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CHAPTER 1

Problem 1.1

As an illustration, three particular sample functions of the random process X(t),
corresponding to F = W/4, W/2, and W, are plotted below:
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To show that X(t) is nonstationary, we need only observe that every waveform illustrated
above is zero at t = 0, positive for 0 < t < 1/2W, and negati\ie for =1/2W < ¢t < 0. Thus,
the probability density function of the random variable X(t1) obtained by sampling X(t) at
t1 = 1/UW is identically zero for negative argument, whereas the probability density
function of the random variable X(t2) obtained by sampling X(t) at t = =1/4W is nonzero
only for negative arguments. Clearly, therefore,

- 4 ) . . .
fX(t1)(x1) * fX(tz)(xz)) apd the random process X(t) is nonstationary.



Problem 1.2

X(t) = 4 cos(anct)
Therefore,
Xi = A OOS(wacti)

Since the amplitude A is uniformly distributed, we may write

1

mf-:c—t-;), 0 _(_ X‘1 _<_ COS(Zﬂfcti)
f, (x,) =
xi ! o, otherwi se
fx.'(xi)
i
1 .
cos(2nf t.) }
ci |
l
|
} x
0 cos (27f t.) i
c i

Similarly, we may write

Xi+T = A cos[2wfc(ti+r)]
and
1
cos[2nfc(ti+r)3' 0« X2‘$ cos[2nfc(ti+r)]
f (x,) =
Xi+'t 2
o, otherwi se

We thus see that fx (xi) £ fx - (xz) , and so the process X(t) is nonstationary.
i i+t '
Problem 1.3
(a) The integrator output at time t is
t

S X{(t) dt
0

Y(t)

t
A J cos(2nf 1) dt
0 c



A .
= m; s:m(?nf‘ct)

Therefore,

sin(21rf‘ct)
E[Y(t)] = ———————E[A] =0

2nf
c
sin2 (2xf t)

Var[Y(t)] >

Var[A]
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sin2(21rf‘ t)
c 2
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2
(21rfc)

Y(t) is Gaussian-distributed, and so we may express its probability density function as

/7wt 2n2fi ).
fycey ) = 5, SIn(&f D) expl - il o 2 Y ]
¢ A

(b) From Eq. (1) we note that the variance of Y(t) depends on time t, and so Y(t) is
nonstationary.

(¢) For a random process to be ergodic it has to be stationary. Since Y(t) is
nonstationary, it follows that it is not ergodic.

Problem 1.4

(a) The expected value of Z(t1) is

Efz(t )] = cos(2rt,) E[X] + sin(2rt,) E[Y]
Since E[X] = E[Y] = 0, we deduce that

E[Z(t1)] = 0
Similarly, we find that

E[Z(tz)] =0

Next, we note that

Cov[Z(t1)Z(t2)] E[Z(t.I)Z(tz)]

E{[X cos(21rt1) + Y sin(21rt1)][X cos(21rt2) + Y sin(2-nt2)]}

cos(2rrt1) cos(2nt2) E[X2]
+ [cos(21rt1)sin(21rt2)+sin(2nt1)cos(2nt2)]E[XY]

. sin(2ht1)sin(2nt2)E[Y2]



Noting that

ElX®) = o2 + ExD)Z = 1
EY2) = o2 4 (E1Y1 = 1
E[XY] = O

we obtain

Cov[Z(t152(t2)] = cos(2nt1)cos(2nt2)+sin(2nt1)sin(2nt2)

= cosf2n(t, ~t,)] 1)
12 of +he Pprowss

Since every weighted sum of the samples, Z(t) is Gaussian, it follows that Z(t) is a
Gaussian process. Furthermore, we note that

2

2
OZ(t1) = E[Z (t.l)] =1

This result is obtained by putting t,=t, in Eq. (1). Similarly,

2 _ 2 _
oZ(tz) = E(Z (t2)] = 1
Therefore, the correlation coefficient of Z(t1) and Z(tz) is

Cov[Z(t1)Z(t2)]

P o
Z(t)7z(t,)

cos[2n(t1-t2)]
Hence, the joint probability density function of Z(t4) and Z(tz)

fz(t1),Z(t2)(z1’ 22) =C exp[-Q(z1,22)]

where

1

21¥1~cos2[ 2n (t,=t,)]

_ 1
- 2 sin[2n (t1-t2)]

1
. 2
2 sin [2n(t1-t2)]

0(21,22) z {z? -2 cos[2n(t1-t2)]z1z2 + zg}



(b) We note that the covariance of Z(t4) and Z(t2) depends only on the time difference
t1-t2. The process Z(t) is therefore wide-sense stationary. Since it is Gaussian it is
also strictly stationary.

Problem 1.5
@) Let
X(t) = A + Y(b)

where A is a constant and Y(t) is a zero-mean random process. The autocorrelation
function of X(t) is '

RX(T) E[X(t+1) X(t)]

E{[A + Y(t+T)] [A + Y(t)]}

E[AZ + A Y(t+1) + A& Y(t) + Y(ter) Y()]

A2 + RY(T)

which shows that Rx('r) contains a constant component equal to A2.
() Let ’
X(t) = Ac cos(2ﬂfct + 68) + 2(t)

where Ac cos(21rf‘ct+e) represents the sinusoidal component of X(t) and 6 is a random phase
variable. The autocorrelation function of X(t) is
RX(T) E[X(t+1) X(t)]

E{[Ac cos(2nfct + 2nfcr +6) + Z(t+1)] [Ac cos(2nfct +08) +Z(£)]1}

E[A2 cos(2af t + 2nf T + 0) cos(2nf t + 6)]
c c c c
+ ElZ(t+1) Ac cos(ZWfCt + 6)]
+ E[A cos(2nf t + 2nf 1 + 6) Z(t)]
c c c

+ E[Z(t+1) Z(t)]

(A§/2) cos(2nf 1) + R, (1)

which shows that Rx(r) contains a sinusoidal component of the same frquency as X(t).

