CHAPTER 3

DSP MICROPROCESSORS
IN EMBEDDED SYSTEMS

The term embedded system is often used to refer to a processor and associated circuits
required to perform a particular function that is not the sole purpose of the overall Sys-
tem. For example, a keyboard controller on a computer system may be an embedded
system if it has a processor that handles the keyboard activity for the computer system.
In a similar fashion, digital signal processors are often embedded in larger systems to
perform specialized DSP operations to allow the overall system to handle general pur-
pose tasks. A special purpose processor used for voice processing, including analog-to-
digital (A/D) and digital-to-analog (D/A) converters, is an embedded DSP system when
it is part of a personal computer system. Often this type of DSP runs only one appli-
cation (perhaps speech synthesis or recognition) and is not programmed by the end user.
The fact that the processor is embedded in the computer system may be unknown to
the end user.

A DSP’s data format, either fixed-point or floating-point, determines its ability
to handle signals of differing precision, dynamic range, and signal-to-noise ratios.
Also, ease-of-use and software development time are often equally important when
deciding between fixed-point and floating-point processors. Floating-point processors
are often more expensive than similar fixed-point processors but can execute more
instructions per second. Each instruction in a floating-point processor may also be
more complicated, leading to fewer cycles per DSP function. DSP microprocessors can
be classified as fixed-point processors if they can only perform fixed-point multi-
plies and adds, or as floating-point processors if they can perform floating-point oper-
ations.

98

Sec. 3.1 Typical Floating-Point Digital Signal Processors 99

The precision of a particular class of A/D and D/A converters (classified in terms
of cost or maximum sampling rate) has been slowly increasing at a rate of about one
bit every two years. At the same time the speed (or maximum sampling rate) has also
been increasing. The dynamic range of many algorithms is higher at the output than at
the input and intermediate results are often not constrained to any particular dynamic
range. This requires that intermediate results be scaled using a shift operator when a
fixed-point DSP is used. This will require more cycles for a particular algorithm in
fixed-point than on an equal floating-point processor. Thus, as the A/D and D/A re-
quirements for a particular application require higher speeds and more bits, a
fixed-point DSP may need to be replaced with a faster processor with more bits. Also,
the fixed-point program may require extensive modification to accommodate the greater
precision.

In general, floating-point DSPs are easier to use and allow a quicker time-to-
market than processors that do not support floating-point formats. The extent to which
this is true depends on the architecture of the floating-point processor. High-level lan-
guage programmability, large address spaces, and wide dynamic range associated with
floating-point processors allow system development time to be spent on algorithms and
signal processing problems rather than assembly coding, code partitioning, quantization
error, and scaling. In the remainder of this chapter, floating-point digital signal proces-
sors and the software required to develop DSP algorithms are considered in more de-
tail.

3.1 TYPICAL FLOATING-POINT DIGITAL SIGNAL PROCESSORS

This section describes the general properties of the following three floating-point DSP
processor families: AT&T DSP32C and DSP3210, Analog Devices ADSP-21020 and
ADSP-21060, and Texas Instruments TMS320C30 and TMS320C40. The information
was obtained from the manufacturers’ data books and manuals and is believed to be an
accurate summary of the features of each processor and the development tools available.
Detailed information should be obtained directly from manufacturers, as new features are
constantly being added to their DSP products. The features of the three processors are
summarized in sections 3.1.1, 3.1.2, and 3.1.3.

The execution speed of a DSP algorithm is also important when selecting a proces-
sor. Various basic building block DSP algorithms are carefully optimized in assembly
language by the processor’s manufacturer. The time to complete a particular algorithm is
often called a benchmark. Benchmark code is always in assembly language (sometimes
without the ability to be called by a C function) and can be used to give a general mea-
sure of the maximum signal processing performance that can be obtained for a particular
processor. Typical benchmarks for the three floating-point processor families are shown
in the following table. Times are in microseconds based the on highest speed processor
available at publication time.
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by AT&T. o RESTL 20, 20 uTILITY S
The DSP32C’s two execution units, the control arithmetic unit (CAU) and the data INTREQH, m PINS 18 ':::(‘::
arithmetic unit (DAU), are used to achieve the high throughput of 20 million instruc- o, oKz,
tions per second (at the maximum clock speed of 80 MHz). The CAU performs 16- or
24-bit integer arithmetic and logical operations, and provides data move and control ca-
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. * For a detailed description, see Architecture,
The DSP32C has three I/O ports: an external memory port, a serial port and a 16-bit

paraliel port. In addition to providing access to commercially available memory, the ex-
ternal memory interface can be used for memory mapped I/O. The serial port can inter-
face to a time division multiplexed (TDM) stream, a codec, or another DSP32C. The par-
allel port provides an interface to an external microprocessor. In summary, some of the
key features of the DSP32C follow.

FIGURE 3.1 Block diagram of DSP32C processor (Courtesy AT&T).
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Figure 3.2 shows a block diagram of the DSP3210 microprocessor manufactured by VSs  ———t ps (32)
AT&T. The following is a brief description of this processor provided by AT&T.
LEGEND:
AT&T DSP3210 DIGITAL SIGNAL PROCESSOR FEATURES CAU  Control Arithmetic Unit S0 Serial npurOutput
. . DAU  Data Arithmetic Unit TSC  TimerStatus/Control
« 16.6 million instructions per second (66 MHz clock) RAM Random Access Memory  DMAC  DMA Controfier
. . . - ROM Read Only Memory MMIO  Memory Mapped VO

¢ 63 instructions, 3-stage pipeline

« Two 4-kbyte RAM blocks, 1-kbyte boot ROM
* 32-bit barrel shifter and 32-bit timer
* Serial I/O port, 2 DMA channels, 2 external interrupts
-» Full 32-bit floating-point arithmetic for fast, efficient software development

FIGURE 3.2 Block diagram of DSP3210 processor (Courtesy AT&T).

+ C-like assembly language for ease of programming
* All single-cycle instructions; four memory accesses/instruction cycle
» Hardware context save and single-cycle PC relative addressing
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* Microprocessor bus compatibility (The DSP3210 is designed for efficient bug Master
designs. This allows the DSP3210 to be easily incorporated into minOprOCessOr.
based designs

* 32-bit, byte-addressable address space allowing the DSP3210 and a micropn-ocess()r
to share the same address space and to share pointer values.

* Retry, relinquish/retry, and bus error support

* Page mode DRAM support

+ Direct support for both Motorola and Intel signaling

FLOATING-POINT
& FIXED-POINT
ALU

AT&T DSP3210 FAMILY HARDWARE DEVELOPMENT SYSTEM DESCRIPTION

The MP3210 implements one or two AT&T DSP3210 32-bit floating-point DSPs with a
comprehensive mix of memory, digital I/O and professional audio signal I/O. The
MP3210 holds up to 2 Mbytes of dynamic RAM (DRAM). The DT-Connect interface ep-
ables real-time video I/0. MP3210 systems include: the processor card; C Host drivers
with source code; demos, examples and utilities, with source code; User’s Manual; and
the AT&T DSP3210 Information Manual. DSP3210 is the low-cost Multimedia
Processor of Choice. New features added to the DSP3210 are briefly outlined below.

