
2 o) 2l (o 2
= Y CI)(E+2kn) H(5+2kn+n)
k = —oo
o 2 2
+ Y ‘¢(;-°+2kn+n) ‘H((§+2kn+2n)
k = —oo
(11.185)
the orthonormality o t—k)}, we have
By the orth lity of {¢(t —k)}, we h
- 2 - o) 2l (o 2
Y W(o+2kn)|” = ¥ d>(§+kn) H(§+(k+1)n)
k=—co k= —oo
- ) 2 (o 2
= Yy (I)(§+2kn) H(§+2kn+n)
k= —oco
o 2 2
+ Y d)((i)+2kn+n) H(9+2kn+2n)
P 2 2
(11.186)
By the 2m-periodicity of H(w), this becomes
|¥(o+2km)|” = |H = +m | = + 2km
2 2
k=—°° k:—oo
+H(i)2 S <I)(i°+2k7t+n2
5 2 (%5 (11.187)
k = —o0

and by Orthonormal Translates applied to the @ summations on the bottom of
(11.187), we get
o 2
Y |W(o+2kn)” = ‘H(% + n)
k = —oo

e

But this last expression is unity by (11.168), and thus {y(t—k) | k€ Z} is orthonormal.

+ (11.188)

Corollary (Existence of Orthonormal Wavelet). With the theorem’s assumptions
and notation, let y(f) € LZ(R) be defined as above. Then the dilations and transla-
tions {2"/ 21|I(2”t —m): m,n € Z} are an orthonormal basis of LZ(R), and so Y is an
orthonormal wavelet [8-10].

Proof: Since V| =V, @ W, dilations of x(r) € W, by 2% are in Wi x(2it) € W.In
fact, {2/2y(2/t — m): m € Z} is an orthonormal basis for W;. But, V;, | = V; ® W, so
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B = {2"*y(2"t—m): n<i+1andme Z} is an orthonormal set inside V;, ;. By the
intersection property (iii) of the MRA, though, A V. =0; B;, 1 must be dense in

1

| = —o0

Vi+1- By the MRA union property (ii), ny_wvi = Lz([R); L%(R) must be the
Hilbert space direct sum of the W;:

oW, = L (R). (11.189)
i = —oo
||
The wavelet y(¢) that we have found is essentially unique. The exercises outline an
argument that any other W, function that is an orthogonal wavelet for square-
integrable signals must have a Fourier transform that differs from the formula
(11.183) by a factor that is unity almost everywhere on [0, 27].

11.4.4.2 Examples. Let us show some examples of orthonormal wavelets from
the multiresolution analyses of square-integrable signals that we already know.

Example (Step Functions). In the Haar MRA [20], the root space V|, consists of
constant functions on unit intervals (n, n —1), and so ¢(¢) = u(f) — u(t — 1). We com-
pute its Fourier transform by

_jo
2 sin(®w/2)
w/2

D(0) = jq)(t)e*f‘”fdz = e (11.190)

and the relation ®(2w) = ®(w)H(w) gives the associated low-pass filter:

jo

Ho) = e 7cos(m/z). (11.191)

From ¥(0) = ¢’ “H(o + 1)®(®) , we calculate

@
(o) = —je > SN (0/4) (11.192)
/4
But (11.192) is the radial Fourier transform of the function
1 if-l<r<d
2
y(t) = (11.193)

1 if-l<i<o,
p

0 if otherwise.

so y(#) above is the orthogonal wavelet for the step function MRA.
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1.5
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-40 -20 20 40

(b)

Fig. 11.13. For the Stromberg MRA: The orthogonal wavelet, (a) which we compute from a
messy, but exact expression for its Fourier transform (b).

Example (Piecewise Continuous Functions). We found the scaling function for
the Stromberg [22] MRA in Section 11.4.2.2 and the associated low-pass filter in
Section 11.4.3. The expression Y(2m) = ej“’H((o + ) ®(w) as well as (11.159) and
(11.167) give us the Fourier transform for the piecewise continuous MRA’s wavelet.
Then, we can compute () via the inverse transform (Figure 11.13).

Example (Spline Functions). In the third MRA we have studied, the root space
V|, contains continuously differentiable, finite-energy signals that are cubic poly-
nomials on unit intervals [n, n+1]. This MRA was developed by Lemarié
[37] and Battle [38]. The same strategy works once more. We know the scaling
function’s Fourier transform ®(w) from (11.164). The discrete-time Fourier
transform for the associated low-pass filter is the ratio H(®w) = ®Q2w)/D(w).
Hence, we find W(w), and inverse transforming gives the orthogonal wavelet
(Figure 11.14).
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1
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10 20
(b)

Fig. 11.14. For the cubic spline MRA of Lemarié and Battle: The orthogonal wavelet (a)
and its Fourier transform (b).

The next chapter provides various examples of mixed domain signal analysis. In
particular, it covers the use of the multiresolution analysis structure for combining
time- and scale-domain analysis of signals that arise in typical applications.

11.5 SUMMARY

For signal analysis, both the continuous wavelet transform and the multiresolution
analysis that leads to orthogonal wavelets are attractive and feasible. This chapter
covered the signal analytic essentials of wavelet theory. The continuous transform
finds more applications in signal understanding, as long as basic facts about input
signals—location, scale, spectrum—are known beforehand. The orthogonal trans-
forms, based on multiresolution analysis, tend to find more use in compression. We
shall see in the last chapter that there are efficient algorithms for decomposition
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using MRAs that lend themselves to efficient signal description, compression, as
well as pattern recognition applications.

We omitted the proof of the theorem on the necessity of admissibility for frames
based on translation and dilation (Section 11.3.2). The proof itself is somewhat
technical, and, besides, in compensation, we later showed that an elegant construc-
tion, the MRA, leads to orthogonal wavelets from which efficient algorithms and
straightforward frame constructions proceed.

There are three special functions that arise from an MRA, V= {V;:ie Z}:

® The scaling function ¢(#) whose translates form an orthonormal basis for the
root space V),

® The associated low-pass filter Hq,;

® And, finally, the orthonormal wavelet y(f) whose translations and dilations
constitute and orthonormal basis for finite-energy signals.

Some conditions in the definition we give for an MRA are consequences of the
others. For example, the third criterion in Section 11.4.1.1—that only the zero sig-
nal should appear in all V.—follows from the rest. This and other interdependencies
were only noted some years later [8, 41].

We provided only a few examples of MRAs, but these suffice for introductory
signal analysis applications. Important extensions include compactly supported
wavelets [3], approximation theory using wavelets [2], and multidimensional signal
analysis using wavelets [10, 23].

Let us remark about how wavelets can be used in image processing and analysis.
The principal focus of this book notwithstanding, we should also note that our MRA
definition extends from one-dimensional functions (signals) to two-dimensional
functions (images). Indeed there are MRA structures for the n-dimensional Hilbert
space L*(R™). The technique is identical to that used to extend the Gaussian and
Laplacian pyramid constructions to images [24].

We just repeat the definition of Section 11.4.1.1 for functions of two variables,
x(s, 1) € LZ(IR%Z), denoting the subspace chain V, ,,. We can then derive a two-dimen-
sional scaling function 0(s, f) as before (exercise). The most common approach,
however, is to use a tensor product of one-dimensional MRAs to get an MRA for
LZ(RZ) Von=Vi,®Vy,, where {V,:ne Z} is an MRA in Lz([R{) Then, there is a
scaling function for the two-dimensional MRA of L2(R?): ®(x, y) = d(x)0(y). While
there is a single scaling function for the two-dimensional case, there are now three
wavelets: W(x, y) = ¢(x)y(y), sensitive to high vertical frequencies; ¥,(x, y) =
Y(x)0(y), horizontal; Ws(x, y) = W(x)yY(y), diagonal or corners.

This gives an orientation selective decomposition, especially suitable for images
with large x- and y-direction edge components. A number of applications involve
such images: inspection of manufactured materials, remote sensing applications,
and seismic signal processing among others.

For a history of wavelets, see Ref. [1]. References 10 and 42 list software
resources and toolkits for signal analysis using wavelets.
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PROBLEMS
1. Let y(t) be an analyzing wavelet.
(a) Show that ¥(0) = 0.
(b) Also, | w(r) dr = 0,
(¢) Show E:at Y(?) is a bandpass filter.

2. Provide an example of a bandpass filter that is not an analyzing wavelet.

3. Let V={V;:i e Z} be a multiresolution analysis of LZ(R) signals; let 0(¢) be the
scaling function for V; let ®(m) be the (radial) Fourier transform of ¢(#); and let
H be the associated discrete filter with impulse response, h(n) = h,, given by
(11.166). Show in detail that ®(2w) = ®(w)H(®), where H(w) is the DTFT
of h(n).

4. Let o, B e C and y(7),0(¢) be (analyzing) wavelets. If 6(¢) = oy(¢) + Bo(r),
then show

Wolf(H1(a, b) = oW, [f()](a, b) + BW,[f(1)1(a, b). (11.194)

5. Let >0, let y(¢) be a wavelet, and let 6(¢) = %\p(T—t]) Show that

1
Wolf()l(a, b) = —W _I[f(1)](an, b). (11.195)
0 NoR

6. Let o, B € C and define 06(¢) = oy(¢) + BO(7) . Show that

Wolof (1) + Bg(N](a, b) = aW, [f()](a, b) + BW,[f(D](a, b)  (11.196)
7. If ye R, then show

Wf(t-v1(a, b) = WLf(D)1(a, b-y). (11.197)

8. Letm, n € Z; ay, by > 0; and suppose that

_m t—nbea" _m

2 —nopa 2 -

Y, (D) = ag w(%] = ay y(ay"t—nby). (11.198)
4o

(a) Find the radial Fourier transform ¥,,, ,(®) of y,,, ,,(?).
(b) Defining ¥~ () = ¥*(—w), where W*(w) is given by (11.108), and using
the arguments of Section 11.3, show that
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o ‘ - ‘2 | 0 s (11.199)
W om e e X do,
> Koy mn 2nb01na0% {o| (0)]"dw

m,n = —oo —
where Y () is the inverse (radial) Fourier transform of ¥~ ().

Let H be a Hilbert space.

(a) Show that an orthonormal basis in H is also a Riesz basis with unit bounds.
(b) Show that a Riesz basis is linearly independent.

(c) Give an example of a frame in L2(R) that is not a Riesz basis.

Let V={V;} be the Haar MRA which we defined in Section 11.4.1.1. Signals in
V; are constant on intervals (n2_i, (n+1)2_i), where n € Z. If x(¢) € V|, and
x() = c,lut — n) — u(t — n — 1)] for t € [n, n+1), then we set I(x(¢)) = s(n),
where s(n) =c, foralln e Z.

(a) Show that I is an isomorphism, a bounded linear operator that is one-to-one
and onto.

(b) Show that if I(x) = s(n) and k € Z, then I(x(t — k)) = s(n — k).
(¢) Is I an isometry? Explain.
(d) Are the elements of V|; compactly supported? Explain.

Let W, be the continuous LZ(R) signals that are piecewise linear on [n, n+1],

ne Z.Define x(t) e W; & x(2f) € W44

(a) Verify MRA properties (1), (iii)—(v) for W= {W,}.

(b) Let V={V;} be the Haar MRA of the previous problem. Assuming that step
functions are dense in L*(RR), argue likewise for W by showing that given
v(t) € V), then some w(t) € W is arbitrarily close to v(t). Moral: An approx-
imation of an approximation is still an approximation.

(¢) Let w € W, and set Iw = s, where s(n) = w(n). Show that [ is an isomor-
phism.

Let [*(Z) be the normed linear space of bounded sequences, with ||x|| =
sup{|x(n)|: n € Z}. Define an operator Tx = y as follows: y(n) = x(n)(jn|+1)"".
Show that

(a) Tis linear.

(b) Tis one-to-one.

(¢) Tis onto.

(d) T is bounded.

(e) T is not bounded [30].

Let I: H— K be a bounded Hilbert space isomorphism and let /* be the Hilbert
space adjoint of I.

(a) Show that ||7*|| = ||| [30].

(b) Supposing that / is onto, show that I* is an isomorphism.
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(c) Show thatif E = {¢; | ke Z} is a Riesz basis in H, then there is F = {fx | ke
7} such that F is a Riesz basis and [9]

(e f) ={ é ?i"’=”’ (11.200)
1t m#n.

Let ¢(r) e LZ(R), let ®(®) = F[O(H](w) be its radial Fourier transform,
let s € P, S(w) be its discrete-time Fourier transform, and set P(w) =
> __|®(@+2nn)|2. Show that

@ 3 s®(r-k) e L (R);
k = —o0

2 2
=5- j |S(®)]"P(w) do.
0

oo

> s(k)o(r—k)

k = —oo

(b)

2

This problem uses the concept of Lebesgue measure. Let P(w) be defined as
above. Define P, = {w € [0, 2n] : P(w) > a} and Q, = {w € [0, 2n]: P(w) < a}.
Referring to Ref. 9, show that:

(a) If the Lebesgue measure of P,, W(P,), is zero for almost all a € R, then
P(®) =0 almost everywhere. Hint: Suppose not, so that P(w) >0on UC R.
Then U = P, ,,, where n > 0 is a natural number. What is W(Py,)?
Apply the Lebesgue measure to the countable union.

(b) Similarly, if W(Q,) = 0 for almost all a € R, then P(®) = e almost every-
where.

Complete the proof of the second Riesz basis characterization theorem [9].

Suppose 0(t) € LZ(R), ®d(w) = FIO(D](w) is its Fourier transform, F = {¢(t — k) |

ke 7},0<A<B<o, P(®) = X|O(w+ 21m)|2 , and F is a Riesz basis with

lower and upper bounds JA and /B, respectively. Show that P(®w) < B for

almost all w € R.

(a) Define P, = {® € [0, 2n]: P(w) > a}. Show that if u(P,) = 0 almost every-
where, then P(w) = 0 for almost all ® € [0, 2r], and P(w) < B. Hint: Con-
sider the case a = 1/(n+1) forn e N.

(b) Hence, assume that for some a > 0, W(P,) > 0. Let y,, be the characteristic
function on P, and x,(n) be the inverse discrete-time Fourier transform of
%a(®). Show [lx,[I* = )~ u(P,).

(¢) Show [|Zx, (k)0 — b)II* 2 allx|P*.

(d) Show B > a.

(e) Conclude that, unless B > X|®(w + 2Ttk)|2 almost everywhere on [0, 27], a
contradiction arises.
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This problem uses Lebesgue measure, but is straightforward. Suppose 0(¢)
LZ(R), O(w) = F[O(H](w) is its (radial) Fourier transform, and F = {¢(t — k) |
k € Z} is an orthonormal set.

(a) Show that [|®]}, = (2m)"/%.

(b) Show that |[®(w)| < 1 for almost all ® € R.

This problem studies Stromberg MRA [9, 22], wherein V|, consists of continu-
ous signals that are linear on integral segments [n, n+1].

(a) Let ¢(r) be a scaling function for V = {V;}. Prove that ¢(#) cannot be finitely
supported. Assume that it is finitely supported and derive a contradiction as
follows. Take the last interval (n, n+1) to the right over which ¢(¢) is non-
zero, take the last interval (m, m+1) proceeding to the left over which ¢(¢) is
nonzero, and compute the inner product (¢(2), ¢(r — (n — m))).

(b) Enumerate all of the cases for the inner product, and show that it is never
Zero.
(c) Show that ¢(¢) # 0 on (n, n+1) for arbitrarily large |n].

(d) Conclude that the inner products {0(¢), &(¢ — k)) involve an infinite number
of terms.

Show that the scaling function for an MRA is essentially unique. More pre-
cisely, let V={V;: i € Z} be an MRA and let §(¢) € V|, be its scaling function.
Show that 6(f) € V| is a scaling function for V if and only if there is a 2m-
periodic function P(®) such that ©(w) = P(w)®P(w) and |P(®w)| = 1 almost every-
where on [0, 27].

Let V={V:ie Z} be an MRA, §(?) its scaling function, ® = F¢), and H = H,
the associated low-pass filter. State and prove a generalization of the V_; Char-
acterization of Section 11.4.3 for any V < V), where N < 0.