Problem 1.6

(a) We note that the distribution function of X(t) is
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and the corresponding probability density function is

1 1
fX(t)(X) = 5 S(x) + 5 §(x = A)

which are illustrated below:
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(b) By ensemble-averaging, we have

©

EIX(t)l =J x ¢ (x) dx

X(t)

o«

I % [y 80x) + 3 8(x - A)] dx

-0

A
-7
The autocorrelation function of X(t) is

Ry(1) = E[X(t+1) X(t)]

Define the square function SqT (t) as the square-wave shown below:
0



Sq_ (t)
Ts
1.0 ‘
t
T
-7 _To 0 Y T
0 2 2 0

Then, we may write

"Ry (1)

E[A Sqp (t - t; + 1) « A Sap (¢ = t)]
0 0

A2 J SqT (t - ¢t

+ 1) SqT (t - td) fT (td) dtd

- T d 0 d
o To/2 1
- 4% Sap (t =ty + 1) Sap (£ = t)) » 3= dt,
T2 0 0 0
2 T
- A P | 0
_2 (1 2 To) ’ |Tl$_ 5

Since the wave is periodic with period TO’ RX(T) must also be periodic with period To.

(¢) On a time-averaging basis, we note by inspection of Fig. P/, b that the mean is

<X(t)> =

VTS

Next, the autocorrelation function

To/2
/ x(t+1) x(t) dt

0 -TO/Z

<x(t+T)X(t)> =

)=

has its maximum value of A2/2 at 1 = 0, and decreases linearly to zero at T = T0/2.
Therefore,

2 T
xltet) x(8)> = A (1 -2 8l gy 2.
2 T, £3



Again, the autdcorrelation must be periodic with period To.
(d) We note that the ensemble-averaging and time-averaging procedures yield the same set
of results for the mean and autocorrelation functions. Therefore, X(t) is ergodic in both
the mean and the autocorrelation function. Since ergodicity implies wide-sense
stationarity, it follows that X(t) must be wide-sense stationary.

Problem 1.7

(a) For It} > T, the random variables X(t) and X(t+t) occur in different pulse intervals
and are therefore independent. Thus,

E[X(t) X(t+1)] = EIX(t)] E[X(t+1)], Tl > T,

Since both amplitudes are equally likely, we have E[X(t)] = E[x(t+t)] = A/2. Therefore,
for |z > T,

' 2
J'RX(T) =

.r.-l:n-

For |t| < T, the random variables occur in the same pulse interval if t
they do occur in the same pulse interval,

E[X(t) X(t+1)] = %-Az + % 0° = %— .

We thus have a conditional expectation:
2272, £, <T = |t

d
2 .
A" /4, otherwise.

E(X(t) X(t+1)]

Averaging over td’ we get

T-IrlAz T 22
R,(t) = s — dt, + [ — dt
X o AT p i W
A2 2

(5) The power spectral density is the Fourier transform of the autocorrelation function.
The Fourier transform of

gr) =1 -4y ot

0 , otherwise,

is  given by
G(f) =T sincz(fT). 8



Therefore,

2
5.(£) = 1 6(f) + 7 sincZ(£T) .

We next note that

2 = 2
A ' A

r{m §(f) df = T

2 = . 2
%—f Tsinc2(f'1‘) df = ‘%— ,

© ~ A2
J Sx(f) df = RX(O) =5 .

00

It follows therefore that half the power is in the dc component.

Problem 1.8

Since
Y(t) = gp(t) + X(t) +v/3/2
and gp(t) and X(t) are uncorrelated, thew

CY(T) =Cgp (1) +Cx('r)

where C:gp(r) is the autocovariance of the periodic component and fx(t) is the
autocovariance of the random component. C.Y('r) is the plot in figure P/.8 shifted down by
3/2, removing the dec component. C.gp(‘t) and CX(T) are plotted below:



C (1)

%
4

- - -

Both gp(t) and X(t) have zero mean,

aveyoge
(a) The, power of the periodic component gp(t) is therefore,
T,./2
1 0
=/ 0 war=C =1
0 -T,/2 P
0
) avero.qe
(b) The power of the random component X(t) is
E[Xz(t)] :C.X(O) = 1
Problem 1.9
(a) RXY(T) = E[X(t+1) Y(L)]
Replacing t with -t 10

Ryy(=1) = E[X(t=1) Y(t)]



Next, replacing t-t with t, we get
Ryy (=1) = E[Y(t+1) X(1)]
= Ryy (1)
(b) Form the non-negative quantity
ECIX(t+r) + Y(£)12] = EDX3(tat) + 2X(tar) Y(E) + YO(8)]

EMX2(tsr)] + ZE[X(tar) Y(£)T + ELY2(t)]

Ry(0) + 2Ryy (1) + Ry(0)
Hence,
Ry(0) + 2Ryy(t) + Ry(0) > O

or

Ryy (1 < 3 [Rg(0) + Ry(0)]

Problem 1.10

(a) The cascade connection of the two filters is equivalent to a filter with impul se
response

h(t) = s h1(u) h2(t-u) du

The autocorrelation function of Y(t) is given by

- -] (-
RY(T) = {m {m h('r1) h(12) RX(T -1 +12) d11 d12
(b) The cross-correlation function of V(t) and Y(t) is
RVY(T) = E[V(t+1) Y(t)]

The Y(t) and V(t+1) are related by

o

Y(t) =7 VOO hz(t-A) dx

-0

Therefore,
- -]

Ryy(T) = EIV(t+1) / V(A) hy(t=2) dr]

=00

11



=/ hy(t=d) E[V(t+1) V)T d

=/f hz(t-l) Rv(t+'r->\) da

-l

Substituting A for t-A:

