CHAPTER 2

Continuous-wave Modulation

Problem 2.1”

(a) Let the input voltage vy consist of a sinusoidal wave of frequency -21— f (i.e., half

[
the desired carrier frequency) and the message signal m(t):

vy = Ac cos(nfct)ﬂn(t)

Then, the output current i, is
i 3

o 81 Vi + a3 Vi

= a, [Accos(-n fct)+m(t) ]+a3[Accos(n fct)+m(t) ]3

a1[Accos(1rf‘ct)+m(t)] + %a3A2 [cos(&rfct)+3cos(1rfct)l

3A cos(nf t)mz(t) + a3m3(t)

Assume that m(t) occupies the frequency interval -W £ f < W. Then, the amplitude spectrum
of the output current i is as shown below.

+ %a3A2 m(t)[1+cos(21rf‘ t)] + 3a

I(f)
(@)
3f f 3W -WO W f 3f
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From this diagram we see that in order to extract a DSBSC wave, with carrier frequency fc
from io’ we need a band-pass filter with mid-band frequency fc and bandwidth 2W, which

satisfy the requirement:

f

£ =W D> =<4 M
c 2

that is, fc > 60

Therefore, to use the given nonlinear device as a product mmodul ator, we may use the
following configuration:

Nonlinear

. B BPF P ©
device

A cos(mf t)
c c

é.a A2 m(t) cos(2nf t)
2 3 ¢ c

m(t)

——;~f - — —0

(b) To generate an AM wave with carrier frequency fc We require a sinusoidal component of
frequency fc to be added to the DSBSC generated in the manner described above. To achieve
this requirement, we may use the following configuration involving a pair of the nonlinear

devices and a pair of identical band-pass filters.

Nonlinear

I BPF
device

A cos(nf t)
c c

AM wave

8
2

A cos(mf t)
c c (5;)
Nonlinear

————— Py BPF
device
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The resulting AM wave is therefore -g— ag Ag[Ao+m(t)]cos(2ﬂfct). Thus, the choice of the dc

level AO at the input of the lower branch controls the percentage modulation of the AM
wave, '

Problem 2.2

Consider the square-law characteristic:
val(t) = agvy(t) + agvi(t) 1

where a, and a, are constants. Let

vi(t) = A cos(2nf;t) + m(t) (2)

Therefore substitutingEq. (2) into (1), and expanding terms:

2
V2(t) = alAc[l + :2

m(t)] cos(2nf,t)
1 3)

+ a;m(t) + agm(t) + azAc2 cos2(2rf,t)

The first term in Eq. (3) is the desired AM signal with k, = 2a,/a;. The remaining three terms are
unwanted terms that are removed by filtering.

Let the modulating wave m(t) be limited to the band -W < f < W, as in Fig. 1(a). Then, from Eq. (3)
we find that the amplitude spectrum |V2(f) | is as shown in Fig. 1(b). It follows therefore that the
unwanted terms may be removed from vy(t) by designing the tuned filter at the modulator output
of Fig. P2.2 to have a mid-band frequency f, and bandwidth 2W, which satisfy the requirement that
f. > 3W..

V20
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@) (b) 2w
Figure 1

53



Problem 2.3

The generation of an AM wave may be accomplished using various devices; here we describe one
such device called a switching modulator. Details of this modulator are shown in Fig. P2.3a,
where it is assumed that the carrier wave c(r) applied to the diode is large in amplitude, so that it
swings right across the characteristic curve of the diode. We assume that the diode acts as an ideal
switch, that 1s, it presents zero impedance when it is forward-biased [corresponding to c(z) > 0].
We may thus approximate the transfer characteristic of the diode-load resistor combination by a
plecewise-linear characteristic, as shown in Fig. P2.3b. Accordingly, for an input voltage v;(z)

consisting of the sum of the carrier and the message signal:
vi(8) = A.cos(2nf 1) +m(2) (1)

where |m(7)| << A, the resulting load voltage v,(?) is

v, (0) z{ M, el >0 @
0, (1) <0

That is, the load voltage v,(¢) varies periodically between the values v;(r) and zero at a rate equal
to the carrier frequency f.. In this way, by assuming a modulating wave that is weak compared

with the carrier wave, we have effectively replaced the nonlinear behavior of the diode by an
approximately equivalent piecewise-linear time-varying operation.

We may express Eq. (2) mathematically as
vo(t)= A, cos(2mf 1)+ m(1)gr (1) (3)

where gTO(t) is a periodic pulse train of duty cycle equal to one-half, and period T; = 1/f,, as in

Fig. 1. Representing this gTO(t) by its Fourier series, we have

oo

2

cos[27tf t(2n-1)] “4)

MIH
F]Il\)

To(t) =

Therefore, substituting Eq. (4) in (3), we find that the load voltage v,(¢) consists of the sum of two
components:

1. The component

A
?[1 - ni m(t)] cos(2mf 1)

c
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which is the desired AM wave with amplitude sensitivity &, = 4nA.. The switching modulator
is therefore made more sensitive by reducing the carrier amplitude A_; however, it must be
maintained large enough to make the diode act like an ideal switch.

2. Unwanted components, the spectrum of which contains delta functions at 0, +2f,., +4f., and so
on, and which occupy frequency intervals of width 2W centered at 0, +3f.. +5f,, and so on,
where W is the message bandwidth.

gro(l)

+1

Fig. 1: Periodic pulse train

The unwanted terms are removed from the load voltage v,(r) by means of a band-pass filter with
mid-band frequency f, and bandwidth 2W, provided that f, > 2W. This latter condition ensures that

the frequency separations between the desired AM wave the unwanted components are large
enough for the band-pass filter to suppress the unwanted components.
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Problem 2.4
(a) The envelope detector output is
v(t) = Ac|1+ ucos(?nfmt)l

which is illustrated below for the case when p=2,

v(t)

We see that v(t) is periodic with a period equal to f‘ , and an even function of t, and so
Wwe may express v(t) in the form:

v(t) = ag + 2 I a, cos(2n1rfmt)

136, 1/2f_
2A £ 1 [1+2 cos(2nf _¢)1dt + 24 £ [-1-2cos{(2rf t)1dt
e'm . m em e m
m

4A
c c

3t sin(g%— (1)

1/2f'm
a =2f [ v(t)cos(2nnf_t)dt
m° m

1/3f

= 28 f fo m [142cos(2nf t)]cos(2nmf t)dt
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+ 2 £ m [-1-2cos(anf t)Jcos(2nm £ t)dt

A A
= ;f [2 sin(ggl) - sin(m)] + ?3157; {2 sin[g%(n+1)] - sinln (n+1)]}
. e {2 sinfZ%(n-1)] = sinln (n=1)1} (2)
(n_1)“_ 3 - - S n w n-

For n=0, Eq. (2) reduces to that shown in Eq. (1).

(b) For nz1, Eq. (2) yields

a3 1
1 ° Ac(—E;-+ 5)

For n=2, it yields

Therefore, the ratio of second-harmonic amplitude to fundamental amplitude in v(t) is

a
2 33 . o.u52
3 25433
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Problem 2.5

(a) The demodulation of an AM wave can be accomplished using various devices; here, we
describe a simple and yet highly effective device known as the envelope detector. Some
version of this demodulator is used in almost all commercial AM radio receivers. For it to
function properly, however, the AM wave has to be narrow-band, which requires that the
carrier frequency be large compared to the message bandwidth. Moreover, the percentage
modulation must be less than 100 percent.

An envelope detector of the series type is shown in Fig. P2.5, which consists of a diode and a
resistor-capacitor (RC) filter. The operation of this envelope detector is as follows. On a
positive half-cycle of the input signal, the diode is forward-biased and the capacitor C charges
up rapidly to the peak value of the input signal. When the input signal falls below this value,
the diode becomes reverse-biased and the capacitor C discharges slowly through the load
resistor R;. The discharging process continues until the next positive half-cycle. When the

input signal becomes greater than the voltage across the capacitor, the diode conducts again
and the process is repeated. We assume that the diode is ideal, presenting resistance rr to

current flow in the forward-biased region and infinite resistance in the reverse-biased region.
We further assume that the AM wave applied to the envelope detector is supplied by a voltage
source of internal impedance R,. The charging time constant (rr + Rg) C must be short

compared with the carrier period 1/f,, that is

(rf+Rs)C<<j_}_c 1)

so that the capacitor C charges rapidly and thereby follows the applied voltage up to the
positive peak when the diode is conducting.

(b) The discharging time constant R;,C must be long enough to ensure that the capacitor
discharges slowly through the load resistor R; between positive peaks of the carrier wave, but

not so long that the capacitor voltage will not discharge at the maximum rate of change of the
modulating wave, that is

% «R,C « % 2)
c

where W is the message bandwidth. The result is that the capacitor voltage or detector output
is nearly the same as the envelope of the AM wave.
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Problem 2.6

Let
vi(t) = A1 + kym(t)lcos(2rf t)
(a) Then the output of the square-law device is

vo(t) = a;vy(t) + a2v12 ®)

L[}

a;1A [l + kom(t)lcos(2nf t)

+

%azAfu + 2k,m(t) + k2m2(t)] [1 + cos(4nf,b)]

(b) The desired signal, namely a2A02k m(t), is due to the azvz (t) - hence, the name "square-law
detection”. This component can be extracted by means of a low-pass ﬁlter ThlS is not the only
contribution within the baseband spectrum, because the term 1/2 a2Ac k m?(t) will give rise to a
plurality of similar frequency components. The ratio of wanted signal to dlstortlon is 2/k,m(t). To
make this ratio large, the percentage modulation, that is, Ik m(t) | should be kept small compared
with unity.
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Problem 2.7

The squarer output is

"

v, (t) Ai [1+kam(t)]2 cosz(anct)

G
<
2

[1 +2kam( t)+m2 CARER +cos(41rf‘ct) ]

The amplitude spectrum of v1(t) is therefore as follows, assuming that m(t) is limited to
the interval -W < f < W: |

v, ()]

PN
L

Since fc > W, we find that 2fc-2w > 20. Therefore, by choosing the cutoff frequency of

o >

2f

4w

the low-pass filter greater than 2W, but less than 2f’c-2w, we obtain the output

>A2
c 2
v2(t) =5 [1+kam(t)]

Hence, the square-rooter output is

A
va(t) = = [M+k_m(t)]
Ve a
Ac
which, except for the dc component — , is proportional to the message signal m(t).
2
Problem 2.8

(a) For f‘c = 1.25 kHz, the spectra of the message signal m(t), the product modulator

output s(t), and the coherent detector output v(t) are as follows, respectively: 60



M(f)

Y 5 - 1 £ (kHz)
S(f)
I 1 £ (kHz)
~1.25 0 1.25
V(f)
f (kHz)
-1 0] 1

(b) For the case when fc = 0.75, the respective spectra are as follows:

M(f)

f (kHz)

S(£)

f (kHz) 61




To avoid sideband-overlap, the carrier frequency fc must be greater than or equal to
1 kHz. The lowest carrier frequency is therefore 1 kHz for each sideband of the
modul ated wave s(t) to be uniquely determined by m(t).

