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3.1 Introduction

Transforms with cosine and sine functions as the transform kernels represent an important area of
analysis. It is based on the so-called half-range expansion of a function over a set of cosine or sine basis
functions. Because the cosine and the sine kernels lack the nice properties of an exponential kernel, many
of the transform properties are less elegant and more involved than the corresponding ones for the
Fourier transform kernel. In particular, the convolution property, which is so important in many appli-
cations, will be much more complex.

Despite these basic mathematical limitations, sine and cosine transforms have their own areas of
applications. In spectral analysis of real sequences, in solutions of some boundary value problems, and
in transform domain processing of digital signals, both cosine and sine transforms have shown their
special applicability. In particular, the discrete versions of these transforms have found favor among the
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digital signal-processing community. Many data compression techniques now employ, in one way or
another, the discrete cosine transform (DCT), which has been found to be asymptotically equivalent to
the optimal Karhunen-Loeve transform (KLT) for signal decorrelation.

In this chapter, the basic properties of cosine and sine transforms are presented, together with some
selected transforms. To show the versatility of these transforms, several applications are discussed. Com-
putational algorithms are also presented. The chapter ends with a table of sine and cosine transforms,
which is not meant to be exhaustive. The reader is referred to the References for more details and for
more exhaustive listings of the cosine and sine transforms.

3.2. The Fourier Cosine Transform (FCT)

3.2.1 Definitions and Relations to the Exponential Fourier Transforms

Given a real- or complex-valued function f (t), which is defined over the positive real line t ≥ 0, for ω ≥
0, the Fourier cosine transform of f (t) is defined as

(3.2.1)

subject to the existence of the integral. The definition is sometimes more compactly represented as an
operator �c applied to the function f (t), so that

(3.2.2)

The subscript c is used to denote the fact that the kernel of the transformation is a cosine function. The
unit normalization constant used here provides for a definition for the inverse Fourier cosine transform,
given by

(3.2.3)

again subject to the existence of the integral used in the definition. The functions f (t) and Fc(ω), if they
exist, are said to form a Fourier cosine transform pair.

Because the cosine function is the real part of an exponential function of purely imaginary argument,
that is,

(3.2.4)

it is easy to understand that there exists a very close relationship between the Fourier transform and the
cosine transform. To see this relation, consider an even extension of the function f (t) defined over the
entire real line so that

fe(t) = f (�t �),    t ∈ R. (3.2.5)

Its Fourier transform is defined as

(3.2.6)
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The integral in (3.2.6) can be evaluated in two parts over (–∞, 0] and [0, ∞). Then using (3.2.5) and
changing the integrating variable in the (–∞, 0] integral from t to –t, we have

by (3.2.4), and thus

�[ fe(t)] = 2�c[ f(t)],    if fe(t) = f (�t �) . (3.2.7)

Many of the properties of the Fourier cosine transforms can be derived from the properties of Fourier
transforms of symmetric, or even, functions. Some of the basic properties and operational rules are
discussed in Section 3.2.2.

3.2.2 Basic Properties and Operational Rules

1. Inverse Transformation: As stated in (3.2.3), the inverse transformation is exactly the same as the
forward transformation except for the normalization constant. This leads to the so-called Fourier
cosine integral formula, which states that 

(3.2.8)

The sufficient conditions for the inversion formula (3.2.3) are that f(t) be absolutely integrable in
[0, ∞) and that f ′(t) be piece-wise continuous in each bounded subinterval of [0, ∞). In the range
where the function f(t) is continuous, (3.2.8) represents f. At the point t0 where f(t) has a jump
discontinuity, (3.2.8) converges to the mean of f(t0 + 0) and f(t0 – 0), that is,

(3.2.8′)

2. Transforms of Derivatives: It is easy to show, because of the Fourier cosine kernel, that the trans-
forms of even-order derivatives are reduced to multiplication by even powers of the conjugate
variable ω , much as in the case of the Laplace transforms. For the second-order derivative, using
integration by parts, we can show that,

(3.2.9)

where we have assumed that f(t) and f ′(t) vanish as t → ∞. These form the sufficient conditions
for (3.2.9) to be valid. As the transform is applied to higher order derivatives, corresponding
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conditions for higher derivatives of f are required for the operational rule to be valid. Here, we also
assume that the function f(t) and its derivative f ′(t) are continuous everywhere in [0, ∞). If f(t) and
f ′(t) have a jump discontinuity at t0 of magnitudes d and d ′ respectively, (3.2.9) is modified to

�c[ f ″(t)] = –ω 2Fc(ω) – f ′(0) – ωd sin ωt0 – d′ cos ωt0 (3.2.10)

Higher even-order derivatives of functions with jump continuities have similar operational rules
that can be easily generalized from (3.2.10). For example, the Fourier cosine transform of the
fourth-order derivative is

�c[ f (iυ)(t)] = ω 4Fc(ω) + ω 2f  ′(0) – f  �(0) (3.2.11)

if f(t) is continuous to order three everywhere in [0, ∞), and f, f ′, and  f ″ vanish as t → ∞. If f(t)
has a jump discontinuity at t0 to order three of magnitudes d, d ′, d″, and d�, then (3.2.11) is
modified to

�c[ f (iυ)(t)] = ω 4Fc(ω) + ω 2 f ′(0) – f  �(0) + ω 3d sin ωt0 
+ ω 2d ′ cos ωt0 – ωd ″ sin ωt0 – d � cos ωt0 (3.2.12)

Here, and in (3.2.10), we have defined the magnitudes of the jump discontinuity at t0 as

d = f (t0 + 0) – f (t0 – 0);  d ′ = f  ′(t0 + 0) – f  ′(t0 – 0);

d ″ = f  ″(t0 + 0) – f ″(t0 – 0);  d � = f �(t0 + 0) – f  �(t0 – 0). (3.2.13)

For derivatives of odd order, the operational rules require the definition for the Fourier sine
transform, given in Section 3.3. For example, the Fourier cosine transform of the first order
derivative is given by

(3.2.14)

if f vanishes as t → ∞, and where the operator �s  and the function Fs(ω) are defined in (3.3.1).
When f(t) has a jump discontinuity of magnitude d at t = t0, (3.2.14) is modified to

�c[f ′(t)] = ω Fs(ω) – f(0) – d cos(ωt0). (3.2.15)

Generalization to higher odd-order derivatives with jump discontinuities is similar to that for
even-order derivatives in (3.2.12).

3. Scaling : Scaling in the t domain translates directly to scaling in the ω domain. Expansion by a
factor of a in t results in the contraction by the same factor in ω , together with a scaling down
of the magnitude of the transform by the factor a. Thus, as we can show,

(3.2.16)
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4. Shifting :
(a) Shifting in the t-domain: The shift-in-t property for the cosine transform is somewhat less

direct compared with the exponential Fourier transform for two reasons. First, a shift to the
left will require extending the definition of the function f(t) onto the negative real line.
Secondly, a shift-in-t in the transform kernel does not result in a constant phase factor as in
the case of the exponential kernel.

If fe(t) is defined as the even extension of the function f(t) such that fe(t) = f(�t �), and if f(t)
is piece-wise continuous and absolutely integrable over [0, ∞), then

By expanding the compound cosine functions and using the fact that the function fe(τ) is
even, these combine to give:

�c[fe(t + a) + fe(t – a)] = 2Fc(ω) cos aω , a > 0. (3.2.17)

This is sometimes called the kernel-product property of the cosine transform. In terms of the
function f(t), it can be written as:

�c[ f(t + a) + f (� t – a�)] = 2 Fc(ω) cos aω . (3.2.18)

Similarly, the kernel-product 2Fc(ω) sin(aω) is related to the Fourier sine transform:

�s[ f(�t – a�) – f (t + a)] = 2Fc(ω) sin aω ,    a > 0. (3.2.19)

(b) Shifting in the ω-domain:
To consider the effect of shifting in ω  by the amount of β (> 0), we examine the following,

(3.2.20)

Similarly,

Fc(ω – β) = �c[ f(t) cos βt] + �s[ f(t) sin βt]. (3.2.20′)

Combining (3.2.20) and (3.2.20′) produces a shift-in-ω operational rule involving only the
Fourier cosine transform as

(3.2.21)
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More generally, for a, β > 0, we have,

(3.2.22)

Similarly, we can easily derive:

(3.2.22′)

5. Differentiation in the ω domain: Similar to differentiation in the t domain, the transform operation
reduces a differentiation operation into multiplication by an appropriate power of the conjugate
variable. In particular, even-order derivatives in the ω domain are transformed as:

(3.2.23)

We show here briefly, the derivation for n = 1:

For odd orders, these are related to Fourier sine transforms

(3.2.24)

In both (3.2.23) and (3.2.24), the existence of the integrals in question is assumed. This means
that f (t) should be piece-wise continuous and that t2nf (t) and t2n+1f (t) should be absolutely
integrable over [0, ∞).