Ryy () =/ hy(0) Ryead) aa

The autocorrelation function Rv('r) is related to the given Rx(r) by

- Ry() = {n {m hy(ty) hylty) Rylr-t 41,) drgdr,

Problem 1.11

(a) The cross-correlation funetion RYX(T) is
RYX(T) = E{Y(t+1) X(t)]

The Y(t) and X(t) are related by

Y(t) =/ X(u) h(t-u) du

-0

Therefore,

©o

E[ / X(wX(t) h(t+r=u) dul

-0

Ryy (1)

S h(t+r=u) EIX(WX(t)] du

-0

©o

J  h(t+g=u) Rx(u-t) du

-—C0

Replacing t+t=-u by u:

Ryx(1) =/ B(w) Ry(r-u) au

(b) Since RXY(T) = RYX(—T), we have

12



RXY(T) = {m h(u) Rx(-T-u) du

Since RX(T) is an even function of t:

RXY(T) = {m h(u) Rx(t+u) du

Replacing u by -u:

RXY(-r) =/ h(-u) Rx(-r-u) du

-0

(¢) If X(t) is a white noise process with zero mean and power spectral density N0/2, we
may write

=

0

Rx(t) = E—ré(r)

Therefore,

No L]
RYX(T) = 'é_-{m h(u) G(T’u) du

Using the sifting property of the delta function:

=

.70
RYX(T) =5 h(t)

That is,

(1)

h(z) = 5_ Ryx
0

This means that we may measure the impulse response of the filter by applying a white
Prowed

noise o% spectral density No/2 to the filter input, cross-correlating the filter output
with the input, and then multiplying the result by 2/N0.

Problem 1.12
(a) The power spectral density consists of two components:
(1) A delta function 6(t) at the origin, whose inverse Fourier transform is one.
(2) A triangular component of unit amplitude and width 2f0, centered at the origin;

the inverse Fourier transform of this component is fo sincz(for).

Therefore, the autocorrelation function of X(t) is

13



RX(T) =1 + £ sincz(fdr)

which is sketched below:

RX(T)

(b) Since Rx(r) contains a constant component of amplitude 1, it follows that the dec
power contained in X(t) is 1.

(e) The mean-square value of X(t) is given by

EIX2(t)]

RX(O)

=1 + fo

The ac power contained in X(f) is therefore equal to fo.

(d) If the sampling rate is fo/n, where n is an integer, the samples are uncorrelated.

They are not, however, statistically independent. They would be statistically independent
if X(t) were a Gaussian process.

Problem 1.13

The autocorrelation function of nz(t) is

RNZ(t1,t2) = E[nz(t1) nz(tz)]

E{[n1(t1) cos(21rf‘ct1 +0) - n1(t1) sin(2nfct1+®)]

- Iny(t,) cos(2f by + ©) = n (t,) sin(2f by + 01}

E[n1(t1) n1(t2) cos(21rf‘ct1 +0) cos(2nfct2 +0)

- n1(t1) n1(t2) cos(E*nfct1 + Q) sin(2nfct 0)

2+
- n1(t1) n1(t2) sin(21rf‘ct1 +0) cos(21rf‘ct2 +0)

14



+ n1(t1) n1(t2) sin(21rf‘ct1 +0) sin(2nfct2 + 0)]

E{n1(t1) n1(t2) cos[2nfc(t1-t2)]

- n1(t1) n1(t2) sin[2wfc(t1+t2) + 201}

E[n1(t1) n1(t2)] cos[anc(t1-t2)l

- E[n1(t1) n1(t2)] . E{sip[2nfc(t1+t2) + 201}
Since © is a uniformly distributed random variable, the second term is zero, giving

RN2(t1,t2) = RN1(t1,t2) cos(2nf  (t,-t,)]

-t .2

Since n1(t) is stationary, we find that in terms of T = t, 2

.BN (t) = Ry (1) cos(2nfcr)
. 2 1
Taking the Fourier transforms of both sides of this relation:

1
SNz(f) 5 [SN1 (f+fc) + SN1 (f—fc)]

With Sy (f) as defined in Fig. PL,3 we find that Sy (f) is as shown below:
1 2

2w 2w

14



Problem 1.14

The power spectral density of the random telegraph wave is

Sg(f) =/ Ry(t) exp(-jaenfr) dr

-0

0
=/ exp(2vt) exp(=j2nft) dr

-0

+ [ exp(-2vt) exp(-jonfr) &

0
1 0
iyt [exp(2vt - j2nfr)l°

- -]

1 .
- eeED) [exp(=2vt = jonft)]

0

1 1
T Z20v-mE) T Evein )

\Y

2 2.2
v +5

The transfer function of the filter is

1

D = 53T

Therefore, the power spectral density of the filter output is

SY(f‘)

2
[H(£) 12 5,0

Vv
[1 + (2rfRC)Z ] (w24 2£2)

To determine the autocorrelation function of the filter output, we first expand SY(f‘).
in partial fractions as follows

v 1 1

WAE 22t 2 2.2

1
1 -4RCV (1/2RC)2+1rf Vo +T f

SY(f) z

Recognizing that

15



exp(=2vit{) > v

V"\)Z +1r2f‘2
exp(-1tl /RC) = 1/22(’ 5
(1/72RCY "4 °F
we obtain the desired result:
Ry(t) = —%—— (1 exp(-2v It 1) - 2RC exp(= 1511
Y 2.2 2 v RC
1=4RCSH

16



Problem 1.15

We are given

(1) = f x(T)de
-T

For x(7) = 8(¢), the impulse response of this running integrator is, by definition,
!

h(t) = j 8(t)dt
T

=1 for t—-T<0<t or, equivalently, 0<¢<T

Correspondingly, the frequency response of the running integrator is

H(f) = Jmooh(t)exp(—ﬂnft)dt

IZ exp(—j2mft)dt

L
J2mft

[1-exp(-j2nfT)]

T'sinc (fT)exp(-jnfT)