Problem 2.9

The two AM modulator outputs are

s1(t) = A1 + k,m(t)lcos(2nft)

so(t) = AJ1 - k,m(t)lcos(2nft)

" Subtracting s,(t) from's,(t):

S(t) = sylt) - 8y(t)

2k A am(t)cos(2nf,t)

which represents a DSB-SC modulated wave.
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Problem 2.10

(a) Multiplying the signal by the local oscillator gives:

s1(t) Acm(t) cos(21rf‘ct) cos[2n(fc+Af)t]

A
2—° m(t) {cos(2maft) + cos[2n(2f +a)t])

Low pass filtering leaves:

o

<

> m(t) cos(2wAft)

sz(t) =
Thus the output signal is the message signal modul ated by a sinusoid of frequency Af.

(b) If m(t) = cos(Zmet),

AC

then sz(t) =5 cos(21rfmt) cos(2nAft)
62&)

Problem 2.11

(@) y(t) = s2(t)

]
=
n

cosz(ZAcht) m2 (t)

N0

ST d
lo

[1+cos(iaf _t) In® (t)

Therefore, the spectrum of the multiplier output is

n

2

) A © )

[ MOOM(E=2)dA + 3= 17 MOOM(E=2f =2)dX + [ MOOM(E2f_=))d )]

- Q0 - 00 - 00

I\)IID
o

Y(f) =

where M(f) = Flm(t)].
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I M( A)M(Zfe-l)dx

Ag
Yer) = 5>

[/ MOOM(=X)dA+ [ M(A)M(Nfc-k)dk]'

+
$10:R)

Since M(=-A) = M¥(}), we may write

A2
c
3 i) M(A)M(ch-k)dk

Y(ng)

2
s 0 IMD1%axn+ 5 MOOMANE —3)dx (1)

&

With m(t) limited to -W < f < W and fc > W, we find that the first and third integrals

reduce to zero, and so we may simplify Eg. (1) as follows

SO0 12

A
Y(2fc) T

J:lo o

where E is the signal energy (by Rayleigh's energy theorem). Similarly, we find that

o™
=

Y(-2fc) =

The band-pass filter output, in the frequency domain, is therefore defined by

2
A
c
V() = E Af‘[é(f-ch) + 6(f+2fc)]
Hence,
he
v(t) = > E Af cos(unfct)

o4



Problem 2.12 |
The multiplexed signal is

s(t) = Ac m.l(t) cos(Zﬂfct) + Ac m2(t) sin(21rfct)

Therefore,
Ac Ac
S(f) = 5 [M1(f-fc)+M1(f+fc)] + 35 [Mz(f‘fc)'M2(f+fc)]
where M1(f‘) = F[m1(t)] and Mz(f) = F[mz(t)]. The spectrum of the received signal is

therefore

R(f)

H(£)S(f)

A
(o] 1 1
5 H(f) [M1(f‘-fc)+M1(f+fc)+ 3 Mz(f-fc)- 3 M2(f+fc)]

To recover m,(t), we multiply r(t), the inverse Fourier transform of R(f), by cos(2wf t)
and then pass the resulting output through a low-pass filter, producing a signal with €he
following spectrum

:'F[r(t)cos(an‘ct)] %[R(f-fcm(ﬁfc)]

A
c 1 1
T H(f—fc)[M1(f-2fc) + M1(f) + 3 Mz(f-2f‘e) -3 Mz(f)]

g

+ FE H(Eef )IM (£) + M (fe2 ) + 3—.M2(f) - 13 My(fe2f )] (1)

The condition H(f‘c+f) = H*(f‘c—f) is equivalent to H(f+fc)=H(f‘-fc); this follows from the
fact that for a real-valued impulse response h(t), we have H(-f)=zH¥(f). Hence,
substituting this condition in Eq. (1), we get

A
c
F[r(t)cos(an‘ct)] =5 H(f‘-fc)M1(f)

A
c 1 : 1
+ H(f'-f‘c)[MT(f‘-ch) + 3 M2(f‘-2f‘c)+M1(f‘+2fc) -3 M2(f+2fc)]

The low-pass filter output, therefore, has a spectrum equal to (Ac/2) H(f—f‘c)M1(f).

Similarly, to recover mz(t), we multiply r(t) by sin(21rfct), and then pass the
resulting signal through a low-pass filter. In this case, we get an output with a

spectrum equal to (Ac/2) H(f‘-fc)MZ(f‘). 65
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Problem 2.13
When the local carriers have a phase error ¢» We may write
cos(2nf‘ct + ¢) = cos(2nf‘ct)cos ¢ - sin(2nf‘ct) sin ¢
In this case, we find that by multiplying the received signal r(t) by cos(2nfct+4>),

and passing the resulting output through a low-pass filter, the corresponding low-pass
filter output in the receiver has a spectrum equal to (AC/Z) H(f—fc) [cos ¢ M1(f) - sing
Mz(f)]. This indicates that there is cross-talk at the demodul ator outputs.
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Problem 2.14

The transmitted signal is given by

s(1) = Am(t)cos(2nf 1) + A my(t)sin(2nf 1)

AdVo+m(t)+m(t)]cos(2nf 1) + A [m(2) —m, (t)]sin(2nf 1)

(a) The envelope detection of s(r) yields

(D) = A (Vo +my(r) +m ()2 + (my(t) — m (1))

m(t) — m.(t) )2

Vo +my (1) +m (1)

A (Vo+m(t)+ mr(t))Jl +(

To minimize the distortion in the envelope detector output due to the quadrature component, we
choose the DC offset V, to be large. We may then approximate y,(?) as

Y1) = A(Vy+m(t) +m(1))
which, except for the DC component AV, is proportional to the sum my(t) + m(2).
(b) For coherent detection at the receiver, we need a replica of the carrier A cos(2mf.t). This

requirement can be satisfied by passing the received signal s(z) through a narrow-band filter of
- mid-band frequency f,.. However, to extract the difference m(r) - m,(r), we need sin(27f.z), which

is obtained by passing the narrow-band filter output through a 90°-phase shifter. Then, multiplying
s(r) by sin(27f.r) andt low-pass filtering, we obtain a signal proportional to my(f) - m,(?).

(¢) To recover the original loudspeaker signals m;(r) and m,(r), we proceed as follows:

* Equalize the outputs of the envelope detector and coherent detector.
* Pass the equalized outputs through an audio demixer to produce my(r) and m (7).
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Problem 2.15

(@) s(2) = A (1 +k,m(t))cos(2nf 1)

= Ac[l + i 2]cos(Z’ftfcz‘)

1+¢

To ensure 50 percent modulation, &, = 1, in which case we get

s(t) = Ac(l + 1 2)cos(27tfct)

1+¢
(b) s(¢) = A.m(t)cos(2nf 1)

AC
= 2cos(ZthCt)
1+

) s(t) = %—C[m(t)cos(anct)—n%(t)sin(anct)]

Ac 1 t .
- —[ 5008 (211 f 1) - —=sin(2m fct)}
2 1+¢ 1+1¢

A, r.
) s(t)=7|: cos(2nf 1) + 2s1n(2nfct):|

1+t2 1+1¢

As an aid to the sketching of the modulated signals in (c) and (d), the envelope of either SSB
wave 1s

2
1/ +1 lf 1
1) = = = — |———

Plots of the modulated signals in (a) to (d) are presented in Fig. 1 on the next page.

68



-0.5

10 -8 -6 -4 -2 0 2 4 6 8 10
time
Fiﬁ wre |

69



Problem 2.16

Consider first the modulated signal
1 1., : 1
s(t) = im(t)cos(anct)—Em(t)sm(anct) (1)

Let S(f) = Fls(®)], M(f) = F[m(r)), and M(f) = f[m(t)] where m(r) is the Hilbert transform of
the message signal m(t). Then applying the Fourier transform to Eq. (1), we obtain

S() = GIM(f = £+ M(F 4 £01 = B = £ = BT+ £0) @)

From the definition of the Hilbert transform, we have

M(f) = —jsgn(SIM(S)

where sgn(f) is the signum function. Equivalently, we may write

_.}M(f_fc) = sgn(f - fIM(f - f,)

1~
—}M(f+fc) = sgn(f+ fIM(f+ )
(1) From the definition of the signum function, we note the following for f> 0 = and f > Jo

sgn(f - f.) = sgn(f+f,) = +1

Correspondingly, Eq. (2) reduces to

SUF) = 3IM(f = )+ M(f + £l + SIM(f = £~ M(F + £.)]

i

1
= SM(f- 1)

In words, we may thus state that, except for a scaling factor, the spectrum of the modulated
signal s(7) defined in Eq. (1) is the same as that of the DSB-SC modulated signal for f > S

(ii) For f> 0 and f < f,, we have
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sgn(f—-f.) = -1
sgn(f+f.) = +1

Correspondingly, Eq. (2) reduces to

SU) = ZIM(F = £+ M(f + f 1+ S-M(F = £,) = M(f = £,)]

=0
In words, we may now state that for f < f,., the modulated signal s(¢) defined in Eq. (1) is zero.

Combining the results for parts (i) and (ii), the modulated signal s(¢) of Eq. (1) represents a single
sideband modulated signal containing only the upper sideband. This result was derived for f> 0.
This result also holds for < 0, the proof for which is left as an exercise for the reader.

Following a procedure similar to that described above, we may show that the modulated signal
1 1., . 3
s(t) = im(t)cos(?;nfct) + im(t)sm(anct) 3)

represents a single sideband modulated signal containing only the lower sideband.
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Problem 2.17

An error Af in the frequency of the local oscillator in the demodulation of an SSB signal, measured
with respect to the carrier frequency f,, gives rise to distortion in the demodulated signal. Let the
local oscillator output be denoted by A cos(2n(f, + Aft). The resulting demodulated signal is given
by (for the case when the upper sideband only is transmitted)

Vo(t) = % AA, [m(t)cos(2nAft) + m(t)sin(2nAft)]

This demodulated signal represents an SSB wave corresponding to a carrier frequency Af.

The effect of frequency error Af in the local oscillator may be interpreted as follows:

L))

€b)

If the SSB wave s(t) contains the upper sideband and the frequency error Af is positive, or
equivalently if s(t) contains the lower sideband and Af is negative, then the frequency
components of the demodulated signal v (t) are shifted inward by the amount Af compared
with the baseband signal m(t), as illustrated in Fig. l(b)

If the incoming SSB wave s(t) contains the lower sideband and the frequency error Af is
positive, or equivalently if s(t) contains the upper sideband and Af is negative, then the
frequency components of the demodulated signal v,(t) are shifted outward by the amount Af,
compared with the baseband signal m(t). This is illustrated in Fig. 1c for the case of a
baseband signal (e.g., voice signal) with an energy gap occupying the interval f, < f<f, , in
part (a) of the figure.
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M(f,)

%ACA;M(f,)

“fo +8f —f,+8f O f,—af fo—Of
(6)

Voif)

5 AAM(D)

~f,—8f —f.—Af 0 fo+Af fo+af
)

Fig. 1
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Problem 2.18

(a,b) The spectrum of the message signal is illustrated below:

M($)
| ,/L |\ f
- 504 3

Correspondingly, the output of the upper first product modulator has the following
spectrum:

TME+4) T MY-£)
- . - s
ST

The output of the lower first product modulator has the spectrum:

~ J T ME-4)
".tl /I \ [\ +

j
s
MG E) U

The output of the upper low pass filter has the spectrum:

—;-.- M+(§+fo)

P

-%*f’« v %'fa.