JTAG TEST &
EMULATION
]'> PMA
j'> DMA
<}:D PMD
=< ow

32-BIT
BARREL

T 1l
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I
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FIGURE 3.3 Block diagram of ADSP-21020 processor {Courtesy Analog Devices.)

DSP3210 FEATURES USER BENEFITS j>
* Speeds up to 33 MFLOPS The high performance and large on-chip -_T
memory space enable wise .,\\ o\ «
* 2k x 32 on-chip RAM fast, efficient processing of complex algo- 355 I I <|l E
rithms. = 2| 3 g
* Full, 32-bit, floating-point Ease of programming/higher performance. | £
* All instructions are single cycle e \
* Four memory accesses per Higher performance. 1 - 3\\ M\
instruction cycle Q':D ox @ @
* Microprocessor bus compatibility Designed for efficient bus master. ax a a £ %
* 32-bit byte-addressable designs. This allows the DSP3210 address space to - z 3 gg z
* Retry, relinquish/retry easily be incorporated into pP %‘gg
* error support bus-based designs. The 32-bit, byte- 5 - 5%
* Boot ROM addressable space allows the £ :D ,%E‘g’
* Page mode DRAM support DSP3210 and a pP to share the same ;§ "V § N §§
* Directly supports 680X0 address space and to share pointer G:D & H =
and 80X86 signaling values as well. ® i
3.1.2 Analog Devices ADSP-210XX

Figure 3.3 shows a block diagram of the ADSP-21020 microprocessor manufactured by
Analog Devices (Norwood, MA). The ADSP-21060 core processor is similar to the
ADSP-21020. The ADSP-21060 (Figure 3.4) also includes a large on-chip memory, a
DMA controller, serial ports, link ports, a host interface and multiprocessing features

A
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FIGURE 3.4 Block diagram of ADSP-21060 processor (Courtesy Analog Devices.)
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with the core processor. The following is a brief description of these processors provided
by Analog Devices.

The ADSP-210XX processors provide fast, flexible arithmetic computation units,
unconstrained data flow to and from the computation units, extended precision and dy-
namic range in the computation units, dual address generators, and efficient program se-
quencing. All instructions execute in a single cycle. It provides one of the fastest cycle
times available and the most complete set of arithmetic operations, including seed 1/x,
min, max, clip, shift and rotate, in addition to the traditional multiplication, addition, sub-
traction, and combined addition/subtraction. It is IEEE floating-point compatible and al-
lows interrupts to be generated by arithmetic exceptions or latched status exception han-
dling.

The ADSP-210XX has a modified Harvard architecture combined with a 10-port
data register file. In every cycle two operands can be read or written to or from the regis-
ter file, two operands can be supplied to the ALU, two operands can be supplied to the
multiplier, and two results can be received from the ALU and multiplier. The processor’s
48-bit orthogonal instruction word supports fully parallel data transfer and arithmetic op-
erations in the same instruction.

The processor handles 32-bit IEEE floating-point format as well as 32-bit integer
and fractional formats. It also handles extended precision 40-bit IEEE floating-point for-
mats and carries extended precision throughout its computation units, limiting data trun-
cation errors.

The processor has two data address generators (DAGs) that provide immediate or
indirect (pre- and post-modify) addressing. Modulus and bit-reverse addressing opera-
tions are supported with no constraints on circular data buffer placement. In addition to
zero-overhead loops, the ADSP-210XX supports single-cycle setup and exit for loops.
Loops are both nestable (six levels in hardware) and interruptable. The processor sup-
ports both delayed and nondelayed branches. In summary, some of the key features of the
ADSP-210XX core processor follow:

* 48-bit instruction, 32/40-bit data words

+ 80-bit MAC accumulator

« 3-stage pipeline, 63 instruction types

+ 32 x 48-bit instruction cache

+ 10-port, 32 X 40-bit register file (16 registers per set, 2 sets)
6-level loop stack

24-bit program, 32-bit data address spaces, memory buses

1 instruction/cycle (pipelined)

1-cycle multiply (32-bit or 40-bit floating-point or 32-bit fixed-point)
6-cycle divide (32-bit or 40-bit floating-point)

2-cycle branch delay

Zero overhead loops

Barrel shifter
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* Algebraic syntax assembly language

* Multifunction instructions with 4 operations per cycle
* Dual address generators

* 4-cycle maximum interrupt latency

Timer 0
Timer 1

3.1.3 Texas Instruments TMS320C3X and TMS320C40

_ Sng [eieydueg \

Figure 3.5 shows a block diagram of the TMS320C30 microprocessor and Figure 3¢
shows the TMS320C40, both manufactured by Texas Instruments (Houston, TX). The
TMS320C30 and TMS320C40, processors are similar in architecture except that the
TMS320C40 provides hardware support for multiprocessor configurations. The followjng
is a brief description of the TMS320C30 processor as provided by Texas Instruments.
The TMS320C30 can perform parallel multiply and ALU operations on integer or
floating-point data in a single cycle. The processor also possesses a general-purpoge
register file, program cache, dedicated auxiliary register arithmetic units (ARAU), inter-
nal dual-access memories, one DMA channel supporting concurrent 1/0, and 3 short
machine-cycle time. High performance and ease of use are products of these features,
General-purpose applications are greatly enhanced by the large address Space, mu)-
tiprocessor interface, internally and externally generated wait states, two external inter-
face ports, two timers, two serial ports, and multiple interrupt structure. High-level lap.
guage is more easily implemented through a register-based architecture, large address
space, powerful addressing modes, flexible instruction set, and well-supported floating-

Address Generators
Control Registers

RAM Biock 1
(1K x 32)

Data
Integer/
Floating-Point
ALU

Precision
Address
Generator 1

point arithmetic. Some key features of the TMS320C30 are listed below. §§ P §. -g.
2 H :
* 4 stage pipeline, 113 instructions 55 © E dg; o g g g
* One 4K x 32-bit single-cycle dual access on-chip ROM block - = K 3 £§ § g§ 5 o Qg
* Two 1K x 32-bit single-cycle dual access on-chip RAM blocks é §8§ § $ § §§
* 64 x 32-bit instruction cache € oo o © 2 § §
* 32-bit instruction and data words, 24-bit addresses  * §§§ 2 EER
* 40/32-bit floating-point/integer multiplier and ALU a~3
¢ 32-bit barrel shifter Jefioquod =

* Multiport register file: Eight 40-bit extended precision registers (accumulators)
* Two address generators with eight auxiliary registers and two arithmetic units
* On-chip direct memory access (DMA)) controller for concurrent /O
* Integer, floating-point, and logical operations

* Two- and three-operand instructions

* Parallel ALU and multiplier instructions in a single cycle

* Block repeat capability

* Zero-overhead loops with single-cycle branches

Conditional calls and returns

FIGURE 3.5 Block diagram of TMS320C30 and TMS32C31 processor (Courtesy Texas Instruments).
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FIGURE 3.6 Block diagram of TMS320C40 processor (Courtesy Texas Instruments).
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* Interlocked instructions for multiprocessing support
* Two 32-bit data buses (24- and 13-bit address)

» Two serial ports

* DMA controller

¢ Two 32-bit timers

3.2 TYPICAL PROGRAMMING TOOLS FOR DSP

The manufacturers of DSP microprocessors typically provide a set of software tools de-
signed to enable the user to develop efficient DSP algorithms for their particular proces-
sors. The basic software tools provided include an assembler, linker, C compiler, and
simulator. The simulator can be used to determine the detailed timing of an algorithm and
then optimize the memory and register accesses. The C compilers for DSP processors
will usually generate assembly source code so that the user can see what instructions are
generated by the compiler for each line of C source code. The assembly code can then be
optimized by the user and then fed into the assembler and linker.