With the same notation as in the previous problem, define the operator T: V, —
L?[0, 2m) by Tx = C, where C(®) is the 2m-periodic function with X(w) =
C(m)®(w) guaranteed by the V(, characterization (Section 11.4.3).

(a) Show that T'is linear: T(x + y) = Tx + Ty and T(ax) = aTx fora € C.

(b) If ¢(n) € I? is the inverse DTFT of C(®) = Tx, show that ||c|| = [|x]|.

(c) Show that T is a bounded linear map.

This problem uses Lebesgue measure to show that the orthogonal wavelet for
an MRA is essentially unique [8]. Suppose V = {V;: i € Z} is an MRA, 0(?)
is its scaling function, ® = #(¢) is the Fourier transform of ¢, and H = Hq) is
thze associated low-pass filter. Let y(#) € W, be an orthogonal wavelet for
L(R).

(a) Show that there is a 2w-periodic v(®) € LZ[O, 27] such that

Y(20) = v20)e 7*H(o + 1) D(o). (11.201)
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(b) Show that

Y Wo+2rk)’ =1 = o)’ ¥

k = —co k = —oo

2

H(9 +nk+n)
2

2
‘(D(@ + nk)
2

(11.202)

(¢) Summing over even and odd integers separately, show that the final expres-
sion above becomes
2)

|v(w)|2(

= 2
> ‘H(%) + n) ‘cb(%) + 2nk)

2 oo 2
+ 2 H(Q) (D((i) + 21k + n)
2 2

k= — k=—
(11.203)
(d) Prove that
2 ® 2 o)? 2
1 = |v(w)|"||H]| 5+TC + |H 5 = [v(o)| (11.204)
for almost all ® € [0, 2x].

(e) Conclude that the Fourier transform of y(#) has the form

YQ2w) = v(2(o)e_JwH(w+n)<1>((x)), (11.205)

where v(®) is measurable, and has period 27w, and v(®) = 1 almost every-
where on [0, 27].

23. Show that to get an orthonormal basis for W}, an alternative definition for the
Fourier transform of y(¢) is

Y(20) = ¢ Ho+n)d(o). (11.206)

Show that with this change of the exponent’s sign {y(t — k) | k € Z} is still an
orthonormal basis for W,

The following problems involve some extension of concepts in the text, may
require some exploration of the research literature, and are generally more difficult
than the preceding exercises.

24. Expand the construction of tight wavelet frames in Section 11.3.3 to include the
case 0 < ag < 1. Show that (11.109) continues to hold.

25. Investigate the application of frames of translations and dilations as constructed
in Section 11.3.3. Assume that ay =2 and by = 1.
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(a) Using a mathematical software package such as Mathematica or Matlab,
or by developing your own Fourier transform software in a high-level
programming language, find the inverse Fourier transforms for ¥*(w)
and ¥ (w).

(b) As Daubechies remarks [3], this frame is not well-localized, and this
becomes a problem for certain signal analysis tasks. By experiments of
your own design, justify this claim.

(c) Continue your critique of this frame by considering the fact that it consists
of translations and dilations of two distinct root elements, y*(f) and Wy (9).
In particular, explore the consequences of the definition ¥~ (0) = ¥*(-w).
What difficulties does this impose on signal analysis applications? Develop
experiments that justify your contention.

(d) Develop experiments using translations and dilations of the Mexican hat
wavelet and compare the performance to the frame in part (c) based on
V(1) and W ().

26. Extend the idea of a multiresolution analysis to L2( Rz).

(a) Reformulate the definition of Section 11.4.1.1 for functions of two vari-
ables, x(s, 1) € Lz(Rz)

(b) Let {Vy;: k€ Z} be an MRA for L%(R?). Show that there is a unique

image ¢(s, f) such that {2k¢(2ks —n, 2% - m): m, n € Z} constitutes an
orthonormal basis for V) .



I CHAPTER 12

Mixed-Domain Signal Analysis

This final chapter explains the methods for using time-frequency or time-scale
transforms to segment, classify, and interpret signals. The previous two chapters
introduced these mixed-domain transforms and their application to elementary anal-
ysis tasks. The short-time Fourier (or Gabor) transform (Chapter 10) and the wave-
let transform (Chapter 11) are the main tools for the applications we discuss. The
applications explain their practical and efficient use, spotlight their strengths and
weaknesses, and contrast them with pure time- and frequency-domain techniques.
This chapter covers three methods that, together with the local frequency or scale
information given by the transforms, are capable of elucidating signal structure:

® A type of structured neural network, which we call the pattern recognition net-
work;

® The hidden Markov model (HMM), which has become very popular for
speech, text, and biological sequence analysis;

® The matching pursuit, a Hilbert space search technique for efficient signal
description using a dictionary of signal models.

In place of a summary, there is an afterword to the entire book.

12.1 WAVELET METHODS FOR SIGNAL STRUCTURE

This section follows up on the theoretical work of the previous chapter. There we
discovered a special tool for describing multiscale signal structure, the multiresolu-
tion analysis (MRA) of finite-energy signals. Now we want to explain how, working
within the framework of a chosen MRA, we can:

(i) Develop a discrete version of the wavelet transform.

(i1) Show how an efficient algorithm for signal decomposition arises from the
MRA of finite-energy signals.

Signal Analysis: Time, Frequency, Scale, and Structure, by Ronald L. Allen and Duncan W. Mills
ISBN: 0-471-23441-9 Copyright © 2004 by Institute of Electrical and Electronics Engineers, Inc.
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(iii) Link this result to the perfect reconstruction filter banks covered in Chapter 9.

(iv) And, finally, show how to employ these methods for analyzing signal shape
across many scales.

12.1.1 Discrete Wavelet Transform

Let us assume that we have selected a multiresolution analysis of square-integrable
analog signals. Section 11.4 introduced this theory. To recapitulate, an MRA [1] is a
chain of subspaces {V;:i e Z} in LZ([R%) such that:

(i) The V; are closed and nested: ... c V_jc VoV, cV, ...

(i1) Their union is dense in LZ(R): Cj v, = LZ(R).

n=—oco
(iii) The only signal common to all the V; is the signal that is zero almost every-
where: F% nv; = 0.

i = —oo

(iv) Dilation by a factor of two links the closed subspaces: x(¢) € V; & x(2f) €
Vier:

(v) The root space V,, is closed under integral translation: If x(t) € Vy and k €
Z,thenx(t—k) e V.

(vi) There is a bounded, one-to-one, linear map, with a bounded inverse I: V; —
12 that commutes with integral translation: If k € Z, and I(x(¢)) = s(n) € P,
then I(x(t — k)) = s(n — k).

Property (vi) is equivalent to the existence of a Riesz basis within V|, (Section
11.4.1.4). The previous chapter provided examples of MRAs: step functions, piece-
wise linear functions, and cubic spline functions. Most importantly, associated with
an MRA {V;: i € Z} are three special signals:

(1) An analog scaling function, ¢ (t) € V,, such that {¢ (+ — k): k € Z} is an
orthonormal basis of V.

(i) A discrete associated lowpass filter H, with impulse response, h(n) = hy,,
givenby h, = (%(])(é), 0(z—n)), where ¢ (¢) is the scaling function in (i).

(iii) An analog orthogonal wavelet (1), defined by its Fourier transform as fol-
lows: ¥Y2w ) = ¢7?H(o + 1) ®(w), where 0(?) is the scaling function of
(1), @ = F(¢) is the Fourier transform of ¢, and H = H, is the associated
low-pass filter of (ii).

To make the MRA signal decomposition discrete, we assume that the analog source
signals reside in root space x(f) € V| and that we sample them at unit distance to get
x(n). The scaling function is a lowpass filter, and its expanding dilations—for exam-
ple, &(#/2), d(#/4), 0(¢/8), and so on—have successively narrower passbands. Filter-
ing x(#) by these dyadic dilations of ¢ (f) produces approximate versions of x(7)
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which are increasingly smooth. Next, since some high frequency detail has been
removed from x(7) by the filtering, we may select samples that are further apart.
For example, after the convolution x * ¢(#/4) removes noise and sharp transitions
from x(¢), sampling occurs on quadruple unit intervals. This idea comes from the
Laplacian pyramid decomposition, covered at the end of Chapter 9 [2].

Let us formalize these ideas for the case of the MRA. Following the notation
of Ref. 1, let x,(7) = ax(ar) be the scaled dilation of x(#) by factor a. Typically,
a = 2' for i € Z. Then the discrete approximate representation of signal x(¢) at
resolution 2/ is

(A = (1) * 0 (-1)2 ). (12.1a)

On the other hand, the orthogonal wavelet y(¢) is a bandpass filter. Its dilation by
various dyadic factors results in filters with narrower passbands and lower center fre-
quencies. Thus, we define the discrete detail representation of x(f) at resolution 2

(D) () = (x(1) * y_(-)(2"n). (12.1b)

Although (12.1a) and (12.1b) discretize the decomposition of a square-integrable
signal x(7), it remains to see how to compute the various analog convolutions that
are required.

12.1.2 Wavelet Pyramid Decomposition

The discrete orthogonal wavelet representation or wavelet pyramid decomposition
consists of the following filtered and coarsely sampled discrete signals:

d

d d d
A_Jx, D x,D_; %, ....D

X (12.2)

Notice in (12.2) that only the pyramid maintains all of the detail signals, up to the
decomposition level —J, but only the coarsest approximate representation of x(f).
Let us turn our attention to the convolution operations needed to derive this special
structural description.

12.1.2.1 Coarse Signal Structure: The Apprgximate Signal. We concen-
trate on deriving the coarse signal approximation, A_;x in the pyramid decomposi-
tion (12.2). The next section explains how to derive the detailed structural
descriptions.

Again, let i be a multiresolution analysis of LA(R), ¢ € V, be its scaling
function, and y e V, be its orthonormal wavelet (Section 11.4.4). We define
h(n) = h(—n) to be the reflection of h(n), the impulse response of the associated



876 MIXED-DOMAIN SIGNAL ANALYSIS

low-pass filter H = H,, . (Since a scaling function ¢ is known for the MRA, we drop
the subscript.)
We rewrite the convolution (12.1a) as an inner product:

(A% (n) = 2'(x(0), (21— n)), (12.3)

Now let p > 0 and i be integers, let x € LZ(R) , and let Hp be the discrete filter with
impulse response /1,,:

hy(n) = 2770270, (1 =m)) = (0, (1), ot =n)). (12.4)

Note that &;(n) = h(n), the impulse response of the quadrature mirror filter associ-
ated to the multiresolution analysis {V;}.

Then we claim that the decomposition for the discrete approximate representa-
tion of signal x(n) at level i is given in terms of the approximate representation of
x(n) atlevel i + p by

A = Y 2 - kAL, 0k, (12.5)
k = —oc0

This means that we can get completely rid of the analog convolutions through
which we originally defined the pyramid. Indeed, if we take p = 1 in (12.5), then
each approximate level of representation comes from convolution with 7 (n) fol-
lowed by dyadic subsampling. This continues recursively for p levels to produce the
approximate signal structure of x(n) at level i from the approximate representation
atlevel i + p.

To show how this works, we consider the expansion of V; signals on the orthogonal

basis elements of V; For any i, the signals {¢2,-t— 2_in} span V;c Vi, ).

L+ p° nez
Indeed, an orthonormal basis of Viep is {2_(i+p)/2(l)2i+p(t— 2_i_pn)}n < ,- Con-
sequently,
0Q2't1-n) = 27 3 (0@2's—n), 62" Ps—kyo(2 TPi-k).  (126)

k = —o0
With a change of variables s = 2~ i “P(t+2”n), the inner product in (12.6) is

[0@2's—mo@ ™ s—kyds = 277 [ 9@ Do+ 2"n—k) di

—oo —oo

2 [ 02700 (k-2 ds. (12)
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Putting (12.6) back into (12.7), it follows that

oo

(x(0,0Qt=m) = 3 [ 02750~ (k-2"n)) ds{x(n), 62" P1- k).
k= —oc0_oo

(12.8)

From the definition of the impulse response %, (12.4), we get

(0,002t =)y = 2" Y b, (2 n—k)(x(1), 62" TPt - k)) . (12.9)

k

M 3

D

—oo

But the inner products in (12.9) are in fact the discrete representations of signal x(7)
atlevels i and i + p. So (12.5) follows directly.

Let us find the impulse response of the discrete filter H,. Since {O(1-k)}, . 7
is a basis for V,

027" = Y (6(27s), 0(s—k)O(1 k). (12.10)
k = —oo
Taking radial Fourier transforms on both sides of (12.10) and simplifying,
o2’w) = ¥ hy (k) [ (- ke ®ar = H,(0)® (). (12.11)

k = —o0

The discrete-time Fourier transform of the filter Hp is

, (12.12)

where @(®) is the radial Fourier transforms of scaling function ¢ (¢). Applying the
inverse discrete time Fourier transform to (12.12), gives hp(n) (Figure 12.1).

Figure 12.2 shows the Hp((n ). (12.18) lists filter values for the cubic spline
MRA. Note that the hp(n) are even.

To extract a coarse approximation of a signal’s structure using a given MRA,
then, the steps are:

(1) Select a resolution step factor p > 0.

(i) Compute the impulse response h,(n) of the filter with discrete time Fourier
transform given by (12.12).
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Fig. 12.1. Discrete filter impulse response signals hy, h, h3, and hy for the cubic spline
MRA.

(iii) Compute the convolution (12.5) on 2-wide intervals to get a coarse approx-
imation (A{x)(n) from (A7, x)(n).
(iv) Employ one of Chapter 4’s thresholding methods to the magnitude of the

decomposition coefficients, identifying large and small coefficients with
significant signal features and background noise, respectively.
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] Using impulse responses from Table 12-1; truncation causes passband ripple
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Fig. 12.2. Discrete-time Fourier transforms Hy, Hp, H3, and Hy of hy, hy, h3, and hy for the
cubic spline MRA.

12.1.2.2 Fine Signal Structure: The Detail Signal. A similar derivation
gives the signal details at various resolutions. Let G, be the discrete filter with
impulse response g,

g,(n) = 277 (w2, ¢(t-n)), (12.13)
and note again that (12.1b) expresses an inner product:

(D)) = 2" (x(0), w(2't-n)) . (12.14)



880 MIXED-DOMAIN SIGNAL ANALYSIS

1 T T I T
05} T -
{=
® 06000000000 000°9 o $oooooooooooo<
05 ! | 4? I I
-15 -10 -5 0 5 10 15
0.5 , , ,
G 0000 QT‘P 00 0 4
c;J\,OiOOOQOOOO OJ}& &&O 0000
-0.5 | | | | |
-15 -10 -5 0 5 10 15
0.2 T T T T T
g 000 ?TTT? 0 9 J
c,(;)O)OOOOOOO Oé&l}l}é b(LJ)&bO
0.2 ! ! ! ! L
-15 -10 -5 0 5 10 15
0.1 T T I I T
£ 00000000000 OO00O0OO OO?TTTTTTT?OO—
> b
0.1 1 1 | | L
-15 -10 -5 0 5 10 15

Fig. 12.3. Discrete filter impulse respone signals g;, g, g3, and g4 for the cubic spline
MRA.

We claim that (D?x)(n) , the detail signal at level i, is given in terms of the approx-
imate signal at level i + p by

DM = Y ¢, -k AL, k). (12.15)

k= —o0

To verify this, let O; be the orthogonal complement of V; inside V; , 1 V; L O;
and V, ; =V,®0;. The shifted, dilated orthogonal  wavelets

L . (i+p)/2 Zio
{\pzit—Z 'n}, < 7 span OiCVHp.Smce {2 (i+p) Oyivn(t=2 ! pn)}

an orthonormal basis of V; , ,,

ne”Z 18

w2't—n) = 2'*7P E (W2's—n), 02 Ps— ko2 Pr—k).  (12.16)

k = —oco
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Using impulse responses from Table 12-1; too few samples to show G4 stopband
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Fig. 12.4. Discrete-time Fourier transforms Gy, G,, G3, and Gy of g1, g;, g3, and g4 for the
cubic spline MRA.

