

DSP Applications Using C
and the TMS320C6x DSK

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

TOPICS IN DIGITAL SIGNAL PROCESSING

C. S. BURRUS and T. W. PARKS: DFT/FFT AND CONVOLUTION

ALGORITHMS: THEORY AND IMPLEMENTATION

JOHN R. TREICHLER, C. RICHARD JOHNSON, JR., and MICHAEL G.

LARIMORE: THEORY AND DESIGN OF ADAPTIVE FILTERS

T. W. PARKS and C. S. BURRUS: DIGITAL FILTER DESIGN

RULPH CHASSAING and DARRELL W. HORNING: DIGITAL SIGNAL

PROCESSING WITH THE TMS320C25

RULPH CHASSAING: DIGITAL SIGNAL PROCESSING WITH C AND

THE TMS320C30

RULPH CHASSAING: DIGITAL SIGNAL PROCESSING LABORATORY

EXPERIMENTS USING C AND THE TMS320C31 DSK

RULPH CHASSAING: DSP APPLICATIONS USING C AND THE

TMS320C6x DSK

DSP Applications Using C
and the TMS320C6x DSK

Rulph Chassaing

A Wiley–Interscience Publication
JOHN WILEY & SONS, INC.

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial
capital or all capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

Copyright © 2002 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling,
recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third
Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold with the understanding that the publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional person should be sought.

ISBN 0-471-22112-0

This title is also available in print as ISBN 0-471-20754-3.

For more information about Wiley products, visit our web site at www.Wiley.com.

Contents

Preface xi

List of Examples xv

Programs/Files on Accompanying Disk xix

1 DSP Development System 1

1.1 Introduction 1
1.2 DSK Support Tools 2

1.2.1 DSK Board 4
1.2.2 TMS320C6711 Digital Signal Processor 4

1.3 Code Composer Studio 5
1.3.1 CCS Installation and Support 5
1.3.2 Useful Types of Files 6

1.4 Programming Examples to Test the DSK Tools 7
1.4.1 Quick Test of DSK 7
1.4.2 Support Files 8
1.4.3 Examples 8

1.5 Support Programs/Files Considerations 24
1.5.1 Initialization/Communication File 24
1.5.2 Vector File 26
1.5.3 Linker File 26

1.6 Compiler/Assembler/Linker Shell 26
1.6.1 Compiler 28
1.6.2 Assembler 29
1.6.3 Linker 29
References 30

v

2 Input and Output with the DSK 33

2.1 Introduction 33
2.2 TLC320AD535 (AD535) Onboard Codec for Input and Output 34
2.3 PCM3003 Stereo Codec for Input and Output 35
2.4 Programming Examples Using C Code 37

References 60

3 Architecture and Instruction Set of the C6x Processor 61

3.1 Introduction 61
3.2 TMS320C6x Architecture 63
3.3 Functional Units 65
3.4 Fetch and Execute Packets 66
3.5 Pipelining 67
3.6 Registers 68
3.7 Linear and Circular Addressing Modes 69

3.7.1 Indirect Addressing 69
3.7.2 Circular Addressing 70

3.8 TMS320C6x Instruction Set 71
3.8.1 Assembly Code Format 71
3.8.2 Types of Instructions 72

3.9 Assembler Directives 74
3.10 Linear Assembly 74
3.11 ASM Statement within C 76
3.12 C-Callable Assembly Function 76
3.13 Timers 76
3.14 Interrupts 77

3.14.1 Interrupt Control Registers 77
3.14.2 Selection of XINT0 79
3.14.3 Interrupt Acknowledgment 80

3.15 Multichannel Buffered Serial Ports 80
3.16 Direct Memory Access 81
3.17 Memory Considerations 82

3.17.1 Data Allocation 82
3.17.2 Data Alignment 82
3.17.3 Pragma Directives 83
3.17.4 Memory Models 83

3.18 Fixed- and Floating-Point Format 83
3.18.1 Data Types 83
3.18.2 Floating-Point Format 84
3.18.3 Division 85

vi Contents

3.19 Code Improvement 85
3.19.1 Intrinsics 85
3.19.2 Trip Directive for Loop Count 86
3.19.3 Cross-Paths 86
3.19.4 Software Pipelining 86

3.20 Constraints 87
3.20.1 Memory Constraints 87
3.20.2 Cross-Paths Constraints 87
3.20.3 Load/Store Constraints 88
3.20.4 Pipelining Effects with More Than One EP

within an FP 88
3.21 TMS320C64x Processor 89
3.22 Programming Examples Using C, Assembly, and Linear

Assembly 90
References 100

4 Finite Impulse Response Filters 102

4.1 Introduction to the z-Transform 102
4.1.1 Mapping from s-Plane to z-Plane 105
4.1.2 Difference Equations 106

4.2 Discrete Signals 107
4.3 Finite Impulse Response Filters 108
4.4 FIR Implementation Using Fourier Series 110
4.5 Window Functions 114

4.5.1 Hamming Window 115
4.5.2 Hanning Window 115
4.5.3 Blackman Window 115
4.5.4 Kaiser Window 116
4.5.5 Computer-Aided Approximation 116

4.6 Programming Examples Using C and ASM Code 116
References 155

5 Infinite Impulse Response Filters 159

5.1 Introduction 159
5.2 IIR Filter Structures 160

5.2.1 Direct Form I Structure 160
5.2.2 Direct Form II Structure 161
5.2.3 Direct Form II Transpose 163
5.2.4 Cascade Structure 164

Contents vii

5.2.5 Parallel Form Structure 165
5.3 Bilinear Transformation 167

5.3.1 Bilinear Transformation Design Procedure 168
5.4 Programming Examples Using C Code 169

References 181

6 Fast Fourier Transform 182

6.1 Introduction 182
6.2 Development of the FFT Algorithm with Radix-2 183
6.3 Decimation-in-Frequency FFT Algorithm with Radix-2 184
6.4 Decimation-in-Time FFT Algorithm with Radix-2 191
6.5 Bit Reversal for Unscrambling 195
6.6 Development of the FFT Algorithm with Radix-4 195
6.7 Inverse Fast Fourier Transform 198
6.8 Programming Examples 199

6.8.1 Fast Convolution 206
References 214

7 Adaptive Filters 216

7.1 Introduction 216
7.2 Adaptive Structures 218
7.3 Programming Examples for Noise Cancellation and System

Identification 221
References 237

8 Code Optimization 239

8.1 Introduction 239
8.2 Optimization Steps 240

8.2.1 Compiler Options 240
8.2.2 Intrinsic C Functions 241

8.3 Procedure for Code Optimization 241
8.4 Programming Examples Using Code Optimization Techniques 241
8.5 Software Pipelining for Code Optimization 248

8.5.1 Procedure for Hand-Coded Software Pipelining 249
8.5.2 Dependency Graph 249
8.5.3 Scheduling Table 251

8.6 Execution Cycles for Different Optimization Schemes 258
References 259

viii Contents

9 DSP Applications and Student Projects 260

9.1 Voice Scrambler Using DMA and User Switches 260
9.2 Phase-Locked Loop 261

9.2.1 RTDX for Real-Time Data Transfer 263
9.3 SB-ADPCM Encoder/Decoder: Implementation of

G.722 Audio Coding 263
9.4 Adaptive Temporal Attenuator 264
9.5 Image Processing 265
9.6 Filter Design and Implementation Using a Modified

Prony’s Method 266
9.7 FSK Modem 266
9.8 m-Law for Speech Companding 267
9.9 Voice Detection and Reverse Playback 268
9.10 Miscellaneous Projects 268

9.10.1 Acoustic Direction Tracker 268
9.10.2 Multirate Filter 269
9.10.3 Neural Network for Signal Recognition 270
9.10.4 PID Controller 270
9.10.5 Four-Channel Multiplexer for Fast Data Acquisition 270
9.10.6 Video Line Rate Analysis 270
References 272

Appendix A TMS320C6x Instruction Set 276

A.1 Instructions for Fixed- and Floating-Point Operations 276
A.2 Instructions for Floating-Point Operations 276
References 276

Appendix B Registers for Circular Addressing and Interrupts 278

Reference 278

Appendix C Fixed-Point Considerations 281

C.1 Binary and Two’s-Complement Representation 281
C.2 Fractional Fixed-Point Representation 284
C.3 Multiplication 285
Reference 287

Appendix D Matlab Support Tools 288

D.1 MATLAB GUI Filter Designer SPTOOL for FIR Filter Design 288
D.2 MATLAB GUI Filter Designer SPTOOL for IIR Filter Design 290

Contents ix

D.3 MATLAB for FIR Filter Design Using the Student Version 292
D.4 MATLAB for IIR Filter Design Using the Student Version 294
D.5 Bilinear Transformation Using MATLAB and Support Programs

on Disk 295
D.6 FFT and IFFT 302
References 302

Appendix E Additional Support Tools 303

E.1 Goldwave Shareware Utility as Virtual Instrument 303
E.2 Filter Design Using DigiFilter 304

E.2.1 FIR Filter Design 304
E.2.2 IIR Filter Design 305

E.3 FIR Filter Design Using Filter Development Package 306
E.3.1 Kaiser Window 306
E.3.2 Hamming Window 306

E.4 Visual Application Builder 306
E.5 Miscellaneous Support 308
References 309

Appendix F Input and Output with PCM3003 Stereo Codec 310

F.1 PCM3003 Audio Daughter Card 310
F.2 Programming Examples Using the PCM3003 Stereo Codec 315
References 324

Appendix G DSP/BIOS and RTDX for Real-Time Data Transfer 325

References 327

Index 329

x Contents

Preface

Digital signal processors, such as the TMS320 family of processors, are used in a
wide range of applications, such as in communications, controls, speech processing,
and so on. They are used in fax transmission, modems, cellular phones, and other
devices. These devices have also found their way into the university classroom,
where they provide an economical way to introduce real-time digital signal pro-
cessing (DSP) to the student.

Texas Instruments recently introduced the TM320C6x processor, based on the
very-long-instruction-word (VLIW) architecture. This newer architecture supports
features that facilitate the development of efficient high-level language compilers.
Throughout the book we refer to the C/C++ language simply as C. Although
TMS320C6x/assembly language can produce fast code, problems with documenta-
tion and maintenance may exist. With the available C compiler, the programmer
must consider to “let the tools do the work.” After that, if the programmer is
not satisfied, Chapters 3 and 8 and the last few examples in Chapter 4 can be very
useful.

This book is intended primarily for senior undergraduate and first-year graduate
students in electrical and computer engineering and as a tutorial for the practicing
engineer. It is written with the conviction that the principles of DSP can best be
learned through interaction in a laboratory setting, where students can appreciate
the concepts of DSP through real-time implementation of experiments and projects.
The background assumed is a course in linear systems and some knowledge of C.

Most chapters begin with a theoretical discussion, followed by representative
examples that provide the necessary background to perform the concluding experi-
ments. There are a total of 76 solved programming examples, most using C code,
with a few in assembly and linear assembly code. A list of these examples appears
on page xv. Several sample projects are also discussed.

xi

Programming examples are included throughout the text. This can be useful to
the reader who is familiar with both DSP and C programming but who is not
necessarily an expert in both.

This book can be used in the following ways:

1. For a DSP course with a laboratory component, using Chapters 1 to 7 and
Appendices D to F. If needed, the book can be supplemented with some addi-
tional theoretical materials, since the book’s emphasis is on the practical
aspects of DSP. It is possible to cover Chapter 7 on adaptive filtering, follow-
ing Chapter 4 on FIR filtering (since there is only one example in Chapter 7
that uses material from Chapter 5). It is my conviction that adaptive filtering
(Chapter 7) should be incorporated into an undergraduate course in DSP.

2. For a laboratory course using many of the examples and experiments from
Chapters 1 to 7. The beginning of the semester can be devoted to short pro-
gramming examples and experiments and the remainder of the semester used
for a final project.

3. For a senior undergraduate or first-year graduate design project course, using
Chapters 1 to 5, selected materials from Chapters 6 to 9, and Appendices D
to F.

4. For the practicing engineer as a tutorial, and for workshops and seminars,
using selected materials throughout the book.

In Chapter 1 we introduce the tools through three programming examples.
These tools include the powerful Code Composer Studio (CCS) provided with
the TMS320C6711 DSP starter kit (DSK). It is essential to perform these three
examples before proceeding to subsequent chapters. They illustrate the capabilities
of CCS for debugging, plotting in both the time and frequency domains, and other
matters.

In Chapter 2 we illustrate input and output (I/O) with the codec on the DSK
board through many programming examples. Alternative I/O with a stereo audio
codec that interfaces with the DSK is described. Chapter 3 covers the architecture
and the instructions available for the TMS320C6x processor. Special instructions
and assembler directives that are useful in DSP are discussed. Programming exam-
ples using both assembly and linear assembly are included in this chapter.

In Chapter 4 we introduce the z-transform and discuss finite impulse response
(FIR) filters and the effect of window functions on these filters. Chapter 5 covers
infinite impulse response (IIR) filters. Programming examples to implement real-
time FIR and IIR filters are included.

Chapter 6 covers the development of the fast Fourier transform (FFT). Pro-
gramming examples on FFT are included. In Chapter 7 we demonstrate the use-
fulness of the adaptive filter for a number of applications with least mean squares
(LMS). Programming examples are included to illustrate the gradual cancellation
of noise or system identification. Chapter 8 illustrates techniques for code opti-

xii Preface

mization. In Chapter 9 we discuss a number of DSP applications and student
projects.

A disk included with this book contains all the programs discussed. See page xix
for a list of the folders that contain the support files for all the examples.

Over the last six years, faculty members from over 150 institutions have taken
my “DSP and Applications” workshops. These workshops were supported for three
years by grants from the National Science Foundation (NSF) and subsequently, by
Texas Instruments. I am thankful to NSF, Texas Instruments, and the participating
faculty members for their encouragement and feedback. I am grateful to Dr. Donald
Reay of Heriot-Watt University, who contributed several examples during his
review of the book. I appreciate the many suggestions made by Dr. Robert Kubichek
of the University of Wyoming during his review of the book. I also thank Dr. Darrell
Horning of the University of New Haven, with whom I coauthored the text Digital
Signal Processing with the TMS320C25, for introducing me to “book writing.” I
thank all the students (at Roger Williams University, University of Massachusetts,
Dartmouth, and Worcester Polytechnic Institute) who have taken my real-time DSP
and senior design project courses, based on the TMS320 processors, over the last
16 years. I am particularly indebted to two former students, Bill Bitler and Peter
Martin, who have worked with me over the years. The laboratory assistance of
Walter J. Gomes III in several workshops and during the development of many
examples has been invaluable. The continued support of many people from Texas
Instruments is also very much appreciated: Maria Ho and Christina Peterson, in
particular, have been very supportive of this book. I would be remiss if I did not
mention the librarians in Herkimer, New York (where I was stranded for two weeks)
for the use of their facility to write Chapter 8.

Rulph Chassaing
Chassaing@msn.com

Preface xiii

List of Examples

1.1 Sine Generation with Eight Points 8

1.2 Generation of Sinusoid and Plotting with CCS 17

1.3 Dot Product of Two Arrays 19

2.1 Loop Program Using Interrupt 38

2.2 Loop Program Using Polling 39

2.3 Sine Generation Using Polling 40

2.4 Sine Generation With Two Sliders for Amplitude and Frequency 42
Control

2.5 Loop Program with Input Data Stored in Memory Buffer 43

2.6 Loop with Data in Buffer Printed to File 44

2.7 Square-Wave Generation Using Lookup Table 47

2.8 Ramp Generation Using Lookup Table 48

2.9 Ramp Generation without a Lookup Table 48

2.10 Echo 49

2.11 Echo Using Two Interrupts with Control for Different Effects 51

2.12 Sine Generation with Table Values Generated within Program 53

2.13 Sine Generation with Table Created by MATLAB 53

2.14 Amplitude Modulation 56

2.15 Sweep Sinusoid Using Table with 8000 Points 57

2.16 Pseudorandom Noise Sequence Generation 59

3.1 Efficient Dot Product 91

3.2 Sum of n + (n - 1) + (n - 2) + . . . + 1 Using C Calling Assembly 92
Function

xv

xvi List of Examples

3.3 Factorial of a Number Using C Program Calling Assembly 93
Function

3.4 Dot Product Using Assembly Program Calling Assembly Function 94

3.5 Dot Product Using C Function Calling Linear Assembly Function 97

3.6 Factorial Using C Calling a Linear Assembly Function 99

4.1 FIR Filter Implementation: Bandstop and Bandpass 118

4.2 Effects on Voice Using Three FIR Lowpass Filters 123

4.3 Implementation of Four Different Filters: Lowpass, Highpass, 125
Bandpass, and Bandstop

4.4 FIR Implementation with Pseudorandom Noise Sequence as 127
Input to Filter

4.5 FIR Filter with Frequency Response Plot Using CCS 129

4.6 FIR Filter with Internally Generated Pseudorandom Noise 129
as Input to Filter and Output Stored in Memory

4.7 Two Notch Filters to Recover Corrupted Input Voice 134

4.8 FIR Implementation Using Four Different Methods 136

4.9 Voice Scrambler Using Filtering and Modulation 138

4.10 Illustration of Aliasing Effects with Down-Sampling 141

4.11 Implementation of an Inverse FIR Filter 143

4.12 FIR Implementation Using C Calling ASM Function 144

4.13 FIR Implementation Using C Calling Faster ASM Function 147

4.14 FIR Implementation with C Program Calling ASM Function 148
Using Circular Buffer

4.15 FIR Implementation with C Program Calling ASM Function 153
Using Circular Buffer in External Memory

5.1 IIR Filter Implementation Using Second-Order Stages in 169
Cascade

5.2 Generation of Two Tones Using Two Second-Order Difference 173

Equations

5.3 Sine Generation Using a Difference Equation 174

5.4 Generation of a Swept Sinusoid Using a Difference Equation 177

5.5 IIR Inverse Filter 179

6.1 DFT of a Sequence of Real Numbers with Output from CCS 199
Window

6.2 FFT of a Real-Time Input Signal Using an FFT Function in C 201

6.3 FFT of a Sinusoidal Signal from a Table Using TI’s C Callable 203
FFT Function

6.4 Fast Convolution With Overlap-Add for FIR Implementation 206
Using TI’s Floating-Point FFT Functions

6.5 Graphic Equalizer 210

7.1 Adaptive Filter Using C Code Compiled with Borland C/C++ 221

7.2 Adaptive Filter for Noise Cancellation 224

7.3 Adaptive FIR Filter for System ID of Fixed FIR 227

7.4 Adaptive FIR for System ID of Fixed FIR with Weights of 227
Adaptive Filter Initialized as FIR Bandpass

7.5 Adaptive FIR for System ID of Fixed IIR 232

7.6 Adaptive Predictor for Cancellation of Narrowband Interference 232
Added to Desired Wideband Signal

8.1 Sum of Products With Word-Wide Data Access for Fixed-Point 242
Implementation Using C Code

8.2 Separate Sum of Products With C Intrinsic Functions Using 243
C Code

8.3 Sum of Products With Word-Wide Access for Fixed-Point 243
Implementation Using Linear ASM Code

8.4 Sum of Products with Double-Word Load for Floating-Point 244
Implementation Using Linear ASM Code

8.5 Dot Product with No Parallel Instructions for Fixed-Point 244
Implementation Using ASM Code

8.6 Dot Product with Parallel Instructions for Fixed-Point 245
Implementation Using ASM Code

8.7 Two Sums of Products with Word-Wide (32-bit) Data for 245
Fixed-Point Implementation Using ASM Code

8.8 Dot Product with No Parallel Instructions for Floating-Point 246
Implementation Using ASM Code

8.9 Dot Product with Parallel Instructions for Floating-Point 246
Implementation Using ASM Code

8.10 Two Sums of Products With Double-Word-Wide (64-bit) Data 247
for Floating-Point Implementation Using ASM Code

8.11 Dot Product Using Software Pipelining for a Fixed-Point 252
Implementation

8.12 Dot Product Using Software Pipelining for a Floating-Point 253
Implementation

D.1 MATLAB GUI Filter Designer SPTOOL for FIR Filter Design 288

D.2 MATLAB GUI Filter Designer SPTOOL for IIR Filter Design 290

D.3 FIR Filter Design Using MATLAB’s Student Version 292

D.4 Multiband FIR Filter Design Using MATLAB 293

D.5 IIR Filter Design Using MATLAB’s Student Version 294

F.1 Loop Program Using Polling with the PCM3003 Stereo Codec 315

F.2 Loop Program Using Interrupt with the PCM3003 Codec 317

F.3 FIR Filter Implementation Using the PCM3003 Codec 319

List of Examples xvii

xviii List of Examples

F.4 Adaptive FIR Filter for Noise Cancellation Using the PCM3003 319
Codec

F.5 Adaptive Predictor for Cancellation of Narrowband Interference 324
Added to Desired Wideband Signal, Using the PCM3003 Codec

Programs/Files on
Accompanying Disk

A list of the folders included on the accompanying disk is shown below. The folders
contain the programs/files for all the examples/projects covered in the book.

xix

DSP Applications Using C
and the TMS320C6x DSK

dot product with parallel instructions,
245

sum of products with double-word load,
244

sum of products with word-wide data
access, 243

ASM statement, 76
Assembler directives, 74
Assembler shell, DSK initialization/

communication, 29
Assembly code format, 71–72
Assembly function, C-callable assembly function,

76, 92–94
dot product, assembly program, 94–97
factorial, 93–94

Bandpass filters
adaptive filter programming, system

identification, fixed FIR initialization,
227–231

finite impulse response filters
design criteria, 112–113
implementation programming, 122–123,

125
Bandstop filters, finite impulse response filters

design criteria, 112–113
implementation programming, 118–122, 125

Bilinear transformation, 295–301
Binary representation, fixed-point, 281–284
Bit reversal, fast Fourier transform, 195
Blackman window, finite impulse response filters,

115
Branch/move, TMS320C6x instruction set,

73–74
Buffer data, printed to file, 44–46

Index

329

Acoustic direction tracker, 268–269
Adaptive channel equalization, adaptive filter,

219
Adaptive filters

applications, 218–221
programming examples, 221–236

narrowband interference cancellation,
232–236

noise cancellation, 224–226
system identification

adaptive FIR of fixed FIR, 227–231
adaptive FIR of fixed IIR, 232

structures, 217–221
Adaptive prediction, 219
Adaptive temporal attenuator (ATA), DSP

student project, 264–265
AD535 codec, input/output, 34–35
Add/subtract/multiply, TMS320C6x instruction

set, 72
Aliasing effects, FIR with down-sampling,

141–143
Amplitude modulation, 56–57
Application-specific integrated circuit (ASIC),

C6x architecture, 62
ASM code programming

finite impulse response filters, 144–155
C calling ASM function, 144–148
circular buffer, C calling ASM function,

148–155
external memory, circular buffer, C calling

ASM function, 153–155
optimization, 239–258

fixed-point implementation
dot product with no parallel instructions,

244–245

Cascade stages, infinite impulse response filter
implementation, 169–173

C code programming
adaptive filter, C code/Borland compiler,

221–224
C6x processor

ASM statement, 76
assembly function calling, 92–94
C-callable assembly function, 76

Circular addressing, 70–71
registers, 278–280

Circular buffers, FIR implementation, 148–155
Code Composer Studio (CCS)

DSP development system, 5–7
file extensions, 6–7
FIR filter with frequency response plot, 129
installation and support, 5–6

Code improvement, 85–87
cross-paths, 86
intrinsics, 85
software pipelining, 86–87
trip directive for loop count, 86

Code optimization
compiler options, 240–241
execution cycles, 258
intrinsic C functions, 241
principles and techniques, 239–240
procedures, 241
programming examples, 241–248, 252–258

C code fixed-point implementation, sum of
products with word-wide data access,
242–243

dot product, no parallel instructions, floating-
point implementation, 244–245

dot product, with parallel instructions,
floating-point implementation, 246–247

double-word load, floating-point
implementation, 244

intrinsic C functions sum of products, 243
software pipelining, 248–258

dependency graph, 249–251
hand-coded procedures, 249
scheduling table, 251–258

sum of products with double word-wide data
access, 247–248

sum of products with word-wide data access,
243

Compiler/assembler/linker shell, DSP
development system, 26–30

Compiler options, code optimization, 240–241
Compiler shell, DSK initialization/

communication, 28–29
Computer-aided approximation, finite impulse

response filters, 116
Cross-paths

code improvement, 86
constraints, 87–88

330 Index

C6x processor
architecture

historical background, 61–63
TMS320C6x, 63–65

ASM statement within C, 76
assembler directives, 74
C-callable assembly function, 76
circular addressing, 70–71
code improvement, 85–87

cross-paths, 86
intrinsics, 85
software pipelining, 86–87
trip directive for loop count, 86

constraints
cross-paths, 87–88
load/store constraints, 88
memory constraints, 87
pipelining with more than one EP within an

FP, 88–89
direct memory access (DMA), 81–82
fetch and execute packets, 66–67
fixed- and floating-point format, 83–85

data types, 83–84
division, 85
single- and double-precision, 84–85

functional units, 65–66
indirect addressing, 69
instruction set, 71–74

assembly code format, 71–72
categories, 72–74

interrupts, 77–80
acknowledgement, 80
control registers, 77–79
XINT0 selection, 79

linear addressing modes, 69
linear assembly, 74–76
memory considerations, 82–83

data alignment, 82
data allocation, 82
models, 83
pragma directives, 83

multichannel buffered serial ports, 80–81
pipelining, 67–68
registers, 68–69
timers, 76

C64x processor, architecture, 89–90

Data allocation and alignment, 82
Data types, fixed- and floating-point format,

83–84
Daughter card expansion, PCM3003 stereo

codec, 35, 37
Decimation-in-frequency FFT algorithm, 184–191

radix-4 development, 195–198
Decimation-in-time FFT algorithm, 191–194
Decode stage, C6x processor pipelining, 67–68
Dependency graph, code optimization, 249–251

Index 331

Difference equations
infinite impulse response filters

sine generation, 174–177
swept sinusoid, 177–179
two tone generation, second-order

equations, 173–174
z-transform, finite impulse response filters,

106–107
Digifilter program, filter design, 304–305
Digital signal processing (DSP)

applications and student projects
acoustic direction tracker, 268–269
adaptive temporal attenuator, 264–266
four-channel multiplexer, fast data

acquisition, 270
FSK modem, 266–267
image processing, 265–266
modified Prony’s method, filter design and

implementation, 266
multirate filter, 269–271
m-law speech companding, 267–268
neural network for signal recognition, 270
phase-locked loop, 261–262
PID controller, 270
RTDX real-time data transfer, 263, 325–327
SB-ADPCM encoder/decoder, G.722 audio

coding, 263–264
video line rate analysis, 270, 272
voice detection and reverse playback, 268
voice scrambler, DMA and user switches,

260–261
development system, 1–2

Code Composer Studio (CCS), 5–7
compiler/assembler/linker shell, 26–30
DSK board configuration, 4
DSK support tools, 2–4
initialization/communication file, 24–26
linker file, 26, 28
TMS320C6711 processor, 4–5
vector file, 26, 27

real-time transfer, DSP/BIOS, 325–327
Direct memory access (DMA)

C6x processor, 81–82
voice scrambler with user switches, 260–261

Discrete Fourier transform (DFT)
radix-2 fast Fourier transform development,

183–184
decimation-in-frequency FFT algorithm,

184–191
decimation-in-time FFT algorithm, 191–

194
real number sequence, 199–201

Discrete signals, finite impulse response filters,
z-transform, 107–108

Division instruction, C6x processor, 85
Dot product

assembly program, 94–97

code optimization, 244–248
software pipelining, 253–258

efficient dot product, 91–92
linear assembly program, 97–99

Double-precision instructions, fixed- and floating-
point format, 84–85

Down-sampling, aliasing effects, 141–143
DSP starter kit (DSK)

board configuration, 4
input/output functions

applications overview, 33–37
PCM3003 stereo codec, 35, 37
TLC320AD535 onboard codec, 34–35

quick test protocol, 7–8
support programs, 24–28

initialization/communication file, 24–26
linker file, 26, 28
vector file, 26, 27

support tools, 2–4

Echo generation, 49–53
Eight-point fast Fourier transform

decimation-in-frequency FFT algorithm,
188–189

decimation-in-time FFT algorithm, 193–194
inverse FFT (IFFT), 198–199

Error signal, adaptive filter structure, 217–218
Euler’s formula, z transform, sinusoidal function,

104
Execute packets (EP), 66–67

pipelining constraints within FP, 88–89
Execute stage, pipelining, 67–68
Execution cycles, code optimization, 258
Exponential function, z transform, 103–104

Factorial, linear assembly function, 99–100
Factorial of number, assembly function calling,

93–94
Fast convolution, fast Fourier transformation,

206–214
Fast data acquisition, four-channel multiplexer,

270
Fast Fourier transform (FFT)

applications, 182
bit reversal, unscrambling, 195
inverse FFT, 198–199
MATLAB support tools, 301–302
programming examples, 199–214

DFT real number sequence, 199–201
fast convolution, 206–214
graphic equalizer, 210–214
overlap-add implementation, 206–214

RADIX-2 development, 183–188
decimation-in-frequency algorithm,

184–191
decimation-in-time algorithm, 191–194

RADIX-4 development, 195–198

Fetch packets (FP), 66–67
interrupt control registers, 77–79
pipelining constraints, more than one EP, 88–89

Filter design and implementation
DSP applications, modified Prony’s method,

266
finite impulse response filters, bandstop and

bandpass, 118–123
Finite impulse response filters

adaptive filter system identification
adaptive FIR for fixed FIR, 227–231
adaptive FIR of fixed IIR, 232–234

C and ASM code programming examples,
116–155

aliasing effects, down-sampling, 141–143
bandstop and bandpass implementation,

118–123
C calling ASM function, 144–147
C calling faster ASM function, 147–148
CCS frequency response plot, 121
circular buffer, C calling ASM function,

148–155
external memory, circular buffer, C calling

ASM function, 153–155
FIR4ways implementation, 136–138
internally generated pseudorandom noise,

129–134
inverse filter implementation, 143–144
lowpass filters, 123–125
lowpass, highpass, bandpass, and bandstop

filter implementation, 125
notch filter, corrupted input voice, 134–136
pseudorandom noise sequence input,

127–129
voice effects, 3
voice scrambler, 138–141

design criteria, 108–110
difference equations, 106–107
DigiFilter design tool, 304–305
discrete signals, 107–108
filter development package, 306
Fourier series implementation, 110–113
MATLAB support tools

GUI filter designer SPTOOL, FIR filter
design, 288–290

student design tool, 292–294
s-plane to z-plane mapping, 105–106
window functions, 114–116

Blackman window, 115
computer-aided approximation, 116
Hamming window, 115
Hanning window, 115
Kaiser window, 116

Fixed- and floating-point format, 83–85
data types, 83–84
division, 85
single- and double-precision, 84–85

332 Index

Fixed-point considerations
binary and two’s-complement representation,

281–284
fractional fixed-point representation, 284–285
multiplication, 285–287

Fixed-point implementation, sum of products
with word wide data access, 242–243

Floating-point processor, fast convolution,
206–210

Four-channel multiplexer, fast data acquisition,
270

Fourier series, finite impulse response filters
design criteria, 110–113
linear phase features, 108–110
window functions, 114–116

FSK modem, DSP applications, 266–267
Functional unit latency, pipelining, 68

G.722 audio encoding, SB-ADPCM
encoder/decoder, 263–264

Global interrupt enable, interrupt control
registers, 78–79

Goldwave shareware, as support tool, 303–304
Graphic equalizer, 210–214

Hamming window
finite impulse response filters, 115
FIR filter design, 306

Hand-coded software pipelining, code
optimization, 249

Hanning window, finite impulse response filters,
115

Highpass filters, finite impulse response filters
design criteria, 112
implementation programming, 125

Image processing, DSP applications, 265–266
Indirect addressing, 69
Infinite impulse response filters

adaptive filter system identification, adaptive
FIR of fixed IIR, 232–234

bilinear transformation, 167–169
C code programming examples, 169–181

inverse filter, 179–181
second-order stages in cascade, 169–173
sine generation, difference equation, 174–177
swept sinusoid, difference equation, 177–179
two tone generation, second-order difference

equations, 173–175
DigiFilter design tool, 305
MATLAB support tools

GUI filter designer SPTOOL, 290–292
student design tool, 294–295

structural properties, 160–167
cascade structure, 164–165
direct form I, 160–161
direct form II, 161–164

Index 333

direct form II transpose, 163–164
parallel structure, 165–167

Initialization/communication file, DSK support
programs, 24–26

Input/output
applications overview, 33–34
PCM3003 stereo codec, 35, 37
TLC320AD535 onboard codec, 34–36

Interactive adaptation, adaptive filter, 224
Interrupt acknowledgment, 80
Interrupt control registers, 77–79
Interrupt-driven program

acknowledgement, 80
control registers, 77–79
DSK initialization/communication file,

24–26
registers, 278–280
XINT0 selection, 79

Interrupt enable register, interrupt control
registers, 77–79

Interrupt flag register, interrupt control registers,
77–79

Interrupt service table, interrupt control registers,
78–79

Intrinsic, C functions, 241
sum of products for, 243

Intrinsics, code improvement, 85
Inverse discrete Fourier transform (IDFT),

198–199
Inverse fast Fourier transform (IFFT), 198–199

MATLAB support tools, 301–302
Inverse filter

FIR implementation, 143–144
infinite impulse response filters, 179–181

Kaiser window
finite impulse response filters, 116
FIR filter design, 306

Laplace transform, finite impulse response filters,
102–103

s-plane to z-plane mapping, 105–106
Least mean squares (LMS) algorithm, adaptive

filter structure, 217–221
Linear adaptive combiner, adaptive filter

structure, 217–218
Linear addressing, 69
Linear assembly, 74–76

dot product, C-callable assembly function,
97–99

factorial, C-callable assembly function, 99–
100

Linear phase features, finite impulse response
filters, 109–110

Linker file, 26, 28
Linker shell, 29–30
Load/store, 73, 88

Lookup table
ramp generation, 48–49
square-wave generation, 47

Loop count, trip directive, 86
Loop kernel, code optimization scheduling table,

251–253
Loop program

buffer data printed to file, 44–46
with interrupt, 38–39
memory buffer, input data storage, 43–44
polling, 39–40

Lowpass filters
finite impulse response filters, design criteria,

112–113
voice effects, FIR, 123–125

Mapping techniques, finite impulse response
filters, s-plane to z-plane mapping,
105–106

MATLAB
adaptive filter for noise cancellation,

224–226
FIR filter implementation, bandpass and

bandstop, 118–123
sine generation with table, 53–55
support tools, 288–302

bilinear transformation, 295–301
FFT and IFFT, 301–302
GUI filter designer SPTOOL

FIR filter design, 288–290
IIR filter design, 290–292

student design tools
FIR filter design, 292–294
IIR filter design, 294–295

Memory buffer, input data storage, 43–44
Memory constraints, 87
Memory models, 83
Memory organization, finite impulse response

filters, 117–118
Memory requirements, 82–83

data alignment, 82
data allocation, 82
models, 83
pragma directives, 83

Modified Prony’s method, filter design and
implementation, 266

Multichannel buffered serial ports (McBSPs),
80–81

Multiplication, fixed-point consideration,
285–287

Multirate filter, 269–271
m-Law speech companding, 267–268

Narrowband interference, adaptive filter for
noise cancellation, wideband signal,
232, 235–236

Neural network, signal recognition, 270, 272

Noise cancellation, adaptive filter, 218–221
programming examples

C code/Borland compiler, 221–224
narrowband interference cancellation, 232,

235–236
noise cancellation, 224–226

Nonmaskable interrupt, interrupt control
registers, 77–79

Notch filters
adaptive filter with two weights, 219
FIR implementation, 134–136

Nyquist frequency, 33–34

Overlap function, fast convolution, 206–210

PCM3003 stereo codec
audio daughter card, 310–324
DSP starter kit (DSK) input/output, 35, 37
programming examples, 315–324

FIR filter implementation, 317–318
interrupt, loop program, 316–317
narrowband interference cancellation,

adaptive predictor, 324
noise cancellation, adaptive FIR filter,

318–324
polling, loop program, 315–316

schematic, audio daughter card, 311–314
Phase-locked loop, student project, 261–263
PID controller, 270
Pipelining

code optimization, 248–258
dependency graph, 249–251
hand-coded procedures, 249
scheduling table, 251–258

C6x processor, 67–68
more than one EP within an FP, 88–89
software, code improvement, 86–87

Polling-based program, 39–42
Pragma directives, 83
Program fetch stage, pipelining, 67–68
Pseudorandom noise

FIR implementation, 127–134
sequence generation, 59–60

Quantization error, 61–63

RADIX-2, fast Fourier transform (FFT), 183–184
decimation-in-frequency algorithm, 184–191
decimation-in-time algorithm, 191–194

RADIX-4, fast Fourier transform algorithm,
195–198

Ramp generation, 48–49
Real-time data transfer

DSP/BIOS and RTDX, 325–327
RTDX applications, 263

Real-time input signal, fast Fourier transform,
201–203

334 Index

Rectangular window, finite impulse response
filters, 114–115

Recursive least squares algorithm, adaptive filter
structure, 220–221

Registers, 68–69
Reset interrupt, interrupt control registers,

77–79
Reverse playback, voice detection, 268
RTDX applications

real-time data transfer, 263
real-time transfer, 325–327

SB-ADPCM encoder/decoder, G.722 audio
encoding, 263–264

Scheduling table, code optimization, 251–252
Scrambler voice filtering and modulation,

138–141
Second-order difference equations, two-tone

generation, 173–175
Second-order stages, infinite impulse response

filter implementation, 169–173
Sigma-delta technology, 4, 35
Signal recognition, neural network, 270
Sign-data LMS algorithm, adaptive filter, 220
Sign-error LMS algorithm, adaptive filter, 220
Sign-sign adaptive filter, 220
Sine generation

amplitude/frequency control sliders, 43
infinite impulse response filters, difference

equations, 174–177
MATLAB table creation, 53–55
polling-based program, 40–42
table values, 53–55

Single-precision instructions, fixed- and floating-
point format, 84–85

Sixteen-point fast Fourier transform
decimation-in-frequency, 189–191
radix-4 development, 196–198

Software pipelining, code improvement, 86–87
s-plane, finite impulse response filters, s-plane to

z-plane mapping, 105–106
Square-wave generation, 47
Stalling effects, C6x processor, pipelining

constraints, 88–89
Student projects, digital signal processing (DSP)

acoustic direction tracker, 268–269
adaptive temporal attenuator, 264–265
four-channel multiplexer, fast data acquisition,

270
FSK modem, 266–267
image processing, 265–266
modified Prony’s method, filter design and

implementation, 266
multirate filter, 269–271
m-law speech companding, 267–268
neural network for signal recognition, 270
phase-locked loop, 261–262

Index 335

PID controller, 270
RTDX real-time data transfer, 263
SB-ADPCM encoder/decoder, G.722 audio

coding, 263–264
video line rate analysis, 270, 272
voice detection and reverse playback, 268
voice scrambler, DMA and user switches,

260–261
Swept sinusoid

8000 points table, 57–59
infinite impulse response filters, 177–179

System identification, adaptive filter, 218–219,
227–234

Taylor series approximation, z transform, finite
impulse response filters, exponential
function, 103–104

Timers, 76
TLC320AD535 onboard codec, 34–36
TMS320C6711 DSP, architecture, 4–5
TMS320C30 processor, 62–63
TMS320C64x proccessor, architecture, 89–90
TMS320C6x processor

architecture, 63–65
instruction set, 71–74, 276–277

assembly code format, 71–72
categories, 72–74

Trip directive, loop count, 86
Two’s-complement representation, fixed-point

considerations, 281–284
Two-tone generation, infinite impulse response

filters, 173–174
Two-weight notch structure, adaptive filter,

219

Unscrambling process, fast Fourier transform, 195
User switches, voice scrambler with DMA,

260–261

Vector file, 26–27
VELOCITI architecture, 66
Very-long-instruction-word (VLIW) architecture,

66–67
Video line rate analysis, 270
Visual Application Builder (VAB), filter design

applications, 306, 308–309
Voice detection, reverse playback, DSP

applications, 268
Voice effects

FIR lowpass filters, 123–125
notch filter recovery, 134–136
scrambler filtering and modulation, 138–141

Voice scrambler, DMA and user switches,
260–261

von Neumann architecture, 61–63

Wideband signal, adaptive filter for noise
cancellation, narrowband interference, 232,
235–236

Window functions, finite impulse response filters,
114–116

XINT0 selection, 79

Z-transform, finite impulse response filters,
102–107

difference equations, 106–107
discrete signals, 107–108
s-plane to z-plane mapping, 105–106

1
DSP Development System

1

• Testing the software and hardware tools with Code Composer Studio
• Use of the TMS320C6711 DSK
• Programming examples to test the tools

Chapter 1 introduces several tools available for digital signal processing (DSP).
These tools include the popular Code Composer Studio (CCS), which provides an
integrated development environment (IDE); the DSP starter kit (DSK) with the
TMS320C6711 floating-point processor onboard and complete support for input
and output. Three examples are included to test both the software and hardware
tools included with the DSK.

1.1 INTRODUCTION

Digital signal processors such as the TMS320C6x (C6x) family of processors are like
fast special-purpose microprocessors with a specialized type of architecture and
instruction set appropriate for signal processing. The C6x notation is used to desig-
nate a member of Texas Instruments’ (TI) TMS320C6000 family of digital signal
processors. The architecture of the C6x digital signal processor is very well suited
for numerically intensive calculations. Based on a very-long-instruction-word
(VLIW) architecture, the C6x is considered to be TI’s most powerful processor.

Digital signal processors are used for a wide range of applications, from com-
munications and controls to speech and image processing. They are found in cellu-
lar phones, fax/modems, disk drives, radio, and so on.These processors have become
the product of choice for a number of consumer applications, since they have
become very cost-effective. They can handle different tasks, since they can be

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

reprogrammed readily for a different application. DSP techniques have been very
successful because of the development of low-cost software and hardware support.
For example, modems and speech recognition can be less expensive using DSP
techniques.

DSP processors are concerned primarily with real-time signal processing. Real-
time processing means that the processing must keep pace with some external event;
whereas non-real-time processing has no such timing constraint. The external event
to keep pace with is usually the analog input. While analog-based systems with dis-
crete electronic components such as resistors can be more sensitive to temperature
changes, DSP-based systems are less affected by environmental conditions such as
temperature. DSP processors enjoy the advantages of microprocessors. They are
easy to use, flexible, and economical.

A number of books and articles have been published that address the importance
of digital signal processors for a number of applications [1–20]. Various tech-
nologies have been used for real-time processing, from fiber optics for very high fre-
quency to DSP processors very suitable for the audio-frequency range. Common
applications using these processors have been for frequencies from 0 to 20kHz.
Speech can be sampled at 8kHz (how quickly samples are acquired), which implies
that each value sampled is acquired at a rate of 1/(8kHz) or 0.125ms. A commonly
used sample rate of a compact disk is 44.1kHz. A/D-based boards in the megahertz
sampling rate range are currently available.

The basic system consists of an analog-to-digital converter (ADC) to capture
an input signal. The resulting digital representation of the captured signal is then
processed by a digital signal processor such as the C6x and then output through a
digital-to-analog converter (DAC).Also included within the basic system is a special
input filter for antialiasing to eliminate erroneous signals, and an output filter to
smooth or reconstruct the processed output signal.

1.2 DSK SUPPORT TOOLS

Most of the work presented in this book involves the design of a program to imple-
ment a DSP application. To perform the experiments, the following tools are used:

1. TI’s DSP starter kit (DSK). The DSK package includes:

(a) Code Composer Studio (CCS), which provides the necessary software
support tools. CCS provides an integrated development environment
(IDE), bringing together the C compiler, assembler, linker, debugger, and
so on.

(b) A board, shown in Figure 1.1a, that contains the TMS320C6711 (C6711)
floating-point digital signal processor as well as a 16-bit codec for input
and output (I/O) support.

(c) A parallel cable (DB25) that connects the DSK board to a PC.

(d) A power supply for the DSK board.

2 DSP Development System

2. An IBM-compatible PC. The DSK board connects to the parallel port of the
PC through the DB25 cable included with the DSK package.

3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer is
optional. Shareware utilities are available that utilize the PC and a sound card
to create a virtual instrument such as an oscilloscope, a function generator, or
a spectrum analyzer.

DSK Support Tools 3

(a)

(b)

FIGURE 1.1. TMS320C6711-based DSK board: (a) board; (b) diagram (Courtesy of Texas
Instruments).

All the files/programs listed and discussed in this book (except the student project
files in Chapter 9) are included on the accompanying disk. Most of the examples
can also run on the fixed-point C6211-based DSK (which has been discontinued).
A list of all the examples is given on pages xv–xviii.

1.2.1 DSK Board

The DSK package is powerful, yet relatively inexpensive ($295), with the necessary
hardware and software support tools for real-time signal processing [21–33]. It is a
complete DSP system. The DSK board, with an approximate dimension of 5 ¥ 8
inches, includes the C6711 floating-point digital signal processor [22] and a 16-bit
codec AD535 for input and output.

The onboard codec AD535 [34] uses a sigma–delta technology that provides
analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC). A
4-MHz clock onboard the DSK connects to this codec to provide a fixed sampling
rate of 8kHz.

A daughter card expansion is also provided on the DSK board. We will illustrate
input and output by plugging an audio daughter card based on the PCM3003 stereo
codec (not included with the DSK package) into an 80-pin connector on the DSK
board.The audio daughter card is available from Texas Instruments and is described
in Appendix F. The PCM3003 codec has variable sample rates up to 72kHz and can
be useful for applications requiring higher sampling rates and two accessible input
and output channels.

The DSK board includes 16MB (megabytes) of synchronous dynamic RAM
(SDRAM) and 128kB (kilobytes) of flash ROM. Two connectors on the board
provide input and output and are labeled IN (J7) and OUT (J6), respectively. Three
of the four user dip switches on the DSK board can be read from a program (a
project example on voice scrambling makes use of these switches). The onboard
clock is 150MHz. Also onboard the DSK are voltage regulators that provide 1.8V
for the C6711 core and 3.3V for its memory and peripherals.

1.2.2 TMS320C6711 Digital Signal Processor

The TMS320C6711 (C6711) is based on the very-long-instruction-word (VLIW)
architecture, which is very well suited for numerically intensive algorithms. The
internal program memory is structured so that a total of eight instructions can be
fetched every cycle. For example, with a clock rate of 150MHz, the C6711 is capable
of fetching eight 32-bit instructions every 1/(150MHz) or 6.66ns.

Features of the C6711 include 72kB of internal memory, eight functional or exe-
cution units composed of six ALUs and two multiplier units, a 32-bit address bus to
address 4GB (gigabytes), and two sets of 32-bit general-purpose registers.

The C67xx (such as the C6701 and C6711) belong to the family of the C6x
floating-point processors; whereas the C62xx and C64xx belong to the family of
the C6x fixed-point processors. The C6711 is capable of both fixed- and floating-

4 DSP Development System

point processing. The architecture and instruction set of the C6711 are discussed in
Chapter 3.

1.3 CODE COMPOSER STUDIO

The Code Composer Studio (CCS) provides an integrated development environ-
ment (IDE) to incorporate the software tools. CCS includes tools for code genera-
tion, such as a C compiler, an assembler, and a linker. It has graphical capabilities
and supports real-time debugging. It provides an easy-to-use software tool to build
and debug programs.

The C compiler compiles a C source program with extension .c to produce an
assembly source file with extension.asm. The assembler assembles an.asm source
file to produce a machine language object file with extension.obj. The linker com-
bines object files and object libraries as input to produce an executable file with
extension.out. This executable file represents a linked common object file format
(COFF), popular in Unix-based systems and adopted by several makers of digital
signal processors [21]. This executable file can be loaded and run directly on the
C6711 processor.

To create an application project, one can “add” the appropriate files to the
project. Compiler/linker options can readily be specified. A number of debugging
features are available, including setting breakpoints and watching variables, viewing
memory, registers, and mixed C and assembly code, graphing results, and monitor-
ing execution time. One can step through a program in different ways (step into, or
over, or out).

Real-time analysis can be performed using real-time data exchange (RTDX)
associated with DSP/BIOS (Appendix G). RTDX allows for data exchange between
the host and the target and analysis in real time without stopping the target. Key
statistics and performance can be monitored in real time. Through the Joint Team
Action Group (JTAG), communication with on-chip emulation support occurs to
control and monitor program execution. The C6711 DSK board includes a JTAG
emulator interface.

1.3.1 CCS Installation and Support

Use the parallel (printer) cable DB25 to connect the DSK board (J2) to the paral-
lel port on the PC, such as LPT1 or LPT2. Use the 5-V adapter included with the
DSK package to connect to the power connector J4, to turn on the DSK. Install
CCS with the CD-ROM included with the DSK, preferably using the c:\ti
structure (as default).

The CCS icon should be on the desktop as “CCS 2 [’C 6000]” and is used to launch
CCS.The code generation tools (C compiler, assembler, linker) Version 4.1 are used.

On power, the three LEDs located near the four user dip switches should count
from 1 to 7 (binary).

Code Composer Studio 5

CCS provides useful documentations included with the DSK package on the
following (see the Help icon):

1. Code generation tools (compiler, assembler, linker, etc.)

2. Tutorials on CCS, compiler, RTDX, advanced DSP/BIOS

3. DSP instructions and registers

4. Tools on RTDX, DSP/BIOS, and so on.

An extensive amount of support material (pdf files) is included with CCS (see
Refs. 22 to 34). There are also a few examples included with CCS, such as a confi-
dence test example for the DSK, an audio example, and an example associated with
the onboard flash.

CCS Version 2 was used to build and test the examples included in this book. A
number of files included in the following subfolders/directories within c:\ti can
be very useful:

1. docs: contains documentation and manuals.

2. myprojects: supplied for your projects. All the programs and projects dis-
cussed in this book can be placed within this subdirectory.

3. c6000\cgtools: contains code generation tools.

4. bin: contains many utilities.

5. c6000\examples: contains examples included with CCS.

6. c6000\RTDX: contains support files for real-time data transfer.

7. c6000\bios: contains support files for DSP/BIOS.

1.3.2 Useful Types of Files

You will be working with a number of files with different extensions. They include:

1. file.pjt: to create and build a project named file.

2. file.c: C source program.

3. file.asm: assembly source program created by the user, by the C compiler,
or by the linear optimizer.

4. file.sa: linear assembly source program. The linear optimizer uses file.sa
as input to produce an assembly program file.asm.

5. file.h: header support file.

6. file.lib: library file, such as the run-time support library file
rts6701.lib.

7. file.cmd: linker command file that maps sections to memory.

8. file.obj: object file created by the assembler.

6 DSP Development System

9. file.out: executable file created by the linker to be loaded and run on the
processor.

1.4 PROGRAMMING EXAMPLES TO TEST THE DSK TOOLS

Three programming examples are introduced to illustrate some of the features of
CCS and the DSK board. The primary focus is to become familiar with both the
software and hardware tools. It is strongly suggested that you complete these three
examples before proceeding to subsequent chapters.

1.4.1 Quick Test of DSK

Launch CCS from the icon on the desktop. Press GEL Æ Check DSK Æ Quick
Test. The Quick Test can be used for confirmation of correct operation and instal-
lation. The following message is then displayed:

Switches: 7

Revision: 2

Target is OK

This assumes that the first three switches, USER_SW1, USER_SW2, and
USER_SW3, are all in the up (ON) position. Change the switches to (1 1 0 x)2 so that
the first two switches are up (press the third switch down). The fourth switch is not
used.

Repeat the procedure to select GEL Æ Check DSK Æ Quick Test and verify
that the value of the switches is now 3 (with the display “Switches: 3”). You can set
the value of the first three user switches from 0 to 7. Within your program you can
then direct the execution of your code based on these eight values. Note that the
Quick Test cycles the LEDs three times.

A confidence test program example is included with the DSK to test and verify
proper operation of the major components of the DSK, such as interrupts, LEDs,
SDRAM, DMA, serial ports, and timers.

Alternative Quick Test of DSK

1. Open/launch CCS from the icon on the desktop. Select File Æ Load Program.
Access the accompanying disk. Click on the folder sine8_intr to Open
(load) the file sine8_intr.out. This loads the executable file
sine8_intr.out into the C6711 processor.

2. Select Debug Æ Run. Connect the OUT (connector J6) on the DSK board to
a speaker or to an oscilloscope and verify the generation of a 1-kHz tone. The
IN/OUT connectors (J7/J6) on the DSK board use a 3.5-mm jack audio cable.

Programming Examples to Test the DSK Tools 7

The folder sine8_intr contains the necessary files to implement Example 1.1,
which introduces some features of the tools.

1.4.2 Support Files

Create a new folder within your PC hard drive and name it sine8_intr. It is rec-
ommended that you place this folder in c:\ti\myprojects (it is assumed that
you have installed CCS in c:\ti). Some of the same support files that are used in
many examples in this book are included on the accompanying disk in the folder
Support. For now, don’t worry too much about the content or functions of these
files. Additional support files are included in the CCS CD with the DSK package.
Copy the following support files from the folder Support (on the accompanying
disk) into the folder sine8_intr that you created in your hard drive:

1. C6xdsk.cmd: sample linker command file.

2. C6xdsk.h: header file that defines addresses of external memory interface,
the serial ports, etc. (TI support file included with CCS).

3. C6xinterrupts.h: contains init functions for interrupt (TI support file
included with the DSK).

4. C6xdskinit.h: header file with the function prototypes.

5. C6xdskinit.c: contains several functions used for the example
codec_poll included with CCS. It includes functions to initialize the DSK,
the codec, the serial ports, and for input/output.

6. Vectors_11.asm: version of vectors.asm included with CCS, but modi-
fied to handle interrupts. Twelve interrupts, INT4 through INT15, are avail-
able, and INT11 is selected within this vector file.

Also copy the C source file sine8_intr.c and the GEL file amplitude.gel from
the disk (sine8_intr folder) into the folder sine8_intr on your hard drive.

Note: If you are using a C6211 DSK (which has been discontinued), change
XINT0 to XINT1 within the function comm_intr in the file C6xdskinit.c. This
is due to a silicon bug associated with the C6211.

1.4.3 Examples

Example 1.1: Sine Generation with Eight Points (sine8_intr)

This example generates a sinusoid using a table-lookup method. More important, it
illustrates some features of CCS for editing, building a project, accessing the code
generation tools, and running a program on the C6711 processor. The C source
program sine8_intr.c shown in Figure 1.2 implements the sine generation.

8 DSP Development System

Program Consideration
Although the focus is to illustrate some of the tools, it is useful to understand the
program sine8_intr.c. A table or buffer sin_table is created and filled with
eight points representing sin(t), where t = 0, 45, 90, 135, 180, 225, 270, and 315 degrees
(scaled by 1000). Within the function main, another function comm_intr is called
that is located in the communication support file c6xdskinit.c. It initializes the
DSK, the AD535 codec onboard the DSK, and the two multichannel buffered serial
ports (McBSPs) on the C6711 processor.

The statement while (1) within the function main creates an infinite loop
to wait for an interrupt to occur. On interrupt, execution proceeds to the inter-
rupt service routine (ISR) c_int11. This ISR address is specified in the file
vectors_11.asm with a branch instruction to this address, using interrupt INT11.
Interrupts are discussed in more detail in Chapter 3.

Within the ISR, the function output_sample, located in the communication
support file C6xdskinit.c, is called to output the first data value in the buffer or
table sin_table[0] = 0. The loop index is incremented until the end of the
table is reached, after which case it is reinitialized to zero. Execution returns from
ISR to the while(1) infinite loop to wait for the next interrupt to occur.

An interrupt occurs every sample period T = 1/Fs = 1/8000 = 0.125ms. Every
sample period 0.125ms, an interrupt occurs, ISR is accessed, and a subsequent data
value in sin_table (scaled by amplitude = 10) is sent for output. Within one
period, eight data values (0.125ms apart) are output to generate a sinusoidal signal.

Programming Examples to Test the DSK Tools 9

//sine8_intr.c Sine generation using 8 points, f=Fs/(# of points)

//Comm routines and support files included in C6xdskinit.c

short loop = 0;

short sin_table[8] = {0,707,1000,707,0,-707,-1000,-707}; //sine values

short amplitude = 10; //gain factor

interrupt void c_int11() //interrupt service routine

{

output_sample(sin_table[loop]*amplitude); //output each sine value

if (loop < 7) ++loop; //increment index loop

else loop = 0; //reinit index @ end of buffer

return; //return from interrupt

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 1.2. Sine generation program using eight points (sine8_intr.c).

The period of the output signal is T = 8(0.125ms) = 1ms, corresponding to a fre-
quency of f = 1/T = 1kHz.

Create Project
In this section we illustrate how to create a project, adding the necessary files for
building the project sine8_intr. Access CCS (from the desktop).

1. To create the project file sine8_intr.pjt. Select Project Æ New. Type
sine8_intr for project name as shown in Figure 1.3a. This project file is
saved in sine8_intr (the folder you created in c:\ti\myprojects). The
.pjt file stores project information on build options, source filenames, and
dependencies.

2. To add files to project. Select Project Æ Add Files to Project. Look in
sine8_intr, Files of type C Source Files. Open the two C source files
C6xdskinit.c and sine8_intr.c. Open (to add to project) one file at a
time; or place the cursor to one of these files, then to the other while holding
the Shift key, and press Open. Click on the “+” symbol on the left of the Project
Files window within CCS to expand and verify that the two C source files have
been added to the project.

3. Select Project Æ Add Files to Project. Look in sine8_intr. Use the pull-
down menu for Files of type: and select ASM Source Files. Double-click on
the assembly source file vectors_11.asm to open/add it to the project.

4. Repeat step 3 but select Files of type: Linker Command File, and add the
linker command file C6xdsk.cmd to the project.

5. Repeat step 3, but select Files of type: Object and Library Files. Look in
c:\ti\c6000\cgtools\lib and select the run-time support library file
rts6701.lib (which supports the C67x/C62x architecture) to add to the
project. This assumes that you used the default destination of c:\ti when
you installed CCS.

6. Verify that the linker command (.cmd) file, the project (.pjt) file, the library
(.lib) file, the two C source (.c) files, and the assembly (.asm) file have
been added to the project. The GEL file dsk6211_6711.gel is added auto-
matically when you create the project. It initializes the DSK.

7. Note that there are no “include” files yet. Select Project Æ Scan All Depen-
dencies. This adds/includes the header files: C6xdsk.h, C6xdskinit.h,
C6xinterrupts.h, and C6x.h. The first three header files were copied
(transferred) from the accompanying disk, and C6x.h is included with CCS.

The Files window in CCS should look as in Figure 1.3b. Any of the files (except
the library file) from CCS’s Files window can be displayed by clicking on it. You
should not add header or include files to the project. They are added to the project
automatically when you select: Scan All Dependencies.

10 DSP Development System

It is also possible to add files to a project simply by “dragging” the file (from a
different window) and dropping it into the CCS Project window.

Code Generation and Options
Various options are associated with the code generation tools: C compiler and linker
to build a project.

Programming Examples to Test the DSK Tools 11

(a)

(b)

FIGURE 1.3. CCS Project View window for sine8_intr: (a) creating project; (b) pro-
ject files.

Compiler Option. Select Project Æ Build Options. Figure 1.4a shows CCS window
Build Options for the compiler. Select the following for the compiler option: (a)
Basic (for Category), (b) Default (for Target Version), (c) Full Symbolic Debug (for
Generate Debug Info), (d) Speed most critical (for Opt Speed vs. size), (e) None
(for Opt Level and Program Level Opt). The resulting compiler option is

–gks

The –k option is to keep the assembly source file sine8_intr.asm. The –g option
is to enable symbolic debugging information, useful during the debugging process,
and used in conjunction with the option –s to interlist the C source file with the
assembly source file sine8_intr.asm. generated. The –g option disables many
code optimizations to facilitate the debugging process.

Selecting “Default” for Target Version invokes a fixed-point implementation.
(If you have a C6211 DSK, you must use this option.) The C6711-based DSK can
use either fixed- or floating-point processing. Most examples implemented in this
book can run using fixed-point processing. You will need to select C671x to invoke
a floating-point implementation for the examples in Chapter 6 and 7.

If No Debug is selected (for Generate Debug Info), and –o3:File is selected
(for Opt Level), the Compiler option is automatically changed to

–ks –o3

The –o3 option invokes the highest level of optimization for performance or exe-
cution speed. For now, speed is not critical (neither is debugging). Use the compiler
option –gks (you can type it directly in the compiler command window). Initially,
one would not optimize for speed but to facilitate debugging. There are a number
of compiler options described in Ref. 26.

Linker Option. Click on Linker (from CCS Build Options) and select Absolute
Executable (for Output Module), sine8_intr.out (for Output Filename), and
Run-time Autoinitialization (for Autoinit Model). The output filename defaults to
the name of the .pjt filename. The linker option should be displayed as in Figure
1.4(b)

–g –c –o “sine8_intr.out” –x

The –c option is used to initialize variables at run time, and the –o option is to
name the linked executable output file sine8_intr.out. Press OK.

Note that you can choose to store the executable file within a subfolder “Debug,”
especially during the debugging stage of a project.

Again, these various options can be typed directly within the appropriate
command windows.

12 DSP Development System

Programming Examples to Test the DSK Tools 13

(b)

FIGURE 1.4. CCS Build options: (a) compiler; (b) linker.

(a)

Building and Running the Project
The project sine8_intr can now be built and run.

1. Build this project as sine8_intr. Select Project Æ Rebuild All. Or press
the toolbar with the three down arrows. This compiles and assembles all the
C files using cl6x and assembles the assembly file vectors_11.asm using
asm6x. The resulting object files are then linked with the run-time library
support file rts6701.lib using lnk6x. This creates an executable file
sine8_intr.out that can be loaded into the C6711 processor and run. Note
that the commands for compiling, assembling, and linking are performed with
the Build option. A log file cc_build_Debug.log is created that shows the
files that are compiled and assembled, along with the compiler options
selected. It also lists the support functions that are used. Figure 1.5 shows
several windows within CCS for the project sine8_intr.

2. Select File Æ Load Program in order to load sine_intr.out by clicking on
it (CCS includes an option to load the program automatically after a build).
It should be in the project sine8_intr folder. Select Debug Æ Run, or use
the toolbar with the “running man.” Connect a speaker to the OUT con-
nector (J6) on the DSK. You should hear a tone.

14 DSP Development System

FIGURE 1.5. CCS windows for project sine8_intr.

The sampling rate Fs of the codec is fixed at 8kHz. The frequency gener-
ated is f = Fs/(number of points) = 8kHz/8 = 1kHz. Connect the output of the
DSK to an oscilloscope to verify a 1-kHz sinusoidal signal with an amplitude
of approximately 0.85V p-p (peak to peak).

Monitoring the Watch Window
Verify that the processor is still running. Note the indicator “DSP RUNNING” at
the bottom left of CCS. The Watch window allows you to change the value of a
parameter or to monitor a variable:

1. Select View Æ Quick Watch window, which should be displayed on the lower-
section of CCS.Type amplitude, then click on “Add to Watch.”The amplitude
value of 10 set in the program in Figure 1.2 should appear in the Watch window.

2. Change amplitude from 10 to 30.

3. Verify that the volume of the generated tone has increased (note that the
processor was still running). The amplitude of the sine wave has increased
from approximately 0.85V p-p to approximately 2.6V p-p.

4. Change amplitude to 33 (as in step 2). Verify a higher-pitch tone, which
implies that the frequency of the sine wave has changed just by changing its
amplitude. This is not so. You have overflowed the capacity of the 16-bit codec
AD535. Since the values in the table are scaled by 33, the range of these values
is now between + and -33,000. The range of output values is limited from -215

to (215 - 1), or from -32,768 to +32,767, due to the AD535 codec. Don’t attempt
to send more than 16 bits’ worth of data to the codec. The onboard codec uses
a 2’s-complement format.

Correcting Program Errors

1. Delete the semicolon in the statement

short amplitude = 10;

If the C source file sine8_intr is not displayed, double-click on it (from the
Files window).

2. Select Debug Æ Build to perform an incremental build or use the toolbar with
the two (not three) arrows. The incremental build is chosen so that only the
C source file sine8_intr.c is compiled. With the Rebuild option (toolbar
with three arrows), files compiled and/or assembled previously would again
go through this unnecessary process.

3. An error message, highlighted in red, stating that a “;” is expected, should
appear in the Build window of CCS (lower left). You may need to scroll-up
the Build window for a better display of this error message. Double-click on
the highlighted error message line. This should bring the cursor to the section
of code where the error occurs. Make the appropriate correction, Build again,
Load, and Run the program to verify your previous results.

Programming Examples to Test the DSK Tools 15

Applying the Slider Gel File
The General Extension Language (GEL) is an interpretive language similar to (a
subset of) C. It allows you to change a variable such as amplitude, sliding through
different values while the processor is running. All variables must first be defined
in your program.

1. Select File Æ Load GEL and open the file amplitude.gel, that you copied
(from the accompanying disk) into the folder sine8_intr. Double-click on
the file amplitude.gel to view it within CCS. It should be displayed in the
Files window. This file is shown in Figure 1.6. By creating the slider function
amplitude shown in Figure 1.6, you can start with an initial value of 10 (first
value) for the variable amplitude that is set in the C program, up to a value
of 35 (second value), incremented by 5 (third value).

2. Select GEL Æ Sine Amplitude Æ Amplitude. This should bring out the
Slider window shown in Figure 1.7, with the minimum value of 10 set for
amplitude.

3. Press the up-arrow key to increase the amplitude value from 10 to 15, as dis-
played in the Slider window. Verify that the volume of the sine wave gener-
ated has increased. Press the up-arrow key again to continue increasing the
slider, incrementing by 5 up to 30. The amplitude of the sine wave should be
about 2.6V p-p with an amplitude value set at 30. Now use the mouse to click
on the Slider window and slowly increase the slider position to 31, then 32,
and verify that the frequency generated is still 1kHz. Increase the slider to 33
and verify that you are no longer generating a 1-kHz sine wave (rather a signal
with two tones: 1 and 3kHz). The table values, scaled by amplitude, are now
between + and -33,000 (beyond the acceptable range by the codec).

Two sliders can readily be used, one to change the amplitude and the other to
change the frequency. A different frequency can be generated by changing the loop
index within the C program (e.g., stepping through every two points in the table;
see Example 2.4). When you exit CCS after you build a project, all changes made
to the project can be saved. You can later return to the project with the status as
you left it before.

16 DSP Development System

/*Amplitude.gel Create slider and vary amplitude of sinewave*/

menuitem “Sine Amplitude”

slider Amplitude(10,35,5,1,amplitudeparameter) /*start at 10,up to 35*/

{

amplitude = amplitudeparameter; /*vary amplit of sine*/

}

FIGURE 1.6. GEL file to “slide” through different amplitude values in the sine generation
program (amplitude.gel).

Example 1.2: Generation of Sinusoid and Plotting with CCS (sine8_buf)

This example generates a sinusoid with eight points, as in Example 1.1. More impor-
tant, it illustrates CCS capabilities for plotting in both time and frequency domains.
The program sine8_buf.c (Figure 1.8), implements this project. This program
creates a buffer to store the output data in memory.

Create this project as sine8_buf.pjt, add the necessary files to the project as
in Example 1.1 (use sine8_buf.c in lieu of sine8_intr.c). Note that the
necessary header support files are added to the project by selecting Project Æ
Scanning All Dependencies. All of the support files for this project are in the
folder sine8_buf (on disk).

Build this project as sine8_buf. Load and run the executable file
sine8_buf.out and verify that a 1-kHz sinusoid is generated with the output
connected to a speaker or a scope (as in Example 1.1).

Plotting with CCS
The output buffer is being updated continuously every 256 points (you can readily
change the buffer size). Use CCS to plot the current output data stored in the buffer
out_buffer.

1. Select View Æ Graph Æ Time/Frequency.

2. Change the Graph Property Dialog so that the options in Figure 1.9a are
selected for a time-domain plot (use the pull-down menu when appropriate).
The starting address of the output buffer is out_buffer. The other options
can be left as default. Figure 1.10 shows a time-domain plot of the sinusoidal
signal.

Programming Examples to Test the DSK Tools 17

FIGURE 1.7. CCS slider window for varying the amplitude of a sine wave.

18 DSP Development System

//sine8_buf Sine generation. Output buffer plotted within CCS

//Comm routines and support files included in C6xdskinit.c

short loop = 0;

short sine_table[8] = {0,707,1000,707,0,-707,-1000,-707}; //sine values

short out_buffer[256]; //output buffer

const short BUFFERLENGTH = 256; //size of output buffer

short i = 0; //for buffer count

interrupt void c_int11() //interrupt service routine

{

output_sample(sine_table[loop]); //output each sine value

out_buffer[i] = sine_table[loop]; //output to buffer

i++; //increment buffer count

if (i == BUFFERLENGTH) i = 0; //if bottom reinit buffer count

if (loop < 7) ++loop; //increment index loop

else loop = 0; //if end of buffer,reinit index

return;

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

(a)

(b)

FIGURE 1.9. CCS Graph Property Dialog for sine8_buf: (a) for time-domain plot;
(b) for frequency-domain plot.

FIGURE 1.8. Sine generation with output stored in memory also (sine8_buf.c).

3. Figure 1.9b shows CCS’s Graph Property Display for a frequency-domain plot.
Choose an FFT order so that 2order is the frame size. Press OK and verify that
the FFT magnitude plot is as shown in Figure 1.10. The spike at 1000Hz
represents the frequency of the sinusoid generated.

Note: To change the screen size, right-click on the Build window and deselect
Allow Docking. You can then obtain many different windows within CCS.

Example 1.3: Dot Product of Two Arrays (dotp4)

Operations such as addition/subtraction and multiplication are the key operations
in a digital signal processor. A very important operation is the multiply/accumulate,
which is useful in a number of applications requiring digital filtering, correlation,
and spectrum analysis. Since the multiplication operation is executed so commonly
and is so essential for most digital signal processing algorithms, it is important that
it executes in a single cycle. With the C6x we can actually perform two multiply/
accumulate operations within a single cycle.

This example illustrates additional features of CCS, such as single-stepping and
profiling for benchmark. The focus here is to become still more familiar with the

Programming Examples to Test the DSK Tools 19

1.3e+5

1.2e+5

1.0e+5

9.0e+4

7.7e+4

6.4e+4

5.1e+4

3.8e+4

2.6e+4

1.3e+4

0
0 1000 2000 3000

FIGURE 1.10. CCS windows with both time- and frequency-domain plots of a 1-kHz sine
wave.

tools. We invoke the C compiler optimization to see how performance or execution
speed can be drastically increased.

The C source file dotp4.c (Figure 1.11) takes the sum of products of two arrays,
each array with four numbers, contained in the header file dotp4.h (Figure 1.12).
The first array contains the four numbers 1, 2, 3, and 4, and the second array con-
tains the four numbers 0, 2, 4, and 6. The sum of products is (1 ¥ 0) + (2 ¥ 2) +
(3 ¥ 4) + (4 ¥ 6) = 40.

The program can readily be modified to handle a larger set of data. No real-time
implementation is used in this example, and no real-time I/O support files are

20 DSP Development System

//Dotp4.c Multiplies two arrays, each array with 4 numbers

int dotp(short *a, short *b, int ncount); //function prototype

#include <stdio.h> //for printf

#include “dotp4.h” //data file of numbers

#define count 4 //# of data in each array

short x[count] = {x_array}; //declara 1st array

short y[count] = {y_array}; //declara 2nd array

main()

{

int result = 0; //result sum of products

result = dotp(x,y,count); //call dotp function

printf(“result = %d (decimal) \n”, result); //print result

}

int dotp(short *a, short *b, int ncount) //dot product function

{

int sum = 0; //init sum

int i;

for (i = 0; i < ncount; i++)

sum += a[i] * b[i]; //sum of products

return(sum); //return sum as result

}

FIGURE 1.11. Sum-of-products program using C code (dotp4.c).

//dotp4.h Header file with two arrays of numbers

#define x_array 1,2,3,4

#define y_array 0,2,4,6

FIGURE 1.12. Header file with two arrays each with four numbers (dotp4.h).

needed. The support functions for interrupts are not needed here. The vector file
used in this example is less extensive, as shown in Figure 1.13.

Create and build this project as dotp4 and add the following files to the project
as in Example 1.1:

1. dotp4.c: C source file

2. vectors.asm: vector file defining entry address c_int00

3. C6xdsk.cmd: linker command file

4. rts6701.lib: library file

Do not add any “include” files using “Add Files to Project” since they are added
by selecting Project Æ Scan All Dependencies. The header file stdio.h is needed
due to the printf statement in the program dotp4.c to print the result.

Implementing a Variable Watch

1. Select Project Æ Options:

Compiler: –gs

Linker: –c –o dotp4.out

2. Rebuild All by selecting the toolbar with the three arrows (or select Debug
Æ Build).

3. Select View Æ Quick Watch. Type sum to watch the variable sum, and click
on “Add to Watch.” A message “identifier not found” associated with sum is
displayed (as Value) because this local variable “does not exist” yet since we
are still in the function main.