Most DSP C compilers provide a methed to add in-line assembly language routines
to C programs (see section 3.3.2). This allows the programmer to write highly efficient
assembly code for time-critical sections of a program. For example, the autocorrelation
function of a sequence may be calculated using a function similar to a FIR filter where
the coefficients and the data are the input sequence. Each multiply-accumulate in this al-
gorithm can often be calculated in one cycle on a DSP microprocessor. The same C algo-
rithm may take 4 or more cycles per multiple-accumulate. If the autocorrelation calcula-
tion requires 90 percent of the time in a C program, then the speed of the program can be
improved by a factor of about 3 if the autocorrelation portion is coded in assembly lan-
guage and interfaced to the C program (this assumes that the assembly code is 4 times
faster than the C source code). The amount of effort required by the programmer to create
efficient assembly code for just the autocorrelation function is much less than the effort
required to write the entire program in assembly langunage.

Many DSP software tools come with a library of DSP functions that provide highly
optimized assembly code for typical DSP functions such as FFTs and DFTs, FIR and IIR
filters, matrix operations, correlations, and adaptive filters. In addition, third parties may
provide additional functions not provided by the manufacturer. Much of the DSP library
code can be used directly or with small modifications in C programs.

3.2.1 Basic C Compiler Tools

AT&T DSP32C software development tools. The DSP32C’s C Compiler
provides a programmer with a readable, quick, and portable code generation tool com-
bined with the efficiency provided by the assembly interface and extensive set of library
routines. The package provides for compilation of C source code into DSP32 and
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DSP32C assembly code, an assembler, a simulator, and a number of other usefy] utilitieg
for source and object code management. The three forms of provided libraries are:

* libc A subset of the Standard C Library
* libm  Math Library
* libap  Application Software Library, complete C-callable set of DSP routines.

DSP32C support software library. This package provides assembly-Jeye
programming. Primary tools are the assembler, linker/loader, a make utility that Provides
better control over the assembly and link/load task, and a simulator for program debyg.
ging. Other utilities are: library archiver, mask ROM formatter, object file dumper, syp,.
bol table lister, object file code size reporter, and EPROM programmer formatter. The SL
package is necessary for interface control of AT&T DSP32C Development Systems.

The Application Library has over seven dozen subroutines for arithmetic, matrix,
filter, adaptive filter, FFT, and graphics/imaging applications. All files are assembly
source and each subroutine has an example test program. Version 2.2.1 adds four routines
for sample rate conversion.

AT&T DSP3210 software development tools. This package includes a c
language compiler, libraries of standard C functions, math functions, and digital signal
processing application functions. A C code usage example is provided for each of the
math and application library routines. The C Compiler also includes all of the assem-
bler, simulator, and utility programs found in the DSP3210 ST package. Since the C
libraries are only distributed as assembled and then archived “.a” files, a customer may
also find the DSP3210-AL package useful as a collection of commented assembly code
examples.

DSP3210 support software library. The ST package provides assembly
level programming. The primary tools of the package are the assembler, linker/loader,
and a simulator for program development, testing, and debugging. A 32C to 3210 assem-
bly code translator assists developers who are migrating from the DSP32C device.
Additional utilities are library archiver, mask ROM formatter, object code disassembler,
object file dumper, symbol table lister, and object code size reporter. The AT&T
Application Software Library includes over ninety subroutines of typical operations for
arithmetic, matrix, filter, adaptive filter, FFT, and graphics/imaging applications. All files
are assembly source and each subroutine has an example test program.

Analog devices ADSP-210XX C tools. The C tools for the ADSP-21000
family let system developers program ADSP-210XX digital signal processors in ANSI C.
Included are the following tools: the G21K C compiler, a runtime library of C functions,
and the CBUG C Source-Level Debugger. G21K is Analog Devices’ port of GCC, the
GNU C compiler from the Free Software Foundation, for the ADSP-21000 family of dig-
ital signal processors. G21K includes Numerical C, Analog Devices’ numerical process-
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ing extensions to the C language based on the work of the ANSI Numerical C Extensions
Group (NCEG) subcommittee.

The C runtime library functions perform floating-point mathematics, digital signal
processing, and standard C operations. The functions are hand-coded in assembly lan-
guage for optimum runtime efficiency. The C tools augment the ADSP-21000 family
assembler tools, which include the assembler, linker, librarian, simulator, and PROM
splitter.

Texas Instruments TMS320C30 C tools. The TMS320 floating-point C
compiler is a full-featured optimizing compiler that translates standard ANSI C programs
into TMS320C3x/C4x assembly language source. The compiler uses a sophisticated opti-
mization pass that employs several advanced techniques for generating efficient, compact
code from C source. General optimizations can be applied to any C code, and target-
specific optimizations take advantage of the particular features of the TMS320C3x/Cdx
architecture. The compiler package comes with two complete runtime libraries plus the
source library. The compiler supports two memory models. The small memory model en-
ables the compiler to efficiently access memory by restricting the global data space to a
single 64K-word data page. The big memory model allows unlimited space.

The compiler has straightforward calling conventions, allowing the programmer to
easily write assembly and C functions that call each other. The C preprocessor is inte-
grated with the parser, allowing for faster compilation. The Common Object File Format
(COFF) allows the programmer to define the system’s memory map at link time. This
maximizes performance by enabling the programmer to link C code and data objects into
specific memory areas. COFF also provides rich support for source-level debugging. The
compiler package includes a utility that interlists original C source statements into the as-
sembly language output of the compiler. This utility provides an easy method for inspect-
ing the assembly code generated for each C statement.

All data sizes (char, short, int, long, float, and double) are 32 bits. This
allows all types of data to take full advantage of the TMS320Cx/C4x’s 32-bit integer and
floating-point capabilities. For stand-alone embedded applications, the compiler enables
linking all code and initialization data into ROM, allowing C code to run from reset.

3.2.2 Memory Map and Memory Bandwidth Considerations

Most DSPs use a Harvard architecture with three memory buses (program and two data
memory paths) or a modified Harvard architecture with two memory buses (one bus is
shared between program and data) in order to make filter and FFT algorithms execute
much faster than standard von Neumann microprocessors. Two separate data and address
busses allow access to filter coefficients and input data in the same cycle. In addition,
most DSPs perform multiply and addition operations in the same cycle. Thus, DSPs exe-
cute FIR filter algorithms at least four times faster than a typical microprocessor with the
same MIPS rating.