Then, following the argument about approximate signals from the previous section
(exercise) gives

oo

(0, y@'t-n) = 2" ¥ 5 @ n-k)(x(e, 02" -k, (12.17)
> 8

k = —o0

and, consequently,

D) = Y ¢, n-k)A], k). (12.18)
k= —oo
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TABLE 12.1. Cubic Spline MRA Orthogonal Wavelet Pyramid Filters

n hy(n) hy(n) ha(n)  hy(n) g2(n) g3(n) 84(n)
0 0.542 0.272 0.136 0.068 —-0.189 —0.095 —0.048
1 0.307 0.237 0.131 0.067 0.099 —0.035 —0.035
2 —0.035 0.153 0.118 0.066 0.312 0.049 -0.018
3 —-0.078 0.057 0.099 0.063 0.099 0.125 0.003
4 0.023 -0.019 0.077 0.059 —0.189 0.157 0.025
5 0.030 —-0.047 0.052 0.055 —0.161 0.125 0.045
6 —-0.012 —-0.039 0.028 0.050 0.005 0.049 0.062
7 —-0.013 —-0.013 0.007 0.044 0.054 —-0.035 0.074
8 0.006 0.012 —0.009 0.038 0.027 —0.095 0.079
9 0.006 0.020 -0.019 0.032 0.018 -0.107 0.074
10 —0.003 0.015 -0.024 0.026 0.017 —0.080 0.062
11 —0.003 0.004 —-0.023 0.020 0.000 —-0.037 0.045
12 0.002 —0.006 -0.019 0.014 —-0.018 0.003 0.025
13 0.001 —0.009 —-0.013 0.009 —-0.016 0.023 0.003
14 —0.001 —0.006 —0.006 0.004 —0.004 0.027 -0.018
15 —0.001 —0.001 0.000 —0.001 0.003 0.021 -0.035

Seeking the impulse response of the filter Gp, we expand on {0(f—k)}, . 7, an
orthongormal basis for Vj:

w2l = Y (w2 s), o(s—k)yo(t—k). (12.19)

k = —oo

Fourier transformation of (12.19) produces

v w)

R (12.20)

G,(®) =

Filters for generating the detail structure of signals via the orthogonal wavelet decom-
position are shown in Table 12.1(12.18). We set g(n) = g,(n) = (-1 Yo=np1-n),
s0 it is not shown. Observe that g,,(n) is symmetric about 2=

12.1.2.3 Quadrature Mirror Filters. We have shown that discrete filters, H,
and G, with impulse responses h,, and g, respectively, are all that we need for the
wavelet pyramid decomposition (12.2). Since we know the Fourier transforms of
the wavelet and scaling function, we can compute these impulse responses from the
inverse discrete-time Fourier transforms of (12.12) and (12.20). Figure 12.5 shows
how the pyramid decomposition occurs by successive filtering and subsampling

operations.
From Chapter 11’s theoretical development, we ) know that the dlscrete low-pass
filter H(w) associated to an MRA satisfies |H(0))| +|H(o+ n)| = 1. Within an

amplification factor, this is precisely the perfect reconstruction criterion of Chapter
9. In fact, »/2h(n) is a quadrature mirror filter. We can decompose the signal using
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Fig. 12.5. Signal decomposition using the orthogonal wavelet pyramid.

this scaled filter, or we can slightly modify the perfect reconstruction scheme
of Chapter 9 by supplying an additional amplification factor upon reconstruction
[1, 3]. B

Consider the QMF pyramid decomposition in Figure 12.5. Let h(n) = h(-n)
be the reflection of h(n) and

Hz) = 3 hn)z" (12.21)

n = —oo

be the z-transform of i (n) . Subsampling by two followed by H(z) filtering is the
same discrete system as H(z ) filtering followed by subsampling [4] (exercise).
Applying the same idea to g(n)znote that we_ cay directly obtain level —2 coeffi-
cients by filtering with H (z)H(z") and H (z)G(z ) and subsampling by four. We
can compute the impulse response of the filter with transfer function H (z)H~(z )
by convolving h(n) with the filter obtained by putting a zero between every h(n)
value.

12.1.3 Application: Multiresolution Shape Recognition

This section shows how to use the orthogonal wavelet pyramid decomposition to
recognize signal patterns at varying scales. This is one type of pattern recognition
application [5]. We seek a known signal pattern, the model, in a sample signal
that—perhaps along with background shapes and noise—contains a dilated version
of the model. Moreover, if our pattern comparison algorithm gives localized infor-
mation, we can attempt to register the time-domain position of the model as well.
Registration is the process of finding the position of a prototype, or model, signal
within a candidate, or sample, signal. For these tasks, signal analysts have relied
upon multiple resolution methods for the following reasons.
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® If the comparisons between the model and sample proceed pointwise, then the
number of computations may become prohibitive—an especially acute prob-
lem in multiple dimensions (image analysis, computer vision, video analysis).
Hierarchical structures that analyze signals at several resolutions can make
the number of computations tractable [6]. Comparisons at coarse scales are
iteratively improved in transition to fine scales.

® Coarse representations of signal structure can isolate significant features that
are apparent only at certain resolutions [7-9].

When applying pyramid techniques to register a prototype object in a candidate sig-
nal, we first decompose both the model pattern and the sample. At the coarsest scale
of decomposition, the algorithm compares the model and sample at all possible rela-
tive positions. The decomposition coefficients should not change as the model’s offset
into the sample varies. For otherwise, the decomposition would need to be recom-
puted for each location; computation time then increases drastically. The model’s
coefficients will not change if the decomposition procedure is translation-invariant.
Of course, the coefficients could change in some simple way that is comparatively
inexpensive to compute. Eventually, this produces a set of suffiently good—or,
feasible—comparison locations between prototype and candidate. The search contin-
ues at the next higher resolution with—hopefully—a greatly confined set of feasible
registrations. The best acceptable match at the finest scale gives the final result.

We apply the multiresolution analysis (MRA) of L*(R) to the multiscale shape
recognition problem [1]. Once a particular MRA is chosen, it leads to simple, com-
pact, and efficient pyramid decompositions using quadrature mirror filter (QMF)
banks (Figure 12.5). The algorithms do not increase the amount of memory space
required for storing the representations, yet exactly reconstruct the original signal.

We note that the MRA concept extends to two (or more) dimensions for image
analysis. In this case, the separable two-dimensional pyramid decomposition distin-
guishes between horizontal and vertical spatial frequencies, which is useful for tex-
ture and image analysis in artificial environments [1]. Supplementary orientation
tunings are possible too [10].

Orthogonal wavelet pyramids suffer from the following difficulties in registra-
tion and matching applications:

(i) A registration problem is that the lower resolution coefficients do not trans-
late as the original signal is shifted; in fact, the decomposition coefficients
change drastically (Figure 12.6). This greatly complicates the tasks of
matching and registration and has inspired research into alternative repre-
sentations that support pattern matching [11].

(i) A second registration difficulty arises from the orthogonality of the repre-
sentation, a consequence of its derivation from an MRA of LA(R). A regis-
tration between prototype and candidate at one resolution may not indicate
any correlation between them at a finer scale. Whether this second difficulty
appears depends on the nature of the signals acquired by the processing
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Fig. 12.6. Decomposing a prototype square pulse one resolution level using the orthogonal
wavelet pyramid decomposition (a). The same pulse, shifted by a unit distance, represents
the candidate. Its first coarse representation is shown in (b). This confounds the basic pyra-
mid registration algorithm when it uses raw detail signals. The best registration position of
candidate with respect to prototype is to align the left edge of one with the right edge of the
other. On the other hand, the registration algorithm succeeds when using the magnitudes to
measure of local energy.

system. Below, we describe an algorithm for coarse-to-fine tracking of reg-
istrations in orthogonal wavelet pyramids. The exercises suggest a compari-
son using the Laplacian pyramid [2] representation with the same
registration algorithm. We report some earlier results here [5].

(iii) A problem in multiscale matching is the dyadic dilation factor between pyr-
amid levels. If the modeled object does not happen to be a dyadically scaled
version of the candidate’s pattern, then it is possible to overlook a match.
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In matching applications, we seek instances of model patterns in an acquired
signal. Suppose that prototypes are decomposed and stored in a phoneme recog-
nition system, for example. The large number of prototypes needs a compact
representation for the model pyramids to trim memory requirements. Applying
orthogonal wavelets for such recognition systems is attractive and is a motivation
for trying to circumvent the translation of coefficients problem. It is desirable
to quickly reject candidate patterns that are not represented by any model.
Decomposition of a full pyramid for a candidate pattern is costly when, for
instance, only the coefficients at the fourth level of decomposition (1/16 of the total
values) are used for comparison with prototypes. If the pattern is accepted, then the
time constructing a full pyramid is not lost. It helps obtain a precise registration.
But if the pattern is rejected, a full pyramid is built for a candidate even though a
tiny fraction of the coefficients find use. One need not derive all pyramid levels, in
sequence from finest to coarsest scale of representation, in order to reject or ten-
tatively accept a candidate pattern. We derived formulas for filters that allow us to
directly compute coarse pyramid levels in the orthogonal wavelet representation in
Sections 12.1.2.1.2.

We use the well-known cubic spline MRA for registration experiments [12]. If
{V; i e Z} is the MRA, then the root space V|, is all finite-energy continuously
differentiable functions that are cubic polynomials on intervals [k, k+ 1]. We studied
this example of an MRA in Section 11.4. It has a particularly suitable scaling
function ¢(r) € V, for signal analysis, with exponential decay in the time
domain and polynomial decay of ™ in the frequency domain. We recall that
the associated discrete low-pass filter is h(n) = (%(])(é), 0(t—n)). We set

g(n) = (—1)1 - nh(l —n), which is a discrete high-pass filter.

The registration algorithm begins with a set of feasible points, where sufficient
correlation exists between the candidate and prototype signals, at the coarsest level
of representation. Feasible points at finer scales are found, furnishing feasible paths
up the pyramid. In order for a feasible point to continue a feasible path from a lower
level, it must be close to a previous, coarser registration value. The best complete
feasible path to the finest level of representation gives the registration between can-
didate and prototype patterns.

The algorithm uses the limited shift-invariance in the orthogonal wavelet pyra-
mid representation. The coefficients of the wavelet representation at level / < 0
translate by amount k when the original signal is translated by amount k27! The
steps are:

(i) The candidate signal is decomposed with the wavelet pyramid (Figure
12.5).

(i) The minimum of the registration cost function m over all registrations r,

m(r, 1) = Z[th(i)-xhp(i-r)]z, (12.22)
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is computed for level [ = —L. X; . is the candidate signal decomposition at
level [, X; , is prototype signal decomposition at level /, and i varies over
candidate signal values. Let r_; be a registration at which the minimum
occurs, and call the minimum M_; = m(r_;, —L). We pad arrays with zeros
when endpoints overlap.

(iii) All registrations s such that m(s, —L) < Tm(r_;, —L), where T > 1 is a
threshold, are the feasible points at level —L. Call this set of registrations
FR_;, the starting points of feasible paths up the pyramid levels.

(iv) Steps (ii) and (iii) repeat at higher levels =L + k, 1<k < L.

(v) We prune the feasible point sets at the higher levels to retain only feasible
points that continue, within an offset tolerance factor, a feasible path com-
ing from a lower level. Thus, se FR_; | only if m(s, —k+1) < TM_; ,
and t —T<s <+ 7 forsome rin FR_; and offset tolerance 7.

(vi) Finally, if at level —1 no full feasible path has been found, then registration
failed. If at least one feasible path is found, the best is selected as the final
registration. In a local neighborhood of the best registration found at level
—1, the original prototype signal and original candidate signal are exam-
ined for the best correspondence value.

(vii) To extend the algorithm to matching, where the scale of the candidate
object is unknown, then we allow feasible paths to start and stop at inter-
mediate levels.

(viii) For matching applications based on coarse signal structure, it is useful to
generate low-resolution pyramid levels directly rather than iteratively. The
wide filters we developed above (Table 12.1(12.18)) allow us to jump
many scales, quickly compare, and tentatively accept or reject candidate
signals. This saves the time and memory cost of performing full pyramid
decompositions. (12.18) Table 12.1 gives sample coefficients for /,(n) and
gp(n). We use filters g (n) = g(n), g(n), ..., gp(n), and hp(n) for an orthogo-
nal wavelet pyramid to level —p.

For experimentation, we register sections of the Australian coastline. Digitized, it
contains 1090 points for the experiments herein. The scale-space representation has
been studied in similar experiments [13]. Beginning from a reference zero position,
we plot the outline of the Australian coast (Figure 12.7) as ordered pairs (x(?), y(¢)),
where ¢ is the distance along the coastline to the reference position.

To find derivatives, we approximate x(#) and y(¢) to a quadratic using Lagrange’s
interpolation formula. A signed curvature function [14],

r 7 r_r

N - )
k(1) = xz—y);m (12.23)
[(x)"+ ()]

gives the coastline curvature at (x(¢), y(¢)) (cf. Figure 12.8a). Prototype signal x (7) is
decomposed using the orthogonal wavelet decomposition (Figure 12.9a). The
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Fig. 12.7. Curvature maps of sections of coastline such as the Gulf of Carpentaria and the
Cape York Peninsula are registered within an entire boundary curvature map of Australia.
The independent variable of the curvature map is the arc-length distance from the reference
point.

candidate signals for the experiments are partial curvature maps of coastal sections,
for example the Gulf of Carpentaria (Figure 12.8b, Figure 12.9b).

The registration algorithm generates feasible paths through the pyramid (Figure
12.10). Thresholds 7 and T depend on the application. For the boundary matching
shown here, T = 1.2, and T in Step (v) was chosen to be 2k+1 at level —k. If the value
of T is too small, the registration can fail at the coarsest level; the r_; is incorrect,
and the neighborhood of the correct registration holds no feasible point. When 7 is
too large, the number of feasible paths to check increases, slowing the coarse-to-fine
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Fig. 12.8. Curvature maps. (a) Partial curvature map of Australian coastline. (b) Curvature
map of Gulf of Carpentaria. The correct registration is evident.

algorithm. If 7 is too small, initially correct feasible paths terminate at coarse reso-
lutions. It turns out that this holds for both the Laplacian- and wavelet-based
registration schemes [5]. The exercises suggest a comparison of these methods
along with the piecewise continuous MRA [15].

Table 12.2 shows experimental results in registering continental boundaries.
Over all but the lowest resolution level we rely on the detail signal magnitudes of
the candidate and prototype signals. For the coarsest comparisons of structure, the
approximate signals are used for matching. We add noise to the candidate curvature
maps in some experiments. N%te that thze mean-square signal-to-noise ratio (SNR)
employed here is SNR = ¥ s7(¢)/Y N (7). Experiments reported in Ref. 5 were
performed in which the signals X; . and X , in (12.22) were taken to be either the
approximate signal, the detail signal, or the absolute value of the detail signal coef-
ficients. The outcome is problematic registration with the raw detail signals, but sat-
isfacory convergence if X;. and X;, are approximate signals [5]. This is not
unexpected, as the algorithm then compares successively low-pass filtered signals.
The approximate signals are always used at the coarsest level (here, level —4) to
generate the initial list of feasible points FR_,. The feasible paths are robust when
the candidate has large support, but smaller candidates of nearly straight coastline
can fail to correctly register [5].
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Fig. 12.9. Beginning registration of Gulf of Carpentaria at level —4. (a) Australian coastline
curvature at resolution 1/16. (b) Gulf of Carpentaria curvature at resolution 1/16. Feasible
points are not so evident.
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Fig. 12.10. Registering Gulf segment against Australia boundary: two feasible paths, both
ending at the correct registration offset of 251, are found.
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TABLE 12.2. Orthogonal Wavelet Pyramid Algorithm Performance

Correct Match Pyramid  Feasible
Run Candidate Offset Measure Levels Points  Success
1.0W 128 point segment 250 Detail signal 4 19 Yes
of Gulf of magnitude
Carpentaria
1.1W  Same as 1.0W, 251 Same 4 90 Yes
except shifted
2.0W  Same as 1.0W, 250 Same 4 87 Yes
except uniform
noise with
mean-square
SNR of 10.0
added to
candidate signal
2.1W  Same as 2.0W, 251 Same 4 111 Yes
except shifted
2.2W  Same as 2.1W, 252 Same 4 79 Yes

except shifted

Now, consider the Laplacian pyramid. It analyzes N-point signals into approx-
imately 2N coefficients and images into 4/N/3 coefficients. Correlation between lev-
els causes the larger pyramid sizes. Since the orthogonal wavelet and Laplacian
pyramid representations are computationally quite alike [1], it is natural to study
the registration algorithm using the Laplacian pyramid decomposition. For these
experiments, we implemented the Laplacian pyramid using the approximately
Gaussian [2] low-pass filter {0.05, 0.25, 0.4, 0.25, 0.05}. We find that raw dif-
ference signals of the pyramid (not their magnitudes) suffice for good registration.
Figure 12.11 shows the result of the experiment of Figure 12.10 using the Lapla-
cian pyramid decomposition.