4. Set a breakpoint at the line of code

sum += a[i] * b[i];

Programming Examples to Test the DSK Tools 21

*Vectors.asm Vector file for non-interrupt driven program

.title “vectors.asm”

.ref _c_int00 ;reference entry address

.sect “vectors” ;in vector section

rst: mvkl .s2 _c_int00,b0 ;lower 16 bits —> b0

mvkh .s2 _c_int00,b0 ;higher 16 bits —> b0

b .s2 b0 ;branch to entry address

nop ;5 NOPs for rest of fetch packet

nop

nop

nop

nop

FIGURE 1.13. Vector file for non-interrupt-driven program (vectors.asm).

by placing the mouse cursor (clicking) on that line, then right-click and
select Toggle breakpoint. A circle on the left of that line of code should
appear.

5. Select Debug Æ Run (or use the “running man” toolbar). The program exe-
cutes up to the line of code with the set breakpoint. A yellow arrow will also
point to that line of code.

6. Single-step using F8 (or use the toolbar). Repeat or continue to single-step
and observe/watch the variable sum change in value to 0, 4, 16, 40. Select
Debug Æ Run, and verify that the resulting value of sum is printed as

sum = 40 (decimal)

7. Note the printf statement in the C program dotp4.c for printing the
result. Such statement should be avoided, since it can take 3000 cycles to
execute.

Animating

1. Select Debug Æ Reset CPU Æ File Æ Reload Program to reload the exe-
cutable file dotp4.out.

2. Again set the breakpoint as in the same line of code as before. Select Debug
Æ Animate. Observe the variable sum change in values through the Watch
window. The speed of animation can be controlled by selecting Option Æ
Customize Æ Animate Speed.

Benchmarking without Optimization (Profiling)
In this section we illustrate how to benchmark a section of code: in this case, the
dotp function. Verify that the same options for the compiler (–gs), and linker
(–c –o dotp4.out) are still set.To profile code, you must use the compiler option
–g for symbolic debugging information. Remove any breakpoint by clicking on the
line of code with the breakpoint, right-click, and select Toggle breakpoint.

1. Select Debug Æ Reset CPU Æ File Æ Reload program, to reload the exe-
cutable file.

2. Select Profiler Æ Start New Session, and enter dotp4 as the Profile Session
Name. Then press OK.

3. Click on the icon to “Create Profile Area” which is the fourth icon from the
top left in Figure 1.14b. Figure 1.14b shows the added profile area for the func-
tion dotp within the C source file dotp4.c.

4. Run the program. Verify the results shown in Figure 1.14b. This indicates that
it takes 138 cycles to execute the function dotp (with no optimization).

22 DSP Development System

FIGURE 1.14. CCS display of project dotp4 for profiling: (a) profile area of code lines 18–26;
(b) profiling function dotp with no optimization; (c) profiling function dotp with optimization.

(a)

(b)

(c)

23

Benchmarking with Optimization (Profiling)
In this section we illustrate how to optimize using one of the optimization options
–o3.The program’s execution speed can be increased by the optimizing C compiler.
Change the compiler option (select Project Æ Build Options) to

–g –o3

and use the same linker options as before (you can type this option directly). The
option –o3 invokes the highest level of compiler optimization. Various compiler
options are described in Ref. 26. Rebuild All (toolbar with three arrows) and load
the executable file (select File Æ Load Program) dotp4.out. Note that after the
executable file is loaded, the entry address for execution is c_int00, as can be ver-
ified by the disassembled file.

Select Debug Æ Run. Verify that it takes now 30 cycles (from 138) to execute
the dotp function, as shown in Figure 1.14c. This is a considerable improvement
using the C compiler optimizer. We further optimize the dot product example
using an intrinsic function in Chapter 3 and code optimization techniques in
Chapter 8.

1.5 SUPPORT PROGRAMS/FILES CONSIDERATIONS

The following support files are used for practically all the examples in this book:
(1) C6xdskinit.c, (2) Vectors_11.asm, and (3) C6xdsk.cmd. For now, the
emphasis associated with these files should be on using them.

1.5.1 Initialization/Communication File (C6xdskinit.c)

The function comm_intr within main in the C source program is located in the
communication file c6xdskinit.c, a partial listing of which is shown in Figure
1.15. The DSK is initialized, then the transmit interrupt INT11 is configured and
enabled.

Two functions for input and output are also included in this communication
support file. The function input_sample returns the input data value from
mcbsp0_read,and the function output_sample calls mcbsp0_write for output.

Interrupt-Driven Program
With an interrupt-driven program, an interrupt is selected (we selected INT11). The
nonmaskable interrupt bit must be enabled as well as the Global Interrupt Enable
(GIE) bit. The appropriate support functions for interrupts are within the support
file C6xdskinterrupts.h and are called from the function comm_intr within
the file C6xdskinit.c.

24 DSP Development System

//C6xdskinit.c Partial listing. Init DSK,AD535,McBSP

#include <c6x.h>
#include “c6xdsk.h”
#include “c6xdskinit.h”
#include “c6xinterrupts.h”

void mcbsp0_write(int out_data) //function for writing
{
int temp;

if (polling) //bypass if interrupt-driven
{
temp = *(unsigned volatile int *)McBSP0_SPCR & 0x20000;
while (temp == 0)

temp = *(unsigned volatile int *)McBSP0_SPCR & 0x20000;
}
*(unsigned volatile int *)McBSP0_DXR = out_data;
}

int mcbsp0_read() //function for reading
{
int temp;

if (polling) //bypass if interrupt-driven
{
temp = *(unsigned volatile int *)McBSP0_SPCR & 0x2;
while (temp == 0)

temp = *(unsigned volatile int *)McBSP0_SPCR & 0x2;
}
temp = *(unsigned volatile int *)McBSP0_DRR;
return temp;
}

void comm_poll() //communication with polling
{

polling = 1; //setup for polling
c6x_dsk_init(); //call init DSK function

}

void comm_intr() //communication with interrupt
{
polling = 0; //if interrupt-driven
c6x_dsk_init(); //call init DSK function
config_Interrupt_Selector(11,XINT0); //using transmit interrupt INT11
enableSpecificINT(11); //for specific interrupt
enableNMI(); //enable NMI
enableGlobalINT(); //enable GIE global interrupt
mcbsp0_write(0); //write to SP0

}

void output_sample(int out_data) //added function for output
{
mcbsp0_write(out_data & 0xfffe); //mask out LSB

}

int input_sample() //added function for input
{

return mcbsp0_read(); //read from McBSP0
}

FIGURE 1.15. Partial listing of communication support program (C6xdskinit.c).

25

Polling-Based Program
A polling-based program (non-interrupt driven) continuously polls or tests whether
or not data are ready to be received or transmitted.This scheme is less efficient than
the interrupt scheme. Within the input read function mcbsp0_read, the content of
the serial port control register (SPCR) is ANDed with 0x2 to test bit 1 (second
LSB) of the register, as shown in Figure B.8 (Appendix B). Within the output write
function mcbsp0_write, SPCR is ANDed with 0x20000 to test bit 17. An input
data value is accessed through the data receive register of the multichannel buffered
serial port (McBSP). An output data value is sent through the data transmit regis-
ter of McBSP.

We use the polling scheme later in several examples to control the input and
output data rate. Most examples are interrupt driven. Interrupts are discussed in
Chapter 3. For now, INT11 is generated via the serial port (McBSP).

1.5.2 Vector File (vectors_11.asm)

To select interrupt INT11, a branch instruction to the interrupt service routine (ISR)
c_int11 located in the C program (sine8_intr.c or sine8_buf.c) is placed
at the address INT11 in vectors_11.asm. A listing of the file vectors_11.asm
is shown in Figure 1.16. Note the underscore preceding the name of the routine
or function being called. The ISR is also referenced in vectors_11.asm using
.ref _c_int11.

For a non-interrupt-driven vector program, modify vectors_11.asm:

1. Delete the reference to the interrupt service routine (ISR) .ref _c_int11.

2. For interrupt INT11, replace the branch instruction to the ISR by NOP.

1.5.3 Linker File (C6xdsk.cmd)

The linker command file C6xdsk.cmd is listed in Figure 1.17. It shows that sections
such as .text and .stack reside in IRAM, which is mapped to the internal
memory of the C6711 digital signal processor. It can be used as a generic sample
linker command file even though some portion of it is not necessary. In Chapter 4
we show an example of the use of external RAM using SDRAM which starts at the
address 0x80000000.

1.6 COMPILER/ASSEMBLER/LINKER SHELL

In previous examples the code generation tools for compiling, assembling, and
linking were invoked within CCS while building a project. The tools may also be
invoked directly outside CCS, using a DOS shell.

26 DSP Development System

*Vectors_11.asm Vector file for interrupt-driven program
.ref _c_int11 ;ISR used in C program
.ref _c_int00 ;entry address
.sect “vectors” ;section for vectors

RESET_RST: mvkl .S2 _c_int00,B0 ;lower 16 bits —> B0
Mvkh .S2 _c_int00,B0 ;upper 16 bits —> B0
B .S2 B0 ;branch to entry address
NOP ;NOPs for remainder of FP
NOP ;to fill 0x20 Bytes
NOP
NOP
NOP

NMI_RST: .loop 8
NOP ;fill with 8 NOPs
.endloop

RESV1: .loop 8
NOP
.endloop

RESV2: .loop 8
NOP
.endloop

INT4: .loop 8
NOP
.endloop

INT5: .loop 8
NOP
.endloop

INT6: .loop 8
NOP
.endloop

INT7: .loop 8
NOP
.endloop

INT8: .loop 8
NOP
.endloop

INT9: .loop 8
NOP
.endloop

INT10: .loop 8
NOP
.endloop

INT11: b _c_int11 ;branch to ISR
.loop 7
NOP
.endloop

INT12: .loop 8
NOP
.endloop

INT13: .loop 8
NOP
.endloop

INT14: .loop 8
NOP
.endloop

INT15: .loop 8
NOP
.endloop

FIGURE 1.16. Interrupt-driven vector program (vectors_11.asm).

27

1.6.1 Compiler

The compiler shell can be invoked using

Cl6x [options] [files]

to compile and assemble files that can be C files with extension .c, assembly files
with extension .asm, and linear assembly (introduced in Chapter 3) with extension
.sa. A linear assembly program file is a “cross” between C and assembly that can
provide a compromise between the more versatile C program and the most efficient
assembly program. For example,

Cl6x –gks –o3 file1.c, file2, file3.asm, file4.sa

invokes the C compiler to compile file1 and file2 (default to extension .c) and
generates the assembly files file1.asm and file2.asm. This also invokes the
assembler optimizer to optimize file4.sa and create file4.asm. Then the assem-
bler (invoked with the shell command cl6x) assembles the four assembly source
files and creates the four object files file1.obj, . . . , file4.obj. The option –gs

28 DSP Development System

/*C6xdsk.cmd Generic Linker command file*/

MEMORY

{

VECS: org = 0h, len = 0x220 /*vector section*/

IRAM: org = 0x00000220, len = 0x0000FDC0 /*internal memory*/

SDRAM: org = 0x80000000, len = 0x01000000 /*external memory*/

FLASH: org = 0x90000000, len = 0x00020000 /*flash memory*/

}

SECTIONS

{

vectors :> VECS

.text :> IRAM

.bss :> IRAM

.cinit :> IRAM

.stack :> IRAM

.sysmem :> SDRAM

.const :> IRAM

.switch :> IRAM

.far :> SDRAM

.cio :> SDRAM

}

FIGURE 1.17. Generic linker command file (C6xdsk.cmd).

adds debugger-specific information for debugging purposes and interlists C state-
ments into assembly files, respectively. The –k option is to keep the assembly source
files generated.

Four levels of compiler optimizations are available, with –o3 to invoke the highest
level of optimization.Level 0 allocates variables to registers.Level 1 performs all level
0 optimizations and eliminates local common expressions and removes unused
assignments. Level 2 performs all level 1 optimizations plus loop optimizations and
rolling (discussed later). Level 3 performs all level 2 optimizations and removes func-
tions that are not called.There are also compiler optimizations to minimize code size
(with possible degradation in execution speed).

Note that full optimization may change memory locations that can affect the
functionality of a program. In such cases, these memory locations must be declared
as volatile. The compiler does not optimize volatile variables. A volatile variable is
allocated to an uninitialized section in lieu of a register. Volatiles can be used when
memory access is to be exactly as specified in the C code.

Initially, the functionality of a program is of primary importance. One should not
invoke any (or too-high-level) optimization option initially while debugging, since
additional debugger-specific information is provided to enhance the debugging
process. Such additional information suppresses the level of performance. It is also
difficult to debug a program after optimization since the lines of code are usually
no longer arranged in a serial fashion. Compiler options can also be set using the
environment variable with C_OPTION.

1.6.2 Assembler

An assembly file file3.asm can also be assembled using

asm6x file3.asm

to create file3.obj. The .asm extension is optional. The resulting object files must
then be linked with a run-time support library to create an executable common
object file format (COFF) file with extension .out that can be loaded directly and
run on the digital signal processor.

1.6.3 Linker

The linker can be invoked using

lnk6x –c prog1.obj –o prog1.out –l rts6701.lib

The –c option tells the linker to use special conventions defined by the C environ-
ment for automatic variable initialization at run time (another linker option, –cr,
initializes the variables at load time). The –l option invokes the run-time support

Compiler/Assembler/Linker Shell 29

library file rts6701.lib. These options [–c (or –cr) and –l] must be used when
linking. The object file prog1.obj is linked with the library file and creates the
executable file prog1.out. Without the –o option, the executable file a.out (by
default) is created.

The linker can also be invoked with the compiler shell command with the –z
option:

Cl6x –gks –o3 prog1.c prog2.asm –z –o prog.out –m prog.map
–l rts6701.lib

to create the executable file prog.out. The –m option creates a map file that pro-
vides a list of all the addresses of sections, symbols, and labels that can be useful for
debugging.

Linker options include –heap size to specify the heap size in bytes for dynamic
memory allocation (default is 1kB) and the option –stack size to specify the C
system stack size in bytes. Other linker options can be found in Ref. 24.

The linker allocates your program in memory using a default location algorithm.
It places the various sections into appropriate memory locations, where code and
data reside. By using a linker command file, with extension .cmd, one can customize
the allocation process, specifying MEMORY and SECTIONS directives within the
command file.The linker directive MEMORY (uppercase) defines a memory model
and designates the origin and length of various available memory spaces. The direc-
tive SECTIONS (uppercase) allocate the output sections into defined memory and
designate the various code sections to available memory spaces.

The sample linker command file, shown in Figure 1.17, can be used for almost all
of the examples in the book. We will use internal memory (IRAM) for code and
data. In Chapter 4 we illustrate implementation of a digital filter using external
memory SDRAM, which starts at 0x80000000, with a length (size) of 0x1000000
= 16MB. Flash starts at memory location 0x90000000 and has a length of
0x20000 = 128kB.

The linker also links automatically boot.obj when using C programs to ini-
tialize the run-time environment, setting the entry point to c_int00. The symbol
_c_int00 is defined automatically when the linker option –c (or –cr) is invoked.
The function _c_int00, included in the run-time support library, is the entry point
in boot.obj, which sets up the stack and calls main. The run-time library support
program boot.c is used to autoinitialize variables. The linker option –c invokes
the initialization process with boot.c. Note that it is defined in the vector files
vectors_11.asm and vectors.asm.

REFERENCES

Note: References 21 to 33 are included with the DSK package.

1. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

30 DSP Development System

2. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

3. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

4. N. Kehtarnavaz and M. Keramat, DSP System Design Using the TMS320C6000,
Prentice Hall, Upper Saddle River, NJ, 2001.

5. N. Kehtarnavaz and B. Simsek, C6x-Based Digital Signal Processing, Prentice Hall,
Upper Saddle River, NJ, 2000.

6. N. Dahnoun, DSP Implementation Using the TMS320C6x Processors, Prentice Hall,
Upper Saddle River, NJ, 2000.

7. J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach,
Prentice Hall, Upper Saddle River, NJ, 1998.

8. C. Marven and G. Ewers, A Simple Approach to Digital Signal Processing, Wiley, New
York, 1996.

9. J. Chen and H. V. Sorensen, A Digital Signal Processing Laboratory Using the
TMS320C30, Prentice Hall, Upper Saddle River, NJ, 1997.

10. S. A. Tretter, Communication System Design Using DSP Algorithms, Plenum Press, New
York, 1995.

11. A. Bateman and W. Yates, Digital Signal Processing Design, Computer Science Press,
New York, 1991.

12. Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors, Prentice Hall,
Upper Saddle River, NJ, 1990.

13. J. Eyre, The newest breed trade off speed, energy consumption, and cost to vie for an
ever bigger piece of the action, IEEE Spectrum, June 2001.

14. J. M. Rabaey, ed., VLSI design and implementation fuels the signal-processing revolu-
tion, IEEE Signal Processing, Jan. 1998.

15. P. Lapsley, J. Bier, A. Shoham, and E. Lee, DSP Processor Fundamentals: Architectures
and Features, Berkeley Design Technology, Berkeley, CA, 1996.

16. R. M. Piedra and A. Fritsh, Digital signal processing comes of age, IEEE Spectrum, May
1996.

17. R. Chassaing, The need for a laboratory component in DSP education: a personal
glimpse, Digital Signal Processing, Jan. 1993.

18. R. Chassaing,W.Anakwa, and A. Richardson, Real-time digital signal processing in edu-
cation, Proceedings of the 1993 International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Apr. 1993.

19. S. H. Leibson, DSP development software, EDN Magazine, Nov. 8, 1990.

20. D. W. Horning, An undergraduate digital signal processing laboratory, Proceedings of
the 1987 ASEE Annual Conference, June 1987.

21. TMS320C6000 Programmer’s Guide, SPRU198D, Texas Instruments, Dallas, TX, 2000.

22. TMS320C6211 Fixed-Point Digital Signal Processor–TMS320C6711 Floating-Point
Digital Signal Processor, SPRS073C, Texas Instruments, Dallas, TX, 2000.

References 31

23. TMS320C6000 CPU and Instruction Set Reference Guide, SPRU189F, Texas Instru-
ments, Dallas, TX, 2000.

24. TMS320C6000 Assembly Language Tools User’s Guide, Texas Instruments, Dallas, TX,
SPRU186G, 2000.

25. TMS320C6000 Peripherals Reference Guide, SPRU190D, Texas Instruments, Dallas, TX,
2001.

26. TMS320C6000 Optimizing Compiler User’s Guide, SPRU187G, Texas Instruments,
Dallas, TX, 2000.

27. TMS320C6000 Technical Brief, SPRU197D, Texas Instruments, Dallas, TX, 1999.

28. TMS320C64x Technical Overview, SPRU395, Texas Instruments, Dallas, TX, 2000.

29. TMS320C6x Peripheral Support Library Programmer’s Reference, SPRU273B, Texas
Instruments, Dallas, TX, 1998.

30. Code Composer Studio User’s Guide, SPRU328B, Texas Instruments, Dallas, TX,
2000.

31. Code Composer Studio Getting Started Guide, SPRU509, Texas Instruments, Dallas, TX,
2001.

32. TMS320C6000 Code Composer Studio Tutorial, SPRU301C, Texas Instruments, Dallas,
TX, 2000.

33. TLC320AD535C/I Data Manual Dual Channel Voice/Data Codec, SLAS202A, Texas
Instruments, Dallas, TX, 1999.

34. B. W. Kernigan and D. M. Ritchie, The C Programming Language, Prentice Hall, Upper
Saddle River, NJ, 1988.

35. Details on Signal Processing (quarterly publication), Texas Instruments, Dallas, TX.

36. G. R. Gircys, Understanding and Using COFF, O’Reilly & Associates, Newton, MA,
1988.

32 DSP Development System

2
Input and Output with the DSK

33

• Input and output with the onboard AD535 codec (alternative input and output
with the stereo codec PCM3003 are described in Appendix F)

• Programming examples using C code

2.1 INTRODUCTION

Typical applications using DSP techniques require at least the basic system shown
in Figure 2.1, consisting of analog input and output. Along the input path is an
antialiasing filter for eliminating frequencies above the Nyquist frequency, defined
as one-half the sampling frequency Fs. Otherwise, aliasing occurs, in which case a
signal with a frequency higher than one-half Fs is disguised as a signal with a lower
frequency. The sampling theorem tells us that the sampling frequency must be at
least twice the highest-frequency component f in a signal, so that

which is also

where Ts is the sampling period, or

The sampling period Ts must be less than one-half the period of the signal. For
example, if we assume that the ear cannot detect frequencies above 20kHz, we can

 T Ts < 2

 1 2 1T Ts > ()

 F fs > 2

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

34 Input and Output with the DSK

use a lowpass input filter with a bandwidth or cutoff frequency at 20kHz to avoid
aliasing. We can then sample a music signal at Fs > 40kHz (typically, 44.1kHz or
48kHz) and remove frequency components higher than 20kHz. Figure 2.2 illustrates
an aliased signal. Let the sampling frequency Fs = 4kHz, or a sampling period of
Ts = 0.25ms. It is impossible to determine whether it is the 5- or 1-kHz signal that
is represented by the sequence (0, 1, 0, -1). A 5-kHz signal will appear as a 1-kHz
signal; hence, the 1-kHz signal is an aliased signal. Similarly, a 9-kHz signal would
also appear as a 1-kHz aliased signal.

2.2 TLC320AD535 (AD535) ONBOARD CODEC FOR INPUT AND OUTPUT

The DSK board includes the TLC320AD535 (AD535) codec for input and output.
The ADC circuitry on the codec converts the input analog signal to a digital repre-
sentation to be processed by the digital signal processor. The maximum level of the
input signal to be converted is determined by the specific ADC circuitry on the
codec, which is 3V p-p with the onboard codec. After the captured signal is
processed, the result needs to be sent to the outside world. Along the output

A/D D/A
Digital
signal

processor

FIGURE 2.1. DSP system with input and output.

5 kHZ

1 kHZ

1

0.5

0

–0.5

–1

A
m

pl
itu

de

0 0.25 0.5 0.75 1
t (ms)

FIGURE 2.2. Aliased sinusoidal signal.

PCM3003 Stereo Codec for Input and Output 35

path in Figure 2.1 is a DAC, which performs the reverse operation of the ADC. An
output filter smooths out or reconstructs the output signal. ADC, DAC, and all
required filtering functions are performed by the single-chip codec AD535 onboard
the DSK.

The AD535 is a dual-channel voice/data codec based on sigma–delta technology
[1–5]. It performs all the functions required for ADC and DAC, lowpass filtering,
oversampling, and so on. The AD535 codec contains specifications for two channels
and sampling rates of up to 11.025kHz. However, the codec onboard the DSK has
only one input and one output accessible readily by the user through two 3.5-mm
audio cable connectors; and the sampling (conversion) rate is fixed at 8kHz, not at
11.025kHz [1].

Sigma–delta converters can achieve high resolution with high oversampling
ratios but with lower sampling rates. They belong to a category where the sampling
rate can be much higher than the Nyquist rate. The onboard AD535 codec over-
samples by a factor of 64 times. A digital interpolation filter produces the over-
sampling. The quantization noise power in such devices is independent of the
sampling rate.A modulator is included to shape the noise so that it is spread beyond
the range of interest. The noise spectrum is distributed between 0 and Fs/2, so that
only a small amount of noise is within the signal frequency band. A digital filter is
also included to remove the out-of-band noise.

The ADC converts an input signal into discrete output digital words in 2’s-
complement format that correspond to the analog signal value. The DAC includes
an interpolation filter and a digital modulator.A decimation filter reduces the digital
data rate to the sampling rate. The DAC’s output is first passed through an internal
lowpass reconstruction filter to produce an output analog signal. Low noise perfor-
mance for both ADC and DAC is achieved using oversampling techniques with
noise shaping provided by sigma–delta modulators.

The sampling rate Fs is set by the frequency of the codec master clock MCLK of
4096kHz, such that

A diagram of the AD535 codec interfaced to the C6711 DSK is shown in Figure 2.3
and is included with the CCS package.

Serial communication techniques are used. Primary and secondary communica-
tions allow conversion of data and control transfer across the same serial port. A
primary transfer is for data conversion, and a secondary transfer is for control. The
least significant bit of a D/A data register is used for secondary communication
request.

2.3 PCM3003 STEREO CODEC FOR INPUT AND OUTPUT

An audio daughter card based on the PCM3003 stereo codec is described in Appen-
dix F [6]. Figure 2.4a shows a photo of the 3 ¥ 3 1–2 inch audio daughter card, and

 Fs = =MCLK kHz512 8

F
IG

U
R

E
 2

.3
.

T
L

C
32

0A
D

53
5

co
de

c
(C

ou
rt

es
y

of
 T

ex
as

 I
ns

tr
um

en
ts

).

36

Programming Examples Using C Code 37

Figure 2.4b shows a block diagram of the PCM3003 codec. A schematic for this
daughter card is included in Appendix F. This daughter card plugs into the DSK
through an 80-pin connector on the DSK board. The PCM3003 has two complete
input and output channels and a variable programmable sampling rate with a
maximum sampling rate of approximately 72kHz (TI recommends a maximum of
48kHz). Several programming examples using the PCM3003 are included in Appen-
dix F to illustrate the use of a stereo codec with two input and output channels.

2.4 PROGRAMMING EXAMPLES USING C CODE

Several examples follow to illustrate input and output with the DSK. They are
included to become more familiar with both the hardware and software tools and
can provide some background to implement a specific application. For example, the
project (example) sine2sliders illustrates the use of two sliders, an echo project

FIGURE 2.4. (a) Audio daughter card based on the PCM3003 stereo codec; (b) block
diagram of PCM3003 codec (Courtesy of Texas Instruments).

38 Input and Output with the DSK

demonstrates the effects of a variable-length buffer on an echo, an alternative echo
project illustrates the use of two interrupts, and a square-wave generation project
generates a square wave and illustrates how the AD535 translates a value to a cor-
responding output voltage. A list of all the examples included in this book appears
on pages xv–xviii.

Example 2.1: Loop Program Using Interrupt (loop_intr)

This example illustrates input and output with the AD535 codec. Figure 2.5 shows
the C source program loop_intr.c, which implements the loop program. It is
interrupt-driven using INT11, as in Example 1.1.

This program example is very important since it can be used as a base program
to build on. For example, to implement a digital filter, one would need to insert the
appropriate algorithm between the “input” and “output” functions. The two func-
tions input_sample and output_sample as well as the function comm_intr
are included in the communication support file C6xdskinit.c.This is done so that
the C source program is kept as small as possible. The file C6xdskinit.c can be
used as a “black box program” since it is used in many examples throughout this
book.

After the initialization and selection/enabling of an interrupt, execution waits
within the infinite while loop until an interrupt occurs. Upon interrupt, execution
proceeds to the interrupt service routine (ISR) c_int11, as specified in the vector
file vectors_11.asm. An interrupt occurs every sample period Ts = 1/Fs =
1/(8kHz) = 0.125ms, at which time an input sample value is read from the codec’s
ADC, then sent as output to the codec’s DAC.

//Loop_intr.c Loop program using interrupt, output is delayed input

//Comm routines and support files included in C6xdskinit.c

interrupt void c_int11() //interrupt service routine

{

int sample_data;

sample_data = input_sample(); //input data

output_sample(sample_data); //output data

return;

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.5. Loop program using interrupt (loop_intr.c).

Programming Examples Using C Code 39

Execution returns from interrupt to the while(1) statement waiting for a sub-
sequent interrupt. [Note that in lieu of waiting within the while(1) infinite loop,
one could be processing code.] Upon interrupt, execution proceeds to ISR,
“services” the necessary task dictated by ISR, then returns to the calling function
waiting for the occurrence of a subsequent interrupt.

1. Within the function output_sample, the least signigficant bit of the output
data value is masked for secondary communication or transfer. The DAC in
the AD535 codec is effectively a 15-bit device since it uses the 15MSBs
of a 16-bit word as output data and the least significant bit (LSB) for control
purposes. Within the function output_sample, the LSB of the 16-bit output
data value is masked off, signaling the codec not to expect subsequent control
data.

2. Within the function comm_intr, the following tasks are performed.

(a) Initialize the DSK.

(b) Configure/select INT11 and transmit interrupt XINT0.

(c) Enable the specific interrupt.

(d) Enable the global enable interrupt (GIE) bit.

(e) Access the multichannel buffered serial port (McBSP) zero.

The interrupt functions called for the tasks above are included in the file
C6xinterrupts.h, included with CCS.

Create and build this project as loop_intr. Use the same support files as in
Example 1.1. All the source files used in this book and some support files are
included on the accompanying disk. Other needed support files are included with
CCS. Input a sinusoidal waveform to the IN connector J7 on the DSK, with an ampli-
tude of approximately 1 to 2V p-p and a frequency between approximately 1 and
3kHz. Connect the output of the DSK, OUT of connector J6, and verify a tone of
the same input frequency, with a small decrease in amplitude. Using an oscilloscope,
the output is a delayed version of the input signal. Increase the amplitude of the
input sinusoidal waveform beyond 3V p-p and observe that the output signal
becomes distorted.

Example 2.2: Loop Program Using Polling (loop_poll)

This example implements a loop program using polling to input and output a sample
value every sample period Ts, whereas the program loop_intr.c in Example 2.1
is an interrupt-driven program. The C source program loop_poll.c (Figure 2.6)
implements this loop program. The polling technique uses a continuous procedure
of testing when the data are ready. Although it is simpler than the interrupt tech-
nique, it is less efficient.

1. Within the function input_sample, another function, mcbsp0_read, is
called to read the input to the ADC from the data receive register (DRR) of

40 Input and Output with the DSK

the multichannel buffered serial port (McBSP) 0, or simply SP0. The serial
port control register (SPCR) is first ANDed with 0x2 to test if the receive
ready register (RRDY) bit 1 of SPCR is enabled, as shown in Figure B.8.

2. Within the function output_sample, another function, mcbsp0_write, is
called to write the output from the DAC to the data transmit register (DXR)
of the McBSP 0 (SP0). SPCR is first ANDed with 0x20000 to test if the trans-
mit ready register (XRDY) bit 17 of SPCR is enabled. Execution again waits
within the infinite while(1) loop until the data are ready for transfer. At
that time execution proceeds to input a sample data value and then output it.

The same support files are used as those in Example 2.1 or 1.1 except for the vector
file vectors_11.asm. You can either replace vectors_11.asm (which uses
INT11) with the file vectors.asm (on disk) or edit the file vectors_11.asm:

1. Delete .ref _c_int11, which is the assembler directive that references the
interrupt service routine (ISR) _c_int11. The first underscore is the con-
vention used with C functions.

2. Replace the instruction: b _c_int11, which is to branch to ISR, by a NOP
(no operation).

Create and build this project as loop_poll. Use the same input as in Example
2.1, and verify the same results.

Example 2.3: Sine Generation Using Polling (sine4_poll)

This example generates a sinusoidal waveform using four points to further illustrate
the use of polling. Figure 2.7 shows the C source program sine4_poll.c that
implements the sine generation project with four points.

//loop_poll.c Loop program using polling, output is delayed input

//Comm routines and support files included in C6xdskinit.c

void main()

{

int sample_data;

comm_poll(); //init DSK, codec, McBSP

while(1) //infinite loop

{

sample_data = input_sample(); //input sample

output_sample(sample_data); //output sample

}

}

FIGURE 2.6. Loop program using polling (loop_poll.c).

Programming Examples Using C Code 41

Use the same support file as with loop_poll in Example 2.2 (see also Example
1.1). At each sample period Ts = 1/Fs, the output consists of a data value from the
buffer (table) sine_table. The data values 0, 1000, 0, -1000, 0, 1000, . . . are sent
for output every 0.125ms.

Build and run this project as sine4_poll. Verify that the output is a sine wave-
form with a dc offset of about 1V due to the AD535 codec. The frequency gener-
ated is f = Fs/(number of points) = 8kHz/4 = 2kHz.

Load the GEL file sine4_poll.gel (Figure 2.8) and access the slider function
amplitude as in Example 1.1. Change the slider from position 1 to positions 2,
3, . . . , 10 and verify the increase in amplitude (volume) of the waveform signal.

Change the slider function amplitude to start at 30 and up to 90 (in lieu of
10), still incrementing by 1. You can edit the GEL file, save it as sine4_poll.gel,
reload, and access it through GEL. When the slider is at position 32, the output

//Sine4_poll.c Sine generation using 4 points; f=Fs/(# points)=2 kHz

int loop = 0;

short sine_table[4] = {0,1000,0,-1000}; //sine values

short amplitude = 1; //for slider

void main()

{

int sample_data;

comm_poll(); //init DSK, codec, McBSP

while(1) //infinite loop

{

sample_data = (sine_table[loop]*amplitude); //scaled value

output_sample(sample_data); //output sine value

if (loop < 3) ++loop; //increment index

else loop = 0; //reinit @ end of buffer

}

}

FIGURE 2.7. Sine generation program using four points with polling (sine4_poll.c).

/*Sine4_poll.gel Create slider and vary amplitude of sine wave*/

menuitem “Sine Amplitude”

slider Amplitude(1,10,1,1,amplitudeparameter) /*incr by 1,up to 10*/

{

amplitude = amplitudeparameter; /*vary amplitude of sine*/

}

FIGURE 2.8. GEL file to illustrate slider function (sine4_poll.gel).

42 Input and Output with the DSK

amplitude voltage is approximately 2.7V p-p, with the sine values at + and -32,000.
Increase the slider to 33, 34, . . . , 65, and observe that the amplitude decreases to
about 0.1V p-p with the slider at position 65. Does the amplitude of the waveform
start to increase again with the slider at position 66, 67, . . . , 90?

Example 2.4: Sine Generation with Two Sliders for Amplitude and
Frequency Control (sine2sliders)

The program sine2sliders.c (Figure 2.9) generates a sine wave using polling
to control the output rate. Two sliders are used to vary both the amplitude and the
frequency of the sinusoid generated. Using a lookup table with 32 points, the vari-
able frequency is obtained by selecting different number of points per cycle. The
amplitude slider scales the volume/amplitude of the waveform signal. The appro-
priate GEL file sine2sliders.gel is shown in Figure 2.10.

The 32 sine data values in the table or buffer correspond to sin(t), where t = 0,
11.25, 22.5, 33.75, 45, . . . , 348.75 degrees (scaled by 1000).The frequency slider takes
on the values from 2 to 8, incremented by 2. The modulo operator is used to test
when the end of the buffer that contains the sine data values is reached. When
the loop index reaches 32, it is reinitialized to zero. For example, with the
frequency slider at position 2, the loop or frequency index steps through every other
value in the table. This corresponds to 16 data values within one cycle.

//Sine2sliders.c Sine generation with different # of points

short loop = 0;

short sine_table[32]={0,195,383,556,707,831,924,981,1000,

981,924,831,707,556,383,195,

0,-195,-383,-556,-707,-831,-924,-981,-1000,

-981,-924,-831,-707,-556,-383,-195}; // sine data

short amplitude = 1; //for slider

short frequency = 2; //for slider

void main()

{

comm_poll(); //init DSK, codec, McBSP

while(1) //infinite loop

{

output_sample(sine_table[loop]*amplitude); //output scaled value

loop += frequency; //incr frequency index

loop = loop % 32; //modulo 32 to reset

}

}

FIGURE 2.9. Sine generation making use of two sliders for control of the amplitude and
frequency generated (sine2sliders.c).

Programming Examples Using C Code 43

Build this project as sine2sliders. Use the same support files as in Example
2.3. Verify that the frequency generated is f = Fs/16 = 500Hz. Increase the slider
position to 4, 6, 8, and verify that the signal frequencies generated are 1000, 1500, and
2000Hz, respectively. Note that when the slider is at position 4, the loop or frequency
index steps through the table selecting the eight values (per cycle):sin[0],sin[4],sin[8],
. . . , sin[28], that correspond to the data values 0, 707, 1000, 707, 0, -707, -1000, and
-707. The resulting frequency generated is f = Fs/8 = 1kHz (as in Example 1.1).

Example 2.5: Loop Program with Input Data Stored in Memory Buffer
(loop_store)

The program loop_store.c (Figure 2.11) is an interrupt-based program. Each
time an interrupt INT11 occurs, a sample is read from the codec’s ADC and written
to the codec’s DAC. Furthermore, each sample is written to a 512-element circular
buffer implemented using an array buffer and an index i that is incremented after
each sample is stored. The index is reset to zero when it is incremented to 512. Con-
sequently, the array always contains the 512 most recent sample values.

Build this project as loop_store. Input a sinusoidal signal with an amplitude of
approximately 1–2 V p-p and a frequency of 1kHz. Run and verify your output results.

Use CCS to plot the input data, in both the time and frequency domains (see also
Example 1.2). Select View Æ Graph Æ Time/Frequency. Use a starting address
“buffer” and chose 128 points (in lieu of 512 points) for the display data size to get
a clearer plot, as shown in the Graph Property Dialog in Figure 2.12a (use other
entries as default). Verify the 1-kHz time-domain sine-wave plot within CCS, as
shown in Figure 2.12b.

Right-click on the graph window, or again, select View Æ Graph Æ Time/Fre-
quency. Select FFT magnitude for display, as shown in the Graph Property Dialog

/*Sine2sliders.gel Two sliders to vary amplitude and frequency*/

menuitem “Sine Parameters”

slider Amplitude(1,8,1,1,amplitudeparameter) /*incr by 1,up to 8*/

{

amplitude = amplitudeparameter; /*vary amplitude*/

}

slider Frequency(2,8,2,2,frequencyparameter) /*incr by 2,up to 8*/

{

frequency = frequencyparameter; /*vary frequency*/

}

FIGURE 2.10. GEL file with two slider functions to control amplitude and frequency of the
sine wave generated (sine2sliders.gel).

44 Input and Output with the DSK

in Figure 2.12c to obtain a frequency-domain plot of the input data. Note that the
FFT order is M = 9, where 2M = 512. The spike at 1kHz in Figure 2.12d represents
the 1-kHz sine wave.

Example 2.6: Loop with Data in Buffer Printed to File (loop_print)

This example extends the preceding loop program so that the input/output data
stored in a memory buffer are printed into a file. Figure 2.13 shows the C source
program loop_print.c that implements this project example. It takes a long time
(on the order of 4000 cycles) to execute the printf statement in the program.
This can be reduced to about 30 cycles using real-time data transfer (RTDX), intro-
duced in Appendix G.

After initialization of the DSK, the puts statement prints the word start as
an indicator, then execution proceeds to the infinite while loop. Upon each inter-
rupt, execution proceeds to ISR, and a newly acquired data value is stored into a
buffer of size 64.

The buffer index i is incremented to store each new sampled data value. When

//Loop_store.c Data acquisition. Input data also stored in buffer

#define BUFFER_SIZE 512 //buffer size

short buffer[BUFFER_SIZE]; //buffer buffer

short i = 0;

interrupt void c_int11() //interrupt service routine

{

int sample_data;

sample_data = input_sample(); //new input data

output_sample(sample_data); //output data

buffer[i] = sample_data; //store data in buffer

i++; //increment buffer index

if (i == BUFFER_SIZE) i = 0; //reinit index if buffer full

return; //return from ISR

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.11. Loop program with input/output data in memory (loop_store.c).

Programming Examples Using C Code 45

the end of the buffer is reached, indicating that the buffer is full, a file loop.dat
is “opened” and the content of the buffer are written into that file. Then the indi-
cator done is printed within the CCS command window. This process is repeated
continuously so that a new set of 64 data points is acquired, and the done
indicator is again displayed (after each set of data fills the buffer and written to
loop.dat).

Build and run this project as loop_print. Input a sine-wave signal of 1V p-p

(d)

FIGURE 2.12. CCS graphs for loop_store program: (a) Graph Property Dialog display-
ing parameters for time-domain plot; (b) time-domain plot of stored output data represent-
ing 1-kHz sine wave; (c) Graph Property Dialog displaying parameters for FFT magnitude
plot; (d) FFT magnitude of stored output data representing 1-kHz sine wave.

(c)

46 Input and Output with the DSK

with a 1-kHz frequency. Halt execution after the indicator done is displayed. The
buffer of 64 input data representing the sine wave can be retrieved from the file
loop.dat. Note that the third set of 64 points would be stored in the buffer and
printed in the file loop.dat if execution is halted after the third done indicator.
You can then use a plot program or MATLAB to plot loop.dat, and verify a
1-kHz sine wave. The output will not be displayed appropriately in real time, due
to the slow execution of the print statements.

//Loop_print.c Data acquisition. Loop with data printed to a file

#include <stdio.h>

#define BUFFER_SIZE 64 //buffer size

int i=0;

int j=0;

int buffer[BUFFER_SIZE]; //buffer for data

FILE *fptr; //file pointer

interrupt void c_int11() //interrupt service routine

{

int sample_data;

sample_data = input_sample(); //new input data

buffer[i] = sample_data; //store data in buffer

i++; //increment buffer count

if (i == BUFFER_SIZE - 1) //if buffer full

{

fptr = fopen(“loop.dat”,”w”); //create output data file

for (j=0; j<BUFFER_SIZE; j++)

fprintf(fptr,”%d\n”, buffer[j]); //write buffer data to file

fclose(fptr); //close file

i = 0; //initialize buffer count

puts(“done”); //finished storing to file

}

output_sample(sample_data); //output data

return; //return from ISR

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

puts(“start\n”); //print “start” indicator

while(1); //infinite loop

}

FIGURE 2.13. Loop program to store input/output data in memory and into a file
(loop_print.c).

Programming Examples Using C Code 47

Example 2.7: Square-Wave Generation Using Lookup Table (squarewave)

This example generates a square wave using a lookup table and illustrates the data
format of the AD535 codec. Figure 2.14 shows a listing of the program square-
wave.c that implements this project example.A buffer of size 256 is created.Within
main, the buffer table is loaded with data: the first half with (215 - 1) = 32,767 and
the second half with -215 = -32,768. Upon each interrupt that occurs every sample
period Ts, one data value from the buffer is sent for output. After each data value
from the table is output, execution returns to the infinite while loop, waiting for the
next interrupt to occur and output the subsequent value in the table. When the end
of the buffer (table) is reached, the buffer index is reinitialized to the beginning of
the buffer.

Build and run this project as squarewave. Verify a square-wave output signal
of 2.8V p-p with an offset of approximately 1.1V.

Note that due to the 16-bit codec, the valid input data to the codec are between
-215 and (215 - 1) or between -32,768 and 32,767. Change the values in the first half
of the table using 0x8000 = 32,768 in lieu of 0x7FFF = 32,767. Rebuild/run and
verify that a square-wave signal is no longer generated.

//Squarewave.c Generates a squarewave using a look-up table

#define table_size (int)0x100 //size of table = 256

int data_table[table_size]; //data table array

int i;

interrupt void c_int11() //interrupt service routine

{

output_sample(data_table[i]); //output value each Ts

if (i < table_size) ++i; //if table size is reached

else i = 0; //reinitialize counter

return; //return from interrupt

}

main()

{

for(i=0; i<table_size/2; i++) //set 1st half of buffer

data_table[i] = 0x7FFF; //with max value (2^15)-1

for(i=table_size/2; i<table_size; i++) //set 2nd half of buffer

data_table[i] = -0x8000; //with -(2^15)

i = 0; //reinit counter

comm_intr(); //init DSK, codec, McBSP

while (1); //infinite loop

}

FIGURE 2.14. Square-wave generation program (squarewave.c).

48 Input and Output with the DSK

Example 2.8: Ramp Generation Using Lookup Table (ramptable)

Figure 2.15 shows a listing of the program ramptable.c, which generates a ramp
using a lookup table. A buffer of size 1024 is created. Within main, the buffer table
is loaded with 1024 values: 0, 0x20, 0x40, . . . , or 0, 32, 64, . . . , 32,736 in decimal.

Build and run this project as ramptable. Verify that a ramp is generated. The
ramp’s peak value is at the offset of approximately. 1.1V and decreases for the input
values 32, 64, . . . , due to the 2’s-complement format of the AD535 codec.As a result
the ramp generated has a negative slope, with a peak-to-peak value of approxi-
mately 1.4V.

Replace the value 0x20 with –0x20 and verify that a ramp is generated with a
positive slope with a peak-to-peak value of 1.4V. The ramp starts at the offset value
of approximately 1.1V and increases to approximately 2.5V.

Example 2.9: Ramp Generation without a Lookup Table (ramp)

Example 2.8 is based on loading a table with a set of values, then outputing each
value in the table every sample period, wrapping around when the end of the table

//Ramptable.c Generates a ramp using a look-up table

#define table_size (int)0x400 //size of table=1024

int data_table[table_size]; //data table array

int i;

interrupt void c_int11() //interrupt service routine

{

output_sample(data_table[i]); //ramp value for each Ts

if (i < table_size-1) i++; //if table size is reached

else i = 0; //reinitialize counter

return; //return from interrupt

}

main()

{

for(i=0; i < table_size; i++)

{

data_table[i] = 0x0; //clear each buffer location

data_table[i] = i * 0x20; //set to 0,32,64,96, ... ,32736

}

i = 0; //reinit counter

comm_intr(); //init DSK, codec, McBSP

while (1); //infinite loop

}

FIGURE 2.15. Ramp generation program using a table lookup (ramptable.c).

Programming Examples Using C Code 49

is reached. Figure 2.16 shows a listing of the program ramp.c, which generates a
ramp using an alternative approach to Example 2.8. Starting with an initial output
value of 0, the output value is incremented by 0x20 every sample period Ts. The
values sent for output are then 0, 32, 64, 96, . . . , 32,736.

Build and run this project as ramp. Verify the same results as in Example 2.8,
yielding a ramp with a negative slope.

To obtain a ramp with a positive slope, change output to

output -= 0x20;

so that the output becomes 0, -32, -64, . . . , -32,736. Also change the if statement
to reinitialize output, or

if (output == -0x8000)

Verify that the output is a ramp with a positive slope.

Example 2.10: Echo (echo)

Figure 2.17 shows a listing of the program echo.c, which echoes an input signal.
The length or size of the buffer determines the echo effect. A buffer size of 2000
barely generates a clear echo, while a size of 16,000 produces too much delay and
the effect is more of a repeat. The output consists of a newly acquired sample added

//Ramp.c Generates a ramp

int output;

interrupt void c_int11() //interrupt service routine

{

output_sample(output); //output for each sample period

output += 0x20; //incr output value

if (output == 0x8000) //if peak is reached

output = 0; //reinitialize

return; //return from interrupt

}

void main()

{

output = 0; //init output to zero

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.16. Ramp generation program (ramp.c).

50 Input and Output with the DSK

to the oldest sample already stored in the buffer. If the buffer size is too small, the
time delay between the newest and oldest sample is too small to create an audible
echo effect. The oldest sample is attenuated to enhance the echo effect.

After a new sample is acquired and stored at memory location x, the output
becomes the sum of the new sample and the oldest sample stored at memory loca-
tion x + 1, where x = 0, 1, 2, . . . , 2998. When the buffer index reaches the end of
the buffer (buffer[2999]), where a newly acquired sample is stored, the oldest
sample is at the beginning of the buffer.

Build and run this project as echo. A wave file, Theforce.wav (included on
the accompanying disk), can be used as input. Play this file continuously with loop-
around. The shareware utility Goldwave (described in Appendix E) allows you to
play this file.

Change the size of the buffer from 1000 to 8000 and observe that a larger buffer
size produces a greater delay between the newest and oldest samples. A GEL file
(on the disk) can be used to increase or decrease the amplitude or effect of the echo.

A fading effect is obtained if the output (in lieu of the input) is stored in the
buffer, using

buffer[i] = output;

Rebuild/run and verify this fading echo effect.

//Echo.c Echo effect changed with size of buffer (delay)

short input, output;

short bufferlength = 3000; //buffer size for delay

short buffer[3000]; //create buffer

short i = 0;

short amplitude = 5; //to vary amplitude of echo

interrupt void c_int11() //ISR

{

input = input_sample(); //newest input sample data

output=input + 0.1*amplitude*buffer[i]; //newest sample+oldest sample

output_sample(output); //output sample

buffer[i] = input; //store newest input sample

i++; //increment buffer count

if (i >= bufferlength) i = 0; //if end of buffer reinit

}

main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.17. Echo generation (echo.c).

Programming Examples Using C Code 51

Example 2.11: Echo Using Two Interrupts with Control for Different Effects
(echo_control)

This example extends Example 2.10 to incorporate additional echo effects. It uses an
alternative approach with two interrupts for reading/writing. Three sliders are used
to vary the amplitude of the oldest sample, to change the buffer size for different
amount of delay and to create a fading effect.The program echo_control.c, listed
in Figure 2.18, implements this project. It uses the transmit interrupt INT11 to write
as in earlier examples. In addition, it also uses the receive interrupt INT12 to read.
The support files are the same as in previous examples, except:

1. The file C6xdskinit.c is modified to handle two interrupts. The following
two lines of code are added in C6xdskinit.c:

config_Interrupt_Selector(12,RINT0); //receive INT12

enableSpecificInt(12); //interrupt 12

2. The vector file vectors_11.asm is modified. Associated with INT12, add a
branch statement to the interrupt service routine c_int12. This change is
incorporated in the file vectors_11_12.asm.

Use the same .wav file, Theforce.wav (on the disk), for input as in Example
2.10. At each sample period, an interrupt occurs: first INT11 for writing, then
INT12 for reading. The output is the sum of the newest input sample plus the oldest
sample.

1. Build and run this project as echo_control.

2. Access the three sliders: amplitude, delay, and type. The GEL file
echo_control.gel is shown in Figure 2.19. Set the amplitude slider to posi-
tion 5, and set the delay slider to position 3. Since delay is not equal to
delay_flag, the size of the buffer has changed. The new buffer size is buffer-
length = 1000 ¥ 3 = 3000.These two slider settings correspond to the same con-
ditions as in Example 2.10. The delay slider can take on the values 1, 2, . . . ,
8, allowing for buffer lengths of 1000, 2000, 3000, . . . , 8000. Increase the delay
slider to position 4, then position 5, to produce a longer time delay between
the newest and oldest samples and observe the echo effects.

3. The slider “type” in position 1 creates/adds a fading effect, since the output
becomes the most recent output. For a clearer fading effect, stop “playing” the
input .wav file temporarily.

Experiment with the three sliders for different echo effects.

52 Input and Output with the DSK

//Echo_control.c Echo using two interrupts for read and write

//3 sliders to control effects: buffer size, amplitude, fading

short input, output;

short bufferlength = 1000; //initial buffer size

short i = 0; //buffer index

short buffer[8000]; //max size of buffer

short delay = 1; //determines size of buffer

short delay_flag = 1; //flag if buffer size changes

short amplitude = 1; //amplitude control by slider

short echo_type = 0; //no fading (1 for fading)

interrupt void c_int11() //ISR INT11 to write

{

short new_count; //count for new buffer

output=input+0.1*amplitude*buffer[i]; //newest+oldest sample

if (echo_type == 1) //if fading is desired

{

new_count = (i-1) % bufferlength; //previous buffer location

buffer[new_count] = output; //to store most recent output

}

output_sample(output); //output delayed sample

}

interrupt void c_int12() //ISR INT12 to read

{

input = input_sample(); //newest input sample data

if (delay_flag != delay) //if delay has changed

{ //->new buffer size

delay_flag = delay; //reint for future change

bufferlength = 1000*delay; //new buffer length

i = 0; //reinit buffer count

}

buffer[i] = input; //store input sample

i++; //increment buffer index

if (i == bufferlength) i=0; //if @ end of buffer reinit

}

main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.18. Echo generation with controls for different effects (echo_control.c).

Programming Examples Using C Code 53

Example 2.12: Sine Generation with Table Values Generated within
Program (sinegen_table)

This example creates one period of sine data values for a table. Then these values
are output for generating a sine wave. Figure 2.20 shows a listing of the program
sinegen_table.c, which implements this project. The frequency generated is
f = Fs/(number of points) = 8000/10 = 800Hz.

This project, which uses the transmit interrupt INT11 should be build and run as
sinegen_table.Verify a sine wave generated with a frequency of 800Hz. Change
the number of points to generate a 400-Hz sine wave (only table_size needs to
be changed).

Example 2.13: Sine Generation with Table Created by MATLAB
(sin1500MATL)

This example illustrates the generation of a sinusoid using a lookup table created
with MATLAB. Figure 2.21 shows a listing of the MATLAB program sin1500.m,
which generates a file with 128 data points with 24 cycles. The sine-wave frequency
generated is

Run sin1500.m within MATLAB and verify the header file sin1500.h with 128
points, as shown in Figure 2.22. Different numbers of points representing sinusoidal

 f Fs= () () =number of cycles number of points Hz1500

//Echo_control.gel Sliders vary time delay, amplitude, and type of echo

menuitem “Echo Control”

slider Amplitude(1,8,1,1,amplitude_parameter) /*incr by 1, up to 8*/

{

amplitude = amplitude_parameter; /*vary amplit of echo*/

}

slider Delay(1,8,1,1,delay_parameter) /*incr by 1, up to 8*/

{

delay = delay_parameter; /*vary delay of echo*/

}

slider Type(0,1,1,1,echo_typeparameter) /*incr by 1, up to 1*/

{

echo_type = echo_typeparameter; /*echo type for fading*/

}

FIGURE 2.19. GEL file for echo control of amplitude, delay, and fading
(echo_control.gel).

54 Input and Output with the DSK

//Sinegen_table.c Generates a sinusoid for a look-up table

#include <math.h>

#define table_size (short)10 //set table size

short sine_table[table_size]; //sine table array

short i;

interrupt void c_int11() //interrupt service routine

{

output_sample(sine_table[i]); //output each sine value

if (i < table_size - 1) ++i; //incr index until end of table

else i = 0; //reinit index if end of table

return; //return from interrupt

}

void main()

{

float pi=3.14159;

for(i = 0; i < table_size; i++)

sine_table[i]=10000*sin(2.0*pi*i/table_size); //scaled values

i = 0;

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.20. Sine-wave generation program using table generated within program
(sinegen_table.c).

%sin1500.m Generates 128 points representing sin(1500) Hz

%Creates file sin1500.h

for i=1:128

sine(i) = round(1000*sin(2*pi*(i-1)*1500/8000)); %sin(1500)

end

fid = fopen(‘sin1500.h’,’w’); %open/create file

fprintf(fid,’short sin1500[128]={’); %print array name,”={“

fprintf(fid,’%d, ‘ ,sine(1:127)); %print 127 points

fprintf(fid,’%d’ ,sine(128)); %print 128th point

fprintf(fid,’};\n’); %print closing bracket

fclose(fid); %close file

FIGURE 2.21. MATLAB program to generate a lookup table for sine-wave data
(sin1500.m).

Programming Examples Using C Code 55

signals of different frequencies can readily be obtained with minor changes in the
MATLAB program sin1500.m.

Figure 2.23 shows a listing of the C source file sin1500MATL.c, which imple-
ments this project in real time. This program includes the header file generated by
MATLAB. See also Example 2.12, which generates the table within the main C
source program in lieu of using MATLAB.

Build and run this project as sin1500MATL. Verify that the output is a 1500-Hz
sine-wave signal. Within CCS, be careful when you view the header file sin1500.h
so as not to truncate it.

short sin1500[128]={0, 924, 707, -383, -1000, -383, 707, 924, 0,

-924, -707, 383, 1000, 383, -707, -924, 0, 924, 707, -383,

-1000, -383, 707, 924, 0, -924, -707, 383, 1000, 383, -707,

-924, 0, 924, 707, -383, -1000, -383, 707, 924, 0, -924, -707,

383, 1000, 383, -707, -924, 0, 924, 707, -383, -1000, -383, 707,

924, 0, -924, -707, 383, 1000, 383, -707, -924, 0, 924, 707,

-383, -1000, -383, 707, 924, 0, -924, -707, 383, 1000, 383,

-707, -924, 0, 924, 707, -383, -1000, -383, 707, 924, 0, -924,

-707, 383, 1000, 383, -707, -924, 0, 924, 707, -383, -1000,

-383, 707, 924, 0, -924, -707, 383, 1000, 383, -707, -924, 0,

924, 707, -383, -1000, -383, 707, 924, 0, -924, -707, 383, 1000,

383, -707, -924};

FIGURE 2.22. Sine table-lookup header file generated by MATLAB (sin1500.h).

//Sin1500MATL.c Generates sine from table created with MATLAB

#include “sin1500.h” //sin(1500) created with MATLAB

short i=0;

interrupt void c_int11()

{

output_sample(sin1500[i]); //output each sine value

if (i < 127) ++i; //incr index until end of table

else i = 0;

return; //return from interrupt

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 2.23. Sine generation program using header file with sine data values generated
with MATLAB (sin1500MATL.c).

56 Input and Output with the DSK

Example 2.14: Amplitude Modulation (AM)

This example illustrates an amplitude modulation (AM) scheme. Figure 2.24 shows
a listing of the program AM.c, which generates an AM signal.The buffer baseband
contains 20 points and represents a baseband cosine signal with a frequency of f =
Fs/20 = 400Hz. The buffer carrier also contains 20 points and represents a carrier
signal with a frequency of f = Fs (number of cycles)/(number of points) = Fs/(number
points per cycle) = 2kHz. The output equation shows the baseband signal being
modulated by the carrier signal. The variable amp is used to vary the modulation.
The C source program AM.c is not interrupt-driven. Choose the appropriate vector
support file.

Build and implement this project as AM. Verify that the output consists of the
2-kHz carrier signal and two sideband signals. The sideband signals are at the fre-
quency of the carrier signal + or - the frequency of the sideband signal, or at 1600
and 2400Hz.

Load the GEL file AM.gel, increase the variable amp, and verify the baseband
signal being modulated. Note that the product of the carrier and baseband signals
(within the output equation) is scaled by 212 (shifted right by 12). The voice scram-
bler (Example 4.9) makes further use of modulation in order to scramble an input
signal.

//AM.c AM using table for carrier and baseband signals

short amp = 1;

void main()

{

short baseband[20]={1000,951,809,587,309,0,-309,-587,-809,-951,

-1000,-951,-809,-587,-309,0,309,587,809,951}; //400-Hz baseband

short carrier[20] ={1000,0,-1000,0,1000,0,-1000,0,1000,0,

-1000,0,1000,0,-1000,0,1000,0,-1000,0}; //2-kHz carrier

short output[20];

short k;

comm_poll(); //init DSK, codec, McBSP

while(1) //infinite loop

{

for (k=0; k<20; k++)

{

output[k]= carrier[k] + ((amp*baseband[k]*carrier[k]/10)>>12);

output_sample(20*output[k]); //scale output

}

}

}

FIGURE 2.24. Amplitude modulation program (AM.c).

Programming Examples Using C Code 57

Alternative AM with External Input for Sideband (AM_extin)
The program AM_extin.c (on the accompanying disk) illustrates an alternative
modulating scheme to obtain an AM signal using an external input as the sideband
signal and a 2-kHz carrier signal from a lookup table.

Build this project as AM_extin. Test this project using a sinusoidal sideband
signal with an amplitude below 0.35V and a frequency less than 2kHz. Such a small
external input signal yields a more stable output. Note that a frequency of more
than 2kHz will cause aliasing.

Example 2.15: Sweep Sinusoid Using Table with 8000 Points (sweep8000)

Figure 2.25 shows a listing of the program sweep8000.c, which generates a sweep-
ing sinusoidal signal using a table lookup with 8000 points. The header file
sine8000_table.h contains the 8000 data points that represent a one-cycle sine

//Sweep8000.c Sweep sinusoid using table with 8000 points

#include “sine8000_table.h” //one cycle with 8000 points

short start_freq = 100; //initial frequency

short stop_freq = 3500; //maximum frequency

short step_freq = 200; //increment/step frequency

short amp = 30; //amplitude

short delay_msecs = 1000; //# of msec at each frequency

short freq;

short t;

short i = 0;

void main()

{

comm_poll(); //init DSK, codec, McBSP

while(1) //infinite loop

{

for(freq=start_freq;freq<=stop_freq;freq+=step_freq)

{ //step thru freqs

for(t=0; t<8*delay_msecs; t++) //output 8*delay_msecs samples

{ // at each freq

output_sample(amp*sine8000[i]); //output

i = (i + freq) % 8000; //next sample is + freq in table

}

}

}

}

FIGURE 2.25. Program to generate sweeping sinusoid using table lookup with 8000 points
(sweep8000.c).

58 Input and Output with the DSK

wave. Since the output rate is Fs = 8kHz, 8000 points are chosen to represent a
1-second interval. The file sine8000_table.h (on the disk) is generated with
MATLAB using

1000*sin(2*pi*i*start_freq/8000)

Figure 2.26 shows a partial listing of the file sine8000_table.h.
The initial frequency is set at 100Hz and increments every 200Hz until a stop

frequency of 3500Hz is reached. The frequencies generated are 100, 300, 500, . . . ,
3500Hz, and each frequency is generated for 1 second.

Increase delay_msecs from 1000 to 2000 for a slower sweep, since each fre-
quency would be generated for 2 seconds. If step_freq is increased to 700, the
frequencies generated would be 100, 800, 1500, 2200, and 2900Hz.

The index i is incremented by i + freq, which determines the values chosen
from the table (see also Example 2.4). For example, to generate 100Hz, every 100th
value in the table is selected to output 80 data points, corresponding to 1 cycle, 8000

//sine8000_table.h Sine table with 8000 points generated with MATLAB

short sine8000[8000]=

{0, 1, 2, 2, 3, 4, 5, 5,

6, 7, 8, 9, 9, 10, 11, 12,

13, 13, 14, 15, 16, 16, 17, 18,

19, 20, 20, 21, 22, 23, 24, 24,

25, 26, 27, 27, 28, 29, 30, 31,

31, 32, 33, 34, 35, 35, 36, 37,

38, 38, 39, 40, 41, 42, 42, 43,

44, 45, 46, 46, 47, 48, 49, 49,

50, 51, 52, 53, 53, 54, 55, 56,

57, 57, 58, 59, 60, 60, 61, 62,

63, 64, 64, 65, 66, 67, 67, 68,

69, 70, 71, 71, 72, 73, 74, 75,

75, 76, 77, 78, 78, 79, 80, 81,

82, 82, 83, 84, 85, 86, 86, 87,

88, 89, 89, 90, 91, 92, 93, 93,

94, 95, 96, 96, 97, 98, 99, 100,

100, 101, 102, 103, 103, 104, 105, 106,

107, 107, 108, 109, 110, 111, 111, 112,

.

.

.

-13, -12, -11, -10, -9, -9, -8, -7,

-6, -5, -5, -4, -3, -2, -2, -1};

FIGURE 2.26. Partial listing of sine with 8000 data points (sine8000_table.h).

Programming Examples Using C Code 59

points over 100 cycles. With this scheme, 8000 points are always used to generate
each frequency over x cycles per second.

Build and run this project as sweep8000. Verify the output as a sweeping sinu-
soid. Note that the source program sweep8000.c is not interrupt-driven (use the
appropriate vector file). A slider can be used to control the amplitude of the
frequency generated with the variable amp, the duration at each frequency with
delay_msecs (sweep speed), and the incremental frequency with step_freq.

Example 2.16: Pseudorandom Noise Sequence Generation (noise_gen)

The program noise_gen.c, shown in Figure 2.27, generates a pseudorandom noise
sequence. It uses a software-based implementation of a maximal-length sequence
technique for generating a pseudorandom sequence. An initial 16-bit seed is

//Noise_gen.c Pseudo-random sequence generation

#include “noise_gen.h” //header file for noise sequence

int fb;

shift_reg sreg; //shift reg structure

interrupt void c_int11() //interrupt service routine

{

int prnseq; //for pseudo-random sequence

if(sreg.bt.b0) //sequence{1,-1}based on bit b0

prnseq = -8000; //scaled negative noise level

else

prnseq = 8000; //scaled positive noise level

fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1

fb ^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 ->fb

sreg.regval<<=1; //shift register 1 bit to left

sreg.bt.b0 = fb; //close feedback path

output_sample(prnseq); //output scaled sequence

return; //return from interrupt

}

void main()

{

sreg.regval = 0xFFFF; //set shift register

fb = 1; //initial feedback value

comm_intr(); //init DSK, codec, McBSP

while (1); //infinite loop

}

FIGURE 2.27. Pseudorandom noise sequence generation program (noise_gen.c).

60 Input and Output with the DSK

assigned to a register. Bits b0, b1, b11, and b13 are XORed and the result placed
into a feedback variable. The register with the initial seed value is then shifted one
bit to the left. The feedback variable is then assigned to bit b0 of the register. A
scaled minimum or maximum is assigned to prnseq, depending on whether the
register’s bit b0 is zero or 1. This scaled value corresponds to the noise-level ampli-
tude. The header file noise_gen.h (on the disk) defines the shift register bits.

Build and run this project as noise_gen. You can view the noise in the time
domain or hear it. Increase the noise-level amplitude for a scaled value of ±16,000
and verify that the noise generated is louder. Connect the output to a spectrum
analyzer. Verify that the output spectrum is relatively flat until the cutoff frequency
of approximately 3500Hz, which represents the bandwidth of the antialiasing filter
on the codec.

REFERENCES

1. TLC320AD535C/I Data Manual Dual Channel Voice/Data Codec, SLAS202A, Texas
Instruments, Dallas, TX, 1999.

2. S. Norsworthy, R. Schreier, and G. Temes, Delta–Sigma Data Converters: Theory, Design
and Simulation, IEEE Press, Piscataway, NJ, 1997.

3. P. M. Aziz, H. V. Sorensen, and J. Van Der Spiegel, An overview of sigma delta converters,
IEEE Signal Processing, Jan. 1996.

4. J. C. Candy and G. C. Temes, eds., Oversampling Delta–Sigma Data Converters: Theory,
Design and Simulation, IEEE Press, Piscataway, NJ, 1992.

5. C. W. Solomon, Switched-capacitor filters, IEEE Spectrum, June 1988.

6. PCM3002/PCM3003 16-/20-Bit Single-Ended Analog Input/Output Stereo Audio Codecs,
SBAS079, Texas Instruments, Dallas, TX, 2000.

7. TMS320C6000 McBSP: AC’97 Codec Interface, SPRA528, Texas Instruments, Dallas, TX,
1999.

References 60

3
Architecture and Instruction Set
of the C6x Processor

61

• Architecture and instruction set of the TMS320C6x processor
• Addressing modes
• Assembler directives
• Linear assembler
• Programming examples using C, assembly, and linear assembly code

3.1 INTRODUCTION

Texas Instruments introduced the first-generation TMS32010 digital signal proces-
sor in 1982, the TMS320C25 in 1986 [1], and the TMS320C50 in 1991. Several ver-
sions of each of these processors—C1x, C2x, and C5x—are available with different
features, such as faster execution speed. These 16-bit processors are all fixed-point
processors and are code-compatible.

In a von Neumann architecture, program instructions and data are stored in a
single memory space. A processor with a von Neumann architecture can make a
read or a write to memory during each instruction cycle. Typical DSP applications
require several accesses to memory within one instruction cycle. The fixed-point
processors C1x, C2x, and C5x are based on a modified Harvard architecture with
separate memory spaces for data and instructions that allow concurrent accesses.

Quantization error or round-off noise from an ADC is a concern with a fixed-
point processor. An ADC uses only a best-estimate digital value to represent an
input. For example, consider an ADC with a word length of 8 bits and an input range
of ±1.5V. The steps represented by the ADC are: input range/28 = 3/256 = 11.72mV.
This produces errors which can be up to ±(11.72mV)/2 = ±5.86mV. Only a best esti-
mate can be used by the ADC to represent input values that are not multiples of

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

62 Architecture and Instruction Set of the C6x Processor

11.72mV.With an 8-bit ADC, 28 or 256 different levels can represent the input signal.
An ADC with a larger word length such as a 16-bit ADC (currently very common)
can reduce the quantization error, yielding a higher resolution. The more bits that
an ADC has, the better it can represent an input signal.

The TMS320C30 floating-point processor was introduced in the late 1980s. The
C31, C32, and the more recent C33 are all members of the C3x family of floating-
point processors [2,3]. The C4x floating-point processors, introduced subsequently,
are code-compatible with the C3x processors and are based on the modified
Harvard architecture [4].

The TMS320C6201 (C62x), announced in 1997, is the first member of the C6x
family of fixed-point digital signal processors. Unlike the previous fixed-point
processors, C1x, C2x, and C5x, the C62x is based on a very-long-instruction-word
(VLIW) architecture, still using separate memory spaces for instructions and data
as with the Harvard architecture. The VLIW architecture has simpler instructions,
but more are needed for a task than with a conventional DSP architecture.

The C62x is not code-compatible with the previous generation of fixed-point
processors. Subsequently, the TMS320C6701 (C67x) floating-point processor was
introduced as another member of the C6x family of processors. The instruction
set of the C62x fixed-point processor is a subset of the instruction set of the
C67x processor. Appendix A contains a list of instructions available on the C6x
processors. A recent addition to the family of the C6x processors is the fixed-point
C64x.

An application-specific integrated circuit (ASIC) has a DSP core with customized
circuitry for a specific application. A C6x processor can be used as a standard
general-purpose digital signal processor programmed for a specific application.
Specific-purpose digital signal processors are the modem, echo canceler, and others.

A fixed-point processor is better for devices that use batteries, such as cellular
phones, since it uses less power than does an equivalent floating-point processor.
The fixed-point processors, C1x, C2x, and C5x are 16-bit processors with limited
dynamic range and precision. The C6x fixed-point processor is a 32-bit processor
with improved dynamic range and precision. In a fixed-point processor, it is neces-
sary to scale the data. Overflow, which occurs when an operation such as the addi-
tion of two numbers produces a result with more bits than can fit within a processor’s
register, becomes a concern.

A floating-point processor is generally more expensive since it has more “real
estate” or is a larger chip because of additional circuitry necessary to handle integer
as well as floating-point arithmetic. Several factors, such as cost, power consump-
tion, and speed, come into play when choosing a specific digital signal processor.
The C6x processors are particularly useful for applications requiring intensive com-
putations. Family members of the C6x include both fixed-point (e.g., C62x, C64x)
and floating-point processors (e.g., C67x). Other digital signal processors are also
available, from companies such as Motorola and Analog Devices [5].

Other architectures include the Super Scalar, which requires special hardware to
determine which instructions are executed in parallel. The burden is then on the

TMS320C6x Architecture 63

processor more than on the programmer as in the VLIW architecture. It does not
execute necessarily the same group of instructions, and as a result, it is difficult to
time. Thus, it is rarely used in DSP.

3.2 TMS320C6x ARCHITECTURE

The TMS320C6711 onboard the DSK is a floating-point processor based on the
VLIW architecture [6–9]. Internal memory includes a two-level cache architecture
with 4kB of level 1 program cache (L1P), 4kB of level 1 data cache (L1D), and
64kB of RAM or level 2 cache for data/program allocation (L2). It has a glueless
(direct) interface to both synchronous memories (SDRAM and SBSRAM) and
asynchronous memories (SRAM and EPROM). Synchronous memory requires
clocking but provides a compromise between static SRAM and dynamic SDRAM,
with SRAM being faster but more expensive than DRAM.

On-chip peripherals include two multichannel buffered serial ports (McBSPs),
two timers, a 16-bit host port interface (HPI), and a 32-bit external memory
interface (EMIF). It requires 3.3V for I/O and 1.8V for the core (internal).
Internal buses include a 32-bit program address bus, a 256-bit program data bus to
accommodate eight 32-bit instructions, two 32-bit data address buses, two 64-bit data
buses, and two 64-bit store data buses. With a 32-bit address bus, the total memory
space is 232 = 4GB, including four external memory spaces: CE0, CE1, CE2, and
CE3. Figure 3.1 shows a functional block diagram of the C6711 processor included
with CCS.

Independent memory banks on the C6x allow for two memory accesses within
one instruction cycle. Two independent memory banks can be accessed using two

FIGURE 3.1. Functional block diagram of TMS320C6x (Courtesy of Texas Instruments).

64 Architecture and Instruction Set of the C6x Processor

independent buses. Since internal memory is organized into memory banks, two
loads or two stores instructions can be performed in parallel. No conflict results if
the data accessed are in different memory banks. Separate buses for program, data,
and direct memory access (DMA) allow the C6x to perform concurrent program
fetches, data read and write, and DMA operations. With data and instructions
residing in separate memory spaces, concurrent memory accesses are possible. The
C6x has a byte-addressable memory space. Internal memory is organized as sepa-
rate program and data memory spaces, with two 32-bit internal ports (two 64-bit
ports with the C64x) to access internal memory.

The C6711 on the DSK includes 72kB of internal memory, which starts at
0x00000000, and 16MB of external SDRAM, mapped through CE0 starting at
0x80000000. The DSK also includes 128kB of Flash memory onboard, starting at
0x90000000. A two-level internal memory block diagram is shown in Figure 3.2,
included with CCS [7]. Table 3.1 shows the memory map. A schematic diagram of
the DSK is included with CCS (C6711dsk_schematics.pdf).