The use of a Harvard architecture in DSPs causes some difficulties in writing C
programs that utilize the full potential of the multiply-accumulate structure and the multi-
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ple memory busses. All three manufacturers of DSPs described here provide a method
assign separate physical memory blocks to different C variable types. For example, ayy,
variables that are stored on the heap can be moved from internal memory to externa
memory by assigning a different address range to the heap memory segment. In the z.
sembly language generated by the compiler the segment name for a particular C variabje
or array can be changed to locate it in internal memory for faster access or to allow it to
be accessed at the same time as the other operands for the multiply or accumulate opera-
tion. Memory maps and segment names are used by the C compilers to separate differen¢
types of data and improve the memory bus utilization. Internal memory is often used for
coefficients (because there are usually fewer coefficients) and external memory is uged
for large data arrays.

The ADSP-210XX C compiler also supports special keywords so that any C varj.
able or array can be placed in program memory or data memory. The program memory is
used to store the program instructions and can also store floating-point or integer data,
When the processor executes instructions in a loop, an instruction cache is used to allow
the data in program memory (PM) and data in the data memory (DM) to flow into the
ALU at full speed. The pm keyword places the variable or array in program memory, and
the dm keyword places the variable or array in data memory. The default for static or
global variables is to place them in data memory.

3.2.3 Assembly Language Simulators and Emulators

Simulators for a particular DSP allow the user to determine the performance of a DSP al-
gorithm on a specific target processor before purchasing any hardware or making a major
investment in software for a particular system design. Most DSP simulator software is
available for the IBM-PC, making it easy and inexpensive to evaluate and compare the
performance of several different processors. In fact, it is possible to write all the DSP ap-
plication software for a particular processor before designing or purchasing any hard-
ware. Simulators often provide profiling capabilities that allow the user to determine the
amount of time spent in one portion of a program relative to another. One way of doing
this is for the simulator to keep a count of how many times the instruction at each address
in a program is executed.

Emulators allow breakpoints to be set at a particular point in a program to examine
registers and memory locations, to determine the results from real-time inputs. Before a
breakpoint is reached, the DSP algorithm is running at full speed as if the emulator were
not present. An in-circuit emulator (ICE) allows the final hardware to be tested at full
speed by connecting to the user’s processor in the user’s real-time environment. Cycle
counts can be determined between breakpoints and the hardware and software timing of a
system can be examined.

Emulators speed up the development process by allowing the DSP algorithm to run
at full speed in a real-time environment. Because simulators typically execute DSP pro-
grams several hundred times slower than in real-time, the wait for a program to reach a
particular breakpoint in a simulator can be a long one. Real world signals from A/D con-
verters can only be recorded and then later fed into a simulator as test data. Although fhe
test data may test the algorithm performance (if enough test data is available), the timing
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of the algorithm under all possible input conditions cannot be tested using a simulator.
Thus, in many real-time environments an emulator is required.

The AT&T DSP32C simulator is a line-oriented simulator that allows the user to
examine all of the registers and pipelines in the processor at any cycle so that small pro-
grams can be optimized before real-time constraints are imposed. A typical computer dia-
log (user input is shown in bold) using the DSP32C simulator is shown below (courtesy
of AT&T):

$im: SHOWRW=1

$im: b end

bp set at addr 0x44

$im: run

12 | r000004* * * * |0000: rll = Ox7£(127)

16 | r000008* * * w00007c* |0004: * r2 = rill

20 | r00000c** * * r00007c* |0008: a3 = *r2

25 | r000010** * r5a%aba* __ = * IOOOC: rl0l = * rl

30 | r000014* * * * 10010: NOP

34 | r000018* * * * |0014: rl0 = r10 + Oxff81(-127)
38 | r00001lc* * * w000080* [0018: * r3 = rl0

42 | r000020** * * r000080* |001lc: *r3 = a0 = float(*r3)
47 | r000024** * * * |0020: a0 = a3 * a3

52 | r000028* * r000074* r000070**|0024: al = *rd4— + a3 * *r4-—
57 | r00002c** * r000068* r000064**|0028: a2 = *r5— + a3 * *rS5—
63 | r000030**w000080** * * |002¢c: a0 = a0 * a3

69 | r000034* * * r00006c* {0030: al = *rd + al * a3

73 | r000038** * r00005c* r000058**[0034: a3 = *ré6— + a3 * *ré6—
79 | r00003c** * r00007c* r000060**|0038: a2 = *r5 + a2 * *r2
85 | r000040** * * * |003¢c: al = al + a0

90 | r000044* * r000080* * 10040: *r7 = a0 = al + *r3
breakpoint at end{0x000044} decode:*r7 = a0 = al + *r3

$im: x7.f£

r7 = 16.000000
$im: nwait.d
nwait = 16

In the above dialog the flow of data in the four different phases of the DSP32C in-
struction cycle are shown along with the assembly language operation being performed.
The cycle count is shown on the left side. Register 17 is displayed in floating-point after
the breakpoint is reached and the number of wait states is also displayed. Memory reads
are indicated with an r and memory writes with a w. Wait states occurring when the same
memory is used in two consecutive cycles are shown with **,

AT&T DSP32C EMULATION SYSTEM DESCRIPTION

* Real-time application development

* Interactive interface to the ICE card(s) provided by the DSP32C simulator through
the high-speed parallel interface on the PC Bus Interface Card
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Chap, 3 ;

reak . atch:: ‘Mo e Run=F5:

* Simulator-controlled software breakpoints; examine and change memory Conteng 3
s