6. Asymptotic behavior: When the function f (t) is piece-wise continuous and absolutely integrable
over the region [0, ∞), the Reimann-Lebesque theorem for Fourier series* can be invoked to
provide the following asymptotic behavior of its cosine transform:

*The Reimann-Lebesque theorem states that if a function f(t) is piece-wise continuous over an interval a < t < b,
then
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(3.2.25)

7. Integration:
(a) Integration in the t domain:

Integration in the t domain is transformed to division by the conjugate variable, very similar
to the cases of Laplace transforms and Fourier transforms, except the resulting transform is
a Fourier sine transform. Thus,

by reversing the order of integration. The inner integral results in a sine function  and is the
kernel for the Fourier sine transform. Therefore,

(3.2.26)

Here, again, f(t) is subject to the usual sufficient conditions of being piece-wise continuous
and absolutely integrable in [0, ∞).

(b) Integration in the ω domain:
A similar and symmetric relation exists for integration in the ω-domain.

(3.2.27)

Note that the integral transform inversion is of the Fourier sine type instead of the cosine
type. Also the aysmptotic behavior of Fc(ω) has been invoked.

8. The convolution property: Let f(t) and g(t) be defined over [0, ∞) and satisfy the sufficiency
condition for the existence of Fc and Gc. If fe(t) = f(�t �) and ge(t) = g(�t �) are the even extensions
of f and g, respectively, over the entire real line, then the convolution of fe and ge is given by:

(3.2.28)

where ∗ has been used to denote the convolution operation. It is easy to see that in terms of f and
g, we have:

(3.2.29)

which is an even function. Applying the exponential Fourier transform on both sides and using
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(3.2.30)

In a similar way, the cosine transform of the convolution of odd extended functions is related to
the sine transforms. Thus,

(3.2.31)

where

(3.2.32)

is defined as the odd extension of the function g(t).

3.2.3 Selected Fourier Cosine Transforms

In this section, the Fourier cosine transforms of some typical functions are given. Most are selected for
their simplicity and application. For a more complete listing of cosine transforms, see Section 3.7 where
a more extensive table is provided.

3.2.3.1 FCT of Algebraic Functions

1. The unit rectangular function:

(3.2.33)

is the Heaviside unit step function.

(3.2.34)

2. The unit height tent function:
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3. Delayed inverse :

f (t) = U (t – a)/t.

(3.2.36)

where Ci(y) = – cos τ dτ is defined as the cosine integral function.

4. The inverse square root :

f (t) = 1/√t,

(3.2.37)

(3.2.27) is obtained by letting t = z2, and considering the integral,

in the complex plane (see Appendix 1). Using contour integration around a pie-shape region with
angle π/4, the result is obtained directly from the identity:

5. Inverse linear function:

f(t) = (α + t)–1 �arg(α)� < π .

(3.2.38)

(3.2.38) is obtained by shifting the integrating variable to α + t, and then expanding the compound
cosine function. Here, si(y) is related to the sine integral function Si(y), and is defined as:

(3.2.39)
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(3.2.40)

which is obtained also by a properly chosen contour integration over the upper half-plane.
(b) f(t) = (a2 – t2)–1 a > 0,

(3.2.41)

where “P.V.” stands for “principal value” and the integral can be obtained by a proper contour
integration in the complex plane.

(c)

(3.2.42)

where the integral can be obtained easily by considering a shift in t, applied to the result in
(3.2.40).

(d)

(3.2.43)

which can be considered as the imaginary part of the contour integral needed in (3.2.42)
when α and β are real and positive.

3.2.3.2 FCT of Exponential and Logarithmic Functions

1. f(t) = e–αt Re(α) > 0.

(3.2.44)
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�c f t t t dt

e

( )[ ] = +( )
=

∞ −

−

∫0

2 2
1

2

α ω

π
α

α ω

cos

,

�c f t a t t dt

a
a

( )[ ] = +( )
=

∞ −

∫P.V.
0

2 2
1

2

cos

sin

ω

π ω

f t
t t

( ) =
+ −( )

+
+ +( )

< ( )β

β α

β

β α
α β

2 2 2 2
Im Re ,

�c f t
t t

t dt

e

( )[ ] =
+( )

+
+ +( )

















=

∞

−

∫0 2 2 2 2

β

β α

β

β α
ω

π αω βω

–
cos

cos

f t
t

t

t

t
( ) = −

+ −( ) + +
+ +( ) < ( )α

β α
α

β α
α β

2 2 2 2
Im Re ,

�c f t
t

t

t

t
t dt

e

( )[ ] = −
+( ) + +

+ +( )












=

∞

−

∫0
2 2 2 2

α
β α

α
β α

ω

π αω βω

–
cos

sin

�c
tf t e t dt( )[ ] = =

+

∞
−∫0

2 2

α ω α
α ω

cos
© 2000 by CRC Press LLC



2.

(3.2.45)

The result is easily obtained using the integration property of the Laplace transform in the phase
plane.

3. f(t) = e–αt2 Re(α) > 0.

(3.2.46)

This is easily seen as the result of the exponential Fourier transform of a Gaussian distribution.
4. f (t) = ln t[1 – U(t – 1)]

(3.2.47)

The result is obtained by integration by parts and a change of variables. The function Si(ω) is
defined as the sine integral function given by:

(3.2.48)
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and

(3.2.50)

The integral in (3.2.49) is evaluated using contour integration.

6.

(3.2.51)

where si(y) and ci(y) = –Ci(y) are defined in (3.2.39) and (3.2.36), respectively. The result is
obtained through integration by parts, and manifests the shift property of the cosine transform.

3.2.3.3 FCT of Trigonometric Functions

1.

(3.2.52)

The result is obtained easily after some algebraic manipulations. It is, however, better understood
as the result of the inverse Fourier transform of a sinc function, which is simply a rectangular
window function, as is evident in (3.2.52).

2. f(t) = e–βt sin at, a, Re(β) > 0.

(3.2.53)

The result can be easily understood as the Laplace transform of the function:
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3. f(t) = e–βt cos αt, Re(β) > �Im(α)� .

(3.2.54)

which is the Laplace transform of the function [cos (α + ω)t + cos(α – ω)t].

4.

(3.2.55)

The result is obtained by contour integration, as is the next cosine transform.

5.

(3.2.56)

6. f(t) = e–βt2 cos at, Re(β) > 0.

(3.2.57)
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3.2.3.4 FCT of Orthogonal Polynomials

1. Legendre polynomials:

where the Legendre polynomial Pn(x) is defined as

(3.2.58)

where Jυ(z) is the Bessel function of the first kind, and order υ, defined by

(3.2.58′)

2. Chebyshev polynomials:

where the Chebyshev polynomial is defined by,

Tn(x) = cos(n cos–1 x),  n = 0, 1, 2, …

(3.2.59)

where J2n(x) is the Bessel function defined in (3.2.58′) with υ = 2n.
3. Laguerre polynomial:

f (t) = e–t2/2 Ln(t2)

where Ln(x) is the Laguerre polynomial defined by,
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(3.2.60)

where Hen(x) is the Hermite polynomial given by,

4. Hermite polynomials:
(a) f(t) = e–t2/2 He2n(t)  n = 0, 1, 2, …

(3.2.61)

which is obtained using the Rodriques formula for the Hermite polynomial given in (3) above.
(b) f(t) = e–t2/2 {Hen(t)}2,

(3.2.62)

which shows a rare symmetry with (3.2.60).

3.2.3.5 FCT of Some Special Functions

1. The complementary error function:

f (t) = t Erfc(at) a > 0.

Here the complementary error function is defined as

(3.2.63)
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2. The sine integral function:

f (t) = si(at) a > 0,

where si(x) is defined in (3.2.39).

(3.2.64)

Note certain amount of symmetry with (3.2.51).
3. The cosine integral function:

f (t) = Ci(at) = –ci(at) a > 0,

where ci(x) is defined in (3.2.36).

(3.2.65)

4. The exponential integral function:

f (t) = Ei(–at) a > 0,

where Ei(–x) is defined by

(3.2.66)

5. Bessel functions: We list only a few here since a more comprehensive table is available in Chapter
9 on Henkel transforms:
(a) f(t) = J0(at) a > 0,

where Jn(x) is the Bessel function of the first kind defined in (3.2.58′).

(3.2.67)

(b) f(t) = J2n(at) a > 0.
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(3.2.68)

Here, T2n(x) is the Chebyshev polynomial defined in (3.2.59). Note the symmetry between
this and (3.2.29).