‘/EM_(D‘-J’;)
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The output of the lower low pass filter

3.8 7

has the spectrum:

— D
! £

L

The output of the upper second product modulator has the spectrum:

:;f M. (§+§0+£)

M, (25 f)

N9

1-/4

o4~

...M (:)C-?

Adding the two second product modulator
while their lower sidebands cancel each

(e)

required in one of the channels. For

multiply the message signal by -sm(21rf‘ t).

and the lower one transmitted.

outputs, their upper sidebands add constructively

other.

To modify the modulator to transmit only the lower sideband, a single sign change is

example, the lower first product modulator could
Then, the upper sideband would be cancelled
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Problem 2.19

7. (t) v_(t
m(t) Product 1 High-pass 2( ) Product 3 (t)Low—pass s(t)
———= modulator {—®= filter modulator &1 filter ‘ -
cos(2'rrfct) cos[27r(fc+fb)t]

(a) The first product modulator output is
vy(t) = m(t) cos(2nfct)

The Second product modulator output is
v3(t) = vy(t) cos[2ﬂ(fc+fb)t]

The amplitude spectra of m(t), v1(t), va(t), v3(t) and s(t) are illustrated on the next
page :

We may express the voice signal m(t) as
1
m(t) = 5 [m () + m (t)]
*
where m_(t) is the pre-envelope of m(t), and m_(t) = n&(t) is its complex conjugate. The

Fourier transforms of m+(t) and m_(t) are defined by (see Appendix 2)

M), £ >0

M (f) =
M 0, £<0
0, f>0
M_(£) =
M(£), : £<0

Comparing the spectrum of s(t) with that of m(t), we see that s(t) may be expressed in
terms of m, (t) and m_(t) as follows: "

s(t)

m, (t)exp(-j2uf, t)+ § m (t)exp(jZTrfb'c)

8_
- % [m(t)+3(t)Texp(-32nf, t)+ §{m(t)-jﬁ(t)]exp(j2nfbt)
;

T m(t)cos(an t)+ E-m(t)sin(2nfbt)

(b) With s(t) as input, the first product modulator output is

v1(t) = s(t) cos(2nfct)
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Problem 2.20

(a) Consider the system described in Fig. 1a, where u(f) denotes the product modulator output, as
shown by

u(t) = Am(tycos(2nf t)

Message Product u(t) Band-pass Modulated
signal ————» modulaior filter b signal
m(t) H(f) s(t)

A, cos (2rft)
(a)
Modulated v(t) Demodulated
signal e Product Low-pass o signal

s(t) modulator filter

|

A cos (2rf.1)

v, (1)

(b)

Figure 1: (a) Filtering scheme for processing sidebands. (b) Coherent detector for
recovering the message signal.

Let H(f) denote the transfer function of the filter following the product modulator. The spectrum
of the modulated signal s() produced by passing u(z) through the filter is given by

S(f) = UHH(S)

A
= f[M(f—fc)+M(f+fc)]H(f) )

where M(f) is the Fourier transform of the message signal m(z). The problem we wish to address is
to determine the particular H(f) required to produce a modulated signal s(z) with desired spectral

characteristics, such that the original message signal m() may be recovered from s(¢) by coherent
detection.

The first step in the coherent detection process involves multiplying the modulated signal s(f) by a
locally generated sinusoidal wave A’ cos(2mf ), which is synchronous with the carrier wave

A cos(2mf 1), in both frequency and phase as in Fig. 1b. We may thus write
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v(t) = A’ cos(2nf t)s(t)

Transforming this relation into the frequency domain gives the Fourier transform of v(r) as

V(f) = %[S(f—fc)+5(f+fc)] ()
Therefore, substitution of Eq. (1) in (2) yields

/’
c" " c

A .
V() = ——MNDIHS = fI+H(f+ )]

AN,
+— IM(f=2f)H(f ~f)+M(f+2f JH(f + f)] 3)

(b) The high-frequency components of v(¢) represented by the second term in Eq. (3) are removed
by the low-pass filter in Fig. 1b to produce an output v,(#), the spectrum of which is given by the

remaining components:

A A

c

Volf) = — "M()H(f-f)+H(f + )] “4)

For a distortionless reproduction of the original baseband signal m(z) at the coherent detector
output, we require V (f) to be a scaled version of M(f). This means, therefore, that the transfer

function H(f) must satisfy the condition
H(f-f)+H(f+f,) = 2H(f,) )

where H(f,), the value of H(f) at f=f,, is a constant. When the message (baseband) spectrum M(f)

is zero outside the frequency range -W < f < W, we need only satisfy Eq. (5) for values of fin this
interval. Also, to simplify the exposition, we set H(f,) = 1/2. We thus require that H(f) satisfies the

condition:

H(f-fo+H(f+f)=1, -Wsfsw (6)

Under the condition described in Eq. (6), we find from Eq. (4) that the coherent detector output in
Fig. 1b is given by

AN,
vo(t) = —=m(n) )
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Equation (1) defines the spectrum of the modulated signal s(r). Recognizing that s(z) is a band-
pass signal, we may formulate its time-domain description in terms of in-phase and quadrature
components. In particular, s(#) may be expressed in the canonical form

s(1) = s,(t)cos(2nf 1) - sp(1)sin(2nf 1) (8)

where s,(¢) is the in-phase component of s(r), and so(#) 1s its quadrature component. To determine
s/(t), we note that its Fourier transform is related to the Fourier transform of s(¢) as follows:

S(f - S , -WSf<wW
S/(f) = {O(f fI+S(f+f0) f ©)

, elsewhere

Hence, substituting Eq. (1) in (9), we find that the Fourier transform of s/(f) is given by

SIF) = SAMUES = £)+ H(f + £,))

= JAM();  -WSfSW (10)

where, in the second line, we have made use of the condition in Eq. (6) imposed on H(f). From Eq.
(10) we readily see that the in-phase component of the modulated signal s(z) is defined by

s,(2) = %Acm(t) (11)

which, except for a scaling factor, is the same as the original message signal m(t).

To determine the quadrature component SQ(t) of the modulated signal s(z), we recognize that its
Fourier transform is defined in terms of the Fourier transform of s(¢) as follows:

i[S(f-f.)-S -W<f<w
S0 = {J[ (f=F)=S(f+FI] WSS )

0, elsewhere

Therefore, substituting Eq. (11) in (12), we get

So(f) = éACM(f)[H(f—fc)—H(f+fc)] (13)

80



This equation suggests that we may generate s((f), except for a scaling factor, by passing the

message signal m(?) through a new filter whose transfer function is related to that of the filter in
Fig. 1a as follows:

Ho(f) = jlH(f-f)-H(f+f)], -W<sf<W (14)

Let m’(t) denote the output of this filter produced in response to the input m(z). Hence, we may
express the quadrature component of the modulated signal s(z) as

so(t) = %Acm’(t) (15)

Accordingly, substituting Eqs. (11) and (15) in (8), we find that s(f) may be written in the
canonical form

m(t) = %Acm(t)cos(2n fct)—%Acm’(t)sin(Zn £.0) (16)

There are two important points to note here:

1. The in-phase component s,(¢) is completely independent of the transfer function H(f) of the

band-pass filter involved in the generation of the modulated wave s(f) in Fig. 1a, so long as it
satisfies the condition of Eq. (6).

2. The spectral modification attributed to the transfer function H(f) is confined solely to the
quadrature component s¢(z).

The role of the quadrature component is merely to interfere with the in-phase component, so as to
reduce or eliminate power in one of the sidebands of the modulated signal s(r), depending on the
application of interest.
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Problem 2.21

(a) Expanding s(t), we get

1-a A A cos(2nf t) cos(2qf t)
me c m

s(t) >

1]

nt_\

. . 1
AmAc sm(2nfct) 51n(2'nfmt) + 2(1-a) AcAm cos(21rf‘ct) cos(2nfmt)

_ PN .
+ =(1=a) AmAc sm(._nfct) sm(2nfmt)

CS TN XY

mAc cos(2nfct) cos(2nfmt)

AmAc (1-2a) sin(2nfct) sin(21rf‘mt)

1
+ =
nj -

Therefore, the quadrature component is:

_ _z'_ACAmU -2a) sin(2nf‘mt)

(b) After adding the carrier, the signal will be:
1
s(t) = Ac[1 + 3 Am cos(21rf‘mt)] cos(21rfct)
1 .
+ 5 AcAm(1-2a) sin(2ﬂfmt) sm(2ﬂf‘ct)

The envelope equals

a(t) = Ac //[1 + 1? Am cos(21rf‘mt)]2 + [17 Am(1-2a) sin(21rfmt)]2

1

2
1

1 +5 A cos(2nf t)

. 2
Am(1-2a) sm(2nfmt)

"

1
Ac [1 + 5 Am cos(21rfmt)] 1 +

"

A, 1+ 3 A cos(2af )] d(t)

where d(t) is the distortion, defined by

1 .
5 Am(1—2a) sm(anmt) 2

1
2

d(t) = -1 +

1 + Am cos(21rf‘mt)

(¢) d(t) is greatest when a = O. 82



Problem 2.22

Consider an incoming narrow-band signal of bandwidth 10 kHz, and mid-band frequency
which may lie in the range 0.535-1.605 MHz. It is required to translate this signal to a fixed
frequency band centered at 0.455 MHz. The problem is to determine the range of tuning that
must be provided in the local oscillator.

Let f. denote the mid-band frequency of the incoming signal, and f, denote the local oscil-
lator frequency. Then we may write

0.535< £, <1.605

and
fo—f1=0.455
where both f,and f; are expressed in MHz. That is,
fi=f.—0.455

When f.=0.535 MHz, we get f,=0.08 MHz; and when f,=1.605 MHz, we get f;=1.15 MHz.
Thus the required range of tuning of the local oscillator is 0.08—1.15 MHz.
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Problem 2.23

Let s(t) denote the multiplier output, as shown by
s(t) = A g(t) cos(21rfct)

where f‘c lies in the range fy Lo fy#W. The amplitude spectra of s(t) and g(t) are related
as follows:

lc(e) ]

lG(o) |
Af
£
-W 0 fc—fO \
|s(£) |

| Af

-f -W -f -f -f W
o} o] 0 o]
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With v(t) denoting the band-pass filter output, we thus find that the Fourier transform of
v(t) is approximately given by

1
V(f) =5 A G(f~fy) , f=5 < |fl < £+ 5=
The rms meter output is therefore (by using Rayleigh's energy theorem)

172

2
Vrms z [{m v (t)dt]

- W B an'? = g a? e - 1?) a1/

- -]

A —
- IG(£ ~£ )| VA

Problem 2.24

For the PM case,

s(t) = Ac cos[2wfct + kp m(t)].
The angle equals

ei(t) ] 2wfct + kp m(t).
The instantaneous frequency,

Akp Akp
fi(t) = fc + 2nT0 - i > §(t - nTo),

is equal to fc + Akp/ZnTo except for the instants that the message signal has
discontinuities. At these instants, the phase shifts by —kpA/T0 radians.
S&)

NAN AN AN
_f‘\/ VAVARVAVARV
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For the FM case, fi(t) = fc + kf m(t)

AW Yav Vaw Vaus
KRVA/CRVAI VAT a—

Problem 2.25

oubpul

The instantaneous frequency of the mixerAis as shown below:

wis N S .
V(/L/W -

1
£

The . presence of negative frequency merely indicates that the phasor representing the
difference frequency at the mixer output has reversed its direction of rotation.