Hence the power spectral density Sy(f) is defined in terms of the power spectral density Sy(f) as
follows

Sy(f) = [H(OIS4(f)

= T%sinc’(fT)Sx(f)

Problem 1.16

We are given a filter with the impulse response

R(l‘) _ { aexp(-—at), 0<t<T

0, otherwise

17



The frequency response of the filter is therefore

H(f) = [ h(exp(-j2mfr)dr
T
= joaexp(—ar)exp(—jznfz)dz
T .
= ajo exp(—(a + j21f)t)dt
a

_ : T
= e a + j2nf)ilg

— a 1
= - +j27tf[1 —exp(—(a+ j2nf)T]

a

= — j2nf[1 — ¢ “(cos(2nfT) - jsin(2fT))

The squared magnitude response is

2
HP = [ﬁf;jz(l - oos(2mfT))” + (e_“Tsin(MfT))z}
a +4amn
2 2 2
= ————[1-2¢"" cos2nfT) + ¢ >* (cos (2nfT) + sin*(2n/T))]
a +4n”f
2
= —2‘;—2]02[1 - Ze_aTcos(Znﬂ") +e72
a +471n

Correspondingly, we may write

2
a

Sy(f) = 551 -2 cos2nfT) + € *T1S,(f)
a +4n f

18



Problem 1.17
_ The autocorrelation function of X(t) is
Rx('r) = E[X(t+t) X(t)]

82 E[cos(2rFt + 27Fr —0) cos(2gFt — 6)]

2
S~ Elcos(MaFt + 2qFx — ) + cos(2rF1)]

Averaging over ©, and noting that 0 is uniformly distributed over 2n radians, we get

2

Rx(T) g—'E[COS(Zﬂ’FT)]

2 ©
J f‘F(f‘) cos(2nfT) df (1)

=00

Next, we note that RX(T) is related to the power spectral density by

©

Ry@) = S.(f) cos(arr) df @

-0

Pousey
Therefore, comparing Eqs. (1) and (2), we deduce that theA spectral density of X(t) is

32

Sx(f) = E_fF(f)
When the frequency assumes a constant value, fc (say), we have

1 1
f‘F(f‘) = Es(f‘-fc) + §G(f+fc)

1o

19



and, correspondingly,

G G
Sy(f) = 3~ G(f-fc) + 5(f+fc)

Problem 1.18

Let °x2 denote the variance of the random variable X, obtained by observing the random process
X(t) at time ty. The variance ox2 is related to the mean-square value of X, as follows

ox = EIXl - ny
wherefiy = E[X;]. Since the process X(t) has zero mean, it follows that

2 2
Next we note that

EX;] = [7 Sx®df

We may therefore define the variance °x2 as the total area under the power spectral density Sy(f)
as

o2 = f_ ~ Sy(hdf 6))

Thus with the mean py = 0 and the variance 6X2 defined by Eq. (1), we may express the probability
density function of X; as follows

x 2

fx, (x) = ——_ exp| - ——
TOox 20.)2(

20



Problem 1.19

The input-output relation of a full-wave rectifier is defined by

X(t),  X(g) >0
Y(t,) = IX(t )] = .

The probability density function of the random variable X(tk), obtained by observing the
input random process at time tk, is defined by

2
1 X
— exp(- ——2)

f (x) = —
X(tk) /27 o 25

To find the probability density function of the random variable Y(tk), obtained by

observing the output random process, we need an expression for the inverse relation
defining X(tk) in terms of Y(tk). We note that a given value of Y(tk) corresponds to 2

values of X(tk), of equal magnitude and opposite sign. We may therefore write

X(tk) = -’Y(tk). X(tk) <0

X(tk) Y(tk), X(tk) >0.

In both cases, we have

! dX(tk)’
— | =1.
d¥(t,)

The probability density function of Y(tk) is therefore given by

. o -t , ) 1 dX(t, ) r dX(t,)
y) = X = =y) of —=——<1+f (x = y) ol =577
Y(t,) X(t,) avE) | " R d¥(E)

/51 y2 ‘
/75 &P )

20
We may therefore write
2
el y_
/ioexp(- 202)’ y20
f (y) =
Y(tk)
o, y<o0.

21



which is illustrated below:

§ (8
Yie)

0. 796y

Problem 1.20

(a) The probability density function of the random variable Y(tk), obtained by observing
the rectifier output Y(t) at time tk’ is

2
exp(=- ) >0
= o -%x y 2
f (y) =
Y(tk)
0, | y <o
2 o2 2
where oy = E[X (tk)] - {E[X(tk)]}
2
= E[X (tk)]
= RX(O)

The mean value of Y(tk) is therefore

CEI@O) = Ty fyg ) oy

2 ,
= —— s /5 exn(- L) ay . (1)
ven oy 0 20X

Put

a <

sl
"
[
n
[\
[\*]



Then, we may rewrite Eq. (1) as

2 2 u®
E[Y(tk)] T % IO u” exp(- 5—) du

2
%

Ry (0)

(b) The autocorrelation function of Y(t) is

E[Y(t+1) Y(t))

RY(T)
Since Y(t) = X2(t), we have

Ry(1) = ELX*(ten) X2(8)]

©

S5 ox

-0 ==00

2 2
1 x2 f

X(t, + T),X(tk)(x1’x2) dx, dx,

(2)

The X(tk+m) and X(tk) are jointly Gaussian with a joint probability density function

defined by

1

2
Xy = 2 px(T) X, %5

+

X

2
2

f (x., x5) = expl-
X(t, +1),X(t, ) %10 %2
k k 2 0% /1-p200)

2
where Oy = RX(O)'

CoV[X(tk+t)X(tk)]
DX(T) = 2 ’
%

Rewrite Eq. (2) in the form:
2
1 2 *2
Ry(t) = ] x5 exp(- -—50 g(x,) dx,

& oi/1play ™ oy

where

[x1 - px(r) x2]2

} dx

- -]
_ 2
g(x2 = f Xy expi{- 1
-l

2 2
D[l =py()]
X X 23

25 (1-p5())