(c) f(t) = t–nJn(at) a > 0, and n = 1, 2, …

(3.2.69)

Here, Γ (x) is the gamma function defined by

(3.2.69′)

(d) f(t) = Y0(at)  a > 0,
where Yυ(x) is the Bessel function of the second kind defined by:

Yυ(x) = cosec(υπ )[Jυ(x) cos(υπ ) – J–υ(x)] (3.2.70)

(3.2.70′)

(e) f(t) = tυYυ(at) �Re(υ)� < 1/2, a > 0,

(3.2.71)

3.2.4 Examples on the Use of Some Operational Rules of FCT

In this section, some simple examples on the use of operational rules of the FCT are presented. The
examples are based on very simple functions and are intended to illustrate the procedure and the features
in the FCT operational rules that have been discussed in Section 3.2.2.
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3.2.4.1 Differentiation-in-t

Let f(t) be defined as f(t) = e–αt, where Re(α) > 0. Then according to (3.2.44), its FCT is given by

To obtain the FCT for f  ″(t), we have, according to the differentiation-in-t property, (3.2.9)

(3.2.72)

This result is verified by noting that f  ″(t) = α2e–αt, and that its FCT is given directly also by (3.2.72).

3.2.4.2 Differentiation-in-t of Functions with Jump Discontinuities

Consider the function f(t) = tU(1 – t), which is sometimes called a ramp function. It has a jump
discontinuity of d = –1 at t = 1. Its derivative is given by f  ′(t) = U(1 – t), which also has a jump
discontinuity at t = 1. Using the definition for FCT, we obtain

(3.2.73)

The FCT rule of differentiation with jump discontinuity (3.2.14) can also be applied to get

3.2.4.3 Shift-in-t, Shift-in-ω, and the Kernel Product Property

Let f(t) = e–αt, where Re(α) > 0. The FCT of a positive shift in the t-domain is easy to obtain,

(3.2.74)

To obtain the FCT of the function f (�t – a �), one can apply the kernel product property in (3.2.18) to get:
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(3.2.75)

which is much easier than direct evaluation.
Equation (3.2.21) typifies the shift-in-ω property and, when it is applied to the same function f(t)

above, we obtain,

(3.2.76)

3.2.4.4 Differentiation-in-ω Property

This property, (3.2.23), can often be used to generate FCTs for functions that are not listed in the tables.
As an example, consider again the function f(t) = e–αt, where Re(α) > 0. To obtain the FCT for the
function g(t) = t2e–αt, we can use (3.2.23) on Fc(ω) for f(t) = e–αt. Thus,

and

3.2.4.5 The Convolution Property

The convolution property for FCT is closely related to its kernel product property as illustrated by the
following example.

Let f(t) = e–αt, Re(α) > 0, and g(t) = U(t) – U(t – a), a > 0. The FCTs of these functions are given
respectively by,

Thus, 2Fc(ω)Gc(ω) = . According to the convolution property (3.2.20), this is the

FCT of the convolution defined as:

(3.2.77)

Applying the operator �c to (3.2.77) and integrating over t first, the kernel product property in the shift-
in-t operation in (3.2.18) can be invoked to give,
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as required.

3.3 The Fourier Sine Transform (FST)

3.3.1 Definitions and Relations to the Exponential Fourier Transforms

Similar to the Fourier cosine transform, the Fourier sine transform of a function f(t), which is piece-
wise continuous and absolutely integrable over [0, ∞), is defined by application of the operator �s as:

(3.3.1)

The inverse operator �s
–1  is similarly defined:

(3.3.2)

subject to the existence of the integral. Functions f(t) and Fs(ω) defined by (3.3.2) and (3.3.1), respectively,
are said to form a Fourier sine transform pair. It is noted in (3.2.3) and (3.3.2) for the inverse FCT and
inverse FST that both transform operators have symmetric kernels and that they are involuntary or
unitary up to a factor of √(2/π).

Fourier sine transforms are also very closely related to the exponential Fourier transform defined in
(3.2.6). Using the property that

(3.3.3)

one can consider the odd extension of the function f(t) defined over [0, ∞) as

Then the Fourier transform of fo(t) is

and therefore,
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(3.3.4)

Equation (3.3.4) provides the relation between the FST and the exponential Fourier transform. As in the
case for cosine transforms, many properties of the sine transform can be related to those for the Fourier
transform through this equation. We shall present some properties and operational rules for FST in the
next section.

3.3.2 Basic Properties and Operational Rules

1. Inverse Transformation: The inverse transformation is exactly the same as the forward transfor-
mation except for the normalization constant. Combining the forward and inverse transformations
leads to the Fourier sine integral formula, which states that,

(3.3.5)

The sufficient conditions for the inversion formula (3.3.2) are the same as for the cosine transform.
Where f(t) has a jump discontinuity at t = t0, (3.3.5) converges to the mean of f(t0 + 0) and f(t0 – 0).

2. Transforms of Derivatives: Derivatives transform in a fashion similar to FCT, even orders involving
sine transforms only and odd orders involving cosine transforms only. Thus, for example,

�s[ f ″(t)] = –ω 2Fs(ω) + ωf (0) (3.3.6)

and

�s[ f ′(t)] = –ωFc(ω) , (3.3.7)

where f(t) is assumed continuous to the first order.
For the fourth-order derivative, we apply (3.3.6) twice to obtain,

�s[ f (iυ)(t)] = ω 4Fs(ω) – ω 3f (0) + ωf ″(0) , (3.3.8)

if f(t) is continuous at least to order three. When the function f(t) and its derivatives have jump
discontinuities at t = t0, (3.3.8) is modified to become,

�s[ f (iυ)(t)] = ω 4Fs(ω) – ω 3f (0) + ωf ″(0) – ω 3d cos ωt0 
+ ω 2d ′ sin ωt0 + ωd ″ cos ωt0 – d � sin ωt0 (3.3.9)

where the jump discontinuities d, d ′, and d � are as defined in (3.2.13). Similarly, for odd-order
derivatives, when the function f (t) has jump discontinuities, the operational rule must be modified.
For example, (3.3.7) will become:

�s[ f ′(t)] = –ωFc(ω) + d sin ωt0. (3.3.7′)

    Generalization to other orders and to more than one location for the jump discontinuities is
straightforward.

3. Scaling: Scaling in the t-domain for the FST has exactly the same effect as in the case of FCT, giving,

(3.3.10)
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4. Shifting :
(a) Shift in the t-domain:

As in the case of the Fourier cosine transform, we first define the even and odd extensions of
the function f(t) as,

(3.3.11)

Then it can be shown that:

�s[ fo(t + a) + fo(t – a)] = 2Fs(ω) cos aω (3.3.12)

and

�c[ fo(t + a) + fo(t – a)] = 2Fs(ω) sin aω ;  a > 0. (3.3.13)

These, together with (3.2.18) and (3.2.19), form a complete set of kernel-product relations
for the cosine and the sine transforms.

(b) Shift in the ω-domain:
For a positive β shift in the ω-domain, it is easily shown that

�s[ω + β ] = Fs[ f (t) cos βt] + Fc[ f (t) sin βt] (3.3.14)

and combining with the result for a negative shift, we get:

�s[ f (t) cos β t] = (1/2)[Fs(ω + β ) + Fs(ω – β )]. (3.3.15)

More generally, for a, β > 0, we have,

(3.3.16)

Similarly, we can easily show that

(3.3.17)

The shift-in-ω properties are useful in deriving some FCTs and FSTs. As well, because the
quantities being transformed are modulated sinusoids, these are useful in applications to
communication problems.

5. Differentiation in the ω-domain: The sine transform behaves in a fashion similar to the cosine
transform when it comes to differentiation in the ω-domain. Even-order derivatives involve only
sine transforms and odd-order derivatives involve only cosine transforms. Thus,

and
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(3.3.18)

It is again assumed that the integrals in (3.3.18) exist.
6. Asymptotic behavior: The Reimann-Lebesque theorem guarantees that any Fourier sine transform

converges to zero as ω tends to infinity, that is,

(3.3.19)

7. Integration:
(a) Integration in the t-domain. In analogy to (3.2.26), we have

(3.3.20)

provided f(t) is piece-wise smooth and absolutely integrable over [0, ∞).
(b) Integration in the ω-domain. As in the Fourier cosine transform, integration in the ω-domain

results in division by t in the t-domain, giving,

(3.3.21)

in parallel with (3.2.27).
8. The convolution property: If functions f(t) and g(t) are piece-wise continuous and absolutely

integrable over [0, ∞), a convolution property involving Fs(ω) and Gc(ω) is

(3.3.22)

Equivalently,

(3.3.23)

where fo(x) is the odd extension of the function f(x) defined as in (3.3.11).
One can establish a convolution theorem involving only sine transforms. This is obtained by

imposing an additional condition on one of the functions, say, g(t). We define the function h(t) by,

(3.3.24)

Then g(t) must satisfy the condition that its integral h(t) is absolutely integrable over [0, ∞), so
that the Fourier cosine transform of h(t) exists. We note from (3.2.26) that

Hc(ω ) = (1/ω )Gs(ω ) (3.3.25)

Applying (3.3.22) to f(t) and h(t) yields immediately,
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(3.3.26)

noting that g(t) = –h ′(t).
Because the FSTs have properties and operation rules very similar to those for the FCTs, we

refer the reader to Section 3.2.24 for simple examples on the use of these rules for FCTs.