With a clock of 150MHz onboard the DSK, one can ideally achieve two multi-
plies and accumulates per cycle, for a total of 300 million multiplies and accumu-

FIGURE 3.2. Internal memory block diagram (Courtesy of Texas Instruments).

Functional Units 65

lates (MACs) per second. With six of the eight functional units in Figure 3.1 (not
the .D units described below) capable of handling floating-point operations, it is
possible to perform 900 million floating-point operations per second (MFLOPS).
Operating at 150MHz, this translates to 1200 million instructions per second (MIPS)
with a 6.67-ns instruction cycle time.

3.3 FUNCTIONAL UNITS

The CPU consists of eight independent functional units divided into two data paths
A and B, as shown in Figure 3.1. Each path has a unit for multiply operations (.M),
for logical and arithmetic operations (.L), for branch, bit manipulation, and
arithmetic operations (.S), and for loading/storing and arithmetic operations (.D).
The .S and .L units are for arithmetic, logical, and branch instructions. All data
transfers make use of the .D units.

The arithmetic operations, such as subtract or add (SUB or ADD), can be per-
formed by all the units except the .M units (one from each data path). The eight
functional units consist of four floating/fixed-point ALUs (two .L and two .S), two
fixed-point ALUs (.D units), and two floating/fixed-point multipliers (.M units).
Each functional unit can read directly from or write directly to the register file

TABLE 3.1 Memory Map Summary

Address Range (Hex) Size (Bytes) Description of Memory Block

0000 0000—0000 FFFF 64K Internal RAM (L2)
0001 0000—017F FFFF 24M–64K Reserved
0180 0000—0183 FFFF 256K Internal configuration bus EMIF registers
0184 0000—0187 FFFF 256K Internal configuration bus L2 control registers
0188 0000—018B FFFF 256K Internal configuration bus HPI register
018C 0000—018F FFFF 256K Internal configuration bus McBSP 0 registers
0190 0000—0193 FFFF 256K Internal configuration bus McBSP 1 registers
0194 0000—0197 FFFF 256K Internal configuration bus timer 0 registers
0198 0000—019B FFFF 256K Internal configuration bus timer 1 registers
019C 0000—019F FFFF 256K Internal configuration bus interrupt selector registers
01A0 0000—01A3 FFFF 256K Internal configuration bus EDMA RAM and registers
01A4 0000—01FF FFFF 6M–256K Reserved
0200 0000—0200 0033 52 QDMA registers
0200 0034—2FFF FFFF 736M–52 Reserved
3000 0000—3FFF FFFF 256M McBSP 0/1 data
4000 0000—7FFF FFFF 1G Reserved
8000 0000—8FFF FFFF 256M External memory interface CE0
9000 0000—9FFF FFFF 256M External memory interface CE1
A000 0000—AFFF FFFF 256M External memory interface CE2
B000 000—BFFF FFFF 256M External memory interface CE3
C000 0000—FFFF FFFF 1G Reserved

Source: Courtesy of Texas Instruments [7].

66 Architecture and Instruction Set of the C6x Processor

within its own path. Each path includes a set of sixteen 32-bit registers, A0 through
A15 and B0 through B15. Units ending in 1 write to register file A, and units ending
in 2 write to register file B.

Two cross-paths (1x and 2x) allow functional units from one data path to access
a 32-bit operand from the register file on the opposite side.There can be a maximum
of two cross-path source reads per cycle. Each functional unit side can access data
from the registers on the opposite side using a cross-path (i.e., the functional units
on one side can access the register set from the other side). There are 32 general-
purpose registers, but some of them are reserved for specific addressing or are used
for conditional instructions.

3.4 FETCH AND EXECUTE PACKETS

The architecture VELOCITI, introduced by TI, is derived from the VLIW archi-
tecture. An execute packet (EP) consists of a group of instructions that can be
executed in parallel within the same cycle time. The number of EPs within a fetch
packet (FP) can vary from one (with eight parallel instructions) to eight (with no
parallel instructions). The VLIW architecture was modified to allow more than one
EP to be included within an EP.

The least significant bit of every 32-bit instruction is used to determine if the next
or subsequent instruction belongs in the same EP (if 1) or is part of the next EP
(if 0). Consider an FP with three EPs: EP1, with two parallel instructions, and EP2
and EP3, each with three parallel instructions, as follows:

Instruction A
|| Instruction B

Instruction C
|| Instruction D
|| Instruction E

Instruction F
|| Instruction G
|| Instruction H

EP1 contains the two parallel instructions A and B; EP2 contains the three par-
allel instructions C, D, and E; and EP3 contains the three parallel instructions F, G,
and H. The FP would be as shown in Figure 3.3. Bit 0 (LSB) of each 32-bit
instruction contains a “p” bit that signals whether it is in parallel with a subsequent
instruction. For example, the “p” bit of instruction B is zero, denoting that it is
not within the same EP as the subsequent instruction C. Similarly, instruction E
is not within the same EP as instruction F.

Pipelining 67

3.5 PIPELINING

Pipelining is a key feature in a digital signal processor to get parallel instructions
working properly, requiring careful timing. There are three stages of pipelining:
program fetch, decode, and execute.

1. The program fetch stage is composed of four phases:

(a) PG: program address generate (in the CPU) to fetch an address

(b) PS: program address send (to memory) to send the address

(c) PW: program address ready wait (memory read) to wait for data

(d) PR: program fetch packet receive (at the CPU) to read opcode from
memory

2. The decode stage is composed of two phases:

(a) DP: to dispatch all the instructions within an FP to the appropriate func-
tional units

(b) DC: instruction decode

3. The execute stage is composed of from six phases (with fixed point) to 10
phases (with floating point), due to delays (latencies) associated with the
following instructions:

(a) Multiply instruction, which consists of two phases due to one delay

(b) Load instruction, which consists of five phases due to four delays

(c) Branch instruction, which consists of six phases due to five delays

Table 3.2 shows the pipeline phases, and Table 3.3 shows the pipelining effects.
The first row in Table 3.3 represents cycle 1, 2, . . . , 12. Each subsequent row repre-
sents an FP. The rows represented PG, PS, . . . , illustrate the phases associated with
each FP. The program generate (PG) of the first FP starts in cycle 1, and the PG of
the second FP starts in cycle 2, and so on. Each FP takes four phases for program
fetch and two phases for decoding. However, the execution phase can take from 1
to 10 phases (not all execution phases are shown in Table 3.3). We are assuming that
each FP contains one execute packet (EP).

For example, at cycle 7, while the instructions in the first FP are in the first exe-
cution phase E1 (which may be the only one), the instructions in the second FP are
in the decoding phase, the instructions in the third FP are in the dispatching phase,
and so on. All seven instructions are proceeding through the various phases. There-
fore, at cycle 7, “the pipeline is full.”

FIGURE 3.3. One fetch packet with three execute packets, showing the “p” bit of each
instruction.

68 Architecture and Instruction Set of the C6x Processor

Most instructions have one execute phase. Instructions such as multiply (MPY),
load (LDH/LDW), and branch (B) take two, five, and six phases, respectively. Addi-
tional execute phases are associated with floating-point and double-precision types
of instructions, which can take up to 10 phases. For example, the double-precision
multiply operation (MPYDP), available on the C67x, has nine delay slots, so that the
execution phase takes a total of 10 phases.

The functional unit latency, which represents the number of cycles that an instruc-
tion ties up a functional unit, is 1 for all instructions except double-precision instruc-
tions, available with the floating-point C67x. Functional unit latency is different from
a delay slot. For example, the instruction MPYDP has four functional unit latencies
but nine delay slots. This implies that no other instruction can use the associated
multiply functional unit for four cycles. A store has no delay slot but finishes its
execution in the third execution phase of the pipeline.

If the outcome of a multiply instruction such as MPY is used by a subsequent
instruction, a NOP (no operation) must be inserted after the MPY instruction for the
pipelining to operate properly. Four or five NOPs are to be inserted in case an instruc-
tion uses the outcome of a load or a branch instruction, respectively.

3.6 REGISTERS

Two sets of register files, each set with 16 registers, are available: register file A (A0
through A15) and register file B (B0 through B15). Registers A0, A1, B0, B1, and
B2 are used as conditional registers. Registers A4 through A7 and B4 through B7
are used for circular addressing. Registers A0 through A9 and B0 through B9
(except B3) are temporary registers. Any of the registers A10 through A15 and

TABLE 3.2 Pipeline Phases

Program Fetch Decode Execute

PG PS PW PR DP DC E1–E6 (E1–E10 for double precision)

TABLE 3.3 Pipelining Effects

Clock Cycle

1 2 3 4 5 6 7 8 9 10 11 12

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6
PG PS PW PR DP DC E1 E2 E3 E4 E5

PG PS PW PR DP DC E1 E2 E3 E4
PG PS PW PR DP DC E1 E2 E3

PG PS PW PR DP DC E1 E2
PG PS PW PR DP DC E1

PG PS PW PR DP DC

B10 through B15 used are saved and later restored before returning from a
subroutine.

A 40-bit data value can be contained across a register pair. The 32 least signifi-
cant bits (LSBs) are stored in the even register (e.g., A2) and the remaining 8 bits
are stored in the 8LSBs of the next-upper (odd) register (A3). A similar scheme is
used to hold a 64-bit double-precision value within a pair of registers (even
and odd).

These 32 registers are considered as general-purpose registers. Several special-
purpose registers are also available for control and interrupts: for example, the
address mode register (AMR) used for circular addressing and interrupt control
registers, as shown in Appendix B.

3.7 LINEAR AND CIRCULAR ADDRESSING MODES

Addressing modes determine how one accesses memory. They specify how data are
accessed, such as retrieving an operand indirectly from a memory location. Both
linear and circular modes of addressing are supported. The most commonly used
mode is the indirect addressing of memory.

3.7.1 Indirect Addressing

Indirect addressing can be used with or without displacement. Register R repre-
sents one of the 32 registers A0 through A15 and B0 through B15 that can specify
or point to memory addresses.As such, these registers are pointers. Indirect address-
ing mode uses a “*” in conjunction with one of the 32 registers. To illustrate, con-
sider R as an address register.

1. *R. Register R contains the address of a memory location where a data value
is stored.

2. *R++(d). Register R contains the memory address (location). After the
memory address is used, R is postincremented (modified), such that the new
address is the current address offset by the displacement value d. If d = 1 (by
default), the new address is R + 1, or R is incremented to the next-higher
address in memory. A double minus (--) instead of a double plus would
update or postdecrement the address to R - d.

3. *++R(d). The address is preincremented or offset by d, such that the current
address is R + d. A double minus would predecrement the memory address
so that the current address is R - d.

4. *+R(d). The address is preincremented by d, such that the current address is
R + d (as with the preceding case). However, in this case, R preincre-
ments without modification. Unlike the previous case, R is not updated or
modified.

Linear and Circular Addressing Modes 69

3.7.2 Circular Addressing

Circular addressing is used to create a circular buffer. This buffer is created in hard-
ware and is very useful in several DSP algorithms, such as in digital filtering or
correlation algorithms where data need to be updated. An example in Chapter 4
illustrates the implementation of a digital filter using a circular buffer to update the
“delay” samples.

The C6x has dedicated hardware to allow a circular type of addressing. This
addressing mode can be used in conjunction with a circular buffer to update samples
by shifting data without the overhead created by shifting data directly. As a pointer
reaches the end or “bottom” location of a circular buffer that contains the last
element in the buffer, and is then incremented, the pointer is automatically wrapped
around or points to the beginning or “top” location of the buffer that contains the
first element.

Two independent circular buffers are available using BK0 and BK1 within the
address mode register (AMR), as shown in Appendix B. The eight registers A4
through A7 and B4 through B7, in conjunction with the two .D units, can be used
as pointers (all registers can be used for linear addressing). The following code
segment illustrates the use of a circular buffer using register B2 (only side B can be
used) to set the appropriate values within AMR:

MVK .S2 0x0004,B2 ;lower 16 bits to B2. Select A5 as pointer
MVKLH .S2 0x0005,B2 ;upper 16 bits to B2. Select B0, set N = 5
MVC .S2 B2,AMR ;move 32 bits of B2 to AMR

The two move instructions MVK and MVKLH (using the .S unit) move 0x0004
into the 16LSBs of register B2 and 0x0005 into the 16MSBs of B2.The MVC (move
constant) instruction is the only instruction that can access the AMR and the other
control registers (shown in Appendix B) and executes only on the B side in con-
junction with the functional units and registers on the side B. A 32-bit value is
created in B2, which is then transferred to AMR with the instruction MVC to access
AMR [6].

The value 0x0004 = (0100)b into the 16LSBs of AMR sets bit 2 (third bit)
to 1 and all other bits to zero. This sets the mode to 01 and selects register A5 as
the pointer to a circular buffer using block BK0.

Table 3.4 shows the modes associated with registers A4 through A7 and B4
through B7. The value 0x0005 = (0101)b into the 16MSBs of AMR sets bits 16
and 18 to 1 (other bits to zero). This corresponds to the value of N used to select
the size of the buffer as 2N+1 = 64 bytes using BK0. For example, if a buffer size of
128 is desired using BK0, the upper 16 bits of AMR are set to (0110)b = 0x0006.
If assembly code is used for the circular buffer, as execution returns to a calling C
function, AMR needs to be reinitialized to the default linear mode. Hence the
pointer’s address must be saved.

70 Architecture and Instruction Set of the C6x Processor

TMS320C6x Instruction Set 71

3.8 TMS320C6x INSTRUCTION SET

3.8.1 Assembly Code Format

An assembly code format is represented by the field

Label || [] Instruction Unit Operands ;comments

A label, if present, represents a specific address or memory location that contains
an instruction or data. The label must be in the first column. The parallel bars (||)
are there if the instruction is being executed in parallel with the previous instruc-
tion.The subsequent field is optional to make the associated instruction conditional.
Five of the registers—A1, A2, B0, B1, and B2—are available to use as conditional
registers. For example, [A2] specifies that the associated instruction executes if A2
is not zero. On the other hand, with [!A2], the associated instruction executes if A2
is zero. All C6x instructions can be made conditional with the registers A1, A2, B0,
B1, and B2 by determining when the conditional register is zero. The instruction
field can be either an assembler directive or a mnemonic. An assembler directive is
a command for the assembler. For example,

.word value

reserves 32 bits in memory and fill with the specified value. A mnemonic is an
actual instruction that executes at run time. The instruction (mnemonic or assem-
bler directive) cannot start in column 1. The Unit field, which can be one of the
eight CPU units, is optional. Comments starting in column 1 can begin with either
an asterisk or a semicolon, whereas comments starting in any other columns must
begin with a semicolon.

Code for the floating-point processors C3x/C4x is not compatible with code for
the fixed-point processors C1x, C2x, and C5x/C54x. However, the code for the fixed-
point C62x is compatible with the code for the floating-point C67x. C62x code is
actually a subset of C67x code. Additional instructions to handle double-precision
and floating-point operations are available only on the C67x processor (some addi-
tional instructions are also available on the fixed-point C64x processor).

TABLE 3.4 AMR Mode and Description

Mode Description

0 0 For linear addressing (default on reset)
0 1 For circular addressing using BK0
1 0 For circular addressing using BK1
1 1 Reserved

Several code segments are presented to illustrate the C6x instruction set. Assem-
bly code for the C6x processors is very similar to C3x/C4x code. Single-task types
of instructions available for the C62x/C67x make it easier to program than either
the previous generation of fixed- or floating-point processors. This contributes to an
efficient compiler. Additional instructions available on the C64x (but not on the
C62x) resemble the multitask types of instructions for C3x/C4x processors. It is very
instructive to read the comments in the programs discussed in this book. Appendix
B contains a list of the instructions for the C62x/C67x processors.

3.8.2 Types of Instructions

The following illustrates some of the syntax of assembly code. It is optional to
specify the eight functional units, although this can be useful during debugging and
for code efficiency and optimization, discussed in Chapter 8.

1. Add/Subtract/Multiply

(a) The instruction

ADD .L1 A3,A7,A7 ;add A3 + A7 ÆA7 (accum in A7)

adds the values in registers A3 and A7 and places the result in register
A7. The unit .L1 is optional. If the destination or result is in B7, the unit
would be .L2.

(b) The instruction

SUB .S1 A1,1,A1 ;subtract 1 from A1

subtracts 1 from A1 to decrement it, using the .S unit.

(c) The parallel instructions

MPY .M2 A7,B7,B6 ;multiply 16LSBs of A7,B7 Æ B6
|| MPYH .M1 A7,B7,A6 ;multiply 16MSBs of A7,B7 Æ A6

multiplies the lower or least significant 16 bits (LSBs) of both A7 and B7
and places the product in B6, in parallel (concurrently within the same
execution packet) with a second instruction that multiplies the higher or
most significant 16 bits (MSBs) of A7 and B7 and places the result in A6.
In this fashion, two multiply/accumulate operations can be executed
within a single instruction cycle. This can be used to decompose a sum of
products into two sets of sum of products: one set using the lower 16 bits
to operate on the first, third, fifth, . . . number, and another set using the

72 Architecture and Instruction Set of the C6x Processor

higher 16 bits to operate on the second, fourth, sixth, . . . number. Note
that the parallel symbol is not in column 1.

2. Load/Store

(a) The instruction

LDH .D2 *B2++,B7 ;load (B2) ÆB7, increment B2
|| LDH .D1 *A2++,A7 ;load (A2) ÆA7, increment A2

loads into B7 the half-word (16 bits) whose address in memory is speci-
fied/pointed by B2. Then register B2 is incremented (postincremented) to
point at the next-higher memory address. In parallel is another indirect
addressing mode instruction to load into A7 the content in memory, whose
address is specified by A2. Then A2 is incremented to point at the next-
higher memory address.

The instruction LDW loads a 32-bit word. Two paths using .D1 and .D2
allow for the loading of data from memory to registers A and B using the
instruction LDW. The double-word load floating-point instruction LDDW on
the C6711 can simultaneously load two 32-bit registers into side A and
two 32-bit registers into side B.

(b) The instruction

STW .D2 A1,*+A4[20] ;store A1Æ(A4) offset by 20

stores the 32-bit word A1 into memory whose address is specified by A4
offset by 20 words (32 bits) or 80 bytes. The adddress register A4 is prein-
cremented with offset, but it is not modified (two plus signs are used if A4
is to be modified).

3. Branch/Move. The following code segment illustrates branching and data
transfer.

Loop MVK .S1 x,A4 ;move 16LSBs of x address ÆA4
MVKH .S1 x,A4 ;move 16MSBs of x address ÆA4
.
.
.
SUB .S1 A1,1,A1 ;decrement A1

[A1] B .S2 Loop ;branch to Loop if A1 # 0
NOP 5 ;five no-operation instructions
STW .D1 A3,*A7 ;store A3 into (A7)

The first instruction moves the lower 16 bits (LSBs) of address x into register
A4. The second instruction moves the higher 16 bits (MSBs) of address x into

TMS320C6x Instruction Set 73

A4, which now contains the full 32-bit address of x. One must use the instruc-
tions MVK/MVKH in order to get a 32-bit constant into a register.

Register A1 is used as a loop counter. After it is decremented with the SUB
instruction, it is tested for a conditional branch. Execution branches to the
label or address loop if A1 is not zero. If A1 = 0, execution continues and data
in register A3 are stored in memory whose address is specified (pointed) by
A7.

3.9 ASSEMBLER DIRECTIVES

An assembler directive is a message for the assembler (not the compiler) and is not
an instruction. It is resolved during the assembling process and does not occupy
memory space as an instruction does. It does not produce executable code.
Addresses of different sections can be specified with assembler directives. For
example, the assembler directive.sect “my_buffer” defines a section of code
or data named my_buffer. The directives.text and.data indicate a section for
text and data, respectively. Other assembler directives, such as.ref and .def, are
used for undefined and defined symbols, respectively. The assembler creates several
sections indicated by directives such as .text for code and .bss for global and
static variables.

Other commonly used assembler directives are:

1. .short: to initialize a 16-bit integer.

2. .int: to initialize a 32-bit integer (also .word or .long). The compiler
treats a long data value as 40 bits, whereas the C6x assembler treats it as
32 bits.

3. .float: to initialize a 32-bit IEEE single-precision constant.

4. .double: to initialize a 64-bit IEEE double-precision constant.

Initialized values are specified by using the assembler directives .byte, .short,
or .int. Unitialized variables are specified using the directive .usect, which
creates an uninitialized section (like the .bss section), whereas the directive .sect
creates an initialized section. For example, .usect “variable”, 128,2 desig-
nates an unitialized section named variable, the section size in bytes, and the data
alignment in bytes, respectively.

3.10 LINEAR ASSEMBLY

An alternative to C, or assembly code, is linear assembly. An assembler optimizer
(in lieu of a C compiler) is used in conjunction with a linear assembly-coded source
program (with extension .sa) to create an assembly source program (with extension
.asm), in much the same way that a C compiler optimizer is used in conjunction with

74 Architecture and Instruction Set of the C6x Processor

a C-coded source program. The resulting assembly-coded program produced by
the assembler optimizer is typically more efficient than one resulting from the C
compiler optimizer. The assembly-coded program resulting from either a C-coded
source program or a linear-assembly source program must be assembled to produce
an object code.

Linear assembly code programming provides a compromise between coding
effort and coding efficiency. The assembler optimizer assigns which functional unit
and register to use (optional to be specified by user), finds instructions that can
execute in parallel, and performs software pipelining for optimization (discussed in
Chapter 8). Two programming examples at the end of this chapter illustrate a C
program calling a linear assembly function. Parallel instructions are not valid in a
linear assembly program. Specifying the functional unit is optional in a linear assem-
bly program as well as in an assembly program.

Over the last couple of years, the C compiler optimizer has become more and
more efficient. Although C code is less efficient (speed performance) than assem-
bly code, it typically involves less coding effort than assembly code, which can be
hand-optimized to achieve a 100 percent efficiency but with much greater coding
effort.

It may be interesting to note that the C6x assembly code syntax is not as complex
as the C2x/C5x or the C3x family of digital signal processors. It is actually simpler
to “program” the C6x in assembly. For example, the C3x instruction

DBNZD AR4,LOOP

decrements (due to the first D) a loop counter AR4, branches (B) conditionally (if
AR4 is nonzero) to the address specified by LOOP, with delay (due to the second
D). The branch instruction with delay effectively allows the branch instruction to
execute in a single cycle (due to pipelining). Such multitask instructions are not
available on the C6x (although recently introduced on the C64x processor). In fact,
C6x types of instructions are “simpler.” For example, separate instructions are avail-
able for decrementing a counter (with a SUB instruction) and branching.The simpler
types of instructions are more amenable for a more efficient C compiler.

However, although it is simpler to program in assembly code to perform a desired
task, this does not imply or translate to an efficient assembly-coded program. It can
be relatively difficult to hand-optimize a program to yield a totally efficient (and
meaningful) assembly-coded program.

Linear assembly code is a cross between assembly and C. It uses the syntax of
assembly code instructions such as ADD, SUB, and MPY but with operands/registers
as used in C. In some cases this provides a good compromise between C and
assembly.

Linear assembler directives include

.cproc

.endproc

Linear Assembly 75

to specify a C-callable procedure or section of code to be optimized by the assem-
bler optimizer. Another directive, .reg, is to declare variables and use descriptive
names for values that will be stored in registers. Programming examples with C
calling an assembly function or C calling a linear assembly function are illustrated
later in this chapter.

3.11 ASM STATEMENT WITHIN C

Assembly instructions and directives can be incorporated within a C program using
the asm statement. The asm statement can provide access to hardware features that
cannot be obtained using C code only. The syntax is

asm (“assembly code”);

The assembly line of code within the set of quotes has the same format as a valid
assembly statement. Note that if the instruction has a label, the first character of the
label must start after the first quote so that it is in column 1. The assembly state-
ment should be valid since the compiler does not check it for syntax error but copies
it directly into the compiled output file. If the assembly statement has a syntax error,
the assembler would detect it.

Avoid using asm statements within a C program, especially within a linear assem-
bly program. This is because the assembler optimizer could rearrange lines of code
near the asm statements that may cause undesirable results.

3.12 C-CALLABLE ASSEMBLY FUNCTION

Two programming examples are included later in this chapter to illustrate a C
program calling an assembly function. Register B3 is preserved and is used to
contain the return address of the calling function.

An external declaration of an assembly function called within a C program using
extern is optional. For example,

extern int func();

is optional with the assembly function func returning an integer value.

3.13 TIMERS

Two 32-bit timers can be used to time and count events or to interrupt the CPU. A
timer can direct an external ADC to start conversion or the DMA controller to start
a data transfer. A timer includes a time period register, which specifies the timer’s
frequency; a timer counter register, which contains the value of the incrementing
counter; and a timer control register, which monitors the timer’s status.

76 Architecture and Instruction Set of the C6x Processor

3.14 INTERRUPTS

An interrupt can be issued internally or externally. An interrupt stops the current
CPU process so that it can perform a required task initiated by the interrupt. The
program flow is redirected to an interrupt service routine (ISR). The source of the
interrupt can be an ADC, a timer, and so on. Upon an interrupt, the conditions of
the current process must be saved so that they can be restored after the interrupt
task is performed. On interrupt, registers are saved and processing continues to an
ISR. Then the registers are restored.

There are 16 interrupt sources. They include two timer interrupts, four external
interrupts, four McBSP interrupts, and four DMA interrupts.Twelve CPU interrupts
are available. An interrupt selector is used to choose among the 12 interrupts.

3.14.1 Interrupt Control Registers

The interrupt control registers (Appendix B) follow.

1. CSR (control status register): contains the global interrupt enable (GIE) bit
and other control/status bits

2. IER (interrupt enable register): enables/disables individual interrupts

3. IFR (interrupt flag register): displays status of interrupts

4. ISR (interrupt set register): sets pending interrupts

5. ICR (interrupt clear register): clears pending interrupts

6. ISTP (interrupt service table pointer): locates an ISR

7. IRP (interrupt return pointer)

8. NRP (nonmaskable interrupt return pointer)

Interrupts are prioritized, with Reset having the highest priority. The reset inter-
rupt and nonmaskable interrupt (NMI) are external pins that have the first and
second highest priority, respectively. The interrupt enable register (IER) is used to
set a specific interrupt and can check if and which interrupt has occurred from the
interrupt flag register (IFR).

NMI is nonmaskable, along with Reset. NMI can be masked (disabled) by clear-
ing the NMIE bit within CSR. It is set to zero only upon reset or upon a non-
maskable interrupt. If NMIE is set to zero, all interrupts INT4 through INT15 are
disabled. The interrupt registers are shown in Appendix B.

The reset signal is an active-low signal used to halt the CPU, and the NMI signal
alerts the CPU to a potential hardware problem. Twelve CPU interrupts with lower
priorities are available, corresponding to the maskable signals INT4 through INT15.
The priorities of these interrupts are: INT4, INT5, . . . , INT15, with INT4 having the
highest priority and INT15 the lowest priority. For a nonmaskable interrupt to occur,
the nonmaskable interrupt enable (NMIE) bit must be 1 (active high). On reset (or

Interrupts 77

after a previously set NMI), the NMIE bit is cleared to zero so that a reset inter-
rupt may occur.

To process a maskable interrupt, the global interrupt enable (GIE) bit within the
control status register (CSR) and the NMIE bit within the interrupt enable regis-
ter (IER) are set to 1. GIE is set to 1 with bit 0 of CSR set to 1 and NMIE is set to
1 with bit 1 of IER set to 1. Note that CSR can be ANDed with -2 (using 2’s com-
plement, the LSB is zero while all other bits are 1’s) to set the GIE bit to zero and
disable maskable interrupts globally.

The interrupt enable (IE) bit corresponding to the desirable maskable interrupt
is also set to 1. When the interrupt occurs, the corresponding interrupt flag register
(IFR) bit is set to 1 to show the interrupt status. To process a maskable interrupt,
the following apply:

1. The GIE bit is set to 1.

2. The NMIE bit is set to 1.

3. The appropriate IE bit is set to 1.

4. The corresponding IFR bit is set to 1.

For an interrupt to occur, the CPU must not be executing a delay slot associated
with a branch instruction.

The interrupt service table (IST) shown in Table 3.5 is used when an interrupt
begins. Within each location is a fetch packet (FP) associated with each interrupt.
The table contains 16FPs, each with eight instructions. The addresses on the right
side correspond to an offset associated with each specific interrupt. For example,
the FP for interrupt INT11 is at a base address plus an offset of 160h. Since each

78 Architecture and Instruction Set of the C6x Processor

TABLE 3.5 Interrupt Service Table

Interrupt Offset

RESET 000h
NMI 020h
Reserved 040h
Reserved 060h
INT4 080h
INT5 0A0h
INT6 0C0h
INT7 0E0h
INT8 100h
INT9 120h
INT10 140h
INT11 160h
INT12 180h
INT13 1A0h
INT14 1C0h
INT15 1E0h

Source: Courtesy of Texas Instruments.

FP contains eight 32-bit instructions (256 bits) or 32 bytes, each offset address in
the table is incremented by 20h = 32.

The reset FP must be at address 0. However, the FPs associated with the other
interrupts can be relocated. The relocatable address can be specified by writing this
address to the interrupt service table base (ISTB) register of the interrupt service
table pointer (ISTP) register, shown in Figure B.7. On reset, ISTB is zero. For relo-
cating the vector table, the ISTP is used; the relocatable address is ISTB plus the
offset.

Table 3.6 shows the interrupt selector values needed to choose a specific type of
interrupt. The interrupt selector value 01000 is also for EDMA_INT, the enhanced
DMA interrupt.

The software defined interrupts INT4–INT15 are associated with a physical inter-
rupt signal using the interrupt multiplex registers IML and IMH. The desired inter-
rupt select values in Table 3.5 are stored in the proper IML or IMH fields for
INT4–INT15 [7]. See also the support file C6xdskinterrupt.h.

3.14.2 Selection of XINT0

In most previous examples, the McBSP0 transmit interrupt was chosen. In the
communication file C6xdskinit.c, the function Config_Interrupt_Selector
is called, which is within the interrupt header support file C6xinterrupts.h.
The corresponding interrupt selector number (01100) = 0xC is obtained from
C6xinterrupts.h (this 5-bit selector value resides within bits 5 through 9 of the
IMH register).

Interrupts 79

TABLE 3.6 Selection of Interrupts Using Interrupt
Selector

Interrupt Selector Type Description

00000 DSPINT Host port to DSP interrupt
00001 TINT0 Timer 0 interrupt
00010 TINT1 Timer 1 interrupt
00011 SD_INT EMIF SDRAM timer interrupt
00100 EXT_INT4 External interrupt pin 4
00101 EXT_INT5 External interrupt pin 5
00110 EXT_INT6 External interrupt pin 6
00111 EXT_INT7 External interrupt pin 7
01000 DMA_INT0 DMA channel 0 interrupt
01001 DMA_INT1 DMA channel 1 interrupt
01010 DMA_INT2 DMA channel 2 interrupt
01011 DMA_INT3 DMA channel 3 interrupt
01100 XINT0 McBSP0 transmit interrupt
01101 RINT0 McBSP0 receive interrupt
01110 XINT1 McBSP1 transmit interrupt
01111 RINT1 McBSP1 receive interrupt

Source: Courtesy of Texas Instruments.

3.14.3 Interrupt Acknowledgment

The signals IACK and INUMx (INUM0 through INUM3) are pins on the C6x that
acknowledge an interrupt has occurred and is being processed. The four INUMx
signals indicate the number of the interrupt being processed. For example,

INUM3 = 1 (MSB), INUM2 = 0, INUM1 = 1, INUM0 = 1 (LSB)

corresponds to (1011)b = 11, indicating that INT11 is being processed.
The IE11 bit is set to 1 to enable INT11. The interrupt flag register (IFR) can be

read to verify that bit IF11 is set to 1 (INT11 enabled). Writing a 1 to a bit in the
interrupt set register (ISR) causes the corresponding interrupt flag to be set in IFR;
whereas a 0 to a bit in the interrupt clear register (ICR) causes the corresponding
interrupt to be cleared.

All interrupts remain pending while the CPU has a pending branch instruction.
Since a branch instruction has five delay slots, a loop smaller than six cycles is
noninterruptible. Any pending interrupt will be processed as long as there are
no pending branches to be completed. Additional information can be found in
Ref. 6.

3.15 MULTICHANNEL BUFFERED SERIAL PORTS

Two multichannels buffered serial ports (McBSPs) are available. They provide an
interface to inexpensive (industry standard) external peripherals. McBSPs have fea-
tures such as full-duplex communication, independent clocking and framing for
receiving and transmitting, and direct interface to AC97 and IIS compliant devices.
It allows several data sizes between 8 and 32 bits. Clocking and framing associated
with the McBSPs for input and output can be found in Ref. 7.

External data communication can occur while data are being moved internally.
Figure 3.4 shows an internal block diagram of a McBSP. The data transmit (DX)
and the data receive (DR) pins are used for data communication. Control infor-
mation (clocking and frame synchronization) is through CLKX, CLKR, FSX,
and FSR. The CPU or DMA controller reads data from the data receive register
(DRR) and writes data to be transmitted to the data transmit register (DXR). The
transmit shift register (XSR) shifts these data to DX. The receive shift register
(RSR) copies the data received on DR to the receive buffer register (RBR).
The data in RBR are then copied to DRR to be read by the CPU or the DMA
controller.

Other registers—serial port control register (SPCR), receive/transmit control
register (RCR/XCR), receive/transmit channel enable register (RCER/XCER), pin
control register (PCR), and sample rate generator register (SRGR)—support
further data communication [7].

80 Architecture and Instruction Set of the C6x Processor

3.16 DIRECT MEMORY ACCESS

Direct memory access (DMA) allows for the transfer of data to and from internal
memory or external devices without intervention from the CPU [7]. Four DMA
channels can be configured independently for data transfer. An additional
(auxiliary) channel is available for DMA with the host port interface (HPI). DMA
can access on-chip memory and the external memory interface (EMIF). Data of
different sizes can be transferred: 8-bit bytes, 16-bit half-words, and 32-bit
words.

A number of DMA registers are used to configure the DMA: address (source
and destination), index, count reload, DMA global data, and control registers. The
source and destination addresses can be from internal program memory, internal
data memory, external memory interface, and internal peripheral bus. DMA
transfers can be triggered by interrupts from internal peripherals as well as from
external pins.

For each resource, each DMA channel can be programmed for priorities with the
CPU. Between the four DMA channels, channel 0 has the highest priority

Direct Memory Access 81

FIGURE 3.4. Internal block diagram of McBSP (Courtesy of Texas Instruments).

and channel 3 has the lowest priority. Each DMA channel can be made to start
initiating block transfer of data independently. A block can contain a number of
frames. Within each frame can be many elements. Each element is a single data
value. The DMA count reload register contains the value to specify the frame count
(16 MSBs) and the element count (16 LSBs). An enhanced DMA (EDMA) is also
available with 16 independently programmable channels.

3.17 MEMORY CONSIDERATIONS

3.17.1 Data Allocation

Blocks of code and data can be allocated in memory within sections specified in
the linker command file. These sections can be either initialized or uninitialized.
Initialized or uninitialized sections, except .text, cannot be allocated into internal
program memory. The initialized sections are:

1. .cinit: for global and static variables

2. .const: for global and static constant variables

3. .switch: contains jump tables for large switch statements

4. .text: for executable code and constants

The uninitialized sections are:

1. .bss: for global and static variables

2. .far: for global and static variables declared far

3. .stack: allocates memory for the system stack

4. .sysmem: reserves space for dynamic memory allocation used by the malloc,
calloc, and realloc functions

The linker can be used to place sections, such as, text in fast internal memory for
most efficient operation.

3.17.2 Data Alignment

The C6x always accesses aligned data which allows it to address bytes, half-words,
and words (32 bits).The data format consists of four byte boundaries, two half-word
boundaries, and one word boundary. For example, to assign a 32-bit load with
LDW, the address must be aligned with a word boundary so that the lower 2 bits of
the address are zero. Otherwise, incorrect data can be loaded. A double-word (64
bits) also can be accessed. Both .S1 and .S2 can be used to execute the double-
word instruction LDDW to load two 64-bit double words, for a total of 128 bits per
cycle.

82 Architecture and Instruction Set of the C6x Processor

3.17.3 Pragma Directives

The pragma directives tell the compiler to consider certain functions. Pragmas
include DATA_ALIGN, DATA_SECTION, and so on. The DATA_ALIGN pragma has
the syntax

#pragma DATA_ALIGN (symbol,constant);

which aligns symbol to a boundary.The constant is a power of 2.This pragma direc-
tive is used later in conjunction with FFT examples to align data in memory.

The DATA_SECTION pragma has the following syntax:

#pragma DATA_SECTION (symbol,”my_section”);

which allocates space for symbol in the section named my_section.
Another useful pragma directive,

pragma MUST_ITERATE (20,20)

tells the compiler that the loop following will execute 20 times (minimum and
maximum of 20 times).

3.17.4 Memory Models

The compiler generates a small memory model code by default. Every data object
is handled as if declared near unless it is specifically declared far. If the
DATA_SECTION pragma is used, the object is specified as a far variable.

How run-time support functions are called can be controlled by the option –mr0
with the run-time support data and calls near, or by the option –mr1 with the run-
time support data and calls far. Using the far method to call functions does not
imply that those functions must reside in off-chip memory.

Large-memory models can be generated with the linker options –mlx (x = 0
to 4). If no level is specified, data and functions default to near. These models can
be used if calling a function that is more than 1M word away.

3.18 FIXED- AND FLOATING-POINT FORMAT

Some fixed-point considerations are reviewed in Appendix C.

3.18.1 Data Types

Some data types are:

1. short: of size 16 bits represented as 2’s complement with a range from -215

to (215 - 1)

Fixed- and Floating-Point Format 83

2. int or signed int: of size 32 bits represented as 2’s complement with a
range from -231 to (231 - 1)

3. float: of size 32 bits represented as IEEE 32-bit with a range from 2-126 =
1.175494 ¥ 10-38 to 2+128 = 3.40282346 ¥ 1038

4. double: of size 64 bits represented as IEEE 64-bit with a range from 2-1022 =
2.22507385 ¥ 10-308 to 2+1024 = 1.79769313 ¥ 10+308

Data types such as short for fixed-point multiplication can be more efficient (fewer
cycles) than using int. Use of const can also increase code performance.

3.18.2 Floating-Point Format

With a much wider dynamic range in a floating-point processor, scaling is not an
issue. A floating-point number can be represented using single precision (SP) with
32 bits or double precision (DP) with 64 bits, as shown in Figure 3.5. In single-
precision format, bit 31 represents the sign bit, bits 23 through 30 represent the expo-
nent bits, and bits 0 through 22 represent the fractional bits, as shown in Figure 3.5a.
Numbers as small as 10-38 and as large as 10+38 can be represented. In double-
precision format, more exponent and fractional bits are available, as shown in Figure
3.5b. Since 64 bits are represented, a pair of registers is used. Bits 0 through 31 of
the first register pair represent the fractional bits. Bits 0 through 19 of the second
register pair also represent the fractional bits, with bits 20 through 30 representing
the exponent bits, and bit 31 the sign bit. As a result, numbers as small as 10-308 and
as large as 10+308 can be represented.

Instructions ending in either SP or DP represent single and double precision,
respectively. Some of the floating-point instructions (available on the C67x floating-
point processor) have more latencies than do fixed-point instructions. For example,
the fixed-point multiplication MPY requires one delay or NOP, whereas the single-
precision MPYSP requires three delays, and the double-precision instruction MPYDP
requires nine delays.

The single-precision floating-point instructions ADDSP and MPYSP have three
delay slots and take four cycles to complete execution.The double-precision instruc-

84 Architecture and Instruction Set of the C6x Processor

FIGURE 3.5. Data format: (a) single precision; (b) double precision.

tions ADDDP and MPYDP have six and nine delay slots, respectively. However, the
floating-point double-word load instruction LDDW (with four delay slots as with the
fixed-point LDW) can load 64 bits. Two LDDW instructions can execute in parallel
through both units .S1 and .S2 to load a total of 128 bits per cycle.

A single-precision floating-point value can be loaded into a single register,
whereas a double-precision floating-point value is a 64-bit value that can be loaded
into a register pair such as A1:A0, A3:A2, . . . , B1:B0, B3:B2, . . . The least signifi-
cant 32 bits are loaded into the even register pair, and the most significant 32 bits
are loaded into the odd register pair.

One may need to weigh the pros and cons of dynamic range and accuracy with
possible degradation in speed when using floating-point types of instructions.

3.18.3 Division

The floating-point C6711 processor has a single-precision reciprocal instruction
RCPSP. A division operation can be performed by taking the reciprocal of the
denominator and multiplying the result by the numerator [6]. There are no fixed-
point instructions for division. Code is available to perform a division operation by
using the fixed-point processor to implement a Newton–Raphson equation.

3.19 CODE IMPROVEMENT

Several code optimization schemes are discussed in Chapter 8 using both fixed- and
floating-point implementations and ASM code.

3.19.1 Intrinsics

C code can be optimized further by using many of the intrinsics available from the
run-time library support file. Intrinsic functions are similar to run-time support
library functions. Intrinsics are available to multiply, to add, to find the reciprocal
of a square root, and so on. For example, in lieu of using the asterisk operator to
multiply, the intrinsic _mpy can be used. Intrinsics are special functions that map
directly to inline C6x instructions. For example,

int _mpy()

is equivalent to the assembly instruction MPY, to multiply the 16 LSBs of two
numbers. The intrinsic function

int _mpyh()

is equivalent to the assembly instruction MPYH to multiply the 16 MSBs of two
numbers.

Code Improvement 85

3.19.2 Trip Directive for Loop Count

The linear assembly directive .trip is used to specify the number of times a loop
iterates. If the exact number is known and used, the linear assembler optimizer can
produce pipelined code (discussed in Chapter 8) and redundant loops are not gen-
erated. This can improve both code size and execution time. A .trip count speci-
fication, even if it is not the exact value, may improve performance: for example,
when the actual number of iterations is a multiple of the specified value. The intrin-
sic function _nassert() can be used in a C program in lieu of .trip. Example
3.1 illustrates the use of _nassert() in the dot product example.

3.19.3 Cross-Paths

Data and address cross-path instructions are used to increase code efficiency. The
instruction

MPY .M1x A2,B2,A4

illustrates a data cross-path that multiplies the two sources A2 and B2 from two
different sides, A and B, with the result in A4. If the result is in the B register file,
a 2x cross-path is used with the instruction

MPY .M2x A2,B2,B4

with the result in B4. The instruction

LDW .D1T2 *A2,B2

illustrates an address cross-path. It loads the content in register A2 (from a register
file A) into register B2 (register file B). Only two cross-paths are available on the
C6x, so no more than two instructions using cross-paths are allowed within a cycle.

3.19.4 Software Pipelining

Software pipelining uses available resources to obtain efficient pipelining code. The
aim is to use all eight functional units within one cycle. However, substantial coding
effort is required using the software pipelining technique. There are three stages to
a pipelined code:

1. Prolog

2. Loop kernel (or loop cycle)

3. Epilog

86 Architecture and Instruction Set of the C6x Processor

The first stage, prolog, contains instructions to build the second-stage loop cycle, and
the epilog stage (last stage) contains instructions to finish all loop iterations. Soft-
ware pipelining is used by the compiler when optimization option level –o2 or –o3
is invoked. The most efficient software pipelined code has loop trip counters that
count down: for example,

for (i = N; i != 0; i––)

A dot product example with word-wide hand-coded pipelined code results in (N/2)
+ 8 cycles to obtain the sum of two arrays, with N numbers in each array. This trans-
lates to 108 cycles to find the sum of products of 200 numbers, as illustrated in
Chapter 8. This efficiency is obtained using instructions such as LDW to load a 32-
bit word, and multiplying the lower and higher 16-bit numbers separately with the
two instructions mpy and mpyh, respectively.

Removing the epilog section can also reduce the code size. The available options
–msn (n = 0,1,2) directs the compiler to favor code size reduction over performance.
Producing a hand-coded software pipelined code can be obtained by first drawing
a dependency graph and setting up a scheduling table [8]. In Chapter 8 we discuss
software pipelining in conjunction with code efficiency.

3.20 CONSTRAINTS

3.20.1 Memory Constraints

Internal memory is arranged through various banks of memory so that loads and
stores can occur simultaneously. Since each bank of memory is single-ported, only
one access to each bank is performed per cycle. Two memory accesses per cycle can
be performed if they do not access the same bank of memory. If multiple accesses
are performed to the same bank of memory (within the same space), the pipeline
will stall. This causes additional cycles for execution to complete.

3.20.2 Cross-Paths Constraints

Since there is one cross-path in each side of the two data paths, there can be at most
two instructions per cycle using cross-paths. The following code segment is valid
since both available cross-paths are utilized:

ADD .L1x A1,B1,A0
|| MPY .M2x A2,B2,B3

whereas the following is not valid since one cross-path is used for both
instructions:

Constraints 87

ADD .L1x A1,B1,A0
|| MPY .M1x A2,B2,A3

The x associated with the functional unit designates a cross-path.

3.20.3 Load/Store Constraints

The address register to be used must be on the same side as the .D unit. The
following code segment is valid:

LDW .D1 *A1,A2
|| LDW .D2 *B1,B2

whereas the following is not valid:

LDW .D1 *A1,A2
|| LDW .D2 *A3,B2

Furthermore, loading and storing cannot be from the same register file. A load
(or store) using one register file in parallel with another load (or store) must use a
different register file. For example, the following code segment is valid:

LDW .D1 *A0,B1
|| STW .D2 A1,*B2

The following is also valid:

LDW .D1 *A0,B1
|| LDW .D2 *B2,A1

However, the following is not valid:

LDW .D1 *A0,A1
|| STW .D2 A2,*B2

3.20.4 Pipelining Effects with More Than One EP within an FP

Table 3.3 shows a previous pipeline operation representing eight instructions in par-
allel within one fetch packet (FP).Table 3.7 shows the pipeline operation when there
are more than one execute packet (EP) within an FP.

Consider the operation of six fetch packets (FP1 through FP6) through the
pipeline. FP1 contains three execute packets, and FP2, FP3, . . . , FP6 each contains

88 Architecture and Instruction Set of the C6x Processor

one execute packet. In cycles 2 through 5, FP2 through FP5, each starts its program
fetch phase. When the CPU detects that FP1 contains more than one EP, it forces
the pipeline to stall so that EP2 and EP3, within FP1, can each start its dispatching
phase in cycles 6 and 7, respectively. Each instruction within an FP has a “p” bit to
specify whether that instruction is in parallel with a subsequent instruction (if a 1,
as shown in Figure 3.3).

During clock cycles 1 through 4, a program fetch phase occurs. The three EPs
within the same fetch packet cause a stall in the pipeline. This allows the DP phase
to start at cycle 6 (not at cycle 5) for EP2 and at cycle 7 for EP3. The subsequent
fetch packet (FP2) with only one EP (with all eight instructions in parallel) is stalled
so that each of the three EPs in the previous FP (FP1) can go through the DP phase.
As a result, while the fetch phase for FP2 starts at cycle 2, its DP phase does not
start until cycle 8.The third fetch packet (FP3), also with only one EP, starts its fetch
stage at cycle 3, but its DP phase does not start until cycle 9, due to the pipeline
stall.

The pipeline then stalls in cycles 6 and 7, as indicated with an “X”. Once EP3
(within FP1) continues onto its decoding phase in cycle 8, the pipeline is released.
FP2 can now continue to its dispatching phase in cycle 8. Since FP3 through FP6
also were stalled, each can now resume its program fetch phase in cycle 8.

Hence, with the three EPs within one FP, the pipeline stalls for two cycles. Table
3.7 illustrates the stalling pipeline effects. A pipeline stall would also take place in
the event that the first FP had four EPs, each with two parallel instructions.

3.21 TMS320C64x PROCESSOR

Another member of the C6000 family of processors is the C64x, which can operate
at a much higher clock rate, reaching the gigahertz range. Operating at 750MHz
with eight instructions per cycle, this translates to 6000 million instructions per
second (MIPS).

TMS320C64x Processor 89

TABLE 3.7 Pipelining with Stalling Effects

Clock Cycle

1 2 3 4 5 6 7 8 9 10 11 12

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6
DP DC E1 E2 E3 E4 E5

DP DC E1 E2 E3 E4
PG PS PW PR X X DP DC E1 E2 E3

PG PS PW X X PR DP DC E1 E2
PG PS X X PW PR DP DC E1

PG X X PS PW PR DP DC
X X PG PS PW PR DP

The C64x is based on the architecture VELOCITI.2, which is an extension of
VELOCITI [8]. Some of its features include a larger memory and twice as many
registers, for a total of sixty-four 32-bit registers.The extra registers allow for packed
data types to support four 8-bit or two 16-bit operations associated with one 32-bit
register; hence increasing parallelism. For example, the instruction MPYU4 performs
four 8-bit multiplications within a single instruction cycle time. Several special-
purpose instructions have also been added to handle many operations encountered
in wireless and digital imaging applications, where 8-bit data processing is common.
In addition, the .M unit (for multiply operations) can also handle shift and rotate
operations. Similarly, the .D unit (for data manipulation) can also handle logical
operations.

The C64x is a fixed-point processor. Existing instructions are available to more
units. Double-word load (LDDW) and store (STDW) instructions can access 64 bits of
data, with up to two double-word load or store instructions per cycle (read or write
128 bits per cycle).

A few instructions have been added for the C64x processor. For example, the
instruction

BDEC LOOP,B0

decrements a counter B0 and performs a conditional (based on B0) branch to LOOP.
The branch decision is before the decrement; with the branch decision based on a
negative number (not on whether the number is zero). This multitask instruction
resembles the syntax used in the C3x and C4x family of processors.

Furthermore, with the intrinsic C function _dotp2, it can perform two 16 ¥ 16
multiplies and adds the products together to further reduce the number of cycles.
This intrinsic function in C has the corresponding assembly function DOTP2. With
two multiplier units, four 16 ¥ 16 multiplies per cycle can be performed, double
the rate of the C62x or C67x. At 750MHz, this corresponds to 3 billion multiply
operations per second; or 6 billion 8 ¥ 8 multiplies per second.

3.22 PROGRAMMING EXAMPLES USING C, ASSEMBLY, AND
LINEAR ASSEMBLY

Six programming examples are discussed in this section.The first example illustrates
use of the intrinsic function _nassert to increase the efficiency of the dot product
example. The other five examples illustrate both assembly code and linear assem-
bly code implementation: a C program calling an assembly function, a C program
calling a linear assembly function, and an assembly-coded program calling an
assembly-coded function. The focus here is on illustrating the syntax of both assem-
bly and linear assembly code, not necessarily to produce optimized code. We discuss
further optimization techniques in Chapter 8 in conjunction with code efficiency
and software pipelining.

90 Architecture and Instruction Set of the C6x Processor

Example 3.1: Efficient Dot Product (dotpopt)

This example uses the intrinsic function _nassert in the dot product example
introduced in Chapter 1. Figure 3.6 shows a listing of the program dotpopt.c,
which calls the C function dotpfunc.c listed in Figure 3.7. This function produces
more efficient code, with _nassert used for the alignment of the incoming
pointers as constant pointers. This provides additional information to the compiler
about the loop.

Verify that using compiler options –g and –o3, the number of cycles associated
with profiling the function dotpfunc.c is reduced from 100 (without the intrin-

Programming Examples Using C, Assembly, and Linear Assembly 91

//dotpopt.c Optimized dot product of two arrays

#include <stdio.h>

#include “dotp4.h”

#define count 4

short x[count] = {x_array}; //declare 1st array

short y[count] = {y_array}; //declare 2nd array

volatile int result = 0; //result

main()

{

result = dotpfunc(x,y,count); //call optimized function

printf(“result = %d decimal \n”, result); //print result

}

FIGURE 3.6. Dot product program calling function with _nassert intrinsic (dotpopt.c).

//dotpfunc.c Optimized dot product function

int dotpfunc(const short *a, const short *b, int ncount)

{

int sum = 0;

int i;

_nassert((int)(a)%4 == 0);

_nassert((int)(b)%4 == 0);

_nassert((int)(ncount)%4 == 0);

for (i = 0; i < ncount; i++)

{

sum += (a[i] * b[i]); //sum of products

}

return (sum); //return sum as result

}

FIGURE 3.7. C-called function for a dot product using _nassert (dotpfunc.c).

sics functions) to 71 (with intrinsics). Using the options –g, –pm, and –o3, the
number of cycles is further reduced to 30. The –pm option uses program level opti-
mization, with the source files compiled into one intermediate file. The results with
this option can be compared to the results obtained with the function dotp in
Example 1.3.

In Chapter 8 we use optimization techniques associated with the dot product
example, using two arrays each with N numbers. We show that the number of cycles
can be reduced to 7 + (N/2) + 1 with a fixed-point implementation, or 108 cycles
using 200 numbers in each array. For a floating-point implementation, we obtain 124
cycles (see Table 8.4).

Example 3.2: Sum of n + (n - 1) + (n - 2) + . . . + 1 Using C Calling
Assembly Function (sum)

This example illustrates a C program calling an assembly function. The C source
program sum.c (Figure 3.8) calls the assembly-coded function sumfunc.asm

92 Architecture and Instruction Set of the C6x Processor

//Sum.c Finds n+(n-1)+...+1. Calls assembly function sumfunc.asm

#include <stdio.h>

main()

{

short n=6; //set value

short result; //result from asm function

result = sumfunc(n); //call assembly function sumfunc

printf(“sum = %d”, result); //print result from asm function

}

FIGURE 3.8. C program that calls an ASM function to find n + (n - 1) + (n - 2) + . . . + 1
(sum.c).

;Sumfunc.asm Assembly function to find n+(n-1)+...+1

.def _sumfunc ;function called from C

_sumfunc: MV .L1 A4,A1 ;setup n as loop counter

SUB .S1 A1,1,A1 ;decrement n

LOOP: ADD .L1 A4,A1,A4 ;accumulate in A4

SUB .S1 A1,1,A1 ;decrement loop counter

[A1] B .S2 LOOP ;branch to LOOP if A1#0

NOP 5 ;five NOPs for delay slots

B .S2 B3 ;return to calling routine

NOP 5 ;five NOPs for delay slots

.end

FIGURE 3.9. ASM function called from C in the project sum (sumfunc.asm).

(Figure 3.9). It implements the sum of n + (n - 1) + (n - 2) + . . . + 1. The value of
n is set in the main C program. It is passed through register A4 (by convention).
For example, the address of more than one value can be passed to the assembly
function through A4, B4, A6, . . . The resulting sum from the assembly function is
returned to result in the C program, which then prints this resulting sum.

The assembly function’s name is preceded by an underscore (by convention).The
value n in register A4 in the asm function is moved to register A1 to set A1 as a
loop counter. A1 is then decremented. A loop section of code starts with the
label or address LOOP and ends with the first branch statement B. The first
addition adds n + (n - 1) with the result in A4. A1 is again decremented to
(n - 2). The branch statement is conditional based on register A1 (only A1, A2, B0,
B1, and B2 can be used as conditional registers), and since A1 is not zero, branch-
ing takes place and execution returns to the instruction at the address LOOP, where
A4 = n + (n - 1) is added to A1 = (n - 2). This process continues until register
A1 = 0.

The second branch instruction is to the returning address B3 (by convention) of
the C calling program. The resulting sum is contained or accumulated in A4, which
is passed to result in the C program. The five NOPs (no operation) are to account
for the five delay slots associated with a branch instruction.

The functional units .S and .L selected are shown but are not required in the
program. They can be useful for debugging and analyzing which of the functional
units are used in order to improve on the efficiency of the program. Similarly, the
two colons after the label LOOP and the function name are not required.

Build and run this project as sum. With a value of n set to 6 in the C program,
verify that sum and its value of 21 are printed.

Example 3.3: Factorial of a Number Using C Program Calling Assembly
Function (factorial)

This example finds the factorial of a number n £ 7 with n! = n(n - 1)(n - 2) . . . (1).
It further illustrates the syntax of assembly code. It is very similar to Example 3.2.
The value of n is set in the C source program factorial.c, shown in Figure 3.10,
which calls the assembly function factfunc.asm, shown in Figure 3.11. It is
instructive to read the comments.

Register A1 is again set as a loop counter. Within the loop section of code start-
ing with at the address LOOP, the first multiply is n(n - 1) and accumulates in reg-
ister A4. The initial value of n is passed to the asm function through A4. The MPY
instruction has one delay slot, hence the NOP following it. Processing continues
within the loop section of code until A1 = 0. Note that the functional units are not
specified in this program.The resulting factorial is returned to the calling C program
through A4.

Build and run this project as factorial. Verify that factorial and its value
of 5040 (7!) are printed. Note that the maximum value of n is 7, since 8! is greater
than 215.

Programming Examples Using C, Assembly, and Linear Assembly 93

Example 3.4: Dot Product Using Assembly Program Calling Assembly
Function (dotp4a)

This example takes the sum of products of two arrays, each array with four numbers.
See also Example 1.3, which implements it using only C code, and Examples 3.2 and
3.3, which introduced the syntax of assembly code. Figure 3.12 shows a listing of
the assembly program dotp4a_init.asm, which initializes the two arrays of
numbers and calls the assembly function dotp4afunc.asm (Figure 3.13) which
takes the sum of products of the two arrays. It also sets a return address through
register B3 and the result address to A0. The addresses of the two arrays and the
size of the array are passed to the function dotp4afunc.asm through registers
A4, A6, and B4, respectively. The result from the called function is “sent back”
through A4. The resulting sum of product is stored in memory whose address is

94 Architecture and Instruction Set of the C6x Processor

//Factorial.c Finds factorial of n. Calls function factfunc.asm

#include <stdio.h> //for print statement

void main()

{

short n=7; //set value

short result; //result from asm function

result = factfunc(n); //call assembly function factfunc

printf(“factorial = %d”, result); //print result from asm function

}

FIGURE 3.10. C program that calls an ASM function to find the factorial of a number
(factorial.c).

;Factfunc.asm Assembly function called from C to find factorial

.def _factfunc ;asm function called from C

_factfunc: MV A4,A1 ;setup loop count in A1

SUB A1,1,A1 ;decrement loop count

LOOP: MPY A4,A1,A4 ;accumulate in A4

NOP ;for 1 delay slot with MPY

SUB A1,1,A1 ;decrement for next multiply

[A1] B LOOP ;branch to LOOP if A1 # 0

NOP 5 ;five NOPs for delay slots

B B3 ;return to calling routine

NOP 5 ;five NOPs for delay slots

.end

FIGURE 3.11. ASM function called from C that finds the factorial of a number (fact-
func.asm).

Programming Examples Using C, Assembly, and Linear Assembly 95

;Dotp4a_init.asm ASM program to init variables. Calls dotp4afunc.asm

.def init ;starting address

.ref dotp4afunc ;called ASM function

.text ;section for code

x_addr .short 1,2,3,4 ;numbers in x array

y_addr .short 0,2,4,6 ;numbers in y array

result_addr .short 0 ;initialize sum of products

init MVK result_addr,A4 ;A4 = lower 16-bit addr -->A4

MVKH result_addr,A4 ;A4 = higher 16-bit addr-->A4

MVK 0,A3 ;A3 = 0

STH A3,*A4 ;init result to 0

MVK x_addr,A4 ;A4 = 16 MSBs address of x

MVK y_addr,B4 ;B4 = 16 LSBs address of y

MVKH y_addr,B4 ;B4 = 16 MSBs address of y

MVK 4,A6 ;A6 = size of array

B dotp4afunc ;branch to function dotp4afunc

MVK ret_addr,b3 ;B3 = return addr from dotp4a

MVKH ret_addr,b3 ;B3 = return addr from dotp4a

NOP 3 ;3 more delay slots(branch)

ret_addr MVK result_addr,A0 ;A0 = 16 LSBs result_addr

MVKH result_addr,A0 ;A0 = 16 MSBs result_addr

STW A4,*A0 ;store result

wait B wait ;wait here

NOP 5 ;delay slots for branch

FIGURE 3.12. ASM program calling ASM function to find the sum of products
(dotp4a_init.asm).

result_addr. The instruction STW stores the resulting sum of products (in A4)
in memory pointed by A0. Register A0 serves as a pointer with the address
result_addr.

The starting address of the calling ASM program is defined as init. The vector
file vectors_dotp4a.asm (Figure 3.14) specifies a branch to that entry address.
The called ASM function dotp4afunc.asm calculates the sum of products.
The loop count value was moved to A1 since A6 cannot be used as a conditional
register (only A1, A2, B0, B1, B2 can be used). The two LDH instructions load (half-
word of 16 bits) the addresses of the two arrays starting at x_addr and y_addr
into registers A2 and B2, respectively. For example, the instruction

LDH *B4++,B2

loads the content in memory (the first value in the second array starting at
y_address) pointed by B4 (the address of the second array) into B2. Then

register B4, used as a pointer, is postincremented to the next-higher address in
memory that contains the second value in the second array. Register A7 is used to
accumulate and move the sum of products to register A4, since the result is passed
to the calling function through A4.

Support files for this project include (no library file is necessary):

96 Architecture and Instruction Set of the C6x Processor

;vectors_dotp4a.asm Vector file for dotp4a project

.ref init ;starting addr in init file

.sect “vectors” ;in section vectors

rst: mvkl .s2 init,b0 ;init addr 16 LSB ——>B0

mvkh .s2 init,b0 ;init addr 16 MSB ——>B0

b b0 ;branch to addr init

nop

nop

nop

nop

nop

FIGURE 3.14. Vector file that specifies the entry address in the calling ASM program for
the sum of products (vectors_dotp4a.asm).

;Dotp4afunc.asm Multiply two arrays. Called from dotp4a_init.asm

;A4=x address,B4=y address,A6=count(size of array),B3=return address

.def dotp4afunc ;dot product function

.text ;text section

dotp4afunc MV A6,A1 ;move loop count -->A1

ZERO A7 ;init A7 for accumulation

loop LDH *A4++,A2 ;A2=(x. A4 as address pointer

LDH *B4++,B2 ;B2=(y). B4 as address pointer

NOP 4 ;4 delay slots for LDH

MPY A2,B2,A3 ;A3 = x * y

NOP ;1 delay slot for MPY

ADD A3,A7,A7 ;sum of products in A7

SUB A1,1,A1 ;decrement loop counter

[A1] B loop ;branch back to loop till A1=0

NOP 5 ;5 delay slots for branch

MV A7,A4 ;A4=result A4=return register

B B3 ;return from func to addr in B3

NOP 5 ;5 delay slots for branch

FIGURE 3.13. ASM function called from an ASM program to find the sum of products
(dotp4afunc.asm).

1. dotp4a_init.asm

2. dotp4afunc.asm

3. vectors_dotp4a.asm

Build and run this project as dotp4a. Modify the Linker Option (Project Æ
Options) to select “No Autoinitialization.” Otherwise, the warning “entry point
symbol _c_int00 undefined” is displayed when this project is built (it can be
ignored). This is because the “conventional” entry point is not used in this project
with no main function in C.

Set a breakpoint at the first branch instruction in the program
dotp4a_init.asm:

B dotp4afunc

Select View Æ Memory and set address to result_addr and use 16-bit signed
integer. Right-click on the memory window and deselect “Float in Main Window.”
This allows you to have a better display of the Memory window while viewing the
source file dotp4a_init.asm.

Select Run. Execution stops at the set breakpoint. The content in memory at the
address result_addr is zero (the called function dotp4afunc.asm is not yet
executed). Run again, then halt (since execution is within the infinite wait loop
instruction):

wait B wait ;wait here

Verify that the resulting sum of products is now 40. Note that A0 contains the
result address (result_addr). View Æ CPU Registers Æ Core Registers and
verify this address (in hex). Figure 3.15 shows a CCS display of this project. Note
from the disassembly file that execution was halted at the infinite wait loop.

Example 3.5: Dot Product Using C Function Calling Linear Assembly
Function (dotp4clasm)

Figure 3.16 shows a listing of the C program dotp4clasm.c, which calls the linear
assembly function dotp4clasmfunc.sa (Figure 3.17). Example 1.3 introduced
the dot product implementation using C code only. The previous three examples
introduced the syntax of assembly-coded programs.

The section of code invoked by the linear assembler optimizer starts and ends
with the linear assembler directives .cproc and .endproc, respectively.The name
of the linear assembly function called is preceded by an underscore since the calling
function is in C. The directive .ref (or .def) references (defines) the function.

Functional units are optional as in an assembly-coded program. Registers a, b,
prod and sum are defined by the linear assembler directive .reg. The addresses

Programming Examples Using C, Assembly, and Linear Assembly 97

98 Architecture and Instruction Set of the C6x Processor

FIGURE 3.15. CCS windows for the sum of products in the project dotp4a.

//Dotp4clasm.c Multiplies two arrays using C calling linear ASM func

short dotp4clasmfunc(short *a,short *b,short ncount); //prototype

#include <stdio.h> //for printing statement

#include “dotp4.h” //arrays of data values

#define count 4 //number of data values

short x[count] = {x_array}; //declare 1st array

short y[count] = {y_array}; //declare 2nd array

volatile int result = 0; //result

main()

{

result = dotp4clasmfunc(x,y,count); //call linear ASM func

printf(“result = %d decimal \n”, result); //print result

}

FIGURE 3.16. C program calling a linear ASM function to find the sum of products
(dotp4clasm.c).

of the two arrays x and y and the size of the array (count) are passed to the linear
assembly function through the registers ap, bp, and count. Both ap and bp are
registers used as pointers, as in C code. The instruction field is seen to be as in an
assembly-coded program and the subsequent field uses a syntax as in C program-
ming. For example, the instruction

loop: ldh *ap++,a

(the first time through the loop section of code) loads the content in memory,
whose address is specified by register ap, into register a. Then the pointer register
ap is postincremented to point to the next-higher memory address, pointing at the
memory location containing the second value of x within the x array. The value
of the sum of products is accumulated in sum, which is returned to the C calling
program.

Build and run this project as dotp4clasm. Verify that the following is printed:
result = 40. You may wish to profile the linear assembly code function and
compare its execution time with the C-coded version in Example 1.3.

Example 3.6: Factorial Using C Calling a Linear Assembly Function
(factclasm)

Figure 3.18 shows a listing of the C program factclasm.c, which calls the linear
ASM function factclasmfunc.sa (Figure 3.19) to calculate the factorial
of a number less than 8. See also Example 3.3, which finds the factorial of a
number using a C program that calls an ASM function. Example 3.5 illustrates a C

Programming Examples Using C, Assembly, and Linear Assembly 99

;Dotp4clasmfunc.sa Linear assembly function to multiply two arrays

.ref _dotp4clasmfunc ;ASM func called from C

_dotp4clasmfunc: .cproc ap,bp,count ;start section linear asm

.reg a,b,prod,sum ;asm optimizer directive

zero sum ;init sum of products

loop: ldh *ap++,a ;pointer to 1st array->a

ldh *bp++,b ;pointer to 2nd array->b

mpy a,b,prod ;product= a*b

add prod,sum,sum ;sum of products-->sum

sub count,1,count ;decrement counter

[count] b loop ;loop back if count # 0

.return sum ;return sum as result

.endproc ;end linear asm function

FIGURE 3.17. Linear ASM function called from C to find the sum of products
(dotp4clasmfunc.sa).

program calling a linear ASM function to find the sum of products and is instruc-
tive for this project. Examples 3.3 and 3.5 cover the essential background for this
project.

Support files for this project include factclasm.c, factclasmfunc.sa,
vectors, rts6701.lib, and C6xdsk.cmd. Build and run this project as fact-
clasm. Verify that the result of 7! is printed, or factorial = 5040.

REFERENCES

1. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

2. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

100 Architecture and Instruction Set of the C6x Processor

;Factclasmfunc.sa Linear ASM function called from C to find factorial

.ref _factclasmfunc ;Linear ASM func called from C

_factclasmfunc: .cproc number ;start of linear ASM function

.reg a,b ;asm optimizer directive

mv number,b ;set-up loop count in b

mv number,a ;move number to a

sub b,1,b ;decrement loop counter

loop: mpy a,b,a ;n(n-1)

sub b,1,b ;decrement loop counter

[b] b loop ;loop back to loop if count # 0

.return a ;result to calling function

.endproc ;end of linear asm function

FIGURE 3.19. Linear ASM function called from C that finds the factorial of a number
(factclasmfunc.sa).

//Factclasm.c Factorial of number. Calls linear ASM function

#include <stdio.h> //for print statement

void main()

{

short number = 7; //set value

short result; //result of factorial

result = factclasmfunc(number); //call ASM function factlasmfunc

printf(“factorial = %d”, result); //print from linear ASM function

}

FIGURE 3.18. C program that calls a linear ASM function to find the factorial of a number
(factclasm.c).

3. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

4. R. Chassaing and P. Martin, Parallel processing with the TMS320C40, Proceedings of the
1995 ASEE Annual Conference, June 1995.

5. R. Chassaing and R. Ayers, Digital signal processing with the SHARC, Proceedings of
the 1996 ASEE Annual Conference, June 1996.

6. TMS320C6000 CPU and Instruction Set, SPRU189F, Texas Instruments, Dallas, TX,
2000.

7. TMS320C6000 Peripherals, SPRU190D, Texas Instruments, Dallas, TX, 2001.

8. TMS320C6000 Programmer’s Guide, SPRU198D, Texas Instruments, Dallas, TX, 2000.

9. TMS320C6000 Assembly Language Tools User’s Guide, SPRU186G, Texas Instruments,
Dallas, TX, 2000.

10. TMS320C6000 Optimizing Compiler User’s Guide, SPRU187G, Texas Instruments,
Dallas, TX, 2000.

11. TMS320C6211 Fixed-Point Digital Signal Processor—TMS320C6711 Floating-Point
Digital Signal Processor, SPRS073C, Texas Instruments, Dallas, TX, 2000.

References 101

4
Finite Impulse Response Filters

102

• Introduction to the z-transform
• Design and implementation of finite impulse response (FIR) filters
• Programming examples using C and TMS320C6x code

The z-transform is introduced in conjunction with discrete-time signals. Mapping
from the s-plane, associated with the Laplace transform, to the z-plane, associated
with the z-transform, is illustrated. FIR filters are designed with the Fourier series
method and implemented by programming a discrete convolution equation. Effects
of window functions on the characteristics of FIR filters are covered.

4.1 INTRODUCTION TO THE Z-TRANSFORM

The z-transform is utilized for the analysis of discrete-time signals, similar to the
Laplace transform for continuous-time signals. We can use the Laplace transform
to solve a differential equation that represents an analog filter, or the z-transform
to solve a difference equation that represents a digital filter. Consider an analog
signal x(t) ideally sampled

(4.1)

where d(t - kT) is the impulse (delta) function delayed by kT and T = 1/Fs is the
sampling period. The function xs(t) is zero everywhere except at t = kT. The Laplace
transform of xs(t) is

x t x t t kTs
k

() = () -()
=

•
Â

0

d

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

Introduction to the z-Transform 103

(4.2)

From the property of the impulse function

Xs(s) in (4.2) becomes

(4.3)

Let z = esT in (4.3), which becomes

(4.4)

Let the sampling period T be implied; then x(nT) can be written as x(n), and (4.4)
becomes

(4.5)

which represents the z-transform (ZT) of x(n). There is a one-to-one correspon-
dence between x(n) and X(z), making the z-transform a unique transformation.

Exercise 4.1: ZT of Exponential Function x(n) = enk

The ZT of x(n) = enk, n � 0 and k a constant, is

(4.6)

Using the geometric series, obtained from a Taylor series approximation

u
u

un

n

=
-

<
=

•
Â 1

1
1

0

X z e z e znk n

n

k n

n

() = = ()-

=

-

=

• •
Â Â

0

1

0

X z x n z ZT x nn

n

() = () = (){ }-

=

•
Â

0

X z x nT z n

n

() = () -

=

•
Â

0

X s x x T e x T e x nT es
sT sT nsT

n

() = () + () + () + ◊ ◊ ◊ = ()- - -

=

•
Â0 2 2

0

f t t kT dt f kT() -() = ()
•

Ú d
0

X s x t e dt

x t t x t t T e dt

s s
st

st

() = ()

= () () + () -() + ◊ ◊ ◊{ }

-

-

•

•
Ú
Ú

0

0
d d

104 Finite Impulse Response Filters

(4.6) becomes

(4.7)

Exercise 4.2: ZT of Sinusoid x(n) = sinnwT

A sinusoidal function can be written in terms of complex exponentials. From Euler’s
formula eju = cos u + j sin u,

Then

(4.8)

Using the geometric series as in Exercise 4.1, one can solve for X(z); or the results
in (4.7) can be used with k = jwT in the first summation of (4.8) and k = -jwT in the
second, to yield

(4.9)

(4.10)

where A = 2cos wT, B = -1, and C = sin wT. In Chapter 5 we generate a sinusoid
based on this result. We can readily generate sinusoidal waveforms of different
frequencies by changing the value of w in (4.9).