pad

or device registers 3 ENBLY —[Cru —
. g . . . . . 3 4 ("233? 62600233 CaLL  INV_F3e AlPC 90000013 SP 00006a18a
¢ For multi-ICE configuration selection of which ICE card is active by the Simulatg; % 3 9996 10 11000006 RND R6,R0 R6 ©03126e60 R1 ac4B8eB8ab
' 1 :gaeu 6240630 NPYF  =+AR3(15),Re ||R2 00 R3 00 9
. . . i E ] 30d STF RO, »+AR3(13) R4 00000000 RS 6060080600
Figure 3.7 shows a typical screen from the ADSP-21020 screen-oriented simulator., This 1 eeggg ;;:33632 FLOAT eratio,RO R6 00000006 R? 060000000
simulator allows the timing and debug of assembly language routines. The user Interface  § ] ggeau 43a2109b3 LDFN  @89b3H,R1 ARG 1c40 AR1 00 10
of the simulator lets you completely control program execution and easily change the . |eeee15 45618006 LDFGE ©.00,R1 ARZ 660680000 AR3 6000689fb
. . 150 b . e 3 : 000616 91860001 ADDF R1,Re v{AR41 600000600 ARS 00000000Y
contents of registers and memory. Breakpoints can also be set to Stop execution of the | 000617 62607480 MPYF  200.60,R0 | |AR6 00006000 AR? 00060666 |
program at a particular point. The ADSP-21020 simulator creates a Tepresentation of : ] ILE: chZ.c - - ALLS
the device and memory spaces as defined in a system architecture file. It can also simy. ‘ [5066 ﬁ:’:s?;g:‘;‘;;“;tr ) al 1: mainO
late input and output from I/O devices using simulated data files. Program execution can | ::gg _in_ptr:
be observed on a cycle-by-cycle basis and changes can be made on-line to COFTect errors, ] 9669 percent_pass = 86.9;
. . . H . . e
The same screen based mterfage 1s used ff)r both 'the sn.mulator and thg IR-CIrcuit emuly- 22;1 fp = percent_pass/(206.0»ratio); v
tor. A C-source level debugger is also available with this same type of interface (see sec. 0072 fa = (Z260.8 - percent_pass)/(200.8=ratio); |
tion 3.3.1). ] P loaded a 953323 6f2h0666 080bOB14 B274001a Of
. ; ar . 3 84 Symbols loade A 61la 6fa60800a
. F]gure 3.8 shows a typnf:al screen from the TMS320C_30 screen-oriented simulator, Done I|e000e4 6r2c0008 0f246000 672809b2 14406318|
This simulator allows the timing of assembly language routines as well as C source code, 9 o main v 000008 07616200 1441036f 65a00682 43a209b3v
because it shows the assembly language and C source code at the same time. All of the * h || 20900c 45628000 61800002 eacer4ae 62066233 |

registers can be displayed after each step of the processor. Breakpoints can also be settp . .
stop execution of the program at a particular point. 3 FIGURE 3.8 TMS320C30 simulator in mixed mode assembly language mode
3 {Courtesy Texas Instruments.)

File Core Memory Execution Setup Help 3.3 ADVANCED C SOFTWARE TOOLS FOR DSP

- Data Memory (Fixed) ——- i

_play_fifo: Program Memory (Disassembled,/T) — . . . . . .
mpﬂ Y (800060001 -107811072 RAM  [0002de] comp(rZ,rd): E This section describes some of the more advanced software tools available for floating-
RAM  [000600011 147128993 RAM  [0002d4f1 if ge jump _L20 (db): 1 . point DSP microprocessors. Source-level debugging of C source code is described in the
:2: :gggggggg} fggg?g?gg 1’:2: {gggg:g} :g:: o next section. Section 3.3.2 describes several assembly language interfaces often used in
RAN 1060000041 -372968788 RAN  [8002e2] rZ2=dm(Oxfffffffa,i6}; ] DSP programming to accelerate key portions of a DSP algorithm. Section 3.3.3 jllustrates
RAN  [00600005] -569122157 RAM  >10002e3) r4=ashift r2 by 6x3; E the numeric C extensions to the C language using DSP algorithms as examples (see

Ran [0002e41 r9=6x32f5;

Section 2.10 for a description of numeric O).

Cycle Counter RAN [0002e5] r2=r4+r9;
[ 578324791 ] RAN [0002e6] r12=-0x473f:; 1 ;
RAN  [0002e?] r8=6x4749: E 3.3.1 Source Level Debuggers

—— Active Register File (Hex) Ran [0002e8] r4=r2; 4

RO: 458d4de5a00 R8: 06000000600 Ran [0002e9] i13=0x2ec; E 3 L X

R1: 0000060160 R3: 0000000000 B|RAM % [0602ea] Jump _note (db): 3 i Communication Automation & Control (CAC), Inc. (Allentown, PA) offers a debugger
gg ggg‘;:ggggg gi‘;f g??????ggg gg: Egggggg; 'l‘g::f" ] for DSP32C assembly language with C-source debugging capability. Both versions are
R4: 0000000400 R12: 458ddc5a00 H|RAM  [0002ed] r12-re: 3 ] compatible with the following vendors’ DSP32C board for the AT computer under MS-
R5: 4574200060 R13: c833101cdb RAM [0002¢e] r8=dm(Oxfffffff5,i63; b 4 DOS: all CAC boards, Ariel, AT&T DSP32C-DS and ICE, Burr-Brown ZPB34, Data

R6: 0000000660 Ri4: fIFrFffffeff RAM [0002ef ] £2=£8+112;
R?: 8a016018056 R15: 8fc3fOfsff RAM [0002f0) dm(Oxf{ffffff5,i6)=r2:
_L21:

Translation, Loughborough Sound Images, and Surrey Medical Imaging Systems. C-
source code of the drivers is provided to enable the user to port either debugger to an un-
supported DSP32C based board.

Both D3EMU (assembly language only) and D3BUG (C-source and mixed assem-
lfbly code) are screen-oriented user-friendly symbolic debuggers and have the following
eatures:

Target Halted oy:12:47"

FIGURE 3.7 ADSP-21020 simulator displaying assembly language and processor
registers {Courtesy Analog Devices.)
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Single-step, multiple breakpoints, run at full speed
Accumulator/register/mem displays updated automatiéally after each step
Global variables with scrolling

Stand-alone operation or callable by host application

D3BUG ONLY

C-source and assembly language mixed listing display modes.
Local and watch variables.

Stack trace display.

Multiple source files/directories with time stamp check.

Figure 3.9 shows a typical screen generated using the D3BUG source level debug-

ger with the DSP32C hardware executing the program. Figure 3.9 shows the mixed as-
sembly-C source mode of operation with the DSP32C registers displayed. Figure 3.1
shows the C source mode with the global memory location displayed as the entire C pro-
gram is executed one C source line at a time in this mode.

Figure 3.11 shows a typical screen from the ADSP-21020 simulator when C source

level debugging is being performed using CBUG. C language variables can be displayed
and the entire C program can be executed one C source line at a time in this mode. This
same type of C source level debug can also be performed using the in-circuit emulator.

acc break cont disk goto halt i‘o men code quit reg step vars mix ?-DOS ?-heip
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acc break cont disk goto halt i-‘o mem code quit reg step vars mix 1-D0S T-hetp

0650

0851 = Select two frequencies =/

0852> freql = 576.0:;

0953> freqZ = 1472.0;

9054

0855 /» Calculate the frequency ratio between the sel

0856 /= sanilini rate for both oscillators. =/
0658>

freq_ratio2 = freqZ/sample_rate:
0059

0060 /» Initialize each oscillator =,

8061> oscinit(freq_ratiol,state_uarinblesl):

9063) oscinit{freq_ratioZ,state_variables2):

066

0664 /= Generate 128 samples for each oscillator =/
0865> oscN(state_variables1,128,datal);

8066> oscN(state_variables2,128,data2);

0867

9668 /= Add the two waveforms together =/

00693> add_tones(datal,data2);

9870

0071 /= Now compute the fft using the AT&T

0e7Z> rffta(128,?,data_in); g spplicatio

r-: GLOBAL UARIABLES —-

8873

atallo]

63002c: 2.685559e-603
datazlo]

03022c: 2.685559¢-603
data_inlo1l

03042c: 2.685559¢-003
data_outfoe]

83862c: 2.685559¢-063
errno

0360600 : 865319799
find_max

00038c : 536084951
freq1

630604: 1.933384e+026
freq2

636008: 1.933384¢+026
freq _ratiol

030006c: 1.933384e+026
freq_ratio2

0360016: 1.933384e+026
log1e

000410: 809561647

FIGURE 3.10 DSP32C debugger D3BUG in C-source mode (Courtesy Communication

Automation & Control (CAC), Inc. {Allentown, PA).)