1

(3)



Let

x1 - px(T) x2
oy V1-p§('r)

Then, we may express g(xz) in the form

u =

© 2
8(xp) =0y /13 S exp(- 39 G) x5 + o501 — 5@ + 20, p

v 1-9)2((1) ux2} du

X

However, we note that

2
I exp(- 121—) du = V21

-0

u2
J u exp(- ) du =0

2
5wl exp(- g—) du = V2rn

Hence,

8(xy) = oy /2nl1-p(D)] {pe(D) x5 + 05 [1 = p2(D]}

Thus, from Eq. (3):

2
o X
: 2 2 2 2 2
."RY(T) = _—_1_—— S xg exp(~ ‘—3) {px('r) X5 + oy [1-px('r)]} dx,
Yex oy = ZGX
Using the results:
Y x2
52 ente 2y ax, = 7
J %, exp(- ——2) dx, = 3/2q% 0)5(
-00 2°x

24



we obtain,

RY(t) = 30; pi(r) + c; 1 - 9)2((1)]
- c; 1 + 2p§(T)]

. 2
Since oy = Rx(O)

RX(T)
(1) = R.(0)
PX X
we obtain
2

(D
Ry(T) = Ri(O) [1+2 ! y
RX(O)

- Rg(O) + 2R§(T)

The autocovariance function of Y(t) is therefore

C?Y(T)

2
Ry(T) = {E[¥(t, )]}

2 2 2
RX(O) + 2Rx(t) - RX(O)

2R2(0)

"

Problem 1.21

" (o) The random variable Y(t1) obtained by observing the filter output of impulse response
h1(t), at time t1, is given by

©

Y(t) = J X(t,-1) h, (1) d1

The expected value of Y(t1) is

mY

1

E[Y(t1)]

H(0) my
where

H1(0) = J h1(T) drt
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The random variable Z(t2) obtained by observing the filter output of impulse response

hz(t), at time t2, is given by
0

2(ty) = J X(t,mu) hy(u) du

The expected value of Z(t2) is

m, = Elz(t)]

Hy(0) my
where

Hy(0) = J hy(u) du

The covariance of Y(t1) and Z(t.2) is
Cov[Y(t1)Z(t2)] = E[(Y(t1) -AY1)(Z(t2) -/{22)]

ELS J (X(ty=1) = Hy) X(t,=u) - 4) h, (1) h,(u) d7 du]

5 J E[(X(tf-"r) —My) (X(t,=u) - A)] h (1) hy(u) d1 du

;s Cx(t1-t2-f+u) hy (1) hy(u) dT du

where CX(T) is the autocovariance function of X(t). Next, we note that the variance of
Y(t1) is
2

%

ELCY (b)) -4ty )°)
1 1

© o

I 7 C'x('r-u) hi(T) hl(U) dt du

=00 w00

and the variance of Z(t2) is

2 2
- EL(Z(t,) - u, )71
22 2 22

I 7 Cylrw) hy(1) hy(u) dr du

-0
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The correlation coefficient of Y(t1) and Z(tz) is
cov[Y(t1)Z(t2)]

[o!
Y, c’22

p =

S%nce X(t) is a Gaussian process, it follows that Y(t1) and Z(t2) are jointly Gaussian
with a probability density function given by

fr(e ), 200, 10%2) = K expl-a(yy,2,)])

where
1
K =
210, © ¢1—p2
Y, 2z
1 72
1 Y41 2 V1A 2o 27472 2
Qly . yz,) = ( )T - 2p( ) ( ) o+ (—)
1’72 2 G, . a. g
2(1-p7) Y1 Y1 22 Z2

(b) The random variables Y(t1) and Z(t2) are wncorrelated if and only if their covariance
is zero. Since Y(t) and Z(t) are jointly Gaussian processes, it follows that Y(t1) and
Z(t2) are statistically independent if Cov[Y(t1)Z(t2)] is zero. “Therefore, the necessary
and sufficient condition for Y(t1) and Z(t2) to be statistically independent is that

® o

ST Gyt =tymTau) hy (1) hy(u) dtdu =0

=00 =00

for choices of t1 and t2. .

27



Problem 1.22

(a) The filter output is

o

Y(t) =/ h(1) X(t-1) dt
1 T
=7 fo X(T-1) d1

Put T-t=u. Then, the sample value of Y(t) at t=T equals

T
J X(u) du
0

Y =

[

The mean of Y is therefore

T

El / X(w) dul
0

E[Y]

T

%'f E[X(u)]1 du
0

The variance of Y is

o = E[Y?) - (E1¥1)?
= Ry (0)
S 5 sy(0) af

-0

o«

J Sx(f) lH(f)}2 df
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- But

J h(t) exp(-j2xt) dt

H(f)

T
/ exp(-j27ft) dt
0

'
==

o T
=1 [exg(.- 22'ﬂft)]
=jenf

-t

0

- EE%FT [1 - exp(-j2nT)]

= sine(fT) exp(-jnfT)

Therefore,

o? = S syl sinc?(£T) df

(b) Since the filter input is Gaussian, it follows that Y is also Gaussian. Hence, the
probability density function of Y is

2
fy(y) = _1_ exp(- L)

V21 oy 2°Y

where cg is defined above.

Problem 1.23

(q,) The power spectral density of the noise at the filter output is given by

N
__0 j2afL
Sy(f) = 5 | W R L ]
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N

2

1+(27fL/R)

A

Mn-——
1+(24fL/R)

2 )
2

The autocorrelation function of the filter output is therefore

=

0

Ry() = 52 [8(1) = o= exp(= & 1<D)]

(b)

The mean of the filter output is equal to H(0) times the mean of the filter input. The process
at the filter input has zero mean. The value H(0) of the filter’s transfer function H(f) is zero.
It follows therefore that the filter output also has a zero mean.