Table 12.3 shows the results of the Laplacian-based registration algorithm on the
same battery of experiments for which we used orthogonal wavelets.

To summarize the results, registering curvature maps with wavelet pyramids pro-
duces many more feasible points and paths. However, some Laplacian pyramid runs
produce many feasible points too. Both methods are robust in the presence of noise,
although the Laplacian pyramid suffers from very large feasible point counts at
coarse resolutions. It turns out that candidate signals with small support often make
the wavelet registration fail, whereas the Laplacian pyramid algorithm withstands
these same small structures [5]. Overall, the Laplacian pyramid decomposition is
somewhat better, since the correlation between levels stabilizes the coarse-to-fine
tracking.

It appears that these results do not depend substantially on the type of MRA—
and hence the discrete pyramid decomposition filters—chosen for deriving the
coarse resolution signal structures. Both the Haar [16] and the Daubechies [17]
compactly supported wavelets were used in similar registration experiments [18].
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Correct registration at t = 251:
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Fig. 12.11. Registering Gulf segment against Australia boundary using the Laplacian
pyramid decomposition. Again, two feasible paths arise. The correct registration is found
very quickly, at level —1, where the unit distance of the difference signal is the same as the
original curvature maps.

These researchers concluded that as long as two or more samples support the signal
structure of interest, the approximate signal structures suffice for coarse-to-fine
matching and registration. The same authors advise caution with the pyramid’s
detail signals. Neither method—Haar or Daubechies wavelet pyramids—signifi-
cantly outperformed the other, although the Haar structures were slightly better
when using detail signals [18].

TABLE 12.3. Laplacian Pyramid Algorithm Performance

Correct Match Pyramid Feasible
Run Candidate Offset Measure Levels Points  Success

1.0L 128-point segment 250 Detail signal 4 17 Yes
of Gulf of
Carpentaria

1.1L Same as 1.0L, 251 Same 4 7 Yes
except shifted

2.0L Same as 1.0L, 250 Same 4 954 Yes
except uniform
noise with
SNR =10.0
added to candidate

2.1L Same as 2.0L, 251 Same 4 1090 Yes
except shifted

221 Same as 2.1L, 252 Same 4 942 Yes

except shifted
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12.2 MIXED-DOMAIN SIGNAL PROCESSING

Mixed-domain signal transformations provide some new insights into signal pro-
cessing tasks. Although this section concerns applications that refine rather than
interpret a signal, we observe that these steps are often important ancillary feature
of a signal analysis application. Here, we confine our remarks to three areas:

¢ Compression;
® Filter methods and filter banks;
® Enhancement.

Compression is necessary for constructing large signal databases, such as a model-
based recognition system might employ. Filtering is important at the front end of an
analysis application. Enhancement can essential for building signal prototypes. In
fact, although it is a purely signal-in, signal-out technology, compression is perhaps
the most important commercial application of the orthogonal wavelet transform. We
hasten to add that a very large research literature continues to flourish in all of these
areas; our present assessment by no means constitutes the final word.

Good compression methods currently employ either the discrete cosine trans-
form (DCT) or orthogonal wavelet transform coding. The idea is that the transform
coefficients are statistically far simpler than the original signals or images, and
therefore the transformed data can be described with fewer numerical values. Of
course, the orthogonality of the wavelet transform and the efficient, perfect recon-
struction filter banks that it provides promote its use in compression. After com-
pression, a handful of transform coefficients nonlinearly encode complex signal and
image patterns. Perfect reconstruction is, in principle, possible. Even with lossy
compression, ratios of one-bit compressed versus one-byte (8-bit) original signal
gives excellent reconstruction. When more decomposition coefficients are discarded
in compressing the signal and there remains only a single bit versus 4 bytes of
source signal, the reconstruction is still fairly good for human perception.

Digital sound, image, and video databases are huge. Whether they support a signal
analysis system or not, compression is essential for economy of storage, retrieval, and
transmission. The earliest wavelet compression methods were based on the orthogonal
wavelet pyramid decomposition (12.2), shown in Figure 12.5 [1]. New compression
methods—some of which provide compression ratios of two orders of magnitude—
based on wavelet transforms have been reported in the research literature [19-22].
The basic idea is that many detail coefficients carry no useful signal information and
can be set to zero without appreciably affecting the result of the pyramid reconstruc-
tion algorithm. There are many variations, but typically the steps are as follows:

(1) Select a multiresoluton analysis and a final level of pyramid decomposition
—L, where L > 0.

(ii)) Decompose the signal x(n) into its pyramid decomposition (12.2), produc-
ing detail coefficients for levels —L </ < -1 and approximate coefficients
forlevel | = -L.
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(iii) Apply a threshold to the fine structure signals D_; x, D_; , |x, ..., D_;x,
so that small magnitude coefficients are set to zero. This is typically a hard
threshold: If s(f) is a signal, then its hard threshold by 7 > 0 is given by

: 0 ifls(n)<T.

(iv) Apply a standard compression technique to the small coarse-resolution
trend signal A_;x. Examples include the Karhunen-Loeve compression
[23] or—for images, especially—the Joint Photographic Experts Group
(JPEG) standard algorithm [24], which derives from the discrete cosine
transform (DCT) [25].

(v) Apply an entropy coding technique, such as simple run-length encoding
[26] to the detail signals.

(vi) Decode the compressed pyramid levels from (iv) and (v) and reconstruct the
original signal (with some loss, principally due to the thresholding operations)
using the exactreconstruction afforded by the MRA’s quadrature mirror filters;

(vii) A conservative guideline for hard threshold selection is

T = ¢ [2l0gWV) (12.25)
N

where (52 is the variance of x(n) at level / = 0 and N is the number of samples.

Compression ratios of about 25:1 on natural images are possible with the above
method. The extension of the orthogonal wavelet pyramid decomposition to two
dimensions (images) is necessary for this technique [1], but is unfortunately beyond
our present scope. However, Figure 12.12 gives the idea. As with signals, the detail

C3|H3
H2
decomposedover | 0] 03 Hi
threglevels v - horizontd
o0 - fluctuations
o W1 D1
original ] )
image vertica diagonal
fluctuatons fuctuations

Fig. 12.12. Orthogonal wavelet image compression decomposes the original into four uncor-
related subimages. The trend image C; is analogous to the one-dimensional approximate
signal. The three detail images contain the direction-sensitive fluctuations of the image C.
These include vertical details, horizontal details, and diagonal (corner) details. The image
pyramid decomposition applies the same algorithm to each coarse structure trend image, C;,
C,, and so on. This produces more detail images and a final trend image, C3 above.
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images tend to have simple statistics. They can be modeled, quantized, and individ-
ually compressed to impressive ratios. The decomposition allows the algorithm
designer to tune the vertical, horizontal, and diagonal quantizations so that the
direction-sensitive human viusal system perceives minimum distortion in the recon-
structed image [1, 27].

More recent approaches to signal compression are as follows:

® Malvar “wavelets” are in fact a time-frequency signal decomposition [28].
They are an alternative to the time-scale decomposition using wavelet pyra-
mids. This time-frequency compression technique breaks down an image into
a sequence of sinusoidally textured atoms, with adjustable leading and trailing
borders. The overall size of the atoms is also tunable. Lastly, as we noted
briefly in Chapter 10, as an atomic signal decomposition that uses sinusoids
instead of complex exponentials may avoid the limitation of the Balian—Low
theorem. This flexibility allows Malvar wavelet compression schemes to beat
others when tested in constrained problem domains, such as fingerprint images
[29].

® Wavelet packets are functions of the form 2m/2Wn(2mt — k), where m, n, and
k are integers and n > 0 [30,31]. W, extends only over a finite interval [0, NV],
and it contains the root frequency of its family of atoms. The decomposition
scheme is similar to the orthogonal wavelet pyramid, except that the detail sig-
nal structures are also composed at every level. Image decomposition uses ten-
sor products of the translations and dilations of the W,,. A distinct advantage of
wavelet packets over Malvar wavelets is that each set of atoms is generated by
translation, dilation, and modulation of a single function. This simplifies the
construction of algorithms and special-purpose compression hardware. Wave-
let packets offer excellent compression ratios, in the realm of 100:1 [19].

® Structural approaches to wavelet-based image compression take a two-stage
approach. This scheme first extracts edges across several scales. It then
encodes the texture representing the difference between the original and the
reconstruction from edge information. Combining the texture-coded error
image with the edge-coded image gives a perceptually acceptable rendition of
the original [20]. Closely related to transform signal compression are mixed-
domain processing techniques for noise removal and enhancement.

12.2.1 Filtering Methods

Wavelet decompositions provide for methods that remove background noise from a
signal but preserve its sharp edges. This can be especially valuable in signal analysis
applications where it is necessary to identify local shapes, for example, that may be
corrupted by noise, but still obtain a precice registration [29]. We recall from Chap-
ter 9 that low-pass and bandpass filters removed high-frequency components from
signals, but as a rule, these convolutional systems blur the edges as well. Once again,
there are many alternatives for wavelet-based noise removal. The typical approach
follows the compression algorithm, with a twist at the thresholding step [32-34]:
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(i) Select an MRA and final level of decomposition —L, where L > 0.
(i1)) Decompose x(n) according to (12.2).
(iii) Retain the coarse structure approximate coefficients at [ = —L, but apply a
soft threshold to Dile, DilL+ 1% wens D‘_ilx: If s(t) is a signal, then its soft
threshold by T > 0 is given by

oy () = { senls(O1(s(l=T)  if Is(n)] > T, (12.26)
: 0 if s()| < T.

Soft thresholding results in a continuous signal (Figure 12.13).
(iv) Reconstruct the original signal.
(v) Soft threshold selection is either heuristic, based on the hard threshold

selection (12.25), or extracted via the Stein unbiased risk estimate (SURE)
[33, 35].

y is x with soft threshold T = .2 applied

1 T T T

y(®)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 12.13. Soft thresholding a sinusoidal signal.
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Fig. 12.14. Noise removal filtering using wavelets, soft thresholding, and the SURE thresh-
old selection.

Figure 12.14 provides an example.

12.2.2 Enhancement Techniques

Let us consider a third processing technique using wavelet transforms. Many signal
acquistion and imaging systems use photon detectors, such as the popular charge-
coupled device (CCD) or the sensitive photomultiplier tube (PMT), as their data
source. Examples are spectrometers used to control plasma etchers in the semicon-
ductor manufacturing industry, an application we considered in Chapter 4; astro-
nomical instruments; remote sensing devices; and photo-optical sensors in general.

CCDs now have become the digital image acquistion device of choice [36]. A
charge well corresponds to a single pixel. They are small, holding perhaps 800 elec-
trons per micron? (W, 10~°m). This is called the well capacity, W .. Factors affecting
CCD sensor performance include the following:
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® Wells have finite capactiy, so if exposure time is too long, electrons spill over
to adjacent wells, causing blooming of the image (bright blurry spots).

® There are three noise sources. These are due to thermal effects, Ng, (also called
dark current); the quantum nature of light, N¢; and logic noise during readout, Np.

® Total noise within the image at a pixel is therefore N = Ny+ Ng + N,, .
® Dynamic range of the well is defined as (capacity)/(readout noise level) = WC/Np .

® Thermal effects may be mitigated by cooling the sensor; typically, 6 degrees C
warmer means twice as much thermal noise; in other words,

¢ T

No(t) = [Kq2°d, (12.27)
Iy

where T is the temperature in degrees Celsius, Kg is a constant, and ig is the
dark current.

® Readout noise rate increases with readout frequency.

® Light flux striking sensor obeys a Poisson distribution, where o is the parame-
ter of the distribution:

k

p(k) = e‘“% = Prob(I=k). (12.28)

® The mean of a Poisson distributed random variable is L = o and its standard
deviation is o = 0./’? in (12.28).

Of the diverse image noise sources, the most troublesome is quantum noise, N¢,
which arises from the discrete nature of light quanta detection. Its magnitude
changes with the light intensity and is thus image-dependent. Toward eliminating
this pernicious source of noise in photon imaging systems—so-called photon
noise—Nowak and Baraniuk [37] have applied an adaptive filtering method, based
on the wavelet pyramid decomposition.

We have already observed that in some applications, wavelet pyramids furnish an
especially convenient and powerful tool for suppressing noise in signals and images.
The decomposition of a signal into a pyramid allows us to design algorithms that
eliminate apparent noise in certain frequency bands by simply attenuating (or even
zeroing) the coefficients in the suspect pyramid level. When the signal is recon-
structed from the modified pyramid, troublesome noise is then absent. Better com-
pression ratios are also obtained, without significant loss in perceptual signal quality.

In Ref. 37, the idea is to adjust pyramid level intensities according to the energy
in other parts of the representation. For example, we might decompose to two
coarse levels of representation, then attenuate the detail coefficients selectively,
where the approximate signals have large magnitudes. Detail signals corresponding
to regions where the approximate signal is weak remain the same or are amplified.
Then, we reconstruct the profile using the pyramid scheme. A number of the com-
putational experiments in Ref. 37 markedly improve faint, low-constrast medical
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Fig. 12.15. Example of scanning electron microscope profile of lines on a test wafer. Noise
magnitudes are roughly equal on tops of the high-magnitude lines and at the bottoms of the
low-magnitude spaces between them.

and astronomical images. There is also a promise of better histogramming, edge
detection, and higher-level image interpretation results. Figure 12.15 and Figure
12.16 show an application of this technique to raster lines from a scanning electron
microscope (SEM) image.
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Fig. 12.16. After enhancement using the method of Nowak and Baraniuk. Note that noise
on the wafer lines (lower trace) is reduced, whereas the details on the low magnitude spaces
(upper trace) tends to be preserved.
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12.3 BIOPHYSICAL APPLICATIONS

There was a surge of interest in these time-frequency and time-scale transforms in the
mid-1980s. Psychophysicists noticed that Gabor elementary signals (Chapter 10)
could model some aspects of the brain’s visual processing. In particular, the receptive
fields of adjacent neurons in the visual cortex seem to have profiles that resemble the
real and imaginary parts of the Gabor elementary function. A controversy ensued,
and researchers—electrical engineers, computer scientists, physiologists, and psy-
chologists—armed with the techniques of mixed-domain signal decomposition con-
tinue to investigate and debate the mechanisms of animal visual perception [38, 39].

12.3.1 David Marr’s Program

Signal concavity remains an important concept in analysis applications. Years ago, the
psychologist Attneave [40] noted that a scattering of simple curves suffices to convey
the idea of a complex shape, for instance, a cat. Later, computer vision researchers
developed the idea of assemblages of simple, oriented edges into complete theories
of low-level image understanding [41, 42]. Perhaps the most influential among them
was Marr, who conjectured that understanding a scene depends upon the extraction
of edge information over a range of visual resolutions [7]. Marr challenged computer
vision researchers to find processing and analysis paradigms within biological vision
and apply them to machine vision. Researchers investigated concavity and convexity
descriptions as well as finding their boundaries at multiple scales. Thus, we might
resolve an image into an intricately patterned structure at a fine scale, but coarse
representation reveals just a butterfly wing. Marr speculated, but could not prove, that
multiscale edges could uniquely describe signals and images. This would imply that
the ultimate structural description of a signal would consist of its edge maps across
all scales.