Let N denote the number of beat cycles in one period. Then, noting that N is equal
to the shaded area shown above, we deduce that

N = 2[uAf-f0T( -T) + 2Af-f012]

"
2f0
= BAfet(1 - fi1)
Since for << 1, we have
N = YAfer
Therefore, the number of beat cycleé counted over one second is equal to

N
W = %f' fo'l'.
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Problem 2.26

The instantaneous frequenéy of the modulated wave s(t) is as shown below:

£, (v)
i

We may thus express s(t) as follows

COS(2Tl'fct):

o
A
1
3

s(t) = cos[21r(fc+Af)t].

L
N =3
I~
o
i
ol

cos[2nfct),

WV
~
o

The Fourier transform of s(t) is therefore

~T/2
S(f) =7 cos(2wfct) exp(-j2nft) dt

-0

T/2
+f cos[2n(f +Af)t] exp(-j2nft) dt
-1/2 ¢

+ [ cos(anct) exp(-j2nft) dt
T/2

- 00

=/ cos(2vfct) exp(~ja2rft) dt

-0

T/72
+/J {cos[2n(fc+Af)t - cos(2nfct)} exp(=j2nft) dt
=T/2 :
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The second term of Eq. (1) is recognized as the difference between the Fourier transforms
of two RF pulses of unit amplitude, one having a frequency equal to fc+Af and the other
having a frequency equal to fc. Hence, assuming that ch >> 1, we may express S(f) as
follows:

-;-G(f-f‘c) + L sinc[T(f-f_-4f)] = & sine[T(f-f )1, £ >0

) )
S(f) =
1 serf ) + I sinolT(fef +a8)] = T s [T(f+f )], £< 0
> e + > sSing c+ - 2 since e ’
Problem 2.27

For SSB modulation, the modulated wave is

o>

s(t) = 53 [m(t) cos(2nf t) = @(t) sin(2nf _t)],

the minus sign applying when transmitting the upper sideband and the plus sign applying
when transmitting the lower one.

Regardless of the sign, the envelope is

A
ﬂﬂ:EE/fu)+¥u>.

Fl

(a) For upper sideband transmission, the angle,

~-1,4(t)
%(t) = 2ﬂfct + tan (ETET .

The instantaneous frequency is,

1o de(t)
= f 4 m(t) @' (t) - @(t) m'(t) ,

c o1 (m2(t) + B(t))

'where ' denotes time derivative.
(b) For lower sideband transmission, we have

1, @(t)

(= —3)

m(t)

o(t) = 2rf t + tan~
[ (o]

and

B(t) m'(t) - m(t) B'(L)

f.(t) =f +
1 ¢ 2r (me(t) + B2(t))
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Problem 2.28 ,

(a) The envelope of the FM wave s(t) is

alt) = A / 1482 sin2(2nfmt)

The maximum value of the envelope is

a = A 1+32
max c

and its minimum value is

a. =A
min (o]

Therefore,

max _ 1+82

a .
min

This ratio is shown plotted below for 0 < B < 0.3:

a Y
a’m in

1.005 1.02 1.044

l1.17¢

(b) Expressing s(t) in terms of its frequency components:

S(t) = A, cos(2nf t) + % B A, cos[2n(f +f )t] - % B A_ cosl2n(f -f )t]
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The mean power of s(t) is therefore

2 2,2 2,2
P, = f& + ° Ac + ° Ac
172 8 8
2
A 2
=L B
=35 (1 + 5 )

Therefore,

o
n

1

L 8 _
P 1+3
(o]

which is shown plotted below for 0 < 8 < 0.3:

1.005 1.02 1.045
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(¢) The angle ei(t)' expressed in terms of the in-phase component, s_(t), and the

I

quadrature component, ﬁa(t), is:

ei(t) = 2nfct + tan

= 2nfct + tan™) [Bsin(anmt)]

Since tan-1(x) * X - x3/3 4 eee

3

8,(t) = 2nf t + Bsin(2nf t) - %— sin3(21rf‘mt)

The harmonic distortion is the power ratio of the third and first harmonics:

For B = 0.3, D_ = 0,09%

h

Problem 2.29

(a) The phase-modulated wave is

s(t)

Ac cos[2wfct + kpAm cos(2nfmt)]

Ac cos[2nfct + Bp cos(2nfmt)]

A, cos(2nf t) cos[Bp cos(anf t)] - A, sin(2nfct)_sin[8p cos(2nf t)] (1
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If B, < 0.5, then

cos[Bp cos(2nfmt)] 1

R

sin[ep cos(2nfmt)] cos(2nfmt)

BP
Hence, we may rewrite Eq. (1) as

s(t) = Ac cos(2wfct) - Bp Ac sin(2nfct) cos(2nfmt)
= A, cos(2nf t) - %'Bp A, sin[2n(f_+f )t]
-3 B8, A, sin[zn(rc-fm)tl
.The:Spéctrum of s(t) is therefore
SG)z%AJMﬁ%)+6@dJ]
} %3 B, Acfs(f-fc-fm) - 8 (ef of )]
- %3 By A L8 (f-£ 48 ) = 8(faf —f )]

(b) The phasor diagram for s(t) is deduced from Eq. (2) to be as follows:

Lower side~-frequency

Carrier / Ac

The corresponding phasor diagram for the narrow-band FM wave is as follows:

92

(2)



m ‘Upper

& __  side-frequency
2rf t
m

Carrier (\ Ac

Lower side-frequency

Comparing these two phasor diagrams, we see that, except for a phase difference, the
narrow-band PM and FM waves are of exactly the same form. /*

Problem 2.30

The phase-modulated wave is

s(t) = A_ cos[2nf t + B, cos(2rf t)]
The complex envelope of s(t) is

S(t) = A, expljg, cos(anf t)]

Expressing S(t) in the form of a complex Fourier series, we have

«©

Sty = = c, exp(j2mnf t)
1= -0
where

1/2f‘m N

¢, = fm / s(t) exp(-jZnnfmt) dt

-1/2f
m
1/2fm
= A fo f1/2f exp[JBp cos(2nf t) - jomnf t] dt (1

m

Let 2nfmt =T/2 - ¢.
Then, we may rewrite Eq. (1) as
c - -n/2
¢, =~ 3 expl- ‘1——2 ) gﬂ/zexp[jsp sin(¢) + jn¢l do
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The integrand is periodic with respect to ¢ with a period of 2r., Hence, we may rewrite
this expression as

: n
Cn = Eng exp(- _J_;l'_) {." exp[ij sin(q)) + Jn¢] do

However, from the definitipn of the Bessel function of the first kind of order n, we have

1 1
Jn(x) = 5 {" exp(j x sin¢ - nj¢) d¢

Therefore,

jnm
c, = A, exp(~ 15-) J_n(Bp)

.We may thus express the PM wave s(t) as

s(t)

]

Re[s(t) exp(j2nf t)]

Ac Rel ¢ - J_n(Bp) exp(- l%E) exp(j2nnfmt) exp(j2nfct)]

N==co

nn
A Ew J_n(sp) cos[2n(fc+nfm)t -3 ]

[¢]
ns=

The band-pass filter only passes the carrier, the first upper side-frequency, and the
first lower side-frequency, so that the resulting output is

™
so(t) Ac JO(Bp) cos(2nfct) + Ac J_1(Bp) cos[2n(fc+fm)t - 5]

m
+ Ac J1(Bp) cos[2n(fc-fm)t + 5]

Ac Jo(sp) cos(2wfct) + Ac J_1(Bp) sin[2n(fc+fm)t]
- Ac J1(Bp) sin[2n(fc-fm)t]
But

Therefore,

so(t) Ac JO(Bp) cos(2ﬂfct)

- Ac J1(Bp) {sin[2ﬂ(fc+fm)t] + sin[2n(fc-fm)t]}

Ac JO(Bp) cos(2ﬂfct) -2 Ac J1(Bp) cos(2nfmt) sin(2nfct)

The envelope of so(t) equals
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"2 2 2
a(t) = Ac //Jo(sp) + uJ1(sp) cos (2ufmt)
The phase of so(t) is

2 J,(8)
To(By)

1

¢(t) = =tan” [ cos(2nf t)]

The instantanéous frequency of so(t) is

£y =g o L ()

2 Jo(Bp) J1(Bp) sin(anmt)

H
]

+
(]

J5(6,) + 135(8.) cos®(2nf b
Problem 2.31

(a) From Table A4.1, we find (by interpolation) that JO(B) is zero for

8 = 2.44,
B = 5.52,
B = 8.65,
B = 1.8,

and so on.
(b) The modulation index is

_ kf Am

£ =1

Since JO(B) = 0 for the first time when B = 2.4l4, we deduce that

2.44 x 103

kf 2

1.22 x 103 hertz/volt

Next, we note that JO(B) = 0 for the second time when 8 = 5.52. Hence, the corresponding

value of Am for which the carrier component is reduced to zero is
95



_'m
LR
_5.52 x 103
1.22 x ‘IO3
= 4,52 volts
Problem 2.32

For B = 1, we have
J0(1) = 0.765
J (1) = 0.44
J2(1) = 0,115
Therefore, the band-pass filter output is (assumir_lg a carrier amplitude of 1 volt)
so(t) = 0.765 cos(21rf‘ct)
+ 0.4y {cos[21r(fc+fm)t] - cos[2n(fc-fm)t]}
+ 0.115 {cos[21t(fc+2fm)t] + cos[21r(fc-2f‘m)t]} ,

and the amplitude spectrum (for positive frequencies) is

59!
ok 37
A
0,22 022
0.058 Q.05%
b .
o {24, f4, f L £
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Problem 2.33

(a) The frequency deviation is
Af = ko A =25 x 103 x 20 =5 x 10° Bz

The corresponding value of the modulation index is

The transmission bandwidth of the FM wave, using Carson's rule, is therefore
BT = 2fm(1+8) = 2x100 (1+45) = 1200 kHz = 1.2 MHz.

(b) Using the wniversal curve of Fig. 3«34 we find that for B=5:

BT

ar = 3

Therefore,
BT = 3x500 = 1500 kHz = 1.5 MHz

(¢) 1If the amplitude of the modulating wave is doubled, we find that
Af = 1MHz and 8 = 10

Thus, using Carson's rule we obtain
By = 2x100 (1+410) = 2200 kHz = 2,2 MHz

Using the universal curve of Fig. 3:36, we get

w

T

ir° 2.75

and BT = 2.75 MHz.
(d) 1If fm is doubled, B = 2.5. Then, using Carson's rule, BT = 1.4 MHz., Using the

universal curve, BT/Af = 4, and

BT = Uaf = 2 MHz.
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Problem 2.34

(a) The angle of the PM wave is

ei(t) = 2wfct + kp m(t)

2nfct + k Amcos(anmt)

p
Zﬂfct + Bp cos(Zmet)

where Bp = kp Am. The instantaneous frequency of the PM wave is therefore

J__dei(t)
2n  dt

fi(t)

"

fc - Bp fm sin(2nfmt)

We see that the maximum frequency deviation in a PM wave varies 1linearly with the
.modulation frequency fm'

Using Carson's rule, we find that the transmission bandwidth of the PM wave is
approximately (for the case when Bp >» 1)

BT > 2(fm + Bp fm) = zfm(1 + sp) = me sp

This shows that BT varies linearly with fm'

(b) In an FM wave, the transmission bandwidth BT is approximately equal to 2Af, if the
modulation index B >> 1. Therefore, for an FM wave, BT is effectively independent of the
modulation frequency fm.