The mean-square value of the filter output is equal to Ry(0). With zero mean, it follows
therefore that the variance of the filter output is

0% = Rn(0)

Since Ry(7) contains a delta function (1) centered on T = 0, we find that, in theory, °N2 is
infinitely large.
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Problem 1.24

(a) The noise equivalent bandwidth is

—L2— 5 mn?ar
H©0)12 e

1 df
';_Tf
- 1 + (f/fo)

2n

-]

df
01+ (f/fo)2n

= J

Gl

2n sin(q¢/2n)

fy

sinec(1/2n)
(b) When the filter order n approaches infinity, we have

1

Wy = £ lm o7

n+w

Problem 1.25

The process X(t) defined by

X® = Y hit-1,
k=-o

where h(t - 7, ) is a current pulse at time Ty, 18 stationary for the following simple reason. There is
no distinguishing origin of time.
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Problem 1.26

(a) Let S1(f) denote the power spectral density of the noise at the first filter output.

The dependence of 31(f) on frequency is illustrated below:

s, () ‘
L
_: ,.% T T f
—fc 0 fc
2B 2B

Let Sz(f‘) denote the power spectral density of the noise at the mixer output. Then, we

may write

1
Sz(f) =g [51(f‘+fc) + 51(f-fc)]

which is illustrated below:

S, (f)

_2f 0 2f /
C
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The power spectral density of the noise n(t) at the second filter output is therefore defined by

EI_Q, -B<«f<B
Sy = |4

0, otherwise

The autocorrelation function of the noise n(t) is

NoB .
Ro(t) = — sinc(2B71)

(b) The mean value of the noise at the system output is zero. Hence, the variance and mean-square
value of this noise are the same. Now, the total area under S (f) is equal to (N/4X2B) = N B/2. The
variance of the noise at the system output is therefore NyB/2.

(c) The maximum rate at which n(t) can be sampled for the resulting samples to be uncorrelated is
2B samples per second.
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Problem 1.27

(a) The autocorrelation function of the filter output is

@ oo

Ry(t) =/ [ h('r1) h(‘tz) Rw('r-r1+12) dt, d1,

-l 00

..Sinc_:e' Rw(r) = (N0/2) 8§(t), we find that the impulse response h(t) of the filter must
satisfy the condition:
No ©
RX(T) = Z—{m {m h(t,) h(1,) 8(1-14+1,) dry dr,
N

= _f_“ h(t+t,) h(t,) dr,

(b) For the filter output to have a power spectral density equal to S (f‘), we have to
choose the transfer function H(f) of the filter such that

N
=2 2
Sy(f) = z= H(D ]

or

= ()
N

[H(E)} =
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Problem 1.28

(a) Consider the part of the analyzer in Fig. 1.19 defining the in-phase component nyr),
reproduced here as Fig. 1:

Narrowband v(t) Low-
noise Of\;itgf S ()
n(1)

2cos(2mf,1)

Figure 1

For the multiplier output, we have

v(t) = 2n(t)cos(2nf 1)

Applying Eq. (1.55) in the textbook, we therefore get
Sy(f) = [Sy(f = f)+Sy(f + fo]

Passing v(f) through an ideal low-pass filter of bandwidth B, defined as one-half the bandwidth of
the narrowband noise n(z), we obtain

Sy (f) = { iv(f) for -B< f<B

otherwise

- { Sn(f=Sf)+Sy(f+f) for -B<f<B "

0 otherwise

For the quadrature component, we have the system shown in Fig. 2:

Narrowband u(®) [Tow-pass ,
noise Of\‘ﬁtgr nQ(t)
n(t) %

-2sin(2nf 1)

Fig. 2
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The multiplier output u(z) is given by
u(r) = —2n(1)sin(2nf 1)

Hence,

Su(f) = Sy(f=F)+Sy(f + f)]

and

S, () = { Sy(f) for -B<f<B

0 otherwise

={ Sy(f=Ff)+Sy(f+f,) for -B<f<B @
0 otherwise
Accordingly, from Egs. (1) and (2) we have
Sy, (f) = Snylf)
(b) Applying Eq. (1.78) of the textbook to Figs. 1 and 2, we obtain

2
Snn () = [H(OISyy(f) €)
where

for —-B< f<
0 otherwise

Applying Eq. (1.23) of the textbook to the problem at hand:

. 1 j2nf t -j2nf .t
Ryy(t) = 2Ry (T)sin(2nf, 1) = }RN(r)(e —e ’
Applying the Fourier transform to both sides of this relation:

1

Syy(t) = j(SN(f_fc)_SN(f*'fc)) 4)
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Substituting Eq. (4) into (3):

S
NNy

(f) = { JISN(F+f)-Sy(f-f)] for -B<f<B
0

otherwise

which is the desired result.

Problem 1.29

If the power spectral density Sy(f) of narrowband noise n(f) is symmetric about the midband
frequency f,. we then have

Sy(f—=f.)=Sy(f+f.) for -B<f<B

From part (b) of Problem 1.28, the cross-spectral densities between the in-phase noise component
n,(t) and quadrature noise component nQ(t) are zero for all frequencies:

SNINQ(f) =0 for all f

This, in turn, means that the cross-correlation functions R N, NQ(T) and R NQNI(T) are both zero,
that is,

E[Nl(tk+'c)NQ(tk)] =0

which states that the random variables N/(# + 7) and N((#), obtained by observing n(t) at time
1 + 7 and observing ny(r) at time #, are orthogonal for all t.

If the narrow-band noise n(z) is Gaussian, with zero mean (by virtue of the narrowband nature of
n(r)), then it follows that both N(z; + 1) and Ny(#;) are also Gaussian with zero mean. We thus

conclude the following:

* Nyt + 1) and Ny(t) are both uncorrelated
*  Being Gaussian and uncorrelated, N(7; + T) and Ny(#;) are therefore statistically independent.