File Core Memory Execution Setup Help

CBUG ( .
<Continue> RuZik. exe)

0000b4: 94Z2effe8
0000b8: 30000477
0000bc: 00000009
0060cO: 000600000
0000c4: c0610008
90006c8: 30000477
00006cc: 900000000

0000d4: c0146048
0000dY: YaBesooy
0000dc: c6610610
06000c6: 30200008
0060c4: 00000600

9600eB: c0610014
9900ec: 1fel01dd
g00ure: cHb19v0c
0000f4: 30000477
0000f8: 00000608
v000fc: 0140444
060100: c01401064
000104: 9aB8c06008

REGISTERS ==
rie=r14+0xffffed 1:0x030008 freq2
%ri14++=a0=wrl 2:0xfffo34
nop 3:0xfffO3c
nop 4:0x036800 _1
rie=freq2 5:0x688191
wriqeezaf=wrl 6:68xfffdJa
no ?:0xfffffd

8:0x1cf81b

r1B8e=0x6648 9:0xbfa335
rl4e=ri4-4 10:6xfffffc
rie=freq_ratio2 11:9x060405a
wrl=al=a@ 12:8xf933e3
nop 13:0xf££606
8061> oscinit(freq_ratiol,state_variables1); 14:0xfffo38
rie=state_variables1 15:0xfIffff
»rl4++ri9=rie 16:0xfIffff
rle=freq_ratiol 17 :0x5ee?ff
wrl4++=a@=srl 18:6x0000a6
nop 19:6x000604
call oscinit (riB) 20:0x16bf11
r18c-0x0194 21:0x600008
ri4e-r14-8 22:0xfEfFFPff

18: 0.90960000e+608 al: ©.8000000c+006 aZ: ©.0000000c+080 a3: 1.7000809c+03b

FIGURE 3.9 DSP32C debugger D3BUG in mixed assembly C-source mode (Courtesy

Communication Automation & Control (CAC), Inc. (Allentown, PA).)

{Step> <Next>

<Finish> <Break> <Up> <D
<Execution..> <Breaks..> <Data..> <Context..> (Synbols.?) <Hodg:??>
muZlk.c
83: for(i =8 : i < endi ; i+s) ¢ .
Bif sig_out = 0.9;
gS: for(v = @ ; v < vnum : vses) {
Bg: sig_out += note(&notesivl,tbreaks,rates):
88: sendout(si :
89 ) sig_out)
38: ¥ C exp
by - X
>si
92: flush):; -gagi?ggss
93: flags(0); /» turn off LED =~
[ CBUG Status
§ No debug symbols for _key_down().
gteppsng into code with symbols.
rr: User halt. Do a CBUG Step/Next to resume C debuggin
$ Err: User halt. Do a CBUG Step/Next to resume C degggggng.

Target Halted

FIGURE 3.11 ADSP-21020 simulator displaying C source code (Courtesy
Devices.)

08:16:49

Analog



©reak

FILE:
0670
0071

0072 fa = (200.0 - percent_pass)/(200.0xratio):
0073 deltaf = fa-fp:
0074
8075 nfilt = filter_length( att, deltaf, &beta ):
8076
007? Isize = nfilt/ratio:
0078
8079 nfilt = lsizexratio + 1;
6086 BP> npair = (nfilt - 1),2;
o681
pesz for(i = @ . i < ratio ; i++) {

0883 hlil = (float =) calloc(lsize,sizeof (float)); v
0084 if (thiid) { I
COMMAND — {CALLS

ATCH Al 1: mainQ)

Loading ch2.out 1: i 3

84 Symbols loaded Z2: clk 19ee

Done

Eo main i
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atch: ¢ emory:’ olor Mo e Run=F5: Step=F8 ' Next=F10

chZz.c 4‘——_;;‘““¥ﬁ

fp = percent_pass/(200.8xratio);

FIGURE 3.12 TMS320C30 simulator in C-source mode (Courtesy Texas Instruments.)

Figure 3.12 shows a typical screen from the TMS320C30 simulator when C source
level debugging is being performed. C language variables can be displayed and the entire
C program can be executed one C source line at a time in this mode.

3.3.2 Assembly-C Language Interfaces

The DSP32C/DSP3210 compiler provides a macro capability for in-line assembly lan-
guage and the ability to link assembly language functions to C programs. In-line assem-
bly is useful to control registers in the processor directly or to improve the efficiency of
key portions of a C function. C variables can also be accessed using the optional operands
as the following scale and clip macro illustrates:

asm void scale(flt_ptr,scale_f,clip)
{

% ureg flt_ptr,scale f,clip;

a0 = scale f * *flt_ptr

al -a0 + clip

a0 ifalt(clip)

*flt_ptr++ = a0 = a0

}

Assembly language functions can be easily linked to C programs using several
macros supplied with the DSP32C/DSP3210 compiler that define the beginning and. the
end of the assembly function so that it conforms to the register usage of the C compiler.
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The macro @B saves the calling function’s frame pointer and the return address. The
macro @EO reads the return address off the stack, performs the stack and frame pointer
adjustments, and returns to the calling function. The macros do not save registers used in
the assembly language code that may also be used by the C compiler—these must be
saved and restored by the assembly code. All parameters are passed to the assembly lan-
guage routine on the stack and can be read off the stack using the macro param (), which
gives the address of the parameter being passed.

The ADSP-210XX compiler provides an asm() construct for in-line assembly lan-
guage and the ability to link assembly language functions to C programs. In-line assem-
bly is useful for directly accessing registers in the processor, or for improving the effi-
ciency of key portions of a C function. The assembly language generated by asm() is
embedded in the assembly language generated by the C compiler. For example,
asm("bit set imask 0x40;") will enable one of the interrupts in one cycle. C
variables can also be accessed using the optional operands as follows:

asm("%0=clip %1 by %2;" : "=g* (result) : "a" (x), "d* (y));

where result, x and y are C language variables defined in the C function where the
macro is used. Note that these variables will be forced to reside in registers for maximum
efficiency.

ADSP-210XX assembly language functions can be easily linked to C programs
using several macros that define the beginning and end of the assembly function so that it
conforms to the register usage of the C compiler. The macro entry saves the calling
function’s frame pointer and the return address. The macro exit reads the return address
off the stack, performs the stack and frame pointer adjustments, and returns to the calling
function. The macros do not save registers that are used in the assembly language code
which may also be used by the C compiler—these must be saved and restored by the as-
sembly code. The first three parameters are passed to the assembly language routine in
registers r4, 18, and r12 and the remaining parameters can be read off the stack using the
macro reads ().