Problem 2.35

The filter input is

Vl(t) g(t) s(t)

g(t) cos(2nfct - nktz)
The complex envelope of v1(t)>is
V,(6) = g(t) exp(-jnkt®)

The impulse response h(t) of the filter is defined in terms of the complex impulse
response h(t) as follows

h(t) = Re[h(t) exp(jarf t)]
With

h(t) = cos(21rfct + nktz),
we have

h(t) = exp(jnktz) 78



‘,———-QC the
The complex envelope¥filter output is therefore See.lqppevwill QJ
Volt) =£R(eE T (t)

1 (- -]
5 g(t) exp(-jwktz) exp[jnk(t—r)]zdt

-0

o«

: .
=5 exp(jﬂktz) S g(1) exp(~j2nktt) dt

-l

nf —

= + exp(jukt?) G(kt)
Hence,
~ 1
ot 1 = % 1G(KkE)

This ‘shows that the envelope of the filter output is, except for the scale factor of 1/2,

equal to the magnitude of the Fourier transform of the input signal g(t), with kt playin
the role of frequency f. ° ¢ ¢ ’ pravine

Problem 2.36
The overall frequency multiplication ratio is
n=2x3=2©6

Assume that the instantaneous frequency of the FM wave at the input of the first frequency
-multiplier is

fi1(t) = fc + Af cos(2nfmt)

The instantaneous frequency of the resulting FM wave at the output of the second frequency
multiplier is therefore

fi2(t) = nfc + nAf cos(2nfmt)
Thus, the frequency deviation of this FM wave is equal to
nAf = 6x10 = 60 kHz

and its modulation index is equal to

nAf _ 60
f 5

= 12

m

The frequency separation of the adjacent side-frequencies of this FM wave is unchanged at
f_ = 5 kHz,.
m
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Problem 2.37

(a) Figure 1 shows the simplified block diagram of a typical FM transmitter (based on the indirect
method) used to transmit audio signals containing frequencies in the range 100 Hz to 15 kHz. The
narrow-band phase modulator is supplied with a carrier signal of frequency f; = 0.2 MHz by a
crystal-controlled oscillator. The desired FM signal at the transmitter output is to have a carrier
frequency f. = 100 MHz and a minimum frequency deviation Af = 75 kHz.

In order to limit the harmonic distortion produced by the narrow-band phase modulator, we
restrict the modulation index B, of this modulator to a maximum value of 0.3 radians. Consider

then the value By = 0.2 radians, which certainly satisfies this requirement. The lowest modulation
frequencies of 100 Hz produce a frequency deviation of Af; = 20 Hz at the narrow-band phase

modulator output, whereas the highest modulation frequencies of 15 kHz produce a frequency
deviation of Af) = 3 kHz. The lowest modulation frequencies are therefore of immediate concern,
as they produce a much lower frequency deviation than the highest modulation frequencies. The
requirement is therefore to ensure that the frequency deviation produced by the lowest modulation
frequencies of 100 Hz is raised to 75 kHz.

Baseband '
signal Narrow-band Frequency Freqqerfcy FM signal
=Pt Integrator |je=3m phase > multiplier > Mixer L3{ multiplier p-3

modulator n, ny
ﬂ A
0.1 Mz 9.5MHz
Crystal- Crystal-
controlled controlied
oscillator oscillator
Figure 1

To produce a frequency deviation of Af = 75 kHz at the FM transmitter output, the use of
frequency multiplication is obviously required. Specifically, with Af; = 20 Hz and Af = 75 kHz,
we require a total frequency multiplication ratio of 3750. However, using a straight frequency
multiplication equal to this value would produce a much higher carrier frequency at the
transmitter output than the desired value of 100 MHz. To generate an FM signal having both the
desired frequency deviation and carrier frequency, we therefore need to use a two-stage frequency
multiplier with an intermediate stage of frequency translation as illustrated in Fig. 1. Let ny and n,

denote the respective frequency multiplication ratios, so that

nny, = —- = == = 3750 )
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The carrier frequency n,f] at the first frequency multiplier output is translated downward to (f; -
nif1) by mixing it with a sinusoidal wave of frequency f, = 95 MHz, which is supplied by a

second crystal-controlled oscillator. However, the carrier frequency at the input of the second
frequency multiplier is required to equal f/n,. Equating these two frequencies, we thus get

fe
fa-nfy = s

2

Hence, with f; =0.1 MHz, f;, = 9.5 MHz, and f, = 100 MHz, we have

95-0.1n, = 190 @)

U]
Solving Egs. (1) and (2) for n; and n,, we obtain

I’l1=75
I’l2=50

(b) Using these frequency multiplication ratios, we get the set of values indicated in the table
below:

Table -Values of Carrier Frequency and Frequency Deviation at the
Various Points in the Wide-band Frequency Modulator of Fig. 1

At the First At the Second
At the Phase Frequency Frequency
Modulator Multiplier At the Mixer Multiplier
Output Output Output Output
Carrier 0.1 MHz 7.5 MHz 2.0 MHz 100 MHz
frequency
Frequency 20 Hz 1.5kHz 1.5 kHz 75 kHz
deviation
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Problem 2.38

(a) Let L denote the inductive component, C the capacitive component, and C, the
capacitance of each varactor diode due to the bias voltage Vb acting alone. Then, we have

) -1/2
Co = 100 Vo '/ pF

and the corresponding frequency of oscillation is

1
f. =
0 2wVL(C+C0/2)

Therefore,

106 = !

A

1/2 -12

21/200 x 10~° (100 x 10712 4+ 50 vo1/2 x 10719

Solving for V., we get
Vp = 3.52 volts

(b) The frequency multiplication ratio is 64, Therefore, the modulation index of the FM
wave at the frequency multiplier input is

2

7= 0,078

B:

[e))

This indicates that the FM wave produced by the combination of L, C and the varactor
diodes is a narrow-band one, which in turn means that the amplitude Am of the modulating
wave is small compared to Vb. We may thus express the instantaneous frequency of this FM
wave as follows:

=12 ~12 -1/2}]—1/2

1 -6 .
fi(t) = E; [200 x 10 {100 x 10 + 50 x 10 (3.52 + Am 51n(2nfmt)]

7 A
10 {1 +0.266 [1 «+ n

-1/2}-1/2
/2T 3.52

sin(2nfmt)]

A

107 m
7.04

2Y2n

n

{1 + 0.266 [1 - sin(2ﬂfmt)]}-1/2

= 10% 11 - 0.03 A sin(2ﬂfmt)]-1/2

]

6 .
107 [1 + 0.015 Am 51n(2ﬂfmt)]
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With a modulation index of 0.078, the corresponding value of the frequency deviation
is

Af

B £,

0.078 x 10" Hz

Therefore,

0.015 A_ x 10% = 0.078 x 10"

where Am is in volts. Solving for Am’ we get

3 volts.

Am =52 x 10
Problem 2.39

The transfer function of the RC filter is
_  j2wfCR
H(E) = p357Tx

If 2nfCR << 1 for all frequencies of interest, then we may approximate H(f) as

H(f) = j2nfCR

N

However, multiplication by j2=nf in’the frequency domain is equivalent to differgntiation
in the time domain. Therefore, denoting the RC filter output as v1(t), we may write

- ds(t)
vy(®) = CR Sg=
d t
= — J t) dt
= CR at {Ac costﬂfct + 2ﬂkf 0 m(t) 11
t
= =CR Ac[21rfc + 2nkfm(t)] sin[2nfct + 21rkf IO m(t) dt]

The corresponding envelope detector output is

ke
V() = 2nf CR A |1 + T m(t) ]

Since k. {m(t)] < f_ for all t, then

k
f
vo(t) = 2nf CR Ac[1 + ?: m(t)]

which shows thaf, except for a dc bias, the output is proportional to the modulating
signal m(t).
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Problem 2.40

The envelope detector input is

v(t) = s(t) - s(t-T)
= Ac COS[Zﬂfct+ $(t)] - Ac cos[anc(t-T) + ¢(£-T)]
21rf‘c(2t-T) + ¢(t) + ¢(t-T) 21rch + ¢(t) = ¢(t=-T)
= =28 sin[ 1 sinf{ ]
c 2 2
where
¢(t) = B sin(2nfmt)

The phase difference ¢(t) - ¢(t-T) is

o(t) - ¢(t=T) = B sin(anmt) - B sin[21rfm(t—T)]
= B[sin(2nfmt) - sin(2nfmt) cos(2nfﬁT) + cos(2wfmt) sin(2nfmT)]
® B[sin(2nfmt) - sin(2nfmt) + 2nfmT cos(2ﬂfmt)]
= 2uAfT cos(2ﬂfmt)
where
of = Bfm.

Therefore, noting that 2ﬂch = /2, we may write

2nf T + ¢(t) - ¢(t-T)
c
5 ]

sint

R

sin[ﬂch + TAFT cos(2nfmt)]

sin[% + TAFT cos(27f t)]

V2 cos[ nAfT cos(2nfmt)] + Y2 sin[ wAfT cos(2ﬂfmt)]

V2 + V2 aAfT cos(2ﬂfmt)

where we have made use of the fact that wAfT << 1. We may therefore rewrite Eq. (1) as

v(t) « =2/2 A_[1 + nafT cos(2nf,t)] sinlnf_(2t-T) + £LE) * o(t=T);

Accordingly, the envelope detector output is
a(t) = 2 y2 A [1+nafT cos(2nf t)]

which, except for a bias term, is proportional to the modulating wave.
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Problem 2.41

(a) In the time interval t—(T1/2) to t+(T1/2), assume there are n zero crossings. The

phase difference is ei(t+T1/2) - ei(t-T1/2) = nm. Also, the angle of an FM wave is

t
ei(t) = 2nfct + 2nkf fo m(t) dt.
Since m(t) is assumed constant, equal to My, ei(t) = 2nfct + 2mk omit. Therefore,

ei(t+T1/2) - ei(t—T1/2) = (anc + anfm1) [t+T1/2 - (t-T1/2)].

(21rf‘c + 211kfm1) T1.
But

do; (t)

fi(t) = It = 21Ifc + 21fkfm1 .

Thus,
ei(t+T1/2) - ei(t-T1/2) = fi(t) T1.