3.3.3 Selected Fourier Sine Transforms

In this section, selected Fourier sine transforms are presented. These mostly correspond to those selected
for the Fourier cosine transforms. It should be noted that because the sine and cosine transforms kernels
are related through differentiation, many of the Fourier sine transforms can be derived without direct
computation by using differentiation properties listed in Sections 3.2.2 and 3.3.2. As before, we present
first the FST of algebraic functions.

3.3.3.1 FST of Algebraic Functions

1. The unit rectangular function:

f (t) = U (t) – U (t – a),  where U (t) is the Heaviside unit step function.

(3.3.27)

2. The unit height tent function:

(3.3.28)

3. Delayed inverse:

f (t) = (1/t)U (t – a).

(3.3.29)

where si(x) is the sine integral function defined in (3.2.39).
4. The inverse square root:

f (t) = 1/√t.
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. (3.3.30)

5. The inverse linear function:

f (t) = (α + t)–1, �arg α � < π .

(3.3.31)

Here Ci(x) is the cosine integral function defined in (3.2.36).
6. Inverse quadratic functions:

(a) f(t) = (t2 + a2)–1 a > 0.

(3.3.32)

where Ei(x) and are the exponential integral functions defined in (3.2.50).

Here, we note that (3.3.32) is related to the FCT of the function,

f (t) = –t (t 2 + a2)–1

by considering the derivative of (3.3.32) with respect to ω . Thus,

(3.3.33)

(b) f(t) = (a2 – t2)–1 a > 0.

(3.3.34)

where Ci(x) and Si(x) are the cosine and sine integral functions defined in (3.2.36) and (3.2.39)
and “P.V.” denotes the principal value of the integral. Again, we note that (3.3.34) is related
to the FCT of the function,

f (t) = –t (a2 – t2)–1.

Thus,

�c[–t(a2 – t2)–1] = cos aω Ci(aω) + sin aω Si(aω). (3.3.35)
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(c)

(3.3.36)

(d)

(3.3.37)

We note here the symmetry among the transforms in (3.3.36), (3.3.37), and those in (3.2.43)
and (3.2.42).

3.3.3.2 FST of Exponential and Logarithmic Functions

1. f(t) = e–αt Re(α) > 0.

(3.3.38)

which is also seen to be the Laplace transform of sin ωt.

2.

(3.3.39)

Equation (3.3.39) is seen to be related to the result (3.2.45) through the differentiation-in-ω
property of the sine transform as defined in (3.3.18).

3. f(t) = te–αt2 �arg(α) � < π/2.

(3.3.40)
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which can also be related to the cosine transform in (3.2.46) using again the differentiation-in-ω
property (3.3.18) of the sine transform.

4. f(t) = ln t[1 – U(t – 1)]

(3.3.41)

which is obtained easily through integration in parts. Here C = 0.5772156649… is the Euler
constant and Ci(x) is the cosine integral function.

5.

(3.3.42)

Note that (3.3.42) is related to (3.2.49) through the differentiation-in-ω property of the Fourier
cosine transform as defined in (3.2.24).

6.

(3.3.43)

The result is obtained using integration by parts and the shift-in-t properties (3.3.11) to (3.3.13)
of the sine transform.

3.3.3.3 FST of Trigonometric Functions

1.

(3.3.44)

This result is immediately understood when compared to (3.3.43), taking into account the
normalization used in (3.3.1) and (3.3.2) for the definition of the Fourier sine transform.
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2.

(3.3.45)

This result follows easily from the integration-in-ω property (3.2.27) as applied to the cosine
transform in (3.2.53).

3. f(t) = e–βt cos αt Re(β) > �Im(α)�

(3.3.46)

which is also recognized as the Laplace transform of the function cos αt sin ωt.

4.

(3.3.47)

Note the symmetry of (3.3.47) with (3.2.55).

5.

(3.3.48)
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The symmetry of (3.3.48) with (3.2.56) is apparent.
6. f(t) = e–βt2 sin at Re(β) > 0.

(3.3.49)

similar to (3.2.57) for the cosine transform.

3.3.3.4 FST of Orthogonal Polynomials

1. Legendre polynomial (defined in [3.2.58]):

f(t) = Pn(1 – 2t2)[1 – U(t – 1)] n = 0, 1, 2, …

(3.3.50)

where Jυ(x) is the Bessel function of the first kind defined in (3.2.58′).
2. Chebyshev polynomial (defined in [3.2.59]):

f (t) = (a2 – t2)–1/2T2n+1(t/a)[1 – U (t – a)], n = 0, 1, 2, …

(3.3.51)

3. Laguerre polynomials:

(3.3.52)

where , is a Laguerre polynomial as defined in

[3.2.60]). Here, Hen(x) is the Hermite polynomial defined in (3.2.61).
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4. Hermite polynomials (defined in [3.2.62]):

f (t) = e–t2/2 He2n+1(√2t)

(3.3.53)

3.3.3.5 FST of Some Special Functions

1. The complementary error function (defined in [3.2.63]):

f (t) = Erfc(at) a > 0,

(3.3.54)

2. The sine integral function (defined in [3.2.39]):

f (t) = si(at) a > 0,

(3.3.55)

Note the symmetry of (3.3.55) with (3.2.65).
3. The cosine integral function (defined in [3.2.36]):

f (t) = Ci(at) = –ci(at) a > 0

(3.3.56)

4. The exponential integral function (defined in [3.2.66]):

f (t) = Ei(–at) a > 0

(3.3.57)
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5. Bessel functions (defined in [3.2.58′]):
(a) f(t) = J0(at) a > 0

(3.3.58)

(b) f(t) = J2n+1(at) a > 0

(3.3.59)

where Tn(x) is the Chebyshev polynomial defined in (3.2.59).
(c) f(t) = t–nJn+1(at) a > 0 and n = 0, 1, 2, …

(3.3.60)

where Γ (x) is the gamma function defined in (3.2.69′).
(d) f (t) = Y0(at) a > 0.

where Yυ(x) is the Bessel function of the second kind (see [3.2.70]).

(3.3.61)

(e) f(t) = tυYυ-1(at) a > 0, �Re(υ)� < 1/2
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(3.3.62)

As with the cosine transforms, more detailed results are found in the sections covering Henkel
transforms.

3.4 The Discrete Sine and Cosine Transforms (DST and DCT)

In practical applications, the computations of the Fourier sine and cosine transforms are done with
sampled data of finite duration. Because of the finite duration and the discrete nature of the data, much
can be gained in theory and in ease of computation by formulating the corresponding discrete sine and
cosine transforms (DST and DCT) directly. In what follows, we discuss the definitions and properties of
the discrete sine and cosine transforms. It is possible to define four different types of each of the DCT
and the DST (for details, see Rao and Yip, 1990). We shall concentrate on Type I, which can be defined
by simply discretizing the FST and FCT, within a finite rectangular window of unit height.

3.4.1 Definitions of DCT and DST and Relations to FST and FCT

Consider the transform kernel of the FCT given by

Kc(ω, t) = cos ωt. (3.4.1)

Let ωm = 2πm∆f and tn = n∆t be the sampled angular frequency and time, respectively. Here, ∆f and ∆t
are the sample intervals for frequency and time, respectively. m and n are positive integers. The kernel
in (3.4.1) can now be discretized as

Kc(m, n) = Kc(ωm, tn) = cos(2π mn ∆f ∆t). (3.4.2)

If we further let ∆f ∆t = 1/(2N), where N is a positive integer, we obtain the discrete cosine transform
kernel:

Kc(m, n) = cos(π mn/N) (3.4.3)

where m, n = 0, 1, …, N. The transform kernel in (3.4.3) is the DCT kernel of Type I. It represents the
mnth element in an (N + 1) × (N + 1) transformation matrix, which, with the proper normalization,
provides the definition for the DCT transformation matrix [C]. These elements are

where

(3.4.4)
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The discretization can be viewed as taking a finite time duration and dividing it into N intervals of
∆t each. Including the boundary points, there are N + 1 sample points to be considered. If the discrete
N + 1 sample points are represented by a vector x, the DCT of this vector is a vector Xc given by,

Xc = [C]x (3.4.5)

which, in an element-by-element form, means

(3.4.6)

It can be shown that [C] is a unitary matrix. Thus, the inverse transformation is given by

(3.4.7)

Vectors Xc and x are said to be a DCT pair.
Similar consideration in discretizing the FST kernel

Ks(ω, t) = sin ωt (3.4.8)

will lead to the definition of the (N – 1) × (N – 1) DST transform matrix, whose elements are given by

(3.4.9)

This matrix is also unitary and when it is applied to a data vector x of length N – 1, it produces a vector
Xs , whose elements are given by,

(3.4.10)

The vectors x and Xs are said to form a DST pair. The inverse DST is given by

(3.4.11)

It is evident in (3.4.7) and (3.4.11) that both DCT and DST are symmetric transforms. Both are obtained
by discretizing a finite time duration into N equal intervals of ∆t each, resulting in an (N + 1) × (N +
1) matrix for [C] because the boundary elements are not zero, and resulting in an (N – 1) × (N – 1)
matrix for [S] because the boundary elements are zero.