The TMS320C30 compiler provides an asm() construct for in-line assembly lan-
guage. In-line assembly is useful to control registers in the processor directly. The assem-
bly language generated by asm() is embedded in the assembly language generated by
the C compiler. For example, asm(* LDI @MASK, IE") will unmask some of the in-
terrupts controlled by the variable MASK. The assembly language routine must save the
calling function frame pointer and return address and then restore them before returning
to the calling program. Six registers are used to pass arguments to the assembly language
routine and the remaining parameters can be read off the stack.

3.3.3 Numeric C Compilers

As discussed in section 2.10, numerical C can provide vector, matrix, and complex oper-
ations using fewer lines of code than standard ANSI C. In some cases the compiler may
be able to perform better optimization for a particular processor. A complex FIR filter
can be implemented in ANSI C as follows:
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typedef struct {
float real, imag;
} COMPLEX;

COMPLEX float x[1024],w[1024];
COMPLEX *xc, *wc,out;
KC=X;
WC=W;
out.real = 0.0;
out.imag = 0.0
for(i =0 ; i <n ; i++) {
out.real += xc[i].real*wc([i].real - xcli].imag*wc(i].imag;
out.imag += xcl[i].real*wc[i].imag + xcli] .imag*wc([i] .real;

’

The following code segment shows the numeric C implementation of the same complex
FIR filter:

complex float out,x[1024],w[1024];
{
iter I = n;
out=sum(x[I]*w(I]);

The numeric C code is only five lines versus the ten lines required by the standard C im-
plementation. The numeric C code is more efficient, requiring 14 cycles per filter tap ver-
sus 17 in the standard C code.

More complicated algorithms are also more compact and readable. The followir}g
code segment shows a standard C implementation of a complex FFT without the bit-
reversal step (the output data is bit reversed):

void fft_c(int n,COMPLEX *x,COMPLEX *w)
{

COMPLEX u, temp, tm;

COMPLEX *xi,*Xip, *wptr;

int i,j,le,windex;

windex = 1;
for(le=n/2 ; le > 0 ; le/=2) {
wptr = w;
for (j =0 ; j<le; j++) {
u = *wptr;
for (i =3 ;:;i<n; 1i=1+2*le) {
xi =x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
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temp.imag = xi->imag + xip->imag;
tm.real = xi->real - xip->real;
tm.imag = xi->imag - xip->imag;
xip->real = tm.real*u.real - tm.imag*u.imag;
xip->imag = tm.real*u.imag + tm.imag*u.real;
*xi = temp;

}

wptr = wptr + windex;

}

windex = 2*windex;

The following code segment shows the numeric C implementation of a complex FFT
without the bit-reversal step:

void fft nc(int n, complex float *x, complex float *w)
{
int size,sect,deg = 1;
for(size=n/2 ; size > 0 ; size/=2) {
for(sect=0 ; sect < n ; sect += 2*size) ({
complex float *xl=x+sect;
complex float *x2=xl+size;
{ iter I=size;
for(1) {
complex float temp;
temp = x1[I] + x2(I]);
x2[I] = (x1[I] - x2[I]) * w[deg*I];
x1[I] = temp;

deg *= 2;

The twiddle factors (w) can be initialized using the following numeric C code:

void init_w(int n, complex float *w)
{

iter I = n;

float a = 2.0*PI/n;

wl[I] = cosf(I*a) + li*sinf(I*a);

Note that the performance of the init_w function is almost identical to a standard C im-
plementation, because most of the execution time is spent inside the cosine and sine func-
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tions. The numerical C implementation of the FFT also has an almost identical execution
time as the standard C version.

4 REAL-TIME SYSTEM DESIGN CONSIDERATIONS

Real-time systems by definition place a hard restriction on the response time to one of
more events. In a digital signal processing system the events are usually the arrival of
new input samples or the requirement that a new output sample be generated. In this sec-
tion several real-time DSP design considerations are discussed.

Runtime initialization of constants in a program during the startup phase of a DSp’
execution can lead to much faster real-time performance. Consider the pre-calculation of
1/, which may be used in several places in a particular algorithm. A lengthy divide i
each case is replaced by a single multiply if the constant is pre-calculated by the compiler
and stored in a static memory area. Filter coefficients can also be calculated during the
startup phase of execution and stored for use by the real-time code. The tradeoff that re-
sults is between storing the constants in memory which increases the minimum memory
size requirements of the embedded system or calculating the constants in real-time. Also,
if thousands of coefficients must be calculated, the startup time may become exceeding
long and no longer meet the user’s expectations. Most DSP software development sys-
tems provide a method to generate the code such that the constants can be placed in ROM
so that they do not need to be calculated during startup and do not occupy more expen-
sive RAM.

3.4.1 Physical Input/Output (Memory Mapped,
Serial, Polled)

Many DSPs provide hardware that supports serial data transfers to and from the processor
as well as external memory accesses. In some cases a direct memory access (DMA) con-
troller is also present, which reduces the overhead of the input/output transfer by transfer-
ring the data from memory to the slower I/O device in the background of the real-time
program. In most cases the processor is required to wait for some number of cycles when-
ever the processor accesses the same memory where the DMA process is taking place.
This is typically a small percentage of the processing time, unless the input or output
DMA rate is close to the MIPS rating of the processor.

Serial ports on DSP processors typically run at a maximum of 20 to 30 Mbits/sec-
ond allowing approximately 2.5 to 4 Mbytes to be transferred each second. If the (liata
input and output are continuous streams of data, this works well with the typical floating-
point processor MIPS rating of 12.5 to 40. Only 4 to10 instructions could be exe_cuted be-
tween each input or output leading to a situation where very little signal processing could
be performed.

Parallel memory-mapped data transfers can take place at the MIPs rating of the
processor, if the I/O device can accept the data at this rate. This allows for rapid transfers
of data in a burst fashion. For example, 1024 input samples could be acquired from 2
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10 MHz A/D converter at full speed in 100 usec, and then a FFT power spectrum calcula-
tion could be performed for the next 5 msec. Thus, every 5.1 msec the A/D converter's
output would be used.

Two different methods are typically used to synchronize the microprocessor with
the input or output samples. The first is polling loops and the second is interrupts which
are discussed in the next section. Polling loops can be highly efficient when the input and
output samples occur at a fixed rate and there are a small number of inputs and outputs.
Consider the following example of a single input and single output at the same rate:

for(;;) {
while(*in_status & 1);
*out = filter(*in)

}

It is assumed that the memory addresses of in, out, and in_status have been de-
fined previously as global variables representing the physical addresses of the I/O ports.
The data read at in_status is bitwise ANDed with 1 to isolate the least significant bit.
If this bit is 1, the while loop will loop continuously until the bit changes to 0. This bit
could be called a “not ready flag” because it indicates that an input sample is not avail-
able. As soon as the next line of C code accesses the in location, the hardware must set
the flag again to indicate that the input sample has been transferred into the processor.