But this phase difference also equals nn. So,
f‘i(t) T1 = nm

and
fi(t) = nw/T,

(b) For a repetitive ramp @S the modulating wave, we have the following set of waveforms
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Problem 2.42

The complex envelope of the modulated wave s(t) is
s(t) = a(t) expli¢(t)]

Since a(t) is slowly varying compared to expl[j¢(t)], the complex envelope s(t) is
restricted effectively to the frequency band - BT/2 £ f < BT/2' An ideal frequency
discriminator consists of a differentiator followed by an envelope detector. The output
of the differentiator, in response to s(t), is

|o.

s(t)

vo(t) dt

{a(t) expljy(t)1}

aln,
ct

= S5 expLie(0)] + 3 SHED ate) explioCe)

a(t) exp[j¢(t)] [a(t) __d?jét) + 3 ddt(:t)]

Since a(t) is slowly varying compared to ¢(t), we have

|d¢(t) da(t)
' I > 'a(t) dat ’

Accordingly, we may approximate ;;(t) as
vo(e) = § ae) L exprjace))

However, by definition
t
(L) = 21rk S m(t) dt
0
Therefore,
Vo(t) = j2mk, a(t) m(t) explj¢(t)]

Hence, the envelope detector output is proportional_to a(t) m(t) as shown by

IVo(t)l = 2nk . a(t) m(t)

Problem 2.43
(a) The limiter output is
z(t) = sgn{a(t).cos[anct + #(t)1}
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Since a(t) is of positive amplitude, we have

z(t)

sgn{cos[anct + ¢(£)]}
Let

w(t)

anct + ¢(t)

Then, we may write

sgnlcos 9] = I e, exp(jny)

N==c
1 kil
e, = 55 J sgnlcos ¢] exp(-jny) dy

-

1 -1/2 1 /2

=57 (=1) exp(=jny)dy + 5=/ (+1) exp(-jny) dy

-l -n/2
1 ™

+ 5= [ (-1) exp(=jny) dy
2% 1/2

If n # 0, then
e, = 2“(1jn) [_exp(igl)+exP(jn“)+exP(:igﬂ)'exP(J%E)-exp(—jnn)+exp("S“)]
= 1?!1-[2 Sin('n—g)—sin(nn)]

2__qy(n=-172 n odd
m

0, n even

If n=0, we find from Eq. (1) that cn=0. Therefore,

- -]

sgnlcos y] = % z % (-1)(1"-1)/2 exp(jny)
n= -
n odd
© k
_ 4 (-1
== kfo s cosly(2k+1)]

We may thus express the limiter output as
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© k
2(t) = 3 5 SEii- cosl2nt t(2k+1) + $(£) (2ks1)] @)
k=

(b) Consider the term

cos[21rf‘ct(2k+1 Y+ ¢(t) (2k+1)] Re{exp[j2ﬂfct(2k+1‘)]exp[j¢(t) (2k-n;1 )1}

2k+1}

n

Re{exp[jZcht(ZkH)][exp(j¢(t))]
The function exp[jé(t)], representing the complex envelope of the FM wave with unit
amplitude, is effectively low-pass in nature. Therefore, this term represents a band-pass
signal centered about ifc(2k+1). Furthermore, the Fourier transform of {exp[j¢(t)]}2k+1
is equal to that of explj¢(t)] convolved with itself 2k times. Therefore, assumingz:h?t
-'expp,'jcb(t)] is limited to the interval -Bp/2 < f £ Bp/2, we find that (exp[jcb(t)D *iS
limited to the interval -(B/2)(Z+1) < f < (Bp/2)(X+1).

Assuming that fc > BT" as is usually the case, we find that none of the terms
~ corresponding to values of k greater than zero will overlap the spectrum of the term
corresponding to k=0, Thus, if the limiter output is applied to a band-pass filter of
bandwidth BT and mid-band frequency fc, all terms, except the term corresponding to k=0 in
Eq. (2), are removed by the filter. The resulting filter output is therefore

y(t) = i_:- cos[2nf t + ¢(t)]

We thus see that by using the amplitude limiter followed by a band-pass filter, the effect
of amplitude variation, represented by a(t) in the modulated wave s(t), is completely

removed,

Problem 2.44
(a) Let the FM wave be defined by
t

s(t) = A_ cos[2nf t + 21k, S m(t) dt]
o] c f 0

Assuming that fc is large compared to the bandwidth of s(t), we may express the complex
envelope of s(t) as
N t
s(t) = A explj2nk. /' m(t) dt]
c f 0
s see Az 2)
But, by definition, the pre-envelope of s(t) is fm?””’z"
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s,(t) = S(t) exp(j2nf t)

s(t) + j 8(v)
where 3(t) is the Hilbert transform of s(t). Therefore,

t

s(t) + j8(t) = A explj2mk, /' m(t) dt] exp(janf t)
c f 0 c

t t
A {cos[2nf t + 2nk, s m(t) dt] + j sinl[27f t + 27k, / m(t) dtl}
c c f 0 c f 0

Equating real and imaginary parts, we deduce that

t
3(t) = A sin[27f t + 21k, / m(t) dt] (1)
c c f 0

(b) For the case of sinusoidal modulation, we have

m(t) = Am cos(2nfmt)

The corresponding FM wave is

s(t) = Ac cos[2nfct + B sin(2nfmt)]

where

B = kf Am

Expanding s(t) in the form of a Fourier series, we get

- -]

s(t) = Ac z Jn(B) cos[2n(fc+nfm)t]

n=-*

Noting that the Hilbert transform of cos[27%(f +nf )t] is equal to sin[2n(f_+nf )t], and

using the linearity property of the Hilbert tr%nsﬂgrm, we find that the Hilﬂ%rt %ransform
of s(t) is

<0

Ac T Jn(B) sin[2n(fc+nfm) t]

n=-==°

3(t)

A, 51n[2nfct + B 51n(2ﬂfmt)]

This is exactly the same result as that obtained by using Eq. (1). In the case of
sinusoidal modulation, therefore, there is no error involved in using Eq. (1) to evaluate
the Hilbert transform of the corresponding FM wave,

Problem 2.45

(a) The modulated wave s(t) is

s(t) = exp[=9(t)] cos[2nf t + ¢(t)] 110



1]

Re{exp[-3(t)] exp[j2nf t + jo(t)]}
Re{expl j2nf ,t + J(¢(t) + j3(£))1}

Re{exp[jZﬂfct + J¢, (£)1} (1
where ¢+(t) is the pre-envelope of the phase function ¢(t), that is,
0, (8) = 4(t) + 33(t) |

Expanding the'exponential function exp[j¢ (t)] in the form of an infinite series:

o .n
expl j¢, ()] = : L 9, (t) (2)
n=

Taking the Fourier transform of both sides of this relation, we may write
-

CFlexplie, (81} = =
n=

N
J n
, At FLe®)]

For n>2, we may express ¢2(t) as the product of ¢ _(t) and ¢2-1(t). Hence,
n n-1
FLoT(t)] = 4>+(f)‘;i‘r1=[¢+ (t)]

where ¢ (t) <= °+(f), and Y% denotes convolution. Since ¢+(f) = 0 for £ < 0, it follows
that for all n > O,

F[<I>r+l(t)] = 0, for £ < 0
Hence,
Flexp[ jé _(£)1} = 0 for £ <0

By using the frequency-shifting property of the Fourier transform, it follows that

Flexplj¢ (t)] exp(j2nfct)} =0 for f < f (3)
From Eq. (1),

s(t) = 3 lexpli2nf b + jo,(t)] + expl-j2nf t - j¢.(t)])
where ¢:(t) is the complex conjugate of ¢+(t). Therefore,

FIs(t)] = 3 Flexplj2af b + 3o,(t)1} + 5 Flexpl-j2uf t = Jo (1))

Applying the conjugate-function property of the Fourier transform to Eq. (3), we find that

Flexpl-j2nf _t - jo.(t)1} = 0, for £ > £,
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115

Hence, it follows that the spectrum of s(t) is zero for —fc < f < fc. However, this
spectrum is of infinite extent, because the expansion of s(t) contains an infinite number

of terms, as in eq. (2).
(b) With

o(t) = B sin(anmt),
we find that .

$(t) = =B COS(Zﬂfmt)

Therefore,
¢+(t) =B sin(2ﬂfmt) - jB cos(2nfmt)
= - JB[cos(anmt) + ] sin(2nfmt)]
= - jB exp(j2nfmt)
Hence , »

expl j¢_(t)] = explB exp(j2nfmt)]

Z oyl exp( j21ﬂ1f t)
n: m
n=0

The modulated wave s(t) is therefore

s(t)

]

Re{exp(janf t) expljo, (t)]}

© n
Relexp(jenf t) ET exp( j2mf_t)]
¢’ Lo M m

® n
B
Re{ n§0 T exP[JZW(fc+nfm)t]}

gh
o7 COS[Zn(fc+nfm)t]

"
n g

n=0
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Problem 2.46

After passing the received signal through a narrow-band filter of bandwidth 8kHz centered on
f. =200kHz, we get

x(t) = A m(t)cos(2nf 1) +n'(2)

A m(r)cos(2nf 1) +n’y(t)cos(2nf t) —n' (t)sin(2nf 1)

(Am(1) +n(t))cos(2nf ) —n’ y(t)sin(2nf 1)

where n’(t) is the narrow-band noise produced at the filter output, and n’ ;(t) and n’Q(t) are its

in-phase and quadrature components. Coherent detection of x(¢) yields the output
y(2) = Am(t) +n’ (1)
The average power of the modulated wave is

AcP 10w
< =

where P is the average power of m(r). To calculate the average power of the in-phase noise
component n’/(t), we refer to the spectra shown in Fig. 1:

Part (a) of Fig. 1 shows the power spectral density of the noise n(z), and a superposition of the
frequency response of the narrow-band filter.

Part (b) shows the power spectral density of the noise n’;(z) produced at the filter output.

Part (c) shows the power spectral density of the in-phase component »’ (1) of n'(2).

Note that since the bandwidth of the filter is small compared to the carrier frequency f,, we have
approximated the spectral characteristic of n’(t) to be flat at the level of 0.5 x 106 watts/Hz.
Hence, the average power of n’/(z) is (from Fig. 1c):

(10°° watts/Hz) (8 x 10%) = 0.008 watts

The output signal-to-noise ratio (SNR) is therefore

10
0008 = 1,250

Expressing this result in decibels, we have an output SNR of 31 dB.
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Problem 2.47

From Problem 5.38, we note that the

: quadrature components of a narrow-band noise have
autocorrelations:

RNI(T) = RNQ(T) = RN(T) cos(21rfct) + RN(r) sin(21rfc-r)

where Ry(t) is the autocorrelation of the narrow-band noise, Ry(t) is the Hilbert

transform of R\ (t), and fc is the band centey. The cross-correlations of the quadrature
components are '

RN N (t) = -RN N (1) = RN(T) sin(21rfcr) - ﬁN(T) cds(21rf‘cl’)
T & Ia

(a) For a DSBSC system,

RNI(T) = RNQ(T) = RN(T) cos(21rf‘c'r) + };N(T) sin(anct)

RN N (t) = -RN NY(-r) = RN(-r) sin(21rfct) - EN(T) cos(21rf'ct)
T Q QI

where fc is the carrier frequency, and RN(T) is the autocorrelation function of the

narrow-band noise on the interval f - W < £ < f +W.
.(b) For an SSB system using the lower sideband,

Ry (1) = Ry (T) = Ry(T) cos(2m(f - $)1) +.§N(T) sin(2m(f = P

I
R ' Ll Ry (1) cos(2n(f .~ %y1)
NN (t) = -RN N (1) = RN(T) sm(21r(fc— 5)1) - Ry(1) cos 7 ( o= BT
I Q Qr

where in this case, RN('r) is the autocorrelation of the narrow-band noise on the interval
c - = "c

(¢) For an SSB system with only the upper sideband transmitted, the correlations are
W
similar .to (b) above, except that (f'c- g) is replaced by (fc+ 5), and the narrow-band

noise is on the interval f < f < f +W.