3.4.2 Basic Properties and Operational Rules

3.4.2.1 The Unitarity Property

Let cm denote the mth column vector in the matrix [C]. Consider the inner product of two such vectors:
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(3.4.12)

The summation can be carried out by defining the 2Nth primitive root of unity as

(3.4.13)

and applying it to the summation in (3.4.12). This gives

(3.4.14)

where Re[·] denotes the real part of [·].
Considering the first summation in (3.4.14), and letting κ = (n – m), the power series can be written as,

(3.4.15)

Similarly, the second series in (3.4.14) can be summed by letting λ = (n + m),

(3.4.16)

Hence, for m ≠ n, (i.e., κ ≠ 0), the real part of (3.4.15) is

and the real part of (3.4.16) is

Combining these, and noting that κ and λ differ by 2m, we obtain the orthogonality property for the
inner product,

〈cm , cn 〉 = 0 for m ≠ n . (3.4.17)
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For m = n ≠ 0 or N, the inner product is,

and for m = n = 0 or N, the inner product is,

Therefore, the inner product satisfies the orthonormality condition,

〈cm, cn〉 = δmn (3.4.18)

where δmn is the Kronecker delta and the DCT matrix [C] is shown to be unitary.
Similar considerations can be applied to the DST matrix [S] to show that it is also unitary.

3.4.2.2 Inverse Transformation

As alluded to in Section 3.4.1, the unitary matrices [C] and [S] are symmetric and, therefore, the inverse
transformations are exactly the same as the forward transformations, based on the above unitarity
properties. Therefore,

[C]–1 = [C]  and  [S]–1 = [S]. (3.4.19)

3.4.2.3 Scaling

Recall that in the discretization of the FCT, the time and frequency intervals are related by

(3.4.20)

Because the DCT and DST deal with discrete sample points, a scaling in time has no effect in the
transform, except in changing the unit frequency interval in the transform domain. Thus, as ∆t changes
to a∆t, ∆f changes to ∆f/a, provided the number of divisions N remains the same. Hence, the properties
(3.2.16) and (3.3.10) for the FCT and FST are retained, except for the 1/a factor, which is absent in the
cases for DCT and DST.

Equation (3.4.20) may also be interpreted as giving the frequency resolution of a set of discrete data
points, sampled at a time interval of ∆t. Using T = N∆t as the time duration of the sequence of data
points, the frequency resolution for the transforms is

(3.4.21)

3.4.2.4 Shift-in-t

Because the data are sampled, we obtain the shift-in-time properties of DCT and DST by examining the
time shifts in units of ∆t. Thus, if x = [x(0), x(1), …, x(N)]T, we define the right-shifted sequence as x+

= [x(1), x(2), …, x(N + 1)]T. Their corresponding DCTs are given by

(3.4.22)
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The shift-in-time property seeks to relate with Xc. It turns out that it relates not only to Xc but also
to X s , the DST of x. This is to be expected because the shift-in-time properties of FCT and FST are
similarly related. It can be shown that the elements of are given by

(3.4.23)

In (3.4.23), Xc(m) and Xs(m) are respectively the mth element of the DCT of the vector [x(0), x(1),
…, x(N)]T and the mth element of the DST of the vector [x(1), x(2), …, x(N + 1)]T. While properties
analogous to the so-called kernel-product properties for FCT in Section 3.2.2 may be developed, (3.4.23)
is more practical in that it provides for a way of updating a DCT of a given dimension without having
to recompute all the components. The corresponding result of DST is

(3.4.24)

Here, it is noted that Xc(m) are the elements of the DCT of the vector [x(0), …, x(N)]T.

3.4.2.5 The Difference Property

For discrete sequences, the difference operator replaces the differential operator for continuous sequences.
The FCT and the FST of a derivative, therefore, are analogous to the DCT and the DST of the difference
operator. We can define a difference vector d as:

d = x+ – x (3.4.25)

where x+ is the right-shifted version of x. It is clear that the DCT and the DST of d are simply given by

(3.4.26)

As we can see from (3.4.26), the main operational advantage of the FCT and FST, namely that in the
differentiation properties, have not carried over to the discrete cases. As well, properties with both
integration-in-t and integration-in-ω are also lost in the discrete cases.

We conclude this section by mentioning that no simple convolution properties exist in the cases of
DCT and DST. For finite sequences, it is possible to define a circular convolution for two periodic
sequences or a linear convolution of two nonperiodic sequences. With these, certain convolution prop-
erties for some of the discrete cosine transforms may be developed. (For more details, the reader is
referred to Rao and Yip, 1990). The results, however, are neither simple nor easy to apply.
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3.4.3 Relation to the Karhunen-Loeve Transform (KLT)

While the DCT and the DST discussed here are derived by discretizing the FCT and the FST, based on
some unit time interval of ∆t and some unit frequency interval of ∆f, their forms are closely related to
the Karhunen-Loeve transform (KLT) in digital signal processing. KLT is an optimal transform for digital
signals in that it diagonalizes the auto-covariance matrix of a data vector. It completely decorrelates the
signal in the transform domain, minimizes the mean squared errors (MSE) in data compression and
packs the most energy (variance) in the fewest number of transform coefficients.

Consider a Markov-1 signal with correlation coefficient ρ. The N × N covariance matrix is a matrix
[A], which is real, symmetric, and Toeplitz. It is well known that a nonsingular symmetric Toeplitz matrix
has an inverse of tri-diagnonal form. In the case of the covariance matrix [A] for a Markov-1 signal, we
can write

(3.4.27)

This matrix can be decomposed into a sum of two simpler matrices,

[A]–1 = [B] + [R]

where

and

(3.4.28)

We note that [R] is almost a null matrix and can be considered so when N is very large. Thus, the
diagonalization of the matrix [B] is asymptotically equivalent to the diagonalization of the matrix [A]–1.
Furthermore, it is well known that the similarity transformation that diagonalizes [A]–1 will also diago-
nalize [A]. From these arguments, it is concluded that the transformation that diagnalizes [B] will,
asymptotically, diagonalize [A]. The transformation that diagonalizes [B] depends on a three-terms
recurrence relation that is exactly satisfied by the Chebyshev polynomials. With these, it can be shown
that the matrix [V] that will diagonalize [B] and, in turn, also [A] asymptotically, is defined by
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(3.4.29)

As can be seen in (3.4.29), these are the elements of the DCT matrix [C], except that N has been replaced
by N – 1. For large N, these are identical.

The foregoing has briefly demonstrated that for a Markov-1 signal, the diagonalization of the covari-
ance matrix, which leads to the KLT, is provided by a transformation matrix [V] which is almost identical
to the DCT matrix [C]. This explains why the DCT performs so well in signal decorrelation, although
it is signal independent. Similar arguments can be applied to the DST.

In Figure 3.1, the basis functions forming the KLT for N = 16 are shown. The signal is a Markov-1
signal with a correlation coefficient of ρ = 0.95. It is clear that the set of basis functions and, hence, the
KLT is signal dependent, because they are the eigenvectors of the auto-covariance matrix of the signal
vector.

In Figures 3.2 and 3.3, the basis functions for N = 16 of DCT and DST are shown. It is evident that
they are very similar to the KLT basis functions. While it is true that the dimensions of the spaces spanned
by the KLT and the DCT and DST are different, it can be shown that as N increases, both discrete
transforms will asymptotically approach KLT.

However, it is true that the similarity of the basis functions does not guarantee the asymptotic behavior
of the DCT and the DST, nor does it assure good performance. In applications, such as data compression
and transform domain coding, the “variance distribution” of the transform coefficients is an important
criterion of performance. The variance of a transform coefficient is basically a measure of the information
content of that coefficient. Therefore, the higher the variances are in a few transform coefficients, the
more room there is for data compression in that transform domain.

Let [A] be the data covariance matrix and let [T] be the transformation. Then, the covariance matrix
in the transform domain, [A]T , is given by,

[A]T = [T][A][T]–1. (3.4.30)

The diagonal elements of [A]T are the variances of the transform coefficients. In Table 3.1, comparisons
are shown for the variance distributions of the DCT, the DST, and the DFT, based on a Markov-1 signal
of ρ = 0.9 and N = 16. It is clearly seen that both DCT and DST outperform DFT in using variance
distribution as a performance criterion.