* After the £ilter function is complete, the returned value is written directly to the out-

put location because the output is assumed to be ready to accept data. If this were not the
case, another polling loop could be added to check if the output were ready. The worst
case total time involved in the filter function and at least one time through the while
polling loop must be less than the sampling interval for this program to keep up with the
real-time input. While this code is very efficient, it does not allow for any changes in the
filter program execution time. If the filter function takes twice as long every 100 samples
in order to update its coefficients, the maximum sampling interval will be limited by this
larger time. This is unfortunate because the microprocessor will be spending almost half
of its time idle in the while loop. Interrupt-driven /O, as discussed in the next section,
can be used to better utilize the processor in this case.

3.4.2 Interrupts and Interrupt-Driven /O

In an interrupt-driven I/O system, the input or output device sends a hardware interrupt to
the microprocessor requesting that a sample be provided to the hardware or accepted as
input from the hardware. The processor then has a short time to transfer the sample. The
interrupt response time is the sum of the interrupt latency of the processor, the time re-
quired to save the current context of the program running before the interrupt occurred
and the time to perform the input or output operation. These operations are almost always
performed in assembly language so that the interrupt response time can be minimized.
The advantage of the interrupt-driven method is that the processor is free to perform other
tasks, such as processing other interrupts, responding to user requests or slowly changing
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the parameters associated with the algorithm. The disadvantage of interrupts is the over.
head associated with the interrupt latency, context save, and restore associated with the

interrupt process. o

The following C code example (file INTOUT.C on the enclosed disk) illustrates the
functions required to implement one output interrupt driven process that will generate
1000 samples of a sine wave:

#include <signal.h>
#include <math.h>
#include "rtdspc.h”

#define SIZE 10
int output_store([SIZE];
int in inx = 0;

volatile int out_inx = 0;

void sendout (float x);
void output_isr(int ino);

int in_fifo[10000];
int index = 0;

void main()

{
static float £,a;
int i,3;
setup_codec(6) ;
for{(i = 0 ; i < SIZE-1 ; i++) sendout(i);
interrupt (SIG_IRQ3, output_isr);
i=0;
j=1;
for(;;) {
for(£f=0.0 ; £ < 1000.0 ; £ += 0.005) {
sendout (a*sinf (£*PI));
i+= 3;
if (i%25 == 0) {
a = 100.0*exp(i*Se-5);
if(a > 30000.0 || 1 < 0) § = -3;
}
}
}
}
void sendout (float x)
{
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}

in_inx++;

if (in_inx == SIZE) in_inx = 0;
while(in inx == out_inx);
output_storelin_inx] = (int)x;

void output_isr(int ino)

{

volatile int *out = (int *)0x40000002;

if (index < 10000)
in_fifolindex++]1=16*in_inx+out_inx;

*out = output_store(out_inx++] << 16;
if (out_i: == SIZE) out_inx = 0;
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The C function output_isr is shown for illustration purposes only (the code is ADSP-
210XX specific), and would usually be written in assembly language for greatest effi-
ciency. The functions sendout and output_isr form a software first-in first-out
(FIFO) sample buffer. After each interrupt the output index is incremented with a circular
0-10 index. Each call to sendout increments the in_inx variable until it is equal to
the out_inx variable, at which time the output sample buffer is full and the while loop
will continue until the interrupt process causes the out_inx to advance. Because the
above example generates a new a value every 25 samples, the FIFO tends to empty dur-
ing the exp function call. The following table, obtained from measurements of the exam-
ple program at a 48 KHz sampling rate, illustrates the changes in the number of samples

in the software FIFO.
Sample Index in inx value out_inx value Number of Samples in FIFO
0 2 2 10
1 3 3 10
2 4 4 10
3 4 5 9
4 4 6 8
5 4 7 7
6 4 8 6
7 4 9 5
8 7 0 7
9 9 1 8
10 2 2 10

As shown in the table, the number of samples in the FIFO drops from 10 to 5 and then is
quickly increased to 10, at which point the FIFO is again full.
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3.4.3 Efficiency of Real-Time Compiled Code

The efficiency of compiled C code varies considerably from one compiler to the next
One way to evaluate the efficiency of a compiler is to try different C constructs, sych as.
case statements, nested 1 £ statements, integer versus floating-point data, while Toops
versus £or loops and so on. It is also important to reformulate any algorithm or eXpres.
sion to eliminate time-consuming function calls such as calls to exponential, square ro,

or transcendental functions. The following is a brief list of optimization techniques thy
can improve the performance of compiled C code.

(1) Use of arithmetic identities—multiplies by 0 or 1 should be eliminated whenever
possible especially in loops where one iteration has a multiply by 1 or zero, A} di-
vides by a constant can also be changed to multiplies.

(2) Common subexpression elimination—repeated calculations of same subexpression
should be avoided especially within loops or between different functions.

(3) Use of intrinsic functions—use macros whenever possible to eliminate the function
call overhead and convert the operations to in-line code.

(4) Use of register variables—force the compiler to use registers for variables which
can be identified as frequently used within a function or inside a loop.

(5) Loop unrolling—duplicate statements executed in a loop in order to reduce the
number of loop iterations and hence the loop overhead. In some cases the loop is
completely replaced by in-line code.

(6) Loop jamming or loop fusion—combining two similar loops into one, thus reduc-
ing loop overhead.

(7) Use post-incremented pointers to access data in arrays rather than subscripted vari-
ables (x=array [i++] is slow, x=*ptr++ is faster).

In order to illustrate the efficiency of C code versus optimized assembly code, the follow-
ing C code for one output from a 35 tap FIR filter will be used:

float in[35},coefs[35],y;

main()

{
register int i;
register float *x = in, *w = coefs;
register float out;

out = *X++ * *wi+t;

for(i = 16 ; i—>= 0; ) ¢{
out += *X++ * *wr+;
out += *X++ * Fyst;

}

y=out;
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The FIR C code will execute on the three different processors as follows:
Optimized C Optimized Relative Efficiency
Processor Code Cycles Assembly Cycles of C Code (%)
DSP32C 462 187 40.5
ADSP-21020 185 44 238
TMS320C30 241 45 18.7

The relative efficiency of the C code is the ratio of the assembly code cycles to the C
code cycles. An efficiency of 100 percent would be ideal. Note that this code segment is
one of the most efficient loops for the DSP32C compiler but may not be for the other
compilers. This is illustrated by the following 35-tap FIR filter code:

float in{35],coefs[35] Y

main()

{
register int i;
register float *x
register float *w
register float out;

in;
coefs;

o

Out = *X++ * *yt++;
for(i =0 ; i <17 ; i++ ) {
out += *xX++ * tyas;
out += *X++ * *yi4;
}
y=out;
}

This £for-loop based FIR C code will execute on the three different processors as fol-
lows:

Optimized C Optimized Relative Efficiency
Processor Code Cycles Assembly Cycles of C Code (%)
DSP32C 530 187 353
ADSP-21020 109 44 404
TMS320C30 211 45 21.3

Note that the efficiency of the ADSP-

21020 processor C code is now almost equal to the

efficiency of the DSP32C C code in the previous example.
The complex FFT written in standard C code shown in Section 3.3.3 can be used to