Problem 2.48
x(t) Band-pass 7\ v(t) Low-pass v(t)
— filter “x ] o filter e

cos[21rfct+6 (t)]
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The signal at the mixer input is equal to s(¢) + n(z), where s(r) is the modulated wave, and n(z) is
defined by

n(t) = ny(r)cos(2nf t) - no(t)sin(2nf 1)
with

Elnj(1)] = Elny(1)] = NoBy

The s(z) is defined by for DSB-SC modulation
s(1) = Am(t)cos(2nf 1)

The mixer output is

v(t) = [s(2) +n(t))cos[2nf .1 + 6(2)]

{[Am(t) + ny(r)cos(2nf 1) - no(t)sin(2mf 1) tcos2nf .t +0(r)]

- %[Acm(t) +1,(1){cos[0(1)]} + cos[4m St +8(1)]

+ %Ach(t){ sin[0(1)] - sin[47f .1 +0(1)]}

The postdetection low-pass filter removes the high frequency components of v(f), producing the
output

() = %[[Acm(t) +n,(t)]cos[0(r)] + %Ach(t)sin[G(t)] (1)

When the phase error 6(¢) is zero, we find that the message signal component of the receiver

1 . .
output is EA .m(t). The error at the receiver output is therefore

AC
e(t) = y(t) = 5m(1)
The mean-square value of this error is

e = E[e*()]
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- E[(y(t) - %?m(t)ﬁ )

Substituting Eq. (1) into (2), expanding the expectation, and noting that the processes m(z), 6(2),
ny(t) and nQ(t) are all independent of one another, we get

2
A
e = ZSE[m’()]E[(cos’0(1)))] +L—11E[n?(t)]E[cosze(t)]

+ leE[nZQ(t)]E[sinze(t)]

A? 2 A? 2
+ 7 Elm™(5)] - S E[m" (1) E[cos6(1)]

We now note that

Eln;(n) = Elng()] = oy

Eln;(1)]E[cos 0(1)] + Elngy(1)1E[sin 0(1)] = o,

N
Therefore,
2 2
A c
£ = TCE[mz(t)]E{[l—cosG(t)]2}+TN
2 0_2
_ Tc 2 °N
= E{[1+cosO()] } + 1

where P = E[mz(t)].

For small values of 6(#), we may use the approximation

2
o
1 -cosO(1) = TN

Hence,
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2 2

Since 8(z) is Gaussian-distributed with zero mean and variance 64, we have

E6*(1)] = 304

The mean-square error for the case of a DSBSC system is therefore

2, 4 2
. 3A_Poy N Oy
16 4
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Problem 2.49

Consider the case of a receiver using coherent detection, with an incoming single-sideband (SSB)
modulated wave. We assume that only the lower sideband is transmitted, so that we can express
the modulated wave as

s(1) = %CACCOS(anCt)m(t)+%CACsin(anct)m(t) (1)

where m(z) is the Hilbert transform of the message signal m(r). The system-dependent scaling
factor C is included to make the signal component s(¢) have the same units as the noise component
n(). We may make the following observations concerning the in-phase and quadrature
components of s(z) in Eq. (1):

1. The two components m(t) and (1) are orthogonal to each other. Therefore, with the message
signal m(r) assumed to have zero mean, which is a reasonable assumption to make, it follows
that m() and 7 (t) are uncorrelated; hence, their power spectral densities are additive.

2. The Hilbert transform 7(¢) is obtained by passing m(z) through a linear filter with a transfer
function - jsgn(f). The squared magnitude of this transfer function is equal to one for all f.
Accordingly, we find that both m(¢) and /(z) have the same power spectral density.

Thus, using a procedure similar to that in Section 2.11, we find that the in-phase and quadrature
components of the modulated signal s(#) contribute an average power of CzAiP/ 8 each, where P

1s the average power of the message signal m(r). The average power of s(7) is therefore CzAzP/ 4.
This result is half that in the DSB-SC receiver, which is intuitively satisfying.

The average noise power in the message bandwidth W is WN, as in the DSB-SC receiver. Thus
the channel signal-to-noise ratio of a coherent receiver with SSB modulation is

C’AlP

(SNR)C, SSB ~ WNO

)

As illustrated in Fig. 1a, in an SSB system the transmission bandwidth By is W and the mid-band
frequency of the power spectral density Sy(f) of the narrow-band noise n(z) is offset from the
carrier frequency f,. by W/2. Therefore, we may express n(r) as

n(t) = n,(z)cos[zn(fc-%)r}-nQ(r)sin[zn(fc-g)t} 3)

The output of the coherent detector, due to the combined influence of the modulated signal s(z)
and noise n(z), is thus given by
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1) = %CAcm(z) + %n,(t)cos(nWt) + %nQ(t)sin(nWt) ()

As expected, we see that the quadrature component #(¢) of the modulated message signal s(r)
has been eliminated from the detector output, but unlike the case of DSB-SC modulation, the
quadrature component of the narrow-band noise n(f) now appears at the receiver output.

The message component in the receiver output is CA m(1)/4, and so we may express the average

power of the recovered message signal as CzAzP/ 16 . The noise component in the receiver

output is [n,(f)cos(nWr) + nQ(t)sin(nWt)]/Z. To determine the average power of the output noise,
we note the following:

1. The power spectral density of both n/(r) and np(?) is as shown in Fig. 1b.
2. The sinusoidal wave cos(nWr) is independent of both n,f) and no(#). Hence, the power

spectral density of n’;(t) = n,(t)cos(nWt) is obtained by shifting S NI( f) to the left by
Wi/2, shifting it to the right by W/2, adding the shifted spectra, and dividing the result by 4.
The power spectral density of n’Q(t) = np(t)sin(nWr) is obtained in a similar way. The
power spectral density of both n’;(¢) and n’o(t), obtained in this manner, is shown sketched
in Fig. 1c.

From Fig. 1c we see that the average power of the noise component n’,(t) or n’Q(t) is WNy/2.

Therefore from Eq. (4), the average output noise power is WNy/4. We thus find that the output

signal-to-noise ratio of a system, using SSB modulation in the transmitter and coherent detection
in the receiver, is given by

Cc’AlP
(SNR),, s = IWN, )
Hence, from Egs. (2) and (5), the figure of merit of such a system is
(SNR)ol  _ (6)
(SNR)¢|ssp

where again we see that the factor C? cancels out.

Comparing Eqs. (5) and (6) with the corresponding results for DSB-SC modulation, we conclude
that for the same average transmitted (or modulated message) signal power and the same average
noise power in the message bandwidth, an SSB receiver will have exactly the same output signal-
to-noise ratio as a DSB-SC receiver, when both receivers use coherent detection for the recovery
of the message signal. Furthermore, in both cases, the noise performance of the receiver is the
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as that obtained by simply transmitting the message signal itself in the presence of the same noise.
The only effect of the modulation process is to translate the message signal to a different
frequency band to facilitate its transmission over a band-pass channel.
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] |
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! |
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' v ' W
~ft3 fem 3
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—Wo¥ f
{b)
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4
-Ww 0 W f

{c}
Figure 1
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Problem 2.5_0

The power spectral density of the message signal m(t) is as follows
SM(f)

e e e e - e — e -

-W 0 W
The average signal power is therefore

P = {m Sy(f)df

W
2/ ailar
0

= aW

The corresponding value of the output signal-to-noise ratio of the SSB receiver is
therefore, (using the solution to Problem 2.49)

~A2 P
e

(SNR)O
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Problem 2.51

(a) If the probability
P(Ing(t)t > eA 11 + km(t)1) < &y ,
then, with a probability greater than 1 - 61, we may say that
~ 2,1/2
y(t) = {[Ac + A,k m(t) + nc(t)] }

That is, the probability that the quadrature component ns(t) is negligibly small is
greater than 1 - 61.

(b) Next, we note that if ka m(t) < -1, then we get overmodulation, so that even in the

absence of noise, the envelope detector output is badly distorted. Therefore, in order to

avoid overmodulation, we assume that k_ is adjusted relative to the message signal m(t)
cq s a

such that the probability

P(AC + Ac ka m(t) + nc(t) <0) = 62
Then, the probability of the event

y(t) = Ac[1 +k, m(t)] + nc(t)
for any value of t, is greater than (1 - 51)(1 - 52).

(¢) When 61 and 62 are both small compared with unity, we find that the probability of
the event

y(t) = A [ + k, m(t)] + n_(t)

for any value of t, is very close to unity. Then, the output of the envelope detector is
approximately the same as the corresponding output of a coherent detector.

Problem 2.52

The received signal is
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x(t) = Ac cos(2nfct) + n(t)

Ac cos(anct) + nc(t) cos(2nfct) - ns(t) sin(2nfct)

[Ac + nc(t)] cos(2nfct) - ns(t) sin(anct)
The envelope detector output is therefore
_ 2 2 1/2

a(t) = {[A, + nc(t)] S+ ns(t)}
For the case when the carrier-to-noise ratio is high, we may approximate this result as

a(t) = Ac + nc(t)

2

The term Ac represents the useful signal component. The output signal power is thus L

The power spectral densities of n(t) and njft) are as shown below:

£
sN( )
N_/2
R - A
£
B 0 £
£_ o
——f W = — oy =
“r [N
£
W 0 W

The output noise power is ZNOW. The output signal-to-noise ratio is therefore

n

A
c

2NOW

(SNR)O =
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Problem 2.53

(a) From Section 1.12 of the textbook we recall that the envelope r(¢) of the narrow-band noise
n(r) is Rayleigh distributed; that is

2
Fatr = Lzexp(—r—z]

Oy 20y

2 . ) . . 2 .
where o), is the variance of the noise n(f). For an AM system, the variance oy is 2WNj.

Therefore, the probability of the event that the envelope R of the narrow-band noise n(r) is large
compared to the carrier amplitude A, is defined by

P(R2A) = [ fo(r)dr

2
= J.m z exp d dr
A.2WN, 4WN,

I 1
- Pl Taww, ()

Define the carrier to noise ratio as

0 = average carrier power @)

average noise power in bandwidth of the modulated message signal

Since the bandwidth of the AM signal is 2W, the average noise power in this bandwidth is 2WN,,.

L2 . . .
The average power of the carrier is A, /2. The carrier-to-noise ratio is therefore

A2

C

IWN, 3)

p:

(b) We may now use this definition to rewrite Eq. (1) in the compact form
P(R=2A,) = exp(-p) 4)

Solving P(R > A,) = 0.5 for p, we get
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p =log2 =0.69
Similarly, for P(R > A,) = 0.01, we get
p =1ogl00 =4.6

Thus with a carrier-to-noise ratio 10log;30.69 = -1.6 dB, the envelope detector is expected to be
well into the threshold region, whereas with a carrier-to-noise ratio 10log;¢4.6 = 6.6 dB, the

detector is expected to be operating satisfactorily. We ordinarily need a signal-to-noise ratio
considerably greater than 6.6 dB for satisfactory intelligibility, and therefore threshold effects are
seldom of great importance in AM receivers using envelope detection.