Similarly, using Euler’s formula for cosnwT as a sum of two complex exponen-
tials, one can find the ZT of x(n) = cos nwT = (ejnwT + e-jnwT)/2, as

(4.11)X z
z z T

z z T
z() =

-
- +

>
2

2 2 1
1

cos
cos

w
w

=
- +

=
- -

>

z T
z z T

Cz
z Az B

z

sin
cos

w
w2

2

2 1

1

X z
j

z
z e

z
z e

j
z ze z ze
z z e e

j T j T

j T j T

j T j T

() =
-

-
-

Ê
Ë

ˆ
¯

=
- - +
- +() +

-

-

-

1
2

1
2 1

2 2

2

w w

w w

w w

X z
j

e z e zjn T n jn T n

n

() = -()- - -

=

•
Â1

2 0

w w

sin n T

e e
j

jn T jn T

w
w w

=
- -

2

for or If the of = 1 is e z z e k ZT x n X z z zk k- < > = () () = -()1 1 0 1. , .

X z
e z

z
z ek k

() =
-

=
--

1
1 1

Introduction to the z-Transform 105

4.1.1 Mapping from s-Plane to z-Plane

The Laplace transform can be used to determine the stability of a system. If the
poles of a system are on the left side of the jw axis on the s-plane, a time-decaying
system response will result, yielding a stable system. If the poles are on the right
side of the jw axis, the response will grow in time, making such a system unstable.
Poles located on the jw axis, or purely imaginary poles, will yield a sinusoidal
response. The sinusoidal frequency is represented by the jw axis, and w = 0 repre-
sents dc (direct current).

In a similar fashion, we can determine the stability of a system based on the
location of its poles on the z-plane associated with the z-transform, since we can
find corresponding regions between the s-plane and the z-plane. Since z = esT and
s = s + jw,

(4.12)

Hence, the magnitude of z is |z| = esT with a phase of � = wT = 2pf/Fs, where Fs is
the sampling frequency. To illustrate the mapping from the s-plane to the z-plane,
consider the following regions from Figure 4.1.

s < 0
Poles on the left side of the jw axis (region 2) in the s-plane represent a stable system,
and (4.12) yields a magnitude of |z| < 1, because esT < 1. As s varies from -• to 0-, |z|
will vary from 0 to 1-. Hence, poles inside the unit circle within region 2 in the z-plane
will yield a stable system. The response of such system will be a decaying exponen-
tial if the poles are real, or a decaying sinusoid if the poles are complex.

s > 0
Poles on the right side of the jw axis (region 3) in the s-plane represent an unstable
system, and (4.12) yields a magnitude of |z| > 1, because esT > 1. As s varies from 0+

z e eT j T= s w

FIGURE 4.1. Mapping from s-plane to z-plane.

to •, |z| will vary from 1+ to •. Hence, poles outside the unit circle within region 3
in the z-plane will yield an unstable system. The response of such system will be an
increasing exponential if the poles are real, or a growing sinusoid if the poles are
complex.

s = 0
Poles on the jw axis (region 1) in the s-plane represent a marginally stable system,
and (4.12) yields a magnitude of |z| = 1, which corresponds to region 1. Hence, poles
on the unit circle in region 1 in the z-plane will yield a sinusoid. In Chapter 5 we
implement a sinusoidal signal by programming a difference equation with its poles
on the unit circle. Note that from Exercise 4.2 the poles of X(s) = sin nwT in (4.9)
or X(s) = cos nwT in (4.11) are the roots of z2 - 2zcos wT + 1, or

(4.13)

The magnitude of each pole is

(4.14)

The phase of z is q = wT = 2pf/Fs. As the frequency f varies from zero to ± Fs/2, the
phase q will vary from 0 to p.

4.1.2 Difference Equations

A digital filter is represented by a difference equation in a similar fashion as an
analog filter is represented by a differential equation. To solve a difference equa-
tion, we need to find the z-transform of expressions such as x(n - k), which corre-
sponds to the kth derivative dk x(t)/dtk of an analog signal x(t). The order of the
difference equation is determined by the largest value of k. For example, k = 2
represents a second-order derivative. From (4.5)

(4.15)

Then the z-transform of x(n - 1), which corresponds to a first-order derivative dx/dt,
is

(4.16)

ZT x n x n z

x x z x z x z

x z x x z x z

x z X z

n

n

-()[] = -()

= -() + () + () + () + ◊ ◊ ◊
= -() + () + () + () + ◊ ◊ ◊[]
= -() + ()

-

=
- - -

- - -

-

•
Â1 1

1 0 1 2

1 0 1 2

1

0

1 2 3

1 1 2

1

X z x n z x x z x zn

n

() = () = () + () + () + ◊ ◊ ◊-

=

- -
•
Â

0

1 20 1 2

 p p T T1 2
2 2 1= = + =cos sinw w

p
T T

T T T j T

1 2

2

2

2 4 4
2,

cos cos

cos sin cos sin

=
± -

= ± - = ±

w w

w w w w

106 Finite Impulse Response Filters

where we used (4.15), and x(-1) represents the initial condition associated with a
first-order difference equation. Similarly, the ZT of x(n - 2), equivalent to a second
derivative d2x(t)/dt2 is

(4.17)

where x(-2) and x(-1) represent the two initial conditions required to solve a
second-order difference equation. In general,

(4.18)

If the initial conditions are all zero, then x(-m) = 0 for m = 1, 2, . . . , k, and (4.18)
reduces to

(4.19)

4.2 DISCRETE SIGNALS

A discrete signal x(n) can be expressed as

(4.20)

where d(n - m) is the impulse sequence d(n) delayed by m, which is equal to 1 for
n = m and is zero otherwise. It consists of a sequence of values x(1), x(2), . . . , where
n is the time, and each sample value of the sequence is taken one sample time apart,
determined by the sampling interval or sampling period T = 1/Fs.

The signals and systems that we deal with in this book are linear and time-
invariant, where both superposition and shift invariance apply. Let an input signal
x(n) yield an output response y(n), or x(n) Æ y(n). If a1x1(n) Æ a1y1(n) and a2x2(n)
Æ a2y2(n), then a1x1(n) + a2x2(n) Æ a1y1(n) + a2y2(n), where a1 and a2 are constants.
This is the superposition property, where an overall output response is the sum of the
individual responses to each input.Shift-invariance implies that if the input is delayed
by m samples, the output response will also be delayed by m samples, or x(n - m) Æ
y(n - m). If the input is a unit impulse d(n), the resulting output response is h(n),
or d(n) Æ h(n), and h(n) is designated as the impulse response. A delayed impulse
d(n - m) yields the output response h(n - m) by the shift-invariance property.

x n x m n m
m

() = () -()
=-•

•
Â d

ZT x n k z X zk-()[] = ()-

ZT x n k z x m z z X zk m k

m

k

-()[] = -() + ()-

=
Â

1

ZT x n x n z

x x z x z x z

x x z z x x z

x x z z X z

n

n

-()[] = -()

= -() + -() + () + () + ◊ ◊ ◊
= -() + -() + () + () + ◊ ◊ ◊[]
= -() + -() +

-

=

- - -

- - -

- -

•
Â2 2

2 1 0 1

2 1 0 1

2 1

0

1 2 3

1 2 1

1 2 (()

Discrete Signals 107

Furthermore, if this impulse is multiplied by x(m), then x(m)d(n - m) Æ
x(m)h(n - m). Using (4.20), the response becomes

(4.21)

which represents a convolution equation. For a causal system, (4.21) becomes

(4.22)

Letting k = n - m in (4.22) yields

(4.23)

4.3 FINITE IMPULSE RESPONSE FILTERS

Filtering is one of the most useful signal processing operations [1–47]. Digital signal
processors are now available to implement digital filters in real time. The
TMS320C6x instruction set and architecture makes it well suited for such filtering
operations. An analog filter operates on continuous signals and is typically realized
with discrete components such as operational amplifiers, resistors, and capacitors.
However, a digital filter, such as a finite impulse response (FIR) filter, operates
on discrete-time signals and can be implemented with a digital signal processor
such as the TMS320C6x. This involves use of an ADC to capture an external input
signal, processing the input samples, and sending the resulting output through a
DAC.

Within the last few years, the cost of digital signal processors has been reduced
significantly, which adds to the numerous advantages that digital filters have over
their analog counterparts. These include higher reliability, accuracy, and less sensi-
tivity to temperature and aging. Stringent magnitude and phase characteristics can
be realized with a digital filter. Filter characteristics such as center frequency, band-
width, and filter type can readily be modified. A number of tools are available to
design and implement within a few minutes an FIR filter in real time using the
TMS320C6x-based DSK. The filter design consists of the approximation of a trans-
fer function with a resulting set of coefficients.

Different techniques are available for the design of FIR filters, such as a com-
monly used technique that utilizes the Fourier series, as discussed in the Section 4.4.
Computer-aided design techniques such as that of Parks and McClellan are also
used for the design of FIR filters [5,6].

The convolution equation (4.23) is very useful for the design of FIR filters, since
we can approximate it with a finite number of terms, or

y n h k x n k
k

() = () -()
=

•
Â

0

y n x m h n m
m

() = () -()
=-•

•
Â

y n x m h n m
m

() = () -()
=-•

•
Â

108 Finite Impulse Response Filters

(4.24)

If the input is a unit impulse x(n) = d(0), the output impulse response will be y(n)
= h(n). We will see in Section 4.4 how to design an FIR filter with N coefficients
h(0), h(1), . . . , h(N - 1), and N input samples x(n), x(n - 1), . . . , x(n - (N - 1)). The
input sample at time n is x(n), and the delayed input samples are x(n - 1), . . . ,
x(n - (N - 1)). Equation (4.24) shows that an FIR filter can be implemented with
knowledge of the input x(n) at time n and of the delayed inputs x(n - k). It is
nonrecursive and no feedback or past outputs are required. Filters with feedback
(recursive) that require past outputs are discussed in Chapter 5. Other names used
for FIR filters are transversal and tapped-delay filters.

The z-transform of (4.24) with zero initial conditions yields

(4.25)

Equation (4.24) represents a convolution in time between the coefficients and
the input samples, which is equivalent to a multiplication in the frequency domain,
or

(4.26)

where H(z) = ZT[h(k)] is the transfer function, or

(4.27)

which shows that there are N - 1 poles, all of which are located at the origin. Hence,
this FIR filter is inherently stable, with its poles located only inside the unit circle.
We usually describe an FIR filter as a filter with “no poles.” Figure 4.2 shows an FIR
filter structure representing (4.24) and (4.25).

A very useful feature of an FIR filter is that it can guarantee linear phase. The
linear phase feature can be very useful in applications such as speech analysis, where
phase distortion can be very critical. For example, with linear phase, all input sinu-
soidal components are delayed by the same amount. Otherwise, harmonic distor-
tion can occur.

The Fourier transform of a delayed input sample x(n - k) is e-jwkTX(jw), yielding
a phase of q = -wkT, which is a linear function in terms of w. Note that the
group delay function, defined as the derivative of the phase, is a constant, or
dq/dw = -kT.

H z h k z h h z h z h N z

h z h z h z h N
z

k N

k

N

N N N

N

() = () = () + () + () + ◊ ◊ ◊ + -()

=
() + () + () + ◊ ◊ ◊ + -()

- - - - -()

=

-

-() - -

-

Â 0 1 2 1

0 1 2 1

1 2 1

0

1

1 2 3

1

 Y z H z X z() = () ()

Y z h X z h z X z h z X z h N z X zN() = () () + () () + () () + ◊ ◊ ◊ + -() ()- - - -()0 1 2 11 2 1

y n h k x n k
k

N

() = () -()
=

-

Â
0

1

Finite Impulse Response Filters 109

4.4 FIR IMPLEMENTATION USING FOURIER SERIES

The design of an FIR filter using a Fourier series method is such that the magni-
tude response of its transfer function H(z) approximates a desired magnitude
response. The transfer function desired is

(4.28)

where Cn are the Fourier series coefficients. Using a normalized frequency variable
� such that � = f/FN, where FN is the Nyquist frequency, or FN = Fs/2, the desired
transfer function in (4.28) can be written as

(4.29)

where wT = 2pf/Fs = p� and |�| < 1. The coefficients Cn are defined as

(4.30)

Assume that Hd(�) is an even function (frequency selective filter); then (4.30)
reduces to

(4.31)

since Hd(�) sinnp� is an odd function and

H n dd � � �() =

-Ú sin p 0
1

1

C H n d nn d= ()Ú0

1
0� � �cos p �

C H e d

H n j n d

n d
jn

d

= ()

= () -()

-
-

-

Ú

Ú

1
2
1
2

1

1

1

1

� �

� � � �

pn

p pcos sin

H C ed n

jn

n

� �() =
=-•

•
Â p

H C e nd n
jn T

n

w w() = < •
=-•

•
Â

110 Finite Impulse Response Filters

FIGURE 4.2. FIR filter structure showing delays.

with Cn = C-n. The desired transfer function Hd(�) in (4.29) is expressed in terms of
an infinite number of coefficients, and to obtain a realizable filter, we must truncate
(4.29), which yields the approximated transfer function

(4.32)

where Q is positive and finite and determines the order of the filter. The larger the
value of Q, the higher the order of the FIR filter and the better the approximation
in (4.32) of the desired transfer function. The truncation of the infinite series with
a finite number of terms results in ignoring the contribution of the terms outside a
rectangular window function between -Q and +Q. In Section 4.5 we see how the
characteristics of a filter can be improved by using window functions other than
rectangular.

Let z = ejp�; then (4.32) becomes

(4.33)

with the impulse response coefficients C-Q, C-Q+1, . . . , C-1, C0, C1, . . . , CQ-1, CQ. The
approximated transfer function in (4.33), with positive powers of z, implies a non-
causal or not realizable filter that would produce an output before an input is applied.
To remedy this situation, we introduce a delay of Q samples in (4.33) to yield

(4.34)

Let n - Q = -i; then H(z) in (4.34) becomes

(4.35)

Let hi = CQ-i and N - 1 = 2Q; then H(z) becomes

(4.36)

where H(z) is expressed in terms of the impulse response coefficients hi, and
h0 = CQ, h1 = CQ-1, . . . , hQ = C0, hQ+1 = C-1 = C1, . . . , h2Q = C-Q. The impulse response
coefficients are symmetric about hQ, with Cn = C-n.

The order of the filter is N = 2Q + 1. For example, if Q = 5, the filter will have 11
coefficients h0, h1, . . . , h10, or

H z h zi
i

i

N

() = -

=

-

Â
0

1

H z C zQ i

i

i

Q

() = -
-

=
Â

0

2

H z z H z C zQ
a n

n Q

n Q

Q

() = () =- -

=-
Â

H z C za n
n

n Q

Q

() =
=-
Â

H C ea n
jn

n Q

Q

� �() =
=-
Â p

FIR Implementation Using Fourier Series 111

Figure 4.3 shows the desired transfer functions Hd(�) ideally represented for the
frequency-selective filters: lowpass, highpass, bandpass, and bandstop for which
the coefficients Cn = C-n can be found.

1. Lowpass: C0 = �1

(4.37)

2. Highpass: C0 = 1 - �1

(4.38)C H n d
n
nn d= () = -Â � � �

�

�

cos
sin

p
p
p

1

1
1

C H n d
n
nn d= () =Ú0

11�
� � �

�
cos

sin
p

p
p

h h C

h h C

h h C

h h C

h h C

h C

0 10 5

1 9 4

2 8 3

3 7 2

4 6 1

5 0

= =
= =
= =
= =
= =
=

112 Finite Impulse Response Filters

FIGURE 4.3. Desired transfer function: (a) lowpass; (b) highpass; (c) bandpass; (d)
bandstop.

3. Bandpass: C0 = �2 - �1

(4.39)

4. Bandstop: C0 = 1 - (�2 - �1)

(4.40)

where �1 and �2 are the normalized cutoff frequencies shown in Figure 4.3. Several
filter-design packages are currently available for the design of FIR filters, as
discussed later. When we implement an FIR filter, we develop a generic program
such that the specific coefficients will determine the filter type (e.g., whether lowpass
or bandpass).

Exercise 4.3: Lowpass FIR Filter

We will find the impulse response coefficients of an FIR filter with N = 11, a sam-
pling frequency of 10kHz, and a cutoff frequency fc = 1kHz. From (4.37),

where FN = Fs/2 is the Nyquist frequency and

(4.41)

Since the impulse response coefficients hi = CQ-i, Cn = C-n, and Q = 5, the impulse
response coefficients are

(4.42)

These coefficients can be calculated with a utility program (on the accompanying
disk) and inserted within a generic filter program, as described later. Note the sym-
metry of these coefficients about Q = 5. While N = 11 for an FIR filter is low for a
practical design, doubling this number can yield an FIR filter with much better char-
acteristics, such as selectivity. For an FIR filter to have linear phase, the coefficients
must be symmetric, as in (4.42).

h h h h

h h h h

h h h

0 10 3 7

1 9 4 6

2 8 5

0 0 1514

0 0468 0 1872

0 1009 0 2

= = = =
= = = =
= = =

.

. .

. .

C
n

n
nn = = ± ± ±

sin .
, , . . . ,

0 2
1 2 5

p
p

C
f

F
c

N
0 1 0 2= = =� .

C H n d H n d

n n
nn d d= () + () =
-

Ú Ú� � � � � �
� ��

�
cos cos

sin sin
p p

p p
p0

1 1 21

2

C H n d

n n
nn d= () =
-

Ú � � �
� �

�

�
cos

sin sin
p

p p
p1

2 2 1

FIR Implementation Using Fourier Series 113

4.5 WINDOW FUNCTIONS

We truncated the infinite series in the transfer function equation (4.29) to arrive at
(4.32). We essentially put a rectangular window function with an amplitude of 1
between -Q and +Q and ignored the coefficients outside that window. The wider
this rectangular window, the larger Q is and the more terms we use in (4.32) to get
a better approximation of (4.29). The rectangular window function can therefore be
defined as

(4.43)

The transform of the rectangular window function wR(n) yields a sinc function in
the frequency domain. It can be shown that

(4.44)

which is a sinc function that exhibits high sidelobes or oscillations caused by the
abrupt truncation, specifically, near discontinuities.

A number of window functions are currently available to reduce these high-
amplitude oscillations; they provide a more gradual truncation to the infinite series
expansion. However, while these alternative window functions reduce the ampli-
tude of the sidelobes, they also have a wider mainlobe, which results in a filter with
lower selectivity. A measure of a filter’s performance is a ripple factor that com-
pares the peak of the first sidelobe to the peak of the main lobe (their ratio).A com-
promise or trade-off is to select a window function that can reduce the sidelobes
while approaching the selectivity that can be achieved with the rectangular window
function. The width of the mainlobe can be reduced by increasing the width of the
window (order of the filter). We will later plot the magnitude response of an FIR
filter that shows the undesirable sidelobes.

In general, the Fourier series coefficients can be written as

(4.45)

where w(n) is the window function. In the case of the rectangular window function,
C¢n = Cn. The transfer function in (4.36) can then be written as

(4.46)

where

¢() = ¢
=

-
-ÂH z h zi

i

N
i

0

1

 ¢ = ()C C w nn n

W e e e

Q

R
jn

n Q

Q
jQ jn

n

Q

�
�

�
� � �() = = Ê

ËÁ
ˆ
¯̃

=

+Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

()=-

-

=
Â Âp p p

p

p0

2
2 1

2
2

sin

sin

w n

n Q
R () =

£Ï
Ì
Ó
1

0

for

otherwise

114 Finite Impulse Response Filters

(4.47)

The rectangular window has its highest sidelobe level, down by only -13dB from
the peak of its mainlobe, resulting in oscillations with an amplitude of considerable
size. On the other hand, it has the narrowest mainlobe that can provide high selec-
tivity. The following window functions are commonly used in the design of FIR
filters [12].

4.5.1 Hamming Window

The Hamming window function [12,25] is

(4.48)

which has the highest or first sidelobe level at approximately -43dB from the peak
of the main lobe.

4.5.2 Hanning Window

The Hanning or raised cosine window function is

(4.49)

which has the highest or first sidelobe level at approximately -31dB from the peak
of the mainlobe.

4.5.3 Blackman Window

The Blackman window function is

(4.50)

which has the highest sidelobe level down to approximately -58dB from the peak
of the mainlobe. While the Blackman window produces the largest reduction in the
sidelobe compared with the previous window functions, it has the widest mainlobe.
As with the previous windows, the width of the mainlobe can be decreased by
increasing the width of the window.

w n
n Q n Q n Q

B() =
+ () + () £Ï

Ì
Ó

0 42 0 5 0 08 2

0

. . cos . cosp p
otherwise

w n

n Q n Q
HA () =

+ () £Ï
Ì
Ó

0 5 0 5

0

. . cos p for

otherwise

w n

n Q n Q
H () =

+ () £Ï
Ì
Ó

0 54 0 46

0

. . cos p for

otherwise

¢ = ¢ £ £-h C i Qi Q i 0 2

Window Functions 115

4.5.4 Kaiser Window

The design of FIR filters with the Kaiser window has become very popular in recent
years. It has a variable parameter to control the size of the sidelobe with respect to
the mainlobe. The Kaiser window function is

(4.51)

where a is an empirically determined variable, and b = a[1 - (n/Q)2]1/2. I0(x) is the
modified Bessel function of the first kind defined by

(4.52)

which converges rapidly. A trade-off between the size of the sidelobe and the width
of the mainlobe can be achieved by changing the length of the window and the
parameter a.

4.5.5 Computer-Aided Approximation

An efficient technique is the computer-aided iterative design based on the Remez
exchange algorithm, which produces equiripple approximation of FIR filters [5,6].
The order of the filter and the edges of both passbands and stopbands are fixed, and
the coefficients are varied to provide this equiripple approximation. This minimizes
the ripple in both the passbands and the stopbands. The transition regions are left
unconstrained and are considered as “don’t care” regions, where the solution may
fail. Several commercial filter design packages include the Parks–McClellan algo-
rithm for the design of an FIR filter.

4.6 PROGRAMMING EXAMPLES USING C AND ASM CODE

Within minutes, an FIR filter can be designed and implemented in real time. Several
filter design packages are available for the design of FIR filters. They are described
in Appendix D using MATLAB [48] and in Appendix E using DigiFilter and a home-
made package (on the accompanying disk).

Several examples illustrate the implementation of FIR filters. Most of the pro-
grams are in C. A few examples using mixed C and ASM code illustrate the use of
a circular buffer as a more efficient way to update delay samples, with the circular
buffer in internal or external memory. The convolution equation (4.24) is used to
program and implement these filters, or

I x
x x x

n

n

n
0

2

2

2 2

2

2

1

1
0 25

1

0 25

2
1

2() = +
()

+
()

()
+ ◊ ◊ ◊ = +

()È

Î
Í

˘

˚
˙

=

•
Â.

!

.

! !

w n
I b I a n Q

K () =
() () £Ï

Ì
Ó

0 0

0 otherwise

116 Finite Impulse Response Filters

We can arrange the impulse response coefficients within a buffer (array) so that
the first coefficient, h(0), is at the beginning (first location) of the buffer (lower-
memory address). The last coefficient, h(N - 1), can reside at the end (last location)
of the coefficients buffer (higher-memory address).The delay samples are organized
in memory so that the newest sample, x(n), is at the beginning of the samples buffer,
while the oldest sample, x(n - (N - 1)), is at the end of the buffer. The coefficients
and the samples can be arranged in memory as shown in Table 4.1. Initially, all the
samples are set to zero.

Time n
The newest sample, x(n), at time n is acquired from an ADC and stored at the begin-
ning of the sample buffer. The filter’s output at time n is computed from the con-
volution equation (4.24), or

y(n) = h(0)x(n) + h(1)x(n - 1) + · · · + h(N - 2)x(n - (N - 2))
+ h(N - 1)x(n - (N - 1))

The delay samples are then updated, so that x(n - k) = x(n + 1 - k) can be used to
calculate y(n + 1), the output for the next unit of time, or sample period Ts. All the
samples are updated except the newest sample. For example, x(n - 1) = x(n), and
x(n - (N - 1)) = x(n - (N - 2)). This updating process has the effect of “moving the
data” (down) in memory (see Table 4.2, associated with time n + 1).

Time n + 1
At time n + 1, a new input sample x(n + 1) is acquired and stored at the top of the
sample buffer, as shown in Table 4.2. The output y(n + 1) can now be
calculated as

y n h i x n i
i

N

() = () -()
=

-

Â
0

1

Programming Examples Using C and ASM Code 117

TABLE 4.1 Memory Organization for Coefficients and
Samples (Initially)

i Coefficients Samples

0 h(0) x(n)

1 h(1) x(n - 1)

2 h(2) x(n - 2)

. . .

. . .

. . .

N - 1 h(N - 1) x(n - (N - 1))

y(n + 1) = h(0)x(n + 1) + h(1)x(n) + · · · + h(N - 2)x(n - (N - 3))
+ h(N - 1)x(n - (N - 2))

The samples are then updated for the next unit of time.

Time n + 2
At time n + 2, a new input sample, x(n + 2), is acquired. The output becomes

y(n + 2) = h(0)x(n + 2) + h(1)x(n + 1) + · · · + h(N - 1)x(n - (N - 3))

This process continues to calculate the filter’s output and updating the delay samples
at each unit of time (sample period).

Example 4.8 illustrates four different ways of arranging the coefficients and
samples in memory and of calculating the convolution equation (e.g., the newest
sample at the end of the buffer and the oldest sample at the beginning).

Example 4.1: FIR Filter Implementation: Bandstop and Bandpass (FIR)

Figure 4.4 shows a listing of the C source program FIR.c, which implements an
FIR filter. It is a generic FIR program, since the coefficient file included,
bs2700.cof (Figure 4.5), specifies the filter’s characteristics. This coefficient file,
which contains 89 coefficients, represents an FIR bandstop (notch) filter centered
at 2700Hz. The number of coefficients N is defined in the coefficient file. This filter
was designed using MATLAB’s graphical user interface (GUI) filter designer
SPTOOL, described in Appendix D. Figure 4.6 shows the filter’s characteristics
(MATLAB’s order of 88 corresponds to 89 coefficients).

A buffer dly[N] is created for the delay samples. The newest input sample,
x(n), is acquired through dly[0] and stored at the beginning of the buffer. The

118 Finite Impulse Response Filters

TABLE 4.2 Memory Organization to Illustrate Update of Samples

Samples

Coefficients Time n Time n + 1 Time n + 2

h(0) x(n) x(n + 1) x(n + 2)

h(1) x(n - 1) x(n) x(n + 1)

h(2) x(n - 2) x(n - 1) x(n)

. . . .

. . . .

. . . .

h(N - 3) x(n - (N - 3)) x(n - (N - 4)) x(n - (N - 5))

h(N - 2) x(n - (N - 2)) x(n - (N - 3)) x(n - (N - 4))

h(N - 1) x(n - (N - 1)) x(n - (N - 2)) x(n - (N - 3))

Programming Examples Using C and ASM Code 119

//Fir.c FIR filter. Include coefficient file with length N

#include “bs2700.cof” //coefficient file BS @ 2700Hz

int yn = 0; //initialize filter’s output

short dly[N]; //delay samples

interrupt void c_int11() //ISR

{

short i;

dly[0] = input_sample(); //newest input @ top of buffer

yn = 0; //initialize filter’s output

for (i = 0; i< N; i++)

yn += (h[i] * dly[i]); //y(n) += h(i)* x(n-i)

for (i = N-1; i > 0; i--) //starting @ bottom of buffer

dly[i] = dly[i-1]; //update delays with data move

output_sample(yn >> 15); //output filter

return;

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.4. Generic FIR program (FIR.c).

//BS2700.cof FIR bandstop coefficients designed with MATLAB

#define N 89 //number of coefficients

short h[N]={-14,23,-9,-6,0,8,16,-58,50,44,-147,119,67,-245,

200,72,-312,257,53,-299,239,20,-165,88,0,105,

-236,33,490,-740,158,932,-1380,392,1348,-2070,

724,1650,-2690,1104,1776,-3122,1458,1704,29491,

1704,1458,-3122,1776,1104,-2690,1650,724,-2070,

1348,392,-1380,932,158,-740,490,33,-236,105,0,

88,-165,20,239,-299,53,257,-312,72,200,-245,67,

119,-147,44,50,-58,16,8,0,-6,-9,23,-14};

FIGURE 4.5. Coefficients for a FIR bandstop filter (bs2700.cof).

coefficients are stored in another buffer, h[N], with h[0] at the beginning of the coef-
ficients’ buffer. The samples and coefficients are then arranged in their respective
buffer, as shown in Table 4.1.

Two “for” loops are used within the interrupt service routine (we will also imple-
ment an FIR filter using one loop). The first loop implements the convolution equa-
tion with N coefficients and N delay samples, for a specific time n. At time n the
output is

y(n) = h(0)x(n) + h(1)x(n - 1) + · · · + h(N - 1)x(n - (N - 1))

The delay samples are then updated within the second loop to be used for calcu-
lating y(n) at time n + 1, or y(n + 1).The newly acquired input sample always resides
at the beginning of the samples buffer (in this example). The memory
location that contained the sample x(n) now contains the newly acquired sample
x(n + 1). The output y(n + 1) at time n + 1 is then calculated. This scheme uses a
data move to update the delay samples.

Example 4.8 illustrates how various memory organizations can be used for both
the delay samples and the filter coefficients, as well as updating the delay samples
within the same loop as the convolution equation. We also illustrate the use of a cir-
cular buffer with a pointer to update the delay samples, in lieu of moving the data

120 Finite Impulse Response Filters

FIGURE 4.6. MATLAB’s filter designer SPTOOL, showing the characteristics of a FIR
bandstop filter centered at 2700Hz.

in memory. The output is scaled (right-shifted by 15) before it is sent to the codec’s
DAC. This allows for a fixed-point implementation as well.

Bandstop, Centered at 2700Hz (bs2700.cof)
Build and run this project as FIR. Input a sinusoidal signal and vary the input fre-
quency slightly below and above 2700Hz. Verify that the output is a minimum at
2700Hz.

Figure 4.7 shows a plot of CCS project windows. It shows the FFT magnitude of
the filter’s coefficients h (see Example 1.3, using a starting address of h) using a 128-
point FFT. The characteristics of the FIR bandstop filter, centered at 2700Hz, are
displayed. It also shows a CCS time-domain plot, or the impulse response of the
filter.

With noise as input, the output frequency response of the bandpass filter can also
be verified. The pseudorandom noise sequence developed in Chapter 2, or another
noise source (see Appendix D), can be used as input to the FIR filter, as illustrated
later. Figure 4.8 shows a plot of the frequency response of the filter with a notch at
2700Hz implemented in real time.This plot is obtained using an HP 3561A dynamic
signal analyzer with an input noise source from the analyzer. The roll-off at approx-
imately 3500Hz is due to the antialiasing lowpass filter on the codec.

Programming Examples Using C and ASM Code 121

FIGURE 4.7. CCS plots displaying the FFT magnitude of the bandstop filter’s coefficients
and its impulse response.

122 Finite Impulse Response Filters

FIGURE 4.8. Output frequency response of FIR bandstop filter centered at 2700Hz,
obtained with a signal analyzer.

FIGURE 4.9. MATLAB’s filter designer SPTOOL, showing characteristics of a FIR band-
pass filter centered at 1750Hz.

Bandpass, Centered at 1750Hz (bp1750.cof)
Within CCS, edit the program FIR.c to include the coefficient file bp1750.cof in
lieu of bs2700.cof. The file bp1750.cof represents an FIR bandpass filter (81
coefficients) centered at 1750Hz, as shown in Figure 4.9. This filter was designed

Programming Examples Using C and ASM Code 123

FIGURE 4.10. Output frequency response of a FIR bandpass filter centered at 1750Hz,
obtained with a signal analyzer.

with MATLAB’s SPTOOL (Appendix D). Select the incremental Build and the
new coefficient file bp1750.cof will automatically be included in the project.
Run again and verify an FIR bandpass filter centered at 1750Hz. Figure 4.10 shows
a real-time plot of the output frequency response obtained with the HP signal
analyzer.

Example 4.2: Effects on Voice Using Three FIR Lowpass Filters (FIR3LP)

Figure 4.11 shows a listing of the program FIR3lp.c, which implements three FIR
lowpass filters with cutoff frequencies at 600, 1500, and 3000Hz, respectively.
The three lowpass filters were designed with MATLAB’s SPTOOL to yield the
corresponding three sets of coefficients. This example expands on the generic FIR
program in Example 4.1.
LP_number selects the desired lowpass filter to be implemented. For example,

if LP_number is set to 1, h[1][i] is equal to hlp600[i] (within the “for” loop
in the function main), which is the address of the first set of coefficients. The co-
efficients file LP600.cof represents an 81-coefficient FIR lowpass filter with a
600-Hz cutoff frequency, using the Kaiser window function. Figure 4.12 shows a
listing of this coefficient file (the other two sets are on the disk). That filter is
then implemented. LP_number can be changed to 2 or 3 to implement the 1500-
or 3000-Hz lowpass filter, respectively. With the GEL file FIR3LP.gel (Figure
4.13), one can vary LP_number from 1 to 3 and slide through the three different
filters.

Build this project as FIR3LP. Use the .wav file TheForce.wav (on the disk)
as input (see Appendix D) and observe the effects of the three lowpass filters on
the input voice. With the lower bandwidth of 600Hz, using the first set of coeffi-
cients, the frequency components of the speech signal above 600Hz are suppressed.
Connect the output to a speaker or a spectrum analyzer to verify such results, and
observe the different bandwidths of the three FIR lowpass filters.

124 Finite Impulse Response Filters

//FIR3LP.c FIR using three lowpass coefficients with three different BW

#include “lp600.cof” //coeff file LP @ 600 Hz

#include “lp1500.cof” //coeff file LP @ 1500 Hz

#include “lp3000.cof” //coeff file LP @ 3000 Hz

short LP_number = 1; //start with 1st LP filter

int yn = 0; //initialize filter’s output

short dly[N]; //delay samples

short h[3][N]; //filter characteristics 3xN

interrupt void c_int11() //ISR

{

short i;

dly[0] = input_sample(); //newest input @ top of buffer

yn = 0; //initialize filter output

for (i = 0; i< N; i++)

yn +=(h[LP_number][i]*dly[i]); //y(n) += h(LP#,i)*x(n-i)

for (i = N-1; i > 0; i--) //starting @ bottom of buffer

dly[i] = dly[i-1]; //update delays with data move

output_sample(yn >> 15); //output filter

return; //return from interrupt

}

void main()

{

short i;

for (i=0; i<N; i++)

{

dly[i] = 0; //init buffer

h[1][i] = hlp600[i]; //start addr of LP600 coeff

h[2][i] = hlp1500[i]; //start addr of LP1500 coeff

h[3][i] = hlp3000[i]; //start addr of LP3000 coeff

}

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.11. FIR program to implement three different FIR lowpass filters using a slider
for selection (FIR3LP.c).

Example 4.3: Implementation of Four Different Filters: Lowpass, Highpass,
Bandpass, and Bandstop (FIR4types)

This example is similar to Example 4.2 and illustrates the gel (slider) file to step
through four different types of FIR filters. Each filter has 81 coefficients, designed
with MATLAB’s SPTOOL. The four coefficient files (on the accompanying disk)
are:

1. lp1500.cof: lowpass with bandwidth of 1500Hz

2. hp2200.cof: highpass with bandwidth of 2200Hz

3. bp1750.cof: bandpass with center frequency at 1750Hz

4. bs790.cof: bandstop with center frequency at 790Hz

The program FIR4types.c (on disk) implements this project. The program
FIR3LP.c (Example 4.2) is modified slightly to incorporate a fourth filter.

Build and run this project as FIR4types. Load the GEL file FIR4types.gel
(on the disk) and verify the implementation of the four different FIR filters. This
example can readily be expanded to implement more FIR filters.

Figure 4.9 shows the characteristics of the FIR bandpass filter centered at
1750Hz obtained with MATLAB’s filter designer; and Figure 4.10 shows its fre-
quency response obtained with an HP signal analyzer.

Programming Examples Using C and ASM Code 125

//LP600.cof FIR lowpass filter coefficients using Kaizer window

#define N 81 //length of filter

short hlp600[N] = {0,-6,-14,-22,-26,-24,-13,8,34,61,80,83,63,19,-43,-113,

-171,-201,-185,-117,0,146,292,398,428,355,174,-99,-416,-712,-905,-921,

-700,-218,511,1424,2425,3391,4196,4729,4915,4729,4196,3391,2425,1424,

511,-218,-700,-921,-905,-712,-416,-99,174,355,428,398,292,146,0,-117,

-185,-201,-171,-113,-43,19,63,83,80,61,34,8,-13,-24,-26,-22,-14,-6,0};

/*FIR3LP.gel Gel file to step through 3 different LP filters*/

menuitem “Filter Characteristics”

slider Filter(1,3,1,1,filterparameter) /*from 1 to 3,incr by 1*/

{

LP_number = filterparameter; /*for 3 LP filters*/

}

FIGURE 4.12. Coefficient file for a FIR lowpass filter with 600-Hz cutoff frequency
(LP600.cof).

FIGURE 4.13. GEL file for selecting one of three FIR lowpass filter coefficients
(FIR3LP.gel).

//FIRPRN.c FIR with internally generated input noise sequence

#include “bp55.cof” //BP @ Fs/4 coeff file in float
#include “noise_gen.h” //header file for noise sequence
int dly[N]; //delay samples
short fb; //feedback variable
shift_reg sreg;

short prn(void) //pseudorandom noise generation
{
short prnseq; //for pseudorandom sequence

if(sreg.bt.b0) //sequence {1,-1}
prnseq = -16000; //scaled negative noise level

else
prnseq = 16000; //scaled positive noise level

fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
fb ^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 ->fb
sreg.regval<<=1; //shift register 1 bit to left
sreg.bt.b0 = fb; //close feedback path

return prnseq; //return sequence
}

interrupt void c_int11() //ISR
{

int i;
int yn = 0; //initialize filter’s output

dly[0] = prn(); //input noise sequence
for (i = 0; i< N; i++)

yn +=(h[i]*dly[i]); //y(n)+= h(i)*x(n-i)
for (i = N-1; i > 0; i--) //start @ bottom of buffer

dly[i] = dly[i-1]; //data move to update delays

output_sample(yn); //output filter
return; //return from interrupt

}

void main()
{

short i;

sreg.regval = 0xFFFF; //shift register to nominal values
fb = 1; //initial feedback value
for (i = 0; i<N; i++)

dly[i] = 0; //init buffer
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop

}

FIGURE 4.14. FIR program with pseudorandom noise sequence as input (FIRPRN.c).

126

Programming Examples Using C and ASM Code 127

Example 4.4: FIR Implementation with Pseudorandom Noise Sequence as
Input to Filter (FIRPRN)

The program FIRPRN.c (Figure 4.14) implements an FIR filter using an internally
generated pseudorandom noise as input to the filter. This input is the pseudoran-
dom noise sequence generated in Example 2.16. The coefficient file BP55.cof uses
a float data format and is shown in Figure 4.15. [A filter development package (on
disk) that generates filter coefficients in float or hexadecimal format is described in
Appendix E.] It represents a 55-coefficient FIR bandpass filter with a center fre-
quency at Fs/4.

Build this project as FIRPRN. Run this project and verify that the output is an
FIR bandpass filter centered at 2kHz. To verify the output as the noise sequence,
output dly[0] in lieu of yn when calling the function output_sample.

Testing Different FIR Filters
Halt the program. Edit the C source program to include and test different coeffi-
cient files (on the disk) that represent different FIR filters, all using float format
values. Each coefficient file contains 55 coefficients (except comb14.cof).

1. BS55.cof: bandstop with center frequency Fs/4

2. BP55.cof: bandpass with center frequency Fs/4

3. LP55.cof: lowpass with cutoff frequency Fs/4

4. HP55.cof: highpass with bandwidth Fs/4

5. Pass2b.cof: with two passbands

6. Pass3b.cof: with three passbands

//bp55.cof Coefficients for bandpass FIR filter centered @ Fs/4

#define N 55 //number of coefficients

float h[N]=

{1.7619E-017, 7.0567E-003, 2.2150E-018,-1.0962E-002, 4.0310E-017,

1.3946E-002, 7.1787E-018,-1.4588E-002, 3.9928E-017, 1.1474E-002,

5.9881E-018,-3.5159E-003,-6.6174E-018,-9.7476E-003,-1.7919E-017,

2.7932E-002,-9.4329E-017,-4.9740E-002, 3.3834E-017, 7.3066E-002,

-3.6228E-017,-9.5284E-002, 3.2194E-017, 1.1365E-001,-2.2165E-017,

-1.2576E-001, 7.8980E-018, 1.3000E-001, 7.8980E-018,-1.2576E-001,

-2.2165E-017, 1.1365E-001, 3.2194E-017,-9.5284E-002,-3.6228E-017,

7.3066E-002, 3.3834E-017,-4.9740E-002,-9.4329E-017, 2.7932E-002,

-1.7919E-017,-9.7476E-003,-6.6174E-018,-3.5159E-003, 5.9881E-018,

1.1474E-002, 3.9928E-017,-1.4588E-002, 7.1787E-018, 1.3946E-002,

4.0310E-017,-1.0962E-002, 2.2150E-018, 7.0567E-003, 1.7619E-017};

FIGURE 4.15. Coefficient file in float format for a FIR bandpass filter centered at Fs/4
(BP55.cof).

7. Pass4b.cof: with four passbands

8. Stop3b.cof: with three stopbands

9. Comb14.cof: with multiple notches (comb filter)

Figure 4.16a shows the real-time output frequency response of an FIR filter with
two passbands, using the coefficient file pass2b.cof. This filter was designed with
MATLAB. Figure 4.16b shows the frequency response of the comb filter, using the
coefficients file comb14.cof. These plots were obtained with the HP 3561A signal
analyzer.

128 Finite Impulse Response Filters

FIGURE 4.16. Output frequency responses obtained with HP analyzer: (a) FIR filter with
two passbands; (b) FIR comb filter.

Example 4.5: FIR Filter with Frequency Response Plot
Using CCS (FIRbuf)

Figure 4.17 shows a listing of the program FIRbuf.c, which implements an FIR
filter and stores the filter’s output into a buffer. The FFT magnitude of the filter’s
output frequency response can then be plotted using CCS. Example 4.1 illustrated
the implementation of an FIR filter using a generic program that includes the
coefficient file representing the characteristics of a desired filter. Example 1.2 shows
how one can store the output into a buffer so that it can be plotted within CCS. The
program FIRbuf.c is based on these two earlier examples. The coefficient file
bp41.cof represents a 41-coefficient FIR bandpass filter centered at 1kHz. The
output buffer has a size of 1024.

Build this project as FIRbuf. Verify that the output is a bandpass filter, centered
at 1kHz. Halt the processor.

With noise as input to the filter, the output frequency response can be plotted
using CCS. The shareware utility Goldwave generates different signals, including
noise, using a sound card (see Appendix E). The output from the sound card with
the noise generated by Goldwave can be used as the input to the DSK.

Select View Æ Graph Æ Time/Frequency. Select/set for:

1. Display type: FFT magnitude

2. Start address: yn_buffer

3. Acquisition buffer size: 1024

4. FFT frame size: 1024

5. FFT order: 10

6. DSP data type: 16-bit signed integer

7. Sampling rate: 8000Hz

Use default for the other fields. The FFT order is M, where 2M = FFT frame size.
Run the program and verify the output frequency response of the filter plotted in
Figure 4.18.

Example 4.6: FIR Filter with Internally Generated Pseudorandom Noise as
Input to Filter and Output Stored in Memory (FIRPRNbuf)

This example builds on Example 2.16, noise_gen, which generates a pseudoran-
dom noise sequence, and Example 4.5,FIRbuf, which implements an FIR filter with
the filter’s output also stored in a memory buffer. Figure 4.19 shows a listing of the
program FIRPRNbuf.c, which implements this project example.

The input to the filter is a software-generated noise sequence using dly[0] as
the newest noise sequence. The coefficient file BP41.cof, which represents a 41-
coefficient FIR bandpass filter, is the same as that used in Example 4.5.

Programming Examples Using C and ASM Code 129

Build and run this project as FIRPRNbuf. Verify the output frequency response
of a 1-kHz FIR bandpass filter. Goldwave can also be used as a crude spectrum
analyzer to obtain the frequency response of the filter (with the output of the DSK
connected to the input of the sound card).

Using CCS, verify the FFT magnitude plot as shown in Figure 4.20, using 1024
points. The address of the output buffer is yn_buffer. Figure 4.21 shows the fre-
quency response of the FIR bandpass filter, centered at Fs/8, displayed using an HP
analyzer.

130 Finite Impulse Response Filters

//Firbuf.c FIR filter with output in buffer plotted with CCS

#include “bp41.cof” //BP @ 1 kHz coefficient file

int yn = 0; //initialize filter’s output

short dly[N]; //delay samples

short buffercount = 0; //init buffer count

const short bufferlength = 1024; //buffer size

short yn_buffer[1024]; //output buffer

interrupt void c_int11() //ISR

{

short i;

dly[0] = input_sample(); //newest input @ top of buffer

yn = 0; //initialize filter’s output

for (i = 0; i< N; i++)

yn +=(h[i]*dly[i]) >> 15; //y(n)+=h(i)*x(n-i)

for (i = N-1; i > 0; i--) //start @ bottom of buffer

dly[i] = dly[i-1]; //data move to update delays

output_sample(yn); //output filter

yn_buffer[buffercount] = yn; //filter’s output into buffer

buffercount++; //increment buffer count

if(buffercount==bufferlength) //if buffer count = size

buffercount = 0; //reinitialize buffer count

return; //return from interrupt

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.17. FIR program with the filter output stored in memory (FIRbuf.c).

Change the output buffer so that the noise sequence is stored in memory using

yn_buffer[i] = dly[0];

Run the program again and plot the FFT magnitude of the noise sequence. It is not
quite flat since the resulting plot is not averaged.

You can also output the noise sequence using

output_sample(dly[0]);

in the program. With the output to a spectrum analyzer with averaging capability,
verify that the noise spectrum is quite flat until about 3500Hz, the bandwidth of
the antialiasing filter on the codec (looks like a lowpass filter with a bandwidth of

Programming Examples Using C and ASM Code 131

FIGURE 4.18. Output frequency response of a 1-kHz FIR bandpass filter plotted with CCS
using external noise as input for project FIRbuf.

//FIRPRNbuf.c FIR filter with input noise sequence & output in buffer

#include “bp41.cof” //BP @ 1 kHz coefficient file
#include “noise_gen.h” //header file for noise sequence
int yn = 0; //initialize filter’s output
short dly[N]; //delay samples
short buffercount = 0; //init buffer count
const short bufferlength = 1024; //buffer size
short yn_buffer[1024]; //output buffer
short fb; //feedback variable
shift_reg sreg;

short prn(void) //pseudorandom noise generation
{
short prnseq; //for pseudorandom sequence

if(sreg.bt.b0) //sequence {1,-1}
prnseq = -8000; //scaled negative noise level

else
prnseq = 8000; //scaled positive noise level

fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
fb ^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 ->fb
sreg.regval<<=1; //shift register 1 bit to left
sreg.bt.b0 = fb; //close feedback path

return prnseq;
}

interrupt void c_int11() //ISR
{

short i;

dly[0] = prn(); //input noise sequence
yn = 0; //initialize filter’s output
for (i = 0; i< N; i++)

yn +=(h[i]*dly[i]) >>15; //y(n)+=h(i)*x(n-i)
for (i = N-1; i > 0; i--) //start @ bottom of buffer

dly[i] = dly[i-1]; //data move to update delays

output_sample(yn); //output filter

yn_buffer[buffercount] = yn; //filter’s output into buffer
buffercount++; //increment buffer count
if(buffercount==bufferlength) //if buffer count = size

buffercount = 0; //reinitialize buffer count
return; //return from interrupt

}

void main()
{

sreg.regval = 0xFFFF; //shift register to nominal values
fb = 1; //initial feedback value
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop

}

FIGURE 4.19. FIR program with an input pseudorandom noise sequence and output stored
in the memory buffer (FIRPRNbuf.c).

132

FIGURE 4.20. CCS output frequency response of a 1-kHz FIR bandpass filter using an inter-
nally generated noise sequence as input to the filter for project FIRPRNbuf.

FIGURE 4.21. Frequency response of a 1-kHz FIR bandpass filter using an HP analyzer.

3500Hz). Figure 4.22 shows the spectrum of this noise sequence using the HP ana-
lyzer (averaged with the analyzer). Use a GEL file to develop a slider so that the
DSK output is either the noise sequence generated internally,dly[0], or the filter’s
output y(n).

Example 4.7: Two Notch Filters to Recover Corrupted Input
Voice (NOTCH2)

This example illustrates the implementation of two notch (bandstop) FIR filters to
remove two undesired sinusoidal signals corrupting an input voice signal. The voice
signal (TheForce.wav, on the disk) was ADDed (using Goldwave) with the two
undesired sinusoidal signals at frequencies of 900Hz and 2700Hz, to produce the
corrupted input signal corruptvoice.wav (on the disk).

Figure 4.23 shows a listing of the program NOTCH2.c, which implements the two
notch filters in cascade (series). Two coefficient files, BS900.cof and BS2700.cof
(on the disk), each containing 89 coefficients and designed with MATLAB, are
included in the filter program NOTCH2.c.They represent two FIR notch filters, cen-
tered at 900Hz and 2700Hz, respectively. A buffer is used for the delay samples of
each filter. The output of the first notch filter, centered at 900Hz, becomes the input
to the second notch filter, centered at 2700Hz.

Build this project as NOTCH2. Input (play) the corrupted voice signal cor-
ruptvoice.wav. Verify that the slider in position 1 (as set initially) outputs the
corrupted voice signal, as shown in Figure 4.24. This plot is obtained with Goldwave
using the DSK output as the input to a sound card (see Appendix E). The plot is
shown on only one side (left channel) since a mono signal is used. Observe the two
spikes (representing the two sinusoidal signals) at 900Hz and 2700Hz, respectively.

134 Finite Impulse Response Filters

FIGURE 4.22. Spectrum of an internally generated pseudorandom noise sequence using an
HP analyzer.

Programming Examples Using C and ASM Code 135

//Notch2.C Two FIR notch filters to remove two sinusoidal noise signals

#include “BS900.cof” //BS @ 900 Hz coefficient file

#include “BS2700.cof” //BS @ 2700 Hz coefficient file

short dly1[N]={0}; //delay samples for 1st filter

short dly2[N]={0}; //delay samples for 2nd filter

int y1out = 0, y2out = 0; //init output of each filter

short out_type = 1; //slider for output type

interrupt void c_int11() //ISR

{

short i;

dly1[0] = input_sample(); //newest input @ top of buffer

y1out = 0; //init output of 1st filter

y2out = 0; //init output of 2nd filter

for (i = 0; i< N; i++)

y1out += h900[i]*dly1[i]; //y1(n)+=h900(i)*x(n-i)

dly2[0]=(y1out >>15); //out of 1st filter->in 2nd filter

for (i = 0; i< N; i++)

y2out += h2700[i]*dly2[i]; //y2(n)+=h2700(i)*x(n-i)

for (i = N-1; i > 0; i--) //from bottom of buffer

{

dly1[i] = dly1[i-1]; //update samples of 1st buffer

dly2[i] = dly2[i-1]; //update samples of 2nd buffer

}

if (out_type==1) //if slider is in position 1

output_sample(dly1[0]); //corrupted input(voice+sines)

if (out_type==2)

output_sample(y2out>>15); //output of 2nd filter (voice)

return; //return from ISR

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.23. Program with two FIR notch filters in cascade to remove two undesired sinu-
soidal signals (NOTCH2.c).

136 Finite Impulse Response Filters

FIGURE 4.24. Spectrum of voice signal corrupted by two sinusoidal signals at 900 and
2700Hz (obtained with Goldwave).

Change the slider to position 2 and verify that the two undesirable sinusoidal signals
are removed.

Also output y1out through the function output_sample (rebuild) and verify
that only the 2700-Hz corrupts the input voice signal.

Example 4.8: FIR Implementation Using Four Different Methods
(FIR4ways)

Figure 4.25 shows a listing of the program FIR4ways.c, which implements an FIR
filter using four alternative methods for convolving/updating the delay samples.This
example extends Example 4.1, where the first method (method A) is used. In this
first method with two “for” loops, the delay samples are arranged in memory with
the newest sample at the beginning of the buffer and the oldest sample at the end
of the buffer. The convolution starts with the newest sample and the first coefficient
using

y(n) = h(0)x(n) + h(1)x(n - 1) + · · · + h(N - 1)x(n - (N - 1))

Each data value is “moved down” in memory to update the delay samples, with the
newest sample being the newly acquired input sample. The size of the array for the
delay samples is now set at N + 1 and not N, to illustrate the third method (method
C).The other three methods use a buffer size of N for the delay samples.The bottom
(end) of the buffer in this example refers to memory location N, not N + 1. Note

//FIR4ways.c FIR with alternative ways of storing/updating samples

#include “bp41.cof” //BP @ 1 kHz coefficient file
#define METHOD ‘D’ //change to B or C or D
int yn = 0; //initialize filter’s output
short dly[N+1]; //delay samples array(one extra)

interrupt void c_int11() //ISR
{

short i;
yn = 0; //initialize filter’s output

#if METHOD == ‘A’ //if 1st method
dly[0] = input_sample(); //newest sample @ top of buffer
for (i = 0; i< N; i++)

yn += (h[i] * dly[i]); //y(n)=h[0]*x[n]+..+h[N-1]x[n-(N-1)]
for (i = N-1; i > 0; i--) //from bottom of buffer

dly[i] = dly[i-1]; //update sample data move “down”

#elif METHOD == ‘B’ //if 2nd method
dly[0] = input_sample(); //newest sample @ top of buffer
for (i = N-1; i >= 0; i--) //start @ bottom to convolve
{
yn += (h[i] * dly[i]); //y=h[N-1]x[n-(N-1)]+...+h[0]x[n]
dly[i] = dly[i-1]; //update sample data move “down”

}

#elif METHOD == ‘C’ //use xtra memory location
dly[0] = input_sample(); //newest sample @ top of buffer
for (i = N-1; i>=0; i--) //start @ bottom of buffer
{
yn += (h[i] * dly[i]); //y=h[N-1]x[n-(N-1)]+...+h[0]x[n]
dly[i+1] = dly[i]; //update sample data move “down”

}

#elif METHOD == ‘D’ //1st convolve before loop
dly[N-1] = input_sample(); //newest sample @ bottom of buffer
yn = h[N-1] * dly[0]; //y=h[N-1]x[n-(N-1)] (only one)
for (i = 1; i<N; i++) //convolve the rest
{
yn +=(h[N-(i+1)]*dly[i]); //h[N-2]x[n-(N-2)]+...+h[0]x[n]
dly[i-1] = dly[i]; //update sample data move “up”

}
#endif
output_sample(yn >> 15); //output filter
return; //return from ISR
}

void main()
{

comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop

}

FIGURE 4.25. FIR program using four alternative methods for convolution and updating
of delay samples (FIR4ways.c).

137

that in this case the unused data x(n - N) in memory location (N + 1) is not updated,
by using the index i < N.

The second method (method B) performs the convolution and updates the delay
samples using one loop. The convolution starts with the oldest coefficient and the
oldest sample, “moving up” through the buffers using

y(n) = h(N - 1)x(n - (N - 1)) + h(N - 2)x(n - (N - 2)) + · · · + h(0)x(n)

The updating scheme is similar to the first method. In method B, when i = 0, the
newest sample is updated by an invalid data value residing at the memory location
preceding the start of the sample buffer. But this invalid data item is then replaced
by a newly acquired input sample with dly[0] before calculating y(n) for the next
unit of time. Or, one could use an “if” statement to update the delay samples for all
values of i except for i = 0.

The third method uses N + 1 memory locations to update the delay samples. The
unused data at memory location N + 1 is also updated. The extra memory location
is used so that a valid data item in that location is not overwritten.

The fourth method performs the first convolution expression “outside” the loop.
The delay samples in the previous methods were arranged in memory so that the
newest sample, x(n), is at the beginning of the buffer and the oldest sample,
x(n - (N - 1)), is at the end. However, in this method, the newest input sample is
acquired through dly[N - 1] so that the newest sample is now at the end of the
buffer and the updating process moves the data up.

Build and run this project as FIR4ways. Verify that the output is an FIR band-
pass filter centered at 1kHz. Change the method to test (define) the other three
methods and verify that the resulting output is the same.

Example 4.9: Voice Scrambler Using Filtering and Modulation
(Scram16k)

This example illustrates a voice scrambling/descrambling scheme. The approach
makes use of basic algorithms for filtering and modulation. Modulation was intro-
duced in Example 2.14. With voice as input, the resulting output is scrambled voice.
The original unscrambled voice is recovered when the output of the DSK is used
as the input to a second DSK running the same program.

An up-sampling scheme is used to process at a sampling rate of 16kHz in lieu of
the 8-kHz rate set with the AD535 codec.This results in a better performance, allow-
ing for a wider input signal bandwidth.

The scrambling method used is commonly referred to as frequency inversion. It
takes an audio range, represented by the band 0.3 to 3kHz, and “folds” it about a
carrier signal. The frequency inversion is achieved by multiplying (modulating) the
audio input by a carrier signal, causing a shift in the frequency spectrum with upper
and lower sidebands. On the lower sideband that represents the audible speech
range, the low tones are high tones, and vice versa.

Figure 4.26 is a block diagram of the scrambling scheme. At point A we have a

138 Finite Impulse Response Filters

bandlimited signal 0 to 3kHz. At point B we have a double-sideband signal with
suppressed carrier. At point C the upper sideband is filtered out. Its attractiveness
comes from its simplicity, since only simple DSP algorithms are utilized: filtering,
sine generation/modulation, and up-sampling (due to low sampling frequency with
the AD535 codec).

Figure 4.27 shows a listing of the program Scram16k.c, which implements this
project. The input signal is first lowpass filtered and the resulting output (at point
A) is multiplied (modulated) by a 3.3-kHz sine function with data values in a buffer
(lookup table). The modulated signal (at point B) is filtered again, and the overall
output is a scrambled signal (at point C).

There are three functions in Figure 4.27 in addition to the function main. One
of the functions, filtmodfilt, calls a filter function to implement the first lowpass filter
as an antialiasing filter. The resulting output (filtered input) becomes the input to a
multiplier/modulator. The function sinemod modulates (multiplies) the filtered
input with the 3.3-kHz sine data values. This produces higher and lower sideband
components.The modulated output is again filtered, so that only the lower sideband
components are kept.

The up-sampling scheme to obtain a 16-kHz sampling rate is achieved by “pro-
cessing” the data twice and retaining only the second result. This allows for a wider
input signal bandwidth to be scrambled.

A buffer is used to store the 114 coefficients that represent the lowpass filter. The
coefficient file lp114.cof is on disk. Two other buffers are used for the delay
samples, one for each filter. The samples are arranged in memory as

x(n - (N - 1)), x(n - (N - 2)), . . . , x(n - 1), x(n)

with the oldest sample at the beginning of the buffer and the newest sample at the
end (bottom) of the buffer. The file sine160.h with 160 data values over 33 cycles
is on disk. The frequency generated is f = Fs (number of cycles)/(number of points)
= 16,000(33)/160 = 3.3kHz.

Using the resulting output as the input to a second DSK running the same algo-
rithm, the original unscrambled input is recovered as the output of the second DSK.
Note that the program can still run on the first DSK when it is disconnected from
the parallel port cable (DB25 cable).

Build and run this project as Scram16k. First test this project using a 2-kHz input
sine wave. The resulting output is a lower sideband signal of 1.3kHz, obtained as

Programming Examples Using C and ASM Code 139

Multiplier

3-kHz
LP filter

3-kHz
LP filterInput Output

3.3-kHz
sine

generator

A B C

FIGURE 4.26. Block diagram of scrambler/descrambler scheme.

//Scram16k.c Voice scrambler/de-scrambler program

#include “sine160.h” //sine data values
#include “LP114.cof” //filter coefficient file
short filtmodfilt(short data);
short filter(short inp,short *dly);
short sinemod(short input);
static short filter1[N],filter2[N];
short input, output;

void main()
{
short i;

comm_poll(); //init DSK using polling
for (i=0; i< N; i++)
{
filter1[i] = 0; //init 1st filter buffer
filter2[i] = 0; //init 2nd filter buffer
}

while(1)
{
input=input_sample(); //input new sample data
filtmodfilt(input); //process sample twice(upsample)
output=filtmodfilt(input); //and throw away 1st result
output_sample(output); //then output
}

}

short filtmodfilt(short data) //filtering & modulating
{
data = filter(data,filter1); //newest in ->1st filter
data = sinemod(data); //modulate with 1st filter out
data = filter(data,filter2); //2nd LP filter
return data;
}

short filter(short inp,short *dly) //implements FIR
{
short i;
int yn;

dly[N-1] = inp; //newest sample @bottom buffer
yn = dly[0] * h[N-1]; //y(0)=x(n-(N-1))*h(N-1)
for (i = 1; i < N; i++) //loop for the rest
{
yn += dly[i] * h[N-(i+1)]; //y(n)=x[n-(N-1-i)]*h[N-1-i]
dly[i-1] = dly[i]; //data up to update delays
}

yn = ((yn) >>15); //filter’s output
return yn; //return y(n) at time n
}

short sinemod(short input) //sine generation/modulation
{
static short i=0;
input=(input*sine160[i++])>>11; //(input)*(sine data)
if(i>= NSINE) i = 0; //if end of sine table
return input; //return modulated signal
}

FIGURE 4.27. Voice scrambler program (Scram16k.c).

140

(3.3kHz - 2kHz). The upper sideband signal of (3.3kHz + 2kHz) is filtered out by
the second lowpass filter.

A second DSK is used to recover/unscramble the original signal (simulating the
receiving end). Use the output of the first DSK as the input to the second DSK.
Run the same program on the second DSK. This produces the reverse procedure,
yielding the original unscrambled signal. If the same 2-kHz original input is con-
sidered, the 1.3kHz as the scrambled signal becomes the input to the second DSK.
The resulting output is the original signal of 2kHz (3.3kHz - 1.3kHz), the lower
sideband signal.

With a sweeping input sinusoidal signal increasing in frequency, the resulting
output is the sweeping signal “decreasing” in frequency. Use as input the .wav file
TheForce.wav and verify the scrambling/descrambling scheme.

Interception of the speech signal can be made more difficult by changing the
modulation frequency dynamically and including (or omitting) the carrier frequency
according to a predefined sequence: for example, a code for no modulation, another
for modulating at frequency fc1, and a third code for modulating at frequency fc2.

This project was first implemented using the TMS320C25 [49] and also on the
TMS320C31 DSK without the need for up-sampling.

Example 4.10: Illustration of Aliasing Effects with Down-Sampling
(aliasing)

Figure 4.28 shows a listing of the program aliasing.c, which implements this
project. To illustrate the effects of aliasing, the processing rate is down-sampled by
a factor of 2, to an equivalent 4-kHz rate. Note that the antialiasing and recon-
struction filters on the AD535 codec are fixed and connot be bypassed or altered.
Up-sampling and lowpass filtering are needed to output the 4-kHz rate samples to
the AD535 codec sampling at 8kHz.

Build this project as aliasing. Load the slider file aliasing.gel (on the
disk). With antialiasing initially set to zero in the program, aliasing will occur.

1. Input a sinusoidal signal and verify that for an input signal frequency up to
2kHz, the output is essentially a loop program (delayed input). Increase
the input signal frequency to 2.5kHz and verify that the output is an aliased
1.5-kHz signal. Similarly, a 3- and a 3.5-kHz input signal yield an aliased out-
put signal of 1 and 0.5kHz, respectively. Input signals with frequencies beyond
3.5kHz are supressed due to the AD535 codec’s antialiasing filter.

2. Change the slider position to 1, so that antialiasing at the down-sampled rate
of 4kHz is desired. For an input signal frequency up to about 1.8kHz, the
output is a delayed version of the input. Increase the input signal frequency
beyond 1.8kHz and verify that the output reduces to zero. This is due to the
1.8-kHz antialiasing lowpass filter, implemented using the coefficient file
lp33.cof (on the disk).

Programming Examples Using C and ASM Code 141

142 Finite Impulse Response Filters

//Aliasing.c illustration of downsampling, aliasing, upsampling

#include “lp33.cof” //lowpass at 1.8 kHz

short flag = 0; //toggles for 2x down-sampling

float indly[N],outdly[N]; //antialias and reconst delay lines

short i; //index

float yn; //filter output

short antialiasing = 0; //init for no antialiasing filter

interrupt void c_int11() //ISR

{

indly[0]=(float)(input_sample()); //new sample to antialias filter

yn = 0.0; //initialize downsampled value

if (flag == 0) //discard input sample value

flag = 1; //don’t discard at next sampling

else

{

if (antialiasing == 1) //if antialiasing filter desired

{ //compute downsampled value

for (i = 0 ; i < N ; i++) //using LP @ 1.8 kHz filter coeffs

yn += (h[i]*indly[i]); //filter is implemented using float

}

else //if filter is bypassed

yn = indly[0]; //downsampled value is input value

flag = 0; //next input value will be discarded

}

for (i = N-1; i > 0; i--)

indly[i] = indly[i-1]; //update input buffer

outdly[0] = (yn); //input to reconst filter

yn = 0.0; //4 kHz sample values and zeros

for (i = 0 ; i < N ; i++) //are filtered at 8 kHz rate

yn += (h[i]*outdly[i]); //by reconstruction lowpass filter

for (i = N-1; i > 0; i--)

outdly[i] = outdly[i-1]; //update delays

output_sample((short)(yn)); //8 kHz rate sample

return; //return from interrupt

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.28. Program to illustrate aliasing and antialiasing down-sampling to a rate of
4kHz (aliasing.c).

In lieu of using a sinusoidal signal as input, you can play sweep.wav from Gold-
wave (see Appendix E).

Example 4.11: Implementation of an Inverse FIR Filter (FIRinverse)

Figure 4.29 shows a listing of the program FIRinverse.c, which implements an
inverse FIR filter.An original input sequence to an FIR filter can be recovered using
an inverse FIR filter. The transfer function of an FIR filter of order N is

Programming Examples Using C and ASM Code 143

//FIRinverse.c Implementation of inverse FIR Filter

#include “bp41.cof” //coefficient file BP @ Fs/8

int yn; //filter’s output

short dly[N]; //delay samples

int out_type = 1; //output type for slider

interrupt void c_int11() //ISR

{

short i;

dly[0] = input_sample(); //newest input sample data

yn = 0; //initialize filter’s output

for (i = 0; i<N; i++)

yn += (h[i]*dly[i]); //y(n)+=h(i)*x(n-i)

if(out_type==1) //if slider in position 1

output_sample(dly[0]); //original input

if(out_type==2)

output_sample(yn>>15); //output of FIR filter

if(out_type==3) //calculate inverse FIR

{

for (i = N-1; i>1; i--)

yn -= (h[i]*dly[i]); //calculate inverse FIR filter

yn = yn/h[0]; //scale output of inverse filter

output_sample(yn>>8); //send output of inverse filter

}

for (i = N-1; i>0; i--) //from bottom of buffer

dly[i] = dly[i-1]; //update delay samples

return; //return from ISR

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.29. Program to implement an inverse FIR filter (FIRinverse.c).

where hi represents the impulse response coefficients. The output sequence of the
FIR filter is

where x(n - i) represents the input sequence. The original input sequence, x, can
then be recovered, using x̂(n) as an estimate of x(n), or

Build this project as FIRinverse. Use noise as input (from Goldwave or from
a noise generator, or modify the program to use the pseudorandom noise sequence,
etc.). Verify that the output is the input noise sequence, with the slider in position
1 (default). Change the slider to position 2 and verify the output as an FIR band-
pass filter centered at 1kHz. With the slider in position 3, the inverse of the FIR
filter is calculated, so that the output is the original input noise sequence.

Example 4.12: FIR Implementation Using C Calling ASM Function
(FIRcasm)

The C program FIRcasm.c (Figure 4.30) calls the ASM function FIRcasm-
func.asm (Figure 4.31), which implements an FIR filter.

Build and run this project as FIRcasm. Verify that the output is a 1-kHz FIR
bandpass filter. Two buffers are created: dly for the data samples and h for the
filter’s coefficients. On each interrupt, a new data sample is acquired and stored at
the end (higher-memory address) of the buffer dly.The delay samples and the filter
coefficients are arranged in memory as shown in Table 4.3. The delay samples are
stored in memory starting with the oldest sample with the newest sample at the end
of the buffer. The coefficients are arranged in memory with h(0) at the beginning
of the coefficient buffer and h(N - 1) at the end.

The addresses of the delay sample buffer, the filter coefficient buffer, and the size
of each buffer are passed to the ASM function through registers A4, B4, and A6,
respectively. The size of each buffer through register A6 is doubled since data in
each memory location are stored as byte. The pointers A4 and B4 are incremented
or decremented every two bytes (two memory locations). The end address of the
coefficients’ buffer is in B4, which is at 2N - 1.

ˆ
ˆ

x n
y n h x n i

h

i
i

N

() =
() - -()

=

-

Â
1

1

0

y n h x n i h x n h x n h x n Ni
i

N

N() = -() = () + -() + ◊ ◊ ◊ + - -()()
=

-

-Â
0

1

0 1 11 1

H z h zi
i

i

N

() = -

=

-

Â
0

1

144 Finite Impulse Response Filters

The two LDH instructions load the content in memory pointed at (whose address
is specified by) A4 and the content in memory at the address specified in B4. This
loads the oldest samples, x(n - (N - 1)) and h(N - 1), respectively. A4 is then post-
incremented to point at x(n - (N - 2)), and B4 is postdecremented to point at
h(N - 2). After the first accumulation, the oldest sample is updated. The content in
memory at the address specified by A4 is loaded into A7, then stored at the pre-
ceding memory location. This is because A4 is postdecremented without modifica-

Programming Examples Using C and ASM Code 145

//FIRCASM.c FIR C program calling ASM function fircasmfunc.asm

#include “bp41.cof” //BP @ Fs/8 coefficient file

int yn = 0; //initialize filter’s output

short dly[N]; //delay samples

interrupt void c_int11() //ISR

{

dly[N-1] = input_sample(); //newest sample @bottom buffer

yn = fircasmfunc(dly,h,N); //to ASM func through A4,B4,A6

output_sample(yn >> 15); //filter’s output

return; //return from ISR

}

void main()

{

short i;

for (i = 0; i<N; i++)

dly[i] = 0; //init buffer for delays

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.30. C program calling an ASM function for FIR implementation (FIRcasm.c).

TABLE 4.3 Memory Organization of Coefficients and Samples for FIRcasm

Samples

Coefficients Time n Time n + 1

h(0) A4 Æ x(n - (N - 1)) A4 Æ x(n - (N - 2))

h(1) x(n - (N - 2)) x(n - (N - 3))

h(2) x(n - (N - 3)) x(n - (N - 4))

. . .

. . .

. . .

h(N - 2) x(n - 1) x(n)

B4 Æ h(N - 1) x(n) ¨ newest Æ x(n + 1)

tion to point at the memory location containing the oldest sample. As a result, the
oldest sample, x(n - (N - 1)), is replaced (updated) by x(n - (N - 2)). The updat-
ing of the delay samples is for the next unit of time. As the output at time n is being
calculated, the samples are updated or “primed” for time (n + 1). At time n the
filter’s output is

y(n) = h(N - 1)x(n - (N - 1)) + h(N - 2)x(n - (N - 2)) + · · · +
h(1)x(n - 1) + h(0)x(n)

The loop is processed 41 times. For each time n, n + 1, and n + 2 an output value
is calculated, with each sample updated for the next unit of time. The newest sample
is also updated in this process, with an invalid data value residing at the memory
location beyond the end of the buffer. But this is remedied since for each unit
of time, the newest sample, acquired through the ADC of the codec, over-
writes it.

146 Finite Impulse Response Filters

;FIRCASMfunc.asm ASM function called from C to implement FIR

;A4 = Samples address, B4 = coeff address, A6 = filter order

;Delays organized as:x(n-(N-1))...x(n);coeff as h[0]...h[N-1]

.def _fircasmfunc

_fircasmfunc: ;ASM function called from C

MV A6,A1 ;setup loop count

MPY A6,2,A6 ;since dly buffer data as byte

ZERO A8 ;init A8 for accumulation

ADD A6,B4,B4 ;since coeff buffer data as byte

SUB B4,1,B4 ;B4=bottom coeff array h[N-1]

loop: ;start of FIR loop

LDH *A4++,A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1

LDH *B4--,B2 ;B2=h[N-1-i] i=0,1,...,N-1

NOP 4

MPY A2,B2,A6 ;A6=x[n-(N-1)+i]*h[N-1-i]

NOP

ADD A6,A8,A8 ;accumlate in A8

LDH *A4,A7 ;A7=x[(n-(N-1)+i+1]update delays

NOP 4 ;using data move “up”

STH A7,*-A4[1] ;-->x[(n-(N-1)+i] update sample

SUB A1,1,A1 ;decrement loop count

[A1] B loop ;branch to loop if count # 0

NOP 5

MV A8,A4 ;result returned in A4

B B3 ;return addr to calling routine

NOP 5

FIGURE 4.31. FIR ASM function called from C (FIRcasmfunc.asm).