Two important early outcomes from Marr’s program were scale space theory
[8, 9, 43, 44] and optimal multiscale edge detectors [45—-48] (Chapter 4). These the-
oretical results and the practical success of edge-based analysis and description of
signal structure, bolstered Marr’s conjecture. But wavelets weighed in as well. Mal-
lat tried to use wavelet transform zerocrossings [49] as a multiscale structural signal
characterization, and showed how the technique could be used for stereometry, but
the method suffered from instability. Mallat and Zhong [50] changed strategies and
showed that finding wavelet transform maxima across scales was equivalent to the
Canny edge detector [45]. Then both Berman and Baras [51] and Meyer [29] found
counterexamples to Marr’s conjecture. In fact, Meyer’s example gives a wavelet
and a collection of sinusoidal sums that have the same zero crossings when
convolved with the wavelet.

12.3.2 Psychophysics

Among the research efforts Marr's work inspired are comparisons between biologi-
cal and computer vision. Such comparisons tend to support the notion that the
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particular computer vision innovation being considered is more than an ad-hoc tech-
nological trick. When the biological analogies are clear, in fact, it is plausible that
the technology is taking advantage of some fundamental physical properties of
objects in the world and their possible understanding from irradiance patterns.

While most physiological studies of the visual brain have concentrated on cats
and monkeys as experimental subjects [52], the evidence shows many similarities
between the function of the cat's visual cortex and that of the monkey. It is therefore
reasonable to assume—and the psychophysical studies done on human subjects
support this—that the human visual system implements these same principles of
cortical organization. Visual information arrives through the retina, and then passes
down the optic nerve to the lateral geniculate nucleus (LGN), from which it is
relayed to the visual part of the brain, variously known as V1, area 17, the striate
cortex, or the primary visual cortex. Some two or three dozen separate visual areas
of the brain have been identified according to their visual function [52].

Light impinging on the retina directly stimulates V1 neurons, as well as some
other cortical areas. The area of the retina upon which a pattern of irradiance may
stimulate a neuron is called the neuron's receptive field (RF). In their pioneering
work, Hubel and Wiesel [53] differentiated between simple cortical neurons and
complex cortical neurons. A simple cell tends to assume one of two states, “on” or
“off,” according to whether special light patterns were directed within its RF. Com-
plex cells, on the other hand, do not exhibit this binary behavior, are prone to have
larger RFs than the simple cells, and can be stimulated over a much broader RF area
[53]. Studying the cat’s visual cortex the researchers further demonstrated that both
the simple and complex cells within area V1 have a very high orientation selectivity.
Monitoring the responses of cells while slits of light at various angles were flashed
onto the RFs of the neurons demonstrated this. Interestingly, such orientation
specificity is not shown in the retinal area of the eye or in the LGN, but only appears
when the visual information finally reaches the cortex [53]. Campbell and Robson
[54] confirmed this property for human subjects through a series of pyschophysical
experiments.

Campbell and Kulikowski [55] and Blakemore and Campbell [56] described
another property showing independent vision channels to exist. These channels
have an orientation selectivity in addition to the spatial frequency selectivity. The
orientation selectivity exhibited by the independent channels is not well accounted
for either in Marr's system [7] or in the Laplacian pyramid algorithms [2]. However,
orientation selectivity as well as spatial frequency tuning is a feature of the channels
in the two-dimensional wavelet multiresolution representation [1] as shown in
Figure 12.12.

Originally, researchers in the animal vision physiology thought that cortical cells
were feature detectors, activated by the presence of a dot, bar, edge, or corner.
Orban [52] emphasizes that it is now clear that cortical cells are actually filters and
not feature detectors. It is also now possible to identify some visual cortical areas
with the animal's behavior. For cats, nearly all neurons of cortical areas 17 (V1), 18,
and 19 are orientation-sensitive bandpass filters covering all orientations [52]. Cells
in area 17 have the smallest orientation bandwidth and show strong preference for



902 MIXED-DOMAIN SIGNAL ANALYSIS
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Fig. 12.17. RF profile of cortical simple cell #1316 of Ref. 57, odd symmetry.

horizontal and vertical directions. They are therefore most useful for observing
stationary objects. The situation in area 19 is less clear. These cells have large
receptive fields, broad orientation tuning, and little motion sensitivity. Area 18 cells
have very large RFs, are sensitive only to low spatial frequencies, maintain a high
orientation bandwidth, and have some velocity sensitivity. These cells work
together to provide the animal with motion analysis [52].

To obtain an RF profile for a cortical cell, Jones and Palmer [57, 58] and Jones,
Stepnoski, and Palmer [59] plotted neuron firing rate—the cell activation level—
against the position of a spot of light within a small 16 x 16 grid. According to the
widely held view that the simple cells are filters of varying orientation and spatial
frequency sensitivity, it should be possible to model the impulse response of the
simple cell filter by mapping firing rate versus stimulus position in the RF. In fact,
these researchers were able to obtain plots of the spatial and spectral structure of
simple RFs in cats. Figure 12.17 and Figure 12.18 are based on cross sections of
contour plots of typical cat simple receptive fields provided in Ref. 57.

excitation
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Fig. 12.18. RF profile of cortical simple cell #0219 of Ref. 57, even symmetry.
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Many cortical simple cells have either an odd or even symmetry. Cells with
odd symmetry, such as in Figure 12.17, have areas of excitation and inhibition on
opposite sides of the RF center. On the other hand, those cells with even symmetry,
such as in Figure 12.18, have a central excitory (or inhibitory) region that is sur-
rounded by an inhibitory (or excitory) areas. The two basic types are illustrated in
the above figures. In Figure 12.17 and Figure 12.18 the regions of positive excita-
tion represent RF areas where responses to bright stimuli were obtained. The
regions of negative excitation represent RF positions in which the response was
found to correlate with dark stimuli. All of their excitation frequency measurements
were made by microelectrodes inserted into cortical area 17.

Not long after the profiles of cortical neuron receptive fields became more
widely understood, Marcelja [60] showed that the RF profiles were strikingly simi-
lar to the graphs of Gabor elementary functions (GEF). Marcelja’s paper focused
the attention of the computer and biological vision research communities onto the
potential applications of these functions in vision research. We recall from Chapter
10 that a GEF is a sinusoid multiplied by a Gaussian. Gabor [61] showed that these
functions are optimally localized in the time and frequency domains. The product of
their spatial extent and bandwidth is minimal. Further, the functions form a com-
plete mathematical set [62] for expansions of other signals.

When we choose the parameters appropriately and graph the GEF’s real and
imaginary parts separately, the functions resemble the RF profiles of cortical
neurons. More remarkably, Pollen and Ronner [63] discovered that adjacent simple
cells are often tuned to similar spatial frequencies, and have similar orientation
selectivities, but appear to have phase difference of 90 degrees. That is, it appears
that the cosine (even) and sine (odd) components of the GEFs are implemented in
the visual cortex by pairs of adjacent simple cells [63]. Not surprisingly, these
discoveries in physiological and psychophysical research aroused intense new inter-
est in the study and application of the Gabor functions for computational vision.

Daugman [64] extended Gabor's results [61] to the case of two-dimensions,
showing that the resulting two-dimensional elliptical Gaussians were optimally
localized in the spatial and spatial frequency domains. Daugman suggested that fil-
ters based on the elliptical Gaussians modulated by sinusoids represent a necessary
evolutionary compromise for a biological vision system with incompatible high-
level goals. The organism must find both spatial information and spatial frequency
information from its visual space. The way to accomplish this is to implement in the
visual cortex the transform that has the best joint specificity in the spatial and fre-
quency domains. This transform is the Gabor transform [65]. Further, the corre-
spondence remains between the shapes of these two-dimensional Gabor functions
and the cortical RFs considered as two-dimensional filters. Thus, by basing them-
selves on the GEFs as models, vision physiologists are evidently equipped with a
formalism that explains the properties of orientation selectivity, spatial frequency
selectivity, and the empirically observed quadrature relationship for pairs of cortical
simple cells.

Does the visual cortex implement some kind of Gabor transform? The physio-
logical experiments on animals and the psychophysical experiments on humans
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seem to overwhelmingly support the view that the simple RFs are filters selective to
orientation and frequency. Further, the spatial structure of the simple RFs closely
resembles the GEFs. It is no wonder that the Gabor representation, with its optimal
localization properties, was seized upon as a candidate model for the functioning of
the visual cortex. Mallat questions the choice of the Gabor transform as a model for
cortical functions, however [1]. He points out that the simple cells of the visual
cortex do not have impulse responses which contain more cycles when the tuning
is for a higher frequency. This would be the case if the cells were organized in
the form of the logons of the Gabor representation. Instead, Mallat argues, the
simple cells have larger RFs when the frequency tuning is lower and smaller RFs
when the frequency tuning is correspondingly higher.

The experimental evidence is not completely clear on this issue however. The
question at hand is whether simple cells with high-frequency tuning exhibit more
cycles within their fields than cells selective of lower spatial frequencies. This is
equivalent to saying that the bandwidth in octaves varies with the particular spatial
frequency preferred by a cortical simple cell. Pollen and Ronner stress that a variety
of bandwidths are typically associated with cells of a given frequency tuning [63].

Nevertheless, the correlations between preferred spatial frequency and band-
width tend not to support the contention that a full Gabor transform, with its specific
requirement of increased cycles in RFs with higher frequency tunings, is imple-
mented in the visual cortex. A model counterposed to the Gabor model of cortical
architecture, wherein the RF sizes vary inversely with the frequency tuning of the
simple cells, is presented by Kulikowski, Marcelja, and Bishop [39].

Finally, some more recent studies of the visual cortex support the viewpoint that
the receptive field sizes vary inversely with preferred spatial frequency. This would
be the case if the visual cortex implements a kind of time-scale transform. A case in
point is Anderson and Burr's investigations of human motion detection neurons in
the visual cortex [66]. The authors discover a regular decrease in RF size as the
observed preferred frequency tuning of these cells increases. The RF size was found
to progressively diminish from as high as 7 degrees at low spatial frequencies to 2
minutes of arc for cells with the highest preferred frequencies.

As Gabor—and perhaps wavelet—transforms have proven useful in modeling
aspects of the human visual system, so have they found applications in studying the
auditory system. One can think of the cochlea as a bandpass filter bank (Chapter 9).
From measurements of sound sensitivity above 800 Hz, it then turns out that the
filter impulse responses are approximately dilations of one another [67]. Thus,
cochlear sound processing roughly implements a wavelet transform.

12.4 DISCOVERING SIGNAL STRUCTURE

Time-frequency and time-scale transforms provide alternative tools for local signal
description. The local descriptions can be merged and split, according to application
design, resulting in a structural description of a signal. The motivation for this is
that the physical processes that produced the signal changed over time and that the
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structure of the signal, properly extracted, provides a means for identifying and
understanding the the mechanism that generated it. Structures may be simple time-
ordered chains of descriptors. When there are long-term and short-term variations in
the signal’s generation, then it may be effective to build a hierarchical graph
structure for describing the data.

12.4.1 Edge Detection

Let us examine how well the windowed Fourier and wavelet transforms can support
basic edge detection signal analysis tasks. Signal edges represent abrupt changes in
signal intensity and are a typical initial step to segmenting the signal.

12.4.1.1 Time-Frequency Strategies. A simple sawtooth edge experiment
demonstrates that the windowed Fourier transform is a problematic edge detector.

The Gabor transform responses indicate local frequencies, and there are indeed
high frequency components in the neighborhood of signal edges (Figure 12.19).
Locality is poor, however. Shrinking the time width of the Gabor elementary func-
tions provides better resolution. The problem is that this essentially destroys the
nature of the transform. Using different window widths makes it more resemble the
wavelet transform. Perhaps the most effective application for the short-time Fourier
transforms is to indirectly detect edges by locating regions of distinct texture.
Indeed, the windowed Fourier transforms are very effective for this purpose, and a
number of research efforts have successfully applied them for texture segmentation
[68—70]. The filter banks and time-frequency maps of Chapter 9 provide starting
points for the spectral analysis of signal texture. The edges between differently tex-
tured regions are inferred as part of the higher-level interpretation steps.

12.4.1.2 Time-Scale Strategies. Better suited to edge detection are the time-
scale transforms. Not only does the wavelet transform provide for narrowing the
time-domain support of the analyzing wavelet, allowing it to zoom in on signal
discontinuities, there are two theoretical results that support wavelet-based edge
detection:

(i) For certain continuous wavelet transforms, finding maximal response is
identical to applying the optimal Canny edge detector [45].

(i) The decay of the wavelet transform maxima across scales determines the
local regularity of the analyzed signal.

However, we also now know that edge-based descriptions of signal structure are not
the final answer:

(iii)) Marr’s conjecture is false [29, 51].
Yet, structural description by edges and extrema (ridge edges) remains a powerful

tool for understanding signals. Both continuous and discrete wavelet transforms are
closely related. For example, a wavelet transform can be built around spline wavelets
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Fig. 12.19. A sawtooth edge (fop); real and imaginary Gabor transform coefficient magni-

tudes (middle); and convolution of the discrete high-pass filter associated with the cubic
spline orthogonal wavelet representation.

that mimic the optimal derivative of Gaussian [48]. The multiresolution decomposi-
tion of the signal supports a multiscale edge detector [50]. This is useful for discrim-
inating background noise from substantive signal features according to perceptual
criteria [71]. The discrete high-pass filters g,(n) given in Figure 12.3 and Figure 12.4
function as edge detectors for the orthogonal wavelet pyramid (Figure 12. 5)

Let us turn to the continuous Wavelet transform. Suppose g(¢) = Ae™ B is a
Gaussian of zero mean. Set y(t) = _tg(t) Then y(#) is a wavelet because it has
zero mean, is integrable, and has finite energy. Let x (1) = ax(at) be the scaled
dilation of x(#) by factor a. Typically, a = 2iforie Z, W1th i < 0 in our notation [1].
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Then, changing notations from Chapter 11 slightly, the wavelet transform of an
analog signal x is

(W_)(#) = (¥ * 0)(1) (12.29)

at time instant 7. Consequently,
(W_0(1) = (W * x)(1) = (2"'ig(2‘is) *x)(t) =27 g ).
- 2 ds dr -2
(12.30)

So where |W_l.x| is large, the version of x, smoothed to resolution 27 s changing
rapidly [72].

Let us recount the result (ii) above [72]. Suppose x(?) is a signal defined in a
neighborhood of 7;, 0 <o <1, and there is a constant ¢ such that for all ¢ in an
interval about 7, we have

(1) = x(tg)| < et — 1| (12.31)

Then x() is Lipschitz1 o at t = ty. The Lipschitz regularity of x(f) at t = ¢, is the least
upper bound of all o such that (12.31) holds. If there is an 0 < a <1 and an open
interval such that (12.31) holds for all 7€ (a, b), then the signal x(¢) is uniformly
Lipschitz a.on (a, b). In other words, x(¢) is uniformly Lipschitz if it is as tame as an
exponential function in some region.

Now suppose we have a continuous wavelet y(7) that decays at infinity as
1/(1 + t2) and a square-integrable signal x(f). Then it can be shown [73] that x(¢) is
uniformly Lipschitz o on (a, b) if and only if there is a ¢ > 0 such that for all
te (a,b)

(W_0) ()] < 2™ (12.32)

The decay of wavelet transform maxima over many resolutions is essentially a study
of the degree of singularity of the original signal. An extensive study of continuous
wavelet transformation as a characterization of regularity is Ref. 74.

12.4.1.3 Application: The Electrocardiogram. Biomedical technology has
investigated almost every avenue of signal analysis in order to improve
electrocardiogram (ECG) interpretation. Researchers have experimented with time-
domain, frequency domain, time-frequency domain, and now time-scale domain
methods [75, 76]. Chapter 1 introduced ECG signal processing and analysis.