When the transformation [T] in (3.4.30) is not the KLT, [A]T will not be diagonal. The nonzero off-
diagonal elements in [A]T form a measure of the “residual correlation.” The smaller the amount of residual
correlation, the closer is the transform to being optimal. Figure 3.4 shows the residual correlation as a
percentage of the total amount of correlation, for the transforms DCT, DST, and DFT, in a Markov-1
signal with N = 16. As can be seen, again DCT and DST outperform DFT generally.

There are other criteria of performance for a given transform, depending on what kind of signal
processing is being done. However, using the KLT as a benchmark, DCT and DST are extremely good
alternatives as signal independent, fast implementable transforms, because they are both asymptotic to
the KLT. This asymptotic property of the discrete trigonometric transforms (particularly the DCT) has
made them very important tools in digital signal processing. Although they are suboptimal, in the sense
that they will not exactly diagonalize the data covariance matrix, they are signal independent and are
computable using fast algorithms. KLT, though exactly optimal, is signal dependent and possesses no fast
computational algorithm. Some typical applications are discussed in the next section.
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3.5 Selected Applications

This section contains some typical applications. We begin with fairly general applications to differential
equations and conclude with quite specific applications in the area of data compression. (See Churchill,
1958 and Sneddon, 1972 for more applications.)

FIGURE 3.1 KLT Markov-1 signal ρ = 0.95, N = 16.
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3.5.1 Solution of Differential Equations

3.5.1.1 One-Dimensional Boundary Value Problem

Consider the second-order differential equation,

y ″(t) – h2y(t) = F(t)  t ≥ 0 (3.5.1)

with boundary conditions: y ′(0) and 0 and y(∞) = 0, and

FIGURE 3.2 DCT N = 16.
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We note that F(t) can be expressed in terms of a Heaviside step function, Thus,

F (t) = A[1 – U(t – b)]. (3.5.2)

Here, we assume h, A, and b to be constants. Applying the operator �c to the differential equation
and using the results in (3.2.9) and (3.2.34), we get

(3.5.3)

FIGURE 3.3 DST N = 16.
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Applying the boundary condition and solving for Yc , we obtain

(3.5.4)

TABLE 3.1 Variance Distributions for 
N = 16, ρ = 0.9

FIGURE 3.4 Percent Residual Correlation as a function of ρ, N = 16.
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The inversion of Yc can be accomplished with the use of (3.2.34), (3.2.55), and (3.2.3). Noting that
the inverse FCT has a normalization factor of 2/π, the solution for the original boundary value problem
is given by

These can be rewritten as

(3.5.5)

3.5.1.2 Two-Dimensional Boundary Value Problem

Consider a function υ(x, y), which is bounded for x ≥ 0, y ≥ 0. Let υ(x, y) satisfy the boundary value
problem:

(3.5.6)

We further assume that h(x)dx = 0, and that the function

(3.5.7)

exists and that the functions p(x) and f(x) have FCTs. We note from (3.5.7) that

p″(x) = h(x)  and  p′(0) = 0,

leading to the following relation between their FCTs:

ω 2Pc(ω) = Hc(ω) (3.5.8)

Applying �c for the x variable in (3.5.6) reduces the partial differential equation to

(3.5.9)

Because Vc(ω , y) is bounded for y > 0, (3.5.9) has the following solution,

Vc(ω , y) = Ce –ω y + Pc (ω) (3.5.10)
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where C is an arbitrary constant, to be determined by υ (x, 0) = f(x). In the ω-domain, this means

Vc(ω, 0) = Fc(ω). (3.5.11)

Thus,

Vc(ω, y) = [Fc(ω) – Pc(ω)]e–ωy  + Pc(ω). (3.5.12)

This can be inverted and the solution in the (x, y) domain then is given by

(3.5.13)

Here, we have made use of (3.2.44) and the convolution result of (3.2.20).

3.5.1.3 Time-Dependent One-Dimensional Boundary Value Problem

Consider the function u(x, t), which is bounded for x, t ≥ 0. Let this function satisfy the partial differential
equation,

(3.5.14)

so that u(x, 0) = f(x) and u(0, t) = g(t) are the initial and boundary conditions.
Applying the FST for the variable x to (3.5.14) and assuming the existence of all the integrals involved,

we obtain

(3.5.15)

The solution for (3.5.15) is

(3.5.16)

C is easily found to be Fs(ω) using the condition Us(ω , 0) = Fs(ω). With this, (3.5.16) can be inverse
transformed by applying the operator to get

(3.5.17)

We note that, depending on the forms of the functions Fs and Hs, the inverse FST may be obtained by
table look-up.

3.5.2 Cepstral Analysis in Speech Processing

In cepstral analysis, a sequence is converted by a transform T, the logarithm of its absolute value is then
taken and the cepstrum is then obtained by inverse transformation T –1. Figure 3.5 shows the essential
steps in cepstral analysis. Here, {x(n)} is the input speech sequence, {X(k)} is the transform sequence,
and the output {xR(n)} is called the real cepstrum.
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The transform may be any invertible transform. When T is an N-point DFT, the scheme can be
implemented using the DCT. In the computation to obtain the real cepstrum using the DFT, the input
sequence has to be padded with trailing zeros to double its length. However, a simple relation between
the DFT and the DCT for real even sequences reduces the DFT to a DCT.

Let x(n), n = 0, 1, 2, …, M be the input speech sequence to be analyzed. To obtain the real cepstrum
xR(n) using DFT, the sequences is padded with zeros so that x(n) = 0, for n + M + 1, …, 2M – 1. If we
consider a symmetric sequence s(n) defined by

(3.5.18)

then the DFT of s(n) can be obtained as

(3.5.19)

Equation (3.5.19) is clearly in the form of a DCT of the sequence {x(n)} up to a constant factor of
normalization. Now, because {s(n)} is a symmetric real sequence, constructed out of {x(n)}, we have

SF(k) = Re[XF(k)]

where {XF(k)}is the 2M-point DFT of the zero-padded sequence. Combining this with (3.5.19) we see that

Re[XF(k)] = 2[Xc(k)] (3.5.20)

where Xc is the (M + 1)-point DCT of the speech sequence {x(n)}. Equation (3.5.20) is valid up to a
normalization constant. Because direct sparse matrix factorization of the (M + 1) × (M + 1) DCT matrix
is possible, fast algorithms exist for the computation of the DCT. This means that in order to obtain the
real cepstrum of {x(n)}, there is no need to pad the sequence with trailing zeros, and the computation
for xR(k) can be achieved through the use of the DCT of the sequence {x(n)}.

Rather than using DCT as a means of computing the DFT, the transform T in the cepstral analysis
can directly be a DCT or a DST. It has been found that the performance of speech cepstral analysis using
DCT and DST is comparable to the traditional DFT cepstral analysis.

3.5.3 Data Compression

Data compression is an important application of transform coding when retrieval of a signal from a large
database is required. Transform coefficients with large variances can be retained to represent significant
features for pattern recognition, for example. Those with small variances, below a certain threshold, can

FIGURE 3.5 Block Diagram for Cepstral Analysis for x(n).
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be discarded. Such a scheme can be used in reducing the required bandwidth for purposes of transmission
or storage.

The transforms used for these data compression purposes require maximal decorrelation of the data,
with highest energy-packing efficiency possible (efficiency is defined as how much energy can be packed
into the fewest number of transform coefficients). The ideal or optimal transform is the KLT, which will
diagonalize the data covariance matrix and pack the most energy into the fewest transform coefficients.
Unfortunately, KLT is data dependent, and has no known fast computational algorithm, and, therefore,
is not practical. On the other hand, Markov models describe most of the data systems quite well, and
suboptimal but asymptotically equivalent transforms such as the DCT and the DST are data independent,
and implementable using fast algorithms. Therefore, in many applications, such as storage of electrocar-
diogram (ECG) or vector cardiogram (VCG) data, or video data transmission over telephone lines for
video phones, suboptimal transforms such as the DCT are preferred over the optimal KLT. For such
applications, depending upon the required fidelity of the reconstructed data, compression ratios of up
to 10:1 have been reported, and compression ratios of 3:1 to 5:1 using DCT for both ECG (one-
dimensional) and VCG (two-dimensional) are commonplace.

Figure 3.6a and 3.6b show the block diagrams for processing, storage, and retrieval of a one-dimen-
sional ECG, using m:1 compression ratio.

3.5.4 Transform Domain Processing

While discarding low variance coefficients in the DCT domain will provide data compression, certain
details or desired features in the original data may be lost in the reconstruction. It is possible to remedy
this partially by processing the transform coefficients before reconstruction. Adaptive processing can be
applied based on some subjective criteria, such as in video phone applications. Coefficient quantization
is another means of processing to minimize the effect of noise.

Other processing techniques such as subsampling (decimation) and up-sampling (interpolation) can
also be performed in the DCT domain, effectively combining the operations of filtering and transform
coding. Such processing techniques have been successfully employed to convert high definition TV signals
to the standard NTSC TV signals.