Accumulation is in A8 and the result, for each unit of time, is moved to A4 to be
returned to the calling function. The address of the calling function is in B3.

Viewing Update of Samples in Memory

1. Select Æ View Æ Memory using a 16-bit hex format and a starting address of
dly. The delay samples are within 82 (not 41) memory locations, each loca-
tion specified with a byte. The coefficients also occupy 82 memory locations,
in the buffer h. You can verify the content in the coefficient buffer stored as
a 16-bit or half-word value. Right-click on the memory window and deselect
“Float in Main Window” for a better display with both source program and
memory.

2. Select Æ View Æ Mixed C/ASM. Place a breakpoint within the function
FIRcasmfunc.asm at the move instruction

MV A8,A4

(you can either double-click on that line of code, or right-mouse-click to
Toggle Breakpoint).

3. Select Æ Debug Æ Animate (introduced in Chapter 1). Execution halts at the
set breakpoint for each unit of time. Observe the bottom memory location of
the delay samples. Verify that the newest sample data value is placed at the
end of the buffer.This value is then moved up the buffer. Observe after a while
that the samples are being updated, with each value in the buffer moving up
in memory. You can also observe the register (pointer) A4 incrementing by 2
(two bytes) and B4 decrementing by 2.

Example 4.13: FIR Implementation Using C Calling Faster ASM Function
(FIRcasmfast)

The same C calling program, FIRcasm.c, is used in this example as in Example
4.12. It calls the ASM function Fircasmfunc.asm (Figure 4.32) within the file
FIRcasmfuncfast (not FIRcasmfunc).

This function executes faster than the function in Example 4.12 by having
parallel instructions and rearranging the sequence of instructions. There are two
parallel instructions: LDH/LDH and SUB/LDH.

1. The number of NOPs is reduced from 19 to 11.

2. The SUB instruction to decrement the loop count is moved up the program.

3. The sequence of some instructions changed to “fill” some of the NOP slots.

For example, the conditional branch instruction executes after the ADD instruc-
tion to accumulate in A8, since branching has five delay slots. Additional changes

Programming Examples Using C and ASM Code 147

to make it faster would also make it less comprehensible, due to further rese-
quencing of the instructions.

Build this project as FIRcasmfast, so that the linker option names the output
executable file FIRcasmfast.out. The resulting output is the 1-kHz bandpass
filter in Example 4.12.

Example 4.14: FIR Implementation with C Program Calling ASM Function
Using Circular Buffer (FIRcirc)

The C program FIRcirc.c (Figure 4.33) calls the ASM function FIRcirc-
func.asm (Figure 4.34), which implements an FIR filter using a circular buffer.
This example expands Example 4.13. The coefficients within the file bp1750.cof
were designed with MATLAB using the Kaiser window and represent a 128-
coefficient FIR bandpass filter with a center frequency of 1750Hz. Figure 4.35 dis-
plays the characteristics of this filter, obtained from MATLAB’s filter designer
SPTOOL (described in Appendix D).

148 Finite Impulse Response Filters

;FIRCASMfuncfast.asm C-called faster function to implement FIR

.def _fircasmfunc

_fircasmfunc: ;ASM function called from C

MV A6,A1 ;setup loop count

MPY A6,2,A6 ;since dly buffer data as byte

ZERO A8 ;init A8 for accumulation

ADD A6,B4,B4 ;since coeff buffer data as byte

SUB B4,1,B4 ;B4=bottom coeff array h[N-1]

loop: ;start of FIR loop

LDH *A4++,A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1

|| LDH *B4--,B2 ;B2=h[N-1-i] i=0,1,...,N-1

SUB A1,1,A1 ;decrement loop count

|| LDH *A4,A7 ;A7=x[(n-(N-1)+i+1]update delays

NOP 4

STH A7,*-A4[1] ;-->x[(n-(N-1)+i] update sample

[A1] B loop ;branch to loop if count # 0

NOP 2

MPY A2,B2,A6 ;A6=x[n-(N-1)+i]*h[N-1-i]

NOP

ADD A6,A8,A8 ;accumlate in A8

B B3 ;return addr to calling routine

MV A8,A4 ;result returned in A4

NOP 4

FIGURE 4.32. ASM function called from C for faster execution (FIRcasmfunc-
fast.asm).

In lieu of moving the data to update the delay samples, a pointer is used. The 16
LSBs of the address mode register (AMR) are set with a value of

0x0040 = 0000 0000 0100 0000

This selects A7 mode as the circular buffer pointer register. The 16 MSBs of AMR
are set with N = 0x0007 to select the block BK0 as a circular buffer. The buffer
size is 2N+1 = 256.A circular buffer is used in this example only for the delay samples.
It is also possible to use a second circular buffer for the coefficients. For example,
using

0x0140 = 0000 0001 0100 0000

would select two pointers, B4 and A7.
Within a C program, an inline assembly code can be used with the asm state-

ment. For example,

asm(“ MVK 0x0040,B6”)

Note the blank space after the first quote so that the instruction does not start in
column 1. The circular mode of addressing eliminates the data move to update the
delay samples, since the pointer can be moved to achieve the same result faster.

Programming Examples Using C and ASM Code 149

//FIRcirc.c C program calling ASM function using circular buffer

#include “bp1750.cof” //BP at 1750 Hz coeff file

int yn = 0; //init filter’s output

interrupt void c_int11() //ISR

{

short sample_data;

sample_data = input_sample(); //newest input sample data

yn = fircircfunc(sample_data,h,N); //ASM func passing to A4,B4,A6

output_sample(yn >> 15); //filter’s output

return; //return to calling function

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.33. C program calling an ASM function using a circular buffer (FIRcirc.c).

150 Finite Impulse Response Filters

;FIRcircfunc.asm ASM function called from C using circular addressing

;A4=newest sample, B4=coefficient address, A6=filter order

;Delay samples organized: x[n-(N-1)]...x[n]; coeff as h(0)...h[N-1]

.def _fircircfunc

.def last_addr

.def delays

.sect “circdata” ;circular data section

.align 256 ;align delay buffer 256-byte boundary

delays .space 256 ;init 256-byte buffer with 0’s

last_addr .int last_addr-1 ;point to bottom of delays buffer

.text ;code section

_fircircfunc: ;FIR function using circ addr

MV A6,A1 ;setup loop count

MPY A6,2,A6 ;since dly buffer data as byte

ZERO A8 ;init A8 for accumulation

ADD A6,B4,B4 ;since coeff buffer data as bytes

SUB B4,1,B4 ;B4=bottom coeff array h[N-1]

MVKL 0x00070040,B6 ;select A7 as pointer and BK0

MVKH 0x00070040,B6 ;BK0 for 256 bytes (128 shorts)

MVC B6,AMR ;set address mode register AMR

MVK last_addr,A9 ;A9=last circ addr(lower 16 bits)

MVKH last_addr,A9 ;last circ addr (higher 16 bits)

LDW *A9,A7 ;A7=last circ addr

NOP 4

STH A4,*A7++ ;newest sample-->last address

loop: ;begin FIR loop

LDH *A7++,A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1

|| LDH *B4--,B2 ;B2=h[N-1-i] i=0,1,...,N-1

SUB A1,1,A1 ;decrement count

[A1] B loop ;branch to loop if count # 0

NOP 2

MPY A2,B2,A6 ;A6=x[n-(N-1)+i]*h[N-1+i]

NOP

ADD A6,A8,A8 ;accumulate in A8

STW A7,*A9 ;store last circ addr to last_addr

B B3 ;return addr to calling routine

MV A8,A4 ;result returned in A4

NOP 4

FIGURE 4.34. C-called ASM function using a circular buffer to update samples (FIR-
circfunc.asm).

Initially, the register pointer A7 points to the last address in the sample buffer.
Consider for now the sample buffer only, since it is circular.

1. Time n.At time n,A7 points to the end of the buffer, where the newest sample
is stored. It is then postincremented to point to the beginning of the buffer, as
shown in Table 4.4. Then the section of code within the loop starts, and
calculates

After the last multiplication, h(0)x(n), A7 is postincremented to point to the
beginning address of the buffer. The resulting filter’s output at time n is then
returned to the calling function. Before the loop starts for each unit of time,
A7 always contains the address where the newest sample is to be stored.While
the newly acquired sample is passed to the ASM function through A4 at each
unit of time n, n + 1, n + 2, . . . , A4 is stored in A7, which always contains the
last address.

2. Time n + 1. At time (n + 1), the newest sample, x(n + 1), is passed to the ASM
function through A4. The STH instruction stores that sample into memory

y n h N x n N h N x n N

n nh x h x
() = -() - -()() + -() - -()() + ◊ ◊ ◊

() -() () ()+ +
1 1 2 2

1 1 0

Programming Examples Using C and ASM Code 151

FIGURE 4.35. Frequency characteristics of a 128-coefficient FIR bandpass filter centered at
1750Hz using MATLAB’s filter designer SPTOOL.

whose address is in A7, which is at the beginning of the buffer. It is then post-
incremented to point at the address containing x(n - (N - 2)), as shown in
Table 4.4. The output is now

The last multiplication always involves h(0) and the newest sample.

3. Time n + 2. At time (n + 2), the filter’s output is

Note that for each unit of time, the newly acquired sample overwrites the
oldest sample at the previous unit of time.At each time n, n + 1, . . . , the filter’s
output is calculated within the ASM function, and the result is sent to the
calling C function, where a new sample is acquired at each sample period.

The conditional branch instruction was moved up as in Example 4.13. Branching
to loop takes effect (due to five delay slots) after the ADD instruction to accumulate
in A8. One can save the content of AMR at the end of processing one buffer and
restore it before using it again with a pair of MVC instructions: MVC AMR,Bx and
MVC Bx,AMR using a B register.

Build and run this project as FIRcirc. Verify an FIR bandpass filter centered
at 1750Hz. Halt, reset, and reload the program.

Place a breakpoint within the ASM function FIRcircfunc.asm at the branch
instruction to return to the calling C function. View memory at the address delays
and verify that this buffer of size 256 is initialized to zero. Right-click on the memory

y n h N x n N h N x n N

n nh x h x
+() = -() - -()() + -() - -()() + ◊ ◊ ◊

() +() () +()+ +
2 1 3 2 4

1 1 0 2

y n h N x n N h N x n N

n nh x h x
+() = -() - -()() + -() - -()() + ◊ ◊ ◊

() () () +()+ +
1 1 2 2 3

1 0 1

152 Finite Impulse Response Filters

TABLE 4.4 Memory Organization of Coefficients and Samples Using Circular Buffer

Samples

Coefficients Time n Time n + 1 Time n + 2

h(0) A7 Æ x(n - (N - 1)) newest Æ x(n + 1) x(n + 1)

h(1) x(n - (N - 2)) A7 Æ x(n - (N - 2)) newest Æ x(n + 2)

h(2) x(n - (N - 3)) x(n - (N - 3)) A7 Æ x(n - (N - 3))

. . . .

. . . .

. . . .

h(N - 2) x(n - 1) x(n - 1) x(n - 1)

h(N - 1) newest Æ x(n) x(n) x(n)

window to toggle “Float in Main Window” (for a better display). Run the program.
Execution stops at the breakpoint. Verify that the newest sample (16 bits) is stored
at the end (higher address) of the buffer (at 0x3FE and 0x3FF). Memory location
0x400 contains the last address 0x301where the subsequent sample is to be stored.
This address is the beginning of the buffer. View the core registers and verify that
A7 contains that address.

Run again and observe the new sample stored at the beginning of the buffer (you
can animate now). Note that A7 is incremented to 0x303, 0x305, The circu-
lar method of updating the delays is more efficient. It is important that the buffer
is aligned on a boundary of a power of 2.

Example 4.15: FIR Implementation with C Program Calling ASM Function
Using Circular Buffer in External Memory (FIRcirc_ext)

This example implements an FIR filter using a circular buffer in external memory.
It expands slightly on Example 4.14. The C program FIRcirc.c in Example 4.14
is modified to obtain FIRcirc_ext.c (Figure 4.36) so that it calls the ASM func-
tion FIRcircfunc_ext.asm (in lieu of FIRcircfunc.asm).

The linker command file FIRcirc_ext.cmd used in this example is listed in

Programming Examples Using C and ASM Code 153

//FIRcirc_ext.c C program calling ASM function using circular buffer

#include “bp1750.cof” //BP at 1750 Hz coeff file

int yn = 0; //init filter’s output

interrupt void c_int11() //ISR

{

short sample_data;

sample_data = input_sample(); //newest input sample data

yn = fircircfunc_ext(sample_data,h,N); //ASM funcn passing to A4,B4,A6

output_sample(yn >> 15); //filter’s output

return; //return to calling function

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 4.36. C program calling an ASM function with a circular buffer in external memory
(FIRcirc_ext.c).

154 Finite Impulse Response Filters

;FIRcircfunc_ext.asm Function using circular buffer in external memory

;A4=newest sample, B4=coefficient address, A6=filter order

;Delay samples organized: x[n-(N-1)]...x[n]; coeff as h(0)...h[N-1]

.def _fircircfunc_ext

.def last_addr

.def delays

.sect “circdata” ;circular data section

.align 256 ;align delay buffer 256-byte boundary

delays .space 256 ;init 256-byte buffer with 0’s

last_addr .int last_addr-1

.text ;code section

_fircircfunc_ext: ;FIR function using circ addr

MV A6,A1 ;setup loop count

MPY A6,2,A6 ;since dly buffer data as byte

ZERO A8 ;init A8 for accumulation

ADD A6,B4,B4 ;since coeff buffer data as bytes

SUB B4,1,B4 ;B4=bottom coeff array h[N-1]

MVKL 0x00070040,B6 ;select A7 as pointer and BK0

MVKH 0x00070040,B6 ;BK0 for 256 bytes (128 shorts)

MVC B6,AMR ;set address mode register AMR

MVKL last_addr,A9 ;A9=bottom circ addr in external mem

MVKH last_addr,A9 ;(higher 16 bits)in external circ

LDW *A9,A7 ;A7=last circ addr

NOP 4

STH A4,*A7++ ;newest sample-->last address

loop: ;begin FIR loop

LDH *A7++,A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1

|| LDH *B4--,B2 ;B2=h[N-1-i] i=0,1,...,N-1

SUB A1,1,A1 ;decrement count

[A1] B loop ;branch to loop if count # 0

NOP 2

MPY A2,B2,A6 ;A6=x[n-(N-1)+i]*h[N-1+i]

NOP

ADD A6,A8,A8 ;accumulate in A8

STW A7,*A9 ;store last circ addr to last_addr

B B3 ;return addr to calling routine

MV A8,A4 ;result returned in A4

NOP 4

FIGURE 4.37. C-called ASM function with a circular buffer in external memory (FIR-
circfunc_ext.asm).

Figure 4.38. The section circdata designates the memory section buffer_ext,
which starts in external memory at 0x80000000.

Build this project as FIRcirc_ext. View the memory at the address delays.
This should display the external memory section. Verify the circular buffer in
external memory. Place a breakpoint as in Example 4.14, animate, and verify
that the newest sample is stored at the end of the circular buffer and that the
subsequent acquired sample is stored at the beginning of the buffer. Halt, remove
the breakpoint, and verify that the output is an FIR bandpass filter centered at
1750Hz.

REFERENCES

1. W. J. Gomes III and R. Chassaing, Filter design and implementation using the
TMS320C6x interfaced with MATLAB, Proceedings of the 2000 ASEE Annual Confer-
ence, 2000.

2. A. V. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice Hall, Upper
Saddle River, NJ, 1989.

References 155

/*FIRcirc_ext.cmd Linker file for circular buffer in external memory*/

MEMORY

{

VECS: org = 0h, len = 0x220

IRAM: org = 0x00000220, len = 0x0000FDC0

buffer_ext: org = 0x80000000, len = 0x00000110

SDRAM: org = 0x80000110, len = 0x01000000

FLASH: org = 0x90000000, len = 0x00020000

}

SECTIONS

{

circdata :> buffer_ext

vectors :> VECS

.text :> IRAM

.bss :> IRAM

.cinit :> IRAM

.stack :> IRAM

.sysmem :> SDRAM

.const :> IRAM

.switch :> IRAM

.far :> SDRAM

.cio :> SDRAM

}

FIGURE 4.38. Linker command file for a circular buffer in external memory
(FIRcirc_ext.cmd).

3. B. Gold and C. M. Rader, Digital Signal Processing of Signals, McGraw-Hill, New York,
1969.

4. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Pren-
tice Hall, Upper Saddle River, NJ, 1975.

5. T.W. Parks and J. H. McClellan, Chebychev approximation for nonrecursive digital filter
with linear phase, IEEE Transactions on Circuit Theory, Vol. CT-19, 1972, pp. 189–
194.

6. J. H. McClellan and T. W. Parks, A unified approach to the design of optimum linear
phase digital filters, IEEE Transactions on Circuit Theory, Vol. CT-20, 1973, pp. 697–701.

7. J. F. Kaiser, Nonrecursive digital filter design using the I0-sinh window function, Pro-
ceedings of the IEEE International Symposium on Circuits and Systems, 1974.

8. J. F. Kaiser, Some practical considerations in the realization of linear digital filters, Pro-
ceedings of the 3rd Allerton Conference on Circuit System Theory, Oct. 1965, pp. 621–633.

9. L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic, Norwell, MA,
1996.

10. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and
Applications, Prentice Hall, Upper Saddle River, NJ, 1996.

11. R. G. Lyons, Understanding Digital Signal Processing, Addison-Wesley, Reading, MA,
1997.

12. F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier trans-
form, Proceedings of the IEEE, Vol. 66, 1978, pp. 51–83.

13. I. F. Progri, W. R. Michalson, and R. Chassaing, Fast and efficient filter design and imple-
mentation on the TMS320C6711 digital signal processor, 2001 International Conference
on Acoustics, Speech, and Signal Processing Student Forum, May 2001.

14. B. Porat, A Course in Digital Signal Processing, Wiley, New York, 1997.

15. T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley, New York, 1987.

16. S. D. Stearns and R. A. David, Signal Processing in Fortran and C, Prentice Hall, Upper
Saddle River, NJ, 1993.

17. N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Reston Publishing,
Reston, VA, 1983.

18. S. J. Orfanidis, Introduction to Signal Processing, Prentice Hall, Upper Saddle River, NJ,
1996.

19. A. Antoniou, Digital Filters: Analysis, Design, and Applications, McGraw-Hill, New
York, 1993.

20. E. C. Ifeachor and B.W. Jervis, Digital Signal Processing:A Practical Approach,Addison-
Wesley, Reading, MA, 1993.

21. P. A. Lynn and W. Fuerst, Introductory Digital Signal Processing with Computer Appli-
cations, Wiley, New York, 1994.

22. R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Pro-
cessing, Addison-Wesley, Reading, MA, 1988.

156 Finite Impulse Response Filters

23. D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing: A System
Approach, Wiley, New York, 1988.

24. C. S. Williams, Designing Digital Filters, Prentice Hall, Upper Saddle River, NJ, 1986.

25. R. W. Hamming, Digital Filters, Prentice Hall, Upper Saddle River, NJ, 1983.

26. S. K. Mitra and J. F. Kaiser, eds., Handbook for Digital Signal Processing, Wiley, New
York, 1993.

27. S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, New
York, 1998.

28. R. Chassaing, B. Bitler, and D. W. Horning, Real-time digital filters in C, Proceedings of
the 1991 ASEE Annual Conference, June 1991.

29. R. Chassaing and P. Martin, Digital filtering with the floating-point TMS320C30 digital
signal processor, Proceedings of the 21st Annual Pittsburgh Conference on Modeling and
Simulation, May 1990.

30. S. D. Stearns and R. A. David, Signal Processing in Fortran and C, Prentice Hall, Upper
Saddle River, NJ, 1993.

31. R.A. Roberts and C.T. Mullis, Digital Signal Processing,Addison-Wesley, Reading, MA,
1987.

32. E. P. Cunningham, Digital Filtering: An Introduction, Houghton Mifflin, Boston,
1992.

33. N. J. Loy, An Engineer’s Guide to FIR Digital Filters, Prentice Hall, Upper Saddle River,
NJ, 1988.

34. H. Nuttall, Some windows with very good sidelobe behavior, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 1, Feb. 1981.

35. L. C. Ludemen, Fundamentals of Digital Signal Processing, Harper & Row, New York,
1986.

36. M. Bellanger, Digital Processing of Signals: Theory and Practice, Wiley, New York, 1989.

37. M. G. Bellanger, Digital Filters and Signal Analysis, Prentice Hall, Upper Saddle River,
NJ, 1986.

38. F. J. Taylor, Principles of Signals and Systems, McGraw-Hill, New York, 1994.

39. F. J. Taylor, Digital Filter Design Handbook, Marcel Dekker, New York, 1983.

40. W. D. Stanley, G. R. Dougherty, and R. Dougherty, Digital Signal Processing, Reston
Publishing, Reston, VA, 1984.

41. R. Kuc, Introduction to Digital Signal Processing, McGraw-Hill, New York, 1988.

42. H. Baher, Analog and Digital Signal Processing, Wiley, New York, 1990.

43. J. R. Johnson, Introduction to Digital Signal Processing, Prentice Hall, Upper Saddle
River, NJ, 1989.

44. S. Haykin, Modern Filters, Macmillan, New York, 1989.

45. T. Young, Linear Systems and Digital Signal Processing, Prentice Hall, Upper Saddle
River, NJ, 1985.

References 157

46. A. Ambardar, Analog and Digital Signal Processing, PWS, MA, 1995.

47. A. W. M. van den Enden and N. A. M. Verhoeckx, Discrete-Time Signal Processing,
Prentice-Hall International, Hemel Hempstead, Hertfordshire, England, 1989.

48. MATLAB, MathWorks, Natick, MA.

49. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

158 Finite Impulse Response Filters

5
Infinite Impulse Response Filters

159

• Infinite impulse response filter structures: direct form I, direct form II, cascade,
and parallel

• Bilinear transformation for filter design

• Sinusoidal waveform generation using difference equation

• Filter design and utility packages

• Programming examples using TMS320C6x and C code

The finite impulse response (FIR) filter discussed in Chapter 4 has no analog coun-
terpart. In this chapter we discuss the infinite impulse response (IIR) filter that
makes use of the vast knowledge already acquired with analog filters. The design
procedure involves the conversion of an analog filter to an equivalent discrete filter
using the bilinear transformation (BLT) technique.As such, the BLT procedure con-
verts a transfer function of an analog filter in the s-domain into an equivalent
discrete-time transfer function in the z-domain.

5.1 INTRODUCTION

Consider a general input–output equation of the form

(5.1)

(5.2)

= () + -() + -() + ◊ ◊ ◊ + -()
- -() - -() - ◊ ◊ ◊ - -()
a x n a x n a x n a x n N

b y n b y n b y n M
N

M

0 1 2

1 2

1 2

1 2

y n a x n k b y n jk j
j

M

k

N

() = -() - -()
==

ÂÂ
10

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

This recursive type of equation represents an infinite impulse response (IIR) filter.
The output depends on the inputs as well as past outputs (with feedback). The
output y(n), at time n, depends not only on the current input x(n), at time n, and
on past inputs x(n - 1), x(n - 2), . . . , x(n - N), but also on past outputs y(n - 1),
y(n - 2), . . . , y(n - M).

If we assume all initial conditions to be zero in (5.2), the z-transform of (5.2)
becomes

(5.3)

Let N = M in (5.3); then the transfer function H(z) is

(5.4)

where N(z) and D(z) represent the numerator and denominator polynomial, respec-
tively. Multiplying and dividing by zN, H(z) becomes

(5.5)

which is a transfer function with N zeros and N poles. If all the coefficients bj in
(5.5) are zero, this transfer function reduces to the transfer function with N poles
at the origin in the z-plane representing the FIR filter discussed in Chapter 4. For
a system to be stable, all the poles must reside inside the unit circle, as discussed in
Chapter 4. Hence, for an IIR filter to be stable, the magnitude of each of its poles
must be less than 1, or:

1. If |Pi| < 1, then h(n) Æ 0, as n Æ •, yielding a stable system.

2. If |Pi| > 1, then h(n) Æ •, as n Æ •, yielding an unstable system.

If |Pi| = 1, the system is marginally stable, yielding an oscillatory response.
Furthermore, multiple-order poles on the unit circle yield an unstable system. Note
again that with all the coefficients bj = 0, the system reduces to a nonrecursive and
stable FIR filter.

5.2 IIR FILTER STRUCTURES

There are several structures that can represent an IIR filter, as discussed next.

5.2.1 Direct Form I Structure

With the direct form I structure shown in Figure 5.1, the filter in (5.2) can be real-
ized. There is an implied summer (not shown) in Figure 5.1. For an Nth-order filter,

H z
a z a z a z a
z b z b z b

C
z z
z p

N N N
N

N N N
N

i

ii

N

() =
+ + + ◊ ◊ ◊ +

+ + + ◊ ◊ ◊ +
=

-
-

- -

- -
=

’0 1
1

2
2

1
1

2
2

1

H z

Y z
X z

a a z a z a z
b z b z b z

N z
D z

N
N

N
N

() =
()
() =

+ + + ◊ ◊ ◊ +
+ + + ◊ ◊ ◊ +

=
()
()

- - -

- - -
0 1

1
2

2

1
1

2
21

Y z a X z a z X z a z X z a z X z

b z Y z b z Y z b z Y z
N

N

M
M

() = () + () + () + ◊ ◊ ◊ + ()
- () - () - ◊ ◊ ◊ - ()

- - -

- - -

0 1
1

2
2

1
1

2
2

160 Infinite Impulse Response Filters

this structure has 2N delay elements, represented by z-1. For example, a second-
order filter with N = 2 will have four delay elements.

5.2.2 Direct Form II Structure

The direct form II structure shown in Figure 5.2 is one of the most commonly used
structures. It requires half as many delay elements as the direct form 1. For example,
a second-order filter requires two delay elements z-1, as opposed to four with the
direct form I. To show that (5.2) can be realized with the direct form II, let a delay
variable U(z) be defined as

(5.6)

where D(z) is the denominator polynomial of the transfer function in (5.4). From
(5.4) and (5.6), Y(z) becomes

(5.7)

where N(z) is the numerator polynomial of the transfer function in (5.4). From (5.6)

(5.8) X z U z D z U z b z b z b zN
N() = () () = () + + + ◊ ◊ ◊ +()- - -1 1

1
2

2

Y z
N z X z

D z
N z U z

U z a a z a z a zN
N

() =
() ()

() = () ()

= () + + + ◊ ◊ ◊ +()- - -
0 1

1
2

2

U z

X z
D z

() =
()
()

IIR Filter Structures 161

FIGURE 5.1. Direct form I IIR filter structure.

Taking the inverse z-transform of (5.8) yields

(5.9)

Solving for u(n) in (5.9) gives us

(5.10)

Taking the inverse z-transform of (5.7) yields

(5.11)

The direct form II structure can be represented by (5.10) and (5.11). The delay vari-
able u(n) at the middle top of Figure 5.2 satisfies (5.10), and the output y(n) in Figure
5.2 satisfies (5.11).

Equations (5.10) and (5.11) are used to program an IIR filter. Initially, u(n - 1),
u(n - 2), . . . are set to zero. At time n, a new sample x(n) is acquired, and (5.10) is
used to solve for u(n). The filter’s output at time n then becomes

At time n + 1, a newer sample x(n + 1) is acquired and the delay variables in (5.10)
are updated, or

 y n a u n() = () +0 0

 y n a u n a u n a u n a u n NN() = () + -() + -() + ◊ ◊ ◊ + -()0 1 21 2

u n x n b u n b u n b u n NN() = () - -() - -() - ◊ ◊ ◊ - -()1 21 2

 x n u n b u n b u n b u n NN() = () + -() + -() + ◊ ◊ ◊ + -()1 21 2

162 Infinite Impulse Response Filters

FIGURE 5.2. Direct form II IIR filter structure.

where u(n - 1) is updated to u(n). From (5.11), the output at time n + 1 is

and so on, for time n + 2, n + 3, . . . , when for each specific time, a new input sample
is acquired and the delay variables and then the output are calculated using (5.10),
and (5.11), respectively.

5.2.3 Direct Form II Transpose

The direct form II transpose structure is a modified version of the direct form II
and requires the same number of delay elements. The following steps yield a trans-
pose structure from a direct form II version:

1. Reverse the directions of all the branches.

2. Reverse the roles of the input and output (input ´ output).

3. Redraw the structure such that the input node is on the left and the output
node is on the right (as is typically done).

The direct form II transpose structure is shown in Figure 5.3. To verify this, let
u0(n) and u1(n) be as shown in Figure 5.3. Then, from the transpose structure,

(5.12)

(5.13)

(5.14)

Equation (5.13) becomes, using (5.12) to find u0(n - 1),

(5.15) u n a x n b y n a x n b y n1 1 1 2 21 1() = () - () + -() - -()[]

 y n a x n u n() = () + -()0 1 1

 u n a x n b y n u n1 1 1 0 1() = () - () + -()

 u n a x n b y n0 2 2() = () - ()

 y n a u n a u n+() = +() + () +1 1 00 1

 u n x n b u n+() = +() - () -1 1 01

IIR Filter Structures 163

FIGURE 5.3. Direct form II transpose IIR filter structure.

Equation (5.14) becomes, using (5.15) to solve for u1(n - 1),

(5.16)

which is the same general input–output equation (5.2) for a second-order system.
This transposed structure implements first the zeros and then the poles, whereas the
direct form II structure implements the poles first.

5.2.4 Cascade Structure

The transfer function in (5.5) can be factored as

(5.17)

in terms of first- or second-order transfer functions. The cascade (or series) struc-
ture is shown in Figure 5.4. An overall transfer function can be represented with
cascaded transfer functions. For each section, the direct form II structure or its trans-
pose version can be used. Figure 5.5 shows a fourth-order IIR structure in terms of
two direct form II second-order sections in cascade. The transfer function H(z), in
terms of cascaded second-order transfer functions, can be written as

(5.18)

H z

a a z a z
b z b z

i i i

i ii

N

() =
+ +

+ +

- -

- -
=

’ 0 1
1

2
2

1
1

2
2

1

2

1

 H z CH z H z H zr() = () () ◊ ◊ ◊ ()1 2

 y n a x n a x n b y n a x n b y n() = () + -() - -() + -() - -()[]0 1 1 2 21 1 2 2

164 Infinite Impulse Response Filters

FIGURE 5.4. Cascade form IIR filter structure.

FIGURE 5.5. Fourth-order IIR filter with two direct form II sections in cascade.

where the constant C in (5.17) is incorporated into the coefficients, and each section
is represented by i. For example, N = 4 for a fourth-order transfer function, and
(5.18) becomes

(5.19)

as can be verified in Figure 5.5. From a mathematical standpoint, proper ordering
of the numerator and denominator factors does not affect the output result. How-
ever, from a practical standpoint, proper ordering of each second-order section can
minimize quantization noise [1–5]. Note that the output of the first section, y1(n),
becomes the input to the second section. With an intermediate output result stored
in one of the registers, a premature truncation of the intermediate output becomes
negligible. A programming example will illustrate the implementation of an IIR
filter cascaded into second-order direct form II sections.

5.2.5 Parallel Form Structure

The transfer function in (5.5) can be represented as

(5.20)

which can be obtained using a partial fraction expansion (PFE) on (5.5). This par-
allel form structure is shown in Figure 5.6. Each of the transfer functions H1(z),

 H z C H z H z H zr() = + () + () + ◊ ◊ ◊ + ()1 2

H z

a a z a z a a z a z
b z b z b z b z

() =
+ +() + +()
+ +() + +()

- - - -

- - - -
01 11

1
21

2
02 12

1
22

2

11
1

21
2

12
1

22
21 1

IIR Filter Structures 165

FIGURE 5.6. Parallel form IIR filter structure.

H2(z), . . . can be either first- or second-order functions. As with the cascade struc-
ture, the parallel form can be efficiently represented in terms of second-order direct
form II structure sections. H(z) can be expressed as

(5.21)

For example, for a fourth-order transfer function, H(z) in (5.21) becomes

(5.22)

This fourth-order parallel structure is represented in terms of two direct form II
sections as shown in Figure 5.7. From Figure 5.7, the output y(n) can be expressed
in terms of the output of each section, or

H z C

a a z a z
b z b z

a a z a z
b z b z

() = +
+ +

+ +
+

+ +
+ +

- -

- -

- -

- -
01 11

1
21

2

11
1

21
2

02 12
1

22
2

12
1

22
21 1

H z C

a a z a z
b z b z

i i i

i ii

N

() = +
+ +

+ +

- -

- -
=
Â 0 1

1
2

2

1
1

2
2

1

2

1

166 Infinite Impulse Response Filters

FIGURE 5.7. Fourth-order IIR filter with two direct form II sections in parallel.

(5.23)

There are other structures, such as the lattice structure, which are useful for appli-
cations in speech and adaptive filtering. Although such a structure is not as com-
putationally efficient as the direct form II or cascade structures, requiring more
multiplication operations, it is less sensitive to quantization effects [6–8]. The quan-
tization error associated with the coefficients of an IIR filter depends on the amount
of shift in the position of its transfer function’s poles and zeros in the complex plane.
This implies that the shift in the position of a particular pole depends on the posi-
tion of all the other poles. To minimize this dependency of poles, an Nth-order IIR
filter is typically implemented as cascaded second-order sections.

5.3 BILINEAR TRANSFORMATION

The bilinear transformation (BLT) is the most commonly used technique for trans-
forming an analog filter into a discrete filter. It provides a one-to-one mapping from
the analog s-plane to the digital z-plane, using

(5.24)

The constant K in (5.24) is commonly chosen as K = 2/T, where T represents a sam-
pling variable. Other values for K can be selected, since it has no consequence in
the design procedure. We choose T = 2 or K = 1 for convenience, to illustrate the
bilinear transformation procedure. Solving for z in (5.24) gives us

(5.25)

This transformation allows the following:

1. The left region in the s-plane, corresponding to s < 0, maps inside the unit
circle in the z-plane.

2. The right region in the s-plane, corresponding to s > 0, maps outside the unit
circle in the z-plane.

3. The imaginary jw axis in the s-plane maps on the unit circle in the z-plane.

Let wA and wD represent the analog and digital frequencies, respectively. With
s = jwA and z = ejwDT, (5.24) becomes

z

s
s

=
+
-

1
1

s K

z
z

=
-
+

1
1

y n Cx n y ni
i

N

() = () + ()
=
Â

1

2

Bilinear Transformation 167

(5.26)

Using Euler’s expressions for sine and cosine in terms of complex exponential func-
tions, wA from (5.26) becomes

(5.27)

which relates the analog frequency wA to the digital frequency wD. This relationship
is plotted in Figure 5.8 for positive values of wA. The region corresponding to wA

between 0 and 1 is mapped into the region corresponding to wD between 0 and ws/4
in a fairly linear fashion, where ws is the sampling frequency in radians. However,
the entire region of wA > 1 is quite nonlinear, mapping into the region correspond-
ing to wD between ws/4 and ws/2. This compression within this region is referred to
as frequency warping. As a result, prewarping is done to compensate for this fre-
quency warping. The frequencies wA and wD are such that

(5.28)

5.3.1 Bilinear Transformation Design Procedure

The bilinear transformation design procedure makes use of a known analog trans-
fer function for the design of a discrete-time filter. It can be applied using well-
documented analog filter functions (Butterworth, Chebychev, etc.). Several types of
filter design are available with MATLAB, described in Appendix D. Chebyshev type
I and II provide equiripple responses in the passbands and stopbands, respectively.
For a given specification, these filters are of lower order than Butterworth-type
filters, which have monotonic responses in both passbands and stopbands. An
elliptic design has equiripple in both bands and achieves a lower order than a

 H s H zs j z eA j DT() = ()= =w w

w

w
A

DT
= tan

2

j

e

e

e e e

e e e
A

j T

j T

j T j T j T

j T j T j T

D

D

D D D

D D D
w

w

w

w w w

w w w=
-
+

=
-()
+()

-

-

1
1

2 2 2

2 2 2

168 Infinite Impulse Response Filters

FIGURE 5.8. Relationship between analog and digital frequencies.

Chebyshev-type design; however, it is more difficult to design, with a highly non-
linear phase response in the passbands. Although a Butterworth design requires a
higher order, it has a linear phase in the passbands.

Perform the following steps in order to use the BLT technique and find H(z).

1. Obtain a known analog transfer function H(s).

2. Prewarp the desired digital frequency wD to obtain the analog frequency wA

in (5.27).

3. Scale the frequency of the analog transfer function H(s) selected, using

(5.29)

4. Obtain H(z) using the BLT equation (5.24), or

(5.30)

In the case of bandpass and bandstop filters with lower and upper cutoff frequen-
cies wD1 and wD2, the two analog frequencies wA1 and wA2 need to be solved. The
exercises in Appendix E further illustrate the BLT procedure.

5.4 PROGRAMMING EXAMPLES USING C CODE

Five examples are introduced to illustrate implementation of an IIR filter using the
cascaded direct form II structure and the generation of a tone using a difference
equation.

Example 5.1: IIR Filter Implementation Using Second-Order Stages in
Cascade (IIR)

Figure 5.9 shows a listing of the program IIR.c that implements a generic IIR filter
using cascaded second-order stages (sections). The program uses the following two
equations associated with each stage:

u(n) = x(n) - b1u(n - 1) - b2u(n - 2)
y(n) = a0 u(n) + a1u(n - 1) + a2u(n - 2)

The loop section of code within the program is processed five times (the number of
stages) for each value of n, or sample period. For the first stage, x(n) is the newly
acquired input sample. However, for the other stages, the input x(n) is the output
y(n) of the preceding stage.

The coefficients b[i][0] and b[i][1] correspond to b1 and b2, respectively;
where i represents each stage.The delays dly[i][0] and dly[i][1] correspond
to u(n - 1) and u(n - 2), respectively.

 H z H s A s z z() = () = -() +()w 1 1

 H s s s A() = w

Programming Examples Using C Code 169

IIR Bandstop
The coefficient file bs1750.cof (Figure 5.10) is obtained from Appendix D. It rep-
resents a tenth-order IIR bandstop filter designed with MATLAB’s filter designer
SPTOOL, as shown in Figure D.2 in Appendix D. Note that MATLAB’s filter
designer shows the order as 5, which represents the number of second-order stages.
The coefficient file contains the numerator coefficients, a’s (three per stage), and
the denominator coefficients, b’s (two per stage). The a’s and b’s used in this book
correspond to the b’s and a’s used in MATLAB.

Build and run this project as IIR. Verify that the output is an IIR bandstop filter
centered at 1750Hz. Figure 5.11 shows the output frequency response of this IIR
bandstop filter obtained with an HP analyzer (with noise as the input).

IIR Bandpass and Lowpass

1. Rebuild this project using the coefficient file bp2000.cof (on the accom-
panying disk), which represents a 36th-order (18 stages) Chebyshev type 2 IIR

170 Infinite Impulse Response Filters

//IIR.c IIR filter using cascaded Direct Form II

//Coefficients a’s and b’s correspond to b’s and a’s, from MATLAB

#include “bs1750.cof” //BS @ 1750Hz coefficient file

short dly[stages][2] = {0}; //delay samples per stage

interrupt void c_int11() //ISR

{

int i, input;

int un, yn;

input = input_sample(); //input to 1st stage

for (i = 0; i < stages; i++) //repeat for each stage

{

un=input-((b[i][0]*dly[i][0])>>15) - ((b[i][1]*dly[i][1])>>15);

yn=((a[i][0]*un)>>15)+((a[i][1]*dly[i][0])>>15)+((a[i][2]*dly[i][1])>>15);

dly[i][1] = dly[i][0]; //update delays

dly[i][0] = un; //update delays

input = yn; //intermediate output->in to next stage

}

output_sample(yn); //output final result for time n

return; //return from ISR

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 5.9. IIR filter program using second-order sections in cascade (IIR.c).

bandpass filter centered at 2kHz. This filter was designed with MATLAB, as
shown in Figure 5.12. Verify that the filter’s output is an IIR bandpass filter
centered at 2kHz. Figure 5.13 shows the output frequency response of this
36th-order IIR bandpass filter, obtained with an HP analyzer.

2. Rebuild this project using the coefficient file lp2000.cof (on the disk),
which represents an eighth-order IIR lowpass filter with a 2-kHz cutoff

Programming Examples Using C Code 171

//bs1750.cof IIR bandstop coefficient file, centered at 1,750Hz

#define stages 5 //number of 2nd-order stages

int a[stages][3]= { //numerator coefficients

{27940, -10910, 27940}, //a10, a11, a12 for 1st stage

{32768, -11841, 32768}, //a20, a21, a22 for 2nd stage

{32768, -13744, 32768}, //a30, a31, a32 for 3rd stage

{32768, -11338, 32768}, //a40, a41, a42 for 4th stage

{32768, -14239, 32768} };

int b[stages][2]= { //*denominator coefficients

{-11417, 25710}, //b11, b12 for 1st stage

{-9204, 31581}, //b21, b22 for 2nd stage

{-15860, 31605}, //b31, b32 for 3rd stage

{-10221, 32581}, //b41, b42 for 4th stage

{-15258, 32584} }; //b51, b52 for 5th stage

FIGURE 5.10. Coefficient file for a tenth-order IIR bandstop filter designed with MATLAB
in Appendix D (bs1750.cof).

FIGURE 5.11. Output frequency response of a tenth-order IIR bandstop filter centered at
1750Hz obtained with an HP analyzer.

172 Infinite Impulse Response Filters

FIGURE 5.12. MATLAB’s filter designer (SPTOOL) displaying frequency characteristics
of a 36th-order IIR bandpass filter.

FIGURE 5.13. Output frequency response of a 36th-order IIR bandpass filter centered at
2000Hz obtained with an HP analyzer.

frequency (also designed with MATLAB). Verify the output of this IIR
lowpass filter.

Example 5.2: Generation of Two Tones Using Two Second-Order
Difference Equations (two_tones)

This example generates and adds two tones using a difference equation scheme.The
output is also stored in memory and plotted within CCS. The difference equation
to generate a sine wave is

y(n) = Ay(n - 1) - y(n - 2)

where

A = 2cos(wT)
y(-1) = -sin(wT)
y(-2) = -sin(2wT)

with two initial conditions, y(-1) and y(-2), w = 2pf, and T = 1/Fs = 1/(8kHz) =
0.125ms, the sampling period. The z-transform of y(n) is

Y(z) = A{z-1Y(z) + y(-1)} - {z-2Y(z) + z-1y(-1) + y(-2)}

which can be written as

Y(z){1 - Az-1 + z-2} = Ay(-1) - z-1 y(-1) - y(-2)
= -2cos(wT)sin(wT) + z-1sin(wT) + sin(2wT)
= z-1 sin(wT)

Solving for Y(z) yields

Y(z) = z sin(wT)/(z2 - Az + 1)

The inverse z-transform of Y(z) is

y(n) = ZT -1 {Y(z)} = sin(nwT)

f = 1.5kHz

A = 2cos(wT) = 0.765 Æ A*214 = 12,540
y(-1) = -sin(wT) = -0.924 Æ y(-1)*214 = -15,137
y(-2) = -sin(2wT) = -0.707 Æ y(-2)*214 = -11,585

Programming Examples Using C Code 173

f = 2kHz

A = 0
y(-1) = -1 Æ y(-1)*214 = -16384
y(-2) = 0

The coefficient of the second-order difference equation A, along with the two initial
conditions, determine the frequency generated. They are scaled for a fixed-point
implementation. Using the difference equation

y(n) = Ay(n - 1) - y(n - 2)

the output at time n = 0 is

y(0) = Ay(-1) - y(-2) = -2cos(wT)sin(wT) + sin(2wT) = 0

Figure 5.14 shows a listing of the program two_tones.c that implements a tone
generation using a difference equation. The array y1[3] contains the values for
y1(0), y1(-1), and y1(-2) to generate a 1.5-kHz tone, and the array y2[3] contains
the values for y2(0), y2(-1), and y2(-2) to generate a 2-kHz tone. The function
sinegen uses the second-order difference equation to generate each tone,
then adds the two tones. Scaling by 214 produces better results for a fixed-point
implementation.

Build and run this project as two_tones. Verify that the output is the sum of
the 1.5- and 2-kHz tones. The output is also stored in a memory buffer. Use CCS to
plot the FFT magnitude of the two sinusoids, as shown in Figure 5.15. The starting
address of the buffer is sinegen_buffer (see also Example 1.2).

The technique above can be used to generate dual-tone multifrequency: for
example, generating and adding the two tones with frequencies of 697 and 1209Hz,
which correspond to the key “3” in a phone.

Example 5.3: Sine Generation Using a Difference Equation (sinegenDE)

This example also generates a sinusoidal tone using an alternative difference equa-
tion. See also Example 5.2, which generates/adds two tones. Consider the second-
order difference equation obtained in Chapter 4:

y(n) = Ay(n - 1) + By(n - 2) + Cx(n - 1)

where B = -1. Apply an impulse at n = 1, so that x(n - 1) = x(0) = 1, and zero
otherwise. For n = 1,

y(1) = Ay(0) + By(-1) + Cx(0) = C

174 Infinite Impulse Response Filters

Programming Examples Using C Code 175

//two_tones.c Generates/adds two tones using difference equations

short sinegen(void); //for generating tone

short output; //for output

short sinegen_buffer[256]; //buffer for output data

const short bufferlength = 256; //buffer size for plot with CCS

short i = 0; //buffer count index

short y1[3] = {0,-15137,-11585}; //y1(0),y1(-1),y1(-2) for 1.5kHz

const short A1 = 12540; //A1 = 2coswT scaled by 2^14

short y2[3] = {0,-16384,0}; //y2(0),y2(-1),y2(-2) for 2kHz

const short A2 = 0; //A2 = 2coswT scaled by 2^14

interrupt void c_int11() //ISR

{

output = sinegen(); //out from tone generation function

sinegen_buffer[i] = output; //output into buffer

output_sample(output); //output result

i++; //increment buffer count

if (i == bufferlength) i = 0; //if buffer count=size of buffer

return; //return to main

}

short sinegen() //function to generate tone

{

y1[0] =((((int)y1[1]*(int)A1))>>14)-y1[2]; //y1(n)=A1*y1(n-1)-y1(n-2)

y1[2] = y1[1]; //update y1(n-2)

y1[1] = y1[0]; //update y1(n-1)

y2[0] =((((int)y2[1]*(int)A2))>>14)-y2[2]; //y2(n)=A2*y2(n-1)-y2(n-2)

y2[2] = y2[1]; //update y2(n-2)

y2[1] = y2[0]; //update y2(n-1)

return (y1[0] + y2[0]); //add the two tones

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 5.14. Program to generate and add two tones (two_tones.c).

with y(0) = 0 and y(-1) = 0. For n � 2,

y(n) = Ay(n - 1) - y(n - 2).

The coefficients A = 2cos(wT) and C = sin(wT) are calculated for a given sampling
period T = 1/Fs and a desired frequency w.

f = 1.5kHz

A = 2cos(wT) = 0.765 Æ A*214 = 12,540
y(1) = C = 0.924 Æ C*214 = 15,137

y(2) = Ay(1) = 0.707 Æ y(2)*214 = 11,585

f = 2kHz

A = 2cos(wT) = 0
y(1) = C = sin(wT) = 1 Æ C*214 = 16,384
y(2) = Ay(1) - y(0) = AC = 0

Figure 5.16 shows a listing of the program sinegenDE.c, which generates a sine
wave using this alternative difference equation. This difference equation is calcu-
lated within the interrupt service routine (ISR) using an alternative scheme to the

176 Infinite Impulse Response Filters

FIGURE 5.15. FFT Magnitude plot of output with two tones using CCS.

implementation in Example 5.2. The coefficient A = 0, and the array y[3], which
contains y(0), y(1), and y(2), generate a 2-kHz sine wave.

Build and run this project as sinegenDE. Verify that the output is a 2-kHz tone.
Change the array to y[3] = {0,15137,11585} and A = 12,540. Rebuild/run
the program and verify a 1.5-kHz tone generated at the output. A 3-kHz tone can
be generated using A = -23,170 and y[3] = {0,11585,0}.

Example 5.4: Generation of a Swept Sinusoid Using a Difference
Equation (sweepDE)

Figure 5.17 shows a listing of the program sweepDE.c, which generates a sinusoidal
signal, sweeping in frequency. The program implements the difference equation

y(n) = Ay(n - 1) - y(n - 2)

where A = 2cos(wT) and the two initial conditions are y(-1) = sin(wT) and
y(-2) = -sin(2wT). Example 5.2 illustrates the generation of a sine wave using this
difference equation.

An initial signal frequency is set in the program at 500Hz. The signal’s frequency
is incremented by 10Hz until a set maximum frequency of 3500Hz is reached. The

Programming Examples Using C Code 177

//SinegenDE.c Generates a sinewave using a difference equation

short y[3] = {0,16384,0}; //y(1) = sinwT

const short A = 0; //A = 2*coswT * 2^14

int n = 2;

interrupt void c_int11() //ISR

{

y[n] = (((int)A*(int)y[n-1])>>14) - y[n-2]; //y(n) = Ay(n-1)-y(n-2)

y[n-2] = y[n-1]; //update y(n-2)

y[n-1] = y[n]; //update y(n-1)

output_sample(y[n]); //output result

return; //return to main

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE 5.16. Program to generate a sine wave using a difference equation (sine-
genDE.c).

//SweepDE.c Generates a sweeping sinusoid using a difference equation

#include <math.h>
#define two_pi (2*3.1415926) //2*pi
#define two_14 16384 //2^14
#define T 0.000125 //sample period = 1/Fs
#define MIN_FREQ 500 //initial frequency of sweep
#define MAX_FREQ 3500 //max frequency of sweep
#define STEP_FREQ 10 //step frequency
#define SWEEP_PERIOD 200 //lasting time at one frequency
short y0 = 0; //initial output
short y_1 = -6270; //y(-1)=-sinwT(scaled) f=500Hz
short y_2 = -11585; //y(-2_=-sin2wT(scaled) f=500Hz
short A = 30274; //A = 2*coswT scaled by 2^14
short freq = MIN_FREQ; //current frequency
short sweep_count = 0; //counter for lasting time
void coeff_gen(short); //function prototype for coeff

interrupt void c_int11() //ISR
{
sweep_count++; //incr lasting time at one freq
if(sweep_count >= SWEEP_PERIOD) //time reaches max duration
{
if(freq >= MAX_FREQ) //if the current frequency is max

freq = MIN_FREQ; //reinit to initial frequency
else

freq = freq + STEP_FREQ; //incr to next higher frequency

coeff_gen(freq); //function for new set of coeff
sweep_count = 0; //reset counter for lasting time
}
y0=(((int)A * (int)y_1)>>14) - y_2; //y(n) = A*y(n-1) - y(n-2)
y_2 = y_1; //update y(n-2)
y_1 = y0; //update y(n-1)
output_sample(y0); //output result
}

void coeff_gen(short freq) //calculate new set of coeff
{
float w; //angular frequency

w = two_pi*freq; //w = 2*pi*f
A = 2*cos(w*T)*two_14; //A = 2*coswT * (2^14)
y_1 = -sin(w*T)*two_14; //y_1 = -sinwT *(2^14)
y_2 = -sin(2*T*w)*two_14; //y_2 = -sin2wT * (2^14)
return;
}

void main()
{
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop
}

FIGURE 5.17. Program to generate a sweeping sinusoid using a difference equation
(sweepDE.c).

178

duration of the sinusoidal signal at each frequency generated is set with 200 and can
be reduced for a faster sweep.

With an initial frequency of 500Hz, the constants A = 30,274, y(0) = 0, y(-1)
= -6270 and y(-2) = -11,585 (see Example 5.2). For each frequency (510, 520, . . .)
the function coeff_gen is called to calculate a new set of constants A, y(n - 1),
y(n - 2) to implement the difference equation. A slider can be used to control the
swept signal, such as the step or incremental frequency and the duration of the sinu-
soidal signal at each incremental frequency.

Build and run this project as sweepDE. Verify that the output is a swept sinu-
soidal signal.

Example 5.5: IIR Inverse Filter (IIRinverse)

This example illustrates an IIR inverse filter.With noise as input, a forward IIR filter
is calculated. The output of the forward filter becomes the input to an inverse IIR
filter. The output of the inverse filter is the original input noise sequence. See
Example 4.10, which implements an inverse FIR filter, and Example 5.1, which
implements an IIR filter.

The transfer function of an IIR filter is

The output sequence of the IIR filter is

where x(n - i) represents the input sequence. The input sequence x(n) can then be
recovered using x̂(n) as an estimate of x(n), or

The program IIRinverse.c (Figure 5.18) implements the inverse IIR filter.
Build this project as IIRinverse. Use noise as input to the system (from Gold-

wave, noise generator, etc.). Run the program and verify that the resulting output
is the input noise (with the slider in the default position 1).

ˆ

ˆ

x n

y n b y n j a x n i

a

j
j

M

i
i

N

() =
() + -() - -()

=

-

=

-

Â Â
1

1

1

1

0

y n a x n i b y n ji
i

N

j
j

M

() = -() - -()
=

-

=

-

Â Â
0

1

1

1

H z
a z

b z

i
i

i

N

j
j

j

M
() =

-

=

-

-

=

-

Â

Â
0

1

1

1

Programming Examples Using C Code 179

//IIRinverse.C Inverse IIR Filter

#include “bp2000.cof” //BP @ 2kHz coefficient file
short dly[stages][2] = {0}; //delay samples per stage
short out_type = 1; //type of output for slider
short a0, a1, a2, b1, b2; //coefficients

interrupt void c_int11() //ISR
{
short i, input, input1;
int un1, yn1, un2, input2, yn2;

input1 = input_sample(); //input to 1st stage
input = input1; //original input
for(i = 0; i < stages; i++) //repeat for each stage
{
a1 = ((a[i][1]*dly[i][0])>>15); //a1*u(n-1)
a2 = ((a[i][2]*dly[i][1])>>15); //a2*u(n-2)
b1 = ((b[i][0]*dly[i][0])>>15); //b1*u(n-1)
b2 = ((b[i][1]*dly[i][1])>>15); //b2*u(n-2)
un1 = input1 - b1 - b2;
a0=((a[i][0]*un1)>>15);

yn1 = a0 + a1 + a2; //stage output
input1 = yn1; //intermediate out->in next stage
dly[i][1] = dly[i][0]; //update delays u(n-2) = u(n-1)
dly[i][0] = un1; //update delays u(n-1) = u(n)
}
input2 = yn1; //out forward=in reverse filter

for(i = stages; i > 0; i--) //for inverse IIR filter
{
a1 = ((a[i][1]*dly[i][0])>>15); //a1u(n-1)
a2 = ((a[i][2]*dly[i][1])>>15); //a2u(n-2)
b1 = ((b[i][0]*dly[i][0])>>15); //b1u(n-1)
b2 = ((b[i][1]*dly[i][1])>>15); //b2u(n-2)
un2 = input2 - a1 - a2;
yn2 = (un2 + b1 + b2);
input2 = (yn2<<15)/a[i][0]; //intermediate out->in next stage
}
if(out_type == 1) //if slider in position 1

output_sample(input); //original input signal
if(out_type == 2)

output_sample(yn1); //output of forward filter
if(out_type == 3)

output_sample(yn2 >>6); //output of inverse filter
return; //return from ISR
}

void main()
{
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop
}

FIGURE 5.18. Program to implement an inverse IIR filter (IIRinverse.c).

180

Change the slider to position 2 and verify that the output of the forward IIR filter
is an IIR bandpass filter centered at 2kHz. The coefficient file bp2000.cof was
used in Example 5.1 to implement an IIR filter. With the slider in position 3, verify
that the output of the inverse IIR filter is the original input noise.

In this example, the forward filter’s characteristics are known. This example can
be extended so that the filter’s characteristics are unknown. In such a case, the
unknown forward filter’s coefficients, a’s and b’s, can be estimated using Prony’s
method [9].

REFERENCES

1. L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic, Norwell, MA,
1996.

2. L. B. Jackson, Roundoff noise analysis for fixed-point digital filters realized in cascade
or parallel form, IEEE Transactions on Audio and Electroacoustics, Vol. AU-18, June
1970, pp. 107–122.

3. L. B. Jackson, An analysis of limit cycles due to multiplicative rounding in recursive
digital filters, Proceedings of the 7th Allerton Conference on Circuit and System Theory,
1969, pp. 69–78.

4. L. B. Lawrence and K. V. Mirna, A new and interesting class of limit cycles in recursive
digital filters, Proceedings of the IEEE International Symposium on Circuit and Systems,
Apr. 1977, pp. 191–194.

5. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

6. A. H. Gray and J. D. Markel, Digital lattice and ladder filter synthesis, IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, Vol. ASSP-21, 1973, pp. 491–500.

7. A. H. Gray and J. D. Markel, A normalized digital filter structure, IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol. ASSP-23, 1975, pp. 268–277.

8. A. V. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice Hall, Upper
Saddle River, NJ, 1989.

9. I. Progri, W. R. Michalson, and R. Chassaing, Fast and efficient filter design and imple-
mentation on the TMS320C6711 digital signal processor, International Conference on
Acoustics Speech and Signal Processing (ICASSP), 2001.

10. N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Reston Publishing,
Reston, VA, 1983.

11. D. W. Horning and R. Chassaing, IIR filter scaling for real-time digital signal process-
ing, IEEE Transactions on Education, Feb. 1991.

References 181

6
Fast Fourier Transform

182

• The fast Fourier transform using radix-2 and radix-4
• Decimation or decomposition in frequency and in time
• Programming examples

The fast Fourier transform (FFT) is an efficient algorithm that is used for convert-
ing a time-domain signal into an equivalent frequency-domain signal, based on the
discrete Fourier transform (DFT). Several real-time programming examples on FFT
are included.

6.1 INTRODUCTION

The discrete Fourier transform converts a time-domain sequence into an equivalent
frequency-domain sequence. The inverse discrete Fourier transform performs the
reverse operation and converts a frequency-domain sequence into an equivalent
time-domain sequence. The fast Fourier transform (FFT) is a very efficient algo-
rithm technique based on the discrete Fourier transform but with fewer computa-
tions required. The FFT is one of the most commonly used operations in digital
signal processing to provide a frequency spectrum analysis [1–6]. Two different
procedures are introduced to compute an FFT: the decimation-in-frequency and
the decimation-in-time. Several variants of the FFT have been used, such as the
Winograd transform [7,8], the discrete cosine transform (DCT) [9], and the discrete
Hartley transform [10–12]. Programs based on the DCT, FHT, and the FFT are avail-
able in Ref. 9.

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

6.2 DEVELOPMENT OF THE FFT ALGORITHM WITH RADIX-2

The FFT reduces considerably the computational requirements of the discrete
Fourier transform (DFT). The DFT of a discrete-time signal x(nT) is

(6.1)

where the sampling period T is implied in x(n) and N is the frame length. The
constants W are referred to as twiddle constants or factors, which represent the
phase, or

(6.2)

and is a function of the length N. Equation (6.1) can be written for k = 0, 1, . . . ,
N - 1, as

(6.3)

This represents a matrix of N ¥ N terms, since X(k) needs to be calculated for N
values for k. Since (6.3) is an equation in terms of a complex exponential, for each
specific k there are (N - 1) complex additions and N complex multiplications. This
results in a total of (N 2 - N) complex additions and N2 complex multiplications.
Hence, the computational requirements of the DFT can be very intensive, especially
for large values of N. FFT reduces computational complexity from N 2 to N logN.

The FFT algorithm takes advantage of the periodicity and symmetry of the
twiddle constants to reduce the computational requirements of the FFT. From the
periodicity of W,

Wk+N = Wk (6.4)

and from the symmetry of W,

(6.5)

Figure 6.1 illustrates the properties of the twiddle constants W for N = 8. For
example, let k = 2, and note that from (6.4), W10 = W 2, and from (6.5), W6 = -W 2.

For a radix-2 (base 2), the FFT decomposes an N-point DFT into two (N/2)-point
or smaller DFTs. Each (N/2)-point DFT is further decomposed into two (N/4)-point
DFTs, and so on. The last decomposition consists of (N/2) two-point DFTs. The
smallest transform is determined by the radix of the FFT. For a radix-2 FFT, N must
be a power or base of 2, and the smallest transform or the last decomposition is the
two-point DFT. For a radix-4, the last decomposition is a four-point DFT.

W Wk N k+ = -2

X k x x W x W x N Wk k N k() = () + () + () + + -() -()0 1 2 12 1. . .

W e j N= - 2p

X k x n W k Nnk

n

N

() = () = -
=

-

Â
0

1

0 1 1, , . . . ,

Development of the FFT Algorithm with Radix-2 183

184 Fast Fourier Transform

6.3 DECIMATION-IN-FREQUENCY FFT ALGORITHM WITH RADIX-2

Let a time-domain input sequence x(n) be separated into two halves:

(a) (6.6)

and

(b) (6.7)

Taking the DFT of each set of the sequence in (6.6) and (6.7) gives us

(6.8)

Let n = n + N/2 in the second summation of (6.8); X(k) becomes

(6.9)

where WkN/2 is taken out of the second summation because it is not a function of
n. Using

 W e e jkN jk j k kk
2 1= = () = -() = -()- -p p p pcos sin

X k x n W W x n
N

Wnk kN

n

N
nk

n

N

() = () + +Ê
Ë

ˆ
¯=

()-

=

()-

Â Â2

0

2 1

0

2 1

2

X k x n W x n Wnk

n

N
nk

n N

N

() = () + ()
=

()-

=

-

Â Â
0

2 1

2

1

N
x

N
x N

2 2
1 1Ê

Ë
ˆ
¯ +Ê

Ë
ˆ
¯ -(), , . . . ,

x x x
N

0 1
2

1() () -Ê
Ë

ˆ
¯, , . . . ,

W3 = W11 = …

W4 = W12 = … W0 = W8 = …

W5 = W13 = … W7 = W15 = …

W2 = W10 = …

W6 = W14 = …

W1 = W9 = …

FIGURE 6.1. Periodicity and symmetry of twiddle constant W.

in (6.9), X(k) becomes

(6.10)

Because (-1)k = 1 for even k and -1 for odd k, (6.10) can be separated for even and
odd k, or

1. For even k:

(6.11)

2. For odd k:

(6.12)

Substituting k = 2k for even k, and k = 2k + 1 for odd k, (6.11) and (6.12) can be
written for k = 0, 1, . . . , (N/2) - 1 as

(6.13)

(6.14)

Because the twiddle constant W is a function of the length N, it can be represented
as WN. Then W 2

N can be written as WN/2. Let

(6.15)

(6.16)

Equations (6.13) and (6.14) can be written more clearly as two (N/2)-point DFTs, or

(6.17)

(6.18)

Figure 6.2 shows the decomposition of an N-point DFT into two (N/2)-point DFTs,
for N = 8. As a result of the decomposition process, the X’s in Figure 6.2 are even

X k b n W W
n

N

N
n

N
nk2 1

0

2 1

2+() = ()
=

()-

Â

X k a n W

n

N

N
nk2

0

2 1

2() = ()
=

()-

Â

 b n x n x n N() = () - +()2

 a n x n x n N() = () + +()2

x k x n x n
N

W W
n

N
n nk2 1

20

2 1
2+() = () - +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇=

()-

Â

X k x n x n
N

W
n

N
nk2

20

2 1
2() = () + +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇=

()-

Â

X k x n x n
N

W
n

N
nk() = () - +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇=

()-

Â 20

2 1

X k x n x n
N

W
n

N
nk() = () + +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇=

()-

Â 20

2 1

X k x n x n
N

W
k

n

N
nk() = () + -() +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇=

()-

Â 1
20

2 1

Decimation-in-Frequency FFT Algorithm with Radix-2 185

186 Fast Fourier Transform

in the upper half and odd in the lower half. The decomposition process can now be
repeated such that each of the (N/2)-point DFTs is further decomposed into two
(N/4)-point DFTs, as shown in Figure 6.3, again using N = 8 to illustrate.

The upper section of the output sequence in Figure 6.2 yields the sequence X(0)
and X(4) in Figure 6.3, ordered as even. X(2) and X(6) from Figure 6.3 represent
the odd values. Similarly, the lower section of the output sequence in Figure 6.2
yields X(1) and X(5), ordered as the even values, and X(3) and X(7) as the odd
values. This scrambling is due to the decomposition process. The final order of the

FIGURE 6.2. Decomposition of N-point DFT into two (N/2)-point DFTs, for N = 8.

FIGURE 6.3. Decomposition of two (N/2)-point DFTs into four (N/4)-point DFTs, for
N = 8.

Decimation-in-Frequency FFT Algorithm with Radix-2 187

output sequence X(0), X(4), . . . in Figure 6.3 is shown to be scrambled. The output
needs to be resequenced or reordered. Programming examples presented later in
this chapter include the appropriate function for resequencing.The output sequence
X(k) represents the DFT of the time sequence x(n).

This is the last decomposition, since we now have a set of (N/2) two-point DFTs,
the lowest decomposition for a radix-2. For the two-point DFT, X(k) in (6.1) can be
written as

(6.19)

or

X(0) = x(0)W 0 + x(1)W 0 = x(0) + x(1) (6.20)

X(1) = x(0)W 0 + x(1)W 0 = x(0) - x(1) (6.21)

since W1 = e-j2p/2 = -1. Equations (6.20) and (6.21) can be represented by the
flow graph in Figure 6.4, usually referred to as a butterfly. The final flow graph of
an eight-point FFT algorithm is shown in Figure 6.5. This algorithm is referred
as decimation-in-frequency (DIF) because the output sequence X(k) is decomposed
(decimated) into smaller subsequences, and this process continues through M stages
or iterations, where N = 2M. The output X(k) is complex with both real and imagi-
nary components, and the FFT algorithm can accommodate either complex or real
input values.

The FFT is not an approximation of the DFT. It yields the same result as the
DFT with fewer computations required. This reduction becomes more and more
important with higher-order FFT.

There are other FFT structures that have been used to illustrate the FFT. An
alternative flow graph to that in Figure 6.5 can be obtained with ordered output and
scrambled input.

An eight-point FFT is illustrated through the following exercise. We will see that
flow graphs for higher-order FFT (larger N) can readily be obtained.

X k x n W knk

n

() = () =
=

Â
0

1

0 1,

FIGURE 6.4. Two-point FFT butterfly.

188 Fast Fourier Transform

Exercise 6.1: Eight-Point FFT Using Decimation-in-Frequency

Let the input x(n) represent a rectangular waveform, or x(0) = x(1) = x(2) = x(3)
= 1 and x(4) = x(5) = x(6) = x(7) = 0. The eight-point FFT flow graph in Figure 6.5
can be used to find the output sequence X(k), k = 0, 1, . . . , 7.With N = 8, four twiddle
constants need to be calculated, or

W0 = 1

The intermediate output sequence can be found after each stage.

Stage 1

x(0) + x(4) = 1 Æ x¢(0)
x(1) + x(5) = 1 Æ x¢(1)
x(2) + x(6) = 1 Æ x¢(2)
x(3) + x(7) = 1 Æ x¢(3)

[x(0) - x(4)]W0 = 1 Æ x¢(4)
[x(1) - x(5)]W1 = 0.707 - j0.707 Æ x¢(5)

[x(2) - x(6)]W2 = -j Æ x¢(6)
[x(3) - x(7)]W3 = -0.707 - j0.707 Æ x¢(7)

W e jj3 6 8 0 707 0 707= = - -- p . .

W e jj2 4 8= = -- p

W e j jj1 2 8 4 4 0 707 0 707= = () - () = -- p p pcos sin . .

FIGURE 6.5. Eight-point FFT flow graph using decimation-in-frequency.

where x¢(0), x¢(1), . . . , x¢(7) represent the intermediate output sequence after the
first iteration, which becomes the input to the second stage.

Stage 2

x¢(0) + x¢(2) = 2 Æ x≤(0)
x¢(1) + x¢(3) = 2 Æ x≤(1)

[x¢(0) - x¢(2)]W 0 = 0 Æ x≤(2)
[x¢(1) - x¢(3)]W 2 = 0 Æ x≤(3)

x¢(4) + x¢(6) = 1 - j Æ x≤(4)
x¢(5) + x¢(7) = (0.707 - j0.707) + (-0.707 - j0.707) = -j1.41 Æ x≤(5)

[x¢(4) - x¢(6)]W 0 = 1 + j Æ x≤(6)
[x¢(5) - x¢(7)]W 2 = -j1.41 Æ x≤(7)

The resulting intermediate, second-stage output sequence x≤(0), x≤(1), . . . , x≤(7)
becomes the input sequence to the third stage.

Stage 3

X(0) = x≤(0) + x≤(1) = 4
X(4) = x≤(0) - x≤(1) = 0
X(2) = x≤(2) + x≤(3) = 0
X(6) = x≤(2) - x≤(3) = 0
X(1) = x≤(4) + x≤(5) = (1 - j) + (-j1.41) = 1 - j2.41
X(5) = x≤(4) - x≤(5) = 1 + j0.41
X(3) = x≤(6) + x≤(7) = (1 + j) + (-j1.41) = 1 - j0.41
X(7) = x≤(6) - x≤(7) = 1 + j2.41

We now use the notation of X’s to represent the final output sequence. The values
X(0), X(1), . . . , X(7) form the scrambled output sequence. These results can be
verified with MATLAB, described in Appendix D. We show later how to reorder
the output sequence and plot the output magnitude.

Exercise 6.2: Sixteen-Point FFT

Given x(0) = x(1) = . . . = x(7) = 1, and x(8) = x(9) = . . . x(15) = 0, which represents
a rectangular input sequence. The output sequence can be found using the 16-point
flow graph shown in Figure 6.6. The intermediate output results after each stage
are found in a manner similar to that in Exercise 6.1. Eight twiddle constants W0,
W1, . . . , W7 need to be calculated for N = 16.

Verify the scrambled output sequence X’s as shown in Figure 6.6. Reorder
this output sequence and take its magnitude. Verify the plot in Figure 6.7, which

Decimation-in-Frequency FFT Algorithm with Radix-2 189

st
ag

e
1

st
ag

e
2

st
ag

e
3

st
ag

e
4

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
0

000

8 0 0 0 0 0 0 0

4 4 0 0 0 0 0 0

02222

0 0 0 0 0 0 0

x(
0)

x(
1)

x(
2)

x(
3)

x(
4)

x(
5)

x(
6)

x(
7)

x(
8)

x(
9)

x(
10

)

x(
11

)

x(
12

)

x(
13

)

x(
14

)

x(
15

)

W
 1

W
 2

W
 2

W
 4

W
 6

W
 2

W
 4

W
 4

W
 4

W
 4

W
 4

W
 6

W
 3

W
 4

W
 5

W
 6

W
 7

0.
92

3
-

j 0
.3

8

0.
70

7
-

j 0
.7

07

-0
.7

07
 -

 j
0.

70
7

0.
38

 -
 j

0.
92

-0
.3

8
-

j 0
.9

2

-j

-0
.9

2
-

j 0
.3

8
-1

.3
 -

 j
0.

54

-0
.5

4
-

j 1
.3

0.
54

 -
 j

1.
3

 -
j 2

.6
1

 -
j 2

.6
1

1.
3

-
j 0

.5
4

1
+

 j

1
-

j
1

-
j 2

.4
1

1
+

 j
2.

41

1
+

 j
0.

41

1
+

 j
0.

2

1
-

j 0
.2

1
+

 j
1.

49
6

1
-

j 1
.4

96
1

-
j 0

.4
1

1
-

j 5
.0

28

1
+

 j
5.

02
8

X
(1

5)

X
(7

)

X
(1

1)

X
(3

)

X
(1

3)

X
(5

)

X
(9

)

X
(1

)

X
(1

4)

X
(6

)

X
(1

0)

X
(2

)

X
(1

2)

X
(4

)

X
(8

)

X
(0

)

1
-

j 0
.6

68

1
+

 j
0.

66
8

 -
 j

1.
41

 -
 j

1.
08

 -
 j

1.
08

 -
 j

1.
41

-1

-1

-1 -1 -1 -1 -1 -1 -1 -1
-1-1-1-1-1-1-1-1

-1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1

F
IG

U
R

E
 6

.6
.

Si
xt

ee
n-

po
in

t
F

F
T

 fl
ow

 g
ra

ph
 u

si
ng

 d
ec

im
at

io
n-

in
-f

re
qu

en
cy

.

190

Decimation-in-Time FFT Algorithm with Radix-2 191

represents a sinc function. The output X(8) represents the magnitude at the Nyquist
frequency. These results can be verified with MATLAB, described in Appendix D.