]Analyst Rudolf Lipschitz (1832—-1903) was professor at the University of Bonn.
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Frequency-domain methods are effective for many important tasks in computer-
ized electrocardiography, such as convolutional noise removal and band rejection of
noise from (50 or 60 Hz, for example) alternating current power sources [77]. Edges
and transients in the ECG are crucial to interpreting abnormalities. In order to preserve
these features, yet remove noise, research has turned to mixed-domain filtering tech-
niques, such as we covered in Section 12.2 [78]. Compression techniques using wave-
let transforms are also known [79]. The most important task in automated ECG
analysis is QRS complex detection [80], essentially a ridge edge detection problem.
The foundation of these application is the characterization of signal regularity by
wavelet transform maxima across scales [74]. Algorithms for QRS detection and
time-scale decomposition of ECGs using the orthogonal wavelet decomposition are
shown in Ref. 81. The continuous wavelet transform is studied for QRS characteriza-
tion in Ref. 82. The wavelet transform is effective in revealing abnormalities, such as
the ventricular late potential (VLP) [83]. For example, in Ref. 84 a synthetic VLP is
introduced into the ECG. The late potential is difficult to discern in the time-domain
trace. However, wavelet transformation reveals that the defect is as an enlargement in
the time-domain support of the QRS complex at certain scales.

12.4.2 Local Frequency Detection

Both the short-time Fourier and wavelet transforms perform local frequency detec-
tion. The STFT or Gabor transform relies on time-frequency cells of fixed size
(Chapter 10). The wavelet transform adapts the time domain extent according to the
frequency tuning (Chapter 11).

12.4.2.1 Mixed-Domain Strategies. The fixed window width of the short-
time Fourier transform is useful when the range of frequencies in the analyzed
signal is known to remain within fixed bounds (Figure 12.20). An example of this is
in texture analysis, where the local frequencies of the signal pattern are expected
within given spectral ranges. Small defects in the texture are not readily detected,
but the time-frequency map displays the overall local pattern quite well.

On the other hand, the wavelet pyramid decomposition tends to mimic the coarse
structure of the signal in the approximate coefficients and provides a range of
highpass filters sensitive to local textures in the detail coefficients (Figure 12.21).

Finally, the continuous wavelet transform clearly shows the scale of the underly-
ing pattern features in its amplitude (Figure 12.22).

12.4.2.2 Application: Echo Cancellation. One application of wavelet trans-
form-based filter banks has been to improve echo canceller performance. Chapter 2
(Section 2.4.4) explained the need for echo cancellation in digital telephony. The
echo arises from an impedance mismatch in the four-wire to two-wire hybrid trans-
former. This causes an echo, audible to the far-end listener, to pass into the speech
signal from the near-end speaker. The classical time-domain approach for reducing
the echo is to remove the echo by an adaptive convolutional filter [85]. One problem
is getting the canceller to converge quickly to an accurate echo model when the
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Fig. 12.20. A Gabor transform applied to a sinusoidal chirp signal embedded in noise.

echo path length varies. This can happen in digital telephony, and it is a problem in
other applications, such as acoustic echo cancellers employed in teleconferencing
systems. Both conventional quadrature mirror filter bank decompositions [86] and
wavelet packet decompositions [87] have been used to replace the adaptive time-
domain convolution in the classical echo canceller.

12.4.2.3 Application: Seismic Signal Interpretation. The continuous wave-
let transform arose out of problematic attempts to use time-frequency methods in
seismic data analysis [88]. Both the continuous wavelet transform and the discrete
orthogonal pyramid decomposition are applicable to seismic signal interpretation.
Early applications used the wavelet transform to improve visualization and interpre-
tation of seismic sections [88-90].
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Fig. 12.21. An orthogonal wavelet transform applied to a sinusoidal chirp signal embedded
in noise. Decomposition to five levels using the Haar wavelets.

Both the continuous and orthogonal wavelet transforms have been applied to
seismic signal analysis. In Ref. 91, for example, researchers recommend the Morlet
wavelet (12.33) for removing correlated ground roll noise from seismic exploration

data sets.
2
f

W(1) = e cos(wyl). (12.33)
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Fig. 12.22. A continuous wavelet transform applied to a sinusoidal chirp signal embedded in
noise. Decomposition over 50 scale values using the Morlet wavelet.

The authors perform the continuous transformation by convolving the wavelet y(f)
with the raw data, exclude the bands containing the ground roll noise, and recon-
struct the signal using the inverse transform.

In Ref. 92 the wavelet pyramid transform is considered for analyzing arrival
times estimation in seismic traces. The researchers conclude that preliminary de-
noising is essential. The wavelet-based filtering preserves high-frequency compo-
nents necessary for finding the boundaries between oscillatory components.
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12.4.2.4 Application: Phoneme Recognition. The mixed-domain transforms
offer different structural decomposition tools for the speech analyst. In Chapter 9, we
considered two types of algorithm for localized frequency analysis: the filter bank and
the time-frequency map. The wavelet pyramid decomposition (Figure 12.5) furnishes
a filter bank scheme where the outputs are independent of one another and perfect
reconstruction of the original signal is possible. In addition, both discrete time-fre-
quency and time-scale transforms support a time-frequency map methodology. The
difference between the two is that the time-frequency cells of the Gabor transform, for
example, have a fixed time-domain extent (Chapter 10). The wavelet transform cells
vary their time spans; cells tuned to higher frequencies have narrower time domain sup-
port. Local-frequency estimation, as a preliminary step for recognizing phonemes,
remains an active area of research.

It is difficult to design a pitch detector that adapts to both high and low speech
frequencies while maintaining adequate noise immunity [93-95]. Recently, the
dyadic continuous wavelet transform, given by

oo

F\y(a,b) = WIx(0)(a,b) = [ x(DV, (1) di=(x(0),y, (1),  (12.342)

—oo

where

1 t-b
a (t) = —=vy|—|, (12.34b)
Va, b ,—|a|‘|’( P )

x(1) has finite energy, and a = 2’ for some integer i, has been applied to this prob-
lem [96]. One advantage is that the the analysis then corresponds to the apparent
time-scale operation of the human auditory system [67]. Surprisingly, the research-
ers report that only a few scales a = 2% are necessary for accurate detection [96].
Compared to conventional time- and frequency-domain methods, the dyadic wave-
let pitch detector:

(1) Is robust to nonstationary signals within its analysis window;

(i) Works on awide range of pitch signals, such as from male and female speakers;

(iii) Can detect the beginning of the voiced segment of the speech sample, mak-
ing it the possible basis for a pitch detection algorithm that operates syn-
chronously with the pitch bearing event;

(iv) Is superior within low frequencies to pitch determination by the time-
domain autocorrelation method [95];

(v) Is superior within high frequencies to the frequency-domain cepstrum
method [97].

12.4.3 Texture Analysis

Until recently, texture has been a persistently problematic area for signal and image
analysis. Although the human subject readily distinguishes visual textures, it has
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hitherto not been possible to classify them with computerized algorithms, let alone
provide theoretical models for synthesizing visually realistic textures.

12.4.3.1 Mixed-Domain Strategies. Some promising early applications of
the wavelet transform were to texture analysis [98]. An important contribution to
texture analysis and synthesis has come from applying overcomplete wavelet pyra-
mids to the problem [99]. A variety of statistics on the transform coefficients are
used to characterize textures. Deletion of certain groups of statistical parameters
and subsequent flawed reconstruction of the original image demonstrates that the
necessity of the chosen statistics.

12.4.3.2 Application: Defect Detection and Classification. 1t is possible
to apply the statistics of overcomplete pyramids to the problem of texture flaw
detection. This application is important in manufacturing defect detection systems,
for example. The algorithm of Ref. 99 is capable of synthesizing textures that
appear to lie in between two others and offers the promise of a statistical divergence
measure for textures. Defects in local regions can be detected by developing the
statistical parameters from a prototype sample and and comparing them to statistics
extracted from candidate textures.

12.5 PATTERN RECOGNITION NETWORKS

This section explains pattern recognition methods that are useful for analyzing
signals that have been decomposed through mixed doman transforms.

12.5.1 Coarse-to-Fine Methods

Pattern recognition where the time-domain size of the recognized signal structures
are unknown present a variety of problems for the algorithm designer. In particular,
the shape recognition computations can require more time than is available in real-
time. We have already reviewed a variety of multiresolution methods for this purpose:

® Multiscale signal edge operators [45-48];

® Time-scale representations such as the wavelet multiresolution analysis [1]
and the Laplacian pyramid decomposition [2];

® Scale-space smoothing with a range of kernel sizes [5].

Such decompositions demand large numbers of floating-point multiplications and
additions. However, online process control and speech recognition software must
keep a real-time pace and make a recognition decision with a fraction of a second.
Sometimes, cost constrains the type of processor. One way to stay within the para-
digms provided by time-scale signal analysis, yet achieve a real-time recognition
time is to employ the classic Haar wavelet approximation [16-18] (Figure 12.23).
How to do this is described in process control applications [100, 101].
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Fig. 12.23. The Haar MRA wavelet and scaling function. Translations and dilations of the
wavelet form an orthonormal basis for all finite-energy signals, so the Haar representation
can accommodate any signal shape. The scaling function can be used to develop step func-
tion approximations to signal shapes. The Fourier characteristics of these approximations are
not as attractive as other decompositions, such as smooth spline functions. However, with
this technique it is possible to implement a real-time signal decomposition with small indus-
trial control computers.

It is possible to approximate signals by decomposing them into steps or to model
them using the signal envelopes [101]. Figure 12.24 shows an example of an end-
point signal from the optical emission monitoring application in [101].

The idea behind using the Haar MRA for signal pattern recognition is that there
is a simple relation between certain coarse and fine resolution patterns that allows
the application to economize on matching.

User Egp

A\
User Bgp \

Fig. 12.24. Two methods to find Haar approximations for signal regions: projection to the
mean (fop) and the Haar envelope (bottom). In this figure, the shapes represent optical emis-
sion endpoint traces selected by users.
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12.5.2 Pattern Recognition Networks

A pattern recognition network is a set of pattern detector elements or neurons tuned
to different resolutions and different signal shapes [101].

Network training creates multiple resolution models of the signal shapes which
are stored inside the neurons. The multiple resolution matching provides noise
immunity during recognition, although linear and nonlinear smoothing operations
help to clean acquired signals. To trim the number of pattern detectors in the
network, the finest resolutions necessary for the model time and dynamic range
divisions can be estimated as follows [101].

Given an input data file x(n) with N values, one computes the discrete Fourier
transform:

N-1
X(k) = Y x(n)e

n=0

—2mjnk. (12.35)

Then, the non-DC coefficients representing the bulk of the signal’s energy are
selected: k = 1,2, ..., kC,N— 1,N-2, ...,N—kc. This selection is based on an
energy percentage threshold. Then the signal detectors only need enough time-
domain resolution so as to capture the shape of a single cycle of wavelength N7/k,.
seconds, where T is the real-time application sampling rate. The length of a signal
shape model, together with this minimum resolution value, determines the maxi-
mum length in samples of the discrete patterns stored in the detector elements.

The scheme of Ref. 101 also limits the dynamic range of signal models. Again
using heuristic thresholds, typically modified by the application user, the amount of
noise in the signal models is estimated. Then using a DFT approach again, the nece-
sary dynamic range resolution in the step-shaped signal models is found. The result
is a rectangular array of pattern detectors, from the lowest time resolution to the
highest and from the lowest dynamic range division to the highest.

The projection of an acquired signal onto the step functions of the Haar
representation are the coarse resolution representations used as models for pattern
detection. Each “neuron” is a step function pattern detector. Before the network runs
on real data, the patterns are checked against previously acquired data sets. One cri-
terion is stability—how long a signal pattern persists in the data stream. Another
criterion is the tendency to make false detections in the input data. Any neurons that
fail to meet these criteria are disabled and not used by the network on real data.

The neurons of the network are interconnected with enabling and disabling links.
When a coarse resolution node does not detect its established block shape pattern, it
may disable certain finer resolution nodes. An example is shown in Figure 12.25.

At run time, the network presents the current and past signal data to each neuron.
Each node computes the step pattern according to its particular resolutions. It com-
pares the candidate pattern to its training pattern. When a node shows no match,
higher-resolution nodes whose time or range resolutions are multiples of the non-
matching unit cannot possibly activate and are disabled (Figure 12.25). When a
node actually finds its pattern, all nodes of lesser resolution are disabled. The
network continues to seek a more precise registration of the signal pattern. Any
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Fig. 12.25. Some interconnections of EP pattern detectors [101]. Node names indicate the
time-domain and dynamic range resolutions of the Haar decomposition step functions that
approximate the EP region. When a node shows no match, certain higher-resolution nodes
cannot possibly activate and are disabled (leff). When a node detects its pattern, the network
disables all nodes of lesser resolution while it seeks a more precise registration of the signal
shape. There is a single output node. Any enabled neuron that detects its own pattern can
activate the output node to signal the detection of the prototype pattern.

enabled neuron that detects its own pattern can activate the output node to indicate a
recognition success.

This is the key idea behind using the Haar step functions to model and compare
signals. With a faster computer or freedom from the real-time processing require-
ment, other multiresolution approximations can be used. Of course, in this situation,
the relation between detectors of different resolutions is not so easy to characterize
and remains a potential problem for the algorithm design.

12.5.3 Neural Networks

Neural networks are an alternative to the structured design of the pattern recognition
network above. Both supervised and unsupervised neural networks have been inten-
sively studied in the last 20 years. An advantage of neural networks is that their
training can be conditioned by training data, learning, as it were, the salient patterns
present in the raw data [102]. The problem is that large amounts of data are
sometimes necessary to train such networks. An example of applying neural
networks to semiconductor process control is Ref. 103.

12.5.4 Application: Process Control

In semiconductor integrated circuit fabrication, plasma etch processes selectively
remove materials from silicon wafers in a reactor [104]. The chemical species in the
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Fig. 12.26. Plasma etch optical emission trace from Ref. 101. The user acquires a sample
trace and must indicate the points at which valid data begin (SNN), the endpoint is beginning
(BEP), and the endpoint event is over (EEP). A Haar model can be made out of the data for
training a pattern recognition network.

reaction emit characteristic wavelengths of light. It is typical to employ a
monochromator and digitizer pass the light intensity signal to computer software
algorithms to monitor and control the etch progress. When the target layer
disappears, process endpoint occurs; the control computer extinguishes the plasma.
For signal analysis, the problem is that process endpoints vary from wafer to wafer
over a run. Both traditional neural networks [103] and the structured pattern recog-
nition network [100, 101] have been used for this application. Extensive testing is
reported in Ref. 101.

12.6 SIGNAL MODELING AND MATCHING

This final section mentions methods for extracting signal structure that have been
particularly popular in conjunction with time-frequency and time-scale transforms.

12.6.1 Hidden Markov Models

The hidden Markov model (HMM) is a stochastic state machine that is especially
useful for sequential analysis of data. Thus, it has been applied widely in speech
recognition [105], handwriting recognition [106], and biological sequence analysis
[107].
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12.6.2 Matching Pursuit

The matching pursuit is a greedy, iterative algorithm [108]. In Ref. 109 the method is
applied with overcomplete dictionaries of damped sinusoids. The method typically
uses an overcomplete dictionary for numerical stability. It improves upon traditional
techniques such as least squares, singular value decomposition, and orthonormal
basis decompositions—for example, the orthogonal wavelet pyramid [1].

12.6.3 Applications

Two of the most important applications of hidden Markov models have been in
speech recognition and biological sequence analysis.

12.6.3.1 Speech Analysis. Speech recognition applications are described in
the classic tutorial [105].

12.6.3.2 Protein Analysis. A tutorial on protein analysis is Ref. 110.

12.7 AFTERWORD

There is no doubt that mixed-domain signal transforms, combining both time and
either frequency or scale information, have altered the signal processing landscape.
It is almost impossible today to browse an academic journal in the discipline and not
find a contribution that concentrates on the theoretical or practical implications of
these techniques. This text introduces the new methods into the mainstream of sig-
nal processing education.