Problem 2.54

(a) Following a procedure similar to that described for the case of an FM system, we find
that the input of the phase detector is

v(t) = Ac cos[2nfct + 8(t)]

where

n_(t)
&
kp m(t) + Ac

with ne(t) denoting the quadrature noise component. The output of the phase discriminator

o(t)

is therefore,

n&(t)
y(t) = kp m(t) + =

c
The message signal component of y(t) is equal to kp m(t). Hence, the average output
signal power is ks P, where P is the message signal power.

With the post detection low-pass filter following the phase detector restricted to

126



. . 2
the message bandwidth W, we find that the average output noise power is ZWNO/AC.
Hence, the output signal-to-noise ratio of the PM system is

k2 p A2

c
ZWNO

(b) The channel signal-to-noise ratio of the PM system is the same as that of the corres-
ponding FM system. That is,

(SNR)O =

G

= C
(SNR)g = N
0
The figure of merit of the PM system is therefore equal to ks P.
For the case of sinusoidal modulation, we have

m(t) = Am cos(21rf‘mt)

Hence,
Ay
P = 5
The corresponding value of the figure of merit for a PM system is thus equal to %— g,
where Bp = kp Am‘ On the other hand, the figure of merit for an FM system with sinusoidal

modulation is equal to g— 82. We see therefore that for a specified phase deviation, the

FM system is 3 times as good as the PM system.

Problem 2.55

(a) The power spectral densities of the original message signal, and the signal and noise

c.:omponents at the frequency discriminator output (for positive frequencies) are
i1llustrated below:

Sp ectral 59“51‘3
of message

51_3/\&

f(kHz)

SPQCH& dens: Cj

°F Si.sf\ch.
Cemponeal ak
Aisevyim actoT
X R . f(kHz)
ouk put ‘ , L L, ) : . " ' ,
4 8 12 16 20 24 28 32 36 40 44 48

2
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(b) Each SSB modulated wave contains only the lower sideband. Let Ak and kfo denote the

amplitude and frequency of the carrier used to generate the kth modulated wave, where fo =
4 kHz, and k = 1, 2, ..., 12 Then, we find that the kth modulated wave occupies the
frequency interval (k - 1)fo <if) < kfo. We may define this modulated wave by

g

s(t) = 55 m(t) cos(2mkft) + ;E m(t) sin(2nkf0t)
where m(t) is the original message signal, and @(t) is its Hilbert transform. Therefore,
‘the average power of sk(t) is As P/U4, where P is the mean power of m(t).
we ﬁay express the output signal-to-noise ratio | )
for the kth SSB modulated wave as follows:

2 .2,,2
3Ac kf(Ak P/4)

(SNR).. -
0 2N0[k3fc3) - (k - 1)3fg]

where Ac is the carrier amplitude of the FM wave. For equal signal-to-noise ratios, we

must therefore choose the Ak 50 as to satisfy the condition

2 = constant for k = 1, 2, sy 12.
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Problem 2.56

The envelope r(t) and phase y(t) of the narrow-band noise n(t) are defined by

w®) = {n® + nZ®

t)
t) = tan"1 | 2Q
y(t) = tan [nx(t)J

For a positive-going click to occur, we therefore require the following:

nI(t) - - Ac

ng(t) has a small positive value

i tan~! {nQ(t) ]> 0
dt ny(t)

Correspondingly, for a negative-going click to occur, we require
nj(t) « A,
ng(t) has a small negative value

4 tan- [nQ(t)) <0
dt nI(t)
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Problém 2.57 C.

—

Y
V. () m | Vo)
in ﬁi cut
o , 0

Let H(f) be Vout(f‘)/Vin(f), or the transfer function of the filter. At low

frequencies, the capacitor behaves as an open circuit. Then,

R _R
H(f)-r+R_r_'_

Thus, the low frequencies of the input are frequency-modulated. At high frequencie%, the
capacitor behaves as a short circuit in relation to the resistor. Then,

H(f) = — B =+ j2u£CR ,

and

v (t) =RC —— v

out

Frequency modulating the derivative of a waveform is equivalent to phase modulating the
waveform. Thus, the high frequencies of the input are phase modulated.

Pr

Problem 2.58

(a) For the average power of the emphasized signal to be the same as the average power of
the or.iginal message signal, we must choose the transfer function H__(f) of the pre-
emphasis filter so as to satisfy the relation pe

[} - -]

_ 2
fw SM(f)df‘ = -J-'w |Hpe| SM(f)df
With
S
0
T, HLELKW
1+ (f‘/f‘o)2
SM(f) =
0, el sewhere,
H O (f) = k(1 + 35
pe f
0
we have
Yoo gr o ¥ 130

i) -—-——-—-——2-=k S df
-W1+(f/f0) W



Solving for k, we get

f

0 -1 W
k = [w tan

172
Gy
o

P

(b) The improvement in output signal-to-noise ratio obtained by using pre-emphasis in the
transmitter and de-emphasis in the receiver is defined by the ratio

3
D 2W

W

2 2
3/ £fT5HH, (DT df
W de

2W3

W f2 df
37 - I —
AWk 14+ (f/fo)

2 3
k (W/fo)

-1
3[(W/f0) - tan” (W/f,)]
Substituting Eq. (1) in (2), we get

(W/f0)2 tan-1(W/fo)
D =
30CW/E,) - tan-1(W/fo)]

This result applies to the case when

the same with or without pre-emphasis.
find from Example 4 of Chapter 6 that the

3
D - (W/fo)
-1
3[(w/f0) - tan (W/fo)]

In the diagram below, we have plotted the
ratio W/f'O for the two caseé; when there

there is no such constraint:

(2)

(3)

the rms bandwidth of the FM system is maintained
When, however, there is no such constraint, we
corresponding value of D is

4)

improvement D (expressed in decibels) versus the

is a transmission bandwidth constraint and when
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304

10 9‘3'0} 20

dec/bels

_ W/t
1 3.16 10 31.6 100 0

In a PM system, the power spectral density of the noise at the phase discriminator
‘output (in the absence of pre-emphasis and de-emphasis) is approximately constant.
_Therefore, the improvement in output signal-to-noise ratio obtained by using pre-emphasis
in the transmitter and de-emphasis in the receiver of a PM system is given by

Problem 2.59

W
;odf
D = 0
v 2
;1B (D)1%df
0 e

With the transfer function Hde(f‘) of the de-emphasis filter defined by

1
HaelD = 75578y
we find that the corresponding value of D is’
W
daf
2
0 1+ (f/fo)

D =

W
i)

Wf0
tan_1(W/f0)

For the case when W = 15 kHz, f‘o = 2.1 kHz, we find that D = 5, or T dB. The
corresponding value of the improvement ratio D for an FM system is equal to 13 dB (see

Example 4 of Chapter B). Therefore, the improvement obtained by using pre-emphasis and

de~emphasis in a PM system is smaller by an amount equal to 6 dB.
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Problem 2.60
Matlab codes

% Amplitude demodulation
“problem 2.60, CS: Haykin
% Mathini Sellathurai

clear all
Ac=1;
mue=0.5;
£¢=20000;
fm=1000;
ts=1le-5;

% message signal
t=[0:250]*1e-5;
n=sin(2*pi*fm.*t);
plot(t, m)
xlabel(’time (s)’)
ylabel(’Amplitude’)
pause

% amplitude modulated signal
u=AM_mod (mue,m,ts,fc);
plot(t,u)

xlabel(’time (s)’)
ylabel(’Amplitude’)

pause

% demodulated signal

[t1, dem1]=AM_demod(mue,u,ts,fc);
plot(tixts, demi)

xlabel(’time (s)°’)
ylabel(’Amplitude’)

axis([0 2.5e-3 0 2])

133



function u=AM_mod(mue,m,ts,fc)

% Amplitude modulation

/used in problem 2.60, CS: Haykin
% Mathini Sellathurai

%

t=[0:1length(m)-1]*ts;
c=cos (2*pi*fc.*t);
m_n=m/max(abs(m));
u=(1+mue*m_n).*c;
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function [t, env]=AM_demod(mue,m,ts,fc)
% Amplitude demodulation

%used in problem 2.60, CS: Haykin

% Mathini Sellathurai

%

fs=1/ts;

fsofc=round(fs/fc);

n2=length(m);

v=zeros(1l,round(n2/fsofc)); % initjalizing the envelope
R_L=1000; % load

C=0.01e-6; Y% capacitor

%demodulate the envelope

1=0; v(1)=m(1);

for k=1:fsofc:n2-fsofc

1=1+2;

v(1)=m(k)*exp(-ts/(R_L*C)/fsofc); % discharging
v(1+1)=m(k+fsofc); “charging

end

% envelope

t =0:fsofc/2:(length(v)-1)*fsofc/2;
env=v;
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Answer to Problem 2.60

Amplitude

T T T T
-0.2}
—0.4+
_0_6 -
-0.81-
-1 1 1 1 !
0.5 1 1.5 >

time (s)

Figure |; Message signal
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Figure«: Amplitude modulated signal
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Figureg: Demodulated signal
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Problem 2.61

Matlab codes
% Problem 2.61 CS: Haykin

% phase lock loop and cycle slipping

% M. Sellathurai

% time interval
t0=0;t£=25;

% frequency step =0.125 Hz
delf=0.125;
u0=[0 ~delf#*2#pil;

[t,ul=0de23(’1in’, [t0 tf],u0); plot(t,u(:

xlabel(’Time (s)’)
ylabel(’£_i (t), (Hz)’)
pause

% frequency step =0.51 Hz
delf=0.5;
u0=[0 ~delf*pi*2]’;

[t,ul=0de23(’1lin’, [t0 tf],u0); plot(t,u(:

xlabel(’Time (s)’);
ylabel(Pf_i (t), (Hz)’);
pause;

% frequency step =7/12 Hz
delf=7/12;
u0=[0 -delf*pi*2]’;

[t,ul=0de23(’1lin’, [t0 t£f],u0); plot(t,u(:

xlabel(’Time (s)’);
ylabel(’f_i (t), (Hz)’);
pause;

% frequency step =2/3 Hz
delf=2/3;
u0=[0 -delf*pi*2]’;

[t,ul=0de23(’1in’, [t0 t£f],u0); plot(t,u(:

xlabel(’Time (s)’);
ylabel(’f_i (t), (Hz)’);
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function uprim =lin(t,u)

% used in Problem 2.61, CS: Haykin
% PLL

% Transfer function (1+as)/(1+bs),
% gain K=50/2/pi,

% natural frequency 1/2/pi

% damping 0.707

% Mathini Sellathurai

uprim(1)=u(2);

uprim(2)=-(1/50+1.2883%cos(u(1)))*u(2)-sin(u(1));
uprim=uprim’;
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Answer to Problem 2.61

0.08

0.06

£, (Ha)

0.04

0.02

-0.02
[o]

Time (s)

Figure {: Variation in the instantaneous frequency of the PLL’s voltage con-
trolled oscillator for varying frequency step A f. (a) A f =0.125 Hz
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Figure 2: (b) A f=10.5 Hz
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Figure®: (b) A f=7/12 Hz
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Figure 4: (b) Af=2/3 Hz
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