One of the most popular digital signal processing tools is the adaptive least-mean-square (LMS)
filtering. This can be done either in the time domain or in the transform domain. Figure 3.7 shows the
block diagram for the adaptive DCT transform domain LMS filtering. Here an0, an1, …, an,N–1 are the
adaptive weights for the transform domain filter. The desired response is {r(n)} and {y(n)} is the filtered
output. It has been found that such transform domain filtering speeds up the convergence of the LMS
algorithm for speech-related applications such as spectral analysis and echo cancellation.

FIGURE 3.6 (a) Data compression for storage, (b) reconstruction from compressed data.
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3.5.5 Image Compression by the Discrete Local Sine Transform (DLS)

3.5.5.1 Introduction

Discrete Cosine Transform (DCT) has long been recognized as one of the best substitutes for the optimal,
but data-dependent Karhunen-Loeve Transform (KLT), in image processing. Many standards, such as
the JPEG (Joint Photographic Experts Group) and MPEG (Moving Pictures Experts Group) have adopted
DCT as a standard transform technique for image compression. While both KLT and DCT satisfy the
perfect reconstruction (PR) condition when no compression (or dropping of transform coefficients)
takes place in the transform domain, both suffer from the artifact of “blocking” whenever compression
is done. The severity of such an artifact depends on the amount of compression. In speech and audio
processing, this appears as a clicking sound in the reconstructed speech. In image compression, it appears
as “tiles” overlaying the reconstituted picture.

The blocking artifact can be attributed to the fact that two-dimensional image processing by transform
generally takes place with blocks of pixels, the most common sizes being 8 × 8 and 16 × 16. When
modification of the transform coefficients occurs in compression or other transform domain processing,
the PR condition is violated. The mismatching of the edges in the reconstructed blocks produces this
artifact.

Efforts to counter this compression artifact led to the development of lapped transforms (see Malvar,
1992). The transforms are based on basis functions with a wider support in the data domain than in the
transform domain, leading to overlaps of the basis functions in the edge region of each block; hence, the
name “lapped” transform. Many such lapped transforms can be constructed using different criteria. There
are lapped orthogonal transforms (LOT), modulated lapped transforms (MLT), and hierarchical lapped
transform (HLT). There are also lapped transforms based on the discrete sine or cosine basis functions.

In this subsection, one such lapped transform based on the discrete sine basis function is described.
This is called the discrete local sine transform or DLS. The transform is applied in image compression
at different compression ratios and the results are compared with other lapped transforms.

3.5.5.2 Elements of the Lapped Orthogonal Transform (LOT)

In general, a lapped transform will take N sample points in the data domain and transform these into
M coefficients in the conjugate domain, where N > M. Very often, N can be as much as twice the size of
M. In matrix vector notations, a data vector xm of length N is transformed into a vector Xm of length M,
and the transform is represented by the M × N matrix ΦT in the equation

FIGURE 3.7 Adaptive transform domain LMS filtering.
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Xm = Φ Tx m (3.5.21)

Here Φ is the lapped transform matrix of dimension N × M. One might interpret such a matrix as an
M-dimensional matrix spanned by M N-dimensional vectors. Specifically, if M = 2 and N = 4, then the
two-dimensional vector space is spanned by two linearly independent four-dimensional vectors. As can
be imagined, such a scheme will provide additional flexibility in the design of the transform basis
functions.

When a data sequence is to be processed by a lapped transform, the basic block transform matrix Φ
is of dimension N × M, whereas the overall transform matrix Ψ will be in block diagonal form, given by

(3.5.22)

If , the matrix Ψ will appear as

(3.5.23)

when the length of the overlap is 2.
For a data sequence xm of dimension K, the lapped transformed sequence Xm is given by

Xm = Ψ Tx m . (3.5.24)

Evidently, in the segmented form of xm (each segment of length N), the data points located at the ends,
in the overlapped regions, will be processed in two consecutive block transforms. One can visualize this
as a sliding window of size N moving over the data sequence in shifts of size M each.

When compression or other processing is not applied, all invertible transforms should satisfy the PR
condition. In terms of the transformation matrix, this PR condition is stated simply as

ΨΨ T 
= IK  and  Ψ TΨ = IK (3.5.25)

where IK is a K × K identity matrix. From (3.5.25) conditions for the component block matrix Φ can be
stated

Φ TΦ = IM (3.5.26)
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Φ TWΦ = OM, (3.5.27)

where W is an M × M “one block shift” matrix defined by

Here, L is the length of the overlap region, O1 is an L × (M-L) null matrix, O2 is an (M-L) × (M-L) null
matrix, and OM is an M × M null matrix. Thus, in addition to the usual orthonormality condition (3.5.26),
lapped transforms require the additional “lapped orthogonality” condition (3.5.27) to preserve the overall
PR requirement.

3.5.5.3 The Discrete Local Sine Transform (DLS)

By properly choosing a “core” and a “lapped” region together with a specified function, a lapped transform
basis set can be constructed to satisfy the PR condition. The DSL is just such a set, based on the continuous
bases of Coifman and Meyer [See Coifman and Meyer, 1991.]

Let Φs be the DLS transform matrix, so that

Φs = [φφφφ 0, φφφφ 1, L, φφφφ M–1]. (3.5.28)

Then the basis functions φr’s are defined by

(3.5.29)

where n, r are respectively the index for the data sample and the index of the basis function;
ε = (L-1)/2M; M is the number of basis functions in the set and L is the length of the lapped portion.
b(n) is called a bell function and it controls the roll-off over the lapped portion of the basis function.
It is given by

Figure 3.8 shows the DLS basis functions in time and frequency domains for M = 8, L = 8. These basis
functions are very similar to those of the modulated lapped transform (MLT) developed by Malvar (1992).

3.5.5.4 Simulation Results (For details, see Li, 1997.)

The standard Lena image of 256 × 256 pixels is used in the simulations for image compression. The
original image is represented by 8 bits/pixel or 8 bpp and is shown in Figure 3.9(a). Compressions based
on a 16 × 16 block transform (M = L = 16 for lapped transforms) result in reconstructed images
represented by 0.4 bpp, 0.24 bpp, and 0.16 bpp. A signal-to-noise ratio is calculated for the compressed
image, based on the energy (variance) of the original image and the energy of the residual image. The
residual image is defined as the difference between the original image and the compressed image. For
lapped transforms, zeros are padded on the actual border of the image to enable the transform.
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Table 3.2 shows a comparison of the final signal-to-noise ratios for the several lapped transforms
against the more conventional DCT at different compression ratios. It is obvious that the lapped trans-
forms are superior in performance compared to the DCT.

Figures 3.9, 3.10, and 3.11 depict the various reconstructed images using different lapped transforms
at different compression ratios. It is seen that serious “block” artifacts are absent from the compressed
images even at the very low bits per pixel rates. The performance of the DLS lies between those of the
LOT and the MLT.

FIGURE 3.8 DLS basis functions in time and frequency domain, L = M = 8.
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3.6 Computational Algorithms

In actual computations of FCT and FST, the basic integrations are performed with quadratures. Because
the data are sampled and the duration is finite, most of the quadratures can be implemented via matrix
computations. The fact that the FST and the FCT are closely related to the Fourier transform translates
directly to the close relations between the computation of the DCT and the DST with that of the DFT.
Many algorithms have been developed for the DFT. The most well known among them is the Cooley-
Tukey fast Fourier transform (FFT), which is often regarded as the single most important development
in modern digital signal processing. More recently, there have been other algorithms such as the Winograd
algorithm, which are based on prime-factor decomposition and polynomial factorization.

FIGURE 3.9 Comparison of original and reconstructed image, M = L = 16, at 0.4 bpp: (a) original at 8 bpp, (b)
DLS, (c) LOT, (d) MLT.

TABLE 3.2 Comparison of Signal-to-
Noise Ratio (dB)

DLS LOT MLT DCT

0.4 bpp 16.3 15.8 16.5 13.9
0.24 bpp 13.8 13.6 14.3 12.2
0.16 bpp 12.2 12.2 12.7 11.2
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While DST and DCT can be computed using relations with DFT (thus, fast algorithms such as the
Cookey-Tukey or the Winograd), the transform matrices have sufficient structure to be exploited directly,
so that sparse factorizations can be applied to realize the transforms. The sparse factorization depends
on the size of the transform, as well as the way permutations are applied to the data sequence. As a result,
there are two distinct types of sparse factorizations, the decimation-in-time (DIT) algorithms and the
decimation-in-frequency (DIF) algorithms. (DIT algorithms are of the Cooley-Tukey type while DIF
algorithms are of the Sande-Tukey type).

In Section 3.6.1, the computations of FST and FCT using FFT are discussed. In Section 3.6.2, the direct
fast computations of DCT and DST are presented. Both DIT and DIF algorithms are discussed. All
algorithms discussed are radix-2 algorithms, where N, which is related to the sample size, is an integer
power of two.