6.4 DECIMATION-IN-TIME FFT ALGORITHM WITH RADIX-2

Whereas the decimation-in-frequency (DIF) process decomposes an output se-
quence into smaller subsequences, the decimation-in-time (DIT) is a process that
decomposes the input sequence into smaller subsequences. Let the input sequence
be decomposed into an even sequence and an odd sequence, or

x(0), x(2), x(4), . . . , x(2n)

and

x(1), x(3), x(5), . . . , x(2n + 1)

We can apply (6.1) to these two sequences to obtain

(6.22)

Using W 2
N = WN/2 in (6.22) yields

(6.23)

which represents two (N/2)-point DFTs. Let

X k x n W W x n WN

nk
N
k

N
nk

n

N

n

N

() = () + +()
=

()-

=

()-

ÂÂ 2 2 12 2
0

2 1

0

2 1

X k x n W x n Wnk n k

n

N

n

N

() = () + +() +()

=

()-

=

()-

ÂÂ 2 2 12 2 1

0

2 1

0

2 1

FIGURE 6.7. Output magnitude for 16-point FFT.

192 Fast Fourier Transform

(6.24)

(6.25)

Then X(k) in (6.23) can be written as

(6.26)

Equation (6.26) needs to be interpreted for k > (N/2) - 1. Using the symmetry prop-
erty (6.5) of the twiddle constant, Wk+N/2 = -Wk,

(6.27)

For example, for N = 8, (6.26) and (6.27) become

X(k) = C(k) + WkD(k) k = 0, 1, 2, 3 (6.28)

X(k + 4) = C(k) - WkD(k) k = 0, 1, 2, 3 (6.29)

Figure 6.8 shows the decomposition of an eight-point DFT into two four-point DFTs
with the decimation-in-time procedure. This decomposition or decimation process
is repeated so that each four-point DFT is further decomposed into two two-point
DFTs, as shown in Figure 6.9. Since the last decomposition is (N/2) two-point DFTs,
this is as far as this process goes.

Figure 6.10 shows the final flow graph for an eight-point FFT using a decimation-
in-time process. The input sequence is shown to be scrambled in Figure 6.10, in the
same manner as the output sequence X(k) was scrambled during the decimation-

X k N C k W D k k Nk+() = () - () = () -2 0 1 2 1, , . . . ,

X k C k W D kN
k() = () + ()

D k X n WN
nk

n

N

() = +()
=

()-

Â 2 1 2
0

2 1

C k x n WN
nk

n

N

() = ()
=

()-

Â 2 2
0

2 1

FIGURE 6.8. Decomposition of eight-point DFT into four-point DFTs using DIT.

Decimation-in-Time FFT Algorithm with Radix-2 193

in-frequency process. With the input sequence x(n) scrambled, the resulting output
sequence X(k) becomes properly ordered. Identical results are obtained with an
FFT using either the decimation-in-frequency (DIF) or the decimation-in-time
(DIT) process. An alternative DIT flow graph to the one shown in Figure 6.10, with
ordered input and scrambled output, can also be obtained.

The following exercise shows that the same results are obtained for an eight-
point FFT with the DIT process as in Exercise 6.1 with the DIF process.

Exercise 6.3: Eight-Point FFT Using Decimation-in-Time

Given the input sequence x(n) representing a rectangular waveform as in Exercise
6.1, the output sequence X(k), using the DIT flow graph in Figure 6.10, is the same

FIGURE 6.9. Decomposition of two four-point DFTs into four two-point DFTs using DIT.

FIGURE 6.10. Eight-point FFT flow graph using decimation-in-time.

as in Exercise 6.1. The twiddle constants are the same as in Exercise 6.1. Note that
the twiddle constant W is multiplied with the second term only (not with the first).

Stage 1

x(0) + W0x(4) = 1 + 0 = 1 Æ x¢(0)
x(0) - W0x(4) = 1 - 0 = 1 Æ x¢(4)
x(2) + W0x(6) = 1 + 0 = 1 Æ x¢(2)
x(2) - W0x(6) = 1 - 0 = 1 Æ x¢(6)
x(1) + W0x(5) = 1 + 0 = 1 Æ x¢(1)
x(1) - W0x(5) = 1 - 0 = 1 Æ x¢(5)
x(3) + W0x(7) = 1 + 0 = 1 Æ x¢(3)
x(3) - W0x(7) = 1 - 0 = 1 Æ x¢(7)

where the sequence x¢s represents the intermediate output after the first iteration
and becomes the input to the subsequent stage.

Stage 2

x¢(0) + W0x¢(2) = 1 + 1 = 2 Æ x≤(0)
x¢(4) + W2x¢(6) = 1 + (-j) = 1 - j Æ x≤(4)
x¢(0) - W0x¢(2) = 1 - 1 = 0 Æ x≤(2)
x¢(4) - W2x¢(6) = 1 - (-j) = 1 + j Æ x≤(6)
x¢(1) + W0x¢(3) = 1 + 1 = 2 Æ x≤(1)
x¢(5) + W2x¢(7) = 1 + (-j)(1) = 1 - j Æ x≤(5)
x¢(1) - W0x¢(3) = 1 - 1 = 0 Æ x≤(3)
x¢(5) - W2x¢(7) = 1 - (-j)(1) = 1 + j Æ x≤(7)

where the intermediate second-stage output sequence x≤s becomes the input
sequence to the final stage.

Stage 3

X(0) = x≤(0) + W0x≤(1) = 4
X(1) = x≤(4) + W1x≤(5) = 1 - j2.414
X(2) = x≤(2) + W2x≤(3) = 0
X(3) = x≤(6) + W3x≤(7) = 1 - j0.414
X(4) = x≤(0) - W0x≤(1) = 0
X(5) = x≤(4) - W1x≤(5) = 1 + j0.414
X(6) = x≤(2) - W2x≤(3) = 0
X(7) = x≤(6) - W3x≤(7) = 1 + j2.414

which is the same output sequence as found in Exercise 6.1.

194 Fast Fourier Transform

6.5 BIT REVERSAL FOR UNSCRAMBLING

A bit-reversal procedure allows a scrambled sequence to be reordered. To illustrate
this bit-swapping process, let N = 8, represented by three bits. The first and third bits
are swapped. For example, (100)b is replaced by (001)b. As such, (100)b specifying
the address of X(4) is replaced by or swapped with (001)b specifying the address of
X(1). Similarly, (110)b is replaced/swapped with (011)b, or the addresses of X(6) and
X(3) are swapped. In this fashion, the output sequence in Figure 6.5 with the DIF,
or the input sequence in Figure 6.10 with the DIT, can be reordered.

This bit-reversal procedure can be applied for larger values of N. For example,
for N = 64, represented by six bits, the first and sixth bits, the second and fifth bits,
and the third and fourth bits are swapped.

Several examples in this chapter illustrate the FFT algorithm, incorporating algo-
rithms for unscrambling.

6.6 DEVELOPMENT OF THE FFT ALGORITHM WITH RADIX-4

A radix-4 (base 4) algorithm can increase the execution speed of the FFT. FFT pro-
grams on higher radices and split radices have been developed.We use a decimation-
in-frequency (DIF) decomposition process to introduce the development of the
radix-4 FFT.The last or lowest decomposition of a radix-4 algorithm consists of four
inputs and four outputs.The order or length of the FFT is 4M, where M is the number
of stages. For a 16-point FFT, there are only two stages or iterations, compared with
four stages with the radix-2 algorithm. The DFT in (6.1) is decomposed into four
summations, instead of two, as follows:

(6.30)

Let n = n + N/4, n = n + N/2, n = n + 3N/4 in the second, third, and fourth summa-
tions, respectively. Then (6.30) can be written as

(6.31)

which represents four (N/4)-point DFTs. Using

W jkN k3 4 = ()
W ekN jk k2 1= = -()- p

W e e jkN j N kN jk k4 2 4 2= () = = -()- -p p

X k x n W W x n N W

W x n N W W x n N W

nk kN nk

n

N

n

N

kN nk kN

n

N
nk

n

N

() = () + +()

+ +() + +()

=

()-

=

()-

=

()-

=

()-

ÂÂ

Â Â

4

0

4 1

0

4 1

2 3 4

0

4 1

0

4 1

4

2 3 4

X k x n W x n W x n W x n Wnk nk

n N

N

n

N
nk

n N

N
nk

n N

N

() = () + () + () + ()
=

()-

=

()-

=

()-

=

-

ÂÂ Â Â
4

2 1

0

4 1

2

3 4 1

3 4

1

Development of the FFT Algorithm with Radix-4 195

196 Fast Fourier Transform

(6.31) becomes

(6.32)

Let W4
N = WN/4. Equation (6.32) can be written as

(6.33)

(6.34)

(6.35)

(6.36)

for k = 0, 1, . . . , (N/4) - 1. Equations (6.33) through (6.36) represent a decomposi-
tion process yielding four four-point DFTs. The flow graph for a 16-point radix-4
decimation-in-frequency FFT is shown in Figure 6.11. Note the four-point butterfly
in the flow graph. The ±j and -1 are not shown in Figure 6.11. The results shown in
the flow graph are for the following exercise.

Exercise 6.4: 16-Point FFT with Radix-4

Given the input sequence x(n) as in Exercise 6.2, representing a rectangular
sequence x(0) = x(1) = . . . = x(7) = 1, and x(8) = x(9) = . . . = x(15) = 0. We will find
the output sequence for a 16-point FFT with radix-4 using the flow graph in Figure
6.11. The twiddle constants are shown in Table 6.1.

X k x n jx n N x n N jx n N W WN

n
N
nk

n

N

4 3 4 2 3 4 3
4

0

4 1

+() = () + +() - +() - +()[]
=

()-

Â

X k x n x n N x n N x n N W WN

n
N
nk

n

N

4 2 4 2 3 4 2
4

0

4 1

+() = () - +() + +() - +()[]
=

()-

Â

X k x n jx n N x n N jx n N W WN

n
N
nk

n

N

4 1 4 2 3 4 4
0

4 1

+() = () - +() - +() + +()[]
=

()-

Â

X k x n x n N x n N x n N WN

nk

n

N

4 4 2 3 4 4
0

4 1

() = () + +() + +() + +()[]
=

()-

Â

X k x n j x n N x n N j x n N W
k k k nk

n

N

() = () + -() +() + -() +() + () +()[]
=

()-

Â 4 1 2 3 4
0

4 1

TABLE 6.1 Twiddle Constants for 16-Point FFT with
Radix-4

m Wm
N W m

N/4

0 1 1
1 0.9238 - j0.3826 -j
2 0.707 - j0.707 -1
3 0.3826 - j0.9238 +j
4 0 - j 1
5 -0.3826 - j0.9238 -j
6 -0.707 - j0.707 -1
7 -0.9238 - j0.3826 +j

Development of the FFT Algorithm with Radix-4 197

The intermediate output sequence after stage 1 is shown in Figure 6.11. For
example, after stage 1:

[x(0) + x(4) + x(8) + x(12)]W0 = 1 + 1 + 0 + 0 = 2 Æ x¢(0)
[x(1) + x(5) + x(9) + x(13)]W0 = 1 + 1 + 0 + 0 = 2 Æ x¢(1)

[x(0) - jx(4) - x(8) + jx(12)]W0 = 1 - j - 0 - 0 = 1 - j Æ x¢(4)

[x(3) - x(7) + x(11) - x(15)]W6 = 0 Æ x¢(11)
[x(0) + jx(4) - x(8) - jx(12)]W0 = 1 + j - 0 - 0 = 1 + j Æ x¢(12)

[x(3) + jx(7) - x(11) - jx(15)]W9 = [1 + j - 0 - 0](-W1)
= -1.307 - j0.541 Æ x¢(15)

For example, after stage 2:

X(3) = (1 + j) + (1.307 - j0.541) + (-j1.414) + (-1.307 - j0.541) = 1 - j1.496

and

MM

MM

MM

FIGURE 6.11. Sixteen-point radix-4 FFT flow graph using decimation-in-frequency.

X(15) = (1 + j)(1) + (1.307 - j0.541)(-j) + (-j1.414)(1)
+ (-1.307 - j0.541)(-j) = 1 + j5.028

The output sequence X(0), X(1), . . . , X(15) is identical to the output sequence
obtained with the 16-point FFT with the radix-2 in Figure 6.6. These results also can
be verified with MATLAB, described in Appendix D.

The output sequence is scrambled and needs to be resequenced or reordered.
This can be done using a digit-reversal procedure, in a similar fashion as a bit rever-
sal in a radix-2 algorithm. The radix-4 (base 4) uses the digits 0, 1, 2, 3. For example,
the addresses of X(8) and X(2) need to be swapped because (8)10 in base 10 or
decimal is equal to (20)4 in base 4. Digits 0 and 1 are reversed to yield (02)4 in base
4, which is also (02)10 in decimal.

Although mixed or higher radices can provide further reduction in computation,
programming considerations become more complex. As a result, the radix-2 is still
the most widely used, followed by the radix-4.

6.7 INVERSE FAST FOURIER TRANSFORM

The inverse discrete Fourier transform (IDFT) converts a frequency-domain
sequence X(k) into an equivalent sequence x(n) in the time domain. It is defined as

(6.37)

Comparing (6.37) with the DFT equation definition in (6.1), we see that the FFT
algorithm (forward) described previously can be used to find the IFFT (reverse),
with the two following changes:

1. Adding a scaling factor of 1/N

2. Replacing Wnk by its complex conjugate W-nk

With the changes, the same FFT flow graphs can be used for the inverse fast Fourier
transform (IFFT). We also develop programming examples to illustrate the inverse
FFT.

A variant of the FFT, such as the fast Hartley transform (FHT), can be obtained
readily from the FFT. Conversely, the FFT can be obtained from the FHT [10,11].
A development of the fast Hartley transform (FHT) with flow graphs and exercises
for 8- and 16-point FHTs can be found in Ref. 12.

Exercise 6.5: Eight-Point IFFT

Let the output sequence X(0) = 4, X(1) = 1 - j2.41, . . . , X(7) = 1 + j2.41 obtained
in Exercise 6.1 become the input to an eight-point IFFT flow graph. Make the two

x n
N

X k W n Nnk

k

N

() = () = --

=

-

Â1
0 1 1

0

1

, , . . . ,

198 Fast Fourier Transform

changes (scaling and complex conjugate of W) to obtain an eight-point IFFT
(reverse) flow graph from an eight-point FFT (forward) flow graph. The resulting
flow graph becomes an IFFT flow graph similar to Figure 6.5. Verify that the result-
ing output sequence is x(0) = 1, x(1) = 1, . . . , x(7) = 0, which represents the rectan-
gular input sequence in Exercise 6.1.

6.8 PROGRAMMING EXAMPLES

Example 6.1: DFT of a Sequence of Real Numbers with Output from CCS
Window (DFT)

This example illustrates the discrete Fourier transform (DFT) of an N-point
sequence. Figure 6.12 shows a listing of the program DFT.c, which implements the
DFT. The input sequence is x(n). The program calculates

k = 0, 1, . . . , N - 1

where W = e-j2p/N are the twiddle constants. This can be decomposed into a sum of
real components and a sum of imaginary components, or

Using a sequence of real numbers with an integer number of cycles m, X(k) = 0 for
all k, except at k = m and at k = N - m.

Build this project as DFT. The input x(n) is a cosine with N = 8 data points. To
test the results:

1. Select View Æ Watch Window and insert the two expressions j and out (right
click on the Watch window). Click on +out to expand and view out[0] and
out[1] that represent the real and imaginary components, respectively.

2. Place a breakpoint at the bracket “}” that follows the DFT function call.

3. Select Debug Æ Animate (Animation speed can be controlled through
Options). Verify that the real component value out[0] is large (3996) at
j = 1 and at j = 7, while small otherwise. Since x(n) is a one-cycle sequence,
m = 1. Since the number of points is N = 8, a “spike” occurs at j = m = 1
and at j = N - m = 7. The following two MATLAB commands can be
used to verify these results (see also Appendix D):

IM X k x n nk N
n

N

(){ } = () ()
=

-

Â sin 2
0

1

p

Re cosX k x n nk N

n

N

(){ } = () ()
=

-

Â 2
0

1

p

X k x n x n W nk

n

N

() = (){ } = ()
=

-

ÂDFT
0

1

Programming Examples 199

200 Fast Fourier Transform

//DFT.c DFT of N-point from lookup table. Output from watch window

#include <stdio.h>

#include <math.h>

void dft(short *x, short k, int *out); //function prototype

#define N 8 //number of data values

float pi = 3.1416;

short x[N] = {1000,707,0,-707,-1000,-707,0,707}; //1-cycle cosine

//short x[N]={0,602,974,974,602,0,-602,-974,-974,-602,

// 0,602,974,974,602,0,-602,-974,-974,-602}; //2-cycles sine

int out[2] = {0,0}; //init Re and Im results

void dft(short *x, short k, int *out) //DFT function

{

int sumRe = 0; //init real component

int sumIm = 0; //init imaginary component

int i = 0;

float cs = 0; //init cosine component

float sn = 0; //init sine component

for (i = 0; i < N; i++) //for N-point DFT

{

cs = cos(2*pi*(k)*i/N); //real component

sn = sin(2*pi*(k)*i/N); //imaginary component

sumRe = sumRe + x[i]*cs; //sum of real components

sumIm = sumIm - x[i]*sn; //sum of imaginary components

}

out[0] = sumRe; //sum of real components

out[1] = sumIm; //sum of imaginary components

}

void main()

{

int j;

for (j = 0; j < N; j++)

{

dft(x,j,out); //call DFT function

}

}

FIGURE 6.12. DFT implementation program with input from a lookup table (DFT.c).

x = [1000 707 0 -707 -1000 -707 0 707];

y = fft(x)

Note that the data values in the table are rounded (yielding a spike with a
maximum value of 3996 in lieu of 4000). Since it is a cosine, the imaginary
component out[1] is zero (small). In a real-time implementation, with
Fs = 8kHz, the frequency generated would be at f = Fs (number of cycles)/N
= 1kHz.

4. Use a two-cycle sine data table with 20 points as input x(n). Within the
program, change N to 20, comment the table that corresponds to the cosine
(first input), and instead use the sine table values. Rebuild and Animate again.
Verify a large negative value at j = 2 (-10,232) and a large positive value
at j = N - m = 18 (10,232). For a real-time implementation, the mag-
nitude of X(k), k = 0, 1, . . . can be found. With Fs = 8kHz, the frequency gen-
erated would correspond to f = 800Hz.

Example 6.2: FFT of a Real-Time Input Signal Using an FFT Function
in C (FFT256c)

Figure 6.13 shows a listing of the program FFT256c.c, which implements a 256-
point FFT in real time, using an external input signal. It calls a generic FFT func-
tion in C, FFT.c (on the accompanying disk). This FFT function, used with the
C31 DSK and the C30 EVM, is listed and described in Refs. 13 and 14.

The twiddle constants are generated within the program. The imaginary compo-
nents of the input data are set to zero to illustrate this implementation. The mag-
nitude of the resulting FFT (scaled) is taken for output to the codec. Three buffers
are used:

1. samples: contains the data to be transformed

2. iobuffer: used to output a processed data as well as acquiring a new input
sampled data

3. x1: contains the magnitude (scaled) of the tranformed (processed) data

On every sample period, an interrupt occurs. On each interrupt, an output value
from a buffer (iobuffer) is sent to the codec’s DAC and an input value is acquired
and stored into the same buffer. An index (buffercount) to this buffer is used to
set a flag when this buffer is full. When this buffer is full, it is copied to another
buffer (samples), which will be used when calling the FFT function. The magni-
tude (scaled) of the processed FFT data, contained in a buffer x1, can now be copied
to the I/O buffer, iobuffer, for output. In a filtering algorithm, processing can be
done as each new sample is acquired. On the other hand, an FFT algorithm requires
that an entire frame of data be available for processing.

Programming Examples 201

//FFT256c.c FFT implementation calling C-coded FFT function

#include <math.h>
#define PTS 256 //# of points for FFT
#define PI 3.14159265358979
typedef struct {float real,imag;} COMPLEX;
void FFT(COMPLEX *Y, int n); //FFT prototype
float iobuffer[PTS]; //as input and output buffer
float x1[PTS]; //intermediate buffer
short i; //general purpose index variable
short buffercount = 0; //number of new samples in iobuffer
short flag = 0; //set to 1 by ISR when iobuffer full
COMPLEX w[PTS]; //twiddle constants stored in w
COMPLEX samples[PTS]; //primary working buffer

main()
{
for (i = 0 ; i<PTS ; i++) // set up twiddle constants in w
{
w[i].real = cos(2*PI*i/512.0); //Re component of twiddle constants
w[i].imag =-sin(2*PI*i/512.0); //Im component of twiddle constants
}
comm_intr(); //init DSK, codec, McBSP

while(1) //infinite loop
{
while (flag == 0) ; //wait until iobuffer is full
flag = 0; //reset flag
for (i = 0 ; i < PTS ; i++) //swap buffers
{
samples[i].real=iobuffer[i]; //buffer with new data
iobuffer[i] = x1[i]; //processed frame to iobuffer
}
for (i = 0 ; i < PTS ; i++)
samples[i].imag = 0.0; //imag components = 0

FFT(samples,PTS); //call function FFT.c

for (i = 0 ; i < PTS ; i++) //compute magnitude
{
x1[i] = sqrt(samples[i].real*samples[i].real

+ samples[i].imag*samples[i].imag)/32;
}
x1[0] = 32000.0; //negative spike(with AD535)for ref
} //end of infinite loop

} //end of main

interrupt void c_int11() //ISR
{
output_sample((int)(iobuffer[buffercount])); //out from iobuffer
iobuffer[buffercount++]=(float)(input_sample()); //input to iobuffer
if (buffercount >= PTS) //if iobuffer full
{

buffercount = 0; //reinit buffercount
flag = 1; //set flag

}
}

FIGURE 6.13. FFT program of real-time input calling a C-coded FFT function
(FFT256c.c).

202

Programming Examples 203

Build and run this project as FFT256c. Input a 2-kHz sine wave with an ampli-
tude of approximately 0.5 to 1V p-p. Figure 6.14 shows a time-domain representa-
tion of the magnitude of the transformed data, obtained with an HP dynamic signal
analyzer (you can use an oscilloscope). The two negative spikes are 256(Ts) = 32ms
apart, as shown in Figure 6.14. This interval also represents the sampling frequency
Fs. The location of the first positive spike then corresponds to a frequency of 2kHz
(the mid-distance between the two spikes corresponds to 4kHz).The location of the
second positive spike corresponds to the folding frequency of Fs - f = 6kHz. Increase
the frequency of the input signal and observe the convergence of the two spikes
toward the 4-kHz Nyquist frequency.

Example 6.3: FFT of a Sinusoidal Signal from a Table Using
TI’s C Callable FFT Function (FFTsinetable)

Figure 6.15 shows a listing of the program FFTsinetable.c, which illustrates a C
program calling TI’s floating-point FFT function cfftr2_dit.sa, available at TI’s
Web site (also on disk). The twiddle constants are calculated within the program.
The imaginary components of the twiddle constants are negated, as required
(assumed) by the FFT function.The FFT function also assumes N/2 complex twiddle
constants. It is important to align the data in memory (on an 8-byte boundary). Both
the input data and the twiddle constants are structured as “complex.”

The input signal consists of sine data values set in a table as real input data. The
imaginary components of the input sine data are set to zero. The input data are
arranged in memory as successive real and imaginary number pairs, as required
(assumed) by the FFT function. The resulting ouput is still complex.

FIGURE 6.14. Time-domain plot representing the magnitude of the FFT of a real-time input.

//FFTsinetable.c FFT{sine}from table. Calls TI float-point FFT function

#include <math.h>
#define N 32 //number of FFT points
#define SQRT_N 32 //SQRT_N >= SQRT(N)
#define FREQ 8 //# of points/cycle
#define RADIX 2 //radix or base
#define DELTA (2*PI)/N //argument for sine/cosine
#define TAB_PTS 32 //# of points in sine_table
#define PI 3.14159265358979
short i = 0;
short iTwid[SQRT_N]; //N/2 + 1 > sqrt(N)
short iData[N]; //index for bitrev X
float Xmag[N]; //magnitude spectrum of x
typedef struct Complex_tag {float re,im;}Complex;
Complex W[N/RADIX]; //array for twiddle constants
Complex x[N]; //N complex data values
#pragma DATA_ALIGN(W,sizeof(Complex)) //align boundary size complex

short sine_table[TAB_PTS] = {0,195,383,556,707,831,924,981,1000,
981,924,831,707,556,383,195,-0,-195,-383,-556,-707,-831,-924,-981,
-1000,-981,-924,-831,-707,-556,-383,-195};

void main()
{
for(i = 0 ; i < N/RADIX ; i++)
{
W[i].re = cos(DELTA*i); //real component of W
W[i].im = sin(DELTA*i); //neg imag component
} //see cfftr2_dit
for(i = 0 ; i < N ; i++)
{
x[i].re=3*sine_table[FREQ*i % TAB_PTS]; //wrap when i=TAB_PTS
x[i].im = 0 ; //zero imaginary part
}
digitrev_index(iTwid, N/RADIX, RADIX); //produces index for bitrev() W
bitrev(W, iTwid, N/RADIX); //bit reverse W

cfftr2_dit(x, W, N) ; //TI floating-pt complex FFT

digitrev_index(iData, N, RADIX); //produces index for bitrev() X
bitrev(x, iData, N); //freq scrambled->bit-reverse X
for(i = 0 ; i < N ; i++)

Xmag[i] = sqrt(x[i].re*x[i].re+x[i].im*x[i].im); //magnitude of X

comm_poll() ; //init DSK,codec,McBSP
while (1) //infinite loop
{
output_sample(32000) ; //negative spike as reference
for (i = 1; i < N; i++)

output_sample((int)Xmag[i]); //output magnitude samples
}

}

FIGURE 6.15. FFT program of input data from a table using TI’s optimized floating-point
complex FFT function (FFTsinetable.c).

204

The FFT function cfftr2_dit.sa uses a decimation-in-time, radix 2, and takes
the FFT of a “complex” input signal. Two support functions, digitrev_index.c
and bitrev.sa, are used in conjunction with the complex FFT function for bit
reversal. These two support files are also available through TI’s Web site (also on
disk). The FFT function cfftr2_dit.sa assumes that the input data item x is in
normal order while the FFT coefficients or twiddle constants are in reverse order.
As a result, the support function digitrev_index.c, to produce the index for bit
reversal, and bitrev.sa, to perform the bit reversal on the twiddle constants, are
called before the FFT function is invoked. These two support files for bit reversal
are again called to bit-reverse the resulting scrambled output.
N is the number of complex input (note that the input data consist of 2N ele-

ments) or output data, so that an N-point FFT is performed. SQRT_N is used by the
bit-reversal support functions.FREQ determines the frequency of the input sine data
by selecting the number of points per cycle within the data table. With FREQ set at
8, every eighth point from the table is selected, starting with the first data point.
The modulo operator is used as a flag to reinitialize the index. The following four
points (scaled) within one period are selected: 0, 1000, 0, and -1000. Example 2.4
(sine2sliders) illustrates this indexing scheme to select different number of data
points within a table.

The magnitude of the resulting FFT is taken. The line of code

output_sample(32000);

outputs a negative spike of approximately -1.1V (not positive, due to the 2’s-
complement format of the AD535 codec and a dc offset of approximately 1.1V). It
is used as a reference scheme. The input data are scaled so that the output magni-
tude is positive (again due to the codec data format). The sampling rate is achieved
through polling.

Build and run this project as FFTsinetable. The two support files for bit rever-
sal and the complex FFT function also are included in the Source project. Figure
6.16 shows a time-domain plot of the resulting output (obtained with an HP dynamic
signal analyzer). Since an output occurs every Ts, the time interval for 32 points
corresponds to 32Ts, or 32(0.125ms) = 4ms. A negative spike is then repeated every
4ms. This provides a reference, since the time interval between the two negative
spikes corresponds to the sampling frequency of 8kHz. The center of this time
interval then corresponds to the Nyquist frequency of 4kHz (2ms from the nega-
tive spike). The first positive spike occurs at 1ms from the first negative spike. This
corresponds to a frequency of f = Fs/4 = 2kHz. The second positive spike occurs at
3ms and corresponds to the folding frequency of Fs - f = 6kHz.

Change FREQ to 4 in order to select eight sine data values within the table. Verify
that the output is a 1-kHz signal (obtain a plot similar to that in Figure 6.14 from
an oscilloscope). A FREQ value of 12 produces an output of 3kHz. A FREQ value of
15 shows the two positive spikes at the center (between the two negative spikes).
Note that aliasing occurs for frequencies larger than 4kHz. To illustrate that,

Programming Examples 205

206 Fast Fourier Transform

FIGURE 6.16. Time-domain plot representing the magnitude of the FFT of a 2-kHz input
data from a table obtained using TI’s FFT function.

change FREQ to a value of 20. Verify that the output is an aliased signal at 3kHz, in
lieu of 5kHz. A FREQ value of 24 would show an aliased signal of 2kHz in lieu of
6kHz.

The number of cycles is documented within the function cfftr2_dit.sa
(by TI) as

Cycles = ((2N) + 23)log2(N) + 6

For a 1024-point FFT, the number of cycles would be (2071)(10) + 6 = 20,716. This
corresponds to a time of t = 20,716 cycles/(150MHz) = 138ms.

6.8.1 Fast Convolution

The following examples show how the FFT enables signals to be processed in the
frequency domain. Fast convolution [19,20] takes less computational effort and is
potentially more accurate than time-domain implementation of FIR filters having
very large numbers of coefficients.

Example 6.4: Fast Convolution with Overlap-Add for FIR Implementation
Using TI’s Floating-Point FFT Functions (fastconvo)

Figure 6.17 shows a listing of the program fastconvo.c to implement an FIR filter
and illustrate the fast convolution’s overlap-add scheme [19,20]. TI’s floating-point

Programming Examples 207

FFT support functions, bitrev.sa, digitrev_index.c, and cfftr2_dit.sa,
were introduced in Example 6.3. In addition, TI’s inverse complex FFT function
icfftr2_dif.sa (radix-2, DIF) is used here. This function expects its input to
be scrambled or to be in bit-reversed order. As a result, the bit-reversed output of
the complex FFT function cfftr2_dit.sa need not be reordered, and the
support files for bit reversal, digitrev_index.c and bitrev.sa, are not
needed after the FFT section of the program. Both data (samples) and filter coef-
ficients (h) are in bit-reversed order and may be multiplied together in that
order.

Build this project as Fastconvo (use compiler optimization level –o1). The
time-domain filter coefficients are read from the file coeffs.h. Verify that the
output yields a 2-kHz bandpass filter. The filter coefficients are the same as
BP55.cof, with a center frequency at Fs/4, introduced in Example 4.4.

The coefficient file coeffs.h also contains a set of coefficients identical to
LP55.cof, which represents a lowpass FIR filter with a cutoff frequency at Fs/8,
also introduced in Example 4.4. Edit the file coeffs.h to implement/verify this
lowpass filter.

Several buffers are used, and iobuffer is the primary input/output buffer. At
each sampling interval, the ISR is executed. The next output value is read from
iobuffer, output to the codec, and then replaced by a new input sample. After
PTS/2 sampling instants, iobuffer contains a new frame of PTS/2 input samples.
This situation is signaled by setting flag to 1.

The main program waits for this flag signal using

while (flag == 0);

and subsequently carries out the following operations:

1. Resets flag to zero

2. Copies the contents of the buffer iobuffer (frame of new input samples) to
the first PTS/2 locations of the buffer samples

3. Copies the contents of the buffer overlap (previously computed frame of
output samples) to the buffer iobuffer

4. Processes the new frame of input samples to compute the next frame of output
samples

The frame processing operation (within an infinite loop) has PTS/2 sampling
periods in which to execute and comprises the following steps:

1. The contents of the last PTS/2 locations of the samples buffer (real parts)
are copied to the overlap buffer. These time-domain data may be thought
of as the overlapping latter-half (PTS/2 samples) of the previous frame pro-
cessing operation.

208 Fast Fourier Transform

//FastConvo.c FIR filter implemented using overlap-add fast convolution

#include <math.h>

#include “coeffs.h” //time domain FIR coefficients

#define PI 3.14159265358979

#define PTS 256 //number of points for FFT

#define SQRT_PTS 16 //used in twiddle factor calc.

#define RADIX 2 //passed to TI FFT routines

#define DELTA (2*PI)/PTS

typedef struct Complex_tag {float real, imag;} COMPLEX ;

#pragma DATA_ALIGN(W, sizeof(COMPLEX))

#pragma DATA_ALIGN(samples, sizeof(COMPLEX))

#pragma DATA_ALIGN(h, sizeof(COMPLEX))

COMPLEX W[PTS/RADIX] ; //twiddle factor array

COMPLEX samples[PTS]; //processing buffer

COMPLEX h[PTS]; //FIR filter coefficients

short buffercount = 0; //buffer count for iobuffer samples

float iobuffer[PTS/2]; //primary input/output buffer

float overlap[PTS/2]; //intermediate result buffer

short i; //index variable

short flag = 0; //set to indicate iobuffer full

float a, b; //variables used in complex multiply

short NUMCOEFFS = sizeof(coeffs)/sizeof(float);

short iTwid[SQRT_PTS] ; //PTS/2 + 1 > sqrt(PTS)

interrupt void c_int11(void) //ISR

{

output_sample((int)(iobuffer[buffercount]));

iobuffer[buffercount++] = (float)(input_sample());

if (buffercount >= PTS/2) //for overlap-add method iobuffer

{ //is half size of FFT used

buffercount = 0;

flag = 1;

}

}

main()

{ //set up array of twiddle factors

digitrev_index(iTwid, PTS/RADIX, RADIX);

for(i = 0 ; i < PTS/RADIX ; i++)

{

W[i].real = cos(DELTA*i);

W[i].imag = sin(DELTA*i);

}

FIGURE 6.17. Fast convolution program using overlap-add with TI’s floating-point FFT
functions (fastconvo.c).

Programming Examples 209

bitrev(W, iTwid, PTS/RADIX); //bit reverse order W

for (i = 0 ; i<PTS ; i++) //initialise PTS element

{ //of COMPLEX to hold real-valued

h[i].real = 0.0; //time domain FIR filter coefficients

h[i].imag = 0.0;

}

for (i = 0 ; i < NUMCOEFFS ; i++)

{ //read FIR filter coeffs

h[i].real = coeffs[i]; //NUMCOEFFS should be less than PTS/2

}

cfftr2_dit(h,W,PTS); //transform filter coeffs

comm_intr(); //initialise DSK, codec, McBSP

while(1) //frame processing infinite loop

{

while (flag == 0); //wait for iobuffer full

flag = 0;

for (i = 0 ; i<PTS/2 ; i++)//iobuffer into first half of

{ //samples buffer

samples[i].real = iobuffer[i];

iobuffer[i] = overlap[i]; //previously processed output

} //to iobuffer

for (i = 0 ; i<PTS/2 ; i++)

{ //second half of samples to overlap

overlap[i] = samples[i+PTS/2].real;

samples[i+PTS/2].real = 0.0; //zero-pad input from iobuffer

}

for (i=0; i<PTS ; i++)

samples[i].imag = 0.0; //init imag parts in samples buffer

cfftr2_dit(samples,W,PTS); //complex FFT function from TI

for (i=0 ; i<PTS ; i++) //frequency-domain representation

{ //complex multiply samples by h

a = samples[i].real;

b = samples[i].imag;

samples[i].real = h[i].real*a - h[i].imag*b;

samples[i].imag = h[i].real*b + h[i].imag*a;

}

icfftr2_dif(samples,W,PTS); //inverse FFT function from TI

for (i=0 ; i<PTS ; i++)

samples[i].real /= PTS;

for (i=0 ; i<PTS/2 ; i++) //add first half of samples

overlap[i] += samples[i].real; //to overlap

} //end of while(1)

} //end of main()

FIGURE 6.17. (Continued)

210 Fast Fourier Transform

2. The last PTS/2 locations of the buffer samples are zero-padded. The buffer
samples now contains PTS/2 new samples followed by PTS/2 zeros.

3. The buffer samples is transformed in-place into the frequency domain using
a PTS-point FFT.

4. The complex frequency-domain sample values are multiplied by the complex
frequency-domain filter coefficients stored in h.

5. The results are transformed back into the time domain by applying a PTS-
point IFFT to the contents of the samples buffer. The resulting PTS time-
domain samples will be real-valued.

6. The contents of the first PTS/2 locations of the buffer samples (i.e., the
former-half of the current frame processing result) are added to the contents
of the overlap buffer.

Since the input and output signals are real-valued, so are the buffers iobuffer
and overlap. However, since the frequency-domain representation of these signals
is complex, the buffer samples and the array of filter coefficients h are complex,
requiring two floating-point values (real and imaginary parts) per sample.

A faster and more efficient implementation of buffering is possible using
pointers rather than copying data from one buffer to another, but the latter
approach is adopted for purposes of clarity.

Alternative Version for Simulation
The program fastconvosim.c (on the accompanying disk) is a non-real-time
version of the program fastconvo.c, which processes a prestored sequence of
input samples. Using breakpoints (locations specified within the program), the user
can step through the various stages in the overlap-add process, viewing the contents
of each of the buffers at each step. Figure 6.18 shows a typical view of the contents
of the buffers (obtained with CCS): iobuffer, h, samples, and overlap, at an
intermediate stage in the process.

Example 6.5: Graphic Equalizer (graphicEQ)

Figure 6.19 shows a listing of the program graphicEQ.c, which implements
a three-band graphic equalizer. TI’s floating-point complex FFT and inverse
FFT support functions are used again in this project (see also Examples 6.3 and
6.4).
graphicEQcoeff.h contains three sets of coefficients; lowpass at 1.3kHz,

bandpass between 1.3 and 2.6kHz, and highpass at 2.6kHz, designed with
MATLAB’s function fir1. Both the input samples and the three sets of coefficients
are transformed into the frequency domain. The filtering is performed in the fre-
quency domain based on the overlap-add scheme used in Example 6.4 [19,20]. Note

Programming Examples 211

that the complex multiplication (H)(X), where H represents the transfer function
and X the input sample, yields

(HR + jHI)(XR + jXI) = (HRXR - HIXI) + j (HRXI + HIXR)

as used in the program, where j = ÷-
—–

1
ISR continuously (every sample period Ts) outputs a value from the buffer

iobuffer, then inputs a new value until iobuffer is full. At such time a new
frame of input data is available. The iobuffer index is initialized and the flag is
set. The main program waits for this flag to be set, then resets it.

Build this project as graphicEQ (use the optimization level –o1). Test this
project using an input voice file such as TheForce.wav (see Example 4.9) or noise.
Verify that the low- and high-frequency components are accentuated while the
midrange frequency components are attenuated. This is because the filter coeffi-
cients are scaled in the program by bass_gain and treble_gain, initially set to
1, and by mid_gain, initially set to zero. The slider file graphicEQ.gel (on the
disk) allows you to control the three frequency bands independently. Figure 6.20
shows the output spectrum obtained with a signal analyzer using noise as input and
two different gain settings.

FIGURE 6.18. CCS plots of four buffers—iobuffer, h, samples, and overlap—at an
intermediate processing stage using the simulation version program fastconvosim.c (on the
disk).

//GraphicEQ.c Graphic Equalizer using TI floating-point FFT functions

#include <math.h>
#include “GraphicEQcoeff.h” //time-domain FIR coefficients
#define PI 3.14159265358979
#define PTS 256 //number of points for FFT
#define SQRT_PTS 16
#define RADIX 2
#define DELTA (2*PI)/PTS
typedef struct Complex_tag {float real,imag;} COMPLEX;
#pragma DATA_ALIGN(W,sizeof(COMPLEX))
#pragma DATA_ALIGN(samples,sizeof(COMPLEX))
#pragma DATA_ALIGN(h,sizeof(COMPLEX))
COMPLEX W[PTS/RADIX] ; //twiddle array
COMPLEX samples[PTS];
COMPLEX h[PTS];
COMPLEX bass[PTS], mid[PTS], treble[PTS];
short buffercount = 0; //buffer count for iobuffer samples
float iobuffer[PTS/2]; //primary input/output buffer
float overlap[PTS/2]; //intermediate result buffer
short i; //index variable
short flag = 0; //set to indicate iobuffer full
float a, b; //variables for complex multiply
short NUMCOEFFS = sizeof(lpcoeff)/sizeof(float);
short iTwid[SQRT_PTS] ; //PTS/2+1 > sqrt(PTS)
float bass_gain = 1.0; //initial gain values
float mid_gain = 0.0; //change with GraphicEQ.gel
float treble_gain = 1.0;

interrupt void c_int11(void) //ISR
{
output_sample((int)(iobuffer[buffercount]));
iobuffer[buffercount++] = (float)(input_sample());
if (buffercount >= PTS/2) //for overlap-add method iobuffer
{ //is half size of FFT used
buffercount = 0;
flag = 1;
}

}

main()
{
digitrev_index(iTwid, PTS/RADIX, RADIX);
for(i = 0; i < PTS/RADIX; i++)
{
W[i].real = cos(DELTA*i);
W[i].imag = sin(DELTA*i);
}
bitrev(W, iTwid, PTS/RADIX); //bit reverse W

for (i=0 ; i<PTS ; i++)
{
bass[i].real = 0.0;
bass[i].imag = 0.0;
mid[i].real = 0.0;
mid[i].imag = 0.0;
treble[i].real = 0.0;
treble[i].imag = 0.0;
}

FIGURE 6.19. Equalizer program using TI’s floating-point FFT functions (graphicEQ.c).

212

for (i=0; i<NUMCOEFFS; i++) //same # of coeff for each filter
{
bass[i].real = lpcoeff[i]; //lowpass coeff
mid[i].real = bpcoeff[i]; //bandpass coeff
treble[i].real = hpcoeff[i]; //highpass coef
}

cfftr2_dit(bass,W,PTS); //transform each band into frequency
cfftr2_dit(mid,W,PTS);
cfftr2_dit(treble,W,PTS);

comm_intr(); //initialise DSK, codec, McBSP
while(1) //frame processing infinite loop
{
while (flag == 0); //wait for iobuffer full

flag = 0;
for (i=0 ; i<PTS/2 ; i++) //iobuffer into samples buffer
{
samples[i].real = iobuffer[i];
iobuffer[i] = overlap[i]; //previously processed output
} //to iobuffer
for (i=0 ; i<PTS/2 ; i++)
{ //upper-half samples to overlap
overlap[i] = samples[i+PTS/2].real;
samples[i+PTS/2].real = 0.0; //zero-pad input from iobuffer
}
for (i=0 ; i<PTS ; i++)
samples[i].imag = 0.0; //init samples buffer

cfftr2_dit(samples,W,PTS);

for (i=0 ; i<PTS ; i++) //construct freq domain filter
{ //sum of bass,mid,treble coeffs
h[i].real = bass[i].real*bass_gain + mid[i].real*mid_gain

+ treble[i].real*treble_gain;
h[i].imag = bass[i].imag*bass_gain + mid[i].imag*mid_gain

+ treble[i].imag*treble_gain;
}
for (i=0; i<PTS; i++) //frequency-domain representation
{ //complex multiply samples by h
a = samples[i].real;
b = samples[i].imag;
samples[i].real = h[i].real*a - h[i].imag*b;
samples[i].imag = h[i].real*b + h[i].imag*a;
}

icfftr2_dif(samples,W,PTS);

for (i=0 ; i<PTS ; i++)
samples[i].real /= PTS;

for (i=0 ; i<PTS/2 ; i++) //add 1st half to overlap
overlap[i] += samples[i].real;

} //end of infinite loop
} //end of main()

FIGURE 6.19. (Continued)

213

214 Fast Fourier Transform

FIGURE 6.20. Output spectrum of a graphic equalizer obtained with a signal analyzer: (a)
bass_gain = treble_gain = 1, mid_gain = 0; (b) bass_gain = treble_gain
= 0, mid_gain = 1.

REFERENCES

1. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex
Fourier series, Mathematics of Computation, Vol. 19, 1965, pp. 297–301.

2. J. W. Cooley, How the FFT gained acceptance, IEEE Signal Processing, Jan. 1992,
pp. 10–13.

3. J. W. Cooley, The structure of FFT and convolution algorithms, from a tutorial, IEEE
1990 International Conference on Acoustics, Speech, and Signal Processing, Apr. 1990.

4. C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms: Theory and Imple-
mentation, Wiley, New York, 1988.

5. G. D. Bergland, A guided tour of the fast Fourier transform, IEEE Spectrum, Vol. 6,
1969, pp. 41–51.

6. E. O. Brigham, The Fast Fourier Transform, Prentice Hall, Upper Saddle River, NJ,
1974.

7. S. Winograd, On computing the discrete Fourier transform, Mathematics of Computa-
tion, Vol. 32, 1978, pp. 175–199.

8. H. F. Silverman, An introduction to programming the Winograd Fourier transform algo-
rithm (WFTA), IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-25, Apr. 1977, pp. 152–165.

9. P. E. Papamichalis, ed., Digital Signal Processing Applications with the TMS320 Family:
Theory, Algorithms, and Implementations, Vol. 3, Texas Instruments, Dallas, TX, 1990.

10. R. N. Bracewell, Assessing the Hartley transform, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. ASSP-38, 1990, pp. 2174–2176.

11. R. N. Bracewell, The Hartley Transform, Oxford University Press, New York, 1986.

12. H. V. Sorensen, D. L. Jones, M. T. Heidman, and C. S. Burrus, Real-valued fast Fourier
transform algorithms, IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. ASSP-35, 1987, pp. 849–863.

13. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

14. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

15. P. M. Embree and B. Kimble, C Language Algorithms for Digital Signal Processing,
Prentice Hall, Upper Saddle River, NJ, 1990.

16. S. Kay and R. Sudhaker, A zero crossing spectrum analyzer, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-34, Feb. 1986, pp. 96–104.

17. P. Kraniauskas, A plain man’s guide to the FFT, IEEE Signal Processing, Apr. 1994.

18. J. R. Deller, Jr., Tom, Dick, and Mary discover the DFT, IEEE Signal Processing, Apr.
1994.

19. A. V. Oppenheim and R. Schafer, Discrete-Time Signal Processing, Prentice Hall, Upper
Saddle River, NJ, 1989.

20. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Upper Saddle River, NJ,
1996.

References 215

7
Adaptive Filters

216

• Adaptive structures
• The least mean squares (LMS) algorithm
• Programming examples for noise cancellation and system identification using

C code

Adaptive filters are best used in cases where signal conditions or system parameters
are slowly changing and the filter is to be adjusted to compensate for this change.
The least mean squares (LMS) criterion is a search algorithm that can be used to
provide the strategy for adjusting the filter coefficients. Programming examples are
included to give a basic intuitive understanding of adaptive filters.

7.1 INTRODUCTION

In conventional FIR and IIR digital filters, it is assumed that the process parameters
to determine the filter characteristics are known. They may vary with time, but the
nature of the variation is assumed to be known. In many practical problems, there
may be a large uncertainty in some parameters because of inadequate prior test data
about the process. Some parameters might be expected to change with time, but the
exact nature of the change is not predictable. In such cases it is highly desirable to
design the filter to be self-learning, so that it can adapt itself to the situation at hand.

The coefficients of an adaptive filter are adjusted to compensate for changes in
input signal, output signal, or system parameters. Instead of being rigid, an adaptive
system can learn the signal characteristics and track slow changes.An adaptive filter
can be very useful when there is uncertainty about the characteristics of a signal or
when these characteristics change.

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

Introduction 217

Figure 7.1 shows a basic adaptive filter structure in which the adaptive filter’s
output y is compared with a desired signal d to yield an error signal e, which is
fed back to the adaptive filter. The coefficients of the adaptive filter are adjusted,
or optimized, using a least mean squares (LMS) algorithm based on the error signal.

We discuss here only the LMS searching algorithm with a linear combiner (FIR
filter), although there are several strategies for performing adaptive filtering. The
output of the adaptive filter in Figure 7.1 is

(7.1)

where wk(n) represent N weights or coefficients for a specific time n. The convolu-
tion equation (7.1) was implemented in Chapter 4 in conjunction with FIR filter-
ing. It is common practice to use the terminology of weights w for the coefficients
associated with topics in adaptive filtering and neural networks.

A performance measure is needed to determine how good the filter is. This
measure is based on the error signal,

(7.2)

which is the difference between the desired signal d(n) and the adaptive filter’s
output y(n).The weights or coefficients wk(n) are adjusted such that a mean squared
error function is minimized. This mean squared error function is E[e2(n)], where E
represents the expected value. Since there are k weights or coefficients, a gradient
of the mean squared error function is required. An estimate can be found instead
using the gradient of e2(n), yielding

(7.3)

which represents the LMS algorithm [1–3]. Equation (7.3) provides a simple but
powerful and efficient means of updating the weights, or coefficients, without the
need for averaging or differentiating, and will be used for implementing adaptive
filters. The input to the adaptive filter is x(n), and the rate of convergence and
accuracy of the adaptation process (adaptive step size) is b.

 w n w n e n x n k k Nk k+() = () + () -() = -1 2 0 1 1b , , . . . ,

e n d n y n() = () - ()

y n w n x n kk
k

N

() = () -()
=

-

Â
0

1

Adaptive filter

d

e

x y

+

–

FIGURE 7.1. Basic adaptive filter structure.

218 Adaptive Filters

For each specific time n, each coefficient, or weight, wk(n) is updated or replaced
by a new coefficient, based on (7.3), unless the error signal e(n) is zero. After the
filter’s output y(n), the error signal e(n) and each of the coefficients wk(n) are
updated for a specific time n, a new sample is acquired (from an ADC) and the
adaptation process is repeated for a different time. Note that from (7.3), the weights
are not updated when e(n) becomes zero.

The linear adaptive combiner is one of the most useful adaptive filter structures
and is an adjustable FIR filter. Whereas the coefficients of the frequency-selective
FIR filter discussed in Chapter 4 are fixed, the coefficients, or weights, of the adap-
tive FIR filter can be adjusted based on a changing environment such as an input
signal. Adaptive IIR filters (not discussed here) can also be used. A major problem
with an adaptive IIR filter is that its poles may be updated during the adaptation
process to values outside the unit circle, making the filter unstable.

The programming examples developed later will make use of equations
(7.1)–(7.3). In (7.3) we simply use the variable b in lieu of 2b.

7.2 ADAPTIVE STRUCTURES

A number of adaptive structures have been used for different applications in
adaptive filtering.

1. For noise cancellation. Figure 7.2 shows the adaptive structure in Figure 7.1
modified for a noise cancellation application. The desired signal d is corrupted
by uncorrelated additive noise n. The input to the adaptive filter is a noise n¢
that is correlated with the noise n. The noise n¢ could come from the same
source as n but modified by the environment. The adaptive filter’s output y is
adapted to the noise n. When this happens, the error signal approaches the
desired signal d. The overall output is this error signal and not the adaptive
filter’s output y. This structure will be further illustrated with programming
examples using C code.

2. For system identification. Figure 7.3 shows an adaptive filter structure that can
be used for system identification or modeling. The same input is to an
unknown system in parallel with an adaptive filter. The error signal e is the
difference between the response of the unknown system d and the response
of the adaptive filter y. This error signal is fed back to the adaptive filter and

Adaptive filter

d + n

e

n′ y

+

–

FIGURE 7.2. Adaptive filter structure for noise cancellation.

Adaptive Structures 219

is used to update the adaptive filter’s coefficients until the overall output y =
d. When this happens, the adaptation process is finished, and e approaches
zero. In this scheme, the adaptive filter models the unknown system.This struc-
ture is illustrated later with three programming examples.

3. Adaptive predictor. Figure 7.4 shows an adaptive predictor structure which can
provide an estimate of an input. This structure is illustrated later with a pro-
gramming example.

4. Additional structures have been implemented, such as:

(a) Notch with two weights, which can be used to notch or cancel/reduce a
sinusoidal noise signal. This structure has only two weights or coefficients.
This structure is shown in Figure 7.5 and is illustrated in Refs. 1, 3, and 4
using the C31 processor.

(b) Adaptive channel equalization, used in a modem to reduce channel dis-
tortion resulting from the high speed of data transmission over telephone
channels.

Adaptive filter

d

e

x

y

+

–

Unknown
system

FIGURE 7.3. Adaptive filter structure for system identification.

input IN1 = d(n)

IN2

e(n)

y(n)

+
–

Adaptive
filter

Primary input = d + n e(n)

y(n)

y2(n)

y1(n)

x2(n)

x1(n)

+ –

Adaptive
filter

Reference
sinusoid

90°
Delay

FIGURE 7.4. Adaptive predictor structure.

FIGURE 7.5. Adaptive notch structure with two weights.

The LMS is well suited for a number of applications, including adaptive echo and
noise cancellation, equalization, and prediction.

Other variants of the LMS algorithm have been employed, such as the sign-error
LMS, the sign-data LMS, and the sign-sign LMS.

1. For the sign-error LMS algorithm, (7.3) becomes

(7.4)

where sgn is the signum function,

(7.5)

2. For the sign-data LMS algorithm, (7.3) becomes

(7.6)

3. For the sign-sign LMS algorithm, (7.3) becomes

(7.7)

which reduces to

(7.8)

which is more concise from a mathematical viewpoint because no multiplica-
tion operation is required for this algorithm.

The implementation of these variants does not exploit the pipeline features of
the TMS320C6x processor. The execution speed on the TMS320C6x for these vari-
ants can be slower than for the basic LMS algorithm, due to additional decision-
type instructions required for testing conditions involving the sign of the error signal
or the data sample.

The LMS algorithm has been quite useful in adaptive equalizers, telephone
cancelers, and so forth. Other methods, such as the recursive least squares (RLS)
algorithm [4], can offer faster convergence than the basic LMS but at the expense
of more computations. The RLS is based on starting with the optimal solution and
then using each input sample to update the impulse response in order to maintain
that optimality. The right step size and direction are defined over each time sample.

Adaptive algorithms for restoring signal properties can also be found in Ref. 4.
Such algorithms become useful when an appropriate reference signal is not avail-

w n
w n e n x n k

w n
k

k

k

+() =
() + ()[] = -()[]
() -

Ï
Ì
Ó

1
b
b

if

otherwise

sgn sgn

w n w n e n x n kk k+() = () + ()[] -()[]1 b sgn sgn

w n w n e n x n kk k+() = () + () -()[]1 b sgn

sgn u

u

u
() =

- <
Ï
Ì
Ó

1 0

1 0

if

if

�

 w n w n e n x n kk k+() = () + ()[] -()1 b sgn

220 Adaptive Filters

able. The filter is adapted in such a way as to restore some property of the signal
lost before reaching the adaptive filter. Instead of the desired waveform as a tem-
plate, as in the LMS or RLS algorithms, this property is used for the adaptation of
the filter. When the desired signal is available, the conventional approach such as
the LMS can be used; otherwise, a priori knowledge about the signal is used.

7.3 PROGRAMMING EXAMPLES FOR NOISE CANCELLATION AND
SYSTEM IDENTIFICATION

The following programming examples illustrate adaptive filtering using the least
mean squares (LMS) algorithm. It is instructive to read the first example even
though it does not use the DSK, since it illustrates the steps in the adaptive process.

Example 7.1: Adaptive Filter Using C Code Compiled with
Borland C/C++ (Adaptc)

This example applies the LMS algorithm using a C-coded program compiled with
Borland C/C++. It illustrates the following steps for the adaptation process using
the adaptive structure in Figure 7.1:

1. Obtain a new sample for each, the desired signal d and the reference input to
the adaptive filter x, which represents a noise signal.

2. Calculate the adaptive FIR filter’s output y, applying (7.1) as in Chapter 4 with
an FIR filter. In the structure of Figure 7.1, the overall output is the same as
the adaptive filter’s output y.

3. Calculate the error signal applying (7.2).

4. Update/replace each coefficient or weight applying (7.3).

5. Update the input data samples for the next time n, with a data move scheme
used in Chapter 4. Such a scheme moves the data instead of a pointer.

6. Repeat the entire adaptive process for the next output sample point.

Figure 7.6 shows a listing of the program adaptc.c, which implements the LMS
algorithm for the adaptive filter structure in Figure 7.1. A desired signal is chosen
as 2cos(2npf/Fs), and a reference noise input to the adaptive filter is chosen as
sin(2npf/Fs), where f is 1kHz and Fs = 8kHz. The adaptation rate, filter order,
number of samples are 0.01, 22, and 40, respectively.

The overall output is the adaptive filter’s output y, which adapts or converges to
the desired cosine signal d.

The source file was compiled with Borland’s C/C++ compiler. Execute this
program. Figure 7.7 shows a plot of the adaptive filter’s output (y_out) converg-
ing to the desired cosine signal. Change the adaptation or convergence rate b to
0.02 and verify a faster rate of adaptation.

Programming Examples for Noise Cancellation and System Identification 221

222 Adaptive Filters

//Adaptc.c Adaptation using LMS without TI’s compiler

#include <stdio.h>

#include <math.h>

#define beta 0.01 //convergence rate

#define N 21 //order of filter

#define NS 40 //number of samples

#define Fs 8000 //sampling frequency

#define pi 3.1415926

#define DESIRED 2*cos(2*pi*T*1000/Fs) //desired signal

#define NOISE sin(2*pi*T*1000/Fs) //noise signal

main()

{

long I, T;

double D, Y, E;

double W[N+1] = {0.0};

double X[N+1] = {0.0};

FILE *desired, *Y_out, *error;

desired = fopen (“DESIRED”, “w++”); //file for desired samples

Y_out = fopen (“Y_OUT”, “w++”); //file for output samples

error = fopen (“ERROR”, “w++”); //file for error samples

for (T = 0; T < NS; T++) //start adaptive algorithm

{

X[0] = NOISE; //new noise sample

D = DESIRED; //desired signal

Y = 0; //filter’output set to zero

for (I = 0; I <= N; I++)

Y += (W[I] * X[I]); //calculate filter output

E = D - Y //calculate error signal

for (I = N; I >= 0; I--)

{

W[I] = W[I] + (beta*E*X[I]); //update filter coefficients

if (I != 0)

X[I] = X[I-1]; //update data sample

}

fprintf (desired, “\n%10g %10f”, (float) T/Fs, D);

fprintf (Y_out, “\n%10g %10f”, (float) T/Fs, Y);

fprintf (error, “\n%10g %10f”, (float) T/Fs, E);

}

fclose (desired);

fclose (Y_out);

fclose (error);

}

FIGURE 7.6. Adaptive filter program compiled with Borland C/C++ (adaptc.c).

Programming Examples for Noise Cancellation and System Identification 223

FIGURE 7.7. Plot of adaptive filter’s output converging to cosine signal desired.

FIGURE 7.8. Plot of adaptive filter’s output converging to cosine signal desired using
interactive capability with progam adaptive.c.

224 Adaptive Filters

Interactive Adaptation
A version of the program adaptc.c in Figure 7.6, with graphics and interactive
capabilities to plot the adaptation process for different values of b is on the accom-
panying disk as adaptive.c, compiled with Turbo or Borland C/C++. It uses a
desired cosine signal with an amplitude of 1 and a filter order of 31. Execute this
program, enter a b value of 0.01, and verify the results in Figure 7.8. Note that the
output converges to the desired cosine signal. Press F2 to execute this program again
with a different beta value.

Example 7.2: Adaptive Filter for Noise Cancellation (adaptnoise)

This example illustrates the application of the LMS criterion to cancel an undesir-
able sinusoidal noise. Figure 7.9 shows a listing of the program adaptnoise.c,
which implements an adaptive FIR filter using the structure in Figure 7.1. This
program uses a float data format. An integer format version is included on the
accompanying disk as adaptnoise_int.c.

A desired sine wave of 1500Hz with an additive (undesired) sine wave noise of
312Hz forms one of two inputs to the adaptive filter structure. A reference (tem-
plate) cosine signal, with a frequency of 312Hz, is the input to a 30-coefficient
adaptive FIR filter. The 312-Hz reference cosine signal is correlated with the
312-Hz additive sine noise but not with the 1500-Hz desired sine signal.

For each time n, the output of the adaptive FIR filter is calculated and the 30
weights or coefficients are updated along with the delay samples. The “error” signal
E is the overall desired output of the adaptive structure. This error signal is the
difference between the desired signal and additive noise (dplusn), and the adap-
tive filter’s output, y(n).

All signals used are from a lookup table generated with MATLAB. No external
inputs are used in this example. Figure 7.10 shows a MATLAB program adapt-
noise.m (a more complete version is on the disk) that calculates the data values for
the desired sine signal of 1500Hz, the additive noise as a sine of 312Hz, and the ref-
erence signal as a cosine of 312Hz.The appropriate files generated (on the disk) are:

1. dplusn: sine(1500Hz) + sine(312Hz)

2. refnoise: cosine(312Hz)

Figure 7.11 shows the file sin1500.h with sine data values that represent the
1500-Hz sine-wave signal desired. The frequency generated associated with
sin1500.h is

The constant beta determines the rate of convergence.

 f Fs= () () = () =# #of cycles of points Hz8000 24 128 1500

//Adaptnoise.c Adaptive FIR filter for noise cancellation

#include <refnoise.h> //cosine 312Hz
#include <dplusn.h> //sin(1500) + sin(312)
#define beta 1E-9 //rate of convergence
#define N 30 //# of weights (coefficients)
#define NS 128 //# of output sample points
float w[N]; //buffer weights of adapt filter
float delay[N]; //input buffer to adapt filter
short output; //overall output
short out_type = 1; //output type for slider

interrupt void c_int11() //ISR
{
short i;
static short buffercount=0; //init count of # out samples
float yn, E; //output filter/”error” signal

delay[0] = refnoise[buffercount]; //cos(312Hz) input to adapt FIR
yn = 0; //init output of adapt filter

for (i = 0; i < N; i++) //to calculate out of adapt FIR
yn += (w[i] * delay[i]); //output of adaptive filter

E = dplusn[buffercount] - yn; //”error” signal=(d+n)-yn

for (i = N-1; i >= 0; i--) //to update weights and delays
{
w[i] = w[i] + beta*E*delay[i]; //update weights
delay[i] = delay[i-1]; //update delay samples

}
buffercount++; //increment buffer count
if (buffercount >= NS) //if buffercount=# out samples

buffercount = 0; //reinit count

if (out_type == 1) //if slider in position 1
output = ((short)E*10); //”error” signal overall output

else if (out_type == 2)
output=dplusn[buffercount]*10; //desired(1500)+noise(312)

output_sample(output); //overall output result
return; //return from ISR
}

void main()
{
short T=0;
for (T = 0; T < 30; T++)
{
w[T] = 0; //init buffer for weights
delay[T] = 0; //init buffer for delay samples

}
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop
}

FIGURE 7.9. Adaptive FIR filter program for noise cancellation (adaptnoise.c).

225

226 Adaptive Filters

Build and run this project as adaptnoise. Verify the following output result:
The undesired 312-Hz sinusoidal signal is being gradually reduced (canceled), while
the desired 1500-Hz signal remains. Note that in this application the output desired
is the error signal E, which adapts (converges) to the desired signal. A faster rate
of cancellation can be observed with a larger value of beta. However, if beta is
too large, the adaptation process will not be observed since the output would be
shown as the 1500-Hz signal. With the slider is position 2, the output is (dplusn),
the desired 1500-Hz sinusoidal signal with the additive 312-Hz noise signal.

%Adaptnoise.m Generates: dplusn.h, refnoise.h, sin1500.h

for i=1:128

desired(i) = round(100*sin(2*pi*(i-1)*1500/8000)); %sin(1500)

addnoise(i) = round(100*sin(2*pi*(i-1)*312/8000)); %sin(312)

refnoise(i) = round(100*cos(2*pi*(i-1)*312/8000)); %cos(312)

end

dplusn = addnoise + desired; %sin(312) + sin(1500)

fid=fopen(‘sin1500.h’,’w’); %desired sin(1500)

fprintf(fid,’short sin1500[128]={‘);

fprintf(fid,’%d, ‘ ,desired(1:127));

fprintf(fid,’%d’ ,desired(128));

fprintf(fid,’};\n’);

fclose(fid);

% fid=fopen(‘dplusn.h’,’w’); %desired + noise

% fid=fopen(‘refnoise.h’,’w’); %reference noise

short sin1500[128]={0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92, 0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92, 0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92, 0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92, 0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92, 0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92, 0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92, 0, 92, 71, -38, -100, -38, 71, 92, 0, -92, -71, 38,

100, 38, -71, -92};

FIGURE 7.10. MATLAB program to generate data values for sine(1500), sine(1500)
+ sine(312), and cosine(312) (adaptnoise.m).

FIGURE 7.11. MATLAB’s header file generated for sine(1500Hz) with 128 points
(sin1500.h).

Example 7.3: Adaptive FIR Filter for System ID of Fixed FIR (adaptIDFIR)

Figure 7.12 shows a listing of the program adaptIDFIR.c, which models or iden-
tifies an unknown system. See also Example 7.2, which implements an adaptive FIR
for noise cancellation.

To test the adaptive scheme, the unknown system to be identified is chosen as an
FIR bandpass filter with 55 coefficients centered at Fs/4 = 2kHz. The coefficients
of this fixed FIR filter are in the file bp55.cof, introduced in Chapter 4. A 60-
coefficient adaptive FIR filter models the fixed unknown FIR bandpass filter.

A pseudorandom noise sequence is generated within the program (see Exam-
ples 2.16 and 4.4) and becomes the input to both the fixed (unknown) and the
adaptive FIR filters. This input signal represents a training signal. The adaptation
process continues until the error signal is minimized. This feedback error signal is
the difference between the output of the fixed unknown FIR filter and the output
of the adaptive FIR filter.

An extra memory location is used in each of the two delay sample buffers (fixed
and adaptive FIR). This is used to update the delay samples (see method B in
Example 4.8).

Build and run this project as adaptIDFIR (using the C67x floating-point tools).
Verify that the output (adaptfir_out) of the adaptive FIR filter is a bandpass filter
centered at 2kHz (with the slider in position 1 by default). With the slider in posi-
tion 2, verify the output (fir_out) of the fixed FIR bandpass filter centered at
2kHz and represented by the coefficient file bp55.cof. It can be observed that this
output is practically identical to the adaptive filter’s output.

Edit the main program to include the coefficient file BS55.cof (introduced in
Example 4.4), which represents an FIR bandstop filter with 55 coefficients centered
at 2kHz. The FIR bandstop filter represents the unknown system to be identified.

Rebuild/run and verify that the output of the adaptive FIR filter (with the slider
in position 1) is practically identical to the FIR bandstop filter (with the slider in
position 2). Increase (decrease) beta by a factor of 10 to observe a faster (slower)
rate of convergence. Change the number of weights (coefficients) from 60 to 40 and
verify a slight degradation of the identification process.

Example 7.4: Adaptive FIR for System ID of Fixed FIR with Weights
of Adaptive Filter Initialized as an FIR Bandpass (adaptIDFIRw)

The program adaptIDFIR.c in Example 7.3 is modified slightly to create the
program adaptIDFIRW.c (on the accompanying disk). This new program initial-
izes the weights of the adaptive FIR filter with the coefficients of an FIR bandpass
filter centered at 3kHz and represented by the coefficient file bp3000.cof (on the
disk). The weights w[i] within the function main are initialized with the coeffi-
cients in the file bp3000.cof in lieu of zero.

Programming Examples for Noise Cancellation and System Identification 227

228 Adaptive Filters

//AdaptIDFIR.c Adaptive FIR for system ID of an FIR (uses C67 tools)

#include “bp55.cof” //fixed FIR filter coefficients

#include “noise_gen.h” //support noise generation file

#define beta 1E-13 //rate of convergence

#define WLENGTH 60 //# of coefffor adaptive FIR

float w[WLENGTH+1]; //buffer coeff for adaptive FIR

int dly_adapt[WLENGTH+1]; //buffer samples of adaptive FIR

int dly_fix[N+1]; //buffer samples of fixed FIR

short out_type = 1; //output for adaptive/fixed FIR

int fb; //feedback variable

shift_reg sreg; //shift register

int prand(void) //pseudo-random sequence {-1,1}

{

int prnseq;

if(sreg.bt.b0)

prnseq = -8000; //scaled negative noise level

else

prnseq = 8000; //scaled positive noise level

fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1

fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb

sreg.regval<<=1;

sreg.bt.b0=fb; //close feedback path

return prnseq; //return noise sequence

}

interrupt void c_int11() //ISR

{

int i;

int fir_out = 0; //init output of fixed FIR

int adaptfir_out = 0; //init output of adapt FIR

float E; //error=diff of fixed/adapt out

dly_fix[0] = prand(); //input noise to fixed FIR

dly_adapt[0]=dly_fix[0]; //as well as to adaptive FIR

for (i = N-1; i>= 0; i--)

{

fir_out +=(h[i]*dly_fix[i]); //fixed FIR filter output

dly_fix[i+1] = dly_fix[i]; //update samples of fixed FIR

}

FIGURE 7.12. Program to implement adaptive FIR filter that models (identifies) a fixed
FIR filter (adaptIDFIR.c).

Programming Examples for Noise Cancellation and System Identification 229

Build this project as adaptIDFIRw (using the C67x floating-point tools). Ini-
tially, the spectrum of the output of the adaptive FIR filter shows the FIR bandpass
filter centered at 3kHz. Then, gradually, the output spectrum adapts (converges)
to the fixed (unknown) FIR bandpass filter centered at 2kHz (represented by
bp55.cof), while the reference filter gradually phases out. As the adaptation
process takes place, one can observe at some time the two bandpass filters. You may
wish to increase slightly the rate of adaptation (beta).

The adaptation process is illustrated with the CCS plots in Figure 7.13. Figure
7.14 illustrates the real-time adaptation process using an HP dynamic signal
analyzer.

for (i = 0; i < WLENGTH; i++)

adaptfir_out +=(w[i]*dly_adapt[i]); //adaptive FIR filter output

E = fir_out - adaptfir_out; //error signal

for (i = WLENGTH-1; i >= 0; i--)

{

w[i] = w[i]+(beta*E*dly_adapt[i]); //update weights of adaptive FIR

dly_adapt[i+1] = dly_adapt[i]; //update samples of adaptive FIR

}

if (out_type == 1) //slider position for adapt FIR

output_sample(adaptfir_out); //output of adaptive FIR filter

else if (out_type == 2) //slider position for fixed FIR

output_sample(fir_out); //output of fixed FIR filter

return;

}

void main()

{

int T=0, i=0;

for (i = 0; i < WLENGTH; i++)

{

w[i] = 0.0; //init coeff for adaptive FIR

dly_adapt[i] = 0; //init buffer for adaptive FIR

}

for (T = 0; T < N; T++)

dly_fix[T] = 0; //init buffer for fixed FIR

sreg.regval=0xFFFF; //initial seed value

fb = 1; //initial feevack value

comm_intr(); //init DSK, codec, McBSP

while (1); //infinite loop

}

FIGURE 7.12. (Continued)

230 Adaptive Filters

(a) (a) (b) (b)

(c)
(d)

FIGURE 7.13. CCS plots to illustrate adaptation process of adaptive filter: (a) weights
set initially as a 3-kHz bandpass filter; (b) weights starting to converge to a 2-kHz filter;
(c) weights almost converged to 2kHz with the 3-kHz filter reduced; (d) adaptation com-
pleted with convergence to the 2-kHz bandpass filter.

FIGURE 7.14. Real time adaptation process with adaptive filter converging to 2kHz,
obtained with an HP dynamic signal analyzer: (a) showing both the 3- and 2-kHz filters; (b)
converging further to the 3-kHz filter; (c) adapted to the 3-kHz fixed filter.

231

232 Adaptive Filters

Example 7.5: Adaptive FIR for System ID of Fixed IIR (adaptIDIIR)

Figure 7.15 shows a listing of the program adaptIDIIR.c, which uses an adaptive
FIR filter to model or identify a system (fixed unknown IIR). See Example 5.1,
which implements an IIR filter, and Examples 7.3 and 7.4, which implement an adap-
tive FIR filter to model a fixed FIR filter.

To test the adaptive scheme, the unknown system to be identified is chosen as a
36th-order IIR bandpass filter with eighteen second-order stages centered at 2kHz.
The coefficients of this fixed IIR filter are in the file bp2000.cof, introduced in
Example 5.1. A 200-coefficient adaptive FIR filter is to model the fixed unknown
IIR bandpass filter. A larger number of coefficients or weights than for the adap-
tive FIR filter are necessary for a good model of the IIR filter.

A pseudorandom noise sequence is generated (see Example 2.16) and becomes
the input to both the fixed IIR filter and the adaptive FIR filter. The adaptation
process continues until the error signal is minimized. This feedback error signal is
the difference between the output of the fixed unknown IIR filter and the output
of the adaptive FIR filter.

Build and run this project as adaptIDIIR (using the C67x floating-point tools).
Verify that the output (adaptfir_out) converges to (models) the IIR bandpass
filter centered at 2kHz (with the slider initially in position 1). Verify that the output
(iir_out) is the fixed IIR bandpass filter with the slider in position 2.

Include the coefficient file lp2000.cof in lieu of bp2000.cof. The coefficient
file lp2000.cof represents an eighth-order (four second-order stages) IIR
lowpass filter with a cutoff frequency of 2kHz, introduced in Example 5.1. Verify
that the adaptive FIR filter now adapts to the IIR lowpass filter with a cutoff fre-
quency of 2kHz.