Some of the trends we identified when contemplating the task of writing this
book have become clearer and stronger. It is still true that learning windowed
Fourier and wavelet transforms has its mathematical challenges. The entire signal
processing research community has embraced the underlying mathematical tools—
especially Hilbert space theory—even though they may entail a steep learning
curve. Here we have developed the mathematics incrementally and colored it with
terminology, notations, and concepts directly relevant to signal theory. This might
relieve some anxiety and make the climb less daunting. Also, the selection of algo-
rithms and applications in signal analysis not only reflects the modern mathemati-
cal slant but also emphasizes signal understanding as opposed to pure processing.
We think that this too is timely, as more and more automated signal recognition
technologies have intruded into our lives.

Of the new mixed-domain transforms, probably the most surprises came from
orthogonal wavelets. These functions captivated researchers in so many areas.
Today, however, the associated signal decomposition seem to be retreating into com-
pression applications, with its analysis powers having been tested and found lacking
for pattern recognition. But it does offer insights into texture characterization. On
the other hand, the continuous wavelet transform rises up to be the better tool for
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transient signals. The exponential short-time Fourier methods cannot be sparse and
complete, as we now know, but this has not prevented them from becoming the tool
of choice in a number of early processing applications. The time-frequency and
time-scale tools are just alternative ways to break a signal into pieces and sort them
out into a structural description. Beyond that, their importance is that they highlight
the special global nature of the wellspring of them all—Fourier’s transform.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

S. Mallat, A theory for multiresolution signal decomposition: The wavelet representa-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 674-693,
July 1989.

. P. J. Burt and E. H. Adelson, The Laplacian pyramid as a compact image code, /[EEE

Transactions on Communication, vol. 31, no. 4, pp. 532-540, April 1983.

. S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
. O. Rioul and M. Vetterli, Wavelets and signal processing, IEEE SP Magazine, pp. 14—

38, October 1991.

. R. L. Allen, F. A. Kamangar, and E. M. Stokely, Laplacian and orthogonal wavelet

pyramid decomposition in coarse-to-fine registration, IEEE Transactions on Signal
Processing, vol. 41, no. 12, pp. 3536-3543, December 1993.

. R. Y. Wong and E. L. Hall, Sequential hierarchical scene matching, IEEE Transactions

on Computers, vol. C-27, no. 4, pp. 359-366, April 1978.

. D. Marr, Vision, New York: W. H. Freeman, 1982.
. T. Lindeberg, Scale-Space Theory in Computer Vision, Hingham, MA: Kluwer, 1994.
. B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever, eds., Scale-Space Theory

in Computer Vision (Proceedings, First International Conference, Scale-Space ‘97,
Utrecht, The Netherlands), Berlin: Springer-Verlag, 1997.

R. H. Bamberger and M. J. T. Smith, A filter bank for the directional decomposition of
images: Theory and design, IEEE Transactions on Signal Processing, vol. 40, no. 4,
pp. 882-893, April 1992.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, Shiftable multiscale
transforms, IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 587-607,
March 1992.

P.-G. Lemarié, Ondelettes a localisation exponentielle, Journal de Mathématiques Pures
et Appliquées, vol. 67, pp. 227-236, 1988.

F. Mokhtarian and A. Mackworth, Scale-based description and recognition of planar
curves and two-dimensional shapes, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-8, no. 1, pp. 34-43, January 1986.

M. P. do Carmo, Differential Geometry of Curves and Surfaces, Englewood Cliffs, NJ:
Prentice-Hall, 1976.

J.-O. Stromberg, A modified Franklin system and higher order spline systems on R" as
unconditional bases for Hardy spaces, in W. Becker, A. P. Calderon, R. Fefferman, and
P.W. Jones, eds., Proceedings of the Conference in Honor of Antoni Zygmund, vol. II,
New York: Wadsworth, pp. 475-493, 1981.



920 MIXED-DOMAIN SIGNAL ANALYSIS

16

17.
18.

19.

20.

21

22.

23.

24.

25.

26.

28.

29.

30.

31.

32.

33.

34.

. A. Haar, Zur theorie der orthogonalen Functionensysteme, Mathematische Annalen,
vol. 69, pp. 331-371, 1910.

I. Daubechies, Ten Lectures on Wavelets, Philadelphia: SIAM, 1992.

H. S. Stone, J. Le Moigne, and M. McGuire, The translation sensitivity of wavelet-
based registration, /IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 21, no. 10, pp. 1074-1081, October 1999.

M. Antonini, M. Barlaud, I. Daubechies, and P. Mathieu, Image coding using vector
quantization in the wavelet transform domain, Proceedings of the IEEE Conference on
Acoustics, Speech, and Signal Processing, pp. 2297-2300, April 1990.

S. G. Mallat and J. Froment, Second generation compact image coding with wavelets, in
C. K. Chui, ed., Wavelets: A Tutorial in Theory and Applications, San Diego, CA:
Academic Press, 1992.

. D. Sinha, and A. H. Tewfik, Low bit rate transparent audio compression using adapted
wavelets, IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3463-3479,
December 1993.

M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Upper Saddle River, NJ:
Prentice-Hall, 1995.

A. Rosenfeld and A. C. Kak, Digital Picture Processing, San Diego, CA: Academic
Press, 1982.

G. K. Wallace, The JPEG still picture compression standard, Communications of the
ACM, vol. 34, no. 4, pp. 3144, April 1991.

N. Ahmed, T. Natarajan, and K. R. Rao, Discrete cosine transform, /IEEE Transactions
on Computers, vol. C-23, no. 1, pp. 90-93, January 1974.

A. Gersho and A. M. Gray, Vector Quantization and Signal Compression, Boston:
Kluwer, 1992.

F. W. C. Campbell and J. J. Kulikowski, Orientation selectivity of the human visual
system, Journal of Physiology, vol. 197, pp. 437-441, 1966.

H. Malvar, Lapped transforms for efficient transform/subband coding, /EEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 38, no. 6, pp. 969-978, June
1990.

Y. Meyer: Wavelets: Algorithms and Applications, Philadelphia: Society for Industrial
and Applied Mathematics, 1993.

R. R. Coifman, Y. Meyer, and V. Wickerhauser, Wavelet analysis and signal processing,
in M. B. Ruskai, et al., eds., Wavelets and Their Applications, Boston: Jones and
Bartlett, pp. 153-178, 1992.

R. R. Coifman, Y. Meyer, and V. Wickerhauser, Size properties of wavelet-packets, in
M. B. Ruskai et al., eds., Wavelets and Their Applications, Boston: Jones and Bartlett,
pp. 453-470, 1992.

D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage,
Biometrika, vol. 81, pp. 425-455, 1994.

D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information
Theory, vol. 41, no. 3, pp. 613-627, March 1995.

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, Density estimation by
wavelet thresholding, Annals of Statistics, vol. 24, pp. 508-539, 1996.



35

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

REFERENCES 921

. C. M. Stein, Estimation of the mean of a multivariate normal distribution, Annals of
Statistics, vol. 9, pp. 1135-1151, 1981.

K. R. Castleman, Digital Image Processing, Upper Saddle River, NJ: Prentice-Hall, 1996.

Nowak and Baraniuk, Wavelet-domain filtering for photon imaging systems, /EEE
Trans. IP, pp. 666-678, May 1999.

D. A. Pollen and S. F. Ronner, Visual cortical neurons as localized spatial frequency
filters, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 907-916, September—October 1983.

J. J. Kulikowski, S. Marcelja, and P. O. Bishop, Theory of spatial position and spatial
frequency relations in the receptive fields of simple cells in the visual cortex, Biological
Cybernetics, vol. 43, pp. 187-198, 1982.

F. Attneave, Some informational aspects of visual perception, Psychological Review,
vol. 61, pp. 183-193, 1954.

H. Asada and M. Brady, The curvature primal sketch, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-§, no. 1, pp. 2-14, January 1986.

I. Biedermann, Human image understanding: Recent research and a theory, Computer
Vision, Graphics, and Image Processing, vol. 32, pp. 29-73, 1985.

A. P. Witkin, Scale-space filtering, Proceedings of the 8th International Joint Confer-
ence on Artificial Intelligence, Karlsruhe, W. Germany, 1983. See also A. P. Witkin,
Scale-space filtering, in From Pixels to Predicates, A. P. Pentland, ed., Norwood, NJ:
Ablex, 1986.

T. Lindeberg, Scale space for discrete signals, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 3, pp. 234-254, March 1990.

J. Canny, A computational approach to edge detection, /IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, November 1986.

H. D. Tagare and R. J. P. deFigueiredo, On the localization performance measure and
optimal edge detection, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 12, pp. 1186-1190, 1990.

R. J. Qian and T. S. Huang, Optimal edge detection in two-dimensional images, /EEE
Transactions on Image Processing, vol. 5, no. 7, pp. 1215-1220, 1996.

M. Gokmen and A. K. Jain, At-space representation of images and generalized edge
detector, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 6, pp. 545-563, June 1997.

S. Mallat, Zero-crossings of a wavelet transform, IEEE Transactions on Information
Theory, vol. 37, no. 4, pp. 1019-1033, July 1991.

S. Mallat and S. Zhong, Characterization of signals from multiscale edges, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 14, no. 7, pp. 710-732,
July 1992.

Z. Berman and J. S. Baras, Properties of the multiscale maxima and sero-crossings
representations, I[EEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3216—
3231, 1993.

G. A. Orban, Neuronal Operations of the Visual Cortex, Berlin: Springer-Verlag, 1984.

D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction and functional
architecture in the cat's visual cortex, Journal of Physiology, vol. 160, pp. 106-154,
1962.



922 MIXED-DOMAIN SIGNAL ANALYSIS

54

55

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

. F. W. C. Campbell and J. Robson, Application of Fourier snalysis to the visibility of
gratings, Journal of Physiology, vol. 197, pp. 551-566, 1968.

. F. W. C. Campbell and J. J. Kulikowski, Orientation selectivity of the human visual

system, Journal of Physiology, vol. 195, pp. 437-441, 1966.

C. Blakemore and F. W. C. Campbell, On the existence in the human visual system of

neurons selectively sensitive to the orientation and size of retinal images, Journal of

Physiology, vol. 203, pp. 237-260, 1969.

J. P. Jones and L. A. Palmer, The two-dimensional spatial structure of simple receptive

fields in cat striate cortex, Journal of Neurophysiology, vol. 58, pp. 1187-1211, 1987.

J. P. Jones and L. A. Palmer, An evaluation of the two-dimensional Gabor filter model

of simple receptive fields in cat striate cortex, Journal of Neurophysiology, vol. 58,
pp- 1233-1258, 1987.

J. P. Jones, A. Stepnoski, and L. A. Palmer, The two-dimensional spectral structure of
simple receptive fields in cat striate cortex, Journal of Neurophysiology, vol. 58,
pp. 1212-1232, 1987.

S. Marcelja, Mathematical description of the responses of simple cortical cells, Journal
of the Optical Society of America, vol. 70, pp. 1297-1300, 1980.

D. Gabor, Theory of communication, Journal of the Institute of Electrical Engineers,
vol. 93, pp. 429-459, 1946.

M. Porat and Y. Y. Zeevi, The generalized Gabor scheme of image representation in
biological and machine vision, /IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 10, no. 4, pp. 452-468, July 1988.

D. A. Pollen and S. F. Ronner, Visual cortical neurons as localized spatial frequency
filters, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 907-916, September/October 1983.

J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters, Journal of the Optical
Society of America A, vol. 2, no. 7, pp. 1160-1169, July 1985.

J. G. Daugman, Spatial visual channels in the Fourier plane, Vision Research, vol. 24,
no. 9, pp. 891-910, 1984.

S. J. Anderson and D. C. Burr, Receptive field size of human motion detection units,
Vision Research, vol. 27, no. 4, pp. 621-635, 1987.

X. Yang, K. Wang, and S.A. Shamma, Auditory representation of acoustic signals, IEEE
Transactions on Information Theory, vol. 38, no. 2, pp. 824-839, March 1992.

M. R. Turner, Texture discrimination by Gabor functions, Biological Cybernetics,
vol. 55, pp. 71-82, 1986.

A. C. Bovik, M. Clark, and W. S. Geisler, Multichannel texture analysis using localized
spatial filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 1, pp. 55-73, January 1990.

T. Weldon and W. E. Higgins, Designing multiple Gabor filters for multitexture image
segmentation, Optical Engineering, vol. 38, no. 9, pp. 1478-1489, September 1999.

J. Lu, J. B. Weaver, D. M. Healy, Jr., and Y. Xu, Noise reduction with a multiscale edge
representation and perceptual criteria, Proceedings of the IEEE-SP International
Symposium on Time-Frequency and Time-Scale Analysis, Victoria, BC, Canada,
pp. 555-558, October 4-6, 1992.



72

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

REFERENCES 923

. S. Mallat and S. Zhong, Wavelet transform maxima and multiscale edges, in M. B.
Ruskai, et al., eds., Wavelets and Their Applications, Boston: Jones and Bartlett,
pp. 67-104, 1992.

M. Holschneider, Wavelets: An Analysis Tool, New York: Oxford University Press,
1995.

S. Mallat and W. L. Hwang, Singularity detection and processing with wavelets, IEEE
Transactions on Information Theory, vol. 38, no. 2, pp. 617-643, March 1992.

M. Akay, ed., Time-Frequency and Wavelets in Biomedical Signal Processing, New
York: Wiley-IEEE Press, 1997.

M. Unser and A. Aldroubi, A review of wavelets in biomedical applications, Proceed-
ings of the IEEE, vol. 84, no. 4, pp. 626-638, April 1996.

J. R. Cox, Jr., F. M. Nolle, and R. M. Arthur, Digital analysis of electroencephalogram,
the blood pressure wave, and the electrocardiogram, Proceedings of the IEEE, vol. 60,
pp. 1137-1164, 1972.

P. E. Tikkanen, Nonlinear wavelet and wavelet packet denoising of electrocardiogram
signal, Biological Cybernetics, vol. 80, no. 4, pp. 259-267, April 1999.

B. A. Rajoub, An efficient coding algorithm for the compression of ECG signals using
the wavelet transform, /IEEE Transactions on Biomedical Engineering, vol. 49, no. 4,
pp. 255-362, April 2002.

B.-U. Kohler, C. Hennig, and R. Orglmeister, The principles of software QRS detection,
IEEE Engineering in Medicine and Biology Magazine, vol. 21, no. 1, pp. 42-57,
January/February 2002.

C. Li, C. Zheng, and C. Tai, Detection of ECG characteristic points using wavelet trans-
forms, IEEE Transactions on Biomedical Engineering, vol. 42, no. 1, pp. 21-28,
January 1995.

S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, Wavelet transformbased
QRS complex detector, IEEE Transactions on Biomedical Engineering, vol. 46, no. 7,
pp- 838-848, July 1999.

L. Khadra, M. Matalgah, B. El_Asir, and S. Mawagdeh, Representation of ECG-late
potentials in the time frequency plane, Journal of Medical Engineering and Technology,
vol. 17, no. 6, pp. 228-231, 1993.

F. B. Tuteur, Wavelet transformations in signal detection, in Wavelets: Time-Frequency
Methods and Phase Space, J. M. Combes, A. Grossmann, and P. Tchamitchian, eds.,
2nd ed., Berlin: Springer-Verlag, pp. 132—138, 1990.

K. Murano, S. Unagami, and F. Amano, Echo cancellation and applications, /IEEE
Communications Magazine, vol. 28, no. 1, pp. 49-55, January 1990.

A. Gilloire and M. Vetterli, Adaptive filtering in sub-bands with critical sampling:
Analysis, experiments and applications to acoustic echo cancellation, IEEE Transac-
tions on Signal Processing, vol. 40, no. 8, pp. 1862-1875, August 1992.

O. Tanrikulu, B. Baykal, A. G. Constantinides, and J. A. Chambers, Residual echo sig-
nal in critically sampled subband acoustic echo cancellers based on IIR and FIR filter
banks, IEEE Transactions on Signal Processing, vol. 45, no. 4, pp. 901-912, April
1997.