That is, the in-phase noise component n,(f) and quadrature noise component no(r) are statistically
independent.
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Problem 1.30

(a) The power spectral density of the in-phase component or quadrature component is
defined by

Sy(f+f)) + Sy(f-f), -B<f<B

Sy (f) =8, (f)
N N
I Q

0 otherwise

We note that, for -2 < f < 2, the SN(f‘+5) and SN(f-S) are as shown below:

SN(f+5)

r

X \
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SN(f-S)
1.0
} £
-2 0 1 !
We thus find that SN (f) or SN (f) is as shown below:
1 ]
SN (f)=SN (£)
I &
f

(b) The cross-spectral density Sy N (f) is defined by
T a

JISY(F+£) = Sy(F-£ )1, -B<f<B

(f) =

S
N
N'1' ®

o, otherwise

We therefore find that SN N (£fY/j is as shown below:

I a
is (f)
3 °N N
TR 0.5
|
|
_2 .1 !
N | £
1 0 1 2
H
l
——— -4 0.5
38




Next, we note that

N

Sy y (£ = SE . (D)
Ie I8

We thus find that SN N (f) is as shown below:
I e '

|
N
|
o]
o
— —o— —p

Problem 1.3!

(a) Express the noise n(t) in terms of its in-phase and quadrature components as follows:
n(t) = n (t) cos(2nf t) —= n (£) sin(2rf t)
I c Q c

The envelope of n(t) is

F(8) = /n2(t) + nl(t)
. a

which is Rayleigh~distributed. That is

2
E-Z-exp(—r—é) ’ r>0
g 20
fR(r) =
o, otherwise

To evaluate the variance 02, we note that the power spectral density of n (t) or n (t) is
as follows I B
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S (f)=SN (£)

Since the mean qf n(t) is zero, we find that

Tq =2 NOB
Therefore,
r r2
2B S*P- g o r20
0 0
fR(r) = .
o, otherwise

(b) The mean value of the envelope is equal to VWNOB, and its variance is equal to
00'858 N Bo
0
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Problem 1.32

Autocorrelation of a Sinusoidal Wave Plus White Gaussian Noise
In this computer experiment, we study the statistical characterization of a random process X(7)
consisting of a sinusoidal wave component Acos(27f,t + ©) and a white Gaussian noise process

W(r) of zero mean and power spectral density Ny/2. That is, we have
X(t) = Acos2nf 1+ 0O+ W(2) (D)

where © is a uniformly distributed random variable over the interval(-mt,7). Clearly, the two
components of the process X(#) are independerit. The autocorrelation function of X(7) is therefore
the sum of the individual autocorrelation functions of the signal (sinusoidal wave) component and
the noise component, as shown by

2

A Ny
Ry(1) = 7cos(znfcr)+75(r) (2)

This equation shows that for |t > 0, the autocorrelation function Ry(t) has the same sinusoidal

waveform as the signal component. We may generalize this result by stating that the presence of a
periodic signal component corrupted by additive white noise can be detected by computing the
autocorrelation function of the composite process X(z).

The purpose of the experiment described here is to perform this computation using two different
methods: (a) ensemble averaging, and (b) time averaging. The signal of interest consists of a
sinusoidal signal of frequency f, = 0.002 and phase 0 = - 7/2, truncated to a finite duration T =

1000; the amplitude A of the sinusoidal signal is set to V2 to give unit average power. A particular
realization x(¢) of the random process X(z) consists of this sinusoidal signal and additive white
Gaussian noise; the power spectral density of the noise for this realization is (Ny/2) = 1000. The

original sinusoidal is barely recognizable in x(z).

(a) For ensemble-average computation of the autocorrelation function, we may proceed as
follows:

* Compute the product x(¢ + 7)x(#) for some fixed time 7 and specified time shift T, where x(7)
is a particular realization of the random process X(¢).

* Repeat the computation of the product x(r + T)x(¢) for M independent realizations (i.e.,
sample functions) of the random process X(z).

* Compute the average of these computations over M.

* Repeat this sequence of computations for different values of 1.

The results of this computation are plotted in Fig. 1 for M = 50 realizations. The picture

portrayed here is in perfect agreement with theory defined by Eq. (2). The important point to
note here is that the ensemble-averaging process yields a clean estimate of the true
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autocorrelation function Ry(t) of the random process X(f). Moreover, the presence of the
sinusoidal signal is clearly visible in the plot of Ry(t) versus t.

(b) For the time-average estimation of the autocorrelation function of the process X(¢), we invoke
ergodicity and use the formula

Ry(t) = lim R (7, T) (3)
T —> oo
where R,(1,T) is the time-averaged autocorrelation function:
R Lt 4
(T, T) = Z—Tj_Tx(zH)x(z)dt (4)

The x(¢) in Eq. (4) is a particular realization of the process X(z), and 27 is the total observation
interval. Define the time-windowed function

(t) = {x(t), -T<t<T

0, otherwise )
We may then rewrite Eq. (4) as
1 00
R(T.T) = 5= I_mxT(I + 1) x (1)dt (6)

For a specified time shift T, we may compute R, (t,7) directly using Eq. (6). However, from a

computational viewpoint, it is more efficient to use an indirect method based on Fourier
transformation. First, we note From Eq. (6) that the time-averaged autocorrelation function
R (7,T) may be viewed as a scaled form of convolution in the T-domain as follows:

R(1,T) = Elfjle(r)* xp(=T) ©)

where the star denotes convolution and x7(t) is simply the time-windowed function x;(f) with
t replaced by T. Let X1{(f) denote the Fourier transform x4{(T); note that X;(f) is the same as the

Fourier transform X(£,T). Since convolution in the T-domain is transformed into multiplication
in the frequency domain, we have the Fourier-transform pair:

R(t,T) = 2_1f j:|XT( I (8)
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The parameter |X7(f)|2/2T is recognized as the periodogram of the process X(¢). Equation (8) is

a mathematical description of the correlation theorem, which may be formally stated as
follows: The time-averaged autocorrelation function of a sample function pertaining to a
random process and its periodogram, based on that sample function, constitute a Fourier-
transform pair.