Example 7.6: Adaptive Predictor for Cancellation of Narrowband
Interference Added to Desired Wideband Signal (adaptpredict)

The program adaptpredict.c, shown in Figure 7.16, implements an adaptive FIR
predictor for the cancellation of a narrowband interference in the presence of a
wideband signal. The desired wideband signal with an additive narrowband inter-
ference is delayed and becomes the input to a 60-coefficient adaptive FIR filter.

The desired wideband signal is generated with a MATLAB program wbsig-
nal.m, shown in Figure 7.17.This MATLAB program generates a 256-point lookup
table in the file wbsignal.h (on the disk). A random sequence {-1,1} is generated,
scaled, and written into the file wbsignal.h. Since the random sequence is for
a length of 128 with a bit rate of 4kHz, it is up-sampled to a 256-point sequence
with a bit rate of 8kHz. The wideband random sequence generated (with the file
wbsignal.h) represents the signal desired.

The narrowband interference is an external signal. The bandwidth of the inter-
ference is narrow compared with the bandwidth of the random sequence generated

Programming Examples for Noise Cancellation and System Identification 233

//AdaptIDIIR.c Adaptive FIR for system ID of fixed IIR using C67x tools

#include “bp2000.cof” //BP @ 2kHz fixed IIR coeff

#include “noise_gen.h” //support file noise sequence

#define beta 1E-11 //rate of convergence

#define WLENGTH 200 //# of coeff for adaptive FIR

float w[WLENGTH+1]; //buffer coeff for adaptive FIR

int dly_adapt[WLENGTH+1]; //buffer samples of adaptive FIR

int dly_fix[stages][2] = {0}; //delay samples of fixed IIR

int a[stages][3], b[stages][2]; //coefficients of fixed IIR

short out_type = 1; //slider adaptive FIR/fixed IIR

int fb; //feedback variable for noise

shift_reg sreg; //shift register for noise

int prand(void) //pseudo-random sequence {-1,1}

{

int prnseq;

if(sreg.bt.b0)

prnseq = -4000; //scaled negative noise level

else

prnseq= 4000; //scaled positive noise level

fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1

fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 ->fb

sreg.regval<<=1;

sreg.bt.b0=fb; //close feedback path

return prnseq; //return noise sequence

}

interrupt void c_int11() //ISR

{

int i, un, input, yn;

int iir_out=0; //init output of fixed IIR

int adaptfir_out=0; //init output of adaptive FIR

float E; //error signal

dly_fix[0][0] = prand(); //input noise to fixed IIR

dly_adapt[0] = dly_fix[0][0]; //same input to adaptive FIR

input = prand(); //noise as input to fixed IIR

for (i = 0; i < stages; i++) //repeat for each stage

{

un=input-((b[i][0]*dly_fix[i][0])>>15)-((b[i][1]*dly_fix[i][1])>>15);

yn=((a[i][0]*un)>>15)+((a[i][1]*dly_fix[i][0])>>15)

+((a[i][2]*dly_fix[i][1])>>15);

FIGURE 7.15. Program to implement adaptive FIR that models (identifies) a fixed IIR filter
(adaptIDIIR.c).

234 Adaptive Filters

(the wideband signal desired).As a result, the samples of the interference are highly
correlated. On the other hand, the samples of the wideband signal are relatively
uncorrelated.

The characteristics of the narrowband interference permits the estimation of the
narrowband interference from past samples of splusn in the program. The signal
splusn, which represents the desired wideband signal with an additive narrowband

dly_fix[i][1] = dly_fix[i][0]; //update delays of fixed IIR

dly_fix[i][0] = un; //update delays of fixed IIR

input = yn; //in next stage=out previous

}

iir_out = yn; //output of fixed IIR

for (i = 0; i < WLENGTH; i++)

adaptfir_out +=(w[i]*dly_adapt[i]); //output of adaptive FIR

E = iir_out - adaptfir_out; //error as difference of outputs

for (i = WLENGTH; i > 0; i--)

{

w[i] = w[i]+(beta*E*dly_adapt[i]); //update weights of adaptive FIR

dly_adapt[i] = dly_adapt[i-1]; //update samples of adaptive FIR

}

if (out_type == 1) //slider adaptive FIR/fixed IIR

output_sample(adaptfir_out); //output of adaptive FIR

else if (out_type == 2)

output_sample(iir_out); //output of fixed IIR

return; //return to main

}

void main()

{

int i=0;

for (i = 0; i < WLENGTH; i++)

{

w[i] = 0.0; //init coeff of adaptive FIR

dly_adapt[i] = 0.0; //init samples of adaptive FIR

}

sreg.regval=0xFFFF; //initial seed value

fb = 1; //initial feedback value

comm_intr(); //init DSK, codec, McBSP

while (1); //infinite loop

}

FIGURE 7.15. (Continued)

//Adaptpredict.C Adaptive predictor to cancel interference

#include “wbsignal.h” //wide-band signal table look-up
#define beta 1E-14 //rate of convergence
#define N 60 //# of coefficients of adapt FIR
const short bufferlength = NS; //buffer length for wideband signal
short splusn[N+1]; //buffer wideband signal+interference
float w[N+1]; //buffer for weights of adapt FIR
float delay[N+1]; //buffer for input to adapt FIR

interrupt void c_int11() //ISR
{
static short buffercount=0; //init buffer
int i;
float yn, E; //yn=out adapt FIR, error signal
short wb_signal; //wideband desired signal
short noise; //external interference

wb_signal=wbsignal[buffercount]; //wideband signal from look-up table
noise = input_sample(); //external input as interference
splusn[0] = wb_signal + noise; //wideband signal+interference
delay[0] = splusn[3]; //delayed input to adaptive FIR
yn = 0; //init output of adaptive FIR

for (i = 0; i < N; i++)
yn += (w[i] * delay[i]); //output of adaptive FIR filter

E = splusn[0] - yn; //(wideband+noise)-out adapt FIR

for (i = N-1; i >= 0; i--)
{
w[i] = w[i]+(beta*E*delay[i]); //update weights of adapt FIR
delay[i+1] = delay[i]; //update buffer delay samples
splusn[i+1] = splusn[i]; //update buffer corrupted wideband
}

buffercount++; //incr buffer count of wideband
if (buffercount >= bufferlength) //if buffer count=length of buffer
buffercount = 0; //reinit count

output_sample((short)E); //overall output
return;
}

void main()
{
int T = 0;
for (T = 0; T < N; T++) //init variables
{
w[T] = 0.0; //buffer for weights of adaptive FIR
delay[T] = 0.0; //buffer for delay samples
splusn[T] = 0; //buffer for wideband+interference
}
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop
}

FIGURE 7.16. Adaptive predictor program for cancellation of narrowband interference in
the presence of a wideband signal (adaptpredict.c).

236 Adaptive Filters

%wbsignal.m Generates wideband random sequence. Represents one info bit

len_code = 128; %length of random sequence

code = 2*round(rand(1,len_code))-1; %generates random sequence {1,-1}

sample_rate = 2; %up-sampling from 4 to 8kHz

NS = len_code * sample_rate; %length of up-sampled sequence

sig = zeros(1,NS); %initialize random sequence

for i = 1:len_code %obtain up-sampled random sequence

sig((i-1)*sample_rate + 1:i*sample_rate) = code(i);

end;

wbsignal = sig*5000; %scale for p-p amplitude of 500mV

fid=fopen(‘wbsignal.h’,’w’); %open file for wideband signal

fprintf(fid,’#define NS 256 //number of output sample points\n\n’);

fprintf(fid,’short wbsignal[256]={‘);

fprintf(fid,’%d, ‘ ,wbsignal(1:NS-1));

fprintf(fid,’%d’ ,wbsignal(NS));

fprintf(fid,’};\n\n’);

fclose(fid);

return;

FIGURE 7.17. MATLAB program to generate a desired wideband random sequence
(wbsignal.m).

interference, is delayed before becoming the input to the adaptive FIR filter. The
delay is sufficiently long so that the delayed wideband signal is uncorrelated with
the undelayed sample.

The output of the adaptive FIR filter is an estimate of the correlated narrowband
interference. As a result, the error signal E is an estimate of the wideband signal
desired.

Build and run this project as adaptpredict (using the C67x floating-point
tools). Apply a sinusoidal input signal between 1 and 3kHz, representing the
narrowband interference. Run the program and verify that the output spectrum of
the error signal E adapts (converges) to the desired wideband signal, showing the
input interference being gradually reduced.

Change the frequency of the input sinusoidal external interference and observe
the adaptation process repeated to cancel the undesirable external interference. A
faster rate of convergence can be observed by increasing beta by 10.

The wideband signal desired can be observed by outputting wb_signal (in lieu
of E). Furthermore, the wideband signal with additive interference can be observed
using output_sample(splusn[0]). Better results are obtained when the ampli-
tude of the external sinusoidal interference is about three times the amplitude of
the wideband signal desired.

REFERENCES

1. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, Upper Saddle
River, NJ, 1985.

2. B. Widrow and M. E. Hoff, Jr., Adaptive switching circuits, IRE WESCON, 1960, pp.
96–104.

3. B.Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S.Williams, R. H. Hearn, J. R. Zeidler,
E. Dong, Jr., and R. C. Goodlin, Adaptive noise cancelling: principles and applications,
Proceedings of the IEEE, Vol. 63, 1975, pp. 1692–1716.

4. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

5. D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Process-
ing, McGraw-Hill, New York, 2000.

6. S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River, NJ, 1986.

7. J. R. Treichler, C. R. Johnson, Jr., and M. G. Larimore, Theory and Design of Adaptive
Filters, Wiley, New York, 1987.

8. S. M. Kuo and D. R. Morgan, Active Noise Control Systems, Wiley, New York, 1996.

9. K. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley, Reading, MA, 1995.

10. J. Tang, R. Chassaing, and W. J. Gomes III, Real-time adaptive PID controller using the
TMS320C31 DSK, Proceedings of the 2000 Texas Instruments DSPS Fest Conference,
2000.

11. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

12. R. Chassaing et al., Student projects on applications in digital signal processing with C
and the TMS320C30, Proceedings of the 2nd Annual TMS320 Educators Conference,
Texas Instruments, Dallas, TX, 1992.

13. C. S. Linquist, Adaptive and Digital Signal Processing, Steward and Sons, 1989.

14. S. D. Stearns and D. R. Hush, Digital Signal Analysis, Prentice Hall, Upper Saddle River,
NJ, 1990.

15. J. R. Zeidler, Performance analysis of LMS adaptive prediction filters, Proceedings of
the IEEE, Vol. 78, 1990, pp. 1781–1806.

16. S. T. Alexander, Adaptive Signal Processing: Theory and Applications, Springer-Verlag,
New York, 1986.

17. C. F. Cowan and P. F. Grant, eds., Adaptive Filters, Prentice Hall, Upper Saddle River,
NJ, 1985.

18. M. L. Honig and D. G. Messerschmitt, Adaptive Filters: Structures, Algorithms and Appli-
cations, Kluwer Academic, Norwell, MA, 1984.

19. V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability and Performance,
Prentice Hall, Upper Saddle River, NJ, 1995.

20. S. Kuo, G. Ranganathan, P. Gupta, and C. Chen, Design and implementation of adap-
tive filters, IEEE 1988 International Conference on Circuits and Systems, June 1988.

References 237

21. M. G. Bellanger, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, New York,
1987.

22. R. Chassaing and B. Bitler, Adaptive filtering with C and the TMS320C30 digital signal
processor, Proceedings of the 1992 ASEE Annual Conference, June 1992.

23. R. Chassaing, D.W. Horning, and P. Martin,Adaptive filtering with the TMS320C25, Pro-
ceedings of the 1989 ASEE Annual Conference, June 1989.

238 Adaptive Filters

8
Code Optimization

239

• Optimization techniques for code efficiency
• Intrinsic C functions
• Parallel instructions
• Word-wide data access
• Software pipelining

In this chapter we illustrate several schemes that can be used to optimize and
drastically reduce the execution time of your code. These techniques include the
use of instructions in parallel, word-wide data, intrinsic functions, and software
pipelining.

8.1 INTRODUCTION

Begin at a workstation level; for example, use C code on a PC. While code written
in assembly (ASM) is processor-specific, C code can readily be ported from one plat-
form to another. However, optimized ASM code runs faster than C and requires
less memory space.

Before optimizing, make sure that the code is functional and yields correct
results. After optimizing, the code can be so reorganized and resequenced that the
optimization process makes it difficult to follow. One needs to realize that if a C-
coded algorithm is functional and its execution speed is satisfactory, there is no need
to optimize further.

After testing the functionality of your C code, transport it to the C6x platform.
A floating-point implementation can be modeled first, then converted to a fixed-
point implementation if desired. If the performance of the code is not adequate, use

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

different compiler options to enable software pipelining (discussed later), reduce
redundant loops, and so on. If the performance desired is still not achieved, you can
use loop unrolling to avoid overhead in branching. This generally improves the exe-
cution speed but increases code size. You also can use word-wide optimization by
loading/accessing 32-bit word (int) data rather than 16-bit half-word (short) data.
You can then process lower and upper 16-bit data independently.

If performance is still not satisfactory, you can rewrite the time-critical section of
the code in linear assembly, which can be optimized by the assembler optimizer. The
profiler can be used to determine the specific function(s) that need to be optimized
further.

The final optimization procedure that we discuss is a software pipelining
scheme to produce hand-coded ASM instructions [1,2]. It is important to follow the
procedure associated with software pipelining to obtain an efficient and optimized
code.

8.2 OPTIMIZATION STEPS

If the performance and results of your code are satisfactory after any particular step,
you are done.

1. Program in C. Build your project without optimization.

2. Use intrinsic functions when appropriate as well as the various optimization
levels.

3. Use the profiler to determine/identify the function(s) that may need to be
further optimized. Then convert these function(s) in linear ASM.

4. Optimize code in ASM.

8.2.1 Compiler Options

When the optimizer is invoked, the following steps are performed. A C-coded
program is first passed through a parser that performs preprocessing functions and
generates an intermediate file (.if) which becomes the input to an optimizer. The
optimizer generates an .opt file which becomes the input to a code generator for
further optimizations and generates an ASM file.

The options:

1. –o0 optimizes the use of registers.

2. –o1 performs a local optimization in addition to optimizations performed by
the previous option: –o0.

3. –o2 performs a global optimization in addition to the optimizations per-
formed by the previous options: –o0 and –o1.

240 Code Optimization

4. –o3 performs a file optimization in addition to the optimizations performed
by the three previous options: –o0, –o1, and –o2.

The options –o2 and –o3 attempt to do software optimization.

8.2.2 Intrinsic C Functions

There are a number of available C intrinsic functions that can be used to increase
the efficiency of code (see also Example 3.1):

1. int_mpy() has the equivalent ASM instruction MPY, which multiplies the
16 LSBs of a number by the 16 LSBs of another number.

2. int_mpyh() has the equivalent ASM instruction MPYH, which multiplies the
16 MSBs of a number by the 16 MSBs of another number.

3. int_mpylh() has the equivalent ASM instruction MPYLH, which multiplies
the 16 LSBs of a number by the 16 MSBs of another number.

4. int_mpyhl() has the equivalent instruction MPYHL, which multiplies the
16 MSBs of a number by the 16 LSBs of another number.

5. void_nassert(int) generates no code. It tells the compiler that the
expression declared with the assert function is true. This conveys information
to the compiler about alignment of pointers and arrays and of valid opti-
mization schemes, such as word-wide optimization.

6. uint_lo(double) and uint_hi(double) obtain the low and high 32 bits
of a double word, respectively (available on C67x or C64x).

8.3 PROCEDURE FOR CODE OPTIMIZATION

1. Use instructions in parallel so that multiple functional units can be operated
within the same cycle.

2. Eliminate NOPs or delay slots, placing code where the NOPs are.

3. Unroll the loop to avoid overhead with branching.

4. Use word-wide data to access a 32-bit word (int) in lieu of a 16-bit half-word
(short).

5. Use software pipelining, illustrated in Section 8.5.

8.4 PROGRAMMING EXAMPLES USING CODE OPTIMIZATION
TECHNIQUES

Several examples are developed to illustrate various techniques to increase the effi-
ciency of code. Optimization using software pipelining is discussed in Section 8.5.

Programming Examples Using Code Optimization Techniques 241

The dot product is used to illustrate the various optimization schemes. The dot
product of two arrays can be useful for many DSP algorithms, such as filtering
and correlation. The examples that follow assume that each array consists of 200
numbers. Several programming examples using mixed C and ASM code, which
provide necessary background, were given in Chapter 3.

Example 8.1: Sum of Products with Word-Wide Data Access for
Fixed-Point Implementation Using C Code (twosum)

Figure 8.1 shows the C code twosum.c, which obtains the sum of products of two
arrays accessing 32-bit word data. Each array consists of 200 numbers. Separate
sums of products of even and odd terms are calculated within the loop. Outside the
loop, the final summation of the even and odd terms is obtained.

For a floating-point implementation, the function and the variables sum, suml,
and sumh in Figure 8.1 are cast as float, in lieu of int:

float dotp (float a[], float b [])
{

float suml, sumh, sum;
int i;
.
.
.

}

242 Code Optimization

//twosum.c Sum of Products with separate accumulation of even/odd terms

//with word-wide data for fixed-point implementation

int dotp (short a[], short b [])

{

int suml, sumh, sum, i;

suml = 0;

sumh = 0;

sum = 0;

for (i = 0; i < 200; i +=2)

{

suml += a[i] * b[i]; //sum of products of even terms

sumh += a[i + 1] * b[i + 1]; //sum of products of odd terms

}

sum = suml + sumh; //final sum of odd and even terms

return (sum);

}

FIGURE 8.1. C code for sum of products using word-wide data access for separate accu-
mulation of even and odd sum of products terms (twosum.c).

Example 8.2: Separate Sum of Products with C Intrinsic Functions
Using C Code (dotpintrinsic)

Figure 8.2 shows the C code dotpintrinsic.c to illustrate the separate sum of
products using two C intrinsic functions, _mpy and _mpyh, which have the
equivalent ASM instructions MPY and MPYH, respectively. Whereas the even and odd
sum of products are calculated within the loop, the final summation is taken outside
the loop and returned to the calling function.

Example 8.3: Sum of Products with Word-Wide Access for Fixed-Point
Implementation Using Linear ASM Code (twosumlasmfix.sa)

Figure 8.3 shows the linear ASM code twosumlasmfix.sa, which obtains two
separate sums of products for a fixed-point implementation using linear ASM code.
It is not necessary to specify either the functional units or NOPs. Furthermore, sym-
bolic names can be used for registers. The LDW instruction is used to load a 32-bit
word-wide data value (which must be word-aligned in memory when using LDW).
Lower and upper 16-bit products are calculated separately. The two ADD instruc-
tions accumulate separately the even and odd sum of products.

Programming Examples Using Code Optimization Techniques 243

//dotpintrinsic.c Sum of products with C intrinsic functions using C

for (i = 0; i < 100; i++)

{

suml = suml + _mpy(a[i], b[i]);

sumh = sumh + _mpyh(a[i], b[i]);

}

return (suml + sumh);

FIGURE 8.2. Separate sum of products using C intrinsic functions (dotpintrinsic.c).

;twosumlasmfix.sa Sum of Products. Separate accum of even/odd terms

;With word-wide data for fixed-point implementation using linear ASM

loop: LDW *aptr++, ai ;32-bit word ai

LDW *bptr++, bi ;32-bit word bi

MPY ai, bi, prodl ;lower 16-bit product

MPYH ai, bi, prodh ;higher 16-bit product

ADD prodl, suml, suml ;accum even terms

ADD prodh, sumh, sumh ;accum odd terms

SUB count, 1, count ;decrement count

[count] B loop ;branch to loop

FIGURE 8.3. Separate sum of products using linear ASM code for fixed-point implemen-
tation (twosumlasmfix.sa).

Example 8.4: Sum of Products with Double-Word Load for Floating-Point
Implementation Using Linear ASM Code (twosumlasmfloat)

Figure 8.4 shows the linear ASM code twosumlasmfloat.sa to obtain two sepa-
rate sums of products for a floating-point implementation using linear ASM code.
The double-word load instruction LDDW loads a 64-bit data value and stores it in
a pair of registers. Each single-precision multiply instruction MPYSP performs a
32 ¥ 32 multiplication. The sums of products of the lower and upper 32 bits are
performed to yield a sum of both even and odd terms as 32 bits.

Example 8.5: Dot Product with No Parallel Instructions for Fixed-Point
Implementation Using ASM Code (dotpnp)

Figure 8.5 shows the ASM code dotpnp.asm for the dot product with no instruc-
tions in parallel for a fixed-point implementation. A fixed-point implementation can

244 Code Optimization

;twosumlasmfloat.sa Sum of products. Separate accum of even/odd terms

;Using double-word load LDDW for floating-point implementation

loop: LDDW *aptr++, ai1:ai0 ;64-bit word ai0 and ai1

LDDW *bptr++, bi1:bi0 ;64-bit word bi0 and bi1

MPYSP ai0, bi0, prodl ;lower 32-bit product

MPYSP ai1, bi1, prodh ;hiagher 32-bit product

ADDSP prodl, suml, suml ;accum 32-bit even terms

ADDSP prodh, sumh, sumh ;accum 32-bit odd terms

SUB count, 1, count ;decrement count

[count] B loop ;branch to loop

FIGURE 8.4. Separate sum of products with LDDW using linear ASM code for floating-point
implementation (twosumlasmfloat.sa).

;dotpnp.asm ASM Code with no-parallel instructions for fixed-point

MVK .S1 200, A1 ;count into A1

ZERO .L1 A7 ;init A7 for accum

LOOP LDH .D1 *A4++,A2 ;A2=16-bit data pointed by A4

LDH .D1 *A8++,A3 ;A3=16-bit data pointed by A8

NOP 4 ;4 delay slots for LDH

MPY .M1 A2,A3,A6 ;product in A6

NOP ;1 delay slot for MPY

ADD .L1 A6,A7,A7 ;accum in A7

SUB .S1 A1,1,A1 ;decrement count

[A1] B .S2 LOOP ;branch to LOOP

NOP 5 ;5 delay slots for B

FIGURE 8.5. ASM code with no parallel instructions for fixed-point implementation
(dotpnp.asm).

be performed with all C6x devices, whereas a floating-point implementation
requires a C67x platform such as the C6711 DSK.

The loop iterates 200 times. With a fixed-point implementation, each pointer
register A4 and A8 increments to point at the next half-word (16 bits) in each buffer,
whereas with a floating-point implementation, a pointer register increments the
pointer to the next 32-bit word. The load, multiply, and branch instructions must use
the .D, .M, and .S units, respectively; the add and subtract instructions can use any
unit (except .M). The instructions within the loop consume 16 cycles per iteration.
This yields 16 ¥ 200 = 3200 cycles. Table 8.4 shows a summary of several optimiza-
tion schemes for both fixed- and floating-point implementations.

Example 8.6: Dot Product with Parallel Instructions for Fixed-Point
Implementation Using ASM Code (dotpp)

Figure 8.6 shows the ASM code dotpp.asm for the dot product with a fixed-point
implementation with instructions in parallel. With code in lieu of NOPs, the number
of NOPs is reduced.

The MPY instruction uses a cross-path (with .M1x) since the two operands are
from different register files or different paths. The instructions SUB and B are moved
up to fill some of the delay slots required by LDH. The branch instruction occurs
after the ADD instruction. Using parallel instructions, the instructions within the loop
now consume eight cycles per iteration, to yield 8 ¥ 200 = 1600 cycles.

Example 8.7: Two Sums of Products with Word-Wide (32-bit) Data for
Fixed-Point Implementation Using ASM Code (twosumfix)

Figure 8.7 shows the ASM code twosumfix.asm, which calculates two separate
sums of products using word-wide access of data for a fixed-point implementation.
The loop count is initialized to 100 (not 200) since two sums of products are obtained

Programming Examples Using Code Optimization Techniques 245

;dotpp.asm ASM Code with parallel instructions for fixed-point

MVK .S1 200, A1 ;count into A1

|| ZERO .L1 A7 ;init A7 for accum

LOOP LDH .D1 *A4++,A2 ;A2=16-bit data pointed by A4

|| LDH .D2 *B4++,B2 ;B2=16-bit data pointed by B4

SUB .S1 A1,1,A1 ;decrement count

[A1] B .S1 LOOP ;branch to LOOP (after ADD)

NOP 2 ;delay slots for LDH and B

MPY .M1x A2,B2,A6 ;product in A6

NOP ;1 delay slot for MPY

ADD .L1 A6,A7,A7 ;accum in A7,then branch

;branch occurs here

FIGURE 8.6. ASM code with parallel instructions for fixed-point implementation
(dotpp.asm).

per iteration. The instruction LDW loads a word or 32-bit data. The multiply instruc-
tion MPY finds the product of the lower 16 ¥ 16 data, and MPYH finds the product of
the upper 16 ¥ 16 data. The two ADD instructions accumulate separately the even
and odd sums of products. Note that an additional ADD instruction is needed outside
the loop to accumulate A7 and B7. The instructions within the loop consume eight
cycles, now using 100 iterations (not 200), to yield 8 ¥ 100 = 800 cycles.

Example 8.8: Dot Product with No Parallel Instructions for Floating-Point
Implementation Using ASM Code (dotpnpfloat)

Figure 8.8 shows the ASM code dotpnpfloat.asm for the dot product with a
floating-point implementation using no instructions in parallel. The loop iterates
200 times. The single-precision floating-point instruction MPYSP performs a 32 ¥ 32
multiply. Each MPYSP and ADDSP requires three delay slots. The instructions within
the loop consume a total of 18 cycles per iteration (without including three NOPs
associated with ADDSP). This yields a total of 18 ¥ 200 = 3600 cycles. (See Table 8.4
for a summary of several optimization schemes for both fixed- and floating-point
implementations.)

Example 8.9: Dot Product with Parallel Instructions for Floating-Point
Implementation Using ASM Code (dotppfloat)

Figure 8.9 shows the ASM code dotppfloat.asm for the dot product with a
floating-point implementation using instructions in parallel. The loop iterates 200

246 Code Optimization

;twosumfix.asm ASM code for two sums of products with word-wide data

;for fixed-point implementation

MVK .S1 100, A1 ;count/2 into A1

|| ZERO .L1 A7 ;init A7 for accum of even terms

|| ZERO .L2 B7 ;init B7 for accum of odd terms

LOOP LDW .D1 *A4++,A2 ;A2=32-bit data pointed by A4

|| LDW .D2 *B4++,B2 ;A3=32-bit data pointed by B4

SUB .S1 A1,1,A1 ;decrement count

[A1] B .S1 LOOP ;branch to LOOP (after ADD)

NOP 2 ;delay slots for both LDW and B

MPY .M1x A2,B2,A6 ;lower 16-bit product in A6

|| MPYH .M2x A2,B2,B6 ;upper 16-bit product in B6

NOP ;1 delay slot for MPY/MPYH

ADD .L1 A6,A7,A7 ;accum even terms in A7

|| ADD .L2 B6,B7,B7 ;accum odd terms in B7

;branch occurs here

FIGURE 8.7. ASM code for two sums of products with 32-bit data for fixed-point imple-
mentation (twosumfix.asm).

times. By moving the SUB and B instructions up to take the place of some NOPs, the
number of instructions within the loop is reduced to 10. Note that three additional
NOPs would be needed outside the loop to retrieve the result from ADDSP. The
instructions within the loop consume a total of 10 cycles per iteration. This yields a
total of 10 ¥ 200 = 2000 cycles.

Example 8.10: Two Sums of Products with Double-Word-Wide (64-bit) Data
for Floating-Point Implementation Using ASM Code (twosumfloat)

Figure 8.10 shows the ASM code twosumfloat.asm, which calculates two separate
sums of products using double-word-wide access of 64-bit data for a floating-point
implementation. The loop count is initialized to 100 since two sums of products are

Programming Examples Using Code Optimization Techniques 247

;dotpnpfloat.asm ASM with no parallel instructions for floating-point

MVK .S1 200, A1 ;count into A1

ZERO .L1 A7 ;init A7 for accum

LOOP LDW .D1 *A4++,A2 ;A2=32-bit data pointed by A4

LDW .D1 *A8++,A3 ;A3=32-bit data pointed by A8

NOP 4 ;4 delay slots for LDW

MPYSP .M1 A2,A3,A6 ;product in A6

NOP 3 ;3 delay slots for MPYSP

ADDSP .L1 A6,A7,A7 ;accum in A7

SUB .S1 A1,1,A1 ;decrement count

[A1] B .S2 LOOP ;branch to LOOP

NOP 5 ;5 delay slots for B

FIGURE 8.8. ASM code with no parallel instructions for floating-point implementation
(dotpnpfloat.asm).

;dotppfloat.asm ASM Code with parallel instructions for floating-point

MVK .S1 200, A1 ;count into A1

|| ZERO .L1 A7 ;init A7 for accum

LOOP LDW .D1 *A4++,A2 ;A2=32-bit data pointed by A4

|| LDW .D2 *B4++,B2 ;B2=32-bit data pointed by B4

SUB .S1 A1,1,A1 ;decrement count

NOP 2 ;delay slots for both LDW and B

[A1] B .S2 LOOP ;branch to LOOP (after ADDSP)

MPYSP .M1x A2,B2,A6 ;product in A6

NOP 3 ;3 delay slots for MPYSP

ADDSP .L1 A6,A7,A7 ;accum in A7,then branch

;branch occurs here

FIGURE 8.9. ASM code with parallel instructions for floating-point implementation
(dotppfloat.asm).

obtained per iteration. The instruction LDDW loads a 64-bit double-word data value
into a register pair. The multiply instruction MPYSP performs a 32 ¥ 32 multiply. The
two ADDSP instructions accumulate separately the even and odd sums of products.
The additional ADDSP instruction is needed outside the loop to accumulate A7 and
B7. The instructions within the loop consume a total of 10 cycles, using 100 itera-
tions (not 200), to yield a total of 10 ¥ 100 = 1000 cycles.

8.5 SOFTWARE PIPELINING FOR CODE OPTIMIZATION

Software pipelining is a scheme to write efficient code in ASM so that all the func-
tional units are utilized within one cycle. Optimization levels –o2 and –o3 enable
code generation to generate (or attempt to generate) software-pipelined code.

There are three stages associated with software pipelining:

1. Prolog (warm-up). This stage contains instructions needed to build up the
loop kernel (cycle).

2. Loop kernel (cycle). Within this loop, all instructions are executed in parallel.
The entire loop kernel is executed in one cycle, since all the instructions within
the loop kernel stage are in parallel.

3. Epilog (cool-off). This stage contains the instructions necessary to complete
all iterations.

248 Code Optimization

;twosumfloat.asm ASM Code for two sums of products for floating-point

MVK .S1 100, A1 ;count/2 into A1

|| ZERO .L1 A7 ;init A7 for accum of even terms

|| ZERO .L2 B7 ;init B7 for accum of odd terms

LOOP LDDW .D1 *A4++,A3:A2 ;64-bit into register pair A2,A3

|| LDDW .D2 *B4++,B3:B2 ;64-bit into register pair B2,B3

SUB .S1 A1,1,A1 ;decrement count

NOP 2 ;delay slots for LDW

[A1] B .S2 LOOP ;branch to LOOP

MPYSP .M1x A2,B2,A6 ;lower 32-bit product in A6

|| MPYSP .M2x A3,B3,B6 ;upper 32-bit product in B6

NOP 3 ;3 delay slot for MPYSP

ADDSP .L1 A6,A7,A7 ;accum even terms in A7

|| ADDSP .L2 B6,B7,B7 ;accum odd terms in B7

;branch occurs here

NOP 3 ;delay slots for last ADDSP

ADDSP .L1x A7,B7,A4 ;final sum of even and odd terms

NOP 3 ;delay slots for ADDSP

FIGURE 8.10. ASM code with two sums of products for floating-point implementation
(twosumfloat.asm).

8.5.1 Procedure for Hand-Coded Software Pipelining

1. Draw a dependency graph.

2. Set up a scheduling table.

3. Obtain code from the scheduling table.

8.5.2 Dependency Graph

Figure 8.11 shows a dependency graph. A procedure for drawing a dependency
graph follows.

Software Pipelining for Code Optimization 249

LDH LDH

MPY

Product

Sum

ADD

a b

LDH LDH

MPY

Product

Sum

ADD

a b

SUB

Count

Loop

B

SUB

Count

Loop

B

1

1

1

6

5

2

• D1

• L1

• D2

• M1

(a)

(b)

5

FIGURE 8.11. Dependency graph for dotp product: (a) initial stage; (b) final stage.

250 Code Optimization

MPY MPYH

Prodl Prodh

Suml Sumh

ADD

ai bi

SUB

Count Loop

B

5

2 2

1

1

1

5
5 5

• M1x • M2x

• L1

• S1
• S2

• L2

• D1 • D2

LDW LDW

Side A Side B

1

FIGURE 8.12. Dependency graph for two sums of products per iteration.

1. Draw the nodes and paths.

2. Write the number of cycles to complete an instruction.

3. Assign functional units associated with each node.

4. Separate the data path so that the maximum number of units are utilized.

A node has one or more data paths going in and/or out of the node. The numbers
next to each node represent the number of cycles required to complete the associ-
ated instruction. A parent node contains an instruction that writes to a variable;
whereas a child node contains an instruction that reads a variable written by the
parent.

The LDH instructions are considered to be the parents of the MPY instruction since
the results of the two load instructions are used to perform the MPY instruction.
Similarly, the MPY is the parent of the ADD instruction. The ADD instruction is fed
back as input for the next iteration; similarly with the SUB instruction.

Figure 8.12 shows another dependency graph associated with two sums of
products for a fixed-point implementation. The length of the prolog section is the
longest path from the dependency graph in Figure 8.12. Since the longest path is 8,
the length of the prolog is 7, before entering the loop kernel (cycle) at cycle 8.

Software Pipelining for Code Optimization 251

A similar dependency graph for a floating-point implementation can be obtained
using LDW, MPYSP, and ADDSP in lieu of LDH, MPY, and ADD, respectively, in Figure
8.12. Note that the single-precision instructions ADDSP and MPYSP both take four
cycles to complete (three delay slots each).

8.5.3 Scheduling Table

Table 8.1 shows a scheduling table drawn from the dependency graph.

1. LDW starts in cycle 1.

2. MPY and MPYH must start five cycles after the LDWs, due to the four delay slots.
Therefore, MPY and MPYH start in cycle 6.

3. ADD must start two cycles after MPY/MPYH, due to the one delay slot of
MPY/MPYH. Therefore, ADD starts in cycle 8.

4. B has five delay slots and starts in cycle 3, since branching occurs in cycle 9,
after the ADD instruction.

5. SUB instruction must start one cycle before the branch instruction, since the
loop count is decremented before branching occurs. Therefore, SUB starts in
cycle 2.

From Table 8.1, the two LDW instructions are in parallel and are issued in cycles 1,
9, 17, The SUB instruction is issued in cycles 2, 10, 18, This is followed by
the branch (B) instruction issued in cycles 3, 11, 19, The two parallel instruc-
tions MPY and MPYH are issued in cycles 6, 14, 22, The ADD instructions are
issued in cycles 8, 16, 24,

Table 8.1 is extended to illustrate the different stages: prolog (cycles 1 through
7), loop kernel (cycle 8), and epilog (cycles 9, 10, . . . not shown), as shown in Table
8.2. The instructions within the prolog stage are repeated until and including the
loop kernel (cycle) stage. Instructions in the epilog stage (cycles 9, 10, . . .) are to
complete the functionality of the code.

From Table 8.2, an efficient optimized code can be obtained. Note that it is pos-
sible to start processing a new iteration before previous iterations are finished. Soft-
ware pipelining allows us to determine when to start a new loop iteration.

Loop Kernel (Cycle)
Within the loop kernel, in cycle 8, each functional unit is used only once. The
minimum iteration interval is the minimum number of cycles required to wait before
the initiation of a successive iteration. This interval is 1. As a result, a new iteration
can be initiated every cycle.

Within the loop cycle 8, multiple iterations of the loop execute in parallel. In

252 Code Optimization

cycle 8, different iterations are processed at the same time. For example, the ADDs
add data for iteration 1, while MPY and MPYH multiply data for iteration 3,LDWs load
data for iteration 8, SUB decrements the counter for iteration 7, and B branches for
iteration 6. Note that the values being multiplied are loaded into registers five cycles
prior to the cycle when the values are multiplied. Before the first multiplication
occurs, the fifth load has just completed. This software pipeline is eight iterations
deep.

Example 8.11: Dot Product Using Software Pipelining for
a Fixed-Point Implementation

This example implements the dot product using software pipelining for a fixed-point
implementation. From Table 8.2, one can readily obtained the ASM code dotpiped-

TABLE 8.2 Schedule Table of Dot Product after Software Pipelining for Fixed-
Point Implementation

Cycles

Prolog
Loop Kernel

Units 1 2 3 4 5 6 7 8

.D1 LDW LDW LDW LDW LDW LDW LDW LDW

.D2 LDW LDW LDW LDW LDW LDW LDW LDW

.M1 MPY MPY MPY

.M2 MPYH MPYH MPYH

.L1 ADD

.L2 ADD

.S1 SUB SUB SUB SUB SUB SUB SUB

.S2 B B B B B B

TABLE 8.1 Schedule Table of Dot Product before Software Pipelining for Fixed-
Point Implementation

Cycles

Units 1, 9, . . . 2, 10, . . . 3, 11, . . . 4, 12, . . . 5, 13, . . . 6, 14, . . . 7, 15, . . . 8, 16, . . .

.D1 LDW

.D2 LDW

.M1 MPY

.M2 MPYH

.L1 ADD

.L2 ADD

.S1 SUB

.S2 B

Software Pipelining for Code Optimization 253

fix.asm shown in Figure 8.13. The loop count is 100 since two multiplies and two
accumulates are calculated per iteration. The following instructions start in the
following cycles:

Cycle 1: LDW, LDW (also initialization of count, and the accumulators A7 and B7)

Cycle 2: LDW, LDW, SUB

Cycles 3–5: LDW, LDW, SUB, B

Cycles 6–7: LDW, LDW, MPY, MPYH, SUB, B

Cycles 8–107: LDW, LDW, MPY, MPYH, ADD, ADD, SUB, B

Cycle 108: LDW, LDW, MPY, MPYH, ADD, ADD, SUB, B

The prolog section is within cycles 1 through 7; the loop kernel is in cycle 8, where
all the instructions are in parallel; and the epilog section is in cycle 108. Note that
SUB is made conditional to ensure that A1 is no longer decremented once it reaches
zero.

Example 8.12: Dot Product Using Software Pipelining for
a Floating-Point Implementation

This example implements the dot product using software pipelining for a floating-
point implementation. Table 8.3 shows a floating-point version of Table 8.2. LDW
becomes LDDW, MPY/MPYH become MPYSP, and ADD becomes ADDSP. Both MPYSP
and ADDSP have three delays slots. As a result, the loop kernel starts in cycle 10
(not cycle 8). The SUB and B instructions start in cycles 4 and 5, respectively, in lieu
of cycles 2 and 3. ADDSP starts in cycle 10 in lieu of cycle 8. The software pipeline
for a floating-point implementation is 10 deep.

TABLE 8.3 Schedule Table of Dot Product after Software Pipelining for Floating-
Point Implementation

Cycle

Prolog
Loop Kernel

Units 1 2 3 4 5 6 7 8 9 10

.D1 LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW

.D2 LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW

.M1 MPYSP MPYSP MPYSP MPYSP MPYSP

.M2 MPYSP MPYSP MPYSP MPYSP MPYSP

.L1 ADDSP

.L2 ADDSP

.S1 SUB SUB SUB SUB SUB SUB SUB

.S2 B B B B B B

254 Code Optimization

;dotpipedfix.asm ASM code for dot product with software pipelining
;For fixed-point implementation
;cycle 1

MVK .S1 100,A1 ;loop count
|| ZERO .L1 A7 ;init accum A7
|| ZERO .L2 B7 ;init accum B7
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2

;cycle 2
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2
|| [A1] SUB .S1 A1,1,A1 ;decrement count

;cycle 3
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2
|| [A1] SUB .S1 A1,1,A1 ;decrement count
|| [A1] B .S2 LOOP ;branch to LOOP

;cycle 4
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2
|| [A1] SUB .S1 A1,1,A1 ;decrement count
|| [A1] B .S2 LOOP ;branch to LOOP

;cycle 5
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2
|| [A1] SUB .S1 A1,1,A1 ;decrement count
|| [A1] B .S2 LOOP ;branch to LOOP

;cycle 6
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2
|| [A1] SUB .S1 A1,1,A1 ;decrement count
|| [A1] B .S2 LOOP ;branch to LOOP
|| MPY .M1x A2,B2,A6 ;lower 16-bit product into A6
|| MPYH .M2x B2,A2,B6 ;upper 16-bit product into B6

;cycle 7
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2
|| [A1] SUB .S1 A1,1,A1 ;decrement count
|| [A1] B .S2 LOOP ;branch to LOOP
|| MPY .M1x A2,B2,A6 ;lower 16-bit product into A6
|| MPYH .M2x B2,A2,B6 ;upper 16-bit product into B6

;cycles 8-107 (loop cycle)
|| LDW .D1 *A4++,A2 ;32-bit data in A2
|| LDW .D2 *B4++,B2 ;32-bit data in B2
|| [A1] SUB .S1 A1,1,A1 ;decrement count
|| [A1] B .S2 LOOP ;branch to LOOP
|| MPY .M1x A2,B2,A6 ;lower 16-bit product into A6
|| MPYH .M2x B2,A2,B6 ;upper 16-bit product into B6
|| ADD .L1 A6,A7,A7 ;accum in A7
|| ADD .L2 B6,B7,B7 ;accum in B7

;branch occurs here
;cycle 108 (epilog)

ADD .L1x A7,B7,A4 ;final accum of odd/even

FIGURE 8.13. ASM code using software pipelining for fixed-point implementation (dot-
pipedfix.asm).

Software Pipelining for Code Optimization 255

Figure 8.14 shows the ASM code dotpipedfloat.asm, which implements the
floating-point version of the dot product. Since ADDSP has three delay slots, the
accumulation is staggered by four. The accumulation associated with one of
the ADDSP instructions at each loop cycle follows:

Loop Cycle Accumulator (one ADDSP)

1 0
2 0
3 0
4 0
5 p0 ;first product
6 p1 ;second product
7 p3
8 p4
9 p0 + p4 ;sum of first and fifth products

10 p1 + p5 ;sum of second and sixth products
11 p2 + p6
12 p3 + p7
13 p0 + p4 + p8 ;sum of first, fifth, and ninth products
14 p1 + p5 + p9
15 p2 + p6 + p10
16 p3 + p7 + p11
17 p0 + p4 + p8 + p12
. .
. .
. .
99 p2 + p6 + p10 + . . . + p94

100 p3 + p7 + p11 + . . . + p95

This accumulation is shown associated with the loop cycle. The actual cycle is
shifted by 9 (by the cycles in the prolog section). Note that the first product, p0,
is obtained (available) in loop cycle 5 since the first ADDSP starts in loop cycle 1
and has three delay slots. The first product, p0, is associated with the lower 32-
bit term. The second ADDSP (not shown) accumulates the upper 32-bit sum of
products.

A6 contains the lower 32-bit products and B6 contains the upper 32-bit products.
The sum of the lower and upper 32-bit products are accumulated in A7 and B7,
respectively.

The epilog section contains the following instructions associated with the actual
cycle (not loop cycles), as shown in Figure 8.14.

256 Code Optimization

;dotpipedfloat.asm ASM code for dot product with software pipelining

;For floating-point implementation

;cycle 1

MVK .S1 100,A1 ;loop count

|| ZERO .L1 A7 ;init accum A7

|| ZERO .L2 B7 ;init accum B7

|| LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3

;cycle 2

|| LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3

;cycle 3

|| LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3

;cycle 4

|| LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3

|| [A1] SUB .S1 A1,1,A1 ;decrement count

;cycle 5

|| LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3

|| [A1] SUB .S1 A1,1,A1 ;decrement count

|| [A1] B .S2 LOOP ;branch to LOOP

;cycle 6

|| LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3

|| [A1] SUB .S1 A1,1,A1 ;decrement count

|| [A1] B .S2 LOOP ;branch to LOOP

|| MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6

|| MPYSP .M2x B3,A3,B6 ;upper 32-bit product into B6

;cycle 7

|| LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3

|| [A1] SUB .S1 A1,1,A1 ;decrement count

|| [A1] B .S2 LOOP ;branch to LOOP

|| MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6

|| MPYSP .M2x B3,A3,B6 ;upper 32-bit product into B6

;cycle 8

|| LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3

|| [A1] SUB .S1 A1,1,A1 ;decrement count

|| [A1] B .S2 LOOP ;branch to LOOP

|| MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6

|| MPYSP .M2x B3,A3,B6 ;upper 32-bit product into B6

;cycle 9

|| LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3

|| [A1] SUB .S1 A1,1,A1 ;decrement count

|| [A1] B .S2 LOOP ;branch to LOOP

|| MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6

|| MPYSP .M2x B3,A3,B6 ;upper 32-bit product into B6

FIGURE 8.14. ASM code using software pipelining for floating-point implementation
(dotpipedfloat.asm).

Software Pipelining for Code Optimization 257

Cycle Instruction

110 ADDSP
111 ADDSP
112 ADDSP
113 ADDSP
114 NOP
115 ADDSP
116 NOP
117 ADDSP
118–120 NOP 3
121 ADDSP
122–124 NOP 3

In cycles 113 through 116,A7 contains the lower 32-bit sum of products and B7 con-
tains the upper 32-bit sum of products, or:

Cycle A7 for Lower 32 bits (B7 for Upper 32 bits)

113 p0 + p4 + p8 + . . . + p96
114 p1 + p5 + p9 + . . . + p97
115 p2 + p6 + p10 + . . . + p98
116 p3 + p7 + p11 + . . . + p99

;cycles 10-109 (loop kernel)

|| LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3

|| LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3

|| [A1] SUB .S1 A1,1,A1 ;decrement count

|| [A1] B .S2 LOOP ;branch to LOOP

|| MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6

|| MPYSP .M2x B3,A3,B6 ;upper 32-bit product into B6

|| ADDSP .L1 A6,A7,A7 ;accum in A7

|| ADDSP .L2 B6,B7,B7 ;accum in B7

;branch occurs here

;cycles 110-124 (epilog)

ADDSP .L1x A7,B7,A0 ;lower/upper sum of products

ADDSP .L2x A7,B7,B0 ;

ADDSP .L1x A7,B7,A0 ;

ADDSP .L2x A7,B7,B0 ;

NOP ;wait for 1st B0

ADDSP .L1x A0,B0,A5 ;1st two sum of products

NOP ;wait for 2nd B0

ADDSP .L2x A0,B0,B5 ;last two sum of products

NOP 3 ;3 delay slots for ADDSP

ADDSP .L1x A5,B5,A4 ;final sum

NOP 3 ;3 delay slots for final sum

FIGURE 8.14. (Continued)

258 Code Optimization

In cycle 114, A0 = A7 + B7 is available. A0 accumulates the lower and the upper
sum of products, where

A7 = p0 + p4 + p8 + . . . + p96 (lower 32 bits)
B7 = p0 + p4 + p8 + . . . + p96 (upper 32 bits)

In cycle 115, B0 = A7 + B7 is available, where

A7 = p1 + p5 + p9 + . . . + p97 (lower 32 bits)
B7 = p1 + p5 + p9 + . . . + p97 (upper 32 bits)

Similarly, in cycles 116 and 117, A0 and B0 are obtained (available) as

A0 = sum of lower/upper 32 bits of (p2 + p6 + p10 + . . . + p98)
B0 = sum of lower/upper 32 bits of (p3 + p7 + p11 + . . . + p99)

In cycle 119, A5 = A0 + B0 (obtained from cycles 114 and 115). In cycle 121, B5 =
A0 + B0 (obtained from cycles 116 and 117).

The final sum accumulates in A4 and is available after cycle 124.

8.6 EXECUTION CYCLES FOR DIFFERENT OPTIMIZATION SCHEMES

Table 8.4 shows a summary of the different optimization schemes for both fixed-
and floating-point implementations, for a count of 200. The number of cycles can be
obtained for different array sizes, since the number of cycles in the prolog and epilog
stages remain the same.

Note that for a count of 1000, the fixed- and floating-point implementations with
software pipeling take:

Fixed-point: 7 + (count/2) + 1 = 508 cycles

Floating-point: 9 + (count/2) + 15 = 524 cycles

TABLE 8.4 Number of Cycles with Different Optimization Schemes for
Both Fixed- and Floating-Point Implementations (Count = 200)

Number of Cycles

Optimization Scheme Fixed-Point Floating-Point

No optimization 2 + (16 ¥ 200) = 3202 2 + (18 ¥ 200) = 3602
With parallel instructions 1 + (8 ¥ 200) = 1601 1 + (10 ¥ 200) = 2001
Two sums per iteration 1 + (8 ¥ 100) = 801 1 + (10 ¥ 100) + 7 = 1008
With software pipelining 7 + (100) + 1 = 108 9 + (100) + 15 = 124

REFERENCES

1. TMS320C6000 Programmer’s Guide, SPRU198D, Texas Instruments, Dallas, TX, 2000.

2. Guidelines for Software Development Efficiency on the TMS320C6000 VelociTI Architec-
ture, SPRA434, Texas Instruments, Dallas, TX, 1998.

3. TMS320C6000 CPU and Instruction Set, SPRU189F, Texas Instruments, Dallas, TX, 2000.

4. TMS320C6000 Assembly Language Tools User’s Guide, SPRU186G, Texas Instruments,
Dallas, TX, 2000.

5. TMS320C6000 Optimizing Compiler User’s Guide, SPRU 187G,Texas Instruments, Dallas,
TX, 2000.

References 259

9
DSP Applications and
Student Projects

260

This chapter can be used as a source of experiments, projects, and applications, as
well as Refs. 1 to 4.A wide range of projects have been implemented on the floating-
point C30 and C31 processors [5–20] as well as on the fixed-point TMS320C25
[21–26].They range in topics from communications and controls, to neural networks,
and can be used as a source of ideas to implement other projects. The proceedings
from the yearly conferences, published by Texas Instruments, contain a number of
articles based on the TMS320 family of digital signal processors and can be a good
source of project ideas.Texas Instruments’ Web site contains a list of student projects
covering a wide range of applications that have made it to the final rounds of the TI
“DSP and Analog Design Contest Challenge” (which has a $100,000 first prize).
Chapters 6 and 7 and Appendices D–F can also be useful.

I owe a special debt to all the students who have made this chapter possible.
They include students from Roger Williams University and the University of
Massachusetts–Dartmouth, who have contributed to my general background in DSP
applications, in particular the Worcester Polytechnic Institute (WPI) students in my
graduate course “Real-Time DSP,” based on the C6x: Y. Bognadov, J. Boucher, G.
Bowers, D. Ciota, P. DeBonte, B. Greenlaw, S. Kintigh, R. Lara-Montalvo, M. Mellor,
F. Moyse, A. Pandey, I. Progri, V. C. Ramanna, P. Srikrishna, U. Ummethala, L. Wan.
A brief discussion of their projects (and some miniprojects) are included in this
chapter. Two projects on adaptive filtering and graphic equalizers were discussed in
Chapters 6 and 7.

9.1 VOICE SCRAMBLER USING DMA AND USER SWITCHES
(scram16k_sw)

The project scram16k_sw (on the accompanying disk) is an extension of Example
4.9, making use of the three dip switches, USER_SW1 through USER_SW3 (the

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

fourth switch is not used), available on board the DSK. With voice as input, the
output can be unscrambled voice (based on the user switch settings).

The user dip switches are used to determine whether or not to up-sample. The
program can also be used as a loop or filter program, depending on the position
of the switches. USER_SW1 corresponds to the LSB. A setting such as “down/
down/up” represents (001)b and is the first one tested in the program. If true, the
output is scrambled with up-sampling at 16kHz. The following switch positions are
used:

USER_SW1 USER_SW2 USER_SW3

a. 0 0 1 Output scrambled with Fs = 16kHz
b. 1 0 1 Output unscrambled with Fs = 16kHz
c. 1 1 1 Lowpass filtering with Fs = 16kHz
d. 0 1 0 Output scrambled with Fs = 8kHz
e. 1 1 0 Output unscrambled with Fs = 8kHz
f. 0 0 0 Lowpass filtering with Fs = 8kHz
g. 1 0 0 Loop program

scram8k_DMA
The alternative project scram8k_DMA (on the disk) implements the voice scram-
bling scheme using DMA, sampling at 8kHz. It is adapted from the example
codec_edma included with the DSK package. It illustrates the use of DMA with
options within the program to inplement either a loop program, a filter, or the voice
scrambling scheme (without up-sampling).

9.2 PHASE-LOCKED LOOP

The PLL project implements a software-based linear phase-locked loop (PLL). The
basic PLL causes a particular system to track another PLL. It consists of a phase
detector, a loop filter, and a voltage-controlled oscillator. The software PLL is more
versatile. However, it is limited by the range in frequencies that can be covered,
since the PLL function must be executed at least once every period of the input
signal [27–29].

Initially, the PLL was tested using MATLAB, then ported to the C6x using C.
The PLL locks to a sine wave, generated either internally within the program or
from an external source. Output signals are viewed on a scope or on a PC using
DSP/BIOS’s real-time data transfer (RTDX).

Figure 9.1 shows a block diagram of the linear PLL, implemented in two
versions:

1. Using an external input source, with the output of the digitally controlled
oscillator (DCO) to an oscilloscope

Phase-Locked Loop 261

262 DSP Applications and Student Projects

2. Using RTDX with an input sine wave generated from a lookup table and
various signals viewed using Excel

The phase detector, from Figure 9.1, multiplies the input sine wave by the square-
wave output of the DCO. The sum and difference frequencies of the two inputs to
the phase detector produces an output with a high- and a low-frequency compo-
nent, respectively. The low-frequency component is used to control the loop, while
the high-frequency component is filtered out. When the PLL is locked, the two
inputs to the phase detector are at the same frequency but with a quadrature
(90-degree) relationship.

The loop filter is a lowpass filter that passes the low-frequency output compo-
nent of the phase detector while it attenuates the undesired high-frequency com-
ponent. The loop filter is implemented as a single-pole IIR filter with a zero to
improve the loop’s dynamics and stability. The scaled output of the loop filter
represents the instantaneous incremental phase step the DCO is to take. The DCO
outputs a square wave as a Walsh function: +1 for phase between 0 and pi, and -1
for phase between -pi and 0; with incremental phase proportional to the number
at its input.

External
signal
source

A/D
Converter

Software
signal
source

u2, w2, φ2

Phase
detector (Kd)

Loop filter
(F(s), Ka)ud

u1, w1, φ1
uf

Digitally
controlled

oscillator (K0)

RTDX
target

interface

PC

Excel
VB macro

OLE

CCSR
T
D
X

D/A
converter Scope

JTAG

FIGURE 9.1. PLL block diagram.

SB-ADPCM Encoder/Decoder: Implementation of G.722 Audio Coding 263

9.2.1 RTDX for Real-Time Data Transfer

The RTDX feature was used to transfer data to the PC host using a sine wave from
a lookup table as input. A single output channel was created to pass to CCS the
input signal, the output of both the loop filter and the DCO, and time stamps. CCS
buffers these data so that the data can be accessed by other applications on the PC
host. CCS has an interface that allows PC applications to access buffered RTDX
data. Visual Basic Excel was used (LABVIEW, or Visual C++ can also be used) to
display the results on the PC monitor.

9.3 SB-ADPCM ENCODER/DECODER: IMPLEMENTATION OF
G.722 AUDIO CODING

An audio signal is sampled at 16kHz, transmitted at a rate of 64kbits/s, and recon-
structed at the receiving end [30,31].

Encoder
The subband adaptive differential pulse code modulated (SB-ADPCM) encoder
consists of a transmit quadrature mirror filter that splits the input signal into a low-
frequency band, 0 to 4kHz, and a high-frequency band, 4 to 8kHz. The low- and
high-frequency signals are encoded separately by dynamically quantizing an adap-
tive predictor’s output error.The low and the high encoder error signals are encoded
with 6 and 2 bits, respectively.As long as the error signal is small, a negligible amount
of overall quantization noise and good performance can be obtained. The low- and
high-band bits are multiplexed and the result is 8 bits sampled at 8kHz, for a bit
rate of 64kbits/s. Figure 9.2 shows a block diagram of a SB-ADPCM encoder.

Transmit Quadrature Mirror Filter
The transmit quadrature mirror filter (QMF) takes a 16-bit audio signal sampled
at 16kHz and separates it into a low band and a high band. The filter coefficients
represent a 4-kHz lowpass filter. The sampled signal is separated into odd and even
samples, with the effect of aliasing the signals from 4 to 8kHz. This aliasing causes
the high-frequency odd samples to be 180 degrees out of phase with the high-
frequency even samples. The low-frequency even and odd samples are in-phase.
When the odd and even samples are added, after being filtered, the low-frequency

FIGURE 9.2. Block diagram of ADPCM encoder.

Higher subband
ADPCM encoder

Lower subband
ADPCM encoder

Transmit
quadrature
mirror filters

Xin – 16 bits
at 16 kHz or
256 kbits/s

Xout – 8 bits
at 8 kHz or
64 kbits/s

16 bits
at 8 kHz or
128 kbits/s

16 bits
at 8 kHz or
128 kbits/s

2 bits
at 8 kHz or
16 kbits/s

6 bits
at 8 kHz or
48 kbits/s

M
U
X

264 DSP Applications and Student Projects

signals constructively add, while the high-frequency signals cancel each other, pro-
ducing a low-band signal sampled at 8kHz.

The low subband encoder converts the low frequencies from the QMF into an
error signal that is quantized to 6 bits.

Decoder
The decoder decomposes a 64-kbits/s signal into two signals, to form the inputs
to the lower and higher SB-ADPCM decoder, as shown in Figure 9.3. The receive
quadrature mirror filter (QMF) consists of two digital filters to interpolate the
lower- and higher-subband ADPCM decoders from 8 to 16kHz and produce out-
put at a rate of 16kHz. In the higher SB-ADPCM decoder, adding the quantized
difference signal to the signal estimate produces the reconstructed signal.

Components of the ADPCM decoder include an inverse adaptive quantizer,
quantizer adaptation, adaptive prediction, predicted value computation, and recon-
structed signal computation. With input from a CD player, the DSK reconstructed
output signal sound quality was good. Buffered input and reconstructed output data
also confirmed successful results from the decoder.

9.4 ADAPTIVE TEMPORAL ATTENUATOR

An adaptive temporal attenuator (ATA) suppresses undesired narrowband signals
to achieve a maximum signal-to-interference ratio. Figure 9.4 shows a block diagram
of the ATA. The input is passed through delay elements, and the outputs from
selected delay elements are scaled by weights. The output is

where m is a weight vector, r a vector of delayed samples selected from the input
signal, and N the number of samples in m and r. The adaptive algorithm computes
the weights based on the correlation matrix and a direction vector:

where C is a correlation matrix, D a direction vector, and l a scale factor. The
correlation matrix C is computed as an average of the signal correlation over several
samples:

 C m Dk k,d l=[] ◊ [] =0

y k k k iT

i
i

N

[] = ◊ [] = ◊ -[]()
=

-

Âm r m r
0

1

FIGURE 9.3. Block diagram of ADPCM decoder.

64 kbits/s

16 Kbits/s

48 Kbits/s

DMUX

Higher subband
ADPCM decoder

Lower subband
ADPCM decoder

Receive
quadrature
mirror filters

Image Processing 265

where NAV is the number of samples included in the average. The direction vector
D indicates the signal desired:

where wT is the angular frequency of the signal desired, t the delay between samples
that create the output, and N the order of the correlation matrix.

This procedure minimizes the undesired-to-desired ratio (UDR) [32]. UDR is
defined as the ratio of the total signal power to the power of the signal desired, or

where Pd is the power of the signal desired.
MATLAB is used to simulate the ATA, then ported to the C6x for real-time

implementation. Figure 9.5 shows the test setup using a fixed desired signal of
1416Hz and an undesired signal of 1784Hz (which can be varied). From MATLAB,
an optimal value of t is found to minimize UDR.This is confirmed in real time, since
for that value of t (varying t with a GEL file), the undesired signal (initially dis-
played from an HP3561A analyzer) is greatly attenuated.

9.5 IMAGE PROCESSING

This project implements various schemes used in image processing:

UDR total= = [] ◊ [] ◊ []

[] ◊()
=

[] ◊()
P
P

k k k

P k P kd

T

d
T

d
T

m C m

m D m D

, 0 1
2

 D = () ◊ ◊ ◊ -()()[]1 1exp expj j NT T
Tw t w t

C r rk

N
k k

T

i

n

,d d[] = []ƒ -[]()
=

-

Â1

0

1

AV

FIGURE 9.4. Block diagram of adaptive temporal attenuator.

266 DSP Applications and Student Projects

1. Edge detection: for enhancing edges in an image using Sobe’s edge detection

2. Median filtering: nonlinear filter for removing noise spikes in an image

3. Histogram equalization: to make use of image spectrum

4. Unsharp masking: spatial filter to sharpen image, emphasizing high-frequency
components of image

5. Point detection: for emphasizing single-point feature in image

A major issue was using/loading the images as .h files in lieu of using real-time
images (due to the course one-semester time constraint). During the course of this
project, the following evolved: a code example for additive noise with a Gaussian
distribution, with adjustable variance and mean, and a code example on histogram
transformation to map the distribution of one set of numbers to a different distri-
bution (used in image processing).

9.6 FILTER DESIGN AND IMPLEMENTATION USING A MODIFIED
PRONY’S METHOD

This project designs and implements a filter based on a modified Prony’s method
[33–36]. This method is based on the correlation property of the filter’s representa-
tion and does not require computation of any derivatives or an initial guess of the
coefficient vector. The filter’s coefficients are calculated recursively to obtain the
filter’s impulse response.

9.7 FSK MODEM

This project implements a digital modulator/demodulator. It generates 8-ary FSK
carrier tones. The following steps are performed in the program.

FIGURE 9.5. Test setup for adaptive temporal attenuator.

1. The sampled data are acquired as input.

2. The six most significant bits are separated into two 3-bit samples.

3. The most significant portion of the sample data selects an FSK tone.

4. The FSK tone is sent to a demodulator.

5. The FSK tone is windowed using the Hanning window function.

6. DFT (16-point) results are obtained for the windowed FSK tone.

7. DFT results are sent to the function that selects the frequency with the
highest amplitude, corresponding to the upper 3 bits of the sampled data.

8. The process is repeated for the lower 3 bits of the sampled data.

9. The bits are combined and sent to the codec.

10. The gel program allows for an option to interpolate or up-sample the recon-
structed data for a smoother output waveform.

9.8 m-LAW FOR SPEECH COMPANDING

An analog input such as speech is converted into digital form and compressed into
8-bit data. m-Law encoding is a nonuniform quantizing logarithmic compression
scheme for audio signals. It is used in the United States to compress a signal into a
logarithmic scale when coding for transmission. It is widely used in the telecom-
munications field because it improves the signal-to-noise ratio without increasing
the amount of data.

The dynamic range increases while the number of bits for quantization remains
the same. Typically, m-law compressed speech is carried in 8-bit samples. It carries
more information about smaller signals than about larger signals. It is based on the
observation that many signals are statistically more likely to be near a low-signal
level than a high-signal level. As a result, there are more quantization points nearer
the low level.

A lookup table with 256 values is used to obtain the quantization levels from 0
to 7. The table consists of 16 ¥ 16 set of numbers:

Two 0’s

Two 1’s

Four 2’s

Eight 3’s

Sixteen 4’s

Thirty-two 5’s

Sixty-four 6’s

One hundred twenty-eight 7’s

More of the higher-level signals are represented by 7 (from the lookup table).Three
exponent bits are used to represent the levels from 0 to 7, four mantissa bits are
used to represent the next four significant bits, and one bit is used for the sign bit.

m-Law for Speech Companding 267

The 16-bit input data is converted from linear to 8-bit m-law (simulated for trans-
mission), then converted back from m-law to 16-bit linear (simulated as receiving),
then output to the codec.

9.9 VOICE DETECTION AND REVERSE PLAYBACK

This project detects a voice signal from a microphone, then plays it back in the
reverse direction. Two circular buffers are used; an input buffer to hold 80,000
samples (10 seconds of data) continuously being updated, and an output buffer to
play back the input voice signal in the reverse direction. The signal level is moni-
tored and its envelope is tracked to determine whether or not a voice signal is
present.

When a voice signal appears and subsequently dies out, the signal-level monitor
sends a command to start playback. The stored data are transferred from the input
buffer to the output buffer for playback. Playback stops when reaching the end of
the entire signal detected.

The signal-level monitoring scheme includes rectification and filtering (using a
simple first-order IIR filter).An indicator specifies when the signal reaches an upper
threshold.When the signal drops below a low threshold, the time difference between
the start and end is calculated. If this time difference is less than a specified dura-
tion, the program continues into a no-signal state (if noise only). Otherwise, if it is
more than a specified duration, a signal-detected mode is activated.

9.10 MISCELLANEOUS PROJECTS

The following projects were implemented using C/C3x and C2x/C5x code.

9.10.1 Acoustic Direction Tracker

The acoustic direction tracker has been implemented using C/C3x code and is dis-
cussed in Ref. 15. It uses two microphones to capture the signal. From the delay
associated with the signal reaching one of the microphones before the other, a
relative angle where the source is located can be determined. A signal radiated at
a distance from its source can be considered to have a plane wavefront, as shown
in Figure 9.6. This allows the use of equally spaced sensors (many microphones can
be used as acoustical sensors) in a line to ascertain the angle at which the signal is
radiating. Since one microphone is closer to the source than the other, the signal
received by the more-distant microphone is delayed in time. This time shift corre-
sponds to the angle where the source is located and the relative distance between
the microphones and the source. The angle c = arcsin(a/b), where the distance a is
the product of the speed of sound and the time delay (phase/frequency).

Figure 9.7 shows a block diagram of the acoustic signal tracker. Two 128-point

268 DSP Applications and Student Projects

Miscellaneous Projects 269

arrays of data are obtained, cross-correlating the first signal with the second and
then the second signal with the first. The resulting cross-correlation data are decom-
posed into two halves, each transformed using a 128-point FFT. The resulting phase
is the phase difference of the two signals.

9.10.2 Multirate Filter

A filter can be realized with fewer coefficients using multirate processing, than with
an equivalent single-rate approach. The multirate filter is discussed and imple-
mented using C3x/C4x- and C2x/C5x-compatible code [37–44]. Possible applications
include a graphic equalizer, a controlled noise source, and background noise syn-
thesis. Multirate processing uses more than one sampling frequency to perform a
desired processing operation. The two basic operations are decimation, which is

FIGURE 9.6. Signal reception with two microphones.

FIGURE 9.7. Block diagram of acoustic signal tracker.

270 DSP Applications and Student Projects

a sampling-rate reduction, and interpolation, which is a sampling-rate increase
[38–42]. Multirate decimators can reduce the computational requirements of the
filter. A sampling-rate increase by a factor of K can be achieved with interpola-
tion by padding (adding) K - 1 zeros between pairs of consecutive input samples
xi, xi+1. Decimating or interpolating over several stages generally results in better
efficiency.

A binary random signal is fed into a bank of filters that can be used to shape an
output spectrum. Figure 9.8 shows a 10-band multirate filter discussed and imple-
mented using C3x code [37] and C2x/C5x code [43,44]. The frequency range is
divided into 10 octave bands, with each band being 1–3 -octave controllable.

9.10.3 Neural Network for Signal Recognition

The FFT of a signal becomes the input to a neural network, which is trained to rec-
ognize this input signal using a back-propagation learning rule [45,46] implemented
in C. A three-layer neural network using seven nodes (Figure 9.9) was used to illus-
trate the algorithm. Many different rules are available for training a neural network,
and back-propagation has been used for a wide range of applications. Given a set
of inputs, the network is trained to give a desired response. If the network gives the
wrong answer, the network is corrected by adjusting its parameters (weights) so that
the error is reduced. During this correction process, one starts with the output nodes
and propagation is backward to the input nodes.

9.10.4 PID Controller

Both nonadaptive and adaptive controllers using proportional, integral, and
derivative (PID) control algorithm have been implemented in Refs. 6, 47, and 48.

9.10.5 Four-Channel Multiplexer for Fast Data Acquisition

A four-channel multiplexer module was designed and built for this project, imple-
mented in C [6]. It includes an 8-bit flash ADC, a FIFO, a MUX, and a crystal oscil-
lator (2 or 20MHz).An input is acquired through one of the four channels.The FFT
of the input signal is displayed in real time on the PC monitor.

9.10.6 Video Line Rate Analysis

This project is discussed in Refs. 6 and 49 and implemented using C/C3x code. It
analyzes a video signal at the horizontal (line) rate. Interactive algorithms com-
monly used in image processing for filtering, averaging, and edge enhancement
using C code are utilized for this analysis. The source of the video signal is a charge-
coupled device (CCD) camera as input to a module designed and built for this

F
IG

U
R

E
 9

.8
.

F
un

ct
io

na
l b

lo
ck

 d
ia

gr
am

 o
f

10
-b

an
d

m
ul

ti
ra

te
 fi

lt
er

.

271

272 DSP Applications and Student Projects

project. This module include flip-flops, logic gates, and a clock. Displays on the PC
monotor illustrate various effects on one horizontal video line signal from either a
500-kHz or a 3-MHz IIR lowpass filter and from an edge enhancement algorithm.

REFERENCES

1. J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach,
Prentice Hall, Upper Saddle River, NJ, 1998.

2. N. Kehtarnavaz and M. Keramat, DSP System Design Using the TMS320C6000, Pren-
tice Hall, Upper Saddle River, NJ, 2001.

3. N. Dahnoun, DSP Implementation Using the TMS320C6x Processors, Prentice Hall,
Upper Saddle River, NJ, 2000.

4. M. Morrow, T. Welch, C. Cameron, and G. York, Teaching real-time beamforming with
the C6211 DSK and MATLAB, Proceedings of the Texas Instruments DSPS Fest Annual
Conference, 2000.

5. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

FIGURE 9.9. Three-layer neural network with seven nodes.

6. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

7. C. Marven and G. Ewers, A Simple Approach to Digital Signal Processing, Wiley, New
York, 1996.

8. J. Chen and H. V. Sorensen, A Digital Signal Processing Laboratory Using the
TMS320C30, Prentice Hall, Upper Saddle River, NJ, 1997.

9. S. A. Tretter, Communication System Design Using DSP Algorithms, Plenum Press, New
York, 1995.

10. R. Chassaing et al., Student projects on digital signal processing with the TMS320C30,
Proceedings of the 1995 ASEE Annual Conference, June 1995.

11. J.Tang, Real-time noise reduction using the TMS320C31 digital signal processing starter
kit, Proceedings of the 2000 ASEE Annual Conference, 2000.

12. C. Wright, T. Welch III, M. Morrow, and W. J. Gomes III, Teaching real-world DSP
using MATLAB and the TMS320C31 DSK, Proceedings of the 1999 ASEE Annual
Conference, 1999.

13. J. W. Goode and S. A. McClellan, Real-time demonstrations of quantization and pre-
diction using the C31 DSK, Proceedings of the 1998 ASEE Annual Conference, 1998.

14. R. Chassaing and B. Bitler (contributors), Signal processing chips and applications, The
Electrical Engineering Handbook, CRC Press, Boca Raton, FL, 1997.

15. R. Chassaing et al., Digital signal processing with C and the TMS320C30: Senior pro-
jects, Proceedings of the 3rd Annual TMS320 Educators Conference, Texas Instruments,
Dallas, TX, 1993.

16. R. Chassaing et al., Student projects on applications in digital signal processing with C
and the TMS320C30, Proceedings of the 2nd Annual TMS320 Educators Conference,
Texas Instruments, Dallas, TX, 1992.

17. R. Chassaing, TMS320 in a digital signal processing lab, Proceedings of the TMS320
Educators Conference, Texas Instruments, Dallas, TX, 1991.

18. P. Papamichalis, ed., Digital Signal Processing Applications with the TMS320 Family:
Theory, Algorithms, and Implementations, Vols. 2 and 3, Texas Instruments, Dallas, TX,
1989 and 1990.

19. Digital Signal Processing Applications with the TMS320C30 Evaluation Module: Selected
Application Notes, Texas Instruments, Dallas, TX, 1991.

20. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

21. I. Ahmed, ed., Digital Control Applications with the TMS320 Family, Texas Instruments,
Dallas, TX, 1991.

22. A. Bateman and W. Yates, Digital Signal Processing Design, Computer Science Press,
New York, 1991.

23. Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors, Prentice Hall,
Upper Saddle River, NJ, 1990.

24. R. Chassaing,A senior project course in digital signal processing with the TMS320, IEEE
Transactions on Education, Vol. 32, 1989, pp. 139–145.

References 273

25. R. Chassaing, Applications in digital signal processing with the TMS320 digital signal
processor in an undergraduate laboratory, Proceedings of the 1987 ASEE Annual Con-
ference, June 1987.