A. Grossmann and J. Morlet, Decomposition of Hardy functions into iquare Integrable

wavelets of constant shape, STAM Journal of Mathematical Analysis, vol. 15, pp. 723—
736, July 1984.



924 MIXED-DOMAIN SIGNAL ANALYSIS

89

90.

91.

92.

93.

94.
95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

. P. Goupillaud, A. Grossmann, and J. Morlet, Cycle-octave and related transforms in
seismic signal analysis, Geoexploration, vol. 23, pp. 85-102, 1984-1985.

J. L. Larsonneur and J. Morlet, Wavelets and seismic interpretation, in J. M. Combes,
A. Grossmann, and P. Tchamitchian, eds., Wavelets: Time-Frequency Methods and
Phase Space, 2nd ed., Berlin: Springer-Verlag, pp. 126-131, 1990.

X.-G. Miao and W. M. Moon, Application of wavelet transform in reflection seismic
data analysis, Geosciences Journal, vol. 3, no. 3, pp. 171-179, September 1999.

G. Olmo and L. Lo Presti, Applications of the wavelet transform for seismic activity
monitoring, in Wavelets: Theory, Applications, and Applications, C. K. Chui, L. Monte-
fusco, and L. Puccio, eds., San Diego, CA: Academic Press, pp. 561-572, 1994.

M. Cooke, S. Beet, and M. Crawford, eds., Visual Representations of Speech Signals,
Chichester: Wiley, 1993.

T. Parsons, Voice and Speech Processing, New York: McGraw-Hill, 1987.

W. Hess, Pitch Determination of Speech Signals: Algorithms and Devices, New York:
Springer-Verlag, 1983.

S. Kadambe and G. F. Boudreaux-Bartels, Application of the wavelet transform for

pitch detection of speech signals, IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 917-924, March 1992.

A. M. Noll, Cepstrum pitch determination, Journal of the Acoustical Society of Amer-
ica, vol. 41, pp. 293-309, February 1967.

T. Chang and C.-C. J. Kuo, Texture analysis and classification with tree-structured
wavelet transform, IEEE Transactions on Image Processing, vol. 2, no. 4, pp. 429-441,
October 1993.

J. Portilla and E. P. Simoncelli, A parametric texture model based on joint statistics of
complex wavelet coefficients, International Journal of Computer Vision, vol. 40, no. 1,
pp- 49-71, October 2000.

R. L. Allen, R. Moore, and M. Whelan, Multiresolution pattern detector networks for
controlling plasma etch reactors, Process, Equipment, and Materials Control in Inte-
grated Circuit Manufacturing, Proceedings SPIE 2637, pp. 19-30, 1995.

R. L. Allen, R. Moore, and M. Whelan, Application of neural networks to plasma etch
endpoint detection, Journal of Vacuum Science and Technology (B), pp. 498-503,
January—February 1996.

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computa-
tion, Redwood City, CA: Addison-Wesley, 1991.

E. A. Rietman, R. C. Frye, E. R. Lory, and T. R. Harry, Active neural network control of
wafer attributes in a plasma etch process, Journal of Vacuum Science and Technology,
vol. 11, p. 1314, 1993.

D. M. Manos and G. K. Herb, Plasma etching technology—An overview, in D. M.
Manos and D. L. Flamm, eds., Plasma Etching: An Introduction, Boston: Academic
Press, 1989.

L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech
recognition, Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, February 1989.

N. Arica and F. T. Yarman-Vural, Optical character recognition for cursive handwriting,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 6,
pp- 801-813, June 2002.



107.

108.

109.

110.

PROBLEMS 925

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis,
Cambridge: Cambridge University Press, 1998.

S. Mallat and S. Zhang, Matching pursuits with time-frequency dictionaries, /EEE
Transactions on Signal Processing, pp. 3397-3415, December 1993.

M. M. Goodwin and M. Vetterli, Matching pursuit and atomic signal models based on
recursive filter banks, IEEE Transactions on Signal Processing, pp. 1890-1902, July
1999.

R. Karchin, Hidden Markov Models and Protein Sequence Analysis, Honors Thesis,
Computer Engineering Department, University of California, Santa Cruz, June 1998.

PROBLEMS

1.

Using material from Chapters 9 and 11, suppose we are given a multiresolution

analysis of finite-energy signals.

(a) Show that the dlscrete lowpass filter H(w) associated to the MRA satisfies
H(o)|” + |H(o + 1) _

(b) Let g(n) = g,(n) = (—1) "h(—n) and G(®) = ¢?°H(o+ 7).
Show that, indeed, g(n) is the inverse discrete-time Fourier transform of
G(w).

(¢) Show that |H(m)|* +|G(w)|* =

(d) Using the perfect reconstruction criterion of Chapter 9, show that J2h(n)
is a quadrature mirror filter (QMF).

(e) Sketch a reconstruction diagram using h(n) and g(n) for the reconstruc-
tion of the original signal decomposed on the pyramid [1].

. In the QMF pyramid decomposition (Figure 12.5), let l~1(n) = h(-n) be the

reflection of A(n) and H(z) be its z-transform. Similarly, let g(n) = g(-n)

and G(z) be the transfer function of the filter with impulse response g(n) .

(a) Show that subsampling a signal x(n) by two followed by H(z) filtering is
the same discrete system as H(z") filtering followed by subsamplmg [4].

(b) Applying the same idea to g(n), prove filtering with H(z)H(z ) and

H(z)G(z") and subsampling by four produces the level —2 approximate
and detail coefficients, respectively.

(c) Show that we can compute the impulse response of the filter with transfer
function H (z)H (z ) by convolving h(n) with the filter obtained by put-
ting a zero between every h(n) value.

(d) State and prove a property similar to (c) for H (z)G(zz).

(e) State and prove properties for level [ = —L, where L > 0, that generalize
these results.

- Suppose p > 0 and define the filter G, as in (12.13). Let O; be the orthogonal

complement of V; inside V,;: V,LO; and Vi, = V,©0;.
(a) Show (12.16).
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(b) Show (12.17).
(¢) Show (12.18).

(d) Since {¢(z-k)}, . , is an orthongormal basis for V), explain the expan-
sion (12.19).

. . w(2!
(e) By Fourier transformation of (12.19), show that Gp(m) = (2 )

®20)

. Suppose that y(n) = x(n — 2) and both signal x(n) and y(n) are decomposed

using the orthogonal wavelet pyramid.

(a) How do the first-level L = —1 coefficients for y(n) differ from the first-level
coefficients for x(n)?

(b) Generalize this result to delays that are higher powers of 2.

. Show by simple convolutions on discrete steps and ridge edges that discrete

highpass filters g,(n) given in Figure 12.3 and Figure 12.4 function as edge

detectors for the orthogonal wavelet pyramid.
2

. Suppose g(t) = Ae®" is a Gaussian of zero mean and y(tr) = ig(t).

dt
(a) Show that y(#) is a wavelet.

(b) Let x (1) = ax(at) be the scaled dilation of x(¢) by factor a = 27 forie
Z, with i > 0. Define the wavelet transform (W_x)(t) = (y, * x)(1).
Show that

(W_x)(1) = a%(ga £ x)(1). (12.36)

(¢) Explain the significance of |W_;x| being large.
(d) Explain the significance of large |W_x| when a is large. What if a is
small?

. Suppose x(?) is discontinuous at ¢ = #;. Show that its Libschitz regularity at £, is

Z€ro.

Advanced problems and projects.

. Implement the multiscale matching and registration algorithm of Section

12.1.3.

(a) Use the cubic spline MRA as described in the text.

(b) Use the Laplacian pyramid.

(¢) Use the MRA based on piecewise continuous functions.

(d) Develop matching and registration expreriments using object boundaries or
signal envelopes.

(e) Compare the performance of the above algorithms based on your chosen
applications.

(f) Explore the effect of target shape support in the candidate signal data.
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Derive the impulse responses for the 7,(n) and g,(n) for the case where the
MRA is

(a) Based on the Haar functions;
(b) The Stromberg MRA.

Compare linear and nonlinear filtering of the electrocardiogram to the wavelet

de-noising algorithms.

(a) Obtain and plot an ECG trace (for example, from the signal processing
information base; see Section 1.9.2.2).

(b) Develop algorithms based on wavelet noise removal as in Section 12.2.1.
Compare hard and soft thresholding methods.

(¢) Compare your results in (b) to algorithms based on edge-preserving
nonlinear filters, such as the median filter.

(d) Compare your results in (b) and (c¢) to algorithms based on linear filters,
such as the Butterworth, Chebysheyv, and elliptic filters of Chapter 9.

(e) Consider the requirements of real-time processing and analysis. Reevaluate
your comparisons with this in mind.

Compare discrete and continuous wavelet transforms for QRS complex
detection [81, 82].

(a) Using your data set from the previous problem, apply a nonlinear filter to
remove impulse noise and a convolutional bandpass filter to further smooth
the signal.

(b) Decompose the filtered ECG signal using one of the discrete wavelet
pyramid decompositions discussed in the text (the cubic spline multiresolu-
tion analysis, for instance). Describe the evolution of the QRS complexes
across multiple scales [81]. Develop a threshold-based QRS detector and
assess its usefulness with regard to changing scale and QRS pulse offset
within the filtered data.

(c) Select a scale for decomposition based on a continuous wavelet transform
[82]. Compare this method of analysis to the discrete decomposition in (b).

(d) Consider differentiating the smoothed ECG signals to accentuate the QRS
peak within the ECG. Does this improve either the discrete or continuous
algorithms?

(e) Consider squaring the signal after smoothing to accentuate the QRS com-
plex. Does this offer any improvement? Explain.

(f) Do soft or hard thresholding with wavelet de-noising help in detecting the
QRS complexes?

(g) Synthesize some defects in the QRS pulse, such as ventricular late
potentials, and explore how well the two kinds of wavelet transform
perform in detecting this anomaly.






I INDEX

A
Abel’s function 256
Absolutely integrable 66, 182
Absolutely summable Signal 65
Accumulator 177
Adjoint

frame operator 220

Hilbert operator 210
Admissibility condition 805
Algebra 80

o— (sigma-) 80, 227
Algebraic signals 25
Almost everywhere 231
Ambiguity function 769
Amplitude 51

modulation (AM) 52, 469

spectrum 463
Analog

convolution 176-177

filter 650

Gaussian 29

signal 1,21-22

signal edge 334

sinusoid 51

system 174
Analog-to-digital converter (ADC) 41
Analytic 71

signal 692
Analyzing wavelet 805
Angle modulation 471
Antisymmetric 63
Approximate signal 875-876
Approximating identity 253-256
Approximation, ideal filter 624
Arc 75
Associated filter, multiresolution

analysis 852

Atomic force microscope (AFM) 336
Attneave 24
Australia 887

Autocorrelation 176, 615-616
Axiom of Choice 164-165

B
Balian-Low theorem 771-787
frames 784
orthonormal basis 773-776
Banach space 147-148, 198
construction 201-205
completion 203-205
Bandlimited 538
Bandpass filter 465, 599-601
Bandwidth, 3-db 464
Basis 154, 163
orthonormal 211-215
of translates 840
Bat 645
Bayes 82
classifier 346
decision rule 348
theorem 82,91
Bell, A. 93
Bessel 612
function 475, 611-612
inequality 156-157
Biased estimator 616
Bilinear transformation 638
Binomial distribution 87
biological and computer vision 900
Borel set 229
Boundary curvature 368
Bounded 65, 182
linear operator 197
B-spline 189, 739
window 738
Butterfly 68
Butterworth, S. 654
filter 654-655

C
Ct, extended complex plane 555, 626

Signal Analysis: Time, Frequency, Scale, and Structure, by Ronald L. Allen and Duncan W. Mills
ISBN: 0-471-23441-9 Copyright © 2004 by Institute of Electrical and Electronics Engineers, Inc.

929



930 INDEX

C++ 507-508
Canny edge detector 335-336
Canonical linear map, multiresolution
analysis 856

Cantor, G. 163
Cardano, G. 81
Cardinality 163
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Filter 314-322, 460, 462-463.
analog 651
approximation 624-626
bank 589, 601-604
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Orthogonal 153
wavelet 857
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Plancherel’s theorem 428
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Poisson distribution 88, 898
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Positive operator 210
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series 72, 557
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Quadratic time-frequency transform 760-771
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merging 286-288
splitting 286-288
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Richter, C. 303
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Riesz, F. 166
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basis 841
bound 841
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-Fischer theorem 166-167
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theorem 538-542
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decomposition 360
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Schwartz, L. 260
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Seismic

data analysis 909

section 804
Seismogram 5, 643
Shannon, C. 2
Shannon

function 465

-Nyquist interpolation 544
Shape 354

recognition 883
Sharpness 625

Short-time (windowed) Fourier transform (STFT)

736-747
discretized 747-760
inverse (ISTFT) 741
properties 740-741
sampling 749
Sifting property 40
Signal
analysis
narrow-band 586-608
wide-band 643-650
envelope 692
-to-noise ratio 335
periodic 51
Signum 33, 446
Sinc function 215
Sinusoid 25, 38, 213, 587-588
Slowly increasing 243
Sobolev, S. 260
Spectrum estimation 608, 613-617
Speech 60-62, 912
analysis 646-650
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formants 647
pitch 647
envelope 693-694
segmentation 283
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Spline 46-50, 188-190. See also Cubic spline
B- 189, 739
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Spline Function 993
Splintering, QRS complex 15
Stable 138, 182, 627
Standard deviation 88, 90, 613
Step function 836, 849, 861
Structural analysis 18-20, 314
Structure 751, 904
Sunspot 57, 493
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Test function 242
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statistical 301
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Thresholding 117, 119, 176, 288-300
hard 894
information theoretic 297-298
nonparametric 294-297
parametric 292-294
soft 896
Tight frame 218
Time domain 10
signal analysis 273
Time-frequency
(Nyquist) density 754
plane 589, 596-601, 751-753
transform 712
quadratic 760-771
kernel-based 770-771
Time-scale transform 802
Tone 733-735
detection 587
Top surface 324
Transfer (system) function 563, 627
Transient response 669-670
Translate of a set 323
Translation-invariant 127, 177
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Umbra 324

Unbiased estimator 319
Uncertainty principle 545-547, 743-746
Uncertainty principle 620, 855
Unconditional basis, see Riesz basis
Uncorrelated 613

Uncountable set 163

Uniform convergence 186
Uniformly continuous 194

Unit step 32, 40

Unvoiced 61, 283

A\
Variance 613
Vector space 140-141



Ville, J. 761, 789
Voiced 61, 283
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Wavelet 802
analyzing 805
frames 824-832
Haar 214
Malvar 895
orthonormal 802
packet 895
pyramid decomposition 875
transform (WT) 803-821
continuous 803-805
discrete 874
discretization 822-824
inverse (IWT) 805
orthonormal 802
properties 810-815
properties, table 814
Waviness 308

Weyl, H. 745
Whale 52, 832
White

Gaussian noise 335
noise process 614
Wide sense stationary (WSS) 614-615
Wiener, N. 615, 686
Wiener
filter 686
-Khinchin theorem 615-616
Wigner, E. 761, 789
Wigner-Ville distribution (WVD) 760-766
cross 764
densities and marginals 766-769
interference- (cross-) term 761, 769-770
properties 763-766

INDEX

Window
Bartlett 611
Blackman 611-612
b-spline 738-740
function 609-612, 736-737
center and radius 742
diameter 742
table 739
Hamming 611-612
Hann 611-612, 624
Kaiser 611-612
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Windowed Fourier transform, see
Short-time Fourier transform
Wolf, J. 58
Wolf sunspot number 58, 493
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Zak transform (ZT) 575-577,
777-781
isomorphism 576-577
properties 576
Zero 77,628
Zero-crossing 356-359, 900
Zorn, M. 165
Zorn’s lemma 165
z-Transform 554-560
existence 557-560
filter design 626-632
inverse 566-571
contour integration 566-567
Laurent series 567-568
partial fractions 570
table lookup 569-571
one-sided 556
properties 561-565
region of convergence (ROC) 555
table 569
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