We are now ready to describe the indirect method for computing the time-averaged
autocorrelation function R,(t,7):

* Compute the Fourier transform X(f) of time-windowed function x{(1).
»  Compute the periodogram |X;(f)[>/2T.

« Compute the inverse Fourier transform of [X{f)[>/2T.

To perform these calculations on a digital computer, the customary procedure is to use the fast
Fourier transform (FFT) algorithm. With xy(t) uniformly sampled, the computational

procedure  described herein yields the desired values of R(t,7) for
T=0A2A, -, (N-1)A where A is the sampling period and N is the total number of

samples used in the computation. Figure 2 presents the results obtained in the time-averaging
approach of “estimating” the autocorrelation function Ry(7) using the indirect method for the

same set of parameters as those used for the ensemble-averaged results of Fig. 1. The symbol
Ry(t) is used to emphasize the fact that the computation described here results in an
“estimate” of the autocorrelation function Ry(t). The results presented in Fig. 2 are for a
signal-to-noise ratio of + 10dB, which is defined by

2 2
SNR = _A/2 _AT
N,/(2T) ~ N,

€)

On the basis of the results presented in Figures 1 and 2 we may make the following
observations:

* The ensemble-averaging and time-averaging approaches yield similar results for the
autocorrelation function Rx(t), signifying the fact that the random process X(¢) described
herein is indeed ergodic.

* The indirect time-averaging approach, based on the FFT algorithm, provides an efficient
method for the estimation of Ry(t) using a digital computer.

* As the SNR is increased, the numerical accuracy of the estimation is improved, which is
intuitively satisfying.
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1 Problem 1.32

Matlab codes

% Problem 1.32a CS: Haykin
% Ensemble average autocorrelation
% M. Sellathurai

clear all

A=sqrt(2);

N=1000; M=1; SNRdb=0;
e_corrf_f=zeros(1,1000);
f_c=2/N;

t=0:1:N-1;

for trial=1:M

% signal
s=cos(2*pi*f_c*t);

“noise
snr = 10~ (SNRdb/10);
wn = (randn(1,length(s)))/sqrt(snr)/sqrt(2);

%signal plus noise
s=s+un;

% autocorrelation
[e_corrfl=en_corr(s,s, N);

%Ensemble-averaged autocorrelation
e_corrf_f=e_corrf_f+e_corrf;
end

prints
plot(-500:500-1,e_corrf_£/M);
xlabel(’ (\tau)’)

ylabel (’R_X(\tau)’)
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% Problem 1.32b CS: Haykin
% time-averaged estimation of autocorrelation
% M. Sellathurai

clear all
A=sqrt(2);
N=1000; SNRdb=0;
f_c=2/N;
t=0:1:N-1;

% signal
s=cos (2*pi*f_c*t);%noise

Y%noise
snr = 10~ (SNRdb/10);
wn = (randn(1,length(s)))/sqrt(snr)/sqrt(2);

%signal plus noise
S=s+wn;

% time -averaged autocorrelation
[e_corrfl=time_corr(s,N);

%prints
plot(-500:500-1,e_corrf);
xlabel(’ (\tau)’)
ylabel(’R_X(\tau)’)
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function [corrfl=en_corr(u, v, N)¥ funtion to compute the autocorreation/ cross—correlatic
% ensemble average

% used in problem 1.32, CS: Haykin
% M. Sellathurai, 10 june 1999.

max_cross_corr=0;
tt=length(u);

for m=0:tt

shifted_u=[u(m+1i:tt) u(i:m)];
corr(m+1)=(sum(v.*shifted_u))/(N/2);
if (abs(corr)>max_cross_corr)
max_cross_corr=abs(corr);

end

end

corri=flipud(corr);
corrf=[corr1(501:tt) corr(1:500)];
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function [corrfl=time_corr(s,N)

% funtion to compute the autocorreation/ cross—correlation
% time average

% used in problem 1.32, CS: Haykin

% M. Sellathurai, 10 june 1999.

X=fft(s);

Xi=fftshift((abs(X)."2)/(N/2));
corrf=(fftshift(abs(ifft(X1))));
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Answer to Problem 1.32

Rfd

—0.5

2 L L . L 2
—500 —400 —300 —200 —100 o 100 200 300 400 500
(2]

Figure 1: Ensemble averaging

L . " . L .
—-500 —400 —300 —200 —100 o 100 200 300 400 500

Figure 2: Time averaging
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Problem 1.33

Matlab codes

% Problem 1.33 CS: Haykin
% multipath channel
% M. Sellathurai

clear all
Nf=0;Xf=0; Y% initializing counters

N=10000; % number of samples
M=2; P=10;

a=1; % line of sight component component
for i=1:P
A=sqrt(randn(N,M)."2 + randn(N,M)."2);

xi=A.*cos(cos(rand(N,M)*2+pi) + rand(N,M)*2%pi); % inphase cpmponent
xq=A.*sin(cos(rand(N,M)*2xpi) + rand(N,M)*2+pi); % quadrature phase component

xi=(sum(xi?’));
xq=(sum(xq’));

ra=sqrt((xi+a)."2+ xq."2) ; % rayleigh, rician fading
[h X]=hist(ra,50);

Nf=Nf+h;
Xf=Xf+X;

end

Nf=Nf/(P);
Xf=X£/(P);

% print

plot (Xf,Nf/(sum(Xf.*N£f)/20))
xlabel(’v?)

ylabel(’f_v(v)’)
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Answer to Problem 1.33

0.8

Figure 1 Rician distribution
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