26. K. S. Lin, ed., Digital Signal Processing Applications with the TMS320 Family: Theory,
Algorithms, and Implementations, Prentice Hall, Upper Saddle River, NJ, Vol. 1, 1988.

27. Roland E. Best, Phase-Locked Loops Design, Simulation, and Applications, 4th ed.,
McGraw-Hill, New York, 1999.

28. W. Li and J. Meiners, Introduction to Phase-Locked Loop System Modeling, SLTT015,
Texas Instruments, Dallas, TX, May 2000.

29. J. P. Hein and J. W. Scott, Z-domain model for discrete-time PLL’s, IEEE Transactions
on Circuits and Systems, Vol. CS-35, Nov. 1988, pp. 1393–1400.

30. ITU-T Recommendation G.722 Audio Coding with 64kbits/s.

31. P. M. Embree, C Algorithms for Real-Time DSP, Prentice Hall, Upper Saddle River,
NJ, 1995.

32. I. Progri and W. R. Michalson, Adaptive spatial and temporal selective attenuator in the
presence of mutual coupling and channel errors, ION GPS-2000.

33. F. Brophy and A. C. Salazar, Recursive digital filter synthesis in the time domain, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-22, 1974.

34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C:
The Art of Scientific Computing, Cambridge University Press, New York, 1992.

35. J. Borish and J. B. Angell, An efficient algorithm for measuring the impulse response
using pseudorandom noise, Journal of the Audio Engineering Society, Vol. 31, 1983.

36. T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley, New York, 1987.

37. R. Chassaing, P. Martin, and R. Thayer, Multirate filtering using the TMS320C30
floating-point digital signal processor, Proceedings of the 1991 ASEE Annual Con-
ference, June 1991.

38. R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice Hall,
Upper Saddle River, NJ, 1983.

39. R. W. Schafer and L. R. Rabiner, A digital signal processing approach to interpolation,
Proceedings of the IEEE, Vol. 61, 1973, pp. 692–702.

40. R. E. Crochiere and L. R. Rabiner, Optimum FIR digital filter implementations for
decimation, interpolation and narrow-band filtering, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. ASSP-23, 1975, pp. 444–456.

41. R. E. Crochiere and L. R. Rabiner, Further considerations in the design of decimators
and interpolators, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-24, 1976, pp. 296–311.

42. M. G. Bellanger, J. L. Daguet, and G. P. Lepagnol, Interpolation, extrapolation, and
reduction of computation speed in digital filters, IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. ASSP-22, 1974, pp. 231–235.

43. R. Chassaing, W. A. Peterson, and D. W. Horning, A TMS320C25-based multirate filter,
IEEE Micro, Oct. 1990, pp. 54–62.

274 DSP Applications and Student Projects

44. R. Chassaing, Digital broadband noise synthesis by multirate filtering using the
TMS320C25, Proceedings of the 1988 ASEE Annual Conference, Vol. 1, June 1988.

45. B. Widrow and R. Winter, Neural nets for adaptive filtering and adaptive pattern
recognition, Computer, Mar. 1988, pp. 25–39.

46. D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cam-
bridge, MA, 1986.

47. J. Tang, R. Chassaing, and W. J. Gomes III, Real-time adaptive PID controller using the
TMS320C31 DSK Proceedings of the 2000 Texas Instruments DSPS Fest Conference,
2000.

48. J.Tang and R. Chassaing, PID controller using the TMS320C31 DSK for real-time motor
control, Proceedings of the 1999 Texas Instruments DSPS Fest Conference, 1999.

49. B. Bitler and R. Chassaing, Video line rate processing with the TMS320C30, Pro-
ceedings of the 1992 International Conference on Signal Processing Applications and
Technology (ICSPAT), 1992.

50. MATLAB,The Language of Technical Computing,Version 6.3, MathWorks, Natick, MA,
1999.

References 275

A
TMS320C6x Instruction Set

276

A.1 INSTRUCTIONS FOR FIXED- AND FLOATING-POINT OPERATIONS

Table A.1 shows a listing of the instructions available for the C6x processors. The
instructions are grouped under the functional units used by these instructions.These
instructions can be used with both fixed- and floating-point C6x processors.

A.2 INSTRUCTIONS FOR FLOATING-POINT OPERATIONS

Table A.2 shows a listing of additional instructions available with the floating-point
processor C67x. These instructions handle floating-point type of operations and are
grouped under the functional units used by these instructions (see also Table A.1).

REFERENCES

1. C6000 CPU and Instruction Set, SPRU189F, Texas Instruments, Dallas, TX, 2000.

2. TMS320 TMS320C6000 Programmer’s Guide, SPRU198D,Texas Instruments, Dallas,TX,
2000.

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

TMS320C6x Instruction Set 277

TABLE A.1 Instructions for Fixed- and Floating-Point Operations

.L Unit .M Unit .S Unit .D Unit

ABS MPY ADD ADD

ADD MPYH ADDK ADDAB

ADDU MPYHL ADD2 ADDAH

AND MPYHLU AND ADDAW

CMPEQ MPYHSLU B disp LDB

CMPGT MPYHSU B IRPa LDBU

CMPGTU MPYHU B NRPa LDH

CMPLT MPYHULS B reg LDHU

CMPLTU MPYHUS CLR LDW

LMBD MPYLH EXT LDB (15-bit offset)b

MV MPYLHU EXTU LDBU (15-bit offset)b

NEG MPYLSHU MV LDH (15-bit offset)b

NORM MPYLUHS MVCa LDHU (15-bit offset)b

NOT MPYSU MVK LDW (15-bit offset)b

OR MPYU MVKH MV

SADD MPYUS MVKLH STB

SAT SMPY NEG STH

SSUB SMPYH NOT STW

SUB SMPYHL OR STB (15-bit offset)b

SUBU SMPYLH SET STH (15-bit offset)b

SUBC SHL STW (15-bit offset)b

XOR SHR SUB

ZERO SHRU SUBAB

SSHL SUBAH

SUB SUBAW

SUBU ZERO

SUB2

XOR

ZERO

a S2 only. b D2 only.

Source: Courtesy of Texas Instruments [1,2].

TABLE A.2 Instructions for Floating-Point Operations

.L Unit .M Unit .S Unit .D Unit

ADDDP MPYDP ABSDP ADDAD

ADDSP MPYI ABSSP LDDW

DPINT MPYID CMPEQDP

DPSP MPYSP CMPEQSP

DPTRUNC CMPGTDP

INTDP CMPGTSP

INTDPU CMPLTDP

INTSP CMPLTSP

INTSPU RCPDP

SPINT RCPSP

SPTRUNC RSQRDP

SUBDP RSQRSP

SUBSP SPDP

Source: Courtesy of Texas Instruments [1,2].

B
Registers for Circular Addressing
and Interrupts

A number of special-purpose registers available on the C6x processor are shown in
Figures B.1 to B.8.

1. Figure B.1 shows the address mode register (AMR) that is used for the cir-
cular mode of addressing. It is used to select one of eight register pointers (A4
through A7, B4 through B7), and two blocks of memories (BK0, BK1) that
can be used as circular buffers.

2. Figure B.2 shows the control status register (CSR) with bit 0 for the global
interrupt enable (GIE) bit.

3. Figure B.3 shows the interrupt enable register (IER).

4. Figure B.4 shows the interrupt flag register (IFR).

5. Figure B.5 shows the interrupt set register (ISR).

6. Figure B.6 shows the interrupt clear register (ICR).

7. Figure B.7 shows the interrupt service table pointer (ISTP).

8. Figure B.8 shows the serial port control register (SPCR).

In Section 3.7.2 we discuss the AMR register and in Section 3.14 the interrupt
registers.

REFERENCE

1. C6000 CPU and Instruction Set, SPRU189F, Texas Instruments, Dallas, TX, 2000.

278

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

Registers for Circular Addressing and Interrupts 279

FIGURE B.1. Address mode register (AMR). (Courtesy of Texas Instruments.)

FIGURE B.2. Control status register (CSR). (Courtesy of Texas Instruments.)

FIGURE B.3. Interrupt enable register (IER). (Courtesy of Texas Instruments.)

FIGURE B.4. Interrupt flag register (IFR). (Courtesy of Texas Instruments.)

280 Registers for Circular Addressing and Interrupts

FIGURE B.5. Interrupt set register (ISR). (Courtesy of Texas Instruments.)

FIGURE B.6. Interrupt clear register (ICR). (Courtesy of Texas Instruments.)

FIGURE B.7. Interrupt service table pointer (ISTP). (Courtesy of Texas Instruments.)

FIGURE B.8. Serial port control register (SPCR). (Courtesy of Texas Instruments.)

C
Fixed-Point Considerations

The C6711 is a floating-point processor capable of performing both integer and
floating-point operations. Both the C6711 and the AD535 codec support 2’s-
complement arithmetic. It is thus appropriate here to review some fixed-point
concepts [1].

In a fixed-point processor, numbers are represented in integer format. In a float-
ing-point processor, both fixed- and floating-point arithmetic can be handled. With
the floating-point processor C6711, a much greater range of numbers can be repre-
sented than with a fixed-point processor.

The dynamic range of an N-bit number based on 2’s-complement representation
is between -(2N-1) and (2N-1 - 1), or between -32,768 and 32,767 for a 16-bit system.
By normalizing the dynamic range between -1 and 1, the range will have 2N sec-
tions, where 2-(N-1) is the size of each section starting at -1 up to 1 - 2-(N-1). For a
4-bit system, there would be 16 sections, each of size 1/8, from -1 to 7/8 .

C.1 BINARY AND TWO’S-COMPLEMENT REPRESENTATION

To make illustrations more manageable, a 4-bit system is used rather than a 32-bit
word length. A 4-bit word can represent the unsigned numbers 0 through 15, as
shown in Table C.1.

The 4-bit unsigned numbers represent a modulo (mod) 16 system. If 1 is added
to the largest number (15), the operation wraps around to give 0 as the answer.
Finite bit systems have the same modulo properties as do number wheels on com-
bination locks. Therefore, a number wheel graphically demonstrates the addition
properties of a finite bit system. Figure C.1 shows a number wheel with the numbers
0 through 15 wrapped around the outside. For any two numbers x and y in the range,
the operation amounts to the following procedure:

281

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

282 Fixed-Point Considerations

1. Find the first number x on the wheel.

2. Step off y units in the clockwise direction, which brings you to the answer.

For example, consider the addition of the two numbers (5 + 7) mod 16, which yields
12. From the number wheel, locate 5, then step 7 units in the clockwise direction to
arrive at the answer, 12. As another example, (12 + 10) mod16 = 6. Starting with 12
on the number wheel, step 10 units clockwise, past zero, to 6.

Negative numbers require a different interpretation of the numbers on the wheel.
If we draw a line through 8 cutting the number wheel in half, the right half will
represent the positive numbers and the left half the negative numbers, as shown in
Figure C.2.This representation is the 2’s-complement system.The negative numbers
are the 2’s complement of the positive numbers, and vice versa.

TABLE C.1 Unsigned Binary Number

Binary Decimal

0000 0
0001 1
0010 2
0011 3
. .
. .
. .
1110 14
1111 15

FIGURE C.1. Number wheel for unsigned integers.

Binary and Two’s-Complement Representation 283

A 2’s-complement binary integer,

is equivalent to the decimal integer

where the b’s are binary digits.The sign bit has a negative weight; all the others have
positive weights. For example, consider the number -2,

To apply the graphical technique to the operation 6 + (-2) mod16 = 4, locate 6 on
the wheel, then step off (1110) units clockwise to arrive at the answer 4.

The binary addition of these same numbers,

0110
1110

10100
C

shows a carry in the most significant bit, which in the case of a finite register arith-
metic, will be ignored. This carry corresponds to the wraparound through zero on

1110 1 2 1 2 1 2 0 2 8 4 2 0 23 2 1 0= - ¥ + ¥ + ¥ + ¥ = - + + + = -

I B b b bn
n() = - ¥ + ◊ ◊ ◊ + ¥ + ¥-

-
1

1
1

1
0

02 2 2

 B b b bn= ◊ ◊ ◊-1 1 0

FIGURE C.2. Number wheel for signed integers.

284 Fixed-Point Considerations

the number wheel. The addition of these two numbers results in correct answers, by
ignoring the carry in the most significant bit position, provided that the answer is in
the range of representable numbers -2n-1 to (2n-1 - 1) in the case of an n-bit number,
or between -8 and 7 for the 4-bit number wheel example. When -7 is added to -8
in the 4-bit system, we get an answer of +1 instead of the correct value of -15, which
is out of range.When two numbers of like sign are added to produce an answer with
opposite sign, overflow has occurred. Subtraction with 2’s-complement numbers is
equivalent to adding the 2’s complement of the number being subtracted to the
other number.

C.2 FRACTIONAL FIXED-POINT REPRESENTATION

Rather than using the integer values just discussed, a fractional fixed-point number
that has values between +0.99 . . . and -1 can be used. To obtain the fractional n-bit
number, the radix point must be moved n - 1 places to the left. This leaves one sign
bit plus n - 1 fractional bits. The expression

converts a binary fraction to a decimal fraction. Again, the sign bit has a weight of
negative 1 and the weights of the other bits are positive powers of 1/2. The number
wheel representation for the fractional 2’s-complement 4-bit numbers is shown in
Figure C.3. The fractional numbers are obtained from the 2’s-complement integer
numbers of Figure C.2 by scaling them by 23. Because the number of bits in a 4-bit

F B b b b bn
n() = - ¥ + ¥ + ¥ + ◊ ◊ ◊ + ¥- -

-
- -()

0
0

1
1

2
2

1
12 2 2 2

FIGURE C.3. Number wheel for fixed-point representation.

Multiplication 285

system is small, the range is from -1 to 0.875. For a 16-bit word, the signed integers
range from -32,768 to +32,767. To get the fractional range, scale those two signed
integers by 2-15 or 32,768, which results in a range from -1 to 0.999969 (usually taken
as 1).

C.3 MULTIPLICATION

If one multiplies two n-bit numbers, the common notion is that a 2n-bit operand
will result. Although this is true for unsigned numbers, it is not so for signed
numbers. As shown before, sign numbers need one sign bit with a weight of -2n-1,
followed by positive weights that are powers of 2. To find the number of bits needed
for the result, multiply the two largest numbers together:

This number is a positive number representable in (2n - 1) bits. The most signifi-
cant bit of this result occupies the (2n - 2) bit position counting from 0. Since this
number is positive, its sign bit, which would show up as a negative number (a power
of 2), does not appear. This is an exceptional case, which is treated as an overflow
in fractional representation. Since the fractional representation requires that
both operand and resultant occupy the same range, -1 � range < +1, the operation
(-1) ¥ (-1) produces an unrepresentable number, +1.

Consider the next larger combination:

Since the second number subtracts from the first, the product will occupy up to the
(2n - 3) bit position, counting from 0. Thus, it is representable in (2n - 2) bits. With
the exceptional case ruled out, this makes the bit position (2n - 2) available for the
sign bit of the resultant. Therefore, (2n - 1) bits are needed to support an (n x n)-
bit signed multiplication.

To clarify the preceding equation, consider the 4-bit case, or

The number 26 occupies bit position 6. Since the second number is negative, the
summation of the two is a number that will occupy only bit positions less than bit
position 6, or

Thus bit position 6 is available for the sign bit. The 8-bit equivalent would have two
sign bits (bits 6 and 7). The C6x supports signed and unsigned multiplies and there-
fore provides 2n bits for the product.

 2 2 64 8 56 001110006 3- = - = =

 P = -() - +() = -2 2 1 2 23 3 6 3

 P
n n n n= -() - +() = -- - - -2 2 1 2 21 1 2 2 1

 P
n n n= -() -() =- - -2 2 21 1 2 2

286 Fixed-Point Considerations

Consider the multiplication of two fractional 4-bit numbers, with each number
consisting of 3 fractional bits and 1 sign bit. Let the product be represented by an
8-bit number. The first number is -0.5 and the second number is 0.75; the multi-
plication is as follows:

-0.50 = 1.100
¥0.75 = 0.110

11111000
111000

111.101000
C

= -21 + 20 + 2-1 + 2-3 = -0.375

The underlined bits of the multiplicand indicate sign extension. When a negative
multiplicand is added to the partial product, it must be sign-extended to the left up
to the limit of the product, in order to give the proper larger bit version of the same
number. To demonstrate that sign extension gives the correct expanded bit number,
scan around the number wheel in Figure C.2 in the counterclockwise direction from
0.Write the codes for 5-bit, 6-bit, 7-bit, . . . negative numbers. Notice that they would
be derived correctly by sign-extending the existing 4-bit codes; therefore, sign exten-
sion gives the correct expanded bit number. The carry-out will be ignored; however,
the numbers 111.101000 (9-bit word), 11.101000 (8-bit word), and 1.101000 (7-bit
word) all represent the same number: -0.375. Thus, the product of the preceding
example could be represented by (2n - 1) bits, or 7 bits for a 4-bit system.

When two 16-bit numbers are multiplied to produce a 32-bit result, only 31 bits
are needed for the multiply operation. As a result, bit 30 is sign-extended to bit 31.
The extended bits are frequently called sign bits.

Consider the following example: to multiply (0101)2 by (1110)2, which is equiva-
lent to multiplying 5 by -2 in decimal, which would result in -10. This result is
outside the dynamic range {-8,7} of a 4-bit system. Using a Q-3 format, this corre-
sponds to multiplying 0.625 by -0.25, yielding a result of -0.15625, which is within
the fractional range.

When two Q-15 format numbers (each with a sign bit) are multiplied, the result
is a Q-30 format number with one extra sign bit. The most significant bit is the extra
sign bit. One can shift right by 15 to retain the most significant bits and only one of
the two sign bits. By shifting right by 15 (dividing by 215) to be able to store the
result into a 16-bit system, this discards the 15 least significant bits, thereby losing
some precision. One is able to retain high precision by keeping the most significant
15 bits. With a 32-bit system, a left shift by one bit would suffice to get rid of the
extra sign bit.

Note that when two Q-15 numbers, represented with a range of -1 to 1, are mul-
tiplied, the resulting number remains within the same range. However, the addition

Reference 287

of two Q-15 numbers can produce a number outside this range, causing overflow.
Scaling would then be required to correct this overflow.

Since the AD535 is a 16-bit system, a 32-bit result must eventually be truncated
or rounded to 16 bits. The most significant bits, along with the sign bit and its dupli-
cate, are in the high end of the accumulating 32-bit register of the C6x. The result
in the high end of the accumulating register is left-shifted to eliminate the extra sign
bit and to give an additional bit of resolution when moved to a 16-bit location.

REFERENCE

1. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

D
MATLAB Support Tools

Several support tools using MATLAB [1,2] are described in this appendix:

1. Filter designer SPTOOL for FIR and IIR filter design using a graphical user
interface (GUI); RTSPTOOL as an extension to SPTOOL

2. FIR and IIR filter design using functions available with the Student Version
of MATLAB

3. Bilinear transformation

4. FFT and IFFT

D.1 MATLAB GUI FILTER DESIGNER SPTOOL FOR FIR FILTER DESIGN

MATLAB provides a graphical user interface (GUI) filter designer SPTOOL for
the design of FIR (and IIR) filters.

Example D.1: MATLAB GUI Filter Designer SPTOOL for FIR Filter Design

1. From MATLAB, type the following:

>>sptool

to access MATLAB’s GUI filter designer SPTOOL for the design of both FIR
and IIR filters.

2. From the startup window startup.spt, select a new design and use the char-
acteristics shown in Figure D.1 to design an FIR bandstop filter centered at

288

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

MATLAB GUI Filter Designer SPTOOL for FIR Filter Design 289

2700Hz. The filter contains N = 89 coefficients (MATLAB shows order as
N - 1) and uses the Kaiser window function. The real-time implementation
of this filter is tested in Example 4.1.

3. When finished, access the startup window again. Select Æ Edit Æ Name.
Change name (enter new variable name) to bs2700.

4. Select File Æ Export Æ Export to Workspace the bs2700 design.

5. Access MATLAB’s workspace and type the following two commands:

>>bs2700.tf.num;
>>round(bs2700.tf.num*2^15)

to find the numerator coefficients of the transfer function, and scale them by
215. The scaled coefficients of the FIR bandstop filter should be listed within
the workspace as

-14 23 -9 . . . 23 -14

These coefficients are contained in the file bs2700.cof, shown in Figure D.2
and used in Example 4.1.

FIGURE D.1. MATLAB’s filter designer SPTOOL window displaying the characteristics of
an FIR bandstop filter centered at 2700Hz.

290 MATLAB Support Tools

Real-Time SPTOOL (RTSPTOOL)
Real-time SPTOOL (RTSPTOOL) provides a direct interface for the DSK [3–5]
for filter design and implementation (within the MATLAB’s environment) on the
DSK in real time. RTSPTOOL’s window is similar to SPTOOL’s filter designer
window, with additional toolbars to run the filter in real time on the DSK. Upon
pressing an appropriate toolbar, the filter is designed and the coefficients are scaled
and saved into an appropriate file that is included in a generic FIR program.
MATLAB’s file filtdes.m was modified to provide that interface to the DSK. A
(MATLAB .m) function accesses CCS code generation tools to compile/assemble,
link, and load/run the resulting executable file on the DSK (load/run using
dsk6xldr filename.out).

D.2 MATLAB GUI FILTER DESIGNER SPTOOL FOR IIR FILTER DESIGN

Section D.1 illustrates the design of FIR filters using MATLAB’s GUI filter designer
SPTOOL. Some of the same procedures are used for the design of IIR filters
as well.

Example D.2: MATLAB GUI Filter Designer SPTOOL for IIR Filter Design

Figure D.3 shows MATLAB’s filter designer SPTOOL displaying the characteris-
tics of a tenth-order IIR bandstop filter centered at 1750Hz. MATLAB shows the
order as 5, which represents the number of second-order sections. Save it as bs1750
(see Example D.1). Export the coefficients to the workspace as with the previous
FIR design. From MATLAB’s workspace, type the following commands:

>>[z,p,k] = tf2zp(bs1750.tf.num, bs1750.tf.den);
>>sec_ord_sec = zp2sos(z,p,k);
>>sec_ord_sec = round(sec_ord_sec*2^15)

//BS2700.cof FIR bandstop coefficients designed with MATLAB

#define N 89 //number of coefficients

short h[N]={-14,23,-9,-6,0,8,16,-58,50,44,-147,119,67,-245,200,72,

-312,257,53,-299,239,20,-165,88,0,105,-236,33,490,-740,158,932,-1380,

392,1348,-2070,724,1650,-2690,1104,1776,-3122,1458,1704,29491,1704,

1458,-3122,1776,1104,-2690,1650,724,-2070,1348,392,-1380,932,158,-740,

490,33,-236,105,0,88,-165,20,239,-299,53,257,-312,72,200,-245,67,119,

-147,44,50,-58,16,8,0,-6,-9,23,-14};

FIGURE D.2. Coefficient file for an FIR bandstop filter centered at 2700Hz designed using
MATLAB’s filter designer SPTOOL (bs2700.cof).

MATLAB GUI Filter Designer SPTOOL for IIR Filter Design 291

The first command finds the roots of the numerator and the denominator (zeros and
poles) and converts the results (scaled) into a format for implementation as second-
order sections. The resulting numerator and denominator coefficients should be
listed as

27940 -10910 27940 32768 -11417 25710
.
.
.
32768 -14239 32768 32768 -15258 32584

These 30 coefficients represent the numerator coefficients a0, a1, and a2 and the
denominator coefficients b0, b1, and b2. They represent six coefficients per stage,
with b0 normalized to 1 and scaled by 215 = 32,768. These coefficients are contained
in the file bs1750.cof, listed in Figure D.4 and used in Example 5.1. Figure D.4
shows 25 coefficients (in lieu of 30). Since the coefficient b0 is always normalized
to 1, it is not used in the program. As with the FIR design, this IIR bandstop
filter can be implemented in real time with a push of a button within RTSPTOOL
[3,4].

FIGURE D.3. MATLAB’s filter designer SPTOOL window displaying the characteristics of
an IIR bandstop filter centered at 1750Hz.

292 MATLAB Support Tools

D.3 MATLAB FOR FIR FILTER DESIGN USING THE STUDENT VERSION

FIR filters can be designed using the Student Version [2] of the MATLAB software
package [1]. See also Section D.1 for the design of FIR filters using MATLAB’s
GUI filter designer SPTOOL.

Example D.3: FIR Filter Design Using MATLAB’s Student Version

Figure D.5 shows a listing of a MATLAB program mat33.m to design a 33-
coefficient FIR bandpass filter. The function remez uses the Parks–McClellan algo-
rithm based on the Remez exchange algorithm and Chebyshev’s approximation
theory. The desired filter has a center frequency of 1kHz with a sampling frequency
of 10kHz. The frequency v represents the normalized frequency variable, defined
as v = f/FN, where FN is the Nyquist frequency. The bandpass filter is represented by
three bands:

1. The first band (stopband) has normalized frequencies between 0 and 0.1 (0 to
500Hz), with a corresponding magnitude of 0.

2. The second band (passband) has normalized frequencies between 0.15 and
0.25 (750 to 1250Hz), with a corresponding magnitude of 1.

3. The third band (stopband) has normalized frequencies between 0.3 and the
Nyquist frequency of 1 (1500 to 5000Hz), with a corresponding magnitude
of 0.

//bs1750.cof IIR bandstop coefficient file, centered at 1,750 Hz

#define stages 5 //number of 2nd-order stages

int a[stages][3]= { //numerator coefficients

{27940, -10910, 27940}, //a10, a11, a12 for 1st stage

{32768, -11841, 32768}, //a20, a21, a22 for 2nd stage

{32768, -13744, 32768}, //a30, a31, a32 for 3rd stage

{32768, -11338, 32768}, //a40, a41, a42 for 4th stage

{32768, -14239, 32768} };

int b[stages][2]= { //*denominator coefficients

{-11417, 25710}, //b11, b12 for 1st stage

{-9204, 31581}, //b21, b22 for 2nd stage

{-15860, 31605}, //b31, b32 for 3rd stage

{-10221, 32581}, //b41, b42 for 4th stage

{-15258, 32584} }; //b51, b52 for 5th stage

FIGURE D.4. Coefficient file for an IIR bandstop filter centered at 1750Hz, designed using
MATLAB’s filter designer SPTOOL (bs1750.cof).

MATLAB for FIR Filter Design Using the Student Version 293

Run this program from MATLAB and verify the magnitude response of the ideal
desired filter plotted within MATLAB in Figure D.6. Note that the frequencies
750 and 1250 Hz represent passband frequencies with normalized frequencies of
0.15 and 0.25, respectively, and associated magnitudes of 1. The frequencies 500 and
1500Hz represent stopband frequencies with normalized frequencies of 0.1 and
0.3, respectively, and associated magnitudes of 0. The last normalized frequency
value of 1 corresponds to the Nyquist frequency of 5000Hz and has a magnitude
of zero. The program generates a set of 33 coefficients saved in the coefficient file
matbp33 .cof in ASCII format.

Example D.4: Multiband FIR Filter Design Using MATLAB

This example extends the preceding three-band example to a five-band design in
order to obtain two passbands. The program mat63.m (Figure D.7) is similar to
the preceding MATLAB program, mat33.m. This filter with two passbands is

%Mat33.m MATLAB program for FIR Bandpass with 33 coefficients Fs=10 kHz

nu= [0 0.1 0.15 0.25 0.3 1]; %normalized frequencies

mag= [0 0 1 1 0 0]; %magnitude at normalized frequencies

c=remez (32,nu,mag); %invoke remez algorithm for 33 coeff

bp33=c’; % coeff values transposed

save matpb33.cof bp33 -ascii; %save in ASCII file with coefficients

[h,w] =freqz (c,1,256); %frequency response with 256 points

plot(5000*nu,mag,w/pi,abs(h)) %plot ideal magnitude response

FIGURE D.5. MATLAB program for FIR filter design (mat33.m).

0
0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1.2

1

0.8

0.6

0.4

0.2

FIGURE D.6. Frequency response of the FIR bandpass filter desired, obtained with
MATLAB.

294 MATLAB Support Tools

represented by a total of five bands: the first band (stopband) has normalized fre-
quencies between 0 and 0.1 (0 to 500Hz), with corresponding magnitude of 0; the
second band (passband) has normalized frequencies between 0.12 and 0.18 (600 to
900Hz), with a corresponding magnitude of 1, and so on. This is summarized as
follows:

Band Frequency (Hz) Normalized f/FN Magnitude

1 0–500 0–0.1 0
2 600–900 0.12–0.18 1
3 1000–1500 0.2–0.3 0
4 1600–1900 0.32–0.38 1
5 2000–5000 0.4–1 0

Run this program from MATLAB and verify the magnitude response of the ideal
two-passband filter in Figure D.8. This program generates a set of 63 coefficients
saved into the coefficient file mat2bp.cof in ASCII format.

D.4 MATLAB FOR IIR FILTER DESIGN USING THE STUDENT VERSION

MATLAB can also be used for the design of IIR filters using the Student Edition
of MATLAB. See also Section D.2 for the design of IIR filters using MATLAB’s
GUI filter designer SPTOOL.

Example D.5: IIR Filter Design Using MATLAB’s Student Version

The function yulewalk, available in MATLAB, allows for the design of recursive
filters based on a best least squares fit [1,2]. Consider again the MATLAB program
mat33.m in Figure D.5 to obtain a 33-coefficient FIR bandpass filter centered at
1000Hz. In lieu of the remez function for an FIR design, the MATLAB command

>>[a,b] = yulewalk(n,nu,mag)

%Mat63.m MATLAB program for two passbands, 63 coefficients Fs=10 kHz

nu= [0 0.1 0.12 0.18 0.2 0.3 0.32 0.38 0.4 1]; %normalized frequencies

mag= [0 0 1 1 0 0 1 1 0 0]; %magnitude at normalized frequencies

c=remez (62,nu,mg); %invoke remez algorithm for 63 coeff

bp63=c’; % coeff values transposed

save mat2bp.cof bp63 -ascii; %save in ASCII file with coefficients

[h,w] =freqz (c,1,256); %frequency response with 256 points

plot (500*nu,mag,w/pi,abs(h)) %plot ideal magnitude response

FIGURE D.7. MATLAB program for a two-passband FIR filter design (mat63.m).

Bilinear Transformation Using MATLAB and Support Programs on Disk 295

returns the a and b coefficients in the general input–output equation in Chapter 5,
associated with an IIR filter. The filter’s order n represents the number of second-
order sections. The C program in Example 5.1 implements an IIR filter with cas-
caded second-order sections, as is most commonly done. For example, if n = 6 in the
yulewalk function, the general transfer function in Chapter 5 in terms of the
resulting a and b coefficients from MATLAB needs to be reduced to one in terms
of three cascaded sections.

D.5 BILINEAR TRANSFORMATION USING MATLAB AND SUPPORT
PROGRAMS ON DISK

This section expands on the bilinear transformation discussion in Section 5.3.

Exercise D.1: First-Order IIR Lowpass Filter

Given a first-order lowpass analog transfer function H(s), a corresponding discrete-
time filter with transfer function H(z) can be obtained. Let the bandwidth or cutoff
frequency B = 1 r/s and the sampling frequency Fs = 10Hz.

1. Choose an appropriate transfer function

which represents a lowpass filter with a bandwidth of 1 r/s.

H s

s
() =

+
1

1

0
0

1000 2000 3000 4000 5000

1.2

1

0.8

0.6

0.4

0.2

FIGURE D.8. Frequency response of a two-passband FIR filter using MATLAB.

296 MATLAB Support Tools

2. Prewarp wD using

where wD = B = 1 r/s and T = 1/10.

3. Scale H(s) to obtain

4. Obtain the desired transfer function H(z), or

Exercise D.2: First-Order IIR Highpass Filter

Given a highpass transfer function H(s) = s/(s + 1), obtain a corresponding transfer
function H(z). Let the bandwidth or cutoff frequency be 1 r/s and the sampling fre-
quency be 5Hz. From the preceding procedure, H(z) is found to be

Exercise D.3: Second-Order IIR Bandstop Filter

Given a second-order analog transfer function H(s) for a bandstop filter, a corre-
sponding discrete-time transfer function H(z) can be obtained. Let the lower and
upper cutoff frequencies be 950 and 1050Hz, respectively, with a sampling frequency
Fs of 5kHz.

The transfer function selected for a bandstop filter is

where B and wr are the bandwidth and center frequencies, respectively. The analog
frequencies are

w
w p

w
w p

A
D

A
D

T

T

1
1

2
2

2
2 950
2 5000

0 6796

2
2 1050
2 5000

0 7756

= =
¥

¥
=

= =
¥

¥
=

tan tan .

tan tan .

H s

s
s sB

r

r

() =
+

+ +

2 2

2 2

w
w

H z

z
z

() =
-()
-

10 1
11 9

H z H s
z
zA s z z() = () =
+
-= -() +()w 1 1

1
21 19

H s

sAw() =
+

1
20 1

w
w

A
DT

= = Ê
Ë

ˆ
¯ @tan tan

2
1
20

1
20

Bilinear Transformation Using MATLAB and Support Programs on Disk 297

The bandwidth B = wA2 - wA1 = 0.096 and w2
r = (wA1)(wA2) = 0.5271. The transfer

function H(s) becomes

(D.1)

and the corresponding transfer function H(z) can be obtained with s = (z - 1)/
(z + 1), or

which can be reduced to

(D.2)

As shown later, H(z) can be verified using the program BLT.BAS (on the accom-
panying disk), or MATLAB, which calculates H(z) from H(s) using the BLT tech-
nique, as we will illustrate. This can be quite useful in applying this procedure for
higher-order filters.

Exercise D.4: Fourth-Order IIR Bandpass Filter

A fourth-order IIR bandpass filter can be obtained using the BLT procedure. Let
the upper and lower cutoff frequencies be 1 and 1.5kHz, respectively, and the sam-
pling frequency be 10kHz.

1. The transfer function H(s) of a fourth-order Butterworth bandpass filter can
be obtained from the transfer function of a second-order Butterworth lowpass
filter, or

where HLP(s) is the transfer function of a second-order Butterworth lowpass
filter. H(s) then becomes

(D.3)

H s
s s

s B

s Bs B s B s

s s SB

r r r

r
() =

+ +

=
+ + +() + +

= +()
1
2 1

2 2 2

2

2 2

4 3 2 2 2 2 4

2 2w

w w w

H s H sLP s s sBr

() = () = +()2 2w

H z

z z
z z

() =
- +

- +

- -

- -

0 9408 0 5827 0 9408
1 0 5827 0 8817

1 2

1 2

. . .
. .

H z

z z

z z z z
() =

-() +(){ } +

-() +()[] + -() +() +

1 1 0 5271

1 1 0 096 1 1 0 5271

2

2

.

. .

H s

s
s s

() =
+

+ +

2

2

0 5271
0 096 0 5271

.
. .

298 MATLAB Support Tools

2. The analog frequencies wA1 and wA2 are

3. The center frequency wr and the bandwidth B can now be found, or

4. The analog transfer function H(s) is (D.3) reduces to

(D.4)

5. The corresponding H(z) becomes

(D.5)

which is in the form of (5.4). This can be verified using the program BLT .BAS
(on the disk).

Exercise D.5: H(z) from H(s) Using Bilinear Function in MATLAB

Using Exercise D.3 with the second-order IIR bandstop filter, the transfer function
in the analog s-plane [from (D.1)],

can be converted to an equivalent transfer function in the digital z-plane using the
bilinear function from MATLAB with the following commands:

>>num = [1, 0, 0.5271]; %numerator coefficients
>>den = [1, 0.096, 0.5271]; %denominator coefficients
>>T = 2; Fs = 1/T; %K=1 from bilinear equation
>>[a,b]=bilinear (num, den, Fs) %invoke bilinear function

to obtain the coefficients a and b associated with the transfer function in (5.4),
or

H s

s
s s

() =
+

+ +

2

2

0 5271
0 096 0 5271

.
. .

H z

z z
z z z z

() =
- +

- + - +

- -

- - - -

0 02008 0 04016 0 02008
1 2 5495 3 2021 2 0359 0 64137

2 4

1 2 3 4

. . .
. . . .

H s

s
s s s s

() =
+ + + +

0 03407
0 26106 0 36517 0 04322 0 0274

2

4 3 2

.
. . . .

w w w
w w

r A A

A AB

2
1 2

2 1

0 1655

0 1846

= ()() =
= - =

.

.

w
w p

w
w p

A
D

A
D

T

T

1
1

2
2

2
2 1050
2 10 000

0 3249

2
2 1500
2 10 000

0 5095

= =
¥

¥
=

= =
¥

¥
=

tan tan
,

.

tan tan
,

.

Bilinear Transformation Using MATLAB and Support Programs on Disk 299

which is the same transfer function (D.2) as that found in Exercise D.3. Note that
T = 2 was chosen with MATLAB since the constant K = 2/T in the bilinear equa-
tion in Chapter 5 was set to 1 for convenience. Note that MATLAB uses the
following notation in the general input–output equation:

which yields a transfer function of the form

which shows that MATLAB’s a and b coefficients are the reverse of the notation
used in (5.1).

Exercise D.6: Utility Program BLT.BAS to Find H(z) from H(s)

The utility program BLT.BAS (on disk), written in BASIC, converts an analog trans-
fer function H(s) into an equivalent transfer function H(z) using the bilinear equa-
tion s = (z - 1)/(z + 1). To verify the results in (D.1) found in Exercise D.3 for the

H z
b b z b z

a z a z
() =

+ + + ◊ ◊ ◊
+ + + ◊ ◊ ◊

- -

- -
0 1

1
2

2

1
1

2
21

 y n b x n b x n b x n a y n a y n() = () + -() + -() + ◊ ◊ ◊ - -() - -() - ◊ ◊ ◊0 1 2 1 21 2 1 2

H z
z z

z z
() =

- +
- +

- -

- -

0 9409 0 5827 0 9409
1 0 5827 0 8817

1 2

1 2

. . .
. .

Enter the # of numerator coefficients (30 = Max, 0 = Exit) --> 3

Enter a(0)s^2 --> 1

Enter a(1)s^1 --> 0

Enter a(2)s^0 --> 0.5271

Enter the # of denominator coefficients --> 3

Enter b(0)s^2 --> 1

Enter b(1)s^1 --> 0.096

Enter b(2)s^0 --> 0.5271

Are the above coefficients correct ? (y/n) y

(a)

a(0)z^-0 = 0.94085 b(0)z^-0 = 1.00000

a(1)z^-1 = -0.58271 b(1)z^-1 = -0.58271

a(2)z^-2 = 0.94085 b(2)z^-2 = 0.88171

(b)

FIGURE D.9. Use of BLT.BAS program for bilinear transformations: (a) coefficients in
s-plane; (b) coefficients in z-plane.

300 MATLAB Support Tools

1.57

–1.57

0.0

0 0.2 0.4 0.6 0.8 1
Normalized Frequency = f/fN

R
ad

ia
ns

(c)
F1 for PRINTOUT ENTER to continue

(a)

FILTER COEFFICIENTS

z-0 .9408
z-1 –.5827
z-3 .9408
z-4
z-5
z-6
z-7
z-8
z-9
z-10

z-0 1
z-3 –.5827
z-4 .8817
z-5
z-6
z-7
z-8
z-9
z-10

NUMERATOR DENOMINATOR

 F1 HELP F5 QUIT F10 PLOT

0 10.2 0.4 0.6 0.8
Normalized frequency = f/fN

 F1 for PRINTOUT ENTER to continue

0.0

0.5

1.0

1.5

(b)

M
ag

ni
tu

de

FIGURE D.10. Use of the AMPLIT.CPP program for plotting magnitude and phase: (a) co-
efficients in the z-plane; (b) normalized magnitude; (c) normalized phase.

FFT and IFFT 301

second-order bandstop filter, run GWBASIC, then load and run BLT.BAS. The
prompts and the associated data for the a and b coefficients associated with H(s)
are shown in Figure D.9a and the a and b coefficients associated with the transfer
function H(z) are shown in Figure D.9b, which verifies (D.1). Run BLT.BAS again
to verify (D.5) using the data in (D.4).

Exercise D.7: Utility Program AMPLIT.CPP to Find Magnitude and Phase

The utility program AMPLIT.CPP (on the disk), written in C++, can be used to plot
the magnitude and phase responses of a filter for a given transfer function H(z) with
a maximum order of 10. Compile (using Borland’s C++ compiler) and run this
program. Enter the coefficients of the transfer function associated with the second-
order IIR bandstop filter (D.2) in Exercise D.3 as shown in Figure D.10a. Figure
D.10b and c show the magnitude and phase of the second-order bandstop filter.
From the plot of the magnitude response of H(z), the normalized center frequency
is shown at v = f/FN = 1000/2500 = 0.4.

Run this program again to plot the magnitude response associated with the
fourth-order IIR bandpass filter in Exercise D.4. Verify the plot shown in Figure
D.11. The normalized center frequency is shown at v = 1250/5000 = 0.25.

A utility program MAGPHSE.BAS (on the disk), written in BASIC, can be used
to tabulate the magnitude and phase responses.

1.5

0.5

1.0

0.0
0 0.2 0.4 0.6 0.8 1

Normalized frequency = f/fN

F1 for PRINTOUT ENTER to continue

FIGURE D.11. Plot of magnitude response of fourth-order IIR bandpass filter using
AMPLIT.CPP.

302 MATLAB Support Tools

D.6 FFT AND IFFT

MATLAB can be used to find both the fast Fourier transform FFT of a sequence
of numbers and the inverse Fourier transform IFFT.

Exercise D.8: Eight-Point FFT and IFFT Using MATLAB

The eight-point FFT in Exercise 6.1 can readily be verified with MATLAB, with the
following commands:

>>x = [1 1 1 1 0 0 0 0];
>>y = fft(x)
>>magy = abs(y)
>>plot (magy)

The resulting output magnitude transform is also plotted.
Similarly, the inverse FFT can also be verified. Given the output sequence X’s in

Exercise 6.1, the inverse FFT or IFFT can be found:

>>X = [4 1–2.414*i 0 1–0.414*i 0 1+0.414*i 0 1+2.414*i];
>>y = ifft(X)

where y is the resulting rectangular sequence.

REFERENCES

1. MATLAB, The Language of Technical Computing, MathWorks, Natick, MA 2000.

2. MATLAB Student Version, MathWorks, Natick, MA.

3. W. J. Gomes III and R. Chassaing, Filter design and implementation using the
TMS320C6x interfaced with MATLAB, Proceedings of the 1999 ASEE Annual Confer-
ence, 1999.

4. W. J. Gomes III and R. Chassaing, Real-time FIR and IIR filter design using MATLAB
interfaced with the TMS320C31 DSK, Proceedings of the 1999 ASEE Annual Conference,
1999.

5. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

E
Additional Support Tools

The following additional support tools are available (see also Appendix D for
MATLAB support):

1. Goldwave utility for signal generation, virtual instrument, etc.

2. FIR and IIR filter design using digifilter from MultiDSP

3. Homemade filter development package

4. Visual Application Builder (VAB)

5. Codec support from Integrated-DSP

6. Developer’s kit from MATLAB

E.1 GOLDWAVE SHAREWARE UTILITY AS VIRTUAL INSTRUMENT

Goldwave is a shareware utility software program that can turn a PC with a sound
card into a virtual instrument. It can be downloaded from the Web [1]. One can
create a function generator to generate different signals such as sine wave and
random noise. It can also be used as an oscilloscope, as a spectrum analyzer, and to
record/edit a speech signal. Effects such as echo and filtering can be obtained.
Lowpass, highpass, bandpass, and bandstop filters can be implemented on a sound
card with Goldwave and their effects on a signal illustrated readily.

Goldwave was used to obtain an input voice (TheForce.wav, on the disk)
added with two sinusoidal signals of frequencies 900 and 2700Hz, respectively. This
corrupted voice signal, shown in Figure 4.24, is used in Example 4.7 to illustrate
removal of the two sinusoidal signals.

One can use two copies of Goldwave running under Windows 9x: one to gener-
ate a signal as input to the DSK, another to use the DSK’s output into the sound

303

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

304 Additional Support Tools

card as a spectrum analyzer. However, the results obtained running two copies of
Goldwave can be quite noisy.

Other shareware utility programs, such as Cool Edit [2] or Spectrogram [3], also
can be used as virtual spectrum analyzers.

E.2 FILTER DESIGN USING DIGIFILTER

DigiFilter is a filter design package for the design of both FIR and IIR filters [4].
Currently, it interfaces to the C31 DSK for real-time implementation.

E.2.1 FIR Filter Design

Figure E.1 shows a plot of the log magnitude response of a 61-coefficient FIR band-
pass filter centered at 2kHz using the Kaiser window function. For a specific design,
the user can select among several window functions, with the specification of the
number of taps (coefficients) associated with each window (rectangular, Hamming,

FIGURE E.1. Magnitude response of FIR bandpass filter using DigiFilter.

Filter Design Using Digifilter 305

etc.). Impulse as well as step responses can also be obtained, as shown in Figure E.2.
Note that an implementation with a Hamming window function would require 89
coefficients, whereas a Kaiser window would require 61 coefficients (Figure E.2).

E.2.2 IIR Filter Design

An IIR filter can readily be designed with the filter package DigiFilter. One can
choose among several designs using the following functions: Butterworth, Cheby-
shev, elliptic, and Bessel, each associated with a specific filter order. A plot of the
magnitude response similar to an FIR design, as well as a plot of the poles and zeros
of H(z), can be obtained.

FIGURE E.2. Responses of FIR filter using DigiFilter.

306 Additional Support Tools

E.3 FIR FILTER DESIGN USING FILTER DEVELOPMENT PACKAGE

A noncommercial filter development package appears on the accompanying disk.
The program FIRprog.bas, written in BASIC, calculates the coefficients of an FIR
filter. This program is discussed in Refs. 5 to 7. It allows for the design of low-
pass, highpass, bandpass, and bandstop FIR filters using the rectangular, Hanning,
Hamming, Blackman, and Kaiser window functions. The resulting coefficients can
be generated in integer or float format. This file needs to be modified and incorpo-
rated into one of the generic FIR programs.

E.3.1 Kaiser Window

1. Run BASIC and load/run the program FIRprog.bas. Figure E.3a and b
show a display of available window functions and the frequency-selective
filters that can be designed. Select the Kaiser window option and a bandpass
filter. A separate module for the Kaiser window(FIRproga.bas) is called
from FIRprog.bas.

2. Enter the specifications shown in Figure E.3c. Choose the c31 option to save
the 53 resulting coefficients into a file in a float format (the C25 option saves
the coefficients in hexadecimal). Save it as BP53K.cof.

3. Edit it (an edited version is on the disk). Include it in the program FIRPRN.c
in Example 4.4. Build/run and verify the frequency response of the FIR band-
pass filter centered at 800Hz shown in Figure E.4, obtained with an HP ana-
lyzer. An internally generated noise sequence becomes the input to the FIR
filter in the program FIRPRN.c. This filter was designed so that the center
frequency is at 1000Hz (Fs/10), selecting a sampling frequency of 10,000Hz.
Since we are using a sampling frequency of 8kHz with the DSK, the center
frequency is at 800Hz, as shown in Figure E.4.

E.3.2 Hamming Window

Repeat this procedure for a Hamming window function. Enter 900 and 1100 for the
lower and upper cutoff frequencies. Enter 5.2 (ms) for the duration D of the impulse
response, since the number of coefficients N is

This will yield a design with 53 coefficients. Save the resulting coefficient file as
BP53H.cof. Edit it as with the Kaiser window, test it using the program FIRPRN.c,
and verify an FIR bandpass filter with a narrower mainlobe.

E.4 VISUAL APPLICATION BUILDER

The Visual Application Builder (VAB), available from Hyperception [8], is a
component-based virtual design tool that can be used to implement DSP algorithms.

 N D Fs= ¥() + 1

Main Menu
————————

1. . . .RECTANGULAR
2. . . .HANNING
3. . . .HAMMING
4. . . .BLACKMAN
5. . . .KAISER
6. . . .Exit to DOS

Enter window desired (number only) –> 5
(a)

Selections:
1. . . .LOWPASS
2. . . .HIGHPASS
3. . . .BANDPASS
4. . . .BANDSTOP
5. . . .Exit back to Main Menu

Enter desired filter type (number only) –> 3
(b)

Specifications:
BANDPASS
Passband Ripple (AP) = 6 db
Stopband Attenuation (AS) = 30 db
Lower Passband Frequency = 900 Hz
Upper Passband Frequency = 1100 Hz
Lower Stopband Frequency = 600 Hz
Upper Stopband Frequency = 1400 Hz
Sampling Frequency (Fs) = 10000 Hz

The calculated # of coefficients required is: 53

Enter # of coefficients desired ONLY if greater than 53
otherwise, press <Enter> to continue –>

(c)

Send coefficients to:
(S)creen
(P)rinter
(F)ile: contains TMS320 (C25 or C31) data format
(R)eturn to Filter Type Menu
(E)xit to DOS

Enter desired path ––> f

Enter DSP type (C25 OR C31):? c31
(d)

FIGURE E.3. FIR filter design with filter development package (on disk): (a) choice of
windows: (b) type of filter; (c) filter specifications; (d) menu for coefficients format.

307

308 Additional Support Tools

VAB uses a methodology of developing DSP algorithms and systems graphically
simply by connecting functional components together with a mouse. The user only
needs to choose the desired functions, place them onto a worksheet, select their
parameters interactively, and describe the data flow using line connections. The
method of design is quite similar to drawing a block diagram of the system being
designed. DSP-based design implementations can be created and executed on DSP
hardware without having to write any source code at all.

VAB contains a wide range of functional block components for FFT, filtering,
and so on, and supports the C6711 DSK. Within a few minutes, one can design and
test a DSP system that includes functional blocks such as signal generators,A/D and
D/A, filters, FFT, image processing components, and so on. Results can be quickly
displayed on the PC monitor as the algorithm is executing or to an external device
such as an oscilloscope. Figure E.5 shows a block diagram of a Vocoder implemented
on the C6711 DSK.

E.5 MISCELLANEOUS SUPPORT

The following additional support tools are available (see also Appendix D on
MATLAB and Appendix F on the Audio Daughter Card based on the PCM3003
codec):

1. Daughter card based on the AD77 stereo codec that interfaces to the C6x
DSK, available from Integrated-DSP [9].

2. Developer’s kit for Texas Instruments’ DSP [10], which connects MATLAB
and SIMULINK with Texas Instruments’ software and hardware. It focuses

FIGURE E.4. Frequency response of FIR bandpass filter using coefficient file BP53K.cof
generated with filter package on disk.

References 309

on code optimization and test and analysis rather than rewriting DSP algo-
rithms. It currently supports the C6701-based evaluation module (EVM).

REFERENCES

1. Goldwave, at www.goldwave.com.

2. Cool Edit, at www.syntrillium.com.

3. Gram412.zip from Spectrogram, address from shareware utility with the database
address www.simtel.net.

4. DigiFilter, from MultiDSP, at multidsp@aol.com.

5. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

6. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

7. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

8. Hyperception, at info@hyperception.com.

9. Integrated DSP, at www.integrated-dsp.com.

10. The MathWorks, Inc., at www.mathworks.com.

FIGURE E.5. Vocoder block diagram implemented on the C6711 DSK using VAB.

F
Input and Output with PCM3003
Stereo Codec

F.1 PCM3003 AUDIO DAUGHTER CARD

The PCM3003 stereo codec [1,2] provides an alternative to the AD535 codec.
It has a higher sampling rate, up to approximately 73kHz, and two complete input
and output channels. A different communication program, C6xdskinit_pcm.c, is
used with the PCM3003 (in lieu of C6xdskinit.c), and also a different header
file, C6xdskinit_pcm.h, which contains the functions prototypes (in lieu of
C6xdskinit.h). Several examples are included to illustrate the use of the
PCM3003 stereo codec with two inputs.

Figure F.1 shows a schematic diagram of an inexpensive ($50) PCM3003 audio
daughter card, available from TI, that can be plugged to the DSK. It can also be
interfaced with the TMS320C3x. It plugs into an 80-pin connector JP3 on the DSK
(another 80-pin connector J1 on the DSK contains data and address lines).

A jumper can be set through connector JP5 on the audio daughter card for either
a fixed sampling frequency of 48kHz (desired and actual) or for a programmable
desired sampling rate. From Figure F.1, with a jumper in position 3–4, a fixed sam-
pling rate of 48kHz can be obtained, since this connects to a 12.288-MHz clock on
board the audio card, yielding

With the jumper in position 1–2 a variable Fs can be obtained using timer 0. A
desired sampling rate Fs (unless fixed at 48kHz) can be specified/set in the program.
Fs is global and the actual sampling rate is calculated within the communication
support file C6xdskinit_pcm.c. The following illustrates some desired sampling
frequencies and corresponding actual sampling frequencies:

 Fs = =12 288 256 48. MHz kHz

310

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

F
IG

U
R

E
 F

.1
.

Sc
he

m
at

ic
 o

f
P

C
M

30
03

-b
as

ed
 a

ud
io

 d
au

gh
te

r
ca

rd
 t

ha
t

in
te

rf
ac

es
 t

o
C

67
11

 D
SK

 (
C

ou
rt

es
y

of
 T

ex
as

 I
ns

tr
um

en
ts

).

311

F
IG

U
R

E
 F

.1
.

(C
on

tin
ue

d)

312

F
IG

U
R

E
 F

.1
.

(C
on

tin
ue

d)

313

314 Input and Output with PCM3003 Stereo Codec

FIGURE F.1. (Continued)

(d)

(e)

Programming Examples Using the PCM3003 Stereo Codec 315

Fs Desired (Hz) Actual Fs (Hz)

8,000 8,138.021
16,000 14,648.438
20,000 18,310.547
48,000 36,621.094 (jumper position in JP5 for variable rate)
48,000 48,000 (jumper position in JP5 for fixed rate)

>48,000 73,242.187 (jumper position in JP5 for variable rate)

For a variable sampling rate, Fs is calculated within the program C6xdskinit_
pcm.c using a desired frequency (set in the program), a clock frequency of 150MHz/
4, and clocks per sample as 256. A maximum sampling rate of 73,242.18Hz can be
obtained (though Fs > 48,000 is not recommended by TI).

Two dedicated connectors (stereo to mono) are used for the examples in this
appendix. This type of connector has two input and one single-ended output
connections.A 16-bit data value is obtained from each input channel, and the result-
ing single-ended output connection yields 32-bit data (16 bits from each channel).
This output connection with 32-bit data connects to the input PCM3003 codec. The
two inputs connections are designated by silver for the left channel and gold for the
right channel.

F.2 PROGRAMMING EXAMPLES USING THE PCM3003 STEREO CODEC

Example F.1: Loop Program Using Polling with the PCM3003 Stereo
Codec (loop_poll_pcm)

Figure F.2 shows a listing of the program loop_poll_pcm.c, which implements a
loop using the PCM3003 codec. See also Example 2.2, which implements a loop
using the onboard AD535 codec.

Variable Fs

A desired frequency of Fs = 16,000Hz is specified in the program. The jumper in
JP5 should be in position 1–2. The actual sampling frequency is calculated within
C6xdskinit_pcm.c as

Fs(actual)=14,648.438Hz

with a divider value of 5 (divider cast as integer).
Build this project as loop_poll_pcm. Include the two source files

C6xdskinit_pcm.c and vectors.asm, along with loop_poll_pcm.c.
Input a sinusoidal signal with an amplitude of approximately 1V and a frequency

of 1kHz. Observe the corresponding output as the delayed input. Increase the

316 Input and Output with PCM3003 Stereo Codec

FIGURE F.3. Output spectrum displayed on an HP analyzer with random noise as input for
a fixed sampling rate of Fs = 48kHz (using loop_poll_pcm).

frequency beyond 7kHz. Verify that the bandwidth of the antialiasing filter is
approximately 6.8kHz.

Select View Æ Quick Watch window to watch Fs_actual, and verify that it is
calculated (displayed) as 14,648.438Hz.

Fixed Fs = 48kHz
Set the jumper in JP5 to position 3–4 for a fixed sampling rate. Setting Fs in the
program is irrelevant. Rebuild and run. Figure F.3 shows the output of the codec
displayed on an HP analyzer using noise as input. It illustrates that the bandwidth
of the antialiasing filter is approximately 21.5kHz.

//loop_poll_pcm.c Loop program with polling using PCM3003 codec

float Fs = 16000.0; //desired (Actual=14,648 Hz)

void main()

{

comm_poll(); //init DSK,codec,McBSP

while(1) //infinite loop

output_left_sample(input_left_sample()); //IN from left,OUT from left

}

FIGURE F.2. Loop program with polling using PCM3003 codec (loop_poll_pcm.c).

Programming Examples Using the PCM3003 Stereo Codec 317

Increase the amplitude of a sinusoidal signal as input to verify that the output
saturates beyond an input voltage of approximately 3.5V p-p.

Experiment with input and output from different channels. For example,

output_sample(input_sample());

acquires a 32-bit data item (16 bits from each channel). A mono connector can be
used and defaults to the left channel. However,

output_right_sample(input_left_sample);

requires that the stereo-to-mono connector obtain an output from the right channel
(gold) with an input from the left channel (silver).

Example F.2: Loop Program Using Interrupt with the PCM3003 Codec
(loop_intr_pcm)

This example illustrates an interrupt-driven version of the loop program using the
PCM3003 codec. Example F.1 illustrates the loop feature using polling. See also
Example 2.1, use of the onboard AD535 codec. Figure F.4 shows a listing of
loop_intr_pcm.c that implements this example.

//loop_intr_pcm.c Loop program with interrupt using PCM3003

float Fs = 16000.0; //irrelevant since jumper in 3–4

interrupt void c_int11() //interrupt service routine

{

output_left_sample(input_left_sample()); //IN/OUT from left

return; //return from interrupt

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE F.4. Loop program with interrupt using a PCM3003 codec (loop_intr
_pcm.c).

318 Input and Output with PCM3003 Stereo Codec

//Fir_pcm.c FIR using PCM3003 codec

#include “bp41.cof” //coefficient file BP @ Fs/8

int yn = 0; //initialize filter’s output

short dly[N]; //delay samples

float Fs = 48000.0; //fixed/actual Fs

interrupt void c_int11() //ISR

{

short i;

dly[0] = input_left_sample(); //newest input @ top of buffer

yn = 0; //initialize filter’s output

for (i = 0; i< N; i++)

yn += (h[i] * dly[i]); //y(n)+=h(i)*x(n-i)

for (i = N-1; i > 0; i--) //starting @ bottom of buffer

dly[i] = dly[i-1]; //update delays with data move

output_right_sample(yn >> 15); //output filter

return; //return from ISR

}

void main()

{

comm_intr(); //init DSK, codec, McBSP

while(1); //infinite loop

}

FIGURE F.5. FIR program using a PCM3003 codec (FIR_pcm.c).

FIGURE F.6. Output frequency response of an FIR bandpass filter centered at Fs/8 obtained
with an HP analyzer.

Programming Examples Using the PCM3003 Stereo Codec 319

Build this project as loop_intr_pcm. Verify similar results as with the polling
version in Example F.1, with Fs fixed at 48kHz (jumper in position 3–4).

Example F.3: FIR Filter Implementation Using the PCM3003 Codec
(FIR_pcm)

Figure F.5 shows a listing of the program FIR_pcm.c, which implements an FIR
filter using the PCM3003 codec. Example 4.4 illustrates the implementation of
an FIR filter using the onboard codec AD535. The filter coefficient bp41.cof
represents a 41-coefficient FIR bandpass filter centered at Fs/8 (used in Chapter 4).
The sampling frequency is set and fixed at 48kHz (using jumper JP5 in position
3–4).

Build this project as FIR_pcm. Figure F.6 shows the frequency response of the
FIR filter using noise as input, obtained with an HP analyzer. An actual (using the
jumper position 3–4 for fixed rate) sampling frequency of 48kHz is used. The center
frequency is shown as 6kHz, corresponding to Fs/8.

Change the jumper for a variable sample rate (position 1–2) and set Fs to 60kHz
in the program (or set to any frequency greater than 48kHz and up to 73kHz). The
variable divider, calculated in C6xdskinit_pcm.c, is 1 for this range of fre-
quencies. Rebuild/run this project and verify a band pass filter centered at 73, 248/8
= 9.15kHz.

Example F.4: Adaptive FIR Filter for Noise Cancellation Using the
PCM3003 Codec (adaptnoise_pcm)

Figure F.7 shows a listing of the program Adaptnoise_pcm.c, which illustrates
the noise canceler using the PCM3003 stereo codec. See also Example 7.2, which
implements the noise canceler using the onboard AD535 codec. The desired sam-
pling frequency is set at 8kHz in the program; but the actual rate is 8138.021Hz.
Build this project as adaptnoise_pcm.

1. Desired: 1.5kHz, undesired: 2kHz. Input a desired sinusoidal signal (with a
frequency such as 1.5kHz) into the left channel and an undesired sinusoidal
noise signal of 2kHz into the right channel. Run the program. Verify that the
2-kHz noise signal is being canceled gradually (you can adjust the rate of con-
vergence by changing beta by a factor of 10 in the program). Access the slider
gel program adaptnoise.gel and change the slider to position 2. Verify the
output as the two original sinusoidal signals at 1.5 and at 2kHz.

2. Desired: wideband random noise; undesired: 2kHz. Input random noise (from
Goldwave or noise generator) as the desired wideband signal into the left
channel, with the undesired 2-kHz sinusoidal signal into the right input

//Adaptnoise_pcm.c Adaptive FIR for noise cancellation using PCM3003

#define beta 1E-10 //rate of convergence
#define N 30 //# of weights (coefficients)
#define LEFT 0 //left channel
#define RIGHT 1 //right channel
float w[N]; //weights for adapt filter
float delay[N]; //input buffer to adapt filter
float Fs = 8000.0; //sampling rate
short output; //overall output
short out_type = 1; //output type for slider
volatile union{unsigned int uint; short channel[2];}CODECData;

interrupt void c_int11() //ISR
{
short i;
float yn=0, E=0, dplusn=0, desired=0, noise=0;

CODECData.uint = input_sample(); //input 32-bit from both channels
desired = (float) CODECData.channel[LEFT]; //input left channel
noise = (float) CODECData.channel[RIGHT]; //input right channel

dplusn = desired + noise; //desired+noise
delay[0] = noise; //noise as input to adapt FIR

for (i = 0; i < N; i++) //to calculate out of adapt FIR
yn += (w[i] * delay[i]); //output of adaptive filter

E = (desired + noise) - yn; //”error” signal=(d+n)-yn

for (i = N-1; i >= 0; i--) //to update weights and delays
{

w[i] = w[i] + beta*E*delay[i]; //update weights
delay[i] = delay[i-1]; //update delay samples

}
if (out_type == 1) //if slider in position 1

output = ((short)E); //error signal as overall output
else if (out_type == 2)

output=((short)dplusn); //desired+noise
output_left_sample(output); //overall output result
return;

}

void main()
{
short T=0;
for (T = 0; T < 30; T++)
{

w[T] = 0; //init buffer for weights
delay[T] = 0; //init buffer for delay samples

}
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop

}

FIGURE F.7. Program that implements adaptive noise canceler using the PCM3003 codec
(adaptnoise_pcm.c).

320

FIGURE F.8. Output frequency responses (from adaptnoise_pcm.c) displayed on an
HP analyzer: (a) desired wideband random signal and undesired 2-kHz sinusoidal signal;
(b) desired wideband random signal with undesired 2-kHz signal canceled; (c) desired 2-kHz
signal with wideband random signal canceled.

321

//Adaptpredict_pcm.c Adaptive predictor to cancel interference

#define beta 1E-15 //rate of convergence
#define N 60 //# of coefficients of adapt FIR
#define NS 256 //size of wideband’s buffer
#define LEFT 0 //left channel
#define RIGHT 1 //right channel
const short bufferlength = NS; //buffer length for wideband signal
short splusn[N+1]; //buffer wideband signal+interference
float w[N+1]; //buffer for weights of adapt FIR
float delay[N+1]; //buffer for input to adapt FIR
float Fs = 48000.0; //for fixed Fs
volatile union {unsigned int uint; short channel[2];}CODECData;

interrupt void c_int11() //ISR
{
static short buffercount=0; //init buffer
short i;
float yn, E; //yn=out adapt FIR, error signal
short wb_signal; //wideband desired signal
short noise; //external interference

CODECData.uint = input_sample(); //input left and right as 32-bit
wb_signal = (float) CODECData.channel[LEFT]; //desired on left channel
noise = (float) CODECData.channel[RIGHT]; //noise on right channel

splusn[0] = (wb_signal + noise); //wideband signal+interference
delay[0] = splusn[3]; //delayed input to adaptive FIR
yn = 0; //init output of adaptive FIR

for (i = 0; i < N; i++)
yn += (w[i] * delay[i]); //output of adaptive FIR filter

E = splusn[0] - yn; //(wideband+noise)-out adapt FIR

for (i = N-1; i >= 0; i--)
{
w[i] = w[i]+(beta*E*delay[i]); //update weights of adapt FIR
delay[i+1] = delay[i]; //update buffer delay samples
splusn[i+1] = splusn[i]; //update buffer corrupted wideband
}

buffercount++; //incr buffer count of wideband
if (buffercount >= bufferlength) //if buffer count=length of buffer
buffercount = 0; //reinit count

output_left_sample((short)E); //overall output from left channel
return;
}

void main()
{
int T = 0;
for (T = 0; T < N; T++) //init variables
{
w[T] = 0.0; //init weights of adaptive FIR
delay[T] = 0.0; //init buffer for delay samples
splusn[T] = 0; //init wideband+interference
}
comm_intr(); //init DSK, codec, McBSP
while(1); //infinite loop
}

FIGURE F.9. Adaptive predictor program using a PCM3003 codec (adaptpredict_
pcm.c).

322

Programming Examples Using the PCM3003 Stereo Codec 323

channel. Restart/run the program. Access the slider and change it to position
2. Figure F.8a shows the output spectrum of both the desired wideband signal
and the additive undesired 2-kHz sinusoidal signal, obtained with an HP
analyzer (with the slider in position 2). Figure F.8b shows the undesired
2-kHz signal canceled, displaying the wideband signal as the output spectrum
(with the slider in position 1). Verify the gradual cancellation of the undesired
2-kHz signal.

3. Desired: 2kHz; undesired: wideband random noise. Switch the inputs to the
connector so that the desired 2-kHz signal is the left-channel input and

FIGURE F.10. Output spectrum of adaptive predictor obtained with an HP analyzer; (a)
desired wideband random signal and 15-kHz narrowband interference; (b) desired wideband
random signal with 15-kHz interference canceled.

324 References

the undesired wideband random noise signal is the right-channel input.
Increase beta by 100. Rebuild/run the program. Verify the gradual cancella-
tion of the undesired random noise signal (with the slider in position 1). Figure
F.8c shows the 2-kHz signal with the undesired wideband noise signal canceled
out.

Example F.5: Adaptive Predictor for Cancellation of Narrowband
Interference Added to Desired Wideband Signal, Using the PCM3003
Codec (adaptpredict_pcm)

Figure F.9 shows a listing of the program adaptpredict_pcm for the cancellation
of a narrowband interference in the presence of a wideband signal. This example
uses the PCM3003 codec. See also Example 7.6, which implements the adaptive
predictor using the onboard AD535 codec. A sampling rate of 48kHz (desired/
actual) is used with the jumper JP5 for a fixed sample rate position.

Build this project as adaptpredict_pcm. Input random noise as the desired
wideband random signal (from Goldwave, noise generator, etc.), and a 15-kHz signal
as an undesired narrowband interference. Figure F.10a shows the output spectrum
of the wideband random signal with the 15-kHz additive narrowband interfer-
ence. Figure F.10b shows the narrowband additive interference canceled. Verify the
gradual cancellation of the 15-kHz interference.

REFERENCES

1. PCM3002/PCM3003 16-/20-Bit Single-Ended Analog Input/Output Stereo Audio Codec,
SBAS079, Burr-Brown/Texas Instruments, Dallas, TX, 2000.

2. TMS320C6000 McBSP: I2S Interface, SPRA595, Texas Instruments, Dallas, TX, 1999.

G
DSP/BIOS and RTDX for
Real-Time Data Transfer

DSP/BIOS provides CCS the capability for analysis, scheduling, and data exchange
in real time [1–5]. An application program can be analyzed while the digital signal
processor is running (the target processor need not be stopped). There are many
DSP/BIOS application programming interface (API) modules available for real-
time analysis, input/output, and so on. API functions are included with CCS to con-
figure and control operation of the codec. They initialize the DSK, the McBSP, and
the codec.

1. Real-time analysis. This can be either critical or not so critical. For example,
one needs to respond to input samples so that information is not lost. On the
other hand, the transfer of data from the digital signal processor to the host
PC may be done between incoming samples.

2. Real-time scheduling. Data transfer is scheduled through DSP/BIOS software
interrupts. Tasks/functions are initially assigned different priorities. Based on
results obtained from a CPU execution graph, one can reprioritize these dif-
ferent tasks.The CPU execution graph shows when various tasks are executed,
and whether or not the CPU misses real-time data. This graph is similar to the
type of plots obtained with a logic analyzer.An execution graph associated with
an audio example (included with CCS) is shown in Figure G.1.This graph shows
the execution of threads.A thread can be an independent stream of instructions
executed by the DSP processor. It may contain an ISR, a function call, and so
on. Different types of threads are given different priorities. Hardware inter-
rupts (HWIs) have the highest priorities, followed by software interrupts
(SWI), which include periodic functions (PRD).

3. Real-time data exchange (RTDX). This allows the exchange of data between
the host and the processor, via the Joint Test Action Group (JTAG) interface,

325

DSP Applications Using C and the TMS320C6x DSK. Rulph Chassaing
Copyright © 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-20754-3 (Hardback); 0-471-22112-0 (Electronic)

326 DSP/BIOS and RTDX for Real-Time Data Transfer

while the processor is running. RTDX consists of both target and host com-
ponents. Data are transferred through two “pipes” (one for receiving and one
for transmitting). If the CPU starts missing real-time data, one can find out
from the execution graph. Reprioritizing, if possible, could then solve this
problem.

Examples of DSP/BIOS with RTDX
An audio example is included with the DSK package. It is essentially a “loop”
example. It can illustrate overloading the CPU. This is accomplished by executing
NOPs. As the number of NOPs is increased, the effects on the output can be moni-
tored. Figure G.1a indicates that the task of “audioSwi” has the highest priority and
can interrupt the lower priority task of “loadPrd.” In Figure G.1b, “audioSwi” has
a lower priority and has to wait for the higher-priority tasks of loadPrd and Prd_swi.
This causes data to be missed. For example, with music as input, and the number of
NOPs increasing (up to a million), one can hear the gradual degradation of the
output signal as the CPU starts missing execution. The execution graph can show
when the CPU starts missing data.

Another example included with CCS makes use of the LOG module LOG_
printf() to monitor a program in real time.The C function printf(), supported
by real-time library support, takes too many cycles to be desirable for real-time
monitoring; the LOG module LOG_printf() takes considerably less time. The
LOG_printf() function can be used to record data in critical time while the trans-
fer of data from the target processor to the host can occur in not so critical time.
Results on the performance of LOG_printf() supported with DSP/BIOS versus

FIGURE G.1. CCS plot of execution graphs as CPU is being overloaded with NOPs: (a)
output not degraded when setting audioSwi with the highest priority; (b) output degraded
when setting audioSwi with lower priority.

References 327

printf() supported with the runtime support library show that printf() can
take 100 times more cycles to execute.

The project example PLL, discussed in Chapter 9, includes the code version (on
the disk) associated with DSP/BIOS’s RTDX.

REFERENCES

1. TMS320C6000 DSP/BIOS User’s Guide, SPRU303B,Texas Instruments, Dallas,TX, 2000.

2. An Audio Example Using DSP/BIOS, SPRA598, Texas Instruments, Dallas, TX, 1999.

3. TMS320C6000 DSP/BIOS Application Programming Interface (API) Reference Guide,
SPRU403A, Texas Instruments, Dallas, TX, 2000.

4. Application Report, DSP/BIOS by Degrees: Using DSP/BIOS Features in an Existing
Application, SPRA591, Texas Instruments, Dallas, TX, 1999.

5. Real-Time Data Exchange, SPRY012, Texas Instruments, Dallas, TX, 1998.

	DSP Applications Using C and the TMS320C6x DSK
	Contents
	Preface
	List of Examples
	Index
	1.DSP Development System
	2.Input and Output with the DSK
	3.Architecture and Instruction Set of the C6x Processor
	4.Finite Impulse Response Filters
	5.Infinite Impulse Response Filters
	6.Fast Fourier Transform
	7.Adaptive Filters
	8.Code Optimization
	9.DSP Application and Student Projects
	A.TMS320C6x Instruction Set
	B.Registers for Circular Addressing and Interrupts
	C.Fixed-Point Considerations
	D.MATLAB Support Tools
	E.Additional Support Tools
	F.Input and Output with PCM3003 Stereo Codec
	G.DSP/BIOS and RTDX for Real-Time Data Transfer