3.6.1 FCT and FST Algorithms Based on FFT

3.6.1.1 FCT of Real Data Sequence

Let {x(n), n = 0, 1, …, N} be an (N + 1)-point sequence. Its DCT as defined in (3.4.6) is given by

FIGURE 3.10 Comparisons for original and reconstructed image, M = L = 16, at 0.24 bpp: (a) original at 8 bpp,
(b) DLS, (c) LOT, (d) MLT.
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where

Construct an even or symmetric sequence using {x (n)} in the following way,

(3.6.1)

FIGURE 3.11 Comparisons of original and reconstructed image, M = L = 16, at 0.16 bpp: (a) original at 8 bpp,
(b) DLS, (c) LOT, (d) MLT.
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Based on the fact that the Fourier transform of a real symmetric sequence is real and is related to the
cosine transform of the half-sequence, it can be shown that the DFT of {s(n)} is given by

(3.6.2)

Thus, the (N + 1)-point DCT of {x(n)} is the same as the 2N-point DFT of the sequence {s(n)}, up to
a normalization constant as indicated by (3.4.6). This means that the DCT of {x(n)} can be computed
using a 2N-point FFT of {s(n)}. We note here that

(3.6.3)

where W2N = e–j2π/2N, the principal 2Nth root of unity, is used for defining the DFT.
It should be pointed out that the direct 2N-point DFT of a real even sequence may be considered

inefficient, because inherent complex arithmetics are used to produce real coefficients in the transform.
However, it is well known that a real 2N-point DFT can be implemented using an N-point DFT for a
complex sequence. For details, the reader is referred to Chapter 2 on Fourier transforms.

3.6.1.2 FST of Real Data Sequence

Let {x(n), n = 1, 2, …, N – 1} be an (N – 1)-point data sequence. Its DST as defined in (3.4.10) is given by

Construct a (2N – 1)-point odd or skew-symmetric sequence {s(n)} using {x(n)},

(3.6.4)

The Fourier transform of a real skew-symmetric sequence is purely imaginary and is related to the
sine transform of the half-sequence. From this, it can be shown that the 2N-point DFT of {s(n)} in (3.6.4)
is given by

(3.6.5)

Thus, the 2N-point DFT of {s(n)} is the same as the (N – 1)-point DST of {x(n)}, up to a normalization
constant. Again, SF(m) is as defined in (3.6.3) and the 2N-point DFT for the real sequence can be
implemented using an N-point DFT for a complex sequence.
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3.6.2 Fast Algorithms for DST and DCT by Direct Matrix Factorization

3.6.2.1 Decimation-in-Time Algorithms

These are Cooley-Tukey-type algorithms, in which the time ordering of the input data sequence is
permuted to allow for the sparse factorization of the transformation matrix. The essential idea is to
reduce a size N transform matrix into a block diagonal form, in which each block is related to the same
transform of size N/2. Recursively applying this procedure, one finally arrives at the basic 2 × 2 “butterfly.”
We present here the essential equations for this reduction and also the flow diagrams for the DIT
computations of DCT and DST, in block form.

1. DIT algorithm for the DCT: Let

(3.6.6)

be the DCT of the sequence {x(n)} (i.e., (n) is x(n) scaled by the normalization constant and
the factor kn, while Xc(m) is scaled by km, as in [3.4.6]). Here we have simplified the notations
using the definition

(3.6.7)

Equation (3.6.6) can be reduced to:

(3.6.8)

Here, gc and hc are related to the DCT of size N/2, defined by the following equations:

(3.6.9)

We note that both gc(m) and hc(m) are DCTs of half the original size. This way, the size of the
transform can be reduced by a factor of two at each stage. Some combinations of inputs to the
lower order DCT are required as shown by the definition for hc(m), as well as some scaling of the
output of the DCT transform. Figure 3.12 shows a signal flow graph for an N = 16 DCT. Note
the reduction into two N = 8 DCTs in the flow diagram.
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2. DIT algorithm for DST: Let

(3.6.10)

be the DST of the sequence {x(n)}, (i.e., (n) is x(n) that has been scaled with the proper
normalization constant as required in (3.4.10) and we have defined

(3.6.11)

Following the same reasoning for the DIT algorithm for DCT, (3.6.10) can be reduced to

(3.6.12)

Here, gs(m) and hs(m) are defined as:

(3.6.13)

As before, it can be seen that gs(m) and hs(m) are the DSTs of half the original size, one involving
only the odd input samples, and the other involving only the even input samples. Figure 3.13
shows a DIT signal flow graph for the N = 16 DST. Note that it is reduced to two blocks of N =
8 DSTs.

FIGURE 3.12 DIT DCT N = 16 flow graph → (–1).
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3.6.2.2 Decimation-in-Frequency Algorithms

These are Sande-Tukey-type algorithms in which the input sample sequence order is not permuted. Again,
the basic principle is to reduce the size of the transform, at each stage of the computation, by a factor of
two. It would be of no surprise that these algorithms are simply the conjugate versions of the DIT algorithms.

1. The DIF algorithm for DCT: In (3.6.6), consider the even ordered output points and the odd-
ordered output points,

Xc(2m) = Gc(m), for m = 0, 1, …, N/2, and
Xc(2m + 1) = Hc(m) + Hc(m + 1), for m = 0, 1, …, N/2 – 1 . (3.6.14)

Here,

(3.6.15)

As can be seen, both Gc(m) and Hc(m) are DCTs of size N/2. Therefore, at each stage of the
computation, the size of the transform is reduced by a factor of two. The overall result is a sparse
factorization of the original transform matrix. Figure 3.14 shows the signal flow graph for an N
= 16 DIF type DCT.

2. The DIF algorithm for DST: The equation (3.6.11) can be split into even-ordered and odd-ordered
output points, where

Xs(m) = Gs(m),  for m = 1, 2, …, N/2 – 1,

(3.6.16)

Here, the outputs Gs(m) and Hs(m) are defined by DSTs of half the original size as

FIGURE 3.13 DIT DST N = 16 flow graph → (–1).
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(3.6.17)

Figure 3.15 shows the signal graph for an N = 16 DIF-type DST. Note that this flow graph is the
conjugate of the flow graph shown in Figure 3.13.

3.7 Tables of Transforms

This section contains tables of transforms for the FCT and the FST. They are not meant to be complete.
For more details and a more complete listing of transforms, especially those of orthogonal and special
functions, the reader is referred to the Bateman manuscripts (Erdelyi, 1954). Section 3.7.3 contains a list
of conventions and definitions of some special functions that have been referred to in the tables.

FIGURE 3.14 DIF DCT N = 16 flow graph → (–1).

FIGURE 3.15 DIF DST N = 16 flow graph → (–1).
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3.7.1 Fourier Cosine Transforms

3.7.1.1 General Properties

3.7.1.2 Algebraic Functions
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3.7.1.3 Exponential and Logarithmic Functions
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3.7.1.4 Trigonometric Functions

3.7.2 Fourier Sine Transforms

3.7.2.1 General Properties
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3.7.2.2 Algebraic Functions

General Properties (Continued)
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3.7.2.3 Exponential and Logarithmic Functions
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3.7.2.4 Trigonometric Functions

3.7.3 Notations and Definitions

1. f(t): Piece-wise smooth and absolutely integrable function on the positive real line.
2. Fc(ω): The Fourier cosine transform of f(t).
3. Fs(ω): The Fourier sine transform of f(t).
4. fo(t): The odd extension of the function f over the entire real line.
5. fe(t): The even extension of the function f over the entire real line.
6. C(ω) is defined as the integral:

7. S(ω) is defined as the integral:

8. Ei(x) is the exponential integral function defined as

9. is defined as (1/2)[Ei(x + j0) + Ei(x – j0)].

10. Ci(x) is the cosine integral function defined as

2
1 2

0

1 2π
ω

( )− −∫ t t dtcos .

2
1 2
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1 2π
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( )− −∫ t t dtsin .

− ( ) <
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−
−

∞
−∫ x

t t dt1 cos .
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11. Si(x) is the sine integral function defined as

12. Iυ(z) is the modified Bessel function of the first kind defined as

13. Hen(x) is the Hermite polynomial function defined as

14. C is the Euler constant defined as

15. ci(x) and si(x) are related to Ci(x) and Si(x) by the equations:

ci(x) = –Ci(x), si(x) = Si(x) – π/2.

16. Erf(x) is the error function defined by

17. Jυ(x) and Yυ(x) are the Bessel functions for the first and second kind, respectively,

and

Yυ (x) = cosec{υπ[ Jυ (x) cos υπ – J–υ (x)]}.

18. U(t): is the Heaviside step function defined as
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19. is the binomial coefficient defined as .

20. Γ (x): is the Gamma function defined